xref: /openbmc/linux/drivers/nvme/host/pci.c (revision dfe94d40)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/sed-opal.h>
27 #include <linux/pci-p2pdma.h>
28 
29 #include "trace.h"
30 #include "nvme.h"
31 
32 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
33 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
34 
35 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
36 
37 /*
38  * These can be higher, but we need to ensure that any command doesn't
39  * require an sg allocation that needs more than a page of data.
40  */
41 #define NVME_MAX_KB_SZ	4096
42 #define NVME_MAX_SEGS	127
43 
44 static int use_threaded_interrupts;
45 module_param(use_threaded_interrupts, int, 0);
46 
47 static bool use_cmb_sqes = true;
48 module_param(use_cmb_sqes, bool, 0444);
49 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
50 
51 static unsigned int max_host_mem_size_mb = 128;
52 module_param(max_host_mem_size_mb, uint, 0444);
53 MODULE_PARM_DESC(max_host_mem_size_mb,
54 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
55 
56 static unsigned int sgl_threshold = SZ_32K;
57 module_param(sgl_threshold, uint, 0644);
58 MODULE_PARM_DESC(sgl_threshold,
59 		"Use SGLs when average request segment size is larger or equal to "
60 		"this size. Use 0 to disable SGLs.");
61 
62 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
63 static const struct kernel_param_ops io_queue_depth_ops = {
64 	.set = io_queue_depth_set,
65 	.get = param_get_uint,
66 };
67 
68 static unsigned int io_queue_depth = 1024;
69 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
70 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
71 
72 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
73 {
74 	unsigned int n;
75 	int ret;
76 
77 	ret = kstrtouint(val, 10, &n);
78 	if (ret != 0 || n > num_possible_cpus())
79 		return -EINVAL;
80 	return param_set_uint(val, kp);
81 }
82 
83 static const struct kernel_param_ops io_queue_count_ops = {
84 	.set = io_queue_count_set,
85 	.get = param_get_uint,
86 };
87 
88 static unsigned int write_queues;
89 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
90 MODULE_PARM_DESC(write_queues,
91 	"Number of queues to use for writes. If not set, reads and writes "
92 	"will share a queue set.");
93 
94 static unsigned int poll_queues;
95 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
96 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
97 
98 static bool noacpi;
99 module_param(noacpi, bool, 0444);
100 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
101 
102 struct nvme_dev;
103 struct nvme_queue;
104 
105 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
106 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
107 
108 /*
109  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
110  */
111 struct nvme_dev {
112 	struct nvme_queue *queues;
113 	struct blk_mq_tag_set tagset;
114 	struct blk_mq_tag_set admin_tagset;
115 	u32 __iomem *dbs;
116 	struct device *dev;
117 	struct dma_pool *prp_page_pool;
118 	struct dma_pool *prp_small_pool;
119 	unsigned online_queues;
120 	unsigned max_qid;
121 	unsigned io_queues[HCTX_MAX_TYPES];
122 	unsigned int num_vecs;
123 	u32 q_depth;
124 	int io_sqes;
125 	u32 db_stride;
126 	void __iomem *bar;
127 	unsigned long bar_mapped_size;
128 	struct work_struct remove_work;
129 	struct mutex shutdown_lock;
130 	bool subsystem;
131 	u64 cmb_size;
132 	bool cmb_use_sqes;
133 	u32 cmbsz;
134 	u32 cmbloc;
135 	struct nvme_ctrl ctrl;
136 	u32 last_ps;
137 
138 	mempool_t *iod_mempool;
139 
140 	/* shadow doorbell buffer support: */
141 	u32 *dbbuf_dbs;
142 	dma_addr_t dbbuf_dbs_dma_addr;
143 	u32 *dbbuf_eis;
144 	dma_addr_t dbbuf_eis_dma_addr;
145 
146 	/* host memory buffer support: */
147 	u64 host_mem_size;
148 	u32 nr_host_mem_descs;
149 	dma_addr_t host_mem_descs_dma;
150 	struct nvme_host_mem_buf_desc *host_mem_descs;
151 	void **host_mem_desc_bufs;
152 	unsigned int nr_allocated_queues;
153 	unsigned int nr_write_queues;
154 	unsigned int nr_poll_queues;
155 };
156 
157 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
158 {
159 	int ret;
160 	u32 n;
161 
162 	ret = kstrtou32(val, 10, &n);
163 	if (ret != 0 || n < 2)
164 		return -EINVAL;
165 
166 	return param_set_uint(val, kp);
167 }
168 
169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 	return qid * 2 * stride;
172 }
173 
174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 	return (qid * 2 + 1) * stride;
177 }
178 
179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183 
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189 	struct nvme_dev *dev;
190 	spinlock_t sq_lock;
191 	void *sq_cmds;
192 	 /* only used for poll queues: */
193 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 	struct nvme_completion *cqes;
195 	dma_addr_t sq_dma_addr;
196 	dma_addr_t cq_dma_addr;
197 	u32 __iomem *q_db;
198 	u32 q_depth;
199 	u16 cq_vector;
200 	u16 sq_tail;
201 	u16 last_sq_tail;
202 	u16 cq_head;
203 	u16 qid;
204 	u8 cq_phase;
205 	u8 sqes;
206 	unsigned long flags;
207 #define NVMEQ_ENABLED		0
208 #define NVMEQ_SQ_CMB		1
209 #define NVMEQ_DELETE_ERROR	2
210 #define NVMEQ_POLLED		3
211 	u32 *dbbuf_sq_db;
212 	u32 *dbbuf_cq_db;
213 	u32 *dbbuf_sq_ei;
214 	u32 *dbbuf_cq_ei;
215 	struct completion delete_done;
216 };
217 
218 /*
219  * The nvme_iod describes the data in an I/O.
220  *
221  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222  * to the actual struct scatterlist.
223  */
224 struct nvme_iod {
225 	struct nvme_request req;
226 	struct nvme_queue *nvmeq;
227 	bool use_sgl;
228 	int aborted;
229 	int npages;		/* In the PRP list. 0 means small pool in use */
230 	int nents;		/* Used in scatterlist */
231 	dma_addr_t first_dma;
232 	unsigned int dma_len;	/* length of single DMA segment mapping */
233 	dma_addr_t meta_dma;
234 	struct scatterlist *sg;
235 };
236 
237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
238 {
239 	return dev->nr_allocated_queues * 8 * dev->db_stride;
240 }
241 
242 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243 {
244 	unsigned int mem_size = nvme_dbbuf_size(dev);
245 
246 	if (dev->dbbuf_dbs)
247 		return 0;
248 
249 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
250 					    &dev->dbbuf_dbs_dma_addr,
251 					    GFP_KERNEL);
252 	if (!dev->dbbuf_dbs)
253 		return -ENOMEM;
254 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
255 					    &dev->dbbuf_eis_dma_addr,
256 					    GFP_KERNEL);
257 	if (!dev->dbbuf_eis) {
258 		dma_free_coherent(dev->dev, mem_size,
259 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 		dev->dbbuf_dbs = NULL;
261 		return -ENOMEM;
262 	}
263 
264 	return 0;
265 }
266 
267 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
268 {
269 	unsigned int mem_size = nvme_dbbuf_size(dev);
270 
271 	if (dev->dbbuf_dbs) {
272 		dma_free_coherent(dev->dev, mem_size,
273 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
274 		dev->dbbuf_dbs = NULL;
275 	}
276 	if (dev->dbbuf_eis) {
277 		dma_free_coherent(dev->dev, mem_size,
278 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
279 		dev->dbbuf_eis = NULL;
280 	}
281 }
282 
283 static void nvme_dbbuf_init(struct nvme_dev *dev,
284 			    struct nvme_queue *nvmeq, int qid)
285 {
286 	if (!dev->dbbuf_dbs || !qid)
287 		return;
288 
289 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
290 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
291 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
293 }
294 
295 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
296 {
297 	if (!nvmeq->qid)
298 		return;
299 
300 	nvmeq->dbbuf_sq_db = NULL;
301 	nvmeq->dbbuf_cq_db = NULL;
302 	nvmeq->dbbuf_sq_ei = NULL;
303 	nvmeq->dbbuf_cq_ei = NULL;
304 }
305 
306 static void nvme_dbbuf_set(struct nvme_dev *dev)
307 {
308 	struct nvme_command c;
309 	unsigned int i;
310 
311 	if (!dev->dbbuf_dbs)
312 		return;
313 
314 	memset(&c, 0, sizeof(c));
315 	c.dbbuf.opcode = nvme_admin_dbbuf;
316 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
317 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
318 
319 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
320 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
321 		/* Free memory and continue on */
322 		nvme_dbbuf_dma_free(dev);
323 
324 		for (i = 1; i <= dev->online_queues; i++)
325 			nvme_dbbuf_free(&dev->queues[i]);
326 	}
327 }
328 
329 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
330 {
331 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
332 }
333 
334 /* Update dbbuf and return true if an MMIO is required */
335 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
336 					      volatile u32 *dbbuf_ei)
337 {
338 	if (dbbuf_db) {
339 		u16 old_value;
340 
341 		/*
342 		 * Ensure that the queue is written before updating
343 		 * the doorbell in memory
344 		 */
345 		wmb();
346 
347 		old_value = *dbbuf_db;
348 		*dbbuf_db = value;
349 
350 		/*
351 		 * Ensure that the doorbell is updated before reading the event
352 		 * index from memory.  The controller needs to provide similar
353 		 * ordering to ensure the envent index is updated before reading
354 		 * the doorbell.
355 		 */
356 		mb();
357 
358 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
359 			return false;
360 	}
361 
362 	return true;
363 }
364 
365 /*
366  * Will slightly overestimate the number of pages needed.  This is OK
367  * as it only leads to a small amount of wasted memory for the lifetime of
368  * the I/O.
369  */
370 static int nvme_pci_npages_prp(void)
371 {
372 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
373 				      NVME_CTRL_PAGE_SIZE);
374 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
375 }
376 
377 /*
378  * Calculates the number of pages needed for the SGL segments. For example a 4k
379  * page can accommodate 256 SGL descriptors.
380  */
381 static int nvme_pci_npages_sgl(void)
382 {
383 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
384 			PAGE_SIZE);
385 }
386 
387 static size_t nvme_pci_iod_alloc_size(void)
388 {
389 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
390 
391 	return sizeof(__le64 *) * npages +
392 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = data;
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = data;
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420 		unsigned int hctx_idx, unsigned int numa_node)
421 {
422 	struct nvme_dev *dev = set->driver_data;
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
425 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
426 
427 	BUG_ON(!nvmeq);
428 	iod->nvmeq = nvmeq;
429 
430 	nvme_req(req)->ctrl = &dev->ctrl;
431 	return 0;
432 }
433 
434 static int queue_irq_offset(struct nvme_dev *dev)
435 {
436 	/* if we have more than 1 vec, admin queue offsets us by 1 */
437 	if (dev->num_vecs > 1)
438 		return 1;
439 
440 	return 0;
441 }
442 
443 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
444 {
445 	struct nvme_dev *dev = set->driver_data;
446 	int i, qoff, offset;
447 
448 	offset = queue_irq_offset(dev);
449 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
450 		struct blk_mq_queue_map *map = &set->map[i];
451 
452 		map->nr_queues = dev->io_queues[i];
453 		if (!map->nr_queues) {
454 			BUG_ON(i == HCTX_TYPE_DEFAULT);
455 			continue;
456 		}
457 
458 		/*
459 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
460 		 * affinity), so use the regular blk-mq cpu mapping
461 		 */
462 		map->queue_offset = qoff;
463 		if (i != HCTX_TYPE_POLL && offset)
464 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
465 		else
466 			blk_mq_map_queues(map);
467 		qoff += map->nr_queues;
468 		offset += map->nr_queues;
469 	}
470 
471 	return 0;
472 }
473 
474 /*
475  * Write sq tail if we are asked to, or if the next command would wrap.
476  */
477 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
478 {
479 	if (!write_sq) {
480 		u16 next_tail = nvmeq->sq_tail + 1;
481 
482 		if (next_tail == nvmeq->q_depth)
483 			next_tail = 0;
484 		if (next_tail != nvmeq->last_sq_tail)
485 			return;
486 	}
487 
488 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
489 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
490 		writel(nvmeq->sq_tail, nvmeq->q_db);
491 	nvmeq->last_sq_tail = nvmeq->sq_tail;
492 }
493 
494 /**
495  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
496  * @nvmeq: The queue to use
497  * @cmd: The command to send
498  * @write_sq: whether to write to the SQ doorbell
499  */
500 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
501 			    bool write_sq)
502 {
503 	spin_lock(&nvmeq->sq_lock);
504 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
505 	       cmd, sizeof(*cmd));
506 	if (++nvmeq->sq_tail == nvmeq->q_depth)
507 		nvmeq->sq_tail = 0;
508 	nvme_write_sq_db(nvmeq, write_sq);
509 	spin_unlock(&nvmeq->sq_lock);
510 }
511 
512 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
513 {
514 	struct nvme_queue *nvmeq = hctx->driver_data;
515 
516 	spin_lock(&nvmeq->sq_lock);
517 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
518 		nvme_write_sq_db(nvmeq, true);
519 	spin_unlock(&nvmeq->sq_lock);
520 }
521 
522 static void **nvme_pci_iod_list(struct request *req)
523 {
524 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
525 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
526 }
527 
528 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
529 {
530 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
531 	int nseg = blk_rq_nr_phys_segments(req);
532 	unsigned int avg_seg_size;
533 
534 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
535 
536 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
537 		return false;
538 	if (!iod->nvmeq->qid)
539 		return false;
540 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
541 		return false;
542 	return true;
543 }
544 
545 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
546 {
547 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
548 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
549 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
550 	int i;
551 
552 	if (iod->dma_len) {
553 		dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
554 			       rq_dma_dir(req));
555 		return;
556 	}
557 
558 	WARN_ON_ONCE(!iod->nents);
559 
560 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
561 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
562 				    rq_dma_dir(req));
563 	else
564 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
565 
566 
567 	if (iod->npages == 0)
568 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
569 			dma_addr);
570 
571 	for (i = 0; i < iod->npages; i++) {
572 		void *addr = nvme_pci_iod_list(req)[i];
573 
574 		if (iod->use_sgl) {
575 			struct nvme_sgl_desc *sg_list = addr;
576 
577 			next_dma_addr =
578 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
579 		} else {
580 			__le64 *prp_list = addr;
581 
582 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
583 		}
584 
585 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
586 		dma_addr = next_dma_addr;
587 	}
588 
589 	mempool_free(iod->sg, dev->iod_mempool);
590 }
591 
592 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
593 {
594 	int i;
595 	struct scatterlist *sg;
596 
597 	for_each_sg(sgl, sg, nents, i) {
598 		dma_addr_t phys = sg_phys(sg);
599 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
600 			"dma_address:%pad dma_length:%d\n",
601 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
602 			sg_dma_len(sg));
603 	}
604 }
605 
606 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
607 		struct request *req, struct nvme_rw_command *cmnd)
608 {
609 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
610 	struct dma_pool *pool;
611 	int length = blk_rq_payload_bytes(req);
612 	struct scatterlist *sg = iod->sg;
613 	int dma_len = sg_dma_len(sg);
614 	u64 dma_addr = sg_dma_address(sg);
615 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
616 	__le64 *prp_list;
617 	void **list = nvme_pci_iod_list(req);
618 	dma_addr_t prp_dma;
619 	int nprps, i;
620 
621 	length -= (NVME_CTRL_PAGE_SIZE - offset);
622 	if (length <= 0) {
623 		iod->first_dma = 0;
624 		goto done;
625 	}
626 
627 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
628 	if (dma_len) {
629 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
630 	} else {
631 		sg = sg_next(sg);
632 		dma_addr = sg_dma_address(sg);
633 		dma_len = sg_dma_len(sg);
634 	}
635 
636 	if (length <= NVME_CTRL_PAGE_SIZE) {
637 		iod->first_dma = dma_addr;
638 		goto done;
639 	}
640 
641 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
642 	if (nprps <= (256 / 8)) {
643 		pool = dev->prp_small_pool;
644 		iod->npages = 0;
645 	} else {
646 		pool = dev->prp_page_pool;
647 		iod->npages = 1;
648 	}
649 
650 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
651 	if (!prp_list) {
652 		iod->first_dma = dma_addr;
653 		iod->npages = -1;
654 		return BLK_STS_RESOURCE;
655 	}
656 	list[0] = prp_list;
657 	iod->first_dma = prp_dma;
658 	i = 0;
659 	for (;;) {
660 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
661 			__le64 *old_prp_list = prp_list;
662 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
663 			if (!prp_list)
664 				return BLK_STS_RESOURCE;
665 			list[iod->npages++] = prp_list;
666 			prp_list[0] = old_prp_list[i - 1];
667 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
668 			i = 1;
669 		}
670 		prp_list[i++] = cpu_to_le64(dma_addr);
671 		dma_len -= NVME_CTRL_PAGE_SIZE;
672 		dma_addr += NVME_CTRL_PAGE_SIZE;
673 		length -= NVME_CTRL_PAGE_SIZE;
674 		if (length <= 0)
675 			break;
676 		if (dma_len > 0)
677 			continue;
678 		if (unlikely(dma_len < 0))
679 			goto bad_sgl;
680 		sg = sg_next(sg);
681 		dma_addr = sg_dma_address(sg);
682 		dma_len = sg_dma_len(sg);
683 	}
684 
685 done:
686 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
687 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
688 
689 	return BLK_STS_OK;
690 
691  bad_sgl:
692 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
693 			"Invalid SGL for payload:%d nents:%d\n",
694 			blk_rq_payload_bytes(req), iod->nents);
695 	return BLK_STS_IOERR;
696 }
697 
698 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
699 		struct scatterlist *sg)
700 {
701 	sge->addr = cpu_to_le64(sg_dma_address(sg));
702 	sge->length = cpu_to_le32(sg_dma_len(sg));
703 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
704 }
705 
706 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
707 		dma_addr_t dma_addr, int entries)
708 {
709 	sge->addr = cpu_to_le64(dma_addr);
710 	if (entries < SGES_PER_PAGE) {
711 		sge->length = cpu_to_le32(entries * sizeof(*sge));
712 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
713 	} else {
714 		sge->length = cpu_to_le32(PAGE_SIZE);
715 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
716 	}
717 }
718 
719 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
720 		struct request *req, struct nvme_rw_command *cmd, int entries)
721 {
722 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
723 	struct dma_pool *pool;
724 	struct nvme_sgl_desc *sg_list;
725 	struct scatterlist *sg = iod->sg;
726 	dma_addr_t sgl_dma;
727 	int i = 0;
728 
729 	/* setting the transfer type as SGL */
730 	cmd->flags = NVME_CMD_SGL_METABUF;
731 
732 	if (entries == 1) {
733 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
734 		return BLK_STS_OK;
735 	}
736 
737 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
738 		pool = dev->prp_small_pool;
739 		iod->npages = 0;
740 	} else {
741 		pool = dev->prp_page_pool;
742 		iod->npages = 1;
743 	}
744 
745 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
746 	if (!sg_list) {
747 		iod->npages = -1;
748 		return BLK_STS_RESOURCE;
749 	}
750 
751 	nvme_pci_iod_list(req)[0] = sg_list;
752 	iod->first_dma = sgl_dma;
753 
754 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
755 
756 	do {
757 		if (i == SGES_PER_PAGE) {
758 			struct nvme_sgl_desc *old_sg_desc = sg_list;
759 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
760 
761 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
762 			if (!sg_list)
763 				return BLK_STS_RESOURCE;
764 
765 			i = 0;
766 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
767 			sg_list[i++] = *link;
768 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
769 		}
770 
771 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
772 		sg = sg_next(sg);
773 	} while (--entries > 0);
774 
775 	return BLK_STS_OK;
776 }
777 
778 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
779 		struct request *req, struct nvme_rw_command *cmnd,
780 		struct bio_vec *bv)
781 {
782 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
783 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
784 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
785 
786 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
787 	if (dma_mapping_error(dev->dev, iod->first_dma))
788 		return BLK_STS_RESOURCE;
789 	iod->dma_len = bv->bv_len;
790 
791 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
792 	if (bv->bv_len > first_prp_len)
793 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
794 	return BLK_STS_OK;
795 }
796 
797 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
798 		struct request *req, struct nvme_rw_command *cmnd,
799 		struct bio_vec *bv)
800 {
801 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
802 
803 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
804 	if (dma_mapping_error(dev->dev, iod->first_dma))
805 		return BLK_STS_RESOURCE;
806 	iod->dma_len = bv->bv_len;
807 
808 	cmnd->flags = NVME_CMD_SGL_METABUF;
809 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
810 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
811 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
812 	return BLK_STS_OK;
813 }
814 
815 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
816 		struct nvme_command *cmnd)
817 {
818 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
819 	blk_status_t ret = BLK_STS_RESOURCE;
820 	int nr_mapped;
821 
822 	if (blk_rq_nr_phys_segments(req) == 1) {
823 		struct bio_vec bv = req_bvec(req);
824 
825 		if (!is_pci_p2pdma_page(bv.bv_page)) {
826 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
827 				return nvme_setup_prp_simple(dev, req,
828 							     &cmnd->rw, &bv);
829 
830 			if (iod->nvmeq->qid &&
831 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
832 				return nvme_setup_sgl_simple(dev, req,
833 							     &cmnd->rw, &bv);
834 		}
835 	}
836 
837 	iod->dma_len = 0;
838 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
839 	if (!iod->sg)
840 		return BLK_STS_RESOURCE;
841 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
842 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
843 	if (!iod->nents)
844 		goto out;
845 
846 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
847 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
848 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
849 	else
850 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
851 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
852 	if (!nr_mapped)
853 		goto out;
854 
855 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
856 	if (iod->use_sgl)
857 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
858 	else
859 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
860 out:
861 	if (ret != BLK_STS_OK)
862 		nvme_unmap_data(dev, req);
863 	return ret;
864 }
865 
866 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
867 		struct nvme_command *cmnd)
868 {
869 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
870 
871 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
872 			rq_dma_dir(req), 0);
873 	if (dma_mapping_error(dev->dev, iod->meta_dma))
874 		return BLK_STS_IOERR;
875 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
876 	return BLK_STS_OK;
877 }
878 
879 /*
880  * NOTE: ns is NULL when called on the admin queue.
881  */
882 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
883 			 const struct blk_mq_queue_data *bd)
884 {
885 	struct nvme_ns *ns = hctx->queue->queuedata;
886 	struct nvme_queue *nvmeq = hctx->driver_data;
887 	struct nvme_dev *dev = nvmeq->dev;
888 	struct request *req = bd->rq;
889 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
890 	struct nvme_command cmnd;
891 	blk_status_t ret;
892 
893 	iod->aborted = 0;
894 	iod->npages = -1;
895 	iod->nents = 0;
896 
897 	/*
898 	 * We should not need to do this, but we're still using this to
899 	 * ensure we can drain requests on a dying queue.
900 	 */
901 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
902 		return BLK_STS_IOERR;
903 
904 	ret = nvme_setup_cmd(ns, req, &cmnd);
905 	if (ret)
906 		return ret;
907 
908 	if (blk_rq_nr_phys_segments(req)) {
909 		ret = nvme_map_data(dev, req, &cmnd);
910 		if (ret)
911 			goto out_free_cmd;
912 	}
913 
914 	if (blk_integrity_rq(req)) {
915 		ret = nvme_map_metadata(dev, req, &cmnd);
916 		if (ret)
917 			goto out_unmap_data;
918 	}
919 
920 	blk_mq_start_request(req);
921 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
922 	return BLK_STS_OK;
923 out_unmap_data:
924 	nvme_unmap_data(dev, req);
925 out_free_cmd:
926 	nvme_cleanup_cmd(req);
927 	return ret;
928 }
929 
930 static void nvme_pci_complete_rq(struct request *req)
931 {
932 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
933 	struct nvme_dev *dev = iod->nvmeq->dev;
934 
935 	if (blk_integrity_rq(req))
936 		dma_unmap_page(dev->dev, iod->meta_dma,
937 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
938 	if (blk_rq_nr_phys_segments(req))
939 		nvme_unmap_data(dev, req);
940 	nvme_complete_rq(req);
941 }
942 
943 /* We read the CQE phase first to check if the rest of the entry is valid */
944 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
945 {
946 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
947 
948 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
949 }
950 
951 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
952 {
953 	u16 head = nvmeq->cq_head;
954 
955 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
956 					      nvmeq->dbbuf_cq_ei))
957 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
958 }
959 
960 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
961 {
962 	if (!nvmeq->qid)
963 		return nvmeq->dev->admin_tagset.tags[0];
964 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
965 }
966 
967 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
968 {
969 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
970 	struct request *req;
971 
972 	/*
973 	 * AEN requests are special as they don't time out and can
974 	 * survive any kind of queue freeze and often don't respond to
975 	 * aborts.  We don't even bother to allocate a struct request
976 	 * for them but rather special case them here.
977 	 */
978 	if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
979 		nvme_complete_async_event(&nvmeq->dev->ctrl,
980 				cqe->status, &cqe->result);
981 		return;
982 	}
983 
984 	req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
985 	if (unlikely(!req)) {
986 		dev_warn(nvmeq->dev->ctrl.device,
987 			"invalid id %d completed on queue %d\n",
988 			cqe->command_id, le16_to_cpu(cqe->sq_id));
989 		return;
990 	}
991 
992 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
993 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
994 		nvme_pci_complete_rq(req);
995 }
996 
997 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
998 {
999 	u16 tmp = nvmeq->cq_head + 1;
1000 
1001 	if (tmp == nvmeq->q_depth) {
1002 		nvmeq->cq_head = 0;
1003 		nvmeq->cq_phase ^= 1;
1004 	} else {
1005 		nvmeq->cq_head = tmp;
1006 	}
1007 }
1008 
1009 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1010 {
1011 	int found = 0;
1012 
1013 	while (nvme_cqe_pending(nvmeq)) {
1014 		found++;
1015 		/*
1016 		 * load-load control dependency between phase and the rest of
1017 		 * the cqe requires a full read memory barrier
1018 		 */
1019 		dma_rmb();
1020 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1021 		nvme_update_cq_head(nvmeq);
1022 	}
1023 
1024 	if (found)
1025 		nvme_ring_cq_doorbell(nvmeq);
1026 	return found;
1027 }
1028 
1029 static irqreturn_t nvme_irq(int irq, void *data)
1030 {
1031 	struct nvme_queue *nvmeq = data;
1032 	irqreturn_t ret = IRQ_NONE;
1033 
1034 	/*
1035 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1036 	 * the irq handler, even if that was on another CPU.
1037 	 */
1038 	rmb();
1039 	if (nvme_process_cq(nvmeq))
1040 		ret = IRQ_HANDLED;
1041 	wmb();
1042 
1043 	return ret;
1044 }
1045 
1046 static irqreturn_t nvme_irq_check(int irq, void *data)
1047 {
1048 	struct nvme_queue *nvmeq = data;
1049 
1050 	if (nvme_cqe_pending(nvmeq))
1051 		return IRQ_WAKE_THREAD;
1052 	return IRQ_NONE;
1053 }
1054 
1055 /*
1056  * Poll for completions for any interrupt driven queue
1057  * Can be called from any context.
1058  */
1059 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1060 {
1061 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1062 
1063 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1064 
1065 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1066 	nvme_process_cq(nvmeq);
1067 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1068 }
1069 
1070 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1071 {
1072 	struct nvme_queue *nvmeq = hctx->driver_data;
1073 	bool found;
1074 
1075 	if (!nvme_cqe_pending(nvmeq))
1076 		return 0;
1077 
1078 	spin_lock(&nvmeq->cq_poll_lock);
1079 	found = nvme_process_cq(nvmeq);
1080 	spin_unlock(&nvmeq->cq_poll_lock);
1081 
1082 	return found;
1083 }
1084 
1085 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1086 {
1087 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1088 	struct nvme_queue *nvmeq = &dev->queues[0];
1089 	struct nvme_command c;
1090 
1091 	memset(&c, 0, sizeof(c));
1092 	c.common.opcode = nvme_admin_async_event;
1093 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1094 	nvme_submit_cmd(nvmeq, &c, true);
1095 }
1096 
1097 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1098 {
1099 	struct nvme_command c;
1100 
1101 	memset(&c, 0, sizeof(c));
1102 	c.delete_queue.opcode = opcode;
1103 	c.delete_queue.qid = cpu_to_le16(id);
1104 
1105 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1106 }
1107 
1108 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1109 		struct nvme_queue *nvmeq, s16 vector)
1110 {
1111 	struct nvme_command c;
1112 	int flags = NVME_QUEUE_PHYS_CONTIG;
1113 
1114 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1115 		flags |= NVME_CQ_IRQ_ENABLED;
1116 
1117 	/*
1118 	 * Note: we (ab)use the fact that the prp fields survive if no data
1119 	 * is attached to the request.
1120 	 */
1121 	memset(&c, 0, sizeof(c));
1122 	c.create_cq.opcode = nvme_admin_create_cq;
1123 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1124 	c.create_cq.cqid = cpu_to_le16(qid);
1125 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1126 	c.create_cq.cq_flags = cpu_to_le16(flags);
1127 	c.create_cq.irq_vector = cpu_to_le16(vector);
1128 
1129 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1130 }
1131 
1132 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1133 						struct nvme_queue *nvmeq)
1134 {
1135 	struct nvme_ctrl *ctrl = &dev->ctrl;
1136 	struct nvme_command c;
1137 	int flags = NVME_QUEUE_PHYS_CONTIG;
1138 
1139 	/*
1140 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1141 	 * set. Since URGENT priority is zeroes, it makes all queues
1142 	 * URGENT.
1143 	 */
1144 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1145 		flags |= NVME_SQ_PRIO_MEDIUM;
1146 
1147 	/*
1148 	 * Note: we (ab)use the fact that the prp fields survive if no data
1149 	 * is attached to the request.
1150 	 */
1151 	memset(&c, 0, sizeof(c));
1152 	c.create_sq.opcode = nvme_admin_create_sq;
1153 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1154 	c.create_sq.sqid = cpu_to_le16(qid);
1155 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1156 	c.create_sq.sq_flags = cpu_to_le16(flags);
1157 	c.create_sq.cqid = cpu_to_le16(qid);
1158 
1159 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1160 }
1161 
1162 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1163 {
1164 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1165 }
1166 
1167 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1168 {
1169 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1170 }
1171 
1172 static void abort_endio(struct request *req, blk_status_t error)
1173 {
1174 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1175 	struct nvme_queue *nvmeq = iod->nvmeq;
1176 
1177 	dev_warn(nvmeq->dev->ctrl.device,
1178 		 "Abort status: 0x%x", nvme_req(req)->status);
1179 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1180 	blk_mq_free_request(req);
1181 }
1182 
1183 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1184 {
1185 	/* If true, indicates loss of adapter communication, possibly by a
1186 	 * NVMe Subsystem reset.
1187 	 */
1188 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1189 
1190 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1191 	switch (dev->ctrl.state) {
1192 	case NVME_CTRL_RESETTING:
1193 	case NVME_CTRL_CONNECTING:
1194 		return false;
1195 	default:
1196 		break;
1197 	}
1198 
1199 	/* We shouldn't reset unless the controller is on fatal error state
1200 	 * _or_ if we lost the communication with it.
1201 	 */
1202 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1203 		return false;
1204 
1205 	return true;
1206 }
1207 
1208 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1209 {
1210 	/* Read a config register to help see what died. */
1211 	u16 pci_status;
1212 	int result;
1213 
1214 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1215 				      &pci_status);
1216 	if (result == PCIBIOS_SUCCESSFUL)
1217 		dev_warn(dev->ctrl.device,
1218 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1219 			 csts, pci_status);
1220 	else
1221 		dev_warn(dev->ctrl.device,
1222 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1223 			 csts, result);
1224 }
1225 
1226 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1227 {
1228 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1229 	struct nvme_queue *nvmeq = iod->nvmeq;
1230 	struct nvme_dev *dev = nvmeq->dev;
1231 	struct request *abort_req;
1232 	struct nvme_command cmd;
1233 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1234 
1235 	/* If PCI error recovery process is happening, we cannot reset or
1236 	 * the recovery mechanism will surely fail.
1237 	 */
1238 	mb();
1239 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1240 		return BLK_EH_RESET_TIMER;
1241 
1242 	/*
1243 	 * Reset immediately if the controller is failed
1244 	 */
1245 	if (nvme_should_reset(dev, csts)) {
1246 		nvme_warn_reset(dev, csts);
1247 		nvme_dev_disable(dev, false);
1248 		nvme_reset_ctrl(&dev->ctrl);
1249 		return BLK_EH_DONE;
1250 	}
1251 
1252 	/*
1253 	 * Did we miss an interrupt?
1254 	 */
1255 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1256 		nvme_poll(req->mq_hctx);
1257 	else
1258 		nvme_poll_irqdisable(nvmeq);
1259 
1260 	if (blk_mq_request_completed(req)) {
1261 		dev_warn(dev->ctrl.device,
1262 			 "I/O %d QID %d timeout, completion polled\n",
1263 			 req->tag, nvmeq->qid);
1264 		return BLK_EH_DONE;
1265 	}
1266 
1267 	/*
1268 	 * Shutdown immediately if controller times out while starting. The
1269 	 * reset work will see the pci device disabled when it gets the forced
1270 	 * cancellation error. All outstanding requests are completed on
1271 	 * shutdown, so we return BLK_EH_DONE.
1272 	 */
1273 	switch (dev->ctrl.state) {
1274 	case NVME_CTRL_CONNECTING:
1275 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1276 		fallthrough;
1277 	case NVME_CTRL_DELETING:
1278 		dev_warn_ratelimited(dev->ctrl.device,
1279 			 "I/O %d QID %d timeout, disable controller\n",
1280 			 req->tag, nvmeq->qid);
1281 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1282 		nvme_dev_disable(dev, true);
1283 		return BLK_EH_DONE;
1284 	case NVME_CTRL_RESETTING:
1285 		return BLK_EH_RESET_TIMER;
1286 	default:
1287 		break;
1288 	}
1289 
1290 	/*
1291 	 * Shutdown the controller immediately and schedule a reset if the
1292 	 * command was already aborted once before and still hasn't been
1293 	 * returned to the driver, or if this is the admin queue.
1294 	 */
1295 	if (!nvmeq->qid || iod->aborted) {
1296 		dev_warn(dev->ctrl.device,
1297 			 "I/O %d QID %d timeout, reset controller\n",
1298 			 req->tag, nvmeq->qid);
1299 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1300 		nvme_dev_disable(dev, false);
1301 		nvme_reset_ctrl(&dev->ctrl);
1302 
1303 		return BLK_EH_DONE;
1304 	}
1305 
1306 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1307 		atomic_inc(&dev->ctrl.abort_limit);
1308 		return BLK_EH_RESET_TIMER;
1309 	}
1310 	iod->aborted = 1;
1311 
1312 	memset(&cmd, 0, sizeof(cmd));
1313 	cmd.abort.opcode = nvme_admin_abort_cmd;
1314 	cmd.abort.cid = req->tag;
1315 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1316 
1317 	dev_warn(nvmeq->dev->ctrl.device,
1318 		"I/O %d QID %d timeout, aborting\n",
1319 		 req->tag, nvmeq->qid);
1320 
1321 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1322 			BLK_MQ_REQ_NOWAIT);
1323 	if (IS_ERR(abort_req)) {
1324 		atomic_inc(&dev->ctrl.abort_limit);
1325 		return BLK_EH_RESET_TIMER;
1326 	}
1327 
1328 	abort_req->end_io_data = NULL;
1329 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1330 
1331 	/*
1332 	 * The aborted req will be completed on receiving the abort req.
1333 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1334 	 * as the device then is in a faulty state.
1335 	 */
1336 	return BLK_EH_RESET_TIMER;
1337 }
1338 
1339 static void nvme_free_queue(struct nvme_queue *nvmeq)
1340 {
1341 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1342 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1343 	if (!nvmeq->sq_cmds)
1344 		return;
1345 
1346 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1347 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1348 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1349 	} else {
1350 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1351 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1352 	}
1353 }
1354 
1355 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1356 {
1357 	int i;
1358 
1359 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1360 		dev->ctrl.queue_count--;
1361 		nvme_free_queue(&dev->queues[i]);
1362 	}
1363 }
1364 
1365 /**
1366  * nvme_suspend_queue - put queue into suspended state
1367  * @nvmeq: queue to suspend
1368  */
1369 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1370 {
1371 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1372 		return 1;
1373 
1374 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1375 	mb();
1376 
1377 	nvmeq->dev->online_queues--;
1378 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1379 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1380 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1381 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1382 	return 0;
1383 }
1384 
1385 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1386 {
1387 	int i;
1388 
1389 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1390 		nvme_suspend_queue(&dev->queues[i]);
1391 }
1392 
1393 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1394 {
1395 	struct nvme_queue *nvmeq = &dev->queues[0];
1396 
1397 	if (shutdown)
1398 		nvme_shutdown_ctrl(&dev->ctrl);
1399 	else
1400 		nvme_disable_ctrl(&dev->ctrl);
1401 
1402 	nvme_poll_irqdisable(nvmeq);
1403 }
1404 
1405 /*
1406  * Called only on a device that has been disabled and after all other threads
1407  * that can check this device's completion queues have synced, except
1408  * nvme_poll(). This is the last chance for the driver to see a natural
1409  * completion before nvme_cancel_request() terminates all incomplete requests.
1410  */
1411 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1412 {
1413 	int i;
1414 
1415 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1416 		spin_lock(&dev->queues[i].cq_poll_lock);
1417 		nvme_process_cq(&dev->queues[i]);
1418 		spin_unlock(&dev->queues[i].cq_poll_lock);
1419 	}
1420 }
1421 
1422 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1423 				int entry_size)
1424 {
1425 	int q_depth = dev->q_depth;
1426 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1427 					  NVME_CTRL_PAGE_SIZE);
1428 
1429 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1430 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1431 
1432 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1433 		q_depth = div_u64(mem_per_q, entry_size);
1434 
1435 		/*
1436 		 * Ensure the reduced q_depth is above some threshold where it
1437 		 * would be better to map queues in system memory with the
1438 		 * original depth
1439 		 */
1440 		if (q_depth < 64)
1441 			return -ENOMEM;
1442 	}
1443 
1444 	return q_depth;
1445 }
1446 
1447 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1448 				int qid)
1449 {
1450 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1451 
1452 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1453 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1454 		if (nvmeq->sq_cmds) {
1455 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1456 							nvmeq->sq_cmds);
1457 			if (nvmeq->sq_dma_addr) {
1458 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1459 				return 0;
1460 			}
1461 
1462 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1463 		}
1464 	}
1465 
1466 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1467 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1468 	if (!nvmeq->sq_cmds)
1469 		return -ENOMEM;
1470 	return 0;
1471 }
1472 
1473 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1474 {
1475 	struct nvme_queue *nvmeq = &dev->queues[qid];
1476 
1477 	if (dev->ctrl.queue_count > qid)
1478 		return 0;
1479 
1480 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1481 	nvmeq->q_depth = depth;
1482 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1483 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1484 	if (!nvmeq->cqes)
1485 		goto free_nvmeq;
1486 
1487 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1488 		goto free_cqdma;
1489 
1490 	nvmeq->dev = dev;
1491 	spin_lock_init(&nvmeq->sq_lock);
1492 	spin_lock_init(&nvmeq->cq_poll_lock);
1493 	nvmeq->cq_head = 0;
1494 	nvmeq->cq_phase = 1;
1495 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1496 	nvmeq->qid = qid;
1497 	dev->ctrl.queue_count++;
1498 
1499 	return 0;
1500 
1501  free_cqdma:
1502 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1503 			  nvmeq->cq_dma_addr);
1504  free_nvmeq:
1505 	return -ENOMEM;
1506 }
1507 
1508 static int queue_request_irq(struct nvme_queue *nvmeq)
1509 {
1510 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1511 	int nr = nvmeq->dev->ctrl.instance;
1512 
1513 	if (use_threaded_interrupts) {
1514 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1515 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1516 	} else {
1517 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1518 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1519 	}
1520 }
1521 
1522 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1523 {
1524 	struct nvme_dev *dev = nvmeq->dev;
1525 
1526 	nvmeq->sq_tail = 0;
1527 	nvmeq->last_sq_tail = 0;
1528 	nvmeq->cq_head = 0;
1529 	nvmeq->cq_phase = 1;
1530 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1531 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1532 	nvme_dbbuf_init(dev, nvmeq, qid);
1533 	dev->online_queues++;
1534 	wmb(); /* ensure the first interrupt sees the initialization */
1535 }
1536 
1537 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1538 {
1539 	struct nvme_dev *dev = nvmeq->dev;
1540 	int result;
1541 	u16 vector = 0;
1542 
1543 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1544 
1545 	/*
1546 	 * A queue's vector matches the queue identifier unless the controller
1547 	 * has only one vector available.
1548 	 */
1549 	if (!polled)
1550 		vector = dev->num_vecs == 1 ? 0 : qid;
1551 	else
1552 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1553 
1554 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1555 	if (result)
1556 		return result;
1557 
1558 	result = adapter_alloc_sq(dev, qid, nvmeq);
1559 	if (result < 0)
1560 		return result;
1561 	if (result)
1562 		goto release_cq;
1563 
1564 	nvmeq->cq_vector = vector;
1565 	nvme_init_queue(nvmeq, qid);
1566 
1567 	if (!polled) {
1568 		result = queue_request_irq(nvmeq);
1569 		if (result < 0)
1570 			goto release_sq;
1571 	}
1572 
1573 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1574 	return result;
1575 
1576 release_sq:
1577 	dev->online_queues--;
1578 	adapter_delete_sq(dev, qid);
1579 release_cq:
1580 	adapter_delete_cq(dev, qid);
1581 	return result;
1582 }
1583 
1584 static const struct blk_mq_ops nvme_mq_admin_ops = {
1585 	.queue_rq	= nvme_queue_rq,
1586 	.complete	= nvme_pci_complete_rq,
1587 	.init_hctx	= nvme_admin_init_hctx,
1588 	.init_request	= nvme_init_request,
1589 	.timeout	= nvme_timeout,
1590 };
1591 
1592 static const struct blk_mq_ops nvme_mq_ops = {
1593 	.queue_rq	= nvme_queue_rq,
1594 	.complete	= nvme_pci_complete_rq,
1595 	.commit_rqs	= nvme_commit_rqs,
1596 	.init_hctx	= nvme_init_hctx,
1597 	.init_request	= nvme_init_request,
1598 	.map_queues	= nvme_pci_map_queues,
1599 	.timeout	= nvme_timeout,
1600 	.poll		= nvme_poll,
1601 };
1602 
1603 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1604 {
1605 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1606 		/*
1607 		 * If the controller was reset during removal, it's possible
1608 		 * user requests may be waiting on a stopped queue. Start the
1609 		 * queue to flush these to completion.
1610 		 */
1611 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1612 		blk_cleanup_queue(dev->ctrl.admin_q);
1613 		blk_mq_free_tag_set(&dev->admin_tagset);
1614 	}
1615 }
1616 
1617 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1618 {
1619 	if (!dev->ctrl.admin_q) {
1620 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1621 		dev->admin_tagset.nr_hw_queues = 1;
1622 
1623 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1624 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1625 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1626 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1627 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1628 		dev->admin_tagset.driver_data = dev;
1629 
1630 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1631 			return -ENOMEM;
1632 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1633 
1634 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1635 		if (IS_ERR(dev->ctrl.admin_q)) {
1636 			blk_mq_free_tag_set(&dev->admin_tagset);
1637 			return -ENOMEM;
1638 		}
1639 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1640 			nvme_dev_remove_admin(dev);
1641 			dev->ctrl.admin_q = NULL;
1642 			return -ENODEV;
1643 		}
1644 	} else
1645 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1646 
1647 	return 0;
1648 }
1649 
1650 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1651 {
1652 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1653 }
1654 
1655 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1656 {
1657 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1658 
1659 	if (size <= dev->bar_mapped_size)
1660 		return 0;
1661 	if (size > pci_resource_len(pdev, 0))
1662 		return -ENOMEM;
1663 	if (dev->bar)
1664 		iounmap(dev->bar);
1665 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1666 	if (!dev->bar) {
1667 		dev->bar_mapped_size = 0;
1668 		return -ENOMEM;
1669 	}
1670 	dev->bar_mapped_size = size;
1671 	dev->dbs = dev->bar + NVME_REG_DBS;
1672 
1673 	return 0;
1674 }
1675 
1676 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1677 {
1678 	int result;
1679 	u32 aqa;
1680 	struct nvme_queue *nvmeq;
1681 
1682 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1683 	if (result < 0)
1684 		return result;
1685 
1686 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1687 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1688 
1689 	if (dev->subsystem &&
1690 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1691 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1692 
1693 	result = nvme_disable_ctrl(&dev->ctrl);
1694 	if (result < 0)
1695 		return result;
1696 
1697 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1698 	if (result)
1699 		return result;
1700 
1701 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1702 
1703 	nvmeq = &dev->queues[0];
1704 	aqa = nvmeq->q_depth - 1;
1705 	aqa |= aqa << 16;
1706 
1707 	writel(aqa, dev->bar + NVME_REG_AQA);
1708 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1709 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1710 
1711 	result = nvme_enable_ctrl(&dev->ctrl);
1712 	if (result)
1713 		return result;
1714 
1715 	nvmeq->cq_vector = 0;
1716 	nvme_init_queue(nvmeq, 0);
1717 	result = queue_request_irq(nvmeq);
1718 	if (result) {
1719 		dev->online_queues--;
1720 		return result;
1721 	}
1722 
1723 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1724 	return result;
1725 }
1726 
1727 static int nvme_create_io_queues(struct nvme_dev *dev)
1728 {
1729 	unsigned i, max, rw_queues;
1730 	int ret = 0;
1731 
1732 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1733 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1734 			ret = -ENOMEM;
1735 			break;
1736 		}
1737 	}
1738 
1739 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1740 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1741 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1742 				dev->io_queues[HCTX_TYPE_READ];
1743 	} else {
1744 		rw_queues = max;
1745 	}
1746 
1747 	for (i = dev->online_queues; i <= max; i++) {
1748 		bool polled = i > rw_queues;
1749 
1750 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1751 		if (ret)
1752 			break;
1753 	}
1754 
1755 	/*
1756 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1757 	 * than the desired amount of queues, and even a controller without
1758 	 * I/O queues can still be used to issue admin commands.  This might
1759 	 * be useful to upgrade a buggy firmware for example.
1760 	 */
1761 	return ret >= 0 ? 0 : ret;
1762 }
1763 
1764 static ssize_t nvme_cmb_show(struct device *dev,
1765 			     struct device_attribute *attr,
1766 			     char *buf)
1767 {
1768 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1769 
1770 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1771 		       ndev->cmbloc, ndev->cmbsz);
1772 }
1773 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1774 
1775 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1776 {
1777 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1778 
1779 	return 1ULL << (12 + 4 * szu);
1780 }
1781 
1782 static u32 nvme_cmb_size(struct nvme_dev *dev)
1783 {
1784 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1785 }
1786 
1787 static void nvme_map_cmb(struct nvme_dev *dev)
1788 {
1789 	u64 size, offset;
1790 	resource_size_t bar_size;
1791 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1792 	int bar;
1793 
1794 	if (dev->cmb_size)
1795 		return;
1796 
1797 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1798 	if (!dev->cmbsz)
1799 		return;
1800 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1801 
1802 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1803 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1804 	bar = NVME_CMB_BIR(dev->cmbloc);
1805 	bar_size = pci_resource_len(pdev, bar);
1806 
1807 	if (offset > bar_size)
1808 		return;
1809 
1810 	/*
1811 	 * Controllers may support a CMB size larger than their BAR,
1812 	 * for example, due to being behind a bridge. Reduce the CMB to
1813 	 * the reported size of the BAR
1814 	 */
1815 	if (size > bar_size - offset)
1816 		size = bar_size - offset;
1817 
1818 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1819 		dev_warn(dev->ctrl.device,
1820 			 "failed to register the CMB\n");
1821 		return;
1822 	}
1823 
1824 	dev->cmb_size = size;
1825 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1826 
1827 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1828 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1829 		pci_p2pmem_publish(pdev, true);
1830 
1831 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1832 				    &dev_attr_cmb.attr, NULL))
1833 		dev_warn(dev->ctrl.device,
1834 			 "failed to add sysfs attribute for CMB\n");
1835 }
1836 
1837 static inline void nvme_release_cmb(struct nvme_dev *dev)
1838 {
1839 	if (dev->cmb_size) {
1840 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1841 					     &dev_attr_cmb.attr, NULL);
1842 		dev->cmb_size = 0;
1843 	}
1844 }
1845 
1846 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1847 {
1848 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1849 	u64 dma_addr = dev->host_mem_descs_dma;
1850 	struct nvme_command c;
1851 	int ret;
1852 
1853 	memset(&c, 0, sizeof(c));
1854 	c.features.opcode	= nvme_admin_set_features;
1855 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1856 	c.features.dword11	= cpu_to_le32(bits);
1857 	c.features.dword12	= cpu_to_le32(host_mem_size);
1858 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1859 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1860 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1861 
1862 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1863 	if (ret) {
1864 		dev_warn(dev->ctrl.device,
1865 			 "failed to set host mem (err %d, flags %#x).\n",
1866 			 ret, bits);
1867 	}
1868 	return ret;
1869 }
1870 
1871 static void nvme_free_host_mem(struct nvme_dev *dev)
1872 {
1873 	int i;
1874 
1875 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1876 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1877 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1878 
1879 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1880 			       le64_to_cpu(desc->addr),
1881 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1882 	}
1883 
1884 	kfree(dev->host_mem_desc_bufs);
1885 	dev->host_mem_desc_bufs = NULL;
1886 	dma_free_coherent(dev->dev,
1887 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1888 			dev->host_mem_descs, dev->host_mem_descs_dma);
1889 	dev->host_mem_descs = NULL;
1890 	dev->nr_host_mem_descs = 0;
1891 }
1892 
1893 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1894 		u32 chunk_size)
1895 {
1896 	struct nvme_host_mem_buf_desc *descs;
1897 	u32 max_entries, len;
1898 	dma_addr_t descs_dma;
1899 	int i = 0;
1900 	void **bufs;
1901 	u64 size, tmp;
1902 
1903 	tmp = (preferred + chunk_size - 1);
1904 	do_div(tmp, chunk_size);
1905 	max_entries = tmp;
1906 
1907 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1908 		max_entries = dev->ctrl.hmmaxd;
1909 
1910 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1911 				   &descs_dma, GFP_KERNEL);
1912 	if (!descs)
1913 		goto out;
1914 
1915 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1916 	if (!bufs)
1917 		goto out_free_descs;
1918 
1919 	for (size = 0; size < preferred && i < max_entries; size += len) {
1920 		dma_addr_t dma_addr;
1921 
1922 		len = min_t(u64, chunk_size, preferred - size);
1923 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1924 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1925 		if (!bufs[i])
1926 			break;
1927 
1928 		descs[i].addr = cpu_to_le64(dma_addr);
1929 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1930 		i++;
1931 	}
1932 
1933 	if (!size)
1934 		goto out_free_bufs;
1935 
1936 	dev->nr_host_mem_descs = i;
1937 	dev->host_mem_size = size;
1938 	dev->host_mem_descs = descs;
1939 	dev->host_mem_descs_dma = descs_dma;
1940 	dev->host_mem_desc_bufs = bufs;
1941 	return 0;
1942 
1943 out_free_bufs:
1944 	while (--i >= 0) {
1945 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1946 
1947 		dma_free_attrs(dev->dev, size, bufs[i],
1948 			       le64_to_cpu(descs[i].addr),
1949 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1950 	}
1951 
1952 	kfree(bufs);
1953 out_free_descs:
1954 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1955 			descs_dma);
1956 out:
1957 	dev->host_mem_descs = NULL;
1958 	return -ENOMEM;
1959 }
1960 
1961 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1962 {
1963 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1964 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1965 	u64 chunk_size;
1966 
1967 	/* start big and work our way down */
1968 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
1969 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1970 			if (!min || dev->host_mem_size >= min)
1971 				return 0;
1972 			nvme_free_host_mem(dev);
1973 		}
1974 	}
1975 
1976 	return -ENOMEM;
1977 }
1978 
1979 static int nvme_setup_host_mem(struct nvme_dev *dev)
1980 {
1981 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1982 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1983 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1984 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1985 	int ret;
1986 
1987 	preferred = min(preferred, max);
1988 	if (min > max) {
1989 		dev_warn(dev->ctrl.device,
1990 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1991 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1992 		nvme_free_host_mem(dev);
1993 		return 0;
1994 	}
1995 
1996 	/*
1997 	 * If we already have a buffer allocated check if we can reuse it.
1998 	 */
1999 	if (dev->host_mem_descs) {
2000 		if (dev->host_mem_size >= min)
2001 			enable_bits |= NVME_HOST_MEM_RETURN;
2002 		else
2003 			nvme_free_host_mem(dev);
2004 	}
2005 
2006 	if (!dev->host_mem_descs) {
2007 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2008 			dev_warn(dev->ctrl.device,
2009 				"failed to allocate host memory buffer.\n");
2010 			return 0; /* controller must work without HMB */
2011 		}
2012 
2013 		dev_info(dev->ctrl.device,
2014 			"allocated %lld MiB host memory buffer.\n",
2015 			dev->host_mem_size >> ilog2(SZ_1M));
2016 	}
2017 
2018 	ret = nvme_set_host_mem(dev, enable_bits);
2019 	if (ret)
2020 		nvme_free_host_mem(dev);
2021 	return ret;
2022 }
2023 
2024 /*
2025  * nirqs is the number of interrupts available for write and read
2026  * queues. The core already reserved an interrupt for the admin queue.
2027  */
2028 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2029 {
2030 	struct nvme_dev *dev = affd->priv;
2031 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2032 
2033 	/*
2034 	 * If there is no interrupt available for queues, ensure that
2035 	 * the default queue is set to 1. The affinity set size is
2036 	 * also set to one, but the irq core ignores it for this case.
2037 	 *
2038 	 * If only one interrupt is available or 'write_queue' == 0, combine
2039 	 * write and read queues.
2040 	 *
2041 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2042 	 * queue.
2043 	 */
2044 	if (!nrirqs) {
2045 		nrirqs = 1;
2046 		nr_read_queues = 0;
2047 	} else if (nrirqs == 1 || !nr_write_queues) {
2048 		nr_read_queues = 0;
2049 	} else if (nr_write_queues >= nrirqs) {
2050 		nr_read_queues = 1;
2051 	} else {
2052 		nr_read_queues = nrirqs - nr_write_queues;
2053 	}
2054 
2055 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2056 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2057 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2058 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2059 	affd->nr_sets = nr_read_queues ? 2 : 1;
2060 }
2061 
2062 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2063 {
2064 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2065 	struct irq_affinity affd = {
2066 		.pre_vectors	= 1,
2067 		.calc_sets	= nvme_calc_irq_sets,
2068 		.priv		= dev,
2069 	};
2070 	unsigned int irq_queues, poll_queues;
2071 
2072 	/*
2073 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2074 	 * left over for non-polled I/O.
2075 	 */
2076 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2077 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2078 
2079 	/*
2080 	 * Initialize for the single interrupt case, will be updated in
2081 	 * nvme_calc_irq_sets().
2082 	 */
2083 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2084 	dev->io_queues[HCTX_TYPE_READ] = 0;
2085 
2086 	/*
2087 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2088 	 * but some Apple controllers require all queues to use the first
2089 	 * vector.
2090 	 */
2091 	irq_queues = 1;
2092 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2093 		irq_queues += (nr_io_queues - poll_queues);
2094 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2095 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2096 }
2097 
2098 static void nvme_disable_io_queues(struct nvme_dev *dev)
2099 {
2100 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2101 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2102 }
2103 
2104 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2105 {
2106 	/*
2107 	 * If tags are shared with admin queue (Apple bug), then
2108 	 * make sure we only use one IO queue.
2109 	 */
2110 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2111 		return 1;
2112 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2113 }
2114 
2115 static int nvme_setup_io_queues(struct nvme_dev *dev)
2116 {
2117 	struct nvme_queue *adminq = &dev->queues[0];
2118 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2119 	unsigned int nr_io_queues;
2120 	unsigned long size;
2121 	int result;
2122 
2123 	/*
2124 	 * Sample the module parameters once at reset time so that we have
2125 	 * stable values to work with.
2126 	 */
2127 	dev->nr_write_queues = write_queues;
2128 	dev->nr_poll_queues = poll_queues;
2129 
2130 	nr_io_queues = dev->nr_allocated_queues - 1;
2131 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2132 	if (result < 0)
2133 		return result;
2134 
2135 	if (nr_io_queues == 0)
2136 		return 0;
2137 
2138 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2139 
2140 	if (dev->cmb_use_sqes) {
2141 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2142 				sizeof(struct nvme_command));
2143 		if (result > 0)
2144 			dev->q_depth = result;
2145 		else
2146 			dev->cmb_use_sqes = false;
2147 	}
2148 
2149 	do {
2150 		size = db_bar_size(dev, nr_io_queues);
2151 		result = nvme_remap_bar(dev, size);
2152 		if (!result)
2153 			break;
2154 		if (!--nr_io_queues)
2155 			return -ENOMEM;
2156 	} while (1);
2157 	adminq->q_db = dev->dbs;
2158 
2159  retry:
2160 	/* Deregister the admin queue's interrupt */
2161 	pci_free_irq(pdev, 0, adminq);
2162 
2163 	/*
2164 	 * If we enable msix early due to not intx, disable it again before
2165 	 * setting up the full range we need.
2166 	 */
2167 	pci_free_irq_vectors(pdev);
2168 
2169 	result = nvme_setup_irqs(dev, nr_io_queues);
2170 	if (result <= 0)
2171 		return -EIO;
2172 
2173 	dev->num_vecs = result;
2174 	result = max(result - 1, 1);
2175 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2176 
2177 	/*
2178 	 * Should investigate if there's a performance win from allocating
2179 	 * more queues than interrupt vectors; it might allow the submission
2180 	 * path to scale better, even if the receive path is limited by the
2181 	 * number of interrupts.
2182 	 */
2183 	result = queue_request_irq(adminq);
2184 	if (result)
2185 		return result;
2186 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2187 
2188 	result = nvme_create_io_queues(dev);
2189 	if (result || dev->online_queues < 2)
2190 		return result;
2191 
2192 	if (dev->online_queues - 1 < dev->max_qid) {
2193 		nr_io_queues = dev->online_queues - 1;
2194 		nvme_disable_io_queues(dev);
2195 		nvme_suspend_io_queues(dev);
2196 		goto retry;
2197 	}
2198 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2199 					dev->io_queues[HCTX_TYPE_DEFAULT],
2200 					dev->io_queues[HCTX_TYPE_READ],
2201 					dev->io_queues[HCTX_TYPE_POLL]);
2202 	return 0;
2203 }
2204 
2205 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2206 {
2207 	struct nvme_queue *nvmeq = req->end_io_data;
2208 
2209 	blk_mq_free_request(req);
2210 	complete(&nvmeq->delete_done);
2211 }
2212 
2213 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2214 {
2215 	struct nvme_queue *nvmeq = req->end_io_data;
2216 
2217 	if (error)
2218 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2219 
2220 	nvme_del_queue_end(req, error);
2221 }
2222 
2223 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2224 {
2225 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2226 	struct request *req;
2227 	struct nvme_command cmd;
2228 
2229 	memset(&cmd, 0, sizeof(cmd));
2230 	cmd.delete_queue.opcode = opcode;
2231 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2232 
2233 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2234 	if (IS_ERR(req))
2235 		return PTR_ERR(req);
2236 
2237 	req->end_io_data = nvmeq;
2238 
2239 	init_completion(&nvmeq->delete_done);
2240 	blk_execute_rq_nowait(q, NULL, req, false,
2241 			opcode == nvme_admin_delete_cq ?
2242 				nvme_del_cq_end : nvme_del_queue_end);
2243 	return 0;
2244 }
2245 
2246 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2247 {
2248 	int nr_queues = dev->online_queues - 1, sent = 0;
2249 	unsigned long timeout;
2250 
2251  retry:
2252 	timeout = NVME_ADMIN_TIMEOUT;
2253 	while (nr_queues > 0) {
2254 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2255 			break;
2256 		nr_queues--;
2257 		sent++;
2258 	}
2259 	while (sent) {
2260 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2261 
2262 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2263 				timeout);
2264 		if (timeout == 0)
2265 			return false;
2266 
2267 		sent--;
2268 		if (nr_queues)
2269 			goto retry;
2270 	}
2271 	return true;
2272 }
2273 
2274 static void nvme_dev_add(struct nvme_dev *dev)
2275 {
2276 	int ret;
2277 
2278 	if (!dev->ctrl.tagset) {
2279 		dev->tagset.ops = &nvme_mq_ops;
2280 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2281 		dev->tagset.nr_maps = 2; /* default + read */
2282 		if (dev->io_queues[HCTX_TYPE_POLL])
2283 			dev->tagset.nr_maps++;
2284 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2285 		dev->tagset.numa_node = dev->ctrl.numa_node;
2286 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2287 						BLK_MQ_MAX_DEPTH) - 1;
2288 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2289 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2290 		dev->tagset.driver_data = dev;
2291 
2292 		/*
2293 		 * Some Apple controllers requires tags to be unique
2294 		 * across admin and IO queue, so reserve the first 32
2295 		 * tags of the IO queue.
2296 		 */
2297 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2298 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2299 
2300 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2301 		if (ret) {
2302 			dev_warn(dev->ctrl.device,
2303 				"IO queues tagset allocation failed %d\n", ret);
2304 			return;
2305 		}
2306 		dev->ctrl.tagset = &dev->tagset;
2307 	} else {
2308 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2309 
2310 		/* Free previously allocated queues that are no longer usable */
2311 		nvme_free_queues(dev, dev->online_queues);
2312 	}
2313 
2314 	nvme_dbbuf_set(dev);
2315 }
2316 
2317 static int nvme_pci_enable(struct nvme_dev *dev)
2318 {
2319 	int result = -ENOMEM;
2320 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2321 
2322 	if (pci_enable_device_mem(pdev))
2323 		return result;
2324 
2325 	pci_set_master(pdev);
2326 
2327 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2328 		goto disable;
2329 
2330 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2331 		result = -ENODEV;
2332 		goto disable;
2333 	}
2334 
2335 	/*
2336 	 * Some devices and/or platforms don't advertise or work with INTx
2337 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2338 	 * adjust this later.
2339 	 */
2340 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2341 	if (result < 0)
2342 		return result;
2343 
2344 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2345 
2346 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2347 				io_queue_depth);
2348 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2349 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2350 	dev->dbs = dev->bar + 4096;
2351 
2352 	/*
2353 	 * Some Apple controllers require a non-standard SQE size.
2354 	 * Interestingly they also seem to ignore the CC:IOSQES register
2355 	 * so we don't bother updating it here.
2356 	 */
2357 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2358 		dev->io_sqes = 7;
2359 	else
2360 		dev->io_sqes = NVME_NVM_IOSQES;
2361 
2362 	/*
2363 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2364 	 * some MacBook7,1 to avoid controller resets and data loss.
2365 	 */
2366 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2367 		dev->q_depth = 2;
2368 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2369 			"set queue depth=%u to work around controller resets\n",
2370 			dev->q_depth);
2371 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2372 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2373 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2374 		dev->q_depth = 64;
2375 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2376                         "set queue depth=%u\n", dev->q_depth);
2377 	}
2378 
2379 	/*
2380 	 * Controllers with the shared tags quirk need the IO queue to be
2381 	 * big enough so that we get 32 tags for the admin queue
2382 	 */
2383 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2384 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2385 		dev->q_depth = NVME_AQ_DEPTH + 2;
2386 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2387 			 dev->q_depth);
2388 	}
2389 
2390 
2391 	nvme_map_cmb(dev);
2392 
2393 	pci_enable_pcie_error_reporting(pdev);
2394 	pci_save_state(pdev);
2395 	return 0;
2396 
2397  disable:
2398 	pci_disable_device(pdev);
2399 	return result;
2400 }
2401 
2402 static void nvme_dev_unmap(struct nvme_dev *dev)
2403 {
2404 	if (dev->bar)
2405 		iounmap(dev->bar);
2406 	pci_release_mem_regions(to_pci_dev(dev->dev));
2407 }
2408 
2409 static void nvme_pci_disable(struct nvme_dev *dev)
2410 {
2411 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2412 
2413 	pci_free_irq_vectors(pdev);
2414 
2415 	if (pci_is_enabled(pdev)) {
2416 		pci_disable_pcie_error_reporting(pdev);
2417 		pci_disable_device(pdev);
2418 	}
2419 }
2420 
2421 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2422 {
2423 	bool dead = true, freeze = false;
2424 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2425 
2426 	mutex_lock(&dev->shutdown_lock);
2427 	if (pci_is_enabled(pdev)) {
2428 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2429 
2430 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2431 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2432 			freeze = true;
2433 			nvme_start_freeze(&dev->ctrl);
2434 		}
2435 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2436 			pdev->error_state  != pci_channel_io_normal);
2437 	}
2438 
2439 	/*
2440 	 * Give the controller a chance to complete all entered requests if
2441 	 * doing a safe shutdown.
2442 	 */
2443 	if (!dead && shutdown && freeze)
2444 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2445 
2446 	nvme_stop_queues(&dev->ctrl);
2447 
2448 	if (!dead && dev->ctrl.queue_count > 0) {
2449 		nvme_disable_io_queues(dev);
2450 		nvme_disable_admin_queue(dev, shutdown);
2451 	}
2452 	nvme_suspend_io_queues(dev);
2453 	nvme_suspend_queue(&dev->queues[0]);
2454 	nvme_pci_disable(dev);
2455 	nvme_reap_pending_cqes(dev);
2456 
2457 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2458 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2459 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2460 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2461 
2462 	/*
2463 	 * The driver will not be starting up queues again if shutting down so
2464 	 * must flush all entered requests to their failed completion to avoid
2465 	 * deadlocking blk-mq hot-cpu notifier.
2466 	 */
2467 	if (shutdown) {
2468 		nvme_start_queues(&dev->ctrl);
2469 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2470 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2471 	}
2472 	mutex_unlock(&dev->shutdown_lock);
2473 }
2474 
2475 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2476 {
2477 	if (!nvme_wait_reset(&dev->ctrl))
2478 		return -EBUSY;
2479 	nvme_dev_disable(dev, shutdown);
2480 	return 0;
2481 }
2482 
2483 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2484 {
2485 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2486 						NVME_CTRL_PAGE_SIZE,
2487 						NVME_CTRL_PAGE_SIZE, 0);
2488 	if (!dev->prp_page_pool)
2489 		return -ENOMEM;
2490 
2491 	/* Optimisation for I/Os between 4k and 128k */
2492 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2493 						256, 256, 0);
2494 	if (!dev->prp_small_pool) {
2495 		dma_pool_destroy(dev->prp_page_pool);
2496 		return -ENOMEM;
2497 	}
2498 	return 0;
2499 }
2500 
2501 static void nvme_release_prp_pools(struct nvme_dev *dev)
2502 {
2503 	dma_pool_destroy(dev->prp_page_pool);
2504 	dma_pool_destroy(dev->prp_small_pool);
2505 }
2506 
2507 static void nvme_free_tagset(struct nvme_dev *dev)
2508 {
2509 	if (dev->tagset.tags)
2510 		blk_mq_free_tag_set(&dev->tagset);
2511 	dev->ctrl.tagset = NULL;
2512 }
2513 
2514 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2515 {
2516 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2517 
2518 	nvme_dbbuf_dma_free(dev);
2519 	nvme_free_tagset(dev);
2520 	if (dev->ctrl.admin_q)
2521 		blk_put_queue(dev->ctrl.admin_q);
2522 	free_opal_dev(dev->ctrl.opal_dev);
2523 	mempool_destroy(dev->iod_mempool);
2524 	put_device(dev->dev);
2525 	kfree(dev->queues);
2526 	kfree(dev);
2527 }
2528 
2529 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2530 {
2531 	/*
2532 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2533 	 * may be holding this pci_dev's device lock.
2534 	 */
2535 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2536 	nvme_get_ctrl(&dev->ctrl);
2537 	nvme_dev_disable(dev, false);
2538 	nvme_kill_queues(&dev->ctrl);
2539 	if (!queue_work(nvme_wq, &dev->remove_work))
2540 		nvme_put_ctrl(&dev->ctrl);
2541 }
2542 
2543 static void nvme_reset_work(struct work_struct *work)
2544 {
2545 	struct nvme_dev *dev =
2546 		container_of(work, struct nvme_dev, ctrl.reset_work);
2547 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2548 	int result;
2549 
2550 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2551 		result = -ENODEV;
2552 		goto out;
2553 	}
2554 
2555 	/*
2556 	 * If we're called to reset a live controller first shut it down before
2557 	 * moving on.
2558 	 */
2559 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2560 		nvme_dev_disable(dev, false);
2561 	nvme_sync_queues(&dev->ctrl);
2562 
2563 	mutex_lock(&dev->shutdown_lock);
2564 	result = nvme_pci_enable(dev);
2565 	if (result)
2566 		goto out_unlock;
2567 
2568 	result = nvme_pci_configure_admin_queue(dev);
2569 	if (result)
2570 		goto out_unlock;
2571 
2572 	result = nvme_alloc_admin_tags(dev);
2573 	if (result)
2574 		goto out_unlock;
2575 
2576 	/*
2577 	 * Limit the max command size to prevent iod->sg allocations going
2578 	 * over a single page.
2579 	 */
2580 	dev->ctrl.max_hw_sectors = min_t(u32,
2581 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2582 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2583 
2584 	/*
2585 	 * Don't limit the IOMMU merged segment size.
2586 	 */
2587 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2588 
2589 	mutex_unlock(&dev->shutdown_lock);
2590 
2591 	/*
2592 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2593 	 * initializing procedure here.
2594 	 */
2595 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2596 		dev_warn(dev->ctrl.device,
2597 			"failed to mark controller CONNECTING\n");
2598 		result = -EBUSY;
2599 		goto out;
2600 	}
2601 
2602 	/*
2603 	 * We do not support an SGL for metadata (yet), so we are limited to a
2604 	 * single integrity segment for the separate metadata pointer.
2605 	 */
2606 	dev->ctrl.max_integrity_segments = 1;
2607 
2608 	result = nvme_init_identify(&dev->ctrl);
2609 	if (result)
2610 		goto out;
2611 
2612 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2613 		if (!dev->ctrl.opal_dev)
2614 			dev->ctrl.opal_dev =
2615 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2616 		else if (was_suspend)
2617 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2618 	} else {
2619 		free_opal_dev(dev->ctrl.opal_dev);
2620 		dev->ctrl.opal_dev = NULL;
2621 	}
2622 
2623 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2624 		result = nvme_dbbuf_dma_alloc(dev);
2625 		if (result)
2626 			dev_warn(dev->dev,
2627 				 "unable to allocate dma for dbbuf\n");
2628 	}
2629 
2630 	if (dev->ctrl.hmpre) {
2631 		result = nvme_setup_host_mem(dev);
2632 		if (result < 0)
2633 			goto out;
2634 	}
2635 
2636 	result = nvme_setup_io_queues(dev);
2637 	if (result)
2638 		goto out;
2639 
2640 	/*
2641 	 * Keep the controller around but remove all namespaces if we don't have
2642 	 * any working I/O queue.
2643 	 */
2644 	if (dev->online_queues < 2) {
2645 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2646 		nvme_kill_queues(&dev->ctrl);
2647 		nvme_remove_namespaces(&dev->ctrl);
2648 		nvme_free_tagset(dev);
2649 	} else {
2650 		nvme_start_queues(&dev->ctrl);
2651 		nvme_wait_freeze(&dev->ctrl);
2652 		nvme_dev_add(dev);
2653 		nvme_unfreeze(&dev->ctrl);
2654 	}
2655 
2656 	/*
2657 	 * If only admin queue live, keep it to do further investigation or
2658 	 * recovery.
2659 	 */
2660 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2661 		dev_warn(dev->ctrl.device,
2662 			"failed to mark controller live state\n");
2663 		result = -ENODEV;
2664 		goto out;
2665 	}
2666 
2667 	nvme_start_ctrl(&dev->ctrl);
2668 	return;
2669 
2670  out_unlock:
2671 	mutex_unlock(&dev->shutdown_lock);
2672  out:
2673 	if (result)
2674 		dev_warn(dev->ctrl.device,
2675 			 "Removing after probe failure status: %d\n", result);
2676 	nvme_remove_dead_ctrl(dev);
2677 }
2678 
2679 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2680 {
2681 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2682 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2683 
2684 	if (pci_get_drvdata(pdev))
2685 		device_release_driver(&pdev->dev);
2686 	nvme_put_ctrl(&dev->ctrl);
2687 }
2688 
2689 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2690 {
2691 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2692 	return 0;
2693 }
2694 
2695 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2696 {
2697 	writel(val, to_nvme_dev(ctrl)->bar + off);
2698 	return 0;
2699 }
2700 
2701 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2702 {
2703 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2704 	return 0;
2705 }
2706 
2707 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2708 {
2709 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2710 
2711 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2712 }
2713 
2714 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2715 	.name			= "pcie",
2716 	.module			= THIS_MODULE,
2717 	.flags			= NVME_F_METADATA_SUPPORTED |
2718 				  NVME_F_PCI_P2PDMA,
2719 	.reg_read32		= nvme_pci_reg_read32,
2720 	.reg_write32		= nvme_pci_reg_write32,
2721 	.reg_read64		= nvme_pci_reg_read64,
2722 	.free_ctrl		= nvme_pci_free_ctrl,
2723 	.submit_async_event	= nvme_pci_submit_async_event,
2724 	.get_address		= nvme_pci_get_address,
2725 };
2726 
2727 static int nvme_dev_map(struct nvme_dev *dev)
2728 {
2729 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2730 
2731 	if (pci_request_mem_regions(pdev, "nvme"))
2732 		return -ENODEV;
2733 
2734 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2735 		goto release;
2736 
2737 	return 0;
2738   release:
2739 	pci_release_mem_regions(pdev);
2740 	return -ENODEV;
2741 }
2742 
2743 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2744 {
2745 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2746 		/*
2747 		 * Several Samsung devices seem to drop off the PCIe bus
2748 		 * randomly when APST is on and uses the deepest sleep state.
2749 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2750 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2751 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2752 		 * laptops.
2753 		 */
2754 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2755 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2756 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2757 			return NVME_QUIRK_NO_DEEPEST_PS;
2758 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2759 		/*
2760 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2761 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2762 		 * within few minutes after bootup on a Coffee Lake board -
2763 		 * ASUS PRIME Z370-A
2764 		 */
2765 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2766 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2767 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2768 			return NVME_QUIRK_NO_APST;
2769 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2770 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2771 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2772 		/*
2773 		 * Forcing to use host managed nvme power settings for
2774 		 * lowest idle power with quick resume latency on
2775 		 * Samsung and Toshiba SSDs based on suspend behavior
2776 		 * on Coffee Lake board for LENOVO C640
2777 		 */
2778 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2779 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2780 			return NVME_QUIRK_SIMPLE_SUSPEND;
2781 	}
2782 
2783 	return 0;
2784 }
2785 
2786 #ifdef CONFIG_ACPI
2787 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2788 {
2789 	struct acpi_device *adev;
2790 	struct pci_dev *root;
2791 	acpi_handle handle;
2792 	acpi_status status;
2793 	u8 val;
2794 
2795 	/*
2796 	 * Look for _DSD property specifying that the storage device on the port
2797 	 * must use D3 to support deep platform power savings during
2798 	 * suspend-to-idle.
2799 	 */
2800 	root = pcie_find_root_port(dev);
2801 	if (!root)
2802 		return false;
2803 
2804 	adev = ACPI_COMPANION(&root->dev);
2805 	if (!adev)
2806 		return false;
2807 
2808 	/*
2809 	 * The property is defined in the PXSX device for South complex ports
2810 	 * and in the PEGP device for North complex ports.
2811 	 */
2812 	status = acpi_get_handle(adev->handle, "PXSX", &handle);
2813 	if (ACPI_FAILURE(status)) {
2814 		status = acpi_get_handle(adev->handle, "PEGP", &handle);
2815 		if (ACPI_FAILURE(status))
2816 			return false;
2817 	}
2818 
2819 	if (acpi_bus_get_device(handle, &adev))
2820 		return false;
2821 
2822 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2823 			&val))
2824 		return false;
2825 	return val == 1;
2826 }
2827 #else
2828 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2829 {
2830 	return false;
2831 }
2832 #endif /* CONFIG_ACPI */
2833 
2834 static void nvme_async_probe(void *data, async_cookie_t cookie)
2835 {
2836 	struct nvme_dev *dev = data;
2837 
2838 	flush_work(&dev->ctrl.reset_work);
2839 	flush_work(&dev->ctrl.scan_work);
2840 	nvme_put_ctrl(&dev->ctrl);
2841 }
2842 
2843 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2844 {
2845 	int node, result = -ENOMEM;
2846 	struct nvme_dev *dev;
2847 	unsigned long quirks = id->driver_data;
2848 	size_t alloc_size;
2849 
2850 	node = dev_to_node(&pdev->dev);
2851 	if (node == NUMA_NO_NODE)
2852 		set_dev_node(&pdev->dev, first_memory_node);
2853 
2854 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2855 	if (!dev)
2856 		return -ENOMEM;
2857 
2858 	dev->nr_write_queues = write_queues;
2859 	dev->nr_poll_queues = poll_queues;
2860 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2861 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2862 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2863 	if (!dev->queues)
2864 		goto free;
2865 
2866 	dev->dev = get_device(&pdev->dev);
2867 	pci_set_drvdata(pdev, dev);
2868 
2869 	result = nvme_dev_map(dev);
2870 	if (result)
2871 		goto put_pci;
2872 
2873 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2874 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2875 	mutex_init(&dev->shutdown_lock);
2876 
2877 	result = nvme_setup_prp_pools(dev);
2878 	if (result)
2879 		goto unmap;
2880 
2881 	quirks |= check_vendor_combination_bug(pdev);
2882 
2883 	if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2884 		/*
2885 		 * Some systems use a bios work around to ask for D3 on
2886 		 * platforms that support kernel managed suspend.
2887 		 */
2888 		dev_info(&pdev->dev,
2889 			 "platform quirk: setting simple suspend\n");
2890 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2891 	}
2892 
2893 	/*
2894 	 * Double check that our mempool alloc size will cover the biggest
2895 	 * command we support.
2896 	 */
2897 	alloc_size = nvme_pci_iod_alloc_size();
2898 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2899 
2900 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2901 						mempool_kfree,
2902 						(void *) alloc_size,
2903 						GFP_KERNEL, node);
2904 	if (!dev->iod_mempool) {
2905 		result = -ENOMEM;
2906 		goto release_pools;
2907 	}
2908 
2909 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2910 			quirks);
2911 	if (result)
2912 		goto release_mempool;
2913 
2914 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2915 
2916 	nvme_reset_ctrl(&dev->ctrl);
2917 	async_schedule(nvme_async_probe, dev);
2918 
2919 	return 0;
2920 
2921  release_mempool:
2922 	mempool_destroy(dev->iod_mempool);
2923  release_pools:
2924 	nvme_release_prp_pools(dev);
2925  unmap:
2926 	nvme_dev_unmap(dev);
2927  put_pci:
2928 	put_device(dev->dev);
2929  free:
2930 	kfree(dev->queues);
2931 	kfree(dev);
2932 	return result;
2933 }
2934 
2935 static void nvme_reset_prepare(struct pci_dev *pdev)
2936 {
2937 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2938 
2939 	/*
2940 	 * We don't need to check the return value from waiting for the reset
2941 	 * state as pci_dev device lock is held, making it impossible to race
2942 	 * with ->remove().
2943 	 */
2944 	nvme_disable_prepare_reset(dev, false);
2945 	nvme_sync_queues(&dev->ctrl);
2946 }
2947 
2948 static void nvme_reset_done(struct pci_dev *pdev)
2949 {
2950 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2951 
2952 	if (!nvme_try_sched_reset(&dev->ctrl))
2953 		flush_work(&dev->ctrl.reset_work);
2954 }
2955 
2956 static void nvme_shutdown(struct pci_dev *pdev)
2957 {
2958 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2959 
2960 	nvme_disable_prepare_reset(dev, true);
2961 }
2962 
2963 /*
2964  * The driver's remove may be called on a device in a partially initialized
2965  * state. This function must not have any dependencies on the device state in
2966  * order to proceed.
2967  */
2968 static void nvme_remove(struct pci_dev *pdev)
2969 {
2970 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2971 
2972 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2973 	pci_set_drvdata(pdev, NULL);
2974 
2975 	if (!pci_device_is_present(pdev)) {
2976 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2977 		nvme_dev_disable(dev, true);
2978 		nvme_dev_remove_admin(dev);
2979 	}
2980 
2981 	flush_work(&dev->ctrl.reset_work);
2982 	nvme_stop_ctrl(&dev->ctrl);
2983 	nvme_remove_namespaces(&dev->ctrl);
2984 	nvme_dev_disable(dev, true);
2985 	nvme_release_cmb(dev);
2986 	nvme_free_host_mem(dev);
2987 	nvme_dev_remove_admin(dev);
2988 	nvme_free_queues(dev, 0);
2989 	nvme_release_prp_pools(dev);
2990 	nvme_dev_unmap(dev);
2991 	nvme_uninit_ctrl(&dev->ctrl);
2992 }
2993 
2994 #ifdef CONFIG_PM_SLEEP
2995 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2996 {
2997 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2998 }
2999 
3000 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3001 {
3002 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3003 }
3004 
3005 static int nvme_resume(struct device *dev)
3006 {
3007 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3008 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3009 
3010 	if (ndev->last_ps == U32_MAX ||
3011 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3012 		return nvme_try_sched_reset(&ndev->ctrl);
3013 	return 0;
3014 }
3015 
3016 static int nvme_suspend(struct device *dev)
3017 {
3018 	struct pci_dev *pdev = to_pci_dev(dev);
3019 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3020 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3021 	int ret = -EBUSY;
3022 
3023 	ndev->last_ps = U32_MAX;
3024 
3025 	/*
3026 	 * The platform does not remove power for a kernel managed suspend so
3027 	 * use host managed nvme power settings for lowest idle power if
3028 	 * possible. This should have quicker resume latency than a full device
3029 	 * shutdown.  But if the firmware is involved after the suspend or the
3030 	 * device does not support any non-default power states, shut down the
3031 	 * device fully.
3032 	 *
3033 	 * If ASPM is not enabled for the device, shut down the device and allow
3034 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3035 	 * down, so as to allow the platform to achieve its minimum low-power
3036 	 * state (which may not be possible if the link is up).
3037 	 *
3038 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3039 	 * specification allows the device to access the host memory buffer in
3040 	 * host DRAM from all power states, but hosts will fail access to DRAM
3041 	 * during S3.
3042 	 */
3043 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3044 	    !pcie_aspm_enabled(pdev) ||
3045 	    ndev->nr_host_mem_descs ||
3046 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3047 		return nvme_disable_prepare_reset(ndev, true);
3048 
3049 	nvme_start_freeze(ctrl);
3050 	nvme_wait_freeze(ctrl);
3051 	nvme_sync_queues(ctrl);
3052 
3053 	if (ctrl->state != NVME_CTRL_LIVE)
3054 		goto unfreeze;
3055 
3056 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3057 	if (ret < 0)
3058 		goto unfreeze;
3059 
3060 	/*
3061 	 * A saved state prevents pci pm from generically controlling the
3062 	 * device's power. If we're using protocol specific settings, we don't
3063 	 * want pci interfering.
3064 	 */
3065 	pci_save_state(pdev);
3066 
3067 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3068 	if (ret < 0)
3069 		goto unfreeze;
3070 
3071 	if (ret) {
3072 		/* discard the saved state */
3073 		pci_load_saved_state(pdev, NULL);
3074 
3075 		/*
3076 		 * Clearing npss forces a controller reset on resume. The
3077 		 * correct value will be rediscovered then.
3078 		 */
3079 		ret = nvme_disable_prepare_reset(ndev, true);
3080 		ctrl->npss = 0;
3081 	}
3082 unfreeze:
3083 	nvme_unfreeze(ctrl);
3084 	return ret;
3085 }
3086 
3087 static int nvme_simple_suspend(struct device *dev)
3088 {
3089 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3090 
3091 	return nvme_disable_prepare_reset(ndev, true);
3092 }
3093 
3094 static int nvme_simple_resume(struct device *dev)
3095 {
3096 	struct pci_dev *pdev = to_pci_dev(dev);
3097 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3098 
3099 	return nvme_try_sched_reset(&ndev->ctrl);
3100 }
3101 
3102 static const struct dev_pm_ops nvme_dev_pm_ops = {
3103 	.suspend	= nvme_suspend,
3104 	.resume		= nvme_resume,
3105 	.freeze		= nvme_simple_suspend,
3106 	.thaw		= nvme_simple_resume,
3107 	.poweroff	= nvme_simple_suspend,
3108 	.restore	= nvme_simple_resume,
3109 };
3110 #endif /* CONFIG_PM_SLEEP */
3111 
3112 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3113 						pci_channel_state_t state)
3114 {
3115 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3116 
3117 	/*
3118 	 * A frozen channel requires a reset. When detected, this method will
3119 	 * shutdown the controller to quiesce. The controller will be restarted
3120 	 * after the slot reset through driver's slot_reset callback.
3121 	 */
3122 	switch (state) {
3123 	case pci_channel_io_normal:
3124 		return PCI_ERS_RESULT_CAN_RECOVER;
3125 	case pci_channel_io_frozen:
3126 		dev_warn(dev->ctrl.device,
3127 			"frozen state error detected, reset controller\n");
3128 		nvme_dev_disable(dev, false);
3129 		return PCI_ERS_RESULT_NEED_RESET;
3130 	case pci_channel_io_perm_failure:
3131 		dev_warn(dev->ctrl.device,
3132 			"failure state error detected, request disconnect\n");
3133 		return PCI_ERS_RESULT_DISCONNECT;
3134 	}
3135 	return PCI_ERS_RESULT_NEED_RESET;
3136 }
3137 
3138 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3139 {
3140 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3141 
3142 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3143 	pci_restore_state(pdev);
3144 	nvme_reset_ctrl(&dev->ctrl);
3145 	return PCI_ERS_RESULT_RECOVERED;
3146 }
3147 
3148 static void nvme_error_resume(struct pci_dev *pdev)
3149 {
3150 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3151 
3152 	flush_work(&dev->ctrl.reset_work);
3153 }
3154 
3155 static const struct pci_error_handlers nvme_err_handler = {
3156 	.error_detected	= nvme_error_detected,
3157 	.slot_reset	= nvme_slot_reset,
3158 	.resume		= nvme_error_resume,
3159 	.reset_prepare	= nvme_reset_prepare,
3160 	.reset_done	= nvme_reset_done,
3161 };
3162 
3163 static const struct pci_device_id nvme_id_table[] = {
3164 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3165 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3166 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3167 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3168 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3169 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3170 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3171 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3172 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3173 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3174 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3175 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3176 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3177 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3178 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3179 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3180 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3181 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3182 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3183 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3184 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3185 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3186 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3187 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3188 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3189 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3190 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3191 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3192 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3193 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3194 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3195 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3196 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3197 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3198 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3199 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3200 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3201 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3202 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3203 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3204 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3205 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3206 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3207 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3208 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3209 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3210 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3211 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3212 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3213 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3214 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3215 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3216 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3217 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3218 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3219 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3220 				NVME_QUIRK_128_BYTES_SQES |
3221 				NVME_QUIRK_SHARED_TAGS },
3222 
3223 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3224 	{ 0, }
3225 };
3226 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3227 
3228 static struct pci_driver nvme_driver = {
3229 	.name		= "nvme",
3230 	.id_table	= nvme_id_table,
3231 	.probe		= nvme_probe,
3232 	.remove		= nvme_remove,
3233 	.shutdown	= nvme_shutdown,
3234 #ifdef CONFIG_PM_SLEEP
3235 	.driver		= {
3236 		.pm	= &nvme_dev_pm_ops,
3237 	},
3238 #endif
3239 	.sriov_configure = pci_sriov_configure_simple,
3240 	.err_handler	= &nvme_err_handler,
3241 };
3242 
3243 static int __init nvme_init(void)
3244 {
3245 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3246 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3247 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3248 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3249 
3250 	return pci_register_driver(&nvme_driver);
3251 }
3252 
3253 static void __exit nvme_exit(void)
3254 {
3255 	pci_unregister_driver(&nvme_driver);
3256 	flush_workqueue(nvme_wq);
3257 }
3258 
3259 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3260 MODULE_LICENSE("GPL");
3261 MODULE_VERSION("1.0");
3262 module_init(nvme_init);
3263 module_exit(nvme_exit);
3264