xref: /openbmc/linux/drivers/nvme/host/pci.c (revision efac162a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/once.h>
22 #include <linux/pci.h>
23 #include <linux/suspend.h>
24 #include <linux/t10-pi.h>
25 #include <linux/types.h>
26 #include <linux/io-64-nonatomic-lo-hi.h>
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 #include <linux/sed-opal.h>
29 #include <linux/pci-p2pdma.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
38 
39 /*
40  * These can be higher, but we need to ensure that any command doesn't
41  * require an sg allocation that needs more than a page of data.
42  */
43 #define NVME_MAX_KB_SZ	4096
44 #define NVME_MAX_SEGS	127
45 
46 static int use_threaded_interrupts;
47 module_param(use_threaded_interrupts, int, 0);
48 
49 static bool use_cmb_sqes = true;
50 module_param(use_cmb_sqes, bool, 0444);
51 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
52 
53 static unsigned int max_host_mem_size_mb = 128;
54 module_param(max_host_mem_size_mb, uint, 0444);
55 MODULE_PARM_DESC(max_host_mem_size_mb,
56 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
57 
58 static unsigned int sgl_threshold = SZ_32K;
59 module_param(sgl_threshold, uint, 0644);
60 MODULE_PARM_DESC(sgl_threshold,
61 		"Use SGLs when average request segment size is larger or equal to "
62 		"this size. Use 0 to disable SGLs.");
63 
64 #define NVME_PCI_MIN_QUEUE_SIZE 2
65 #define NVME_PCI_MAX_QUEUE_SIZE 4095
66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67 static const struct kernel_param_ops io_queue_depth_ops = {
68 	.set = io_queue_depth_set,
69 	.get = param_get_uint,
70 };
71 
72 static unsigned int io_queue_depth = 1024;
73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
75 
76 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
77 {
78 	unsigned int n;
79 	int ret;
80 
81 	ret = kstrtouint(val, 10, &n);
82 	if (ret != 0 || n > num_possible_cpus())
83 		return -EINVAL;
84 	return param_set_uint(val, kp);
85 }
86 
87 static const struct kernel_param_ops io_queue_count_ops = {
88 	.set = io_queue_count_set,
89 	.get = param_get_uint,
90 };
91 
92 static unsigned int write_queues;
93 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
94 MODULE_PARM_DESC(write_queues,
95 	"Number of queues to use for writes. If not set, reads and writes "
96 	"will share a queue set.");
97 
98 static unsigned int poll_queues;
99 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
100 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
101 
102 static bool noacpi;
103 module_param(noacpi, bool, 0444);
104 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
105 
106 struct nvme_dev;
107 struct nvme_queue;
108 
109 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
110 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
111 
112 /*
113  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
114  */
115 struct nvme_dev {
116 	struct nvme_queue *queues;
117 	struct blk_mq_tag_set tagset;
118 	struct blk_mq_tag_set admin_tagset;
119 	u32 __iomem *dbs;
120 	struct device *dev;
121 	struct dma_pool *prp_page_pool;
122 	struct dma_pool *prp_small_pool;
123 	unsigned online_queues;
124 	unsigned max_qid;
125 	unsigned io_queues[HCTX_MAX_TYPES];
126 	unsigned int num_vecs;
127 	u32 q_depth;
128 	int io_sqes;
129 	u32 db_stride;
130 	void __iomem *bar;
131 	unsigned long bar_mapped_size;
132 	struct work_struct remove_work;
133 	struct mutex shutdown_lock;
134 	bool subsystem;
135 	u64 cmb_size;
136 	bool cmb_use_sqes;
137 	u32 cmbsz;
138 	u32 cmbloc;
139 	struct nvme_ctrl ctrl;
140 	u32 last_ps;
141 	bool hmb;
142 
143 	mempool_t *iod_mempool;
144 
145 	/* shadow doorbell buffer support: */
146 	u32 *dbbuf_dbs;
147 	dma_addr_t dbbuf_dbs_dma_addr;
148 	u32 *dbbuf_eis;
149 	dma_addr_t dbbuf_eis_dma_addr;
150 
151 	/* host memory buffer support: */
152 	u64 host_mem_size;
153 	u32 nr_host_mem_descs;
154 	dma_addr_t host_mem_descs_dma;
155 	struct nvme_host_mem_buf_desc *host_mem_descs;
156 	void **host_mem_desc_bufs;
157 	unsigned int nr_allocated_queues;
158 	unsigned int nr_write_queues;
159 	unsigned int nr_poll_queues;
160 
161 	bool attrs_added;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	u32 *dbbuf_sq_db;
213 	u32 *dbbuf_cq_db;
214 	u32 *dbbuf_sq_ei;
215 	u32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226 	struct nvme_request req;
227 	struct nvme_command cmd;
228 	struct nvme_queue *nvmeq;
229 	bool use_sgl;
230 	int aborted;
231 	int npages;		/* In the PRP list. 0 means small pool in use */
232 	int nents;		/* Used in scatterlist */
233 	dma_addr_t first_dma;
234 	unsigned int dma_len;	/* length of single DMA segment mapping */
235 	dma_addr_t meta_dma;
236 	struct scatterlist *sg;
237 };
238 
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs) {
249 		/*
250 		 * Clear the dbbuf memory so the driver doesn't observe stale
251 		 * values from the previous instantiation.
252 		 */
253 		memset(dev->dbbuf_dbs, 0, mem_size);
254 		memset(dev->dbbuf_eis, 0, mem_size);
255 		return 0;
256 	}
257 
258 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259 					    &dev->dbbuf_dbs_dma_addr,
260 					    GFP_KERNEL);
261 	if (!dev->dbbuf_dbs)
262 		return -ENOMEM;
263 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264 					    &dev->dbbuf_eis_dma_addr,
265 					    GFP_KERNEL);
266 	if (!dev->dbbuf_eis) {
267 		dma_free_coherent(dev->dev, mem_size,
268 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269 		dev->dbbuf_dbs = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 
276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278 	unsigned int mem_size = nvme_dbbuf_size(dev);
279 
280 	if (dev->dbbuf_dbs) {
281 		dma_free_coherent(dev->dev, mem_size,
282 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283 		dev->dbbuf_dbs = NULL;
284 	}
285 	if (dev->dbbuf_eis) {
286 		dma_free_coherent(dev->dev, mem_size,
287 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288 		dev->dbbuf_eis = NULL;
289 	}
290 }
291 
292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293 			    struct nvme_queue *nvmeq, int qid)
294 {
295 	if (!dev->dbbuf_dbs || !qid)
296 		return;
297 
298 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303 
304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306 	if (!nvmeq->qid)
307 		return;
308 
309 	nvmeq->dbbuf_sq_db = NULL;
310 	nvmeq->dbbuf_cq_db = NULL;
311 	nvmeq->dbbuf_sq_ei = NULL;
312 	nvmeq->dbbuf_cq_ei = NULL;
313 }
314 
315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317 	struct nvme_command c = { };
318 	unsigned int i;
319 
320 	if (!dev->dbbuf_dbs)
321 		return;
322 
323 	c.dbbuf.opcode = nvme_admin_dbbuf;
324 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326 
327 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329 		/* Free memory and continue on */
330 		nvme_dbbuf_dma_free(dev);
331 
332 		for (i = 1; i <= dev->online_queues; i++)
333 			nvme_dbbuf_free(&dev->queues[i]);
334 	}
335 }
336 
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341 
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344 					      volatile u32 *dbbuf_ei)
345 {
346 	if (dbbuf_db) {
347 		u16 old_value;
348 
349 		/*
350 		 * Ensure that the queue is written before updating
351 		 * the doorbell in memory
352 		 */
353 		wmb();
354 
355 		old_value = *dbbuf_db;
356 		*dbbuf_db = value;
357 
358 		/*
359 		 * Ensure that the doorbell is updated before reading the event
360 		 * index from memory.  The controller needs to provide similar
361 		 * ordering to ensure the envent index is updated before reading
362 		 * the doorbell.
363 		 */
364 		mb();
365 
366 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 			return false;
368 	}
369 
370 	return true;
371 }
372 
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_pci_npages_prp(void)
379 {
380 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381 				      NVME_CTRL_PAGE_SIZE);
382 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384 
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(void)
390 {
391 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392 			PAGE_SIZE);
393 }
394 
395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398 
399 	return sizeof(__le64 *) * npages +
400 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402 
403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 				unsigned int hctx_idx)
405 {
406 	struct nvme_dev *dev = data;
407 	struct nvme_queue *nvmeq = &dev->queues[0];
408 
409 	WARN_ON(hctx_idx != 0);
410 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411 
412 	hctx->driver_data = nvmeq;
413 	return 0;
414 }
415 
416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417 			  unsigned int hctx_idx)
418 {
419 	struct nvme_dev *dev = data;
420 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421 
422 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423 	hctx->driver_data = nvmeq;
424 	return 0;
425 }
426 
427 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
428 		unsigned int hctx_idx, unsigned int numa_node)
429 {
430 	struct nvme_dev *dev = set->driver_data;
431 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
432 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
433 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
434 
435 	BUG_ON(!nvmeq);
436 	iod->nvmeq = nvmeq;
437 
438 	nvme_req(req)->ctrl = &dev->ctrl;
439 	nvme_req(req)->cmd = &iod->cmd;
440 	return 0;
441 }
442 
443 static int queue_irq_offset(struct nvme_dev *dev)
444 {
445 	/* if we have more than 1 vec, admin queue offsets us by 1 */
446 	if (dev->num_vecs > 1)
447 		return 1;
448 
449 	return 0;
450 }
451 
452 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
453 {
454 	struct nvme_dev *dev = set->driver_data;
455 	int i, qoff, offset;
456 
457 	offset = queue_irq_offset(dev);
458 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
459 		struct blk_mq_queue_map *map = &set->map[i];
460 
461 		map->nr_queues = dev->io_queues[i];
462 		if (!map->nr_queues) {
463 			BUG_ON(i == HCTX_TYPE_DEFAULT);
464 			continue;
465 		}
466 
467 		/*
468 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
469 		 * affinity), so use the regular blk-mq cpu mapping
470 		 */
471 		map->queue_offset = qoff;
472 		if (i != HCTX_TYPE_POLL && offset)
473 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
474 		else
475 			blk_mq_map_queues(map);
476 		qoff += map->nr_queues;
477 		offset += map->nr_queues;
478 	}
479 
480 	return 0;
481 }
482 
483 /*
484  * Write sq tail if we are asked to, or if the next command would wrap.
485  */
486 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
487 {
488 	if (!write_sq) {
489 		u16 next_tail = nvmeq->sq_tail + 1;
490 
491 		if (next_tail == nvmeq->q_depth)
492 			next_tail = 0;
493 		if (next_tail != nvmeq->last_sq_tail)
494 			return;
495 	}
496 
497 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
498 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
499 		writel(nvmeq->sq_tail, nvmeq->q_db);
500 	nvmeq->last_sq_tail = nvmeq->sq_tail;
501 }
502 
503 /**
504  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
505  * @nvmeq: The queue to use
506  * @cmd: The command to send
507  * @write_sq: whether to write to the SQ doorbell
508  */
509 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
510 			    bool write_sq)
511 {
512 	spin_lock(&nvmeq->sq_lock);
513 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
514 	       cmd, sizeof(*cmd));
515 	if (++nvmeq->sq_tail == nvmeq->q_depth)
516 		nvmeq->sq_tail = 0;
517 	nvme_write_sq_db(nvmeq, write_sq);
518 	spin_unlock(&nvmeq->sq_lock);
519 }
520 
521 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
522 {
523 	struct nvme_queue *nvmeq = hctx->driver_data;
524 
525 	spin_lock(&nvmeq->sq_lock);
526 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
527 		nvme_write_sq_db(nvmeq, true);
528 	spin_unlock(&nvmeq->sq_lock);
529 }
530 
531 static void **nvme_pci_iod_list(struct request *req)
532 {
533 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
534 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
535 }
536 
537 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
538 {
539 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
540 	int nseg = blk_rq_nr_phys_segments(req);
541 	unsigned int avg_seg_size;
542 
543 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
544 
545 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
546 		return false;
547 	if (!iod->nvmeq->qid)
548 		return false;
549 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
550 		return false;
551 	return true;
552 }
553 
554 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
555 {
556 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
557 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
558 	dma_addr_t dma_addr = iod->first_dma;
559 	int i;
560 
561 	for (i = 0; i < iod->npages; i++) {
562 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
563 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
564 
565 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
566 		dma_addr = next_dma_addr;
567 	}
568 }
569 
570 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
571 {
572 	const int last_sg = SGES_PER_PAGE - 1;
573 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
574 	dma_addr_t dma_addr = iod->first_dma;
575 	int i;
576 
577 	for (i = 0; i < iod->npages; i++) {
578 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
579 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
580 
581 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
582 		dma_addr = next_dma_addr;
583 	}
584 }
585 
586 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
587 {
588 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
589 
590 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
591 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
592 				    rq_dma_dir(req));
593 	else
594 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
595 }
596 
597 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
598 {
599 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
600 
601 	if (iod->dma_len) {
602 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
603 			       rq_dma_dir(req));
604 		return;
605 	}
606 
607 	WARN_ON_ONCE(!iod->nents);
608 
609 	nvme_unmap_sg(dev, req);
610 	if (iod->npages == 0)
611 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
612 			      iod->first_dma);
613 	else if (iod->use_sgl)
614 		nvme_free_sgls(dev, req);
615 	else
616 		nvme_free_prps(dev, req);
617 	mempool_free(iod->sg, dev->iod_mempool);
618 }
619 
620 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
621 {
622 	int i;
623 	struct scatterlist *sg;
624 
625 	for_each_sg(sgl, sg, nents, i) {
626 		dma_addr_t phys = sg_phys(sg);
627 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
628 			"dma_address:%pad dma_length:%d\n",
629 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
630 			sg_dma_len(sg));
631 	}
632 }
633 
634 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
635 		struct request *req, struct nvme_rw_command *cmnd)
636 {
637 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
638 	struct dma_pool *pool;
639 	int length = blk_rq_payload_bytes(req);
640 	struct scatterlist *sg = iod->sg;
641 	int dma_len = sg_dma_len(sg);
642 	u64 dma_addr = sg_dma_address(sg);
643 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
644 	__le64 *prp_list;
645 	void **list = nvme_pci_iod_list(req);
646 	dma_addr_t prp_dma;
647 	int nprps, i;
648 
649 	length -= (NVME_CTRL_PAGE_SIZE - offset);
650 	if (length <= 0) {
651 		iod->first_dma = 0;
652 		goto done;
653 	}
654 
655 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
656 	if (dma_len) {
657 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
658 	} else {
659 		sg = sg_next(sg);
660 		dma_addr = sg_dma_address(sg);
661 		dma_len = sg_dma_len(sg);
662 	}
663 
664 	if (length <= NVME_CTRL_PAGE_SIZE) {
665 		iod->first_dma = dma_addr;
666 		goto done;
667 	}
668 
669 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
670 	if (nprps <= (256 / 8)) {
671 		pool = dev->prp_small_pool;
672 		iod->npages = 0;
673 	} else {
674 		pool = dev->prp_page_pool;
675 		iod->npages = 1;
676 	}
677 
678 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
679 	if (!prp_list) {
680 		iod->first_dma = dma_addr;
681 		iod->npages = -1;
682 		return BLK_STS_RESOURCE;
683 	}
684 	list[0] = prp_list;
685 	iod->first_dma = prp_dma;
686 	i = 0;
687 	for (;;) {
688 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
689 			__le64 *old_prp_list = prp_list;
690 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
691 			if (!prp_list)
692 				goto free_prps;
693 			list[iod->npages++] = prp_list;
694 			prp_list[0] = old_prp_list[i - 1];
695 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
696 			i = 1;
697 		}
698 		prp_list[i++] = cpu_to_le64(dma_addr);
699 		dma_len -= NVME_CTRL_PAGE_SIZE;
700 		dma_addr += NVME_CTRL_PAGE_SIZE;
701 		length -= NVME_CTRL_PAGE_SIZE;
702 		if (length <= 0)
703 			break;
704 		if (dma_len > 0)
705 			continue;
706 		if (unlikely(dma_len < 0))
707 			goto bad_sgl;
708 		sg = sg_next(sg);
709 		dma_addr = sg_dma_address(sg);
710 		dma_len = sg_dma_len(sg);
711 	}
712 done:
713 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
714 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
715 	return BLK_STS_OK;
716 free_prps:
717 	nvme_free_prps(dev, req);
718 	return BLK_STS_RESOURCE;
719 bad_sgl:
720 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
721 			"Invalid SGL for payload:%d nents:%d\n",
722 			blk_rq_payload_bytes(req), iod->nents);
723 	return BLK_STS_IOERR;
724 }
725 
726 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
727 		struct scatterlist *sg)
728 {
729 	sge->addr = cpu_to_le64(sg_dma_address(sg));
730 	sge->length = cpu_to_le32(sg_dma_len(sg));
731 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
732 }
733 
734 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
735 		dma_addr_t dma_addr, int entries)
736 {
737 	sge->addr = cpu_to_le64(dma_addr);
738 	if (entries < SGES_PER_PAGE) {
739 		sge->length = cpu_to_le32(entries * sizeof(*sge));
740 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
741 	} else {
742 		sge->length = cpu_to_le32(PAGE_SIZE);
743 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
744 	}
745 }
746 
747 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
748 		struct request *req, struct nvme_rw_command *cmd, int entries)
749 {
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	struct dma_pool *pool;
752 	struct nvme_sgl_desc *sg_list;
753 	struct scatterlist *sg = iod->sg;
754 	dma_addr_t sgl_dma;
755 	int i = 0;
756 
757 	/* setting the transfer type as SGL */
758 	cmd->flags = NVME_CMD_SGL_METABUF;
759 
760 	if (entries == 1) {
761 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
762 		return BLK_STS_OK;
763 	}
764 
765 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
766 		pool = dev->prp_small_pool;
767 		iod->npages = 0;
768 	} else {
769 		pool = dev->prp_page_pool;
770 		iod->npages = 1;
771 	}
772 
773 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
774 	if (!sg_list) {
775 		iod->npages = -1;
776 		return BLK_STS_RESOURCE;
777 	}
778 
779 	nvme_pci_iod_list(req)[0] = sg_list;
780 	iod->first_dma = sgl_dma;
781 
782 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
783 
784 	do {
785 		if (i == SGES_PER_PAGE) {
786 			struct nvme_sgl_desc *old_sg_desc = sg_list;
787 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
788 
789 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
790 			if (!sg_list)
791 				goto free_sgls;
792 
793 			i = 0;
794 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
795 			sg_list[i++] = *link;
796 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
797 		}
798 
799 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
800 		sg = sg_next(sg);
801 	} while (--entries > 0);
802 
803 	return BLK_STS_OK;
804 free_sgls:
805 	nvme_free_sgls(dev, req);
806 	return BLK_STS_RESOURCE;
807 }
808 
809 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
810 		struct request *req, struct nvme_rw_command *cmnd,
811 		struct bio_vec *bv)
812 {
813 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
814 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
815 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
816 
817 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
818 	if (dma_mapping_error(dev->dev, iod->first_dma))
819 		return BLK_STS_RESOURCE;
820 	iod->dma_len = bv->bv_len;
821 
822 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
823 	if (bv->bv_len > first_prp_len)
824 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
825 	return BLK_STS_OK;
826 }
827 
828 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
829 		struct request *req, struct nvme_rw_command *cmnd,
830 		struct bio_vec *bv)
831 {
832 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
833 
834 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
835 	if (dma_mapping_error(dev->dev, iod->first_dma))
836 		return BLK_STS_RESOURCE;
837 	iod->dma_len = bv->bv_len;
838 
839 	cmnd->flags = NVME_CMD_SGL_METABUF;
840 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
841 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
842 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
843 	return BLK_STS_OK;
844 }
845 
846 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
847 		struct nvme_command *cmnd)
848 {
849 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
850 	blk_status_t ret = BLK_STS_RESOURCE;
851 	int nr_mapped;
852 
853 	if (blk_rq_nr_phys_segments(req) == 1) {
854 		struct bio_vec bv = req_bvec(req);
855 
856 		if (!is_pci_p2pdma_page(bv.bv_page)) {
857 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
858 				return nvme_setup_prp_simple(dev, req,
859 							     &cmnd->rw, &bv);
860 
861 			if (iod->nvmeq->qid && sgl_threshold &&
862 			    nvme_ctrl_sgl_supported(&dev->ctrl))
863 				return nvme_setup_sgl_simple(dev, req,
864 							     &cmnd->rw, &bv);
865 		}
866 	}
867 
868 	iod->dma_len = 0;
869 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
870 	if (!iod->sg)
871 		return BLK_STS_RESOURCE;
872 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
873 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
874 	if (!iod->nents)
875 		goto out_free_sg;
876 
877 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
878 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
879 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
880 	else
881 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
882 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
883 	if (!nr_mapped)
884 		goto out_free_sg;
885 
886 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
887 	if (iod->use_sgl)
888 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
889 	else
890 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
891 	if (ret != BLK_STS_OK)
892 		goto out_unmap_sg;
893 	return BLK_STS_OK;
894 
895 out_unmap_sg:
896 	nvme_unmap_sg(dev, req);
897 out_free_sg:
898 	mempool_free(iod->sg, dev->iod_mempool);
899 	return ret;
900 }
901 
902 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
903 		struct nvme_command *cmnd)
904 {
905 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
906 
907 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
908 			rq_dma_dir(req), 0);
909 	if (dma_mapping_error(dev->dev, iod->meta_dma))
910 		return BLK_STS_IOERR;
911 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
912 	return BLK_STS_OK;
913 }
914 
915 /*
916  * NOTE: ns is NULL when called on the admin queue.
917  */
918 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
919 			 const struct blk_mq_queue_data *bd)
920 {
921 	struct nvme_ns *ns = hctx->queue->queuedata;
922 	struct nvme_queue *nvmeq = hctx->driver_data;
923 	struct nvme_dev *dev = nvmeq->dev;
924 	struct request *req = bd->rq;
925 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
926 	struct nvme_command *cmnd = &iod->cmd;
927 	blk_status_t ret;
928 
929 	iod->aborted = 0;
930 	iod->npages = -1;
931 	iod->nents = 0;
932 
933 	/*
934 	 * We should not need to do this, but we're still using this to
935 	 * ensure we can drain requests on a dying queue.
936 	 */
937 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
938 		return BLK_STS_IOERR;
939 
940 	if (!nvme_check_ready(&dev->ctrl, req, true))
941 		return nvme_fail_nonready_command(&dev->ctrl, req);
942 
943 	ret = nvme_setup_cmd(ns, req);
944 	if (ret)
945 		return ret;
946 
947 	if (blk_rq_nr_phys_segments(req)) {
948 		ret = nvme_map_data(dev, req, cmnd);
949 		if (ret)
950 			goto out_free_cmd;
951 	}
952 
953 	if (blk_integrity_rq(req)) {
954 		ret = nvme_map_metadata(dev, req, cmnd);
955 		if (ret)
956 			goto out_unmap_data;
957 	}
958 
959 	blk_mq_start_request(req);
960 	nvme_submit_cmd(nvmeq, cmnd, bd->last);
961 	return BLK_STS_OK;
962 out_unmap_data:
963 	nvme_unmap_data(dev, req);
964 out_free_cmd:
965 	nvme_cleanup_cmd(req);
966 	return ret;
967 }
968 
969 static __always_inline void nvme_pci_unmap_rq(struct request *req)
970 {
971 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
972 	struct nvme_dev *dev = iod->nvmeq->dev;
973 
974 	if (blk_integrity_rq(req))
975 		dma_unmap_page(dev->dev, iod->meta_dma,
976 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
977 	if (blk_rq_nr_phys_segments(req))
978 		nvme_unmap_data(dev, req);
979 }
980 
981 static void nvme_pci_complete_rq(struct request *req)
982 {
983 	nvme_pci_unmap_rq(req);
984 	nvme_complete_rq(req);
985 }
986 
987 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
988 {
989 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
990 }
991 
992 /* We read the CQE phase first to check if the rest of the entry is valid */
993 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
994 {
995 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
996 
997 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
998 }
999 
1000 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1001 {
1002 	u16 head = nvmeq->cq_head;
1003 
1004 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1005 					      nvmeq->dbbuf_cq_ei))
1006 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1007 }
1008 
1009 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1010 {
1011 	if (!nvmeq->qid)
1012 		return nvmeq->dev->admin_tagset.tags[0];
1013 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1014 }
1015 
1016 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1017 				   struct io_comp_batch *iob, u16 idx)
1018 {
1019 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1020 	__u16 command_id = READ_ONCE(cqe->command_id);
1021 	struct request *req;
1022 
1023 	/*
1024 	 * AEN requests are special as they don't time out and can
1025 	 * survive any kind of queue freeze and often don't respond to
1026 	 * aborts.  We don't even bother to allocate a struct request
1027 	 * for them but rather special case them here.
1028 	 */
1029 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1030 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1031 				cqe->status, &cqe->result);
1032 		return;
1033 	}
1034 
1035 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1036 	if (unlikely(!req)) {
1037 		dev_warn(nvmeq->dev->ctrl.device,
1038 			"invalid id %d completed on queue %d\n",
1039 			command_id, le16_to_cpu(cqe->sq_id));
1040 		return;
1041 	}
1042 
1043 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1044 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1045 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1046 					nvme_pci_complete_batch))
1047 		nvme_pci_complete_rq(req);
1048 }
1049 
1050 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1051 {
1052 	u32 tmp = nvmeq->cq_head + 1;
1053 
1054 	if (tmp == nvmeq->q_depth) {
1055 		nvmeq->cq_head = 0;
1056 		nvmeq->cq_phase ^= 1;
1057 	} else {
1058 		nvmeq->cq_head = tmp;
1059 	}
1060 }
1061 
1062 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1063 			       struct io_comp_batch *iob)
1064 {
1065 	int found = 0;
1066 
1067 	while (nvme_cqe_pending(nvmeq)) {
1068 		found++;
1069 		/*
1070 		 * load-load control dependency between phase and the rest of
1071 		 * the cqe requires a full read memory barrier
1072 		 */
1073 		dma_rmb();
1074 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1075 		nvme_update_cq_head(nvmeq);
1076 	}
1077 
1078 	if (found)
1079 		nvme_ring_cq_doorbell(nvmeq);
1080 	return found;
1081 }
1082 
1083 static irqreturn_t nvme_irq(int irq, void *data)
1084 {
1085 	struct nvme_queue *nvmeq = data;
1086 	DEFINE_IO_COMP_BATCH(iob);
1087 
1088 	if (nvme_poll_cq(nvmeq, &iob)) {
1089 		if (!rq_list_empty(iob.req_list))
1090 			nvme_pci_complete_batch(&iob);
1091 		return IRQ_HANDLED;
1092 	}
1093 	return IRQ_NONE;
1094 }
1095 
1096 static irqreturn_t nvme_irq_check(int irq, void *data)
1097 {
1098 	struct nvme_queue *nvmeq = data;
1099 
1100 	if (nvme_cqe_pending(nvmeq))
1101 		return IRQ_WAKE_THREAD;
1102 	return IRQ_NONE;
1103 }
1104 
1105 /*
1106  * Poll for completions for any interrupt driven queue
1107  * Can be called from any context.
1108  */
1109 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1110 {
1111 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1112 
1113 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1114 
1115 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1116 	nvme_poll_cq(nvmeq, NULL);
1117 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1118 }
1119 
1120 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1121 {
1122 	struct nvme_queue *nvmeq = hctx->driver_data;
1123 	bool found;
1124 
1125 	if (!nvme_cqe_pending(nvmeq))
1126 		return 0;
1127 
1128 	spin_lock(&nvmeq->cq_poll_lock);
1129 	found = nvme_poll_cq(nvmeq, iob);
1130 	spin_unlock(&nvmeq->cq_poll_lock);
1131 
1132 	return found;
1133 }
1134 
1135 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1136 {
1137 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1138 	struct nvme_queue *nvmeq = &dev->queues[0];
1139 	struct nvme_command c = { };
1140 
1141 	c.common.opcode = nvme_admin_async_event;
1142 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1143 	nvme_submit_cmd(nvmeq, &c, true);
1144 }
1145 
1146 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1147 {
1148 	struct nvme_command c = { };
1149 
1150 	c.delete_queue.opcode = opcode;
1151 	c.delete_queue.qid = cpu_to_le16(id);
1152 
1153 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1154 }
1155 
1156 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1157 		struct nvme_queue *nvmeq, s16 vector)
1158 {
1159 	struct nvme_command c = { };
1160 	int flags = NVME_QUEUE_PHYS_CONTIG;
1161 
1162 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1163 		flags |= NVME_CQ_IRQ_ENABLED;
1164 
1165 	/*
1166 	 * Note: we (ab)use the fact that the prp fields survive if no data
1167 	 * is attached to the request.
1168 	 */
1169 	c.create_cq.opcode = nvme_admin_create_cq;
1170 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1171 	c.create_cq.cqid = cpu_to_le16(qid);
1172 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1173 	c.create_cq.cq_flags = cpu_to_le16(flags);
1174 	c.create_cq.irq_vector = cpu_to_le16(vector);
1175 
1176 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1177 }
1178 
1179 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1180 						struct nvme_queue *nvmeq)
1181 {
1182 	struct nvme_ctrl *ctrl = &dev->ctrl;
1183 	struct nvme_command c = { };
1184 	int flags = NVME_QUEUE_PHYS_CONTIG;
1185 
1186 	/*
1187 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1188 	 * set. Since URGENT priority is zeroes, it makes all queues
1189 	 * URGENT.
1190 	 */
1191 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1192 		flags |= NVME_SQ_PRIO_MEDIUM;
1193 
1194 	/*
1195 	 * Note: we (ab)use the fact that the prp fields survive if no data
1196 	 * is attached to the request.
1197 	 */
1198 	c.create_sq.opcode = nvme_admin_create_sq;
1199 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200 	c.create_sq.sqid = cpu_to_le16(qid);
1201 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202 	c.create_sq.sq_flags = cpu_to_le16(flags);
1203 	c.create_sq.cqid = cpu_to_le16(qid);
1204 
1205 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207 
1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209 {
1210 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211 }
1212 
1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214 {
1215 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216 }
1217 
1218 static void abort_endio(struct request *req, blk_status_t error)
1219 {
1220 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1221 	struct nvme_queue *nvmeq = iod->nvmeq;
1222 
1223 	dev_warn(nvmeq->dev->ctrl.device,
1224 		 "Abort status: 0x%x", nvme_req(req)->status);
1225 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1226 	blk_mq_free_request(req);
1227 }
1228 
1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231 	/* If true, indicates loss of adapter communication, possibly by a
1232 	 * NVMe Subsystem reset.
1233 	 */
1234 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1235 
1236 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1237 	switch (dev->ctrl.state) {
1238 	case NVME_CTRL_RESETTING:
1239 	case NVME_CTRL_CONNECTING:
1240 		return false;
1241 	default:
1242 		break;
1243 	}
1244 
1245 	/* We shouldn't reset unless the controller is on fatal error state
1246 	 * _or_ if we lost the communication with it.
1247 	 */
1248 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1255 {
1256 	/* Read a config register to help see what died. */
1257 	u16 pci_status;
1258 	int result;
1259 
1260 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1261 				      &pci_status);
1262 	if (result == PCIBIOS_SUCCESSFUL)
1263 		dev_warn(dev->ctrl.device,
1264 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1265 			 csts, pci_status);
1266 	else
1267 		dev_warn(dev->ctrl.device,
1268 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1269 			 csts, result);
1270 }
1271 
1272 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1273 {
1274 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1275 	struct nvme_queue *nvmeq = iod->nvmeq;
1276 	struct nvme_dev *dev = nvmeq->dev;
1277 	struct request *abort_req;
1278 	struct nvme_command cmd = { };
1279 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1280 
1281 	/* If PCI error recovery process is happening, we cannot reset or
1282 	 * the recovery mechanism will surely fail.
1283 	 */
1284 	mb();
1285 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1286 		return BLK_EH_RESET_TIMER;
1287 
1288 	/*
1289 	 * Reset immediately if the controller is failed
1290 	 */
1291 	if (nvme_should_reset(dev, csts)) {
1292 		nvme_warn_reset(dev, csts);
1293 		nvme_dev_disable(dev, false);
1294 		nvme_reset_ctrl(&dev->ctrl);
1295 		return BLK_EH_DONE;
1296 	}
1297 
1298 	/*
1299 	 * Did we miss an interrupt?
1300 	 */
1301 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1302 		nvme_poll(req->mq_hctx, NULL);
1303 	else
1304 		nvme_poll_irqdisable(nvmeq);
1305 
1306 	if (blk_mq_request_completed(req)) {
1307 		dev_warn(dev->ctrl.device,
1308 			 "I/O %d QID %d timeout, completion polled\n",
1309 			 req->tag, nvmeq->qid);
1310 		return BLK_EH_DONE;
1311 	}
1312 
1313 	/*
1314 	 * Shutdown immediately if controller times out while starting. The
1315 	 * reset work will see the pci device disabled when it gets the forced
1316 	 * cancellation error. All outstanding requests are completed on
1317 	 * shutdown, so we return BLK_EH_DONE.
1318 	 */
1319 	switch (dev->ctrl.state) {
1320 	case NVME_CTRL_CONNECTING:
1321 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1322 		fallthrough;
1323 	case NVME_CTRL_DELETING:
1324 		dev_warn_ratelimited(dev->ctrl.device,
1325 			 "I/O %d QID %d timeout, disable controller\n",
1326 			 req->tag, nvmeq->qid);
1327 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1328 		nvme_dev_disable(dev, true);
1329 		return BLK_EH_DONE;
1330 	case NVME_CTRL_RESETTING:
1331 		return BLK_EH_RESET_TIMER;
1332 	default:
1333 		break;
1334 	}
1335 
1336 	/*
1337 	 * Shutdown the controller immediately and schedule a reset if the
1338 	 * command was already aborted once before and still hasn't been
1339 	 * returned to the driver, or if this is the admin queue.
1340 	 */
1341 	if (!nvmeq->qid || iod->aborted) {
1342 		dev_warn(dev->ctrl.device,
1343 			 "I/O %d QID %d timeout, reset controller\n",
1344 			 req->tag, nvmeq->qid);
1345 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1346 		nvme_dev_disable(dev, false);
1347 		nvme_reset_ctrl(&dev->ctrl);
1348 
1349 		return BLK_EH_DONE;
1350 	}
1351 
1352 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1353 		atomic_inc(&dev->ctrl.abort_limit);
1354 		return BLK_EH_RESET_TIMER;
1355 	}
1356 	iod->aborted = 1;
1357 
1358 	cmd.abort.opcode = nvme_admin_abort_cmd;
1359 	cmd.abort.cid = nvme_cid(req);
1360 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1361 
1362 	dev_warn(nvmeq->dev->ctrl.device,
1363 		"I/O %d QID %d timeout, aborting\n",
1364 		 req->tag, nvmeq->qid);
1365 
1366 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1367 			BLK_MQ_REQ_NOWAIT);
1368 	if (IS_ERR(abort_req)) {
1369 		atomic_inc(&dev->ctrl.abort_limit);
1370 		return BLK_EH_RESET_TIMER;
1371 	}
1372 
1373 	abort_req->end_io_data = NULL;
1374 	blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1375 
1376 	/*
1377 	 * The aborted req will be completed on receiving the abort req.
1378 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1379 	 * as the device then is in a faulty state.
1380 	 */
1381 	return BLK_EH_RESET_TIMER;
1382 }
1383 
1384 static void nvme_free_queue(struct nvme_queue *nvmeq)
1385 {
1386 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1387 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1388 	if (!nvmeq->sq_cmds)
1389 		return;
1390 
1391 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1392 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1393 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1394 	} else {
1395 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1396 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1397 	}
1398 }
1399 
1400 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1401 {
1402 	int i;
1403 
1404 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1405 		dev->ctrl.queue_count--;
1406 		nvme_free_queue(&dev->queues[i]);
1407 	}
1408 }
1409 
1410 /**
1411  * nvme_suspend_queue - put queue into suspended state
1412  * @nvmeq: queue to suspend
1413  */
1414 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1415 {
1416 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1417 		return 1;
1418 
1419 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1420 	mb();
1421 
1422 	nvmeq->dev->online_queues--;
1423 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1424 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1425 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1426 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1427 	return 0;
1428 }
1429 
1430 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1431 {
1432 	int i;
1433 
1434 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1435 		nvme_suspend_queue(&dev->queues[i]);
1436 }
1437 
1438 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1439 {
1440 	struct nvme_queue *nvmeq = &dev->queues[0];
1441 
1442 	if (shutdown)
1443 		nvme_shutdown_ctrl(&dev->ctrl);
1444 	else
1445 		nvme_disable_ctrl(&dev->ctrl);
1446 
1447 	nvme_poll_irqdisable(nvmeq);
1448 }
1449 
1450 /*
1451  * Called only on a device that has been disabled and after all other threads
1452  * that can check this device's completion queues have synced, except
1453  * nvme_poll(). This is the last chance for the driver to see a natural
1454  * completion before nvme_cancel_request() terminates all incomplete requests.
1455  */
1456 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1457 {
1458 	int i;
1459 
1460 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1461 		spin_lock(&dev->queues[i].cq_poll_lock);
1462 		nvme_poll_cq(&dev->queues[i], NULL);
1463 		spin_unlock(&dev->queues[i].cq_poll_lock);
1464 	}
1465 }
1466 
1467 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1468 				int entry_size)
1469 {
1470 	int q_depth = dev->q_depth;
1471 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1472 					  NVME_CTRL_PAGE_SIZE);
1473 
1474 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1475 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1476 
1477 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1478 		q_depth = div_u64(mem_per_q, entry_size);
1479 
1480 		/*
1481 		 * Ensure the reduced q_depth is above some threshold where it
1482 		 * would be better to map queues in system memory with the
1483 		 * original depth
1484 		 */
1485 		if (q_depth < 64)
1486 			return -ENOMEM;
1487 	}
1488 
1489 	return q_depth;
1490 }
1491 
1492 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1493 				int qid)
1494 {
1495 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1496 
1497 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1498 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1499 		if (nvmeq->sq_cmds) {
1500 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1501 							nvmeq->sq_cmds);
1502 			if (nvmeq->sq_dma_addr) {
1503 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1504 				return 0;
1505 			}
1506 
1507 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1508 		}
1509 	}
1510 
1511 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1512 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1513 	if (!nvmeq->sq_cmds)
1514 		return -ENOMEM;
1515 	return 0;
1516 }
1517 
1518 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1519 {
1520 	struct nvme_queue *nvmeq = &dev->queues[qid];
1521 
1522 	if (dev->ctrl.queue_count > qid)
1523 		return 0;
1524 
1525 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1526 	nvmeq->q_depth = depth;
1527 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1528 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1529 	if (!nvmeq->cqes)
1530 		goto free_nvmeq;
1531 
1532 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1533 		goto free_cqdma;
1534 
1535 	nvmeq->dev = dev;
1536 	spin_lock_init(&nvmeq->sq_lock);
1537 	spin_lock_init(&nvmeq->cq_poll_lock);
1538 	nvmeq->cq_head = 0;
1539 	nvmeq->cq_phase = 1;
1540 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1541 	nvmeq->qid = qid;
1542 	dev->ctrl.queue_count++;
1543 
1544 	return 0;
1545 
1546  free_cqdma:
1547 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1548 			  nvmeq->cq_dma_addr);
1549  free_nvmeq:
1550 	return -ENOMEM;
1551 }
1552 
1553 static int queue_request_irq(struct nvme_queue *nvmeq)
1554 {
1555 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1556 	int nr = nvmeq->dev->ctrl.instance;
1557 
1558 	if (use_threaded_interrupts) {
1559 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1560 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1561 	} else {
1562 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1563 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1564 	}
1565 }
1566 
1567 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1568 {
1569 	struct nvme_dev *dev = nvmeq->dev;
1570 
1571 	nvmeq->sq_tail = 0;
1572 	nvmeq->last_sq_tail = 0;
1573 	nvmeq->cq_head = 0;
1574 	nvmeq->cq_phase = 1;
1575 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1576 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1577 	nvme_dbbuf_init(dev, nvmeq, qid);
1578 	dev->online_queues++;
1579 	wmb(); /* ensure the first interrupt sees the initialization */
1580 }
1581 
1582 /*
1583  * Try getting shutdown_lock while setting up IO queues.
1584  */
1585 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1586 {
1587 	/*
1588 	 * Give up if the lock is being held by nvme_dev_disable.
1589 	 */
1590 	if (!mutex_trylock(&dev->shutdown_lock))
1591 		return -ENODEV;
1592 
1593 	/*
1594 	 * Controller is in wrong state, fail early.
1595 	 */
1596 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1597 		mutex_unlock(&dev->shutdown_lock);
1598 		return -ENODEV;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1605 {
1606 	struct nvme_dev *dev = nvmeq->dev;
1607 	int result;
1608 	u16 vector = 0;
1609 
1610 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1611 
1612 	/*
1613 	 * A queue's vector matches the queue identifier unless the controller
1614 	 * has only one vector available.
1615 	 */
1616 	if (!polled)
1617 		vector = dev->num_vecs == 1 ? 0 : qid;
1618 	else
1619 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1620 
1621 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1622 	if (result)
1623 		return result;
1624 
1625 	result = adapter_alloc_sq(dev, qid, nvmeq);
1626 	if (result < 0)
1627 		return result;
1628 	if (result)
1629 		goto release_cq;
1630 
1631 	nvmeq->cq_vector = vector;
1632 
1633 	result = nvme_setup_io_queues_trylock(dev);
1634 	if (result)
1635 		return result;
1636 	nvme_init_queue(nvmeq, qid);
1637 	if (!polled) {
1638 		result = queue_request_irq(nvmeq);
1639 		if (result < 0)
1640 			goto release_sq;
1641 	}
1642 
1643 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1644 	mutex_unlock(&dev->shutdown_lock);
1645 	return result;
1646 
1647 release_sq:
1648 	dev->online_queues--;
1649 	mutex_unlock(&dev->shutdown_lock);
1650 	adapter_delete_sq(dev, qid);
1651 release_cq:
1652 	adapter_delete_cq(dev, qid);
1653 	return result;
1654 }
1655 
1656 static const struct blk_mq_ops nvme_mq_admin_ops = {
1657 	.queue_rq	= nvme_queue_rq,
1658 	.complete	= nvme_pci_complete_rq,
1659 	.init_hctx	= nvme_admin_init_hctx,
1660 	.init_request	= nvme_init_request,
1661 	.timeout	= nvme_timeout,
1662 };
1663 
1664 static const struct blk_mq_ops nvme_mq_ops = {
1665 	.queue_rq	= nvme_queue_rq,
1666 	.complete	= nvme_pci_complete_rq,
1667 	.commit_rqs	= nvme_commit_rqs,
1668 	.init_hctx	= nvme_init_hctx,
1669 	.init_request	= nvme_init_request,
1670 	.map_queues	= nvme_pci_map_queues,
1671 	.timeout	= nvme_timeout,
1672 	.poll		= nvme_poll,
1673 };
1674 
1675 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1676 {
1677 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1678 		/*
1679 		 * If the controller was reset during removal, it's possible
1680 		 * user requests may be waiting on a stopped queue. Start the
1681 		 * queue to flush these to completion.
1682 		 */
1683 		nvme_start_admin_queue(&dev->ctrl);
1684 		blk_cleanup_queue(dev->ctrl.admin_q);
1685 		blk_mq_free_tag_set(&dev->admin_tagset);
1686 	}
1687 }
1688 
1689 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1690 {
1691 	if (!dev->ctrl.admin_q) {
1692 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1693 		dev->admin_tagset.nr_hw_queues = 1;
1694 
1695 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1696 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1697 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1698 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1699 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1700 		dev->admin_tagset.driver_data = dev;
1701 
1702 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1703 			return -ENOMEM;
1704 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1705 
1706 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1707 		if (IS_ERR(dev->ctrl.admin_q)) {
1708 			blk_mq_free_tag_set(&dev->admin_tagset);
1709 			return -ENOMEM;
1710 		}
1711 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1712 			nvme_dev_remove_admin(dev);
1713 			dev->ctrl.admin_q = NULL;
1714 			return -ENODEV;
1715 		}
1716 	} else
1717 		nvme_start_admin_queue(&dev->ctrl);
1718 
1719 	return 0;
1720 }
1721 
1722 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1723 {
1724 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1725 }
1726 
1727 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1728 {
1729 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1730 
1731 	if (size <= dev->bar_mapped_size)
1732 		return 0;
1733 	if (size > pci_resource_len(pdev, 0))
1734 		return -ENOMEM;
1735 	if (dev->bar)
1736 		iounmap(dev->bar);
1737 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1738 	if (!dev->bar) {
1739 		dev->bar_mapped_size = 0;
1740 		return -ENOMEM;
1741 	}
1742 	dev->bar_mapped_size = size;
1743 	dev->dbs = dev->bar + NVME_REG_DBS;
1744 
1745 	return 0;
1746 }
1747 
1748 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1749 {
1750 	int result;
1751 	u32 aqa;
1752 	struct nvme_queue *nvmeq;
1753 
1754 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1755 	if (result < 0)
1756 		return result;
1757 
1758 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1759 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1760 
1761 	if (dev->subsystem &&
1762 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1763 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1764 
1765 	result = nvme_disable_ctrl(&dev->ctrl);
1766 	if (result < 0)
1767 		return result;
1768 
1769 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1770 	if (result)
1771 		return result;
1772 
1773 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1774 
1775 	nvmeq = &dev->queues[0];
1776 	aqa = nvmeq->q_depth - 1;
1777 	aqa |= aqa << 16;
1778 
1779 	writel(aqa, dev->bar + NVME_REG_AQA);
1780 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1781 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1782 
1783 	result = nvme_enable_ctrl(&dev->ctrl);
1784 	if (result)
1785 		return result;
1786 
1787 	nvmeq->cq_vector = 0;
1788 	nvme_init_queue(nvmeq, 0);
1789 	result = queue_request_irq(nvmeq);
1790 	if (result) {
1791 		dev->online_queues--;
1792 		return result;
1793 	}
1794 
1795 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1796 	return result;
1797 }
1798 
1799 static int nvme_create_io_queues(struct nvme_dev *dev)
1800 {
1801 	unsigned i, max, rw_queues;
1802 	int ret = 0;
1803 
1804 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1805 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1806 			ret = -ENOMEM;
1807 			break;
1808 		}
1809 	}
1810 
1811 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1812 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1813 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1814 				dev->io_queues[HCTX_TYPE_READ];
1815 	} else {
1816 		rw_queues = max;
1817 	}
1818 
1819 	for (i = dev->online_queues; i <= max; i++) {
1820 		bool polled = i > rw_queues;
1821 
1822 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1823 		if (ret)
1824 			break;
1825 	}
1826 
1827 	/*
1828 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1829 	 * than the desired amount of queues, and even a controller without
1830 	 * I/O queues can still be used to issue admin commands.  This might
1831 	 * be useful to upgrade a buggy firmware for example.
1832 	 */
1833 	return ret >= 0 ? 0 : ret;
1834 }
1835 
1836 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1837 {
1838 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1839 
1840 	return 1ULL << (12 + 4 * szu);
1841 }
1842 
1843 static u32 nvme_cmb_size(struct nvme_dev *dev)
1844 {
1845 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1846 }
1847 
1848 static void nvme_map_cmb(struct nvme_dev *dev)
1849 {
1850 	u64 size, offset;
1851 	resource_size_t bar_size;
1852 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1853 	int bar;
1854 
1855 	if (dev->cmb_size)
1856 		return;
1857 
1858 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1859 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1860 
1861 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1862 	if (!dev->cmbsz)
1863 		return;
1864 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1865 
1866 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1867 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1868 	bar = NVME_CMB_BIR(dev->cmbloc);
1869 	bar_size = pci_resource_len(pdev, bar);
1870 
1871 	if (offset > bar_size)
1872 		return;
1873 
1874 	/*
1875 	 * Tell the controller about the host side address mapping the CMB,
1876 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1877 	 */
1878 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1879 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1880 			     (pci_bus_address(pdev, bar) + offset),
1881 			     dev->bar + NVME_REG_CMBMSC);
1882 	}
1883 
1884 	/*
1885 	 * Controllers may support a CMB size larger than their BAR,
1886 	 * for example, due to being behind a bridge. Reduce the CMB to
1887 	 * the reported size of the BAR
1888 	 */
1889 	if (size > bar_size - offset)
1890 		size = bar_size - offset;
1891 
1892 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1893 		dev_warn(dev->ctrl.device,
1894 			 "failed to register the CMB\n");
1895 		return;
1896 	}
1897 
1898 	dev->cmb_size = size;
1899 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1900 
1901 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1902 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1903 		pci_p2pmem_publish(pdev, true);
1904 }
1905 
1906 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1907 {
1908 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1909 	u64 dma_addr = dev->host_mem_descs_dma;
1910 	struct nvme_command c = { };
1911 	int ret;
1912 
1913 	c.features.opcode	= nvme_admin_set_features;
1914 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1915 	c.features.dword11	= cpu_to_le32(bits);
1916 	c.features.dword12	= cpu_to_le32(host_mem_size);
1917 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1918 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1919 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1920 
1921 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1922 	if (ret) {
1923 		dev_warn(dev->ctrl.device,
1924 			 "failed to set host mem (err %d, flags %#x).\n",
1925 			 ret, bits);
1926 	} else
1927 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1928 
1929 	return ret;
1930 }
1931 
1932 static void nvme_free_host_mem(struct nvme_dev *dev)
1933 {
1934 	int i;
1935 
1936 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1937 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1938 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1939 
1940 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1941 			       le64_to_cpu(desc->addr),
1942 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1943 	}
1944 
1945 	kfree(dev->host_mem_desc_bufs);
1946 	dev->host_mem_desc_bufs = NULL;
1947 	dma_free_coherent(dev->dev,
1948 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1949 			dev->host_mem_descs, dev->host_mem_descs_dma);
1950 	dev->host_mem_descs = NULL;
1951 	dev->nr_host_mem_descs = 0;
1952 }
1953 
1954 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1955 		u32 chunk_size)
1956 {
1957 	struct nvme_host_mem_buf_desc *descs;
1958 	u32 max_entries, len;
1959 	dma_addr_t descs_dma;
1960 	int i = 0;
1961 	void **bufs;
1962 	u64 size, tmp;
1963 
1964 	tmp = (preferred + chunk_size - 1);
1965 	do_div(tmp, chunk_size);
1966 	max_entries = tmp;
1967 
1968 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1969 		max_entries = dev->ctrl.hmmaxd;
1970 
1971 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1972 				   &descs_dma, GFP_KERNEL);
1973 	if (!descs)
1974 		goto out;
1975 
1976 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1977 	if (!bufs)
1978 		goto out_free_descs;
1979 
1980 	for (size = 0; size < preferred && i < max_entries; size += len) {
1981 		dma_addr_t dma_addr;
1982 
1983 		len = min_t(u64, chunk_size, preferred - size);
1984 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1985 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1986 		if (!bufs[i])
1987 			break;
1988 
1989 		descs[i].addr = cpu_to_le64(dma_addr);
1990 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1991 		i++;
1992 	}
1993 
1994 	if (!size)
1995 		goto out_free_bufs;
1996 
1997 	dev->nr_host_mem_descs = i;
1998 	dev->host_mem_size = size;
1999 	dev->host_mem_descs = descs;
2000 	dev->host_mem_descs_dma = descs_dma;
2001 	dev->host_mem_desc_bufs = bufs;
2002 	return 0;
2003 
2004 out_free_bufs:
2005 	while (--i >= 0) {
2006 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2007 
2008 		dma_free_attrs(dev->dev, size, bufs[i],
2009 			       le64_to_cpu(descs[i].addr),
2010 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2011 	}
2012 
2013 	kfree(bufs);
2014 out_free_descs:
2015 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2016 			descs_dma);
2017 out:
2018 	dev->host_mem_descs = NULL;
2019 	return -ENOMEM;
2020 }
2021 
2022 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2023 {
2024 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2025 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2026 	u64 chunk_size;
2027 
2028 	/* start big and work our way down */
2029 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2030 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2031 			if (!min || dev->host_mem_size >= min)
2032 				return 0;
2033 			nvme_free_host_mem(dev);
2034 		}
2035 	}
2036 
2037 	return -ENOMEM;
2038 }
2039 
2040 static int nvme_setup_host_mem(struct nvme_dev *dev)
2041 {
2042 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2043 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2044 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2045 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2046 	int ret;
2047 
2048 	preferred = min(preferred, max);
2049 	if (min > max) {
2050 		dev_warn(dev->ctrl.device,
2051 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2052 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2053 		nvme_free_host_mem(dev);
2054 		return 0;
2055 	}
2056 
2057 	/*
2058 	 * If we already have a buffer allocated check if we can reuse it.
2059 	 */
2060 	if (dev->host_mem_descs) {
2061 		if (dev->host_mem_size >= min)
2062 			enable_bits |= NVME_HOST_MEM_RETURN;
2063 		else
2064 			nvme_free_host_mem(dev);
2065 	}
2066 
2067 	if (!dev->host_mem_descs) {
2068 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2069 			dev_warn(dev->ctrl.device,
2070 				"failed to allocate host memory buffer.\n");
2071 			return 0; /* controller must work without HMB */
2072 		}
2073 
2074 		dev_info(dev->ctrl.device,
2075 			"allocated %lld MiB host memory buffer.\n",
2076 			dev->host_mem_size >> ilog2(SZ_1M));
2077 	}
2078 
2079 	ret = nvme_set_host_mem(dev, enable_bits);
2080 	if (ret)
2081 		nvme_free_host_mem(dev);
2082 	return ret;
2083 }
2084 
2085 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2086 		char *buf)
2087 {
2088 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2089 
2090 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2091 		       ndev->cmbloc, ndev->cmbsz);
2092 }
2093 static DEVICE_ATTR_RO(cmb);
2094 
2095 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2096 		char *buf)
2097 {
2098 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2099 
2100 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2101 }
2102 static DEVICE_ATTR_RO(cmbloc);
2103 
2104 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2105 		char *buf)
2106 {
2107 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2108 
2109 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2110 }
2111 static DEVICE_ATTR_RO(cmbsz);
2112 
2113 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2114 			char *buf)
2115 {
2116 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2117 
2118 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2119 }
2120 
2121 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2122 			 const char *buf, size_t count)
2123 {
2124 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2125 	bool new;
2126 	int ret;
2127 
2128 	if (strtobool(buf, &new) < 0)
2129 		return -EINVAL;
2130 
2131 	if (new == ndev->hmb)
2132 		return count;
2133 
2134 	if (new) {
2135 		ret = nvme_setup_host_mem(ndev);
2136 	} else {
2137 		ret = nvme_set_host_mem(ndev, 0);
2138 		if (!ret)
2139 			nvme_free_host_mem(ndev);
2140 	}
2141 
2142 	if (ret < 0)
2143 		return ret;
2144 
2145 	return count;
2146 }
2147 static DEVICE_ATTR_RW(hmb);
2148 
2149 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2150 		struct attribute *a, int n)
2151 {
2152 	struct nvme_ctrl *ctrl =
2153 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2154 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2155 
2156 	if (a == &dev_attr_cmb.attr ||
2157 	    a == &dev_attr_cmbloc.attr ||
2158 	    a == &dev_attr_cmbsz.attr) {
2159 	    	if (!dev->cmbsz)
2160 			return 0;
2161 	}
2162 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2163 		return 0;
2164 
2165 	return a->mode;
2166 }
2167 
2168 static struct attribute *nvme_pci_attrs[] = {
2169 	&dev_attr_cmb.attr,
2170 	&dev_attr_cmbloc.attr,
2171 	&dev_attr_cmbsz.attr,
2172 	&dev_attr_hmb.attr,
2173 	NULL,
2174 };
2175 
2176 static const struct attribute_group nvme_pci_attr_group = {
2177 	.attrs		= nvme_pci_attrs,
2178 	.is_visible	= nvme_pci_attrs_are_visible,
2179 };
2180 
2181 /*
2182  * nirqs is the number of interrupts available for write and read
2183  * queues. The core already reserved an interrupt for the admin queue.
2184  */
2185 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2186 {
2187 	struct nvme_dev *dev = affd->priv;
2188 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2189 
2190 	/*
2191 	 * If there is no interrupt available for queues, ensure that
2192 	 * the default queue is set to 1. The affinity set size is
2193 	 * also set to one, but the irq core ignores it for this case.
2194 	 *
2195 	 * If only one interrupt is available or 'write_queue' == 0, combine
2196 	 * write and read queues.
2197 	 *
2198 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2199 	 * queue.
2200 	 */
2201 	if (!nrirqs) {
2202 		nrirqs = 1;
2203 		nr_read_queues = 0;
2204 	} else if (nrirqs == 1 || !nr_write_queues) {
2205 		nr_read_queues = 0;
2206 	} else if (nr_write_queues >= nrirqs) {
2207 		nr_read_queues = 1;
2208 	} else {
2209 		nr_read_queues = nrirqs - nr_write_queues;
2210 	}
2211 
2212 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2213 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2214 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2215 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2216 	affd->nr_sets = nr_read_queues ? 2 : 1;
2217 }
2218 
2219 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2220 {
2221 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2222 	struct irq_affinity affd = {
2223 		.pre_vectors	= 1,
2224 		.calc_sets	= nvme_calc_irq_sets,
2225 		.priv		= dev,
2226 	};
2227 	unsigned int irq_queues, poll_queues;
2228 
2229 	/*
2230 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2231 	 * left over for non-polled I/O.
2232 	 */
2233 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2234 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2235 
2236 	/*
2237 	 * Initialize for the single interrupt case, will be updated in
2238 	 * nvme_calc_irq_sets().
2239 	 */
2240 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2241 	dev->io_queues[HCTX_TYPE_READ] = 0;
2242 
2243 	/*
2244 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2245 	 * but some Apple controllers require all queues to use the first
2246 	 * vector.
2247 	 */
2248 	irq_queues = 1;
2249 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2250 		irq_queues += (nr_io_queues - poll_queues);
2251 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2252 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2253 }
2254 
2255 static void nvme_disable_io_queues(struct nvme_dev *dev)
2256 {
2257 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2258 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2259 }
2260 
2261 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2262 {
2263 	/*
2264 	 * If tags are shared with admin queue (Apple bug), then
2265 	 * make sure we only use one IO queue.
2266 	 */
2267 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2268 		return 1;
2269 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2270 }
2271 
2272 static int nvme_setup_io_queues(struct nvme_dev *dev)
2273 {
2274 	struct nvme_queue *adminq = &dev->queues[0];
2275 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2276 	unsigned int nr_io_queues;
2277 	unsigned long size;
2278 	int result;
2279 
2280 	/*
2281 	 * Sample the module parameters once at reset time so that we have
2282 	 * stable values to work with.
2283 	 */
2284 	dev->nr_write_queues = write_queues;
2285 	dev->nr_poll_queues = poll_queues;
2286 
2287 	nr_io_queues = dev->nr_allocated_queues - 1;
2288 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2289 	if (result < 0)
2290 		return result;
2291 
2292 	if (nr_io_queues == 0)
2293 		return 0;
2294 
2295 	/*
2296 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2297 	 * from set to unset. If there is a window to it is truely freed,
2298 	 * pci_free_irq_vectors() jumping into this window will crash.
2299 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2300 	 * nvme_dev_disable() path.
2301 	 */
2302 	result = nvme_setup_io_queues_trylock(dev);
2303 	if (result)
2304 		return result;
2305 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2306 		pci_free_irq(pdev, 0, adminq);
2307 
2308 	if (dev->cmb_use_sqes) {
2309 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2310 				sizeof(struct nvme_command));
2311 		if (result > 0)
2312 			dev->q_depth = result;
2313 		else
2314 			dev->cmb_use_sqes = false;
2315 	}
2316 
2317 	do {
2318 		size = db_bar_size(dev, nr_io_queues);
2319 		result = nvme_remap_bar(dev, size);
2320 		if (!result)
2321 			break;
2322 		if (!--nr_io_queues) {
2323 			result = -ENOMEM;
2324 			goto out_unlock;
2325 		}
2326 	} while (1);
2327 	adminq->q_db = dev->dbs;
2328 
2329  retry:
2330 	/* Deregister the admin queue's interrupt */
2331 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2332 		pci_free_irq(pdev, 0, adminq);
2333 
2334 	/*
2335 	 * If we enable msix early due to not intx, disable it again before
2336 	 * setting up the full range we need.
2337 	 */
2338 	pci_free_irq_vectors(pdev);
2339 
2340 	result = nvme_setup_irqs(dev, nr_io_queues);
2341 	if (result <= 0) {
2342 		result = -EIO;
2343 		goto out_unlock;
2344 	}
2345 
2346 	dev->num_vecs = result;
2347 	result = max(result - 1, 1);
2348 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2349 
2350 	/*
2351 	 * Should investigate if there's a performance win from allocating
2352 	 * more queues than interrupt vectors; it might allow the submission
2353 	 * path to scale better, even if the receive path is limited by the
2354 	 * number of interrupts.
2355 	 */
2356 	result = queue_request_irq(adminq);
2357 	if (result)
2358 		goto out_unlock;
2359 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2360 	mutex_unlock(&dev->shutdown_lock);
2361 
2362 	result = nvme_create_io_queues(dev);
2363 	if (result || dev->online_queues < 2)
2364 		return result;
2365 
2366 	if (dev->online_queues - 1 < dev->max_qid) {
2367 		nr_io_queues = dev->online_queues - 1;
2368 		nvme_disable_io_queues(dev);
2369 		result = nvme_setup_io_queues_trylock(dev);
2370 		if (result)
2371 			return result;
2372 		nvme_suspend_io_queues(dev);
2373 		goto retry;
2374 	}
2375 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2376 					dev->io_queues[HCTX_TYPE_DEFAULT],
2377 					dev->io_queues[HCTX_TYPE_READ],
2378 					dev->io_queues[HCTX_TYPE_POLL]);
2379 	return 0;
2380 out_unlock:
2381 	mutex_unlock(&dev->shutdown_lock);
2382 	return result;
2383 }
2384 
2385 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2386 {
2387 	struct nvme_queue *nvmeq = req->end_io_data;
2388 
2389 	blk_mq_free_request(req);
2390 	complete(&nvmeq->delete_done);
2391 }
2392 
2393 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2394 {
2395 	struct nvme_queue *nvmeq = req->end_io_data;
2396 
2397 	if (error)
2398 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2399 
2400 	nvme_del_queue_end(req, error);
2401 }
2402 
2403 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2404 {
2405 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2406 	struct request *req;
2407 	struct nvme_command cmd = { };
2408 
2409 	cmd.delete_queue.opcode = opcode;
2410 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2411 
2412 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2413 	if (IS_ERR(req))
2414 		return PTR_ERR(req);
2415 
2416 	req->end_io_data = nvmeq;
2417 
2418 	init_completion(&nvmeq->delete_done);
2419 	blk_execute_rq_nowait(NULL, req, false,
2420 			opcode == nvme_admin_delete_cq ?
2421 				nvme_del_cq_end : nvme_del_queue_end);
2422 	return 0;
2423 }
2424 
2425 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2426 {
2427 	int nr_queues = dev->online_queues - 1, sent = 0;
2428 	unsigned long timeout;
2429 
2430  retry:
2431 	timeout = NVME_ADMIN_TIMEOUT;
2432 	while (nr_queues > 0) {
2433 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2434 			break;
2435 		nr_queues--;
2436 		sent++;
2437 	}
2438 	while (sent) {
2439 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2440 
2441 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2442 				timeout);
2443 		if (timeout == 0)
2444 			return false;
2445 
2446 		sent--;
2447 		if (nr_queues)
2448 			goto retry;
2449 	}
2450 	return true;
2451 }
2452 
2453 static void nvme_dev_add(struct nvme_dev *dev)
2454 {
2455 	int ret;
2456 
2457 	if (!dev->ctrl.tagset) {
2458 		dev->tagset.ops = &nvme_mq_ops;
2459 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2460 		dev->tagset.nr_maps = 2; /* default + read */
2461 		if (dev->io_queues[HCTX_TYPE_POLL])
2462 			dev->tagset.nr_maps++;
2463 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2464 		dev->tagset.numa_node = dev->ctrl.numa_node;
2465 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2466 						BLK_MQ_MAX_DEPTH) - 1;
2467 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2468 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2469 		dev->tagset.driver_data = dev;
2470 
2471 		/*
2472 		 * Some Apple controllers requires tags to be unique
2473 		 * across admin and IO queue, so reserve the first 32
2474 		 * tags of the IO queue.
2475 		 */
2476 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2477 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2478 
2479 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2480 		if (ret) {
2481 			dev_warn(dev->ctrl.device,
2482 				"IO queues tagset allocation failed %d\n", ret);
2483 			return;
2484 		}
2485 		dev->ctrl.tagset = &dev->tagset;
2486 	} else {
2487 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2488 
2489 		/* Free previously allocated queues that are no longer usable */
2490 		nvme_free_queues(dev, dev->online_queues);
2491 	}
2492 
2493 	nvme_dbbuf_set(dev);
2494 }
2495 
2496 static int nvme_pci_enable(struct nvme_dev *dev)
2497 {
2498 	int result = -ENOMEM;
2499 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2500 	int dma_address_bits = 64;
2501 
2502 	if (pci_enable_device_mem(pdev))
2503 		return result;
2504 
2505 	pci_set_master(pdev);
2506 
2507 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2508 		dma_address_bits = 48;
2509 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2510 		goto disable;
2511 
2512 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2513 		result = -ENODEV;
2514 		goto disable;
2515 	}
2516 
2517 	/*
2518 	 * Some devices and/or platforms don't advertise or work with INTx
2519 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2520 	 * adjust this later.
2521 	 */
2522 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2523 	if (result < 0)
2524 		return result;
2525 
2526 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2527 
2528 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2529 				io_queue_depth);
2530 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2531 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2532 	dev->dbs = dev->bar + 4096;
2533 
2534 	/*
2535 	 * Some Apple controllers require a non-standard SQE size.
2536 	 * Interestingly they also seem to ignore the CC:IOSQES register
2537 	 * so we don't bother updating it here.
2538 	 */
2539 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2540 		dev->io_sqes = 7;
2541 	else
2542 		dev->io_sqes = NVME_NVM_IOSQES;
2543 
2544 	/*
2545 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2546 	 * some MacBook7,1 to avoid controller resets and data loss.
2547 	 */
2548 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2549 		dev->q_depth = 2;
2550 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2551 			"set queue depth=%u to work around controller resets\n",
2552 			dev->q_depth);
2553 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2554 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2555 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2556 		dev->q_depth = 64;
2557 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2558                         "set queue depth=%u\n", dev->q_depth);
2559 	}
2560 
2561 	/*
2562 	 * Controllers with the shared tags quirk need the IO queue to be
2563 	 * big enough so that we get 32 tags for the admin queue
2564 	 */
2565 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2566 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2567 		dev->q_depth = NVME_AQ_DEPTH + 2;
2568 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2569 			 dev->q_depth);
2570 	}
2571 
2572 
2573 	nvme_map_cmb(dev);
2574 
2575 	pci_enable_pcie_error_reporting(pdev);
2576 	pci_save_state(pdev);
2577 	return 0;
2578 
2579  disable:
2580 	pci_disable_device(pdev);
2581 	return result;
2582 }
2583 
2584 static void nvme_dev_unmap(struct nvme_dev *dev)
2585 {
2586 	if (dev->bar)
2587 		iounmap(dev->bar);
2588 	pci_release_mem_regions(to_pci_dev(dev->dev));
2589 }
2590 
2591 static void nvme_pci_disable(struct nvme_dev *dev)
2592 {
2593 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2594 
2595 	pci_free_irq_vectors(pdev);
2596 
2597 	if (pci_is_enabled(pdev)) {
2598 		pci_disable_pcie_error_reporting(pdev);
2599 		pci_disable_device(pdev);
2600 	}
2601 }
2602 
2603 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2604 {
2605 	bool dead = true, freeze = false;
2606 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2607 
2608 	mutex_lock(&dev->shutdown_lock);
2609 	if (pci_is_enabled(pdev)) {
2610 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2611 
2612 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2613 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2614 			freeze = true;
2615 			nvme_start_freeze(&dev->ctrl);
2616 		}
2617 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2618 			pdev->error_state  != pci_channel_io_normal);
2619 	}
2620 
2621 	/*
2622 	 * Give the controller a chance to complete all entered requests if
2623 	 * doing a safe shutdown.
2624 	 */
2625 	if (!dead && shutdown && freeze)
2626 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2627 
2628 	nvme_stop_queues(&dev->ctrl);
2629 
2630 	if (!dead && dev->ctrl.queue_count > 0) {
2631 		nvme_disable_io_queues(dev);
2632 		nvme_disable_admin_queue(dev, shutdown);
2633 	}
2634 	nvme_suspend_io_queues(dev);
2635 	nvme_suspend_queue(&dev->queues[0]);
2636 	nvme_pci_disable(dev);
2637 	nvme_reap_pending_cqes(dev);
2638 
2639 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2640 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2641 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2642 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2643 
2644 	/*
2645 	 * The driver will not be starting up queues again if shutting down so
2646 	 * must flush all entered requests to their failed completion to avoid
2647 	 * deadlocking blk-mq hot-cpu notifier.
2648 	 */
2649 	if (shutdown) {
2650 		nvme_start_queues(&dev->ctrl);
2651 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2652 			nvme_start_admin_queue(&dev->ctrl);
2653 	}
2654 	mutex_unlock(&dev->shutdown_lock);
2655 }
2656 
2657 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2658 {
2659 	if (!nvme_wait_reset(&dev->ctrl))
2660 		return -EBUSY;
2661 	nvme_dev_disable(dev, shutdown);
2662 	return 0;
2663 }
2664 
2665 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2666 {
2667 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2668 						NVME_CTRL_PAGE_SIZE,
2669 						NVME_CTRL_PAGE_SIZE, 0);
2670 	if (!dev->prp_page_pool)
2671 		return -ENOMEM;
2672 
2673 	/* Optimisation for I/Os between 4k and 128k */
2674 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2675 						256, 256, 0);
2676 	if (!dev->prp_small_pool) {
2677 		dma_pool_destroy(dev->prp_page_pool);
2678 		return -ENOMEM;
2679 	}
2680 	return 0;
2681 }
2682 
2683 static void nvme_release_prp_pools(struct nvme_dev *dev)
2684 {
2685 	dma_pool_destroy(dev->prp_page_pool);
2686 	dma_pool_destroy(dev->prp_small_pool);
2687 }
2688 
2689 static void nvme_free_tagset(struct nvme_dev *dev)
2690 {
2691 	if (dev->tagset.tags)
2692 		blk_mq_free_tag_set(&dev->tagset);
2693 	dev->ctrl.tagset = NULL;
2694 }
2695 
2696 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2697 {
2698 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2699 
2700 	nvme_dbbuf_dma_free(dev);
2701 	nvme_free_tagset(dev);
2702 	if (dev->ctrl.admin_q)
2703 		blk_put_queue(dev->ctrl.admin_q);
2704 	free_opal_dev(dev->ctrl.opal_dev);
2705 	mempool_destroy(dev->iod_mempool);
2706 	put_device(dev->dev);
2707 	kfree(dev->queues);
2708 	kfree(dev);
2709 }
2710 
2711 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2712 {
2713 	/*
2714 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2715 	 * may be holding this pci_dev's device lock.
2716 	 */
2717 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2718 	nvme_get_ctrl(&dev->ctrl);
2719 	nvme_dev_disable(dev, false);
2720 	nvme_kill_queues(&dev->ctrl);
2721 	if (!queue_work(nvme_wq, &dev->remove_work))
2722 		nvme_put_ctrl(&dev->ctrl);
2723 }
2724 
2725 static void nvme_reset_work(struct work_struct *work)
2726 {
2727 	struct nvme_dev *dev =
2728 		container_of(work, struct nvme_dev, ctrl.reset_work);
2729 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2730 	int result;
2731 
2732 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2733 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2734 			 dev->ctrl.state);
2735 		result = -ENODEV;
2736 		goto out;
2737 	}
2738 
2739 	/*
2740 	 * If we're called to reset a live controller first shut it down before
2741 	 * moving on.
2742 	 */
2743 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2744 		nvme_dev_disable(dev, false);
2745 	nvme_sync_queues(&dev->ctrl);
2746 
2747 	mutex_lock(&dev->shutdown_lock);
2748 	result = nvme_pci_enable(dev);
2749 	if (result)
2750 		goto out_unlock;
2751 
2752 	result = nvme_pci_configure_admin_queue(dev);
2753 	if (result)
2754 		goto out_unlock;
2755 
2756 	result = nvme_alloc_admin_tags(dev);
2757 	if (result)
2758 		goto out_unlock;
2759 
2760 	/*
2761 	 * Limit the max command size to prevent iod->sg allocations going
2762 	 * over a single page.
2763 	 */
2764 	dev->ctrl.max_hw_sectors = min_t(u32,
2765 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2766 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2767 
2768 	/*
2769 	 * Don't limit the IOMMU merged segment size.
2770 	 */
2771 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2772 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2773 
2774 	mutex_unlock(&dev->shutdown_lock);
2775 
2776 	/*
2777 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2778 	 * initializing procedure here.
2779 	 */
2780 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2781 		dev_warn(dev->ctrl.device,
2782 			"failed to mark controller CONNECTING\n");
2783 		result = -EBUSY;
2784 		goto out;
2785 	}
2786 
2787 	/*
2788 	 * We do not support an SGL for metadata (yet), so we are limited to a
2789 	 * single integrity segment for the separate metadata pointer.
2790 	 */
2791 	dev->ctrl.max_integrity_segments = 1;
2792 
2793 	result = nvme_init_ctrl_finish(&dev->ctrl);
2794 	if (result)
2795 		goto out;
2796 
2797 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2798 		if (!dev->ctrl.opal_dev)
2799 			dev->ctrl.opal_dev =
2800 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2801 		else if (was_suspend)
2802 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2803 	} else {
2804 		free_opal_dev(dev->ctrl.opal_dev);
2805 		dev->ctrl.opal_dev = NULL;
2806 	}
2807 
2808 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2809 		result = nvme_dbbuf_dma_alloc(dev);
2810 		if (result)
2811 			dev_warn(dev->dev,
2812 				 "unable to allocate dma for dbbuf\n");
2813 	}
2814 
2815 	if (dev->ctrl.hmpre) {
2816 		result = nvme_setup_host_mem(dev);
2817 		if (result < 0)
2818 			goto out;
2819 	}
2820 
2821 	result = nvme_setup_io_queues(dev);
2822 	if (result)
2823 		goto out;
2824 
2825 	/*
2826 	 * Keep the controller around but remove all namespaces if we don't have
2827 	 * any working I/O queue.
2828 	 */
2829 	if (dev->online_queues < 2) {
2830 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2831 		nvme_kill_queues(&dev->ctrl);
2832 		nvme_remove_namespaces(&dev->ctrl);
2833 		nvme_free_tagset(dev);
2834 	} else {
2835 		nvme_start_queues(&dev->ctrl);
2836 		nvme_wait_freeze(&dev->ctrl);
2837 		nvme_dev_add(dev);
2838 		nvme_unfreeze(&dev->ctrl);
2839 	}
2840 
2841 	/*
2842 	 * If only admin queue live, keep it to do further investigation or
2843 	 * recovery.
2844 	 */
2845 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2846 		dev_warn(dev->ctrl.device,
2847 			"failed to mark controller live state\n");
2848 		result = -ENODEV;
2849 		goto out;
2850 	}
2851 
2852 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2853 			&nvme_pci_attr_group))
2854 		dev->attrs_added = true;
2855 
2856 	nvme_start_ctrl(&dev->ctrl);
2857 	return;
2858 
2859  out_unlock:
2860 	mutex_unlock(&dev->shutdown_lock);
2861  out:
2862 	if (result)
2863 		dev_warn(dev->ctrl.device,
2864 			 "Removing after probe failure status: %d\n", result);
2865 	nvme_remove_dead_ctrl(dev);
2866 }
2867 
2868 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2869 {
2870 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2871 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2872 
2873 	if (pci_get_drvdata(pdev))
2874 		device_release_driver(&pdev->dev);
2875 	nvme_put_ctrl(&dev->ctrl);
2876 }
2877 
2878 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2879 {
2880 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2881 	return 0;
2882 }
2883 
2884 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2885 {
2886 	writel(val, to_nvme_dev(ctrl)->bar + off);
2887 	return 0;
2888 }
2889 
2890 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2891 {
2892 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2893 	return 0;
2894 }
2895 
2896 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2897 {
2898 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2899 
2900 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2901 }
2902 
2903 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2904 	.name			= "pcie",
2905 	.module			= THIS_MODULE,
2906 	.flags			= NVME_F_METADATA_SUPPORTED |
2907 				  NVME_F_PCI_P2PDMA,
2908 	.reg_read32		= nvme_pci_reg_read32,
2909 	.reg_write32		= nvme_pci_reg_write32,
2910 	.reg_read64		= nvme_pci_reg_read64,
2911 	.free_ctrl		= nvme_pci_free_ctrl,
2912 	.submit_async_event	= nvme_pci_submit_async_event,
2913 	.get_address		= nvme_pci_get_address,
2914 };
2915 
2916 static int nvme_dev_map(struct nvme_dev *dev)
2917 {
2918 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2919 
2920 	if (pci_request_mem_regions(pdev, "nvme"))
2921 		return -ENODEV;
2922 
2923 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2924 		goto release;
2925 
2926 	return 0;
2927   release:
2928 	pci_release_mem_regions(pdev);
2929 	return -ENODEV;
2930 }
2931 
2932 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2933 {
2934 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2935 		/*
2936 		 * Several Samsung devices seem to drop off the PCIe bus
2937 		 * randomly when APST is on and uses the deepest sleep state.
2938 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2939 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2940 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2941 		 * laptops.
2942 		 */
2943 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2944 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2945 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2946 			return NVME_QUIRK_NO_DEEPEST_PS;
2947 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2948 		/*
2949 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2950 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2951 		 * within few minutes after bootup on a Coffee Lake board -
2952 		 * ASUS PRIME Z370-A
2953 		 */
2954 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2955 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2956 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2957 			return NVME_QUIRK_NO_APST;
2958 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2959 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2960 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2961 		/*
2962 		 * Forcing to use host managed nvme power settings for
2963 		 * lowest idle power with quick resume latency on
2964 		 * Samsung and Toshiba SSDs based on suspend behavior
2965 		 * on Coffee Lake board for LENOVO C640
2966 		 */
2967 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2968 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2969 			return NVME_QUIRK_SIMPLE_SUSPEND;
2970 	}
2971 
2972 	return 0;
2973 }
2974 
2975 static void nvme_async_probe(void *data, async_cookie_t cookie)
2976 {
2977 	struct nvme_dev *dev = data;
2978 
2979 	flush_work(&dev->ctrl.reset_work);
2980 	flush_work(&dev->ctrl.scan_work);
2981 	nvme_put_ctrl(&dev->ctrl);
2982 }
2983 
2984 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2985 {
2986 	int node, result = -ENOMEM;
2987 	struct nvme_dev *dev;
2988 	unsigned long quirks = id->driver_data;
2989 	size_t alloc_size;
2990 
2991 	node = dev_to_node(&pdev->dev);
2992 	if (node == NUMA_NO_NODE)
2993 		set_dev_node(&pdev->dev, first_memory_node);
2994 
2995 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2996 	if (!dev)
2997 		return -ENOMEM;
2998 
2999 	dev->nr_write_queues = write_queues;
3000 	dev->nr_poll_queues = poll_queues;
3001 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3002 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3003 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3004 	if (!dev->queues)
3005 		goto free;
3006 
3007 	dev->dev = get_device(&pdev->dev);
3008 	pci_set_drvdata(pdev, dev);
3009 
3010 	result = nvme_dev_map(dev);
3011 	if (result)
3012 		goto put_pci;
3013 
3014 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3015 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3016 	mutex_init(&dev->shutdown_lock);
3017 
3018 	result = nvme_setup_prp_pools(dev);
3019 	if (result)
3020 		goto unmap;
3021 
3022 	quirks |= check_vendor_combination_bug(pdev);
3023 
3024 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3025 		/*
3026 		 * Some systems use a bios work around to ask for D3 on
3027 		 * platforms that support kernel managed suspend.
3028 		 */
3029 		dev_info(&pdev->dev,
3030 			 "platform quirk: setting simple suspend\n");
3031 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3032 	}
3033 
3034 	/*
3035 	 * Double check that our mempool alloc size will cover the biggest
3036 	 * command we support.
3037 	 */
3038 	alloc_size = nvme_pci_iod_alloc_size();
3039 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3040 
3041 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3042 						mempool_kfree,
3043 						(void *) alloc_size,
3044 						GFP_KERNEL, node);
3045 	if (!dev->iod_mempool) {
3046 		result = -ENOMEM;
3047 		goto release_pools;
3048 	}
3049 
3050 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3051 			quirks);
3052 	if (result)
3053 		goto release_mempool;
3054 
3055 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3056 
3057 	nvme_reset_ctrl(&dev->ctrl);
3058 	async_schedule(nvme_async_probe, dev);
3059 
3060 	return 0;
3061 
3062  release_mempool:
3063 	mempool_destroy(dev->iod_mempool);
3064  release_pools:
3065 	nvme_release_prp_pools(dev);
3066  unmap:
3067 	nvme_dev_unmap(dev);
3068  put_pci:
3069 	put_device(dev->dev);
3070  free:
3071 	kfree(dev->queues);
3072 	kfree(dev);
3073 	return result;
3074 }
3075 
3076 static void nvme_reset_prepare(struct pci_dev *pdev)
3077 {
3078 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3079 
3080 	/*
3081 	 * We don't need to check the return value from waiting for the reset
3082 	 * state as pci_dev device lock is held, making it impossible to race
3083 	 * with ->remove().
3084 	 */
3085 	nvme_disable_prepare_reset(dev, false);
3086 	nvme_sync_queues(&dev->ctrl);
3087 }
3088 
3089 static void nvme_reset_done(struct pci_dev *pdev)
3090 {
3091 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3092 
3093 	if (!nvme_try_sched_reset(&dev->ctrl))
3094 		flush_work(&dev->ctrl.reset_work);
3095 }
3096 
3097 static void nvme_shutdown(struct pci_dev *pdev)
3098 {
3099 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3100 
3101 	nvme_disable_prepare_reset(dev, true);
3102 }
3103 
3104 static void nvme_remove_attrs(struct nvme_dev *dev)
3105 {
3106 	if (dev->attrs_added)
3107 		sysfs_remove_group(&dev->ctrl.device->kobj,
3108 				   &nvme_pci_attr_group);
3109 }
3110 
3111 /*
3112  * The driver's remove may be called on a device in a partially initialized
3113  * state. This function must not have any dependencies on the device state in
3114  * order to proceed.
3115  */
3116 static void nvme_remove(struct pci_dev *pdev)
3117 {
3118 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3119 
3120 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3121 	pci_set_drvdata(pdev, NULL);
3122 
3123 	if (!pci_device_is_present(pdev)) {
3124 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3125 		nvme_dev_disable(dev, true);
3126 	}
3127 
3128 	flush_work(&dev->ctrl.reset_work);
3129 	nvme_stop_ctrl(&dev->ctrl);
3130 	nvme_remove_namespaces(&dev->ctrl);
3131 	nvme_dev_disable(dev, true);
3132 	nvme_remove_attrs(dev);
3133 	nvme_free_host_mem(dev);
3134 	nvme_dev_remove_admin(dev);
3135 	nvme_free_queues(dev, 0);
3136 	nvme_release_prp_pools(dev);
3137 	nvme_dev_unmap(dev);
3138 	nvme_uninit_ctrl(&dev->ctrl);
3139 }
3140 
3141 #ifdef CONFIG_PM_SLEEP
3142 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3143 {
3144 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3145 }
3146 
3147 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3148 {
3149 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3150 }
3151 
3152 static int nvme_resume(struct device *dev)
3153 {
3154 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3155 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3156 
3157 	if (ndev->last_ps == U32_MAX ||
3158 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3159 		goto reset;
3160 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3161 		goto reset;
3162 
3163 	return 0;
3164 reset:
3165 	return nvme_try_sched_reset(ctrl);
3166 }
3167 
3168 static int nvme_suspend(struct device *dev)
3169 {
3170 	struct pci_dev *pdev = to_pci_dev(dev);
3171 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3172 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3173 	int ret = -EBUSY;
3174 
3175 	ndev->last_ps = U32_MAX;
3176 
3177 	/*
3178 	 * The platform does not remove power for a kernel managed suspend so
3179 	 * use host managed nvme power settings for lowest idle power if
3180 	 * possible. This should have quicker resume latency than a full device
3181 	 * shutdown.  But if the firmware is involved after the suspend or the
3182 	 * device does not support any non-default power states, shut down the
3183 	 * device fully.
3184 	 *
3185 	 * If ASPM is not enabled for the device, shut down the device and allow
3186 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3187 	 * down, so as to allow the platform to achieve its minimum low-power
3188 	 * state (which may not be possible if the link is up).
3189 	 */
3190 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3191 	    !pcie_aspm_enabled(pdev) ||
3192 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3193 		return nvme_disable_prepare_reset(ndev, true);
3194 
3195 	nvme_start_freeze(ctrl);
3196 	nvme_wait_freeze(ctrl);
3197 	nvme_sync_queues(ctrl);
3198 
3199 	if (ctrl->state != NVME_CTRL_LIVE)
3200 		goto unfreeze;
3201 
3202 	/*
3203 	 * Host memory access may not be successful in a system suspend state,
3204 	 * but the specification allows the controller to access memory in a
3205 	 * non-operational power state.
3206 	 */
3207 	if (ndev->hmb) {
3208 		ret = nvme_set_host_mem(ndev, 0);
3209 		if (ret < 0)
3210 			goto unfreeze;
3211 	}
3212 
3213 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3214 	if (ret < 0)
3215 		goto unfreeze;
3216 
3217 	/*
3218 	 * A saved state prevents pci pm from generically controlling the
3219 	 * device's power. If we're using protocol specific settings, we don't
3220 	 * want pci interfering.
3221 	 */
3222 	pci_save_state(pdev);
3223 
3224 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3225 	if (ret < 0)
3226 		goto unfreeze;
3227 
3228 	if (ret) {
3229 		/* discard the saved state */
3230 		pci_load_saved_state(pdev, NULL);
3231 
3232 		/*
3233 		 * Clearing npss forces a controller reset on resume. The
3234 		 * correct value will be rediscovered then.
3235 		 */
3236 		ret = nvme_disable_prepare_reset(ndev, true);
3237 		ctrl->npss = 0;
3238 	}
3239 unfreeze:
3240 	nvme_unfreeze(ctrl);
3241 	return ret;
3242 }
3243 
3244 static int nvme_simple_suspend(struct device *dev)
3245 {
3246 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3247 
3248 	return nvme_disable_prepare_reset(ndev, true);
3249 }
3250 
3251 static int nvme_simple_resume(struct device *dev)
3252 {
3253 	struct pci_dev *pdev = to_pci_dev(dev);
3254 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3255 
3256 	return nvme_try_sched_reset(&ndev->ctrl);
3257 }
3258 
3259 static const struct dev_pm_ops nvme_dev_pm_ops = {
3260 	.suspend	= nvme_suspend,
3261 	.resume		= nvme_resume,
3262 	.freeze		= nvme_simple_suspend,
3263 	.thaw		= nvme_simple_resume,
3264 	.poweroff	= nvme_simple_suspend,
3265 	.restore	= nvme_simple_resume,
3266 };
3267 #endif /* CONFIG_PM_SLEEP */
3268 
3269 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3270 						pci_channel_state_t state)
3271 {
3272 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3273 
3274 	/*
3275 	 * A frozen channel requires a reset. When detected, this method will
3276 	 * shutdown the controller to quiesce. The controller will be restarted
3277 	 * after the slot reset through driver's slot_reset callback.
3278 	 */
3279 	switch (state) {
3280 	case pci_channel_io_normal:
3281 		return PCI_ERS_RESULT_CAN_RECOVER;
3282 	case pci_channel_io_frozen:
3283 		dev_warn(dev->ctrl.device,
3284 			"frozen state error detected, reset controller\n");
3285 		nvme_dev_disable(dev, false);
3286 		return PCI_ERS_RESULT_NEED_RESET;
3287 	case pci_channel_io_perm_failure:
3288 		dev_warn(dev->ctrl.device,
3289 			"failure state error detected, request disconnect\n");
3290 		return PCI_ERS_RESULT_DISCONNECT;
3291 	}
3292 	return PCI_ERS_RESULT_NEED_RESET;
3293 }
3294 
3295 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3296 {
3297 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3298 
3299 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3300 	pci_restore_state(pdev);
3301 	nvme_reset_ctrl(&dev->ctrl);
3302 	return PCI_ERS_RESULT_RECOVERED;
3303 }
3304 
3305 static void nvme_error_resume(struct pci_dev *pdev)
3306 {
3307 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3308 
3309 	flush_work(&dev->ctrl.reset_work);
3310 }
3311 
3312 static const struct pci_error_handlers nvme_err_handler = {
3313 	.error_detected	= nvme_error_detected,
3314 	.slot_reset	= nvme_slot_reset,
3315 	.resume		= nvme_error_resume,
3316 	.reset_prepare	= nvme_reset_prepare,
3317 	.reset_done	= nvme_reset_done,
3318 };
3319 
3320 static const struct pci_device_id nvme_id_table[] = {
3321 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3322 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3323 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3324 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3325 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3326 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3327 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3328 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3329 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3330 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3331 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3332 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3333 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3334 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3335 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3336 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3337 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3338 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3339 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3340 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3341 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3342 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3343 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3344 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3345 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3346 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3347 				NVME_QUIRK_NO_NS_DESC_LIST, },
3348 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3349 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3350 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3351 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3352 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3353 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3354 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3355 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3356 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3357 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3358 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3359 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3360 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3361 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3362 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3363 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3364 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3365 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3366 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3367 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3368 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3369 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3370 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3371 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3372 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3373 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3374 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3375 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3376 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3377 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3378 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3379 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3380 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3381 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3382 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3383 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3384 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3385 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3386 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3387 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3388 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3389 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3390 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3391 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3392 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3393 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3394 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3395 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3396 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3397 				NVME_QUIRK_128_BYTES_SQES |
3398 				NVME_QUIRK_SHARED_TAGS |
3399 				NVME_QUIRK_SKIP_CID_GEN },
3400 
3401 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3402 	{ 0, }
3403 };
3404 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3405 
3406 static struct pci_driver nvme_driver = {
3407 	.name		= "nvme",
3408 	.id_table	= nvme_id_table,
3409 	.probe		= nvme_probe,
3410 	.remove		= nvme_remove,
3411 	.shutdown	= nvme_shutdown,
3412 #ifdef CONFIG_PM_SLEEP
3413 	.driver		= {
3414 		.pm	= &nvme_dev_pm_ops,
3415 	},
3416 #endif
3417 	.sriov_configure = pci_sriov_configure_simple,
3418 	.err_handler	= &nvme_err_handler,
3419 };
3420 
3421 static int __init nvme_init(void)
3422 {
3423 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3424 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3425 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3426 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3427 
3428 	return pci_register_driver(&nvme_driver);
3429 }
3430 
3431 static void __exit nvme_exit(void)
3432 {
3433 	pci_unregister_driver(&nvme_driver);
3434 	flush_workqueue(nvme_wq);
3435 }
3436 
3437 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3438 MODULE_LICENSE("GPL");
3439 MODULE_VERSION("1.0");
3440 module_init(nvme_init);
3441 module_exit(nvme_exit);
3442