xref: /openbmc/linux/drivers/nvme/host/pci.c (revision ef658fc2)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44 
45 #include <uapi/linux/nvme_ioctl.h>
46 #include "nvme.h"
47 
48 #define NVME_MINORS		(1U << MINORBITS)
49 #define NVME_Q_DEPTH		1024
50 #define NVME_AQ_DEPTH		256
51 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
53 #define ADMIN_TIMEOUT		(admin_timeout * HZ)
54 #define SHUTDOWN_TIMEOUT	(shutdown_timeout * HZ)
55 
56 static unsigned char admin_timeout = 60;
57 module_param(admin_timeout, byte, 0644);
58 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
59 
60 unsigned char nvme_io_timeout = 30;
61 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
62 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
63 
64 static unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
67 
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
70 
71 static int nvme_char_major;
72 module_param(nvme_char_major, int, 0);
73 
74 static int use_threaded_interrupts;
75 module_param(use_threaded_interrupts, int, 0);
76 
77 static bool use_cmb_sqes = true;
78 module_param(use_cmb_sqes, bool, 0644);
79 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
80 
81 static DEFINE_SPINLOCK(dev_list_lock);
82 static LIST_HEAD(dev_list);
83 static struct task_struct *nvme_thread;
84 static struct workqueue_struct *nvme_workq;
85 static wait_queue_head_t nvme_kthread_wait;
86 
87 static struct class *nvme_class;
88 
89 static int __nvme_reset(struct nvme_dev *dev);
90 static int nvme_reset(struct nvme_dev *dev);
91 static int nvme_process_cq(struct nvme_queue *nvmeq);
92 static void nvme_dead_ctrl(struct nvme_dev *dev);
93 
94 struct async_cmd_info {
95 	struct kthread_work work;
96 	struct kthread_worker *worker;
97 	struct request *req;
98 	u32 result;
99 	int status;
100 	void *ctx;
101 };
102 
103 /*
104  * An NVM Express queue.  Each device has at least two (one for admin
105  * commands and one for I/O commands).
106  */
107 struct nvme_queue {
108 	struct device *q_dmadev;
109 	struct nvme_dev *dev;
110 	char irqname[24];	/* nvme4294967295-65535\0 */
111 	spinlock_t q_lock;
112 	struct nvme_command *sq_cmds;
113 	struct nvme_command __iomem *sq_cmds_io;
114 	volatile struct nvme_completion *cqes;
115 	struct blk_mq_tags **tags;
116 	dma_addr_t sq_dma_addr;
117 	dma_addr_t cq_dma_addr;
118 	u32 __iomem *q_db;
119 	u16 q_depth;
120 	s16 cq_vector;
121 	u16 sq_head;
122 	u16 sq_tail;
123 	u16 cq_head;
124 	u16 qid;
125 	u8 cq_phase;
126 	u8 cqe_seen;
127 	struct async_cmd_info cmdinfo;
128 };
129 
130 /*
131  * Check we didin't inadvertently grow the command struct
132  */
133 static inline void _nvme_check_size(void)
134 {
135 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
136 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
137 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
138 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
139 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
140 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
141 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
142 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
143 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
144 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
145 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
146 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
147 }
148 
149 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
150 						struct nvme_completion *);
151 
152 struct nvme_cmd_info {
153 	nvme_completion_fn fn;
154 	void *ctx;
155 	int aborted;
156 	struct nvme_queue *nvmeq;
157 	struct nvme_iod iod[0];
158 };
159 
160 /*
161  * Max size of iod being embedded in the request payload
162  */
163 #define NVME_INT_PAGES		2
164 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->page_size)
165 #define NVME_INT_MASK		0x01
166 
167 /*
168  * Will slightly overestimate the number of pages needed.  This is OK
169  * as it only leads to a small amount of wasted memory for the lifetime of
170  * the I/O.
171  */
172 static int nvme_npages(unsigned size, struct nvme_dev *dev)
173 {
174 	unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
175 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
176 }
177 
178 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
179 {
180 	unsigned int ret = sizeof(struct nvme_cmd_info);
181 
182 	ret += sizeof(struct nvme_iod);
183 	ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
184 	ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
185 
186 	return ret;
187 }
188 
189 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
190 				unsigned int hctx_idx)
191 {
192 	struct nvme_dev *dev = data;
193 	struct nvme_queue *nvmeq = dev->queues[0];
194 
195 	WARN_ON(hctx_idx != 0);
196 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
197 	WARN_ON(nvmeq->tags);
198 
199 	hctx->driver_data = nvmeq;
200 	nvmeq->tags = &dev->admin_tagset.tags[0];
201 	return 0;
202 }
203 
204 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205 {
206 	struct nvme_queue *nvmeq = hctx->driver_data;
207 
208 	nvmeq->tags = NULL;
209 }
210 
211 static int nvme_admin_init_request(void *data, struct request *req,
212 				unsigned int hctx_idx, unsigned int rq_idx,
213 				unsigned int numa_node)
214 {
215 	struct nvme_dev *dev = data;
216 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
217 	struct nvme_queue *nvmeq = dev->queues[0];
218 
219 	BUG_ON(!nvmeq);
220 	cmd->nvmeq = nvmeq;
221 	return 0;
222 }
223 
224 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
225 			  unsigned int hctx_idx)
226 {
227 	struct nvme_dev *dev = data;
228 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
229 
230 	if (!nvmeq->tags)
231 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
232 
233 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
234 	hctx->driver_data = nvmeq;
235 	return 0;
236 }
237 
238 static int nvme_init_request(void *data, struct request *req,
239 				unsigned int hctx_idx, unsigned int rq_idx,
240 				unsigned int numa_node)
241 {
242 	struct nvme_dev *dev = data;
243 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
244 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
245 
246 	BUG_ON(!nvmeq);
247 	cmd->nvmeq = nvmeq;
248 	return 0;
249 }
250 
251 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
252 				nvme_completion_fn handler)
253 {
254 	cmd->fn = handler;
255 	cmd->ctx = ctx;
256 	cmd->aborted = 0;
257 	blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
258 }
259 
260 static void *iod_get_private(struct nvme_iod *iod)
261 {
262 	return (void *) (iod->private & ~0x1UL);
263 }
264 
265 /*
266  * If bit 0 is set, the iod is embedded in the request payload.
267  */
268 static bool iod_should_kfree(struct nvme_iod *iod)
269 {
270 	return (iod->private & NVME_INT_MASK) == 0;
271 }
272 
273 /* Special values must be less than 0x1000 */
274 #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
275 #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
276 #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
277 #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
278 
279 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
280 						struct nvme_completion *cqe)
281 {
282 	if (ctx == CMD_CTX_CANCELLED)
283 		return;
284 	if (ctx == CMD_CTX_COMPLETED) {
285 		dev_warn(nvmeq->q_dmadev,
286 				"completed id %d twice on queue %d\n",
287 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
288 		return;
289 	}
290 	if (ctx == CMD_CTX_INVALID) {
291 		dev_warn(nvmeq->q_dmadev,
292 				"invalid id %d completed on queue %d\n",
293 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
294 		return;
295 	}
296 	dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
297 }
298 
299 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
300 {
301 	void *ctx;
302 
303 	if (fn)
304 		*fn = cmd->fn;
305 	ctx = cmd->ctx;
306 	cmd->fn = special_completion;
307 	cmd->ctx = CMD_CTX_CANCELLED;
308 	return ctx;
309 }
310 
311 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
312 						struct nvme_completion *cqe)
313 {
314 	u32 result = le32_to_cpup(&cqe->result);
315 	u16 status = le16_to_cpup(&cqe->status) >> 1;
316 
317 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
318 		++nvmeq->dev->event_limit;
319 	if (status != NVME_SC_SUCCESS)
320 		return;
321 
322 	switch (result & 0xff07) {
323 	case NVME_AER_NOTICE_NS_CHANGED:
324 		dev_info(nvmeq->q_dmadev, "rescanning\n");
325 		schedule_work(&nvmeq->dev->scan_work);
326 	default:
327 		dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
328 	}
329 }
330 
331 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
332 						struct nvme_completion *cqe)
333 {
334 	struct request *req = ctx;
335 
336 	u16 status = le16_to_cpup(&cqe->status) >> 1;
337 	u32 result = le32_to_cpup(&cqe->result);
338 
339 	blk_mq_free_request(req);
340 
341 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
342 	++nvmeq->dev->abort_limit;
343 }
344 
345 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
346 						struct nvme_completion *cqe)
347 {
348 	struct async_cmd_info *cmdinfo = ctx;
349 	cmdinfo->result = le32_to_cpup(&cqe->result);
350 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
351 	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
352 	blk_mq_free_request(cmdinfo->req);
353 }
354 
355 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
356 				  unsigned int tag)
357 {
358 	struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
359 
360 	return blk_mq_rq_to_pdu(req);
361 }
362 
363 /*
364  * Called with local interrupts disabled and the q_lock held.  May not sleep.
365  */
366 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
367 						nvme_completion_fn *fn)
368 {
369 	struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
370 	void *ctx;
371 	if (tag >= nvmeq->q_depth) {
372 		*fn = special_completion;
373 		return CMD_CTX_INVALID;
374 	}
375 	if (fn)
376 		*fn = cmd->fn;
377 	ctx = cmd->ctx;
378 	cmd->fn = special_completion;
379 	cmd->ctx = CMD_CTX_COMPLETED;
380 	return ctx;
381 }
382 
383 /**
384  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
385  * @nvmeq: The queue to use
386  * @cmd: The command to send
387  *
388  * Safe to use from interrupt context
389  */
390 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
391 						struct nvme_command *cmd)
392 {
393 	u16 tail = nvmeq->sq_tail;
394 
395 	if (nvmeq->sq_cmds_io)
396 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
397 	else
398 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
399 
400 	if (++tail == nvmeq->q_depth)
401 		tail = 0;
402 	writel(tail, nvmeq->q_db);
403 	nvmeq->sq_tail = tail;
404 }
405 
406 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
407 {
408 	unsigned long flags;
409 	spin_lock_irqsave(&nvmeq->q_lock, flags);
410 	__nvme_submit_cmd(nvmeq, cmd);
411 	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
412 }
413 
414 static __le64 **iod_list(struct nvme_iod *iod)
415 {
416 	return ((void *)iod) + iod->offset;
417 }
418 
419 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
420 			    unsigned nseg, unsigned long private)
421 {
422 	iod->private = private;
423 	iod->offset = offsetof(struct nvme_iod, sg[nseg]);
424 	iod->npages = -1;
425 	iod->length = nbytes;
426 	iod->nents = 0;
427 }
428 
429 static struct nvme_iod *
430 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
431 		 unsigned long priv, gfp_t gfp)
432 {
433 	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
434 				sizeof(__le64 *) * nvme_npages(bytes, dev) +
435 				sizeof(struct scatterlist) * nseg, gfp);
436 
437 	if (iod)
438 		iod_init(iod, bytes, nseg, priv);
439 
440 	return iod;
441 }
442 
443 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
444 			               gfp_t gfp)
445 {
446 	unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
447                                                 sizeof(struct nvme_dsm_range);
448 	struct nvme_iod *iod;
449 
450 	if (rq->nr_phys_segments <= NVME_INT_PAGES &&
451 	    size <= NVME_INT_BYTES(dev)) {
452 		struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
453 
454 		iod = cmd->iod;
455 		iod_init(iod, size, rq->nr_phys_segments,
456 				(unsigned long) rq | NVME_INT_MASK);
457 		return iod;
458 	}
459 
460 	return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
461 				(unsigned long) rq, gfp);
462 }
463 
464 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
465 {
466 	const int last_prp = dev->page_size / 8 - 1;
467 	int i;
468 	__le64 **list = iod_list(iod);
469 	dma_addr_t prp_dma = iod->first_dma;
470 
471 	if (iod->npages == 0)
472 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
473 	for (i = 0; i < iod->npages; i++) {
474 		__le64 *prp_list = list[i];
475 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
476 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
477 		prp_dma = next_prp_dma;
478 	}
479 
480 	if (iod_should_kfree(iod))
481 		kfree(iod);
482 }
483 
484 static int nvme_error_status(u16 status)
485 {
486 	switch (status & 0x7ff) {
487 	case NVME_SC_SUCCESS:
488 		return 0;
489 	case NVME_SC_CAP_EXCEEDED:
490 		return -ENOSPC;
491 	default:
492 		return -EIO;
493 	}
494 }
495 
496 #ifdef CONFIG_BLK_DEV_INTEGRITY
497 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
498 {
499 	if (be32_to_cpu(pi->ref_tag) == v)
500 		pi->ref_tag = cpu_to_be32(p);
501 }
502 
503 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
504 {
505 	if (be32_to_cpu(pi->ref_tag) == p)
506 		pi->ref_tag = cpu_to_be32(v);
507 }
508 
509 /**
510  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
511  *
512  * The virtual start sector is the one that was originally submitted by the
513  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
514  * start sector may be different. Remap protection information to match the
515  * physical LBA on writes, and back to the original seed on reads.
516  *
517  * Type 0 and 3 do not have a ref tag, so no remapping required.
518  */
519 static void nvme_dif_remap(struct request *req,
520 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
521 {
522 	struct nvme_ns *ns = req->rq_disk->private_data;
523 	struct bio_integrity_payload *bip;
524 	struct t10_pi_tuple *pi;
525 	void *p, *pmap;
526 	u32 i, nlb, ts, phys, virt;
527 
528 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
529 		return;
530 
531 	bip = bio_integrity(req->bio);
532 	if (!bip)
533 		return;
534 
535 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
536 
537 	p = pmap;
538 	virt = bip_get_seed(bip);
539 	phys = nvme_block_nr(ns, blk_rq_pos(req));
540 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
541 	ts = ns->disk->integrity->tuple_size;
542 
543 	for (i = 0; i < nlb; i++, virt++, phys++) {
544 		pi = (struct t10_pi_tuple *)p;
545 		dif_swap(phys, virt, pi);
546 		p += ts;
547 	}
548 	kunmap_atomic(pmap);
549 }
550 
551 static int nvme_noop_verify(struct blk_integrity_iter *iter)
552 {
553 	return 0;
554 }
555 
556 static int nvme_noop_generate(struct blk_integrity_iter *iter)
557 {
558 	return 0;
559 }
560 
561 struct blk_integrity nvme_meta_noop = {
562 	.name			= "NVME_META_NOOP",
563 	.generate_fn		= nvme_noop_generate,
564 	.verify_fn		= nvme_noop_verify,
565 };
566 
567 static void nvme_init_integrity(struct nvme_ns *ns)
568 {
569 	struct blk_integrity integrity;
570 
571 	switch (ns->pi_type) {
572 	case NVME_NS_DPS_PI_TYPE3:
573 		integrity = t10_pi_type3_crc;
574 		break;
575 	case NVME_NS_DPS_PI_TYPE1:
576 	case NVME_NS_DPS_PI_TYPE2:
577 		integrity = t10_pi_type1_crc;
578 		break;
579 	default:
580 		integrity = nvme_meta_noop;
581 		break;
582 	}
583 	integrity.tuple_size = ns->ms;
584 	blk_integrity_register(ns->disk, &integrity);
585 	blk_queue_max_integrity_segments(ns->queue, 1);
586 }
587 #else /* CONFIG_BLK_DEV_INTEGRITY */
588 static void nvme_dif_remap(struct request *req,
589 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
590 {
591 }
592 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
593 {
594 }
595 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
596 {
597 }
598 static void nvme_init_integrity(struct nvme_ns *ns)
599 {
600 }
601 #endif
602 
603 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
604 						struct nvme_completion *cqe)
605 {
606 	struct nvme_iod *iod = ctx;
607 	struct request *req = iod_get_private(iod);
608 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
609 	u16 status = le16_to_cpup(&cqe->status) >> 1;
610 	int error = 0;
611 
612 	if (unlikely(status)) {
613 		if (!(status & NVME_SC_DNR || blk_noretry_request(req))
614 		    && (jiffies - req->start_time) < req->timeout) {
615 			unsigned long flags;
616 
617 			blk_mq_requeue_request(req);
618 			spin_lock_irqsave(req->q->queue_lock, flags);
619 			if (!blk_queue_stopped(req->q))
620 				blk_mq_kick_requeue_list(req->q);
621 			spin_unlock_irqrestore(req->q->queue_lock, flags);
622 			return;
623 		}
624 
625 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
626 			if (cmd_rq->ctx == CMD_CTX_CANCELLED)
627 				error = -EINTR;
628 			else
629 				error = status;
630 		} else {
631 			error = nvme_error_status(status);
632 		}
633 	}
634 
635 	if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
636 		u32 result = le32_to_cpup(&cqe->result);
637 		req->special = (void *)(uintptr_t)result;
638 	}
639 
640 	if (cmd_rq->aborted)
641 		dev_warn(nvmeq->dev->dev,
642 			"completing aborted command with status:%04x\n",
643 			error);
644 
645 	if (iod->nents) {
646 		dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
647 			rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
648 		if (blk_integrity_rq(req)) {
649 			if (!rq_data_dir(req))
650 				nvme_dif_remap(req, nvme_dif_complete);
651 			dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
652 				rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
653 		}
654 	}
655 	nvme_free_iod(nvmeq->dev, iod);
656 
657 	blk_mq_complete_request(req, error);
658 }
659 
660 /* length is in bytes.  gfp flags indicates whether we may sleep. */
661 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
662 		int total_len, gfp_t gfp)
663 {
664 	struct dma_pool *pool;
665 	int length = total_len;
666 	struct scatterlist *sg = iod->sg;
667 	int dma_len = sg_dma_len(sg);
668 	u64 dma_addr = sg_dma_address(sg);
669 	u32 page_size = dev->page_size;
670 	int offset = dma_addr & (page_size - 1);
671 	__le64 *prp_list;
672 	__le64 **list = iod_list(iod);
673 	dma_addr_t prp_dma;
674 	int nprps, i;
675 
676 	length -= (page_size - offset);
677 	if (length <= 0)
678 		return total_len;
679 
680 	dma_len -= (page_size - offset);
681 	if (dma_len) {
682 		dma_addr += (page_size - offset);
683 	} else {
684 		sg = sg_next(sg);
685 		dma_addr = sg_dma_address(sg);
686 		dma_len = sg_dma_len(sg);
687 	}
688 
689 	if (length <= page_size) {
690 		iod->first_dma = dma_addr;
691 		return total_len;
692 	}
693 
694 	nprps = DIV_ROUND_UP(length, page_size);
695 	if (nprps <= (256 / 8)) {
696 		pool = dev->prp_small_pool;
697 		iod->npages = 0;
698 	} else {
699 		pool = dev->prp_page_pool;
700 		iod->npages = 1;
701 	}
702 
703 	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
704 	if (!prp_list) {
705 		iod->first_dma = dma_addr;
706 		iod->npages = -1;
707 		return (total_len - length) + page_size;
708 	}
709 	list[0] = prp_list;
710 	iod->first_dma = prp_dma;
711 	i = 0;
712 	for (;;) {
713 		if (i == page_size >> 3) {
714 			__le64 *old_prp_list = prp_list;
715 			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
716 			if (!prp_list)
717 				return total_len - length;
718 			list[iod->npages++] = prp_list;
719 			prp_list[0] = old_prp_list[i - 1];
720 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
721 			i = 1;
722 		}
723 		prp_list[i++] = cpu_to_le64(dma_addr);
724 		dma_len -= page_size;
725 		dma_addr += page_size;
726 		length -= page_size;
727 		if (length <= 0)
728 			break;
729 		if (dma_len > 0)
730 			continue;
731 		BUG_ON(dma_len < 0);
732 		sg = sg_next(sg);
733 		dma_addr = sg_dma_address(sg);
734 		dma_len = sg_dma_len(sg);
735 	}
736 
737 	return total_len;
738 }
739 
740 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
741 		struct nvme_iod *iod)
742 {
743 	struct nvme_command cmnd;
744 
745 	memcpy(&cmnd, req->cmd, sizeof(cmnd));
746 	cmnd.rw.command_id = req->tag;
747 	if (req->nr_phys_segments) {
748 		cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
749 		cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
750 	}
751 
752 	__nvme_submit_cmd(nvmeq, &cmnd);
753 }
754 
755 /*
756  * We reuse the small pool to allocate the 16-byte range here as it is not
757  * worth having a special pool for these or additional cases to handle freeing
758  * the iod.
759  */
760 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
761 		struct request *req, struct nvme_iod *iod)
762 {
763 	struct nvme_dsm_range *range =
764 				(struct nvme_dsm_range *)iod_list(iod)[0];
765 	struct nvme_command cmnd;
766 
767 	range->cattr = cpu_to_le32(0);
768 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
769 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
770 
771 	memset(&cmnd, 0, sizeof(cmnd));
772 	cmnd.dsm.opcode = nvme_cmd_dsm;
773 	cmnd.dsm.command_id = req->tag;
774 	cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
775 	cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
776 	cmnd.dsm.nr = 0;
777 	cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
778 
779 	__nvme_submit_cmd(nvmeq, &cmnd);
780 }
781 
782 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
783 								int cmdid)
784 {
785 	struct nvme_command cmnd;
786 
787 	memset(&cmnd, 0, sizeof(cmnd));
788 	cmnd.common.opcode = nvme_cmd_flush;
789 	cmnd.common.command_id = cmdid;
790 	cmnd.common.nsid = cpu_to_le32(ns->ns_id);
791 
792 	__nvme_submit_cmd(nvmeq, &cmnd);
793 }
794 
795 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
796 							struct nvme_ns *ns)
797 {
798 	struct request *req = iod_get_private(iod);
799 	struct nvme_command cmnd;
800 	u16 control = 0;
801 	u32 dsmgmt = 0;
802 
803 	if (req->cmd_flags & REQ_FUA)
804 		control |= NVME_RW_FUA;
805 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
806 		control |= NVME_RW_LR;
807 
808 	if (req->cmd_flags & REQ_RAHEAD)
809 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
810 
811 	memset(&cmnd, 0, sizeof(cmnd));
812 	cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
813 	cmnd.rw.command_id = req->tag;
814 	cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
815 	cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
816 	cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
817 	cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
818 	cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
819 
820 	if (ns->ms) {
821 		switch (ns->pi_type) {
822 		case NVME_NS_DPS_PI_TYPE3:
823 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
824 			break;
825 		case NVME_NS_DPS_PI_TYPE1:
826 		case NVME_NS_DPS_PI_TYPE2:
827 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
828 					NVME_RW_PRINFO_PRCHK_REF;
829 			cmnd.rw.reftag = cpu_to_le32(
830 					nvme_block_nr(ns, blk_rq_pos(req)));
831 			break;
832 		}
833 		if (blk_integrity_rq(req))
834 			cmnd.rw.metadata =
835 				cpu_to_le64(sg_dma_address(iod->meta_sg));
836 		else
837 			control |= NVME_RW_PRINFO_PRACT;
838 	}
839 
840 	cmnd.rw.control = cpu_to_le16(control);
841 	cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
842 
843 	__nvme_submit_cmd(nvmeq, &cmnd);
844 
845 	return 0;
846 }
847 
848 /*
849  * NOTE: ns is NULL when called on the admin queue.
850  */
851 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
852 			 const struct blk_mq_queue_data *bd)
853 {
854 	struct nvme_ns *ns = hctx->queue->queuedata;
855 	struct nvme_queue *nvmeq = hctx->driver_data;
856 	struct nvme_dev *dev = nvmeq->dev;
857 	struct request *req = bd->rq;
858 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
859 	struct nvme_iod *iod;
860 	enum dma_data_direction dma_dir;
861 
862 	/*
863 	 * If formated with metadata, require the block layer provide a buffer
864 	 * unless this namespace is formated such that the metadata can be
865 	 * stripped/generated by the controller with PRACT=1.
866 	 */
867 	if (ns && ns->ms && !blk_integrity_rq(req)) {
868 		if (!(ns->pi_type && ns->ms == 8) &&
869 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
870 			blk_mq_complete_request(req, -EFAULT);
871 			return BLK_MQ_RQ_QUEUE_OK;
872 		}
873 	}
874 
875 	iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
876 	if (!iod)
877 		return BLK_MQ_RQ_QUEUE_BUSY;
878 
879 	if (req->cmd_flags & REQ_DISCARD) {
880 		void *range;
881 		/*
882 		 * We reuse the small pool to allocate the 16-byte range here
883 		 * as it is not worth having a special pool for these or
884 		 * additional cases to handle freeing the iod.
885 		 */
886 		range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
887 						&iod->first_dma);
888 		if (!range)
889 			goto retry_cmd;
890 		iod_list(iod)[0] = (__le64 *)range;
891 		iod->npages = 0;
892 	} else if (req->nr_phys_segments) {
893 		dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
894 
895 		sg_init_table(iod->sg, req->nr_phys_segments);
896 		iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
897 		if (!iod->nents)
898 			goto error_cmd;
899 
900 		if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
901 			goto retry_cmd;
902 
903 		if (blk_rq_bytes(req) !=
904                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
905 			dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
906 			goto retry_cmd;
907 		}
908 		if (blk_integrity_rq(req)) {
909 			if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
910 				goto error_cmd;
911 
912 			sg_init_table(iod->meta_sg, 1);
913 			if (blk_rq_map_integrity_sg(
914 					req->q, req->bio, iod->meta_sg) != 1)
915 				goto error_cmd;
916 
917 			if (rq_data_dir(req))
918 				nvme_dif_remap(req, nvme_dif_prep);
919 
920 			if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
921 				goto error_cmd;
922 		}
923 	}
924 
925 	nvme_set_info(cmd, iod, req_completion);
926 	spin_lock_irq(&nvmeq->q_lock);
927 	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
928 		nvme_submit_priv(nvmeq, req, iod);
929 	else if (req->cmd_flags & REQ_DISCARD)
930 		nvme_submit_discard(nvmeq, ns, req, iod);
931 	else if (req->cmd_flags & REQ_FLUSH)
932 		nvme_submit_flush(nvmeq, ns, req->tag);
933 	else
934 		nvme_submit_iod(nvmeq, iod, ns);
935 
936 	nvme_process_cq(nvmeq);
937 	spin_unlock_irq(&nvmeq->q_lock);
938 	return BLK_MQ_RQ_QUEUE_OK;
939 
940  error_cmd:
941 	nvme_free_iod(dev, iod);
942 	return BLK_MQ_RQ_QUEUE_ERROR;
943  retry_cmd:
944 	nvme_free_iod(dev, iod);
945 	return BLK_MQ_RQ_QUEUE_BUSY;
946 }
947 
948 static int nvme_process_cq(struct nvme_queue *nvmeq)
949 {
950 	u16 head, phase;
951 
952 	head = nvmeq->cq_head;
953 	phase = nvmeq->cq_phase;
954 
955 	for (;;) {
956 		void *ctx;
957 		nvme_completion_fn fn;
958 		struct nvme_completion cqe = nvmeq->cqes[head];
959 		if ((le16_to_cpu(cqe.status) & 1) != phase)
960 			break;
961 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
962 		if (++head == nvmeq->q_depth) {
963 			head = 0;
964 			phase = !phase;
965 		}
966 		ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
967 		fn(nvmeq, ctx, &cqe);
968 	}
969 
970 	/* If the controller ignores the cq head doorbell and continuously
971 	 * writes to the queue, it is theoretically possible to wrap around
972 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
973 	 * requires that 0.1% of your interrupts are handled, so this isn't
974 	 * a big problem.
975 	 */
976 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
977 		return 0;
978 
979 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
980 	nvmeq->cq_head = head;
981 	nvmeq->cq_phase = phase;
982 
983 	nvmeq->cqe_seen = 1;
984 	return 1;
985 }
986 
987 static irqreturn_t nvme_irq(int irq, void *data)
988 {
989 	irqreturn_t result;
990 	struct nvme_queue *nvmeq = data;
991 	spin_lock(&nvmeq->q_lock);
992 	nvme_process_cq(nvmeq);
993 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
994 	nvmeq->cqe_seen = 0;
995 	spin_unlock(&nvmeq->q_lock);
996 	return result;
997 }
998 
999 static irqreturn_t nvme_irq_check(int irq, void *data)
1000 {
1001 	struct nvme_queue *nvmeq = data;
1002 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1003 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1004 		return IRQ_NONE;
1005 	return IRQ_WAKE_THREAD;
1006 }
1007 
1008 /*
1009  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1010  * if the result is positive, it's an NVM Express status code
1011  */
1012 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1013 		void *buffer, void __user *ubuffer, unsigned bufflen,
1014 		u32 *result, unsigned timeout)
1015 {
1016 	bool write = cmd->common.opcode & 1;
1017 	struct bio *bio = NULL;
1018 	struct request *req;
1019 	int ret;
1020 
1021 	req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1022 	if (IS_ERR(req))
1023 		return PTR_ERR(req);
1024 
1025 	req->cmd_type = REQ_TYPE_DRV_PRIV;
1026 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
1027 	req->__data_len = 0;
1028 	req->__sector = (sector_t) -1;
1029 	req->bio = req->biotail = NULL;
1030 
1031 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1032 
1033 	req->cmd = (unsigned char *)cmd;
1034 	req->cmd_len = sizeof(struct nvme_command);
1035 	req->special = (void *)0;
1036 
1037 	if (buffer && bufflen) {
1038 		ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1039 		if (ret)
1040 			goto out;
1041 	} else if (ubuffer && bufflen) {
1042 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1043 		if (ret)
1044 			goto out;
1045 		bio = req->bio;
1046 	}
1047 
1048 	blk_execute_rq(req->q, NULL, req, 0);
1049 	if (bio)
1050 		blk_rq_unmap_user(bio);
1051 	if (result)
1052 		*result = (u32)(uintptr_t)req->special;
1053 	ret = req->errors;
1054  out:
1055 	blk_mq_free_request(req);
1056 	return ret;
1057 }
1058 
1059 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1060 		void *buffer, unsigned bufflen)
1061 {
1062 	return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1063 }
1064 
1065 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1066 {
1067 	struct nvme_queue *nvmeq = dev->queues[0];
1068 	struct nvme_command c;
1069 	struct nvme_cmd_info *cmd_info;
1070 	struct request *req;
1071 
1072 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1073 	if (IS_ERR(req))
1074 		return PTR_ERR(req);
1075 
1076 	req->cmd_flags |= REQ_NO_TIMEOUT;
1077 	cmd_info = blk_mq_rq_to_pdu(req);
1078 	nvme_set_info(cmd_info, NULL, async_req_completion);
1079 
1080 	memset(&c, 0, sizeof(c));
1081 	c.common.opcode = nvme_admin_async_event;
1082 	c.common.command_id = req->tag;
1083 
1084 	blk_mq_free_request(req);
1085 	__nvme_submit_cmd(nvmeq, &c);
1086 	return 0;
1087 }
1088 
1089 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1090 			struct nvme_command *cmd,
1091 			struct async_cmd_info *cmdinfo, unsigned timeout)
1092 {
1093 	struct nvme_queue *nvmeq = dev->queues[0];
1094 	struct request *req;
1095 	struct nvme_cmd_info *cmd_rq;
1096 
1097 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1098 	if (IS_ERR(req))
1099 		return PTR_ERR(req);
1100 
1101 	req->timeout = timeout;
1102 	cmd_rq = blk_mq_rq_to_pdu(req);
1103 	cmdinfo->req = req;
1104 	nvme_set_info(cmd_rq, cmdinfo, async_completion);
1105 	cmdinfo->status = -EINTR;
1106 
1107 	cmd->common.command_id = req->tag;
1108 
1109 	nvme_submit_cmd(nvmeq, cmd);
1110 	return 0;
1111 }
1112 
1113 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1114 {
1115 	struct nvme_command c;
1116 
1117 	memset(&c, 0, sizeof(c));
1118 	c.delete_queue.opcode = opcode;
1119 	c.delete_queue.qid = cpu_to_le16(id);
1120 
1121 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1122 }
1123 
1124 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1125 						struct nvme_queue *nvmeq)
1126 {
1127 	struct nvme_command c;
1128 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1129 
1130 	/*
1131 	 * Note: we (ab)use the fact the the prp fields survive if no data
1132 	 * is attached to the request.
1133 	 */
1134 	memset(&c, 0, sizeof(c));
1135 	c.create_cq.opcode = nvme_admin_create_cq;
1136 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1137 	c.create_cq.cqid = cpu_to_le16(qid);
1138 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1139 	c.create_cq.cq_flags = cpu_to_le16(flags);
1140 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1141 
1142 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1143 }
1144 
1145 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1146 						struct nvme_queue *nvmeq)
1147 {
1148 	struct nvme_command c;
1149 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1150 
1151 	/*
1152 	 * Note: we (ab)use the fact the the prp fields survive if no data
1153 	 * is attached to the request.
1154 	 */
1155 	memset(&c, 0, sizeof(c));
1156 	c.create_sq.opcode = nvme_admin_create_sq;
1157 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1158 	c.create_sq.sqid = cpu_to_le16(qid);
1159 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1160 	c.create_sq.sq_flags = cpu_to_le16(flags);
1161 	c.create_sq.cqid = cpu_to_le16(qid);
1162 
1163 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1164 }
1165 
1166 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1167 {
1168 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1169 }
1170 
1171 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1172 {
1173 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1174 }
1175 
1176 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1177 {
1178 	struct nvme_command c = { };
1179 	int error;
1180 
1181 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1182 	c.identify.opcode = nvme_admin_identify;
1183 	c.identify.cns = cpu_to_le32(1);
1184 
1185 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1186 	if (!*id)
1187 		return -ENOMEM;
1188 
1189 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1190 			sizeof(struct nvme_id_ctrl));
1191 	if (error)
1192 		kfree(*id);
1193 	return error;
1194 }
1195 
1196 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1197 		struct nvme_id_ns **id)
1198 {
1199 	struct nvme_command c = { };
1200 	int error;
1201 
1202 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1203 	c.identify.opcode = nvme_admin_identify,
1204 	c.identify.nsid = cpu_to_le32(nsid),
1205 
1206 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1207 	if (!*id)
1208 		return -ENOMEM;
1209 
1210 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1211 			sizeof(struct nvme_id_ns));
1212 	if (error)
1213 		kfree(*id);
1214 	return error;
1215 }
1216 
1217 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1218 					dma_addr_t dma_addr, u32 *result)
1219 {
1220 	struct nvme_command c;
1221 
1222 	memset(&c, 0, sizeof(c));
1223 	c.features.opcode = nvme_admin_get_features;
1224 	c.features.nsid = cpu_to_le32(nsid);
1225 	c.features.prp1 = cpu_to_le64(dma_addr);
1226 	c.features.fid = cpu_to_le32(fid);
1227 
1228 	return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1229 			result, 0);
1230 }
1231 
1232 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1233 					dma_addr_t dma_addr, u32 *result)
1234 {
1235 	struct nvme_command c;
1236 
1237 	memset(&c, 0, sizeof(c));
1238 	c.features.opcode = nvme_admin_set_features;
1239 	c.features.prp1 = cpu_to_le64(dma_addr);
1240 	c.features.fid = cpu_to_le32(fid);
1241 	c.features.dword11 = cpu_to_le32(dword11);
1242 
1243 	return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1244 			result, 0);
1245 }
1246 
1247 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1248 {
1249 	struct nvme_command c = { };
1250 	int error;
1251 
1252 	c.common.opcode = nvme_admin_get_log_page,
1253 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1254 	c.common.cdw10[0] = cpu_to_le32(
1255 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1256 			 NVME_LOG_SMART),
1257 
1258 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1259 	if (!*log)
1260 		return -ENOMEM;
1261 
1262 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1263 			sizeof(struct nvme_smart_log));
1264 	if (error)
1265 		kfree(*log);
1266 	return error;
1267 }
1268 
1269 /**
1270  * nvme_abort_req - Attempt aborting a request
1271  *
1272  * Schedule controller reset if the command was already aborted once before and
1273  * still hasn't been returned to the driver, or if this is the admin queue.
1274  */
1275 static void nvme_abort_req(struct request *req)
1276 {
1277 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1278 	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1279 	struct nvme_dev *dev = nvmeq->dev;
1280 	struct request *abort_req;
1281 	struct nvme_cmd_info *abort_cmd;
1282 	struct nvme_command cmd;
1283 
1284 	if (!nvmeq->qid || cmd_rq->aborted) {
1285 		spin_lock(&dev_list_lock);
1286 		if (!__nvme_reset(dev)) {
1287 			dev_warn(dev->dev,
1288 				 "I/O %d QID %d timeout, reset controller\n",
1289 				 req->tag, nvmeq->qid);
1290 		}
1291 		spin_unlock(&dev_list_lock);
1292 		return;
1293 	}
1294 
1295 	if (!dev->abort_limit)
1296 		return;
1297 
1298 	abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1299 									false);
1300 	if (IS_ERR(abort_req))
1301 		return;
1302 
1303 	abort_cmd = blk_mq_rq_to_pdu(abort_req);
1304 	nvme_set_info(abort_cmd, abort_req, abort_completion);
1305 
1306 	memset(&cmd, 0, sizeof(cmd));
1307 	cmd.abort.opcode = nvme_admin_abort_cmd;
1308 	cmd.abort.cid = req->tag;
1309 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1310 	cmd.abort.command_id = abort_req->tag;
1311 
1312 	--dev->abort_limit;
1313 	cmd_rq->aborted = 1;
1314 
1315 	dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1316 							nvmeq->qid);
1317 	nvme_submit_cmd(dev->queues[0], &cmd);
1318 }
1319 
1320 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1321 {
1322 	struct nvme_queue *nvmeq = data;
1323 	void *ctx;
1324 	nvme_completion_fn fn;
1325 	struct nvme_cmd_info *cmd;
1326 	struct nvme_completion cqe;
1327 
1328 	if (!blk_mq_request_started(req))
1329 		return;
1330 
1331 	cmd = blk_mq_rq_to_pdu(req);
1332 
1333 	if (cmd->ctx == CMD_CTX_CANCELLED)
1334 		return;
1335 
1336 	if (blk_queue_dying(req->q))
1337 		cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1338 	else
1339 		cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1340 
1341 
1342 	dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1343 						req->tag, nvmeq->qid);
1344 	ctx = cancel_cmd_info(cmd, &fn);
1345 	fn(nvmeq, ctx, &cqe);
1346 }
1347 
1348 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1349 {
1350 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1351 	struct nvme_queue *nvmeq = cmd->nvmeq;
1352 
1353 	dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1354 							nvmeq->qid);
1355 	spin_lock_irq(&nvmeq->q_lock);
1356 	nvme_abort_req(req);
1357 	spin_unlock_irq(&nvmeq->q_lock);
1358 
1359 	/*
1360 	 * The aborted req will be completed on receiving the abort req.
1361 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1362 	 * as the device then is in a faulty state.
1363 	 */
1364 	return BLK_EH_RESET_TIMER;
1365 }
1366 
1367 static void nvme_free_queue(struct nvme_queue *nvmeq)
1368 {
1369 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1370 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1371 	if (nvmeq->sq_cmds)
1372 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1373 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1374 	kfree(nvmeq);
1375 }
1376 
1377 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1378 {
1379 	int i;
1380 
1381 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1382 		struct nvme_queue *nvmeq = dev->queues[i];
1383 		dev->queue_count--;
1384 		dev->queues[i] = NULL;
1385 		nvme_free_queue(nvmeq);
1386 	}
1387 }
1388 
1389 /**
1390  * nvme_suspend_queue - put queue into suspended state
1391  * @nvmeq - queue to suspend
1392  */
1393 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1394 {
1395 	int vector;
1396 
1397 	spin_lock_irq(&nvmeq->q_lock);
1398 	if (nvmeq->cq_vector == -1) {
1399 		spin_unlock_irq(&nvmeq->q_lock);
1400 		return 1;
1401 	}
1402 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1403 	nvmeq->dev->online_queues--;
1404 	nvmeq->cq_vector = -1;
1405 	spin_unlock_irq(&nvmeq->q_lock);
1406 
1407 	if (!nvmeq->qid && nvmeq->dev->admin_q)
1408 		blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1409 
1410 	irq_set_affinity_hint(vector, NULL);
1411 	free_irq(vector, nvmeq);
1412 
1413 	return 0;
1414 }
1415 
1416 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1417 {
1418 	spin_lock_irq(&nvmeq->q_lock);
1419 	if (nvmeq->tags && *nvmeq->tags)
1420 		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1421 	spin_unlock_irq(&nvmeq->q_lock);
1422 }
1423 
1424 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1425 {
1426 	struct nvme_queue *nvmeq = dev->queues[qid];
1427 
1428 	if (!nvmeq)
1429 		return;
1430 	if (nvme_suspend_queue(nvmeq))
1431 		return;
1432 
1433 	/* Don't tell the adapter to delete the admin queue.
1434 	 * Don't tell a removed adapter to delete IO queues. */
1435 	if (qid && readl(&dev->bar->csts) != -1) {
1436 		adapter_delete_sq(dev, qid);
1437 		adapter_delete_cq(dev, qid);
1438 	}
1439 
1440 	spin_lock_irq(&nvmeq->q_lock);
1441 	nvme_process_cq(nvmeq);
1442 	spin_unlock_irq(&nvmeq->q_lock);
1443 }
1444 
1445 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1446 				int entry_size)
1447 {
1448 	int q_depth = dev->q_depth;
1449 	unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1450 
1451 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1452 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1453 		mem_per_q = round_down(mem_per_q, dev->page_size);
1454 		q_depth = div_u64(mem_per_q, entry_size);
1455 
1456 		/*
1457 		 * Ensure the reduced q_depth is above some threshold where it
1458 		 * would be better to map queues in system memory with the
1459 		 * original depth
1460 		 */
1461 		if (q_depth < 64)
1462 			return -ENOMEM;
1463 	}
1464 
1465 	return q_depth;
1466 }
1467 
1468 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1469 				int qid, int depth)
1470 {
1471 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1472 		unsigned offset = (qid - 1) *
1473 					roundup(SQ_SIZE(depth), dev->page_size);
1474 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1475 		nvmeq->sq_cmds_io = dev->cmb + offset;
1476 	} else {
1477 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1478 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1479 		if (!nvmeq->sq_cmds)
1480 			return -ENOMEM;
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1487 							int depth)
1488 {
1489 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1490 	if (!nvmeq)
1491 		return NULL;
1492 
1493 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1494 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1495 	if (!nvmeq->cqes)
1496 		goto free_nvmeq;
1497 
1498 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1499 		goto free_cqdma;
1500 
1501 	nvmeq->q_dmadev = dev->dev;
1502 	nvmeq->dev = dev;
1503 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1504 			dev->instance, qid);
1505 	spin_lock_init(&nvmeq->q_lock);
1506 	nvmeq->cq_head = 0;
1507 	nvmeq->cq_phase = 1;
1508 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1509 	nvmeq->q_depth = depth;
1510 	nvmeq->qid = qid;
1511 	nvmeq->cq_vector = -1;
1512 	dev->queues[qid] = nvmeq;
1513 
1514 	/* make sure queue descriptor is set before queue count, for kthread */
1515 	mb();
1516 	dev->queue_count++;
1517 
1518 	return nvmeq;
1519 
1520  free_cqdma:
1521 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1522 							nvmeq->cq_dma_addr);
1523  free_nvmeq:
1524 	kfree(nvmeq);
1525 	return NULL;
1526 }
1527 
1528 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1529 							const char *name)
1530 {
1531 	if (use_threaded_interrupts)
1532 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1533 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1534 					name, nvmeq);
1535 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1536 				IRQF_SHARED, name, nvmeq);
1537 }
1538 
1539 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1540 {
1541 	struct nvme_dev *dev = nvmeq->dev;
1542 
1543 	spin_lock_irq(&nvmeq->q_lock);
1544 	nvmeq->sq_tail = 0;
1545 	nvmeq->cq_head = 0;
1546 	nvmeq->cq_phase = 1;
1547 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1548 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1549 	dev->online_queues++;
1550 	spin_unlock_irq(&nvmeq->q_lock);
1551 }
1552 
1553 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1554 {
1555 	struct nvme_dev *dev = nvmeq->dev;
1556 	int result;
1557 
1558 	nvmeq->cq_vector = qid - 1;
1559 	result = adapter_alloc_cq(dev, qid, nvmeq);
1560 	if (result < 0)
1561 		return result;
1562 
1563 	result = adapter_alloc_sq(dev, qid, nvmeq);
1564 	if (result < 0)
1565 		goto release_cq;
1566 
1567 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1568 	if (result < 0)
1569 		goto release_sq;
1570 
1571 	nvme_init_queue(nvmeq, qid);
1572 	return result;
1573 
1574  release_sq:
1575 	adapter_delete_sq(dev, qid);
1576  release_cq:
1577 	adapter_delete_cq(dev, qid);
1578 	return result;
1579 }
1580 
1581 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1582 {
1583 	unsigned long timeout;
1584 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1585 
1586 	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1587 
1588 	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1589 		msleep(100);
1590 		if (fatal_signal_pending(current))
1591 			return -EINTR;
1592 		if (time_after(jiffies, timeout)) {
1593 			dev_err(dev->dev,
1594 				"Device not ready; aborting %s\n", enabled ?
1595 						"initialisation" : "reset");
1596 			return -ENODEV;
1597 		}
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 /*
1604  * If the device has been passed off to us in an enabled state, just clear
1605  * the enabled bit.  The spec says we should set the 'shutdown notification
1606  * bits', but doing so may cause the device to complete commands to the
1607  * admin queue ... and we don't know what memory that might be pointing at!
1608  */
1609 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1610 {
1611 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1612 	dev->ctrl_config &= ~NVME_CC_ENABLE;
1613 	writel(dev->ctrl_config, &dev->bar->cc);
1614 
1615 	return nvme_wait_ready(dev, cap, false);
1616 }
1617 
1618 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1619 {
1620 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1621 	dev->ctrl_config |= NVME_CC_ENABLE;
1622 	writel(dev->ctrl_config, &dev->bar->cc);
1623 
1624 	return nvme_wait_ready(dev, cap, true);
1625 }
1626 
1627 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1628 {
1629 	unsigned long timeout;
1630 
1631 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1632 	dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1633 
1634 	writel(dev->ctrl_config, &dev->bar->cc);
1635 
1636 	timeout = SHUTDOWN_TIMEOUT + jiffies;
1637 	while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1638 							NVME_CSTS_SHST_CMPLT) {
1639 		msleep(100);
1640 		if (fatal_signal_pending(current))
1641 			return -EINTR;
1642 		if (time_after(jiffies, timeout)) {
1643 			dev_err(dev->dev,
1644 				"Device shutdown incomplete; abort shutdown\n");
1645 			return -ENODEV;
1646 		}
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 static struct blk_mq_ops nvme_mq_admin_ops = {
1653 	.queue_rq	= nvme_queue_rq,
1654 	.map_queue	= blk_mq_map_queue,
1655 	.init_hctx	= nvme_admin_init_hctx,
1656 	.exit_hctx      = nvme_admin_exit_hctx,
1657 	.init_request	= nvme_admin_init_request,
1658 	.timeout	= nvme_timeout,
1659 };
1660 
1661 static struct blk_mq_ops nvme_mq_ops = {
1662 	.queue_rq	= nvme_queue_rq,
1663 	.map_queue	= blk_mq_map_queue,
1664 	.init_hctx	= nvme_init_hctx,
1665 	.init_request	= nvme_init_request,
1666 	.timeout	= nvme_timeout,
1667 };
1668 
1669 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1670 {
1671 	if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1672 		blk_cleanup_queue(dev->admin_q);
1673 		blk_mq_free_tag_set(&dev->admin_tagset);
1674 	}
1675 }
1676 
1677 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1678 {
1679 	if (!dev->admin_q) {
1680 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1681 		dev->admin_tagset.nr_hw_queues = 1;
1682 		dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1683 		dev->admin_tagset.reserved_tags = 1;
1684 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1685 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1686 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1687 		dev->admin_tagset.driver_data = dev;
1688 
1689 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1690 			return -ENOMEM;
1691 
1692 		dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1693 		if (IS_ERR(dev->admin_q)) {
1694 			blk_mq_free_tag_set(&dev->admin_tagset);
1695 			return -ENOMEM;
1696 		}
1697 		if (!blk_get_queue(dev->admin_q)) {
1698 			nvme_dev_remove_admin(dev);
1699 			dev->admin_q = NULL;
1700 			return -ENODEV;
1701 		}
1702 	} else
1703 		blk_mq_unfreeze_queue(dev->admin_q);
1704 
1705 	return 0;
1706 }
1707 
1708 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1709 {
1710 	int result;
1711 	u32 aqa;
1712 	u64 cap = readq(&dev->bar->cap);
1713 	struct nvme_queue *nvmeq;
1714 	unsigned page_shift = PAGE_SHIFT;
1715 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1716 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1717 
1718 	if (page_shift < dev_page_min) {
1719 		dev_err(dev->dev,
1720 				"Minimum device page size (%u) too large for "
1721 				"host (%u)\n", 1 << dev_page_min,
1722 				1 << page_shift);
1723 		return -ENODEV;
1724 	}
1725 	if (page_shift > dev_page_max) {
1726 		dev_info(dev->dev,
1727 				"Device maximum page size (%u) smaller than "
1728 				"host (%u); enabling work-around\n",
1729 				1 << dev_page_max, 1 << page_shift);
1730 		page_shift = dev_page_max;
1731 	}
1732 
1733 	dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1734 						NVME_CAP_NSSRC(cap) : 0;
1735 
1736 	if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1737 		writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1738 
1739 	result = nvme_disable_ctrl(dev, cap);
1740 	if (result < 0)
1741 		return result;
1742 
1743 	nvmeq = dev->queues[0];
1744 	if (!nvmeq) {
1745 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1746 		if (!nvmeq)
1747 			return -ENOMEM;
1748 	}
1749 
1750 	aqa = nvmeq->q_depth - 1;
1751 	aqa |= aqa << 16;
1752 
1753 	dev->page_size = 1 << page_shift;
1754 
1755 	dev->ctrl_config = NVME_CC_CSS_NVM;
1756 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1757 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1758 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1759 
1760 	writel(aqa, &dev->bar->aqa);
1761 	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1762 	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1763 
1764 	result = nvme_enable_ctrl(dev, cap);
1765 	if (result)
1766 		goto free_nvmeq;
1767 
1768 	nvmeq->cq_vector = 0;
1769 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1770 	if (result) {
1771 		nvmeq->cq_vector = -1;
1772 		goto free_nvmeq;
1773 	}
1774 
1775 	return result;
1776 
1777  free_nvmeq:
1778 	nvme_free_queues(dev, 0);
1779 	return result;
1780 }
1781 
1782 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1783 {
1784 	struct nvme_dev *dev = ns->dev;
1785 	struct nvme_user_io io;
1786 	struct nvme_command c;
1787 	unsigned length, meta_len;
1788 	int status, write;
1789 	dma_addr_t meta_dma = 0;
1790 	void *meta = NULL;
1791 	void __user *metadata;
1792 
1793 	if (copy_from_user(&io, uio, sizeof(io)))
1794 		return -EFAULT;
1795 
1796 	switch (io.opcode) {
1797 	case nvme_cmd_write:
1798 	case nvme_cmd_read:
1799 	case nvme_cmd_compare:
1800 		break;
1801 	default:
1802 		return -EINVAL;
1803 	}
1804 
1805 	length = (io.nblocks + 1) << ns->lba_shift;
1806 	meta_len = (io.nblocks + 1) * ns->ms;
1807 	metadata = (void __user *)(uintptr_t)io.metadata;
1808 	write = io.opcode & 1;
1809 
1810 	if (ns->ext) {
1811 		length += meta_len;
1812 		meta_len = 0;
1813 	}
1814 	if (meta_len) {
1815 		if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1816 			return -EINVAL;
1817 
1818 		meta = dma_alloc_coherent(dev->dev, meta_len,
1819 						&meta_dma, GFP_KERNEL);
1820 
1821 		if (!meta) {
1822 			status = -ENOMEM;
1823 			goto unmap;
1824 		}
1825 		if (write) {
1826 			if (copy_from_user(meta, metadata, meta_len)) {
1827 				status = -EFAULT;
1828 				goto unmap;
1829 			}
1830 		}
1831 	}
1832 
1833 	memset(&c, 0, sizeof(c));
1834 	c.rw.opcode = io.opcode;
1835 	c.rw.flags = io.flags;
1836 	c.rw.nsid = cpu_to_le32(ns->ns_id);
1837 	c.rw.slba = cpu_to_le64(io.slba);
1838 	c.rw.length = cpu_to_le16(io.nblocks);
1839 	c.rw.control = cpu_to_le16(io.control);
1840 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1841 	c.rw.reftag = cpu_to_le32(io.reftag);
1842 	c.rw.apptag = cpu_to_le16(io.apptag);
1843 	c.rw.appmask = cpu_to_le16(io.appmask);
1844 	c.rw.metadata = cpu_to_le64(meta_dma);
1845 
1846 	status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1847 			(void __user *)(uintptr_t)io.addr, length, NULL, 0);
1848  unmap:
1849 	if (meta) {
1850 		if (status == NVME_SC_SUCCESS && !write) {
1851 			if (copy_to_user(metadata, meta, meta_len))
1852 				status = -EFAULT;
1853 		}
1854 		dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1855 	}
1856 	return status;
1857 }
1858 
1859 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1860 			struct nvme_passthru_cmd __user *ucmd)
1861 {
1862 	struct nvme_passthru_cmd cmd;
1863 	struct nvme_command c;
1864 	unsigned timeout = 0;
1865 	int status;
1866 
1867 	if (!capable(CAP_SYS_ADMIN))
1868 		return -EACCES;
1869 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1870 		return -EFAULT;
1871 
1872 	memset(&c, 0, sizeof(c));
1873 	c.common.opcode = cmd.opcode;
1874 	c.common.flags = cmd.flags;
1875 	c.common.nsid = cpu_to_le32(cmd.nsid);
1876 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1877 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1878 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1879 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1880 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1881 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1882 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1883 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1884 
1885 	if (cmd.timeout_ms)
1886 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1887 
1888 	status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1889 			NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1890 			&cmd.result, timeout);
1891 	if (status >= 0) {
1892 		if (put_user(cmd.result, &ucmd->result))
1893 			return -EFAULT;
1894 	}
1895 
1896 	return status;
1897 }
1898 
1899 static int nvme_subsys_reset(struct nvme_dev *dev)
1900 {
1901 	if (!dev->subsystem)
1902 		return -ENOTTY;
1903 
1904 	writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1905 	return 0;
1906 }
1907 
1908 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1909 							unsigned long arg)
1910 {
1911 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1912 
1913 	switch (cmd) {
1914 	case NVME_IOCTL_ID:
1915 		force_successful_syscall_return();
1916 		return ns->ns_id;
1917 	case NVME_IOCTL_ADMIN_CMD:
1918 		return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1919 	case NVME_IOCTL_IO_CMD:
1920 		return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1921 	case NVME_IOCTL_SUBMIT_IO:
1922 		return nvme_submit_io(ns, (void __user *)arg);
1923 	case SG_GET_VERSION_NUM:
1924 		return nvme_sg_get_version_num((void __user *)arg);
1925 	case SG_IO:
1926 		return nvme_sg_io(ns, (void __user *)arg);
1927 	default:
1928 		return -ENOTTY;
1929 	}
1930 }
1931 
1932 #ifdef CONFIG_COMPAT
1933 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1934 					unsigned int cmd, unsigned long arg)
1935 {
1936 	switch (cmd) {
1937 	case SG_IO:
1938 		return -ENOIOCTLCMD;
1939 	}
1940 	return nvme_ioctl(bdev, mode, cmd, arg);
1941 }
1942 #else
1943 #define nvme_compat_ioctl	NULL
1944 #endif
1945 
1946 static void nvme_free_dev(struct kref *kref);
1947 static void nvme_free_ns(struct kref *kref)
1948 {
1949 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1950 
1951 	spin_lock(&dev_list_lock);
1952 	ns->disk->private_data = NULL;
1953 	spin_unlock(&dev_list_lock);
1954 
1955 	kref_put(&ns->dev->kref, nvme_free_dev);
1956 	put_disk(ns->disk);
1957 	kfree(ns);
1958 }
1959 
1960 static int nvme_open(struct block_device *bdev, fmode_t mode)
1961 {
1962 	int ret = 0;
1963 	struct nvme_ns *ns;
1964 
1965 	spin_lock(&dev_list_lock);
1966 	ns = bdev->bd_disk->private_data;
1967 	if (!ns)
1968 		ret = -ENXIO;
1969 	else if (!kref_get_unless_zero(&ns->kref))
1970 		ret = -ENXIO;
1971 	spin_unlock(&dev_list_lock);
1972 
1973 	return ret;
1974 }
1975 
1976 static void nvme_release(struct gendisk *disk, fmode_t mode)
1977 {
1978 	struct nvme_ns *ns = disk->private_data;
1979 	kref_put(&ns->kref, nvme_free_ns);
1980 }
1981 
1982 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1983 {
1984 	/* some standard values */
1985 	geo->heads = 1 << 6;
1986 	geo->sectors = 1 << 5;
1987 	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1988 	return 0;
1989 }
1990 
1991 static void nvme_config_discard(struct nvme_ns *ns)
1992 {
1993 	u32 logical_block_size = queue_logical_block_size(ns->queue);
1994 	ns->queue->limits.discard_zeroes_data = 0;
1995 	ns->queue->limits.discard_alignment = logical_block_size;
1996 	ns->queue->limits.discard_granularity = logical_block_size;
1997 	blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1998 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1999 }
2000 
2001 static int nvme_revalidate_disk(struct gendisk *disk)
2002 {
2003 	struct nvme_ns *ns = disk->private_data;
2004 	struct nvme_dev *dev = ns->dev;
2005 	struct nvme_id_ns *id;
2006 	u8 lbaf, pi_type;
2007 	u16 old_ms;
2008 	unsigned short bs;
2009 
2010 	if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2011 		dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2012 						dev->instance, ns->ns_id);
2013 		return -ENODEV;
2014 	}
2015 	if (id->ncap == 0) {
2016 		kfree(id);
2017 		return -ENODEV;
2018 	}
2019 
2020 	old_ms = ns->ms;
2021 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2022 	ns->lba_shift = id->lbaf[lbaf].ds;
2023 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2024 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2025 
2026 	/*
2027 	 * If identify namespace failed, use default 512 byte block size so
2028 	 * block layer can use before failing read/write for 0 capacity.
2029 	 */
2030 	if (ns->lba_shift == 0)
2031 		ns->lba_shift = 9;
2032 	bs = 1 << ns->lba_shift;
2033 
2034 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
2035 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2036 					id->dps & NVME_NS_DPS_PI_MASK : 0;
2037 
2038 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2039 				ns->ms != old_ms ||
2040 				bs != queue_logical_block_size(disk->queue) ||
2041 				(ns->ms && ns->ext)))
2042 		blk_integrity_unregister(disk);
2043 
2044 	ns->pi_type = pi_type;
2045 	blk_queue_logical_block_size(ns->queue, bs);
2046 
2047 	if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2048 								!ns->ext)
2049 		nvme_init_integrity(ns);
2050 
2051 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
2052 		set_capacity(disk, 0);
2053 	else
2054 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2055 
2056 	if (dev->oncs & NVME_CTRL_ONCS_DSM)
2057 		nvme_config_discard(ns);
2058 
2059 	kfree(id);
2060 	return 0;
2061 }
2062 
2063 static const struct block_device_operations nvme_fops = {
2064 	.owner		= THIS_MODULE,
2065 	.ioctl		= nvme_ioctl,
2066 	.compat_ioctl	= nvme_compat_ioctl,
2067 	.open		= nvme_open,
2068 	.release	= nvme_release,
2069 	.getgeo		= nvme_getgeo,
2070 	.revalidate_disk= nvme_revalidate_disk,
2071 };
2072 
2073 static int nvme_kthread(void *data)
2074 {
2075 	struct nvme_dev *dev, *next;
2076 
2077 	while (!kthread_should_stop()) {
2078 		set_current_state(TASK_INTERRUPTIBLE);
2079 		spin_lock(&dev_list_lock);
2080 		list_for_each_entry_safe(dev, next, &dev_list, node) {
2081 			int i;
2082 			u32 csts = readl(&dev->bar->csts);
2083 
2084 			if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2085 							csts & NVME_CSTS_CFS) {
2086 				if (!__nvme_reset(dev)) {
2087 					dev_warn(dev->dev,
2088 						"Failed status: %x, reset controller\n",
2089 						readl(&dev->bar->csts));
2090 				}
2091 				continue;
2092 			}
2093 			for (i = 0; i < dev->queue_count; i++) {
2094 				struct nvme_queue *nvmeq = dev->queues[i];
2095 				if (!nvmeq)
2096 					continue;
2097 				spin_lock_irq(&nvmeq->q_lock);
2098 				nvme_process_cq(nvmeq);
2099 
2100 				while ((i == 0) && (dev->event_limit > 0)) {
2101 					if (nvme_submit_async_admin_req(dev))
2102 						break;
2103 					dev->event_limit--;
2104 				}
2105 				spin_unlock_irq(&nvmeq->q_lock);
2106 			}
2107 		}
2108 		spin_unlock(&dev_list_lock);
2109 		schedule_timeout(round_jiffies_relative(HZ));
2110 	}
2111 	return 0;
2112 }
2113 
2114 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2115 {
2116 	struct nvme_ns *ns;
2117 	struct gendisk *disk;
2118 	int node = dev_to_node(dev->dev);
2119 
2120 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2121 	if (!ns)
2122 		return;
2123 
2124 	ns->queue = blk_mq_init_queue(&dev->tagset);
2125 	if (IS_ERR(ns->queue))
2126 		goto out_free_ns;
2127 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2128 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2129 	ns->dev = dev;
2130 	ns->queue->queuedata = ns;
2131 
2132 	disk = alloc_disk_node(0, node);
2133 	if (!disk)
2134 		goto out_free_queue;
2135 
2136 	kref_init(&ns->kref);
2137 	ns->ns_id = nsid;
2138 	ns->disk = disk;
2139 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2140 	list_add_tail(&ns->list, &dev->namespaces);
2141 
2142 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2143 	if (dev->max_hw_sectors) {
2144 		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2145 		blk_queue_max_segments(ns->queue,
2146 			((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2147 	}
2148 	if (dev->stripe_size)
2149 		blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2150 	if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2151 		blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2152 	blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2153 
2154 	disk->major = nvme_major;
2155 	disk->first_minor = 0;
2156 	disk->fops = &nvme_fops;
2157 	disk->private_data = ns;
2158 	disk->queue = ns->queue;
2159 	disk->driverfs_dev = dev->device;
2160 	disk->flags = GENHD_FL_EXT_DEVT;
2161 	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2162 
2163 	/*
2164 	 * Initialize capacity to 0 until we establish the namespace format and
2165 	 * setup integrity extentions if necessary. The revalidate_disk after
2166 	 * add_disk allows the driver to register with integrity if the format
2167 	 * requires it.
2168 	 */
2169 	set_capacity(disk, 0);
2170 	if (nvme_revalidate_disk(ns->disk))
2171 		goto out_free_disk;
2172 
2173 	kref_get(&dev->kref);
2174 	add_disk(ns->disk);
2175 	if (ns->ms) {
2176 		struct block_device *bd = bdget_disk(ns->disk, 0);
2177 		if (!bd)
2178 			return;
2179 		if (blkdev_get(bd, FMODE_READ, NULL)) {
2180 			bdput(bd);
2181 			return;
2182 		}
2183 		blkdev_reread_part(bd);
2184 		blkdev_put(bd, FMODE_READ);
2185 	}
2186 	return;
2187  out_free_disk:
2188 	kfree(disk);
2189 	list_del(&ns->list);
2190  out_free_queue:
2191 	blk_cleanup_queue(ns->queue);
2192  out_free_ns:
2193 	kfree(ns);
2194 }
2195 
2196 /*
2197  * Create I/O queues.  Failing to create an I/O queue is not an issue,
2198  * we can continue with less than the desired amount of queues, and
2199  * even a controller without I/O queues an still be used to issue
2200  * admin commands.  This might be useful to upgrade a buggy firmware
2201  * for example.
2202  */
2203 static void nvme_create_io_queues(struct nvme_dev *dev)
2204 {
2205 	unsigned i;
2206 
2207 	for (i = dev->queue_count; i <= dev->max_qid; i++)
2208 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
2209 			break;
2210 
2211 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2212 		if (nvme_create_queue(dev->queues[i], i)) {
2213 			nvme_free_queues(dev, i);
2214 			break;
2215 		}
2216 }
2217 
2218 static int set_queue_count(struct nvme_dev *dev, int count)
2219 {
2220 	int status;
2221 	u32 result;
2222 	u32 q_count = (count - 1) | ((count - 1) << 16);
2223 
2224 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2225 								&result);
2226 	if (status < 0)
2227 		return status;
2228 	if (status > 0) {
2229 		dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2230 		return 0;
2231 	}
2232 	return min(result & 0xffff, result >> 16) + 1;
2233 }
2234 
2235 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2236 {
2237 	u64 szu, size, offset;
2238 	u32 cmbloc;
2239 	resource_size_t bar_size;
2240 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2241 	void __iomem *cmb;
2242 	dma_addr_t dma_addr;
2243 
2244 	if (!use_cmb_sqes)
2245 		return NULL;
2246 
2247 	dev->cmbsz = readl(&dev->bar->cmbsz);
2248 	if (!(NVME_CMB_SZ(dev->cmbsz)))
2249 		return NULL;
2250 
2251 	cmbloc = readl(&dev->bar->cmbloc);
2252 
2253 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2254 	size = szu * NVME_CMB_SZ(dev->cmbsz);
2255 	offset = szu * NVME_CMB_OFST(cmbloc);
2256 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2257 
2258 	if (offset > bar_size)
2259 		return NULL;
2260 
2261 	/*
2262 	 * Controllers may support a CMB size larger than their BAR,
2263 	 * for example, due to being behind a bridge. Reduce the CMB to
2264 	 * the reported size of the BAR
2265 	 */
2266 	if (size > bar_size - offset)
2267 		size = bar_size - offset;
2268 
2269 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2270 	cmb = ioremap_wc(dma_addr, size);
2271 	if (!cmb)
2272 		return NULL;
2273 
2274 	dev->cmb_dma_addr = dma_addr;
2275 	dev->cmb_size = size;
2276 	return cmb;
2277 }
2278 
2279 static inline void nvme_release_cmb(struct nvme_dev *dev)
2280 {
2281 	if (dev->cmb) {
2282 		iounmap(dev->cmb);
2283 		dev->cmb = NULL;
2284 	}
2285 }
2286 
2287 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2288 {
2289 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2290 }
2291 
2292 static int nvme_setup_io_queues(struct nvme_dev *dev)
2293 {
2294 	struct nvme_queue *adminq = dev->queues[0];
2295 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2296 	int result, i, vecs, nr_io_queues, size;
2297 
2298 	nr_io_queues = num_possible_cpus();
2299 	result = set_queue_count(dev, nr_io_queues);
2300 	if (result <= 0)
2301 		return result;
2302 	if (result < nr_io_queues)
2303 		nr_io_queues = result;
2304 
2305 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2306 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2307 				sizeof(struct nvme_command));
2308 		if (result > 0)
2309 			dev->q_depth = result;
2310 		else
2311 			nvme_release_cmb(dev);
2312 	}
2313 
2314 	size = db_bar_size(dev, nr_io_queues);
2315 	if (size > 8192) {
2316 		iounmap(dev->bar);
2317 		do {
2318 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2319 			if (dev->bar)
2320 				break;
2321 			if (!--nr_io_queues)
2322 				return -ENOMEM;
2323 			size = db_bar_size(dev, nr_io_queues);
2324 		} while (1);
2325 		dev->dbs = ((void __iomem *)dev->bar) + 4096;
2326 		adminq->q_db = dev->dbs;
2327 	}
2328 
2329 	/* Deregister the admin queue's interrupt */
2330 	free_irq(dev->entry[0].vector, adminq);
2331 
2332 	/*
2333 	 * If we enable msix early due to not intx, disable it again before
2334 	 * setting up the full range we need.
2335 	 */
2336 	if (!pdev->irq)
2337 		pci_disable_msix(pdev);
2338 
2339 	for (i = 0; i < nr_io_queues; i++)
2340 		dev->entry[i].entry = i;
2341 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2342 	if (vecs < 0) {
2343 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2344 		if (vecs < 0) {
2345 			vecs = 1;
2346 		} else {
2347 			for (i = 0; i < vecs; i++)
2348 				dev->entry[i].vector = i + pdev->irq;
2349 		}
2350 	}
2351 
2352 	/*
2353 	 * Should investigate if there's a performance win from allocating
2354 	 * more queues than interrupt vectors; it might allow the submission
2355 	 * path to scale better, even if the receive path is limited by the
2356 	 * number of interrupts.
2357 	 */
2358 	nr_io_queues = vecs;
2359 	dev->max_qid = nr_io_queues;
2360 
2361 	result = queue_request_irq(dev, adminq, adminq->irqname);
2362 	if (result) {
2363 		adminq->cq_vector = -1;
2364 		goto free_queues;
2365 	}
2366 
2367 	/* Free previously allocated queues that are no longer usable */
2368 	nvme_free_queues(dev, nr_io_queues + 1);
2369 	nvme_create_io_queues(dev);
2370 
2371 	return 0;
2372 
2373  free_queues:
2374 	nvme_free_queues(dev, 1);
2375 	return result;
2376 }
2377 
2378 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2379 {
2380 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2381 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2382 
2383 	return nsa->ns_id - nsb->ns_id;
2384 }
2385 
2386 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2387 {
2388 	struct nvme_ns *ns;
2389 
2390 	list_for_each_entry(ns, &dev->namespaces, list) {
2391 		if (ns->ns_id == nsid)
2392 			return ns;
2393 		if (ns->ns_id > nsid)
2394 			break;
2395 	}
2396 	return NULL;
2397 }
2398 
2399 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2400 {
2401 	return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2402 							dev->online_queues < 2);
2403 }
2404 
2405 static void nvme_ns_remove(struct nvme_ns *ns)
2406 {
2407 	bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2408 
2409 	if (kill)
2410 		blk_set_queue_dying(ns->queue);
2411 	if (ns->disk->flags & GENHD_FL_UP) {
2412 		if (blk_get_integrity(ns->disk))
2413 			blk_integrity_unregister(ns->disk);
2414 		del_gendisk(ns->disk);
2415 	}
2416 	if (kill || !blk_queue_dying(ns->queue)) {
2417 		blk_mq_abort_requeue_list(ns->queue);
2418 		blk_cleanup_queue(ns->queue);
2419 	}
2420 	list_del_init(&ns->list);
2421 	kref_put(&ns->kref, nvme_free_ns);
2422 }
2423 
2424 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2425 {
2426 	struct nvme_ns *ns, *next;
2427 	unsigned i;
2428 
2429 	for (i = 1; i <= nn; i++) {
2430 		ns = nvme_find_ns(dev, i);
2431 		if (ns) {
2432 			if (revalidate_disk(ns->disk))
2433 				nvme_ns_remove(ns);
2434 		} else
2435 			nvme_alloc_ns(dev, i);
2436 	}
2437 	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2438 		if (ns->ns_id > nn)
2439 			nvme_ns_remove(ns);
2440 	}
2441 	list_sort(NULL, &dev->namespaces, ns_cmp);
2442 }
2443 
2444 static void nvme_set_irq_hints(struct nvme_dev *dev)
2445 {
2446 	struct nvme_queue *nvmeq;
2447 	int i;
2448 
2449 	for (i = 0; i < dev->online_queues; i++) {
2450 		nvmeq = dev->queues[i];
2451 
2452 		if (!nvmeq->tags || !(*nvmeq->tags))
2453 			continue;
2454 
2455 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2456 					blk_mq_tags_cpumask(*nvmeq->tags));
2457 	}
2458 }
2459 
2460 static void nvme_dev_scan(struct work_struct *work)
2461 {
2462 	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2463 	struct nvme_id_ctrl *ctrl;
2464 
2465 	if (!dev->tagset.tags)
2466 		return;
2467 	if (nvme_identify_ctrl(dev, &ctrl))
2468 		return;
2469 	nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2470 	kfree(ctrl);
2471 	nvme_set_irq_hints(dev);
2472 }
2473 
2474 /*
2475  * Return: error value if an error occurred setting up the queues or calling
2476  * Identify Device.  0 if these succeeded, even if adding some of the
2477  * namespaces failed.  At the moment, these failures are silent.  TBD which
2478  * failures should be reported.
2479  */
2480 static int nvme_dev_add(struct nvme_dev *dev)
2481 {
2482 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2483 	int res;
2484 	struct nvme_id_ctrl *ctrl;
2485 	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2486 
2487 	res = nvme_identify_ctrl(dev, &ctrl);
2488 	if (res) {
2489 		dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2490 		return -EIO;
2491 	}
2492 
2493 	dev->oncs = le16_to_cpup(&ctrl->oncs);
2494 	dev->abort_limit = ctrl->acl + 1;
2495 	dev->vwc = ctrl->vwc;
2496 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2497 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2498 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2499 	if (ctrl->mdts)
2500 		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2501 	if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2502 			(pdev->device == 0x0953) && ctrl->vs[3]) {
2503 		unsigned int max_hw_sectors;
2504 
2505 		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2506 		max_hw_sectors = dev->stripe_size >> (shift - 9);
2507 		if (dev->max_hw_sectors) {
2508 			dev->max_hw_sectors = min(max_hw_sectors,
2509 							dev->max_hw_sectors);
2510 		} else
2511 			dev->max_hw_sectors = max_hw_sectors;
2512 	}
2513 	kfree(ctrl);
2514 
2515 	if (!dev->tagset.tags) {
2516 		dev->tagset.ops = &nvme_mq_ops;
2517 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2518 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2519 		dev->tagset.numa_node = dev_to_node(dev->dev);
2520 		dev->tagset.queue_depth =
2521 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2522 		dev->tagset.cmd_size = nvme_cmd_size(dev);
2523 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2524 		dev->tagset.driver_data = dev;
2525 
2526 		if (blk_mq_alloc_tag_set(&dev->tagset))
2527 			return 0;
2528 	}
2529 	schedule_work(&dev->scan_work);
2530 	return 0;
2531 }
2532 
2533 static int nvme_dev_map(struct nvme_dev *dev)
2534 {
2535 	u64 cap;
2536 	int bars, result = -ENOMEM;
2537 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2538 
2539 	if (pci_enable_device_mem(pdev))
2540 		return result;
2541 
2542 	dev->entry[0].vector = pdev->irq;
2543 	pci_set_master(pdev);
2544 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
2545 	if (!bars)
2546 		goto disable_pci;
2547 
2548 	if (pci_request_selected_regions(pdev, bars, "nvme"))
2549 		goto disable_pci;
2550 
2551 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2552 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2553 		goto disable;
2554 
2555 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2556 	if (!dev->bar)
2557 		goto disable;
2558 
2559 	if (readl(&dev->bar->csts) == -1) {
2560 		result = -ENODEV;
2561 		goto unmap;
2562 	}
2563 
2564 	/*
2565 	 * Some devices don't advertse INTx interrupts, pre-enable a single
2566 	 * MSIX vec for setup. We'll adjust this later.
2567 	 */
2568 	if (!pdev->irq) {
2569 		result = pci_enable_msix(pdev, dev->entry, 1);
2570 		if (result < 0)
2571 			goto unmap;
2572 	}
2573 
2574 	cap = readq(&dev->bar->cap);
2575 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2576 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2577 	dev->dbs = ((void __iomem *)dev->bar) + 4096;
2578 	if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2579 		dev->cmb = nvme_map_cmb(dev);
2580 
2581 	return 0;
2582 
2583  unmap:
2584 	iounmap(dev->bar);
2585 	dev->bar = NULL;
2586  disable:
2587 	pci_release_regions(pdev);
2588  disable_pci:
2589 	pci_disable_device(pdev);
2590 	return result;
2591 }
2592 
2593 static void nvme_dev_unmap(struct nvme_dev *dev)
2594 {
2595 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2596 
2597 	if (pdev->msi_enabled)
2598 		pci_disable_msi(pdev);
2599 	else if (pdev->msix_enabled)
2600 		pci_disable_msix(pdev);
2601 
2602 	if (dev->bar) {
2603 		iounmap(dev->bar);
2604 		dev->bar = NULL;
2605 		pci_release_regions(pdev);
2606 	}
2607 
2608 	if (pci_is_enabled(pdev))
2609 		pci_disable_device(pdev);
2610 }
2611 
2612 struct nvme_delq_ctx {
2613 	struct task_struct *waiter;
2614 	struct kthread_worker *worker;
2615 	atomic_t refcount;
2616 };
2617 
2618 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2619 {
2620 	dq->waiter = current;
2621 	mb();
2622 
2623 	for (;;) {
2624 		set_current_state(TASK_KILLABLE);
2625 		if (!atomic_read(&dq->refcount))
2626 			break;
2627 		if (!schedule_timeout(ADMIN_TIMEOUT) ||
2628 					fatal_signal_pending(current)) {
2629 			/*
2630 			 * Disable the controller first since we can't trust it
2631 			 * at this point, but leave the admin queue enabled
2632 			 * until all queue deletion requests are flushed.
2633 			 * FIXME: This may take a while if there are more h/w
2634 			 * queues than admin tags.
2635 			 */
2636 			set_current_state(TASK_RUNNING);
2637 			nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2638 			nvme_clear_queue(dev->queues[0]);
2639 			flush_kthread_worker(dq->worker);
2640 			nvme_disable_queue(dev, 0);
2641 			return;
2642 		}
2643 	}
2644 	set_current_state(TASK_RUNNING);
2645 }
2646 
2647 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2648 {
2649 	atomic_dec(&dq->refcount);
2650 	if (dq->waiter)
2651 		wake_up_process(dq->waiter);
2652 }
2653 
2654 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2655 {
2656 	atomic_inc(&dq->refcount);
2657 	return dq;
2658 }
2659 
2660 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2661 {
2662 	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2663 	nvme_put_dq(dq);
2664 }
2665 
2666 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2667 						kthread_work_func_t fn)
2668 {
2669 	struct nvme_command c;
2670 
2671 	memset(&c, 0, sizeof(c));
2672 	c.delete_queue.opcode = opcode;
2673 	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2674 
2675 	init_kthread_work(&nvmeq->cmdinfo.work, fn);
2676 	return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2677 								ADMIN_TIMEOUT);
2678 }
2679 
2680 static void nvme_del_cq_work_handler(struct kthread_work *work)
2681 {
2682 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2683 							cmdinfo.work);
2684 	nvme_del_queue_end(nvmeq);
2685 }
2686 
2687 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2688 {
2689 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2690 						nvme_del_cq_work_handler);
2691 }
2692 
2693 static void nvme_del_sq_work_handler(struct kthread_work *work)
2694 {
2695 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2696 							cmdinfo.work);
2697 	int status = nvmeq->cmdinfo.status;
2698 
2699 	if (!status)
2700 		status = nvme_delete_cq(nvmeq);
2701 	if (status)
2702 		nvme_del_queue_end(nvmeq);
2703 }
2704 
2705 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2706 {
2707 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2708 						nvme_del_sq_work_handler);
2709 }
2710 
2711 static void nvme_del_queue_start(struct kthread_work *work)
2712 {
2713 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2714 							cmdinfo.work);
2715 	if (nvme_delete_sq(nvmeq))
2716 		nvme_del_queue_end(nvmeq);
2717 }
2718 
2719 static void nvme_disable_io_queues(struct nvme_dev *dev)
2720 {
2721 	int i;
2722 	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2723 	struct nvme_delq_ctx dq;
2724 	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2725 					&worker, "nvme%d", dev->instance);
2726 
2727 	if (IS_ERR(kworker_task)) {
2728 		dev_err(dev->dev,
2729 			"Failed to create queue del task\n");
2730 		for (i = dev->queue_count - 1; i > 0; i--)
2731 			nvme_disable_queue(dev, i);
2732 		return;
2733 	}
2734 
2735 	dq.waiter = NULL;
2736 	atomic_set(&dq.refcount, 0);
2737 	dq.worker = &worker;
2738 	for (i = dev->queue_count - 1; i > 0; i--) {
2739 		struct nvme_queue *nvmeq = dev->queues[i];
2740 
2741 		if (nvme_suspend_queue(nvmeq))
2742 			continue;
2743 		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2744 		nvmeq->cmdinfo.worker = dq.worker;
2745 		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2746 		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2747 	}
2748 	nvme_wait_dq(&dq, dev);
2749 	kthread_stop(kworker_task);
2750 }
2751 
2752 /*
2753 * Remove the node from the device list and check
2754 * for whether or not we need to stop the nvme_thread.
2755 */
2756 static void nvme_dev_list_remove(struct nvme_dev *dev)
2757 {
2758 	struct task_struct *tmp = NULL;
2759 
2760 	spin_lock(&dev_list_lock);
2761 	list_del_init(&dev->node);
2762 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2763 		tmp = nvme_thread;
2764 		nvme_thread = NULL;
2765 	}
2766 	spin_unlock(&dev_list_lock);
2767 
2768 	if (tmp)
2769 		kthread_stop(tmp);
2770 }
2771 
2772 static void nvme_freeze_queues(struct nvme_dev *dev)
2773 {
2774 	struct nvme_ns *ns;
2775 
2776 	list_for_each_entry(ns, &dev->namespaces, list) {
2777 		blk_mq_freeze_queue_start(ns->queue);
2778 
2779 		spin_lock_irq(ns->queue->queue_lock);
2780 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2781 		spin_unlock_irq(ns->queue->queue_lock);
2782 
2783 		blk_mq_cancel_requeue_work(ns->queue);
2784 		blk_mq_stop_hw_queues(ns->queue);
2785 	}
2786 }
2787 
2788 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2789 {
2790 	struct nvme_ns *ns;
2791 
2792 	list_for_each_entry(ns, &dev->namespaces, list) {
2793 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2794 		blk_mq_unfreeze_queue(ns->queue);
2795 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2796 		blk_mq_kick_requeue_list(ns->queue);
2797 	}
2798 }
2799 
2800 static void nvme_dev_shutdown(struct nvme_dev *dev)
2801 {
2802 	int i;
2803 	u32 csts = -1;
2804 
2805 	nvme_dev_list_remove(dev);
2806 
2807 	if (dev->bar) {
2808 		nvme_freeze_queues(dev);
2809 		csts = readl(&dev->bar->csts);
2810 	}
2811 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2812 		for (i = dev->queue_count - 1; i >= 0; i--) {
2813 			struct nvme_queue *nvmeq = dev->queues[i];
2814 			nvme_suspend_queue(nvmeq);
2815 		}
2816 	} else {
2817 		nvme_disable_io_queues(dev);
2818 		nvme_shutdown_ctrl(dev);
2819 		nvme_disable_queue(dev, 0);
2820 	}
2821 	nvme_dev_unmap(dev);
2822 
2823 	for (i = dev->queue_count - 1; i >= 0; i--)
2824 		nvme_clear_queue(dev->queues[i]);
2825 }
2826 
2827 static void nvme_dev_remove(struct nvme_dev *dev)
2828 {
2829 	struct nvme_ns *ns, *next;
2830 
2831 	list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2832 		nvme_ns_remove(ns);
2833 }
2834 
2835 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2836 {
2837 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2838 						PAGE_SIZE, PAGE_SIZE, 0);
2839 	if (!dev->prp_page_pool)
2840 		return -ENOMEM;
2841 
2842 	/* Optimisation for I/Os between 4k and 128k */
2843 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2844 						256, 256, 0);
2845 	if (!dev->prp_small_pool) {
2846 		dma_pool_destroy(dev->prp_page_pool);
2847 		return -ENOMEM;
2848 	}
2849 	return 0;
2850 }
2851 
2852 static void nvme_release_prp_pools(struct nvme_dev *dev)
2853 {
2854 	dma_pool_destroy(dev->prp_page_pool);
2855 	dma_pool_destroy(dev->prp_small_pool);
2856 }
2857 
2858 static DEFINE_IDA(nvme_instance_ida);
2859 
2860 static int nvme_set_instance(struct nvme_dev *dev)
2861 {
2862 	int instance, error;
2863 
2864 	do {
2865 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2866 			return -ENODEV;
2867 
2868 		spin_lock(&dev_list_lock);
2869 		error = ida_get_new(&nvme_instance_ida, &instance);
2870 		spin_unlock(&dev_list_lock);
2871 	} while (error == -EAGAIN);
2872 
2873 	if (error)
2874 		return -ENODEV;
2875 
2876 	dev->instance = instance;
2877 	return 0;
2878 }
2879 
2880 static void nvme_release_instance(struct nvme_dev *dev)
2881 {
2882 	spin_lock(&dev_list_lock);
2883 	ida_remove(&nvme_instance_ida, dev->instance);
2884 	spin_unlock(&dev_list_lock);
2885 }
2886 
2887 static void nvme_free_dev(struct kref *kref)
2888 {
2889 	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2890 
2891 	put_device(dev->dev);
2892 	put_device(dev->device);
2893 	nvme_release_instance(dev);
2894 	if (dev->tagset.tags)
2895 		blk_mq_free_tag_set(&dev->tagset);
2896 	if (dev->admin_q)
2897 		blk_put_queue(dev->admin_q);
2898 	kfree(dev->queues);
2899 	kfree(dev->entry);
2900 	kfree(dev);
2901 }
2902 
2903 static int nvme_dev_open(struct inode *inode, struct file *f)
2904 {
2905 	struct nvme_dev *dev;
2906 	int instance = iminor(inode);
2907 	int ret = -ENODEV;
2908 
2909 	spin_lock(&dev_list_lock);
2910 	list_for_each_entry(dev, &dev_list, node) {
2911 		if (dev->instance == instance) {
2912 			if (!dev->admin_q) {
2913 				ret = -EWOULDBLOCK;
2914 				break;
2915 			}
2916 			if (!kref_get_unless_zero(&dev->kref))
2917 				break;
2918 			f->private_data = dev;
2919 			ret = 0;
2920 			break;
2921 		}
2922 	}
2923 	spin_unlock(&dev_list_lock);
2924 
2925 	return ret;
2926 }
2927 
2928 static int nvme_dev_release(struct inode *inode, struct file *f)
2929 {
2930 	struct nvme_dev *dev = f->private_data;
2931 	kref_put(&dev->kref, nvme_free_dev);
2932 	return 0;
2933 }
2934 
2935 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2936 {
2937 	struct nvme_dev *dev = f->private_data;
2938 	struct nvme_ns *ns;
2939 
2940 	switch (cmd) {
2941 	case NVME_IOCTL_ADMIN_CMD:
2942 		return nvme_user_cmd(dev, NULL, (void __user *)arg);
2943 	case NVME_IOCTL_IO_CMD:
2944 		if (list_empty(&dev->namespaces))
2945 			return -ENOTTY;
2946 		ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2947 		return nvme_user_cmd(dev, ns, (void __user *)arg);
2948 	case NVME_IOCTL_RESET:
2949 		dev_warn(dev->dev, "resetting controller\n");
2950 		return nvme_reset(dev);
2951 	case NVME_IOCTL_SUBSYS_RESET:
2952 		return nvme_subsys_reset(dev);
2953 	default:
2954 		return -ENOTTY;
2955 	}
2956 }
2957 
2958 static const struct file_operations nvme_dev_fops = {
2959 	.owner		= THIS_MODULE,
2960 	.open		= nvme_dev_open,
2961 	.release	= nvme_dev_release,
2962 	.unlocked_ioctl	= nvme_dev_ioctl,
2963 	.compat_ioctl	= nvme_dev_ioctl,
2964 };
2965 
2966 static void nvme_probe_work(struct work_struct *work)
2967 {
2968 	struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2969 	bool start_thread = false;
2970 	int result;
2971 
2972 	result = nvme_dev_map(dev);
2973 	if (result)
2974 		goto out;
2975 
2976 	result = nvme_configure_admin_queue(dev);
2977 	if (result)
2978 		goto unmap;
2979 
2980 	spin_lock(&dev_list_lock);
2981 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2982 		start_thread = true;
2983 		nvme_thread = NULL;
2984 	}
2985 	list_add(&dev->node, &dev_list);
2986 	spin_unlock(&dev_list_lock);
2987 
2988 	if (start_thread) {
2989 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2990 		wake_up_all(&nvme_kthread_wait);
2991 	} else
2992 		wait_event_killable(nvme_kthread_wait, nvme_thread);
2993 
2994 	if (IS_ERR_OR_NULL(nvme_thread)) {
2995 		result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2996 		goto disable;
2997 	}
2998 
2999 	nvme_init_queue(dev->queues[0], 0);
3000 	result = nvme_alloc_admin_tags(dev);
3001 	if (result)
3002 		goto disable;
3003 
3004 	result = nvme_setup_io_queues(dev);
3005 	if (result)
3006 		goto free_tags;
3007 
3008 	dev->event_limit = 1;
3009 
3010 	/*
3011 	 * Keep the controller around but remove all namespaces if we don't have
3012 	 * any working I/O queue.
3013 	 */
3014 	if (dev->online_queues < 2) {
3015 		dev_warn(dev->dev, "IO queues not created\n");
3016 		nvme_dev_remove(dev);
3017 	} else {
3018 		nvme_unfreeze_queues(dev);
3019 		nvme_dev_add(dev);
3020 	}
3021 
3022 	return;
3023 
3024  free_tags:
3025 	nvme_dev_remove_admin(dev);
3026 	blk_put_queue(dev->admin_q);
3027 	dev->admin_q = NULL;
3028 	dev->queues[0]->tags = NULL;
3029  disable:
3030 	nvme_disable_queue(dev, 0);
3031 	nvme_dev_list_remove(dev);
3032  unmap:
3033 	nvme_dev_unmap(dev);
3034  out:
3035 	if (!work_busy(&dev->reset_work))
3036 		nvme_dead_ctrl(dev);
3037 }
3038 
3039 static int nvme_remove_dead_ctrl(void *arg)
3040 {
3041 	struct nvme_dev *dev = (struct nvme_dev *)arg;
3042 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3043 
3044 	if (pci_get_drvdata(pdev))
3045 		pci_stop_and_remove_bus_device_locked(pdev);
3046 	kref_put(&dev->kref, nvme_free_dev);
3047 	return 0;
3048 }
3049 
3050 static void nvme_dead_ctrl(struct nvme_dev *dev)
3051 {
3052 	dev_warn(dev->dev, "Device failed to resume\n");
3053 	kref_get(&dev->kref);
3054 	if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3055 						dev->instance))) {
3056 		dev_err(dev->dev,
3057 			"Failed to start controller remove task\n");
3058 		kref_put(&dev->kref, nvme_free_dev);
3059 	}
3060 }
3061 
3062 static void nvme_reset_work(struct work_struct *ws)
3063 {
3064 	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3065 	bool in_probe = work_busy(&dev->probe_work);
3066 
3067 	nvme_dev_shutdown(dev);
3068 
3069 	/* Synchronize with device probe so that work will see failure status
3070 	 * and exit gracefully without trying to schedule another reset */
3071 	flush_work(&dev->probe_work);
3072 
3073 	/* Fail this device if reset occured during probe to avoid
3074 	 * infinite initialization loops. */
3075 	if (in_probe) {
3076 		nvme_dead_ctrl(dev);
3077 		return;
3078 	}
3079 	/* Schedule device resume asynchronously so the reset work is available
3080 	 * to cleanup errors that may occur during reinitialization */
3081 	schedule_work(&dev->probe_work);
3082 }
3083 
3084 static int __nvme_reset(struct nvme_dev *dev)
3085 {
3086 	if (work_pending(&dev->reset_work))
3087 		return -EBUSY;
3088 	list_del_init(&dev->node);
3089 	queue_work(nvme_workq, &dev->reset_work);
3090 	return 0;
3091 }
3092 
3093 static int nvme_reset(struct nvme_dev *dev)
3094 {
3095 	int ret;
3096 
3097 	if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3098 		return -ENODEV;
3099 
3100 	spin_lock(&dev_list_lock);
3101 	ret = __nvme_reset(dev);
3102 	spin_unlock(&dev_list_lock);
3103 
3104 	if (!ret) {
3105 		flush_work(&dev->reset_work);
3106 		flush_work(&dev->probe_work);
3107 		return 0;
3108 	}
3109 
3110 	return ret;
3111 }
3112 
3113 static ssize_t nvme_sysfs_reset(struct device *dev,
3114 				struct device_attribute *attr, const char *buf,
3115 				size_t count)
3116 {
3117 	struct nvme_dev *ndev = dev_get_drvdata(dev);
3118 	int ret;
3119 
3120 	ret = nvme_reset(ndev);
3121 	if (ret < 0)
3122 		return ret;
3123 
3124 	return count;
3125 }
3126 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3127 
3128 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3129 {
3130 	int node, result = -ENOMEM;
3131 	struct nvme_dev *dev;
3132 
3133 	node = dev_to_node(&pdev->dev);
3134 	if (node == NUMA_NO_NODE)
3135 		set_dev_node(&pdev->dev, 0);
3136 
3137 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3138 	if (!dev)
3139 		return -ENOMEM;
3140 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3141 							GFP_KERNEL, node);
3142 	if (!dev->entry)
3143 		goto free;
3144 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3145 							GFP_KERNEL, node);
3146 	if (!dev->queues)
3147 		goto free;
3148 
3149 	INIT_LIST_HEAD(&dev->namespaces);
3150 	INIT_WORK(&dev->reset_work, nvme_reset_work);
3151 	dev->dev = get_device(&pdev->dev);
3152 	pci_set_drvdata(pdev, dev);
3153 	result = nvme_set_instance(dev);
3154 	if (result)
3155 		goto put_pci;
3156 
3157 	result = nvme_setup_prp_pools(dev);
3158 	if (result)
3159 		goto release;
3160 
3161 	kref_init(&dev->kref);
3162 	dev->device = device_create(nvme_class, &pdev->dev,
3163 				MKDEV(nvme_char_major, dev->instance),
3164 				dev, "nvme%d", dev->instance);
3165 	if (IS_ERR(dev->device)) {
3166 		result = PTR_ERR(dev->device);
3167 		goto release_pools;
3168 	}
3169 	get_device(dev->device);
3170 	dev_set_drvdata(dev->device, dev);
3171 
3172 	result = device_create_file(dev->device, &dev_attr_reset_controller);
3173 	if (result)
3174 		goto put_dev;
3175 
3176 	INIT_LIST_HEAD(&dev->node);
3177 	INIT_WORK(&dev->scan_work, nvme_dev_scan);
3178 	INIT_WORK(&dev->probe_work, nvme_probe_work);
3179 	schedule_work(&dev->probe_work);
3180 	return 0;
3181 
3182  put_dev:
3183 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3184 	put_device(dev->device);
3185  release_pools:
3186 	nvme_release_prp_pools(dev);
3187  release:
3188 	nvme_release_instance(dev);
3189  put_pci:
3190 	put_device(dev->dev);
3191  free:
3192 	kfree(dev->queues);
3193 	kfree(dev->entry);
3194 	kfree(dev);
3195 	return result;
3196 }
3197 
3198 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3199 {
3200 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3201 
3202 	if (prepare)
3203 		nvme_dev_shutdown(dev);
3204 	else
3205 		schedule_work(&dev->probe_work);
3206 }
3207 
3208 static void nvme_shutdown(struct pci_dev *pdev)
3209 {
3210 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3211 	nvme_dev_shutdown(dev);
3212 }
3213 
3214 static void nvme_remove(struct pci_dev *pdev)
3215 {
3216 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3217 
3218 	spin_lock(&dev_list_lock);
3219 	list_del_init(&dev->node);
3220 	spin_unlock(&dev_list_lock);
3221 
3222 	pci_set_drvdata(pdev, NULL);
3223 	flush_work(&dev->probe_work);
3224 	flush_work(&dev->reset_work);
3225 	flush_work(&dev->scan_work);
3226 	device_remove_file(dev->device, &dev_attr_reset_controller);
3227 	nvme_dev_remove(dev);
3228 	nvme_dev_shutdown(dev);
3229 	nvme_dev_remove_admin(dev);
3230 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3231 	nvme_free_queues(dev, 0);
3232 	nvme_release_cmb(dev);
3233 	nvme_release_prp_pools(dev);
3234 	kref_put(&dev->kref, nvme_free_dev);
3235 }
3236 
3237 /* These functions are yet to be implemented */
3238 #define nvme_error_detected NULL
3239 #define nvme_dump_registers NULL
3240 #define nvme_link_reset NULL
3241 #define nvme_slot_reset NULL
3242 #define nvme_error_resume NULL
3243 
3244 #ifdef CONFIG_PM_SLEEP
3245 static int nvme_suspend(struct device *dev)
3246 {
3247 	struct pci_dev *pdev = to_pci_dev(dev);
3248 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3249 
3250 	nvme_dev_shutdown(ndev);
3251 	return 0;
3252 }
3253 
3254 static int nvme_resume(struct device *dev)
3255 {
3256 	struct pci_dev *pdev = to_pci_dev(dev);
3257 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3258 
3259 	schedule_work(&ndev->probe_work);
3260 	return 0;
3261 }
3262 #endif
3263 
3264 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3265 
3266 static const struct pci_error_handlers nvme_err_handler = {
3267 	.error_detected	= nvme_error_detected,
3268 	.mmio_enabled	= nvme_dump_registers,
3269 	.link_reset	= nvme_link_reset,
3270 	.slot_reset	= nvme_slot_reset,
3271 	.resume		= nvme_error_resume,
3272 	.reset_notify	= nvme_reset_notify,
3273 };
3274 
3275 /* Move to pci_ids.h later */
3276 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
3277 
3278 static const struct pci_device_id nvme_id_table[] = {
3279 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3280 	{ 0, }
3281 };
3282 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3283 
3284 static struct pci_driver nvme_driver = {
3285 	.name		= "nvme",
3286 	.id_table	= nvme_id_table,
3287 	.probe		= nvme_probe,
3288 	.remove		= nvme_remove,
3289 	.shutdown	= nvme_shutdown,
3290 	.driver		= {
3291 		.pm	= &nvme_dev_pm_ops,
3292 	},
3293 	.err_handler	= &nvme_err_handler,
3294 };
3295 
3296 static int __init nvme_init(void)
3297 {
3298 	int result;
3299 
3300 	init_waitqueue_head(&nvme_kthread_wait);
3301 
3302 	nvme_workq = create_singlethread_workqueue("nvme");
3303 	if (!nvme_workq)
3304 		return -ENOMEM;
3305 
3306 	result = register_blkdev(nvme_major, "nvme");
3307 	if (result < 0)
3308 		goto kill_workq;
3309 	else if (result > 0)
3310 		nvme_major = result;
3311 
3312 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3313 							&nvme_dev_fops);
3314 	if (result < 0)
3315 		goto unregister_blkdev;
3316 	else if (result > 0)
3317 		nvme_char_major = result;
3318 
3319 	nvme_class = class_create(THIS_MODULE, "nvme");
3320 	if (IS_ERR(nvme_class)) {
3321 		result = PTR_ERR(nvme_class);
3322 		goto unregister_chrdev;
3323 	}
3324 
3325 	result = pci_register_driver(&nvme_driver);
3326 	if (result)
3327 		goto destroy_class;
3328 	return 0;
3329 
3330  destroy_class:
3331 	class_destroy(nvme_class);
3332  unregister_chrdev:
3333 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3334  unregister_blkdev:
3335 	unregister_blkdev(nvme_major, "nvme");
3336  kill_workq:
3337 	destroy_workqueue(nvme_workq);
3338 	return result;
3339 }
3340 
3341 static void __exit nvme_exit(void)
3342 {
3343 	pci_unregister_driver(&nvme_driver);
3344 	unregister_blkdev(nvme_major, "nvme");
3345 	destroy_workqueue(nvme_workq);
3346 	class_destroy(nvme_class);
3347 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3348 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3349 	_nvme_check_size();
3350 }
3351 
3352 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3353 MODULE_LICENSE("GPL");
3354 MODULE_VERSION("1.0");
3355 module_init(nvme_init);
3356 module_exit(nvme_exit);
3357