xref: /openbmc/linux/drivers/nvme/host/pci.c (revision ddc141e5)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
32 
33 #include "nvme.h"
34 
35 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 static int use_threaded_interrupts;
41 module_param(use_threaded_interrupts, int, 0);
42 
43 static bool use_cmb_sqes = true;
44 module_param(use_cmb_sqes, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
46 
47 static unsigned int max_host_mem_size_mb = 128;
48 module_param(max_host_mem_size_mb, uint, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb,
50 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
51 
52 static unsigned int sgl_threshold = SZ_32K;
53 module_param(sgl_threshold, uint, 0644);
54 MODULE_PARM_DESC(sgl_threshold,
55 		"Use SGLs when average request segment size is larger or equal to "
56 		"this size. Use 0 to disable SGLs.");
57 
58 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
59 static const struct kernel_param_ops io_queue_depth_ops = {
60 	.set = io_queue_depth_set,
61 	.get = param_get_int,
62 };
63 
64 static int io_queue_depth = 1024;
65 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
66 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
67 
68 struct nvme_dev;
69 struct nvme_queue;
70 
71 static void nvme_process_cq(struct nvme_queue *nvmeq);
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
73 
74 /*
75  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
76  */
77 struct nvme_dev {
78 	struct nvme_queue *queues;
79 	struct blk_mq_tag_set tagset;
80 	struct blk_mq_tag_set admin_tagset;
81 	u32 __iomem *dbs;
82 	struct device *dev;
83 	struct dma_pool *prp_page_pool;
84 	struct dma_pool *prp_small_pool;
85 	unsigned online_queues;
86 	unsigned max_qid;
87 	int q_depth;
88 	u32 db_stride;
89 	void __iomem *bar;
90 	unsigned long bar_mapped_size;
91 	struct work_struct remove_work;
92 	struct mutex shutdown_lock;
93 	bool subsystem;
94 	void __iomem *cmb;
95 	pci_bus_addr_t cmb_bus_addr;
96 	u64 cmb_size;
97 	u32 cmbsz;
98 	u32 cmbloc;
99 	struct nvme_ctrl ctrl;
100 	struct completion ioq_wait;
101 
102 	/* shadow doorbell buffer support: */
103 	u32 *dbbuf_dbs;
104 	dma_addr_t dbbuf_dbs_dma_addr;
105 	u32 *dbbuf_eis;
106 	dma_addr_t dbbuf_eis_dma_addr;
107 
108 	/* host memory buffer support: */
109 	u64 host_mem_size;
110 	u32 nr_host_mem_descs;
111 	dma_addr_t host_mem_descs_dma;
112 	struct nvme_host_mem_buf_desc *host_mem_descs;
113 	void **host_mem_desc_bufs;
114 };
115 
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117 {
118 	int n = 0, ret;
119 
120 	ret = kstrtoint(val, 10, &n);
121 	if (ret != 0 || n < 2)
122 		return -EINVAL;
123 
124 	return param_set_int(val, kp);
125 }
126 
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128 {
129 	return qid * 2 * stride;
130 }
131 
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133 {
134 	return (qid * 2 + 1) * stride;
135 }
136 
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138 {
139 	return container_of(ctrl, struct nvme_dev, ctrl);
140 }
141 
142 /*
143  * An NVM Express queue.  Each device has at least two (one for admin
144  * commands and one for I/O commands).
145  */
146 struct nvme_queue {
147 	struct device *q_dmadev;
148 	struct nvme_dev *dev;
149 	spinlock_t q_lock;
150 	struct nvme_command *sq_cmds;
151 	struct nvme_command __iomem *sq_cmds_io;
152 	volatile struct nvme_completion *cqes;
153 	struct blk_mq_tags **tags;
154 	dma_addr_t sq_dma_addr;
155 	dma_addr_t cq_dma_addr;
156 	u32 __iomem *q_db;
157 	u16 q_depth;
158 	s16 cq_vector;
159 	u16 sq_tail;
160 	u16 cq_head;
161 	u16 qid;
162 	u8 cq_phase;
163 	u8 cqe_seen;
164 	u32 *dbbuf_sq_db;
165 	u32 *dbbuf_cq_db;
166 	u32 *dbbuf_sq_ei;
167 	u32 *dbbuf_cq_ei;
168 };
169 
170 /*
171  * The nvme_iod describes the data in an I/O, including the list of PRP
172  * entries.  You can't see it in this data structure because C doesn't let
173  * me express that.  Use nvme_init_iod to ensure there's enough space
174  * allocated to store the PRP list.
175  */
176 struct nvme_iod {
177 	struct nvme_request req;
178 	struct nvme_queue *nvmeq;
179 	bool use_sgl;
180 	int aborted;
181 	int npages;		/* In the PRP list. 0 means small pool in use */
182 	int nents;		/* Used in scatterlist */
183 	int length;		/* Of data, in bytes */
184 	dma_addr_t first_dma;
185 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186 	struct scatterlist *sg;
187 	struct scatterlist inline_sg[0];
188 };
189 
190 /*
191  * Check we didin't inadvertently grow the command struct
192  */
193 static inline void _nvme_check_size(void)
194 {
195 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209 
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212 	return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214 
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218 
219 	if (dev->dbbuf_dbs)
220 		return 0;
221 
222 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 					    &dev->dbbuf_dbs_dma_addr,
224 					    GFP_KERNEL);
225 	if (!dev->dbbuf_dbs)
226 		return -ENOMEM;
227 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 					    &dev->dbbuf_eis_dma_addr,
229 					    GFP_KERNEL);
230 	if (!dev->dbbuf_eis) {
231 		dma_free_coherent(dev->dev, mem_size,
232 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 		dev->dbbuf_dbs = NULL;
234 		return -ENOMEM;
235 	}
236 
237 	return 0;
238 }
239 
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243 
244 	if (dev->dbbuf_dbs) {
245 		dma_free_coherent(dev->dev, mem_size,
246 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 		dev->dbbuf_dbs = NULL;
248 	}
249 	if (dev->dbbuf_eis) {
250 		dma_free_coherent(dev->dev, mem_size,
251 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 		dev->dbbuf_eis = NULL;
253 	}
254 }
255 
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257 			    struct nvme_queue *nvmeq, int qid)
258 {
259 	if (!dev->dbbuf_dbs || !qid)
260 		return;
261 
262 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267 
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270 	struct nvme_command c;
271 
272 	if (!dev->dbbuf_dbs)
273 		return;
274 
275 	memset(&c, 0, sizeof(c));
276 	c.dbbuf.opcode = nvme_admin_dbbuf;
277 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279 
280 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282 		/* Free memory and continue on */
283 		nvme_dbbuf_dma_free(dev);
284 	}
285 }
286 
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291 
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 					      volatile u32 *dbbuf_ei)
295 {
296 	if (dbbuf_db) {
297 		u16 old_value;
298 
299 		/*
300 		 * Ensure that the queue is written before updating
301 		 * the doorbell in memory
302 		 */
303 		wmb();
304 
305 		old_value = *dbbuf_db;
306 		*dbbuf_db = value;
307 
308 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 			return false;
310 	}
311 
312 	return true;
313 }
314 
315 /*
316  * Max size of iod being embedded in the request payload
317  */
318 #define NVME_INT_PAGES		2
319 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
320 
321 /*
322  * Will slightly overestimate the number of pages needed.  This is OK
323  * as it only leads to a small amount of wasted memory for the lifetime of
324  * the I/O.
325  */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 				      dev->ctrl.page_size);
330 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332 
333 /*
334  * Calculates the number of pages needed for the SGL segments. For example a 4k
335  * page can accommodate 256 SGL descriptors.
336  */
337 static int nvme_pci_npages_sgl(unsigned int num_seg)
338 {
339 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
340 }
341 
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
343 		unsigned int size, unsigned int nseg, bool use_sgl)
344 {
345 	size_t alloc_size;
346 
347 	if (use_sgl)
348 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
349 	else
350 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
351 
352 	return alloc_size + sizeof(struct scatterlist) * nseg;
353 }
354 
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
356 {
357 	unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
358 				    NVME_INT_BYTES(dev), NVME_INT_PAGES,
359 				    use_sgl);
360 
361 	return sizeof(struct nvme_iod) + alloc_size;
362 }
363 
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
365 				unsigned int hctx_idx)
366 {
367 	struct nvme_dev *dev = data;
368 	struct nvme_queue *nvmeq = &dev->queues[0];
369 
370 	WARN_ON(hctx_idx != 0);
371 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
372 	WARN_ON(nvmeq->tags);
373 
374 	hctx->driver_data = nvmeq;
375 	nvmeq->tags = &dev->admin_tagset.tags[0];
376 	return 0;
377 }
378 
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380 {
381 	struct nvme_queue *nvmeq = hctx->driver_data;
382 
383 	nvmeq->tags = NULL;
384 }
385 
386 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
387 			  unsigned int hctx_idx)
388 {
389 	struct nvme_dev *dev = data;
390 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
391 
392 	if (!nvmeq->tags)
393 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
394 
395 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
396 	hctx->driver_data = nvmeq;
397 	return 0;
398 }
399 
400 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
401 		unsigned int hctx_idx, unsigned int numa_node)
402 {
403 	struct nvme_dev *dev = set->driver_data;
404 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
405 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
406 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
407 
408 	BUG_ON(!nvmeq);
409 	iod->nvmeq = nvmeq;
410 	return 0;
411 }
412 
413 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
414 {
415 	struct nvme_dev *dev = set->driver_data;
416 
417 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
418 }
419 
420 /**
421  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422  * @nvmeq: The queue to use
423  * @cmd: The command to send
424  *
425  * Safe to use from interrupt context
426  */
427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
428 						struct nvme_command *cmd)
429 {
430 	u16 tail = nvmeq->sq_tail;
431 
432 	if (nvmeq->sq_cmds_io)
433 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
434 	else
435 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
436 
437 	if (++tail == nvmeq->q_depth)
438 		tail = 0;
439 	if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
440 					      nvmeq->dbbuf_sq_ei))
441 		writel(tail, nvmeq->q_db);
442 	nvmeq->sq_tail = tail;
443 }
444 
445 static void **nvme_pci_iod_list(struct request *req)
446 {
447 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
448 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
449 }
450 
451 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
452 {
453 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
454 	int nseg = blk_rq_nr_phys_segments(req);
455 	unsigned int avg_seg_size;
456 
457 	if (nseg == 0)
458 		return false;
459 
460 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
461 
462 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
463 		return false;
464 	if (!iod->nvmeq->qid)
465 		return false;
466 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
467 		return false;
468 	return true;
469 }
470 
471 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
472 {
473 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
474 	int nseg = blk_rq_nr_phys_segments(rq);
475 	unsigned int size = blk_rq_payload_bytes(rq);
476 
477 	iod->use_sgl = nvme_pci_use_sgls(dev, rq);
478 
479 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
480 		size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
481 				iod->use_sgl);
482 
483 		iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
484 		if (!iod->sg)
485 			return BLK_STS_RESOURCE;
486 	} else {
487 		iod->sg = iod->inline_sg;
488 	}
489 
490 	iod->aborted = 0;
491 	iod->npages = -1;
492 	iod->nents = 0;
493 	iod->length = size;
494 
495 	return BLK_STS_OK;
496 }
497 
498 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
499 {
500 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
501 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
502 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
503 
504 	int i;
505 
506 	if (iod->npages == 0)
507 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
508 			dma_addr);
509 
510 	for (i = 0; i < iod->npages; i++) {
511 		void *addr = nvme_pci_iod_list(req)[i];
512 
513 		if (iod->use_sgl) {
514 			struct nvme_sgl_desc *sg_list = addr;
515 
516 			next_dma_addr =
517 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
518 		} else {
519 			__le64 *prp_list = addr;
520 
521 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
522 		}
523 
524 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
525 		dma_addr = next_dma_addr;
526 	}
527 
528 	if (iod->sg != iod->inline_sg)
529 		kfree(iod->sg);
530 }
531 
532 #ifdef CONFIG_BLK_DEV_INTEGRITY
533 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
534 {
535 	if (be32_to_cpu(pi->ref_tag) == v)
536 		pi->ref_tag = cpu_to_be32(p);
537 }
538 
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 	if (be32_to_cpu(pi->ref_tag) == p)
542 		pi->ref_tag = cpu_to_be32(v);
543 }
544 
545 /**
546  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
547  *
548  * The virtual start sector is the one that was originally submitted by the
549  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
550  * start sector may be different. Remap protection information to match the
551  * physical LBA on writes, and back to the original seed on reads.
552  *
553  * Type 0 and 3 do not have a ref tag, so no remapping required.
554  */
555 static void nvme_dif_remap(struct request *req,
556 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
557 {
558 	struct nvme_ns *ns = req->rq_disk->private_data;
559 	struct bio_integrity_payload *bip;
560 	struct t10_pi_tuple *pi;
561 	void *p, *pmap;
562 	u32 i, nlb, ts, phys, virt;
563 
564 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
565 		return;
566 
567 	bip = bio_integrity(req->bio);
568 	if (!bip)
569 		return;
570 
571 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
572 
573 	p = pmap;
574 	virt = bip_get_seed(bip);
575 	phys = nvme_block_nr(ns, blk_rq_pos(req));
576 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
577 	ts = ns->disk->queue->integrity.tuple_size;
578 
579 	for (i = 0; i < nlb; i++, virt++, phys++) {
580 		pi = (struct t10_pi_tuple *)p;
581 		dif_swap(phys, virt, pi);
582 		p += ts;
583 	}
584 	kunmap_atomic(pmap);
585 }
586 #else /* CONFIG_BLK_DEV_INTEGRITY */
587 static void nvme_dif_remap(struct request *req,
588 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
589 {
590 }
591 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
592 {
593 }
594 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
595 {
596 }
597 #endif
598 
599 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
600 {
601 	int i;
602 	struct scatterlist *sg;
603 
604 	for_each_sg(sgl, sg, nents, i) {
605 		dma_addr_t phys = sg_phys(sg);
606 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
607 			"dma_address:%pad dma_length:%d\n",
608 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
609 			sg_dma_len(sg));
610 	}
611 }
612 
613 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
614 		struct request *req, struct nvme_rw_command *cmnd)
615 {
616 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
617 	struct dma_pool *pool;
618 	int length = blk_rq_payload_bytes(req);
619 	struct scatterlist *sg = iod->sg;
620 	int dma_len = sg_dma_len(sg);
621 	u64 dma_addr = sg_dma_address(sg);
622 	u32 page_size = dev->ctrl.page_size;
623 	int offset = dma_addr & (page_size - 1);
624 	__le64 *prp_list;
625 	void **list = nvme_pci_iod_list(req);
626 	dma_addr_t prp_dma;
627 	int nprps, i;
628 
629 	length -= (page_size - offset);
630 	if (length <= 0) {
631 		iod->first_dma = 0;
632 		goto done;
633 	}
634 
635 	dma_len -= (page_size - offset);
636 	if (dma_len) {
637 		dma_addr += (page_size - offset);
638 	} else {
639 		sg = sg_next(sg);
640 		dma_addr = sg_dma_address(sg);
641 		dma_len = sg_dma_len(sg);
642 	}
643 
644 	if (length <= page_size) {
645 		iod->first_dma = dma_addr;
646 		goto done;
647 	}
648 
649 	nprps = DIV_ROUND_UP(length, page_size);
650 	if (nprps <= (256 / 8)) {
651 		pool = dev->prp_small_pool;
652 		iod->npages = 0;
653 	} else {
654 		pool = dev->prp_page_pool;
655 		iod->npages = 1;
656 	}
657 
658 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
659 	if (!prp_list) {
660 		iod->first_dma = dma_addr;
661 		iod->npages = -1;
662 		return BLK_STS_RESOURCE;
663 	}
664 	list[0] = prp_list;
665 	iod->first_dma = prp_dma;
666 	i = 0;
667 	for (;;) {
668 		if (i == page_size >> 3) {
669 			__le64 *old_prp_list = prp_list;
670 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671 			if (!prp_list)
672 				return BLK_STS_RESOURCE;
673 			list[iod->npages++] = prp_list;
674 			prp_list[0] = old_prp_list[i - 1];
675 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
676 			i = 1;
677 		}
678 		prp_list[i++] = cpu_to_le64(dma_addr);
679 		dma_len -= page_size;
680 		dma_addr += page_size;
681 		length -= page_size;
682 		if (length <= 0)
683 			break;
684 		if (dma_len > 0)
685 			continue;
686 		if (unlikely(dma_len < 0))
687 			goto bad_sgl;
688 		sg = sg_next(sg);
689 		dma_addr = sg_dma_address(sg);
690 		dma_len = sg_dma_len(sg);
691 	}
692 
693 done:
694 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
695 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
696 
697 	return BLK_STS_OK;
698 
699  bad_sgl:
700 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
701 			"Invalid SGL for payload:%d nents:%d\n",
702 			blk_rq_payload_bytes(req), iod->nents);
703 	return BLK_STS_IOERR;
704 }
705 
706 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
707 		struct scatterlist *sg)
708 {
709 	sge->addr = cpu_to_le64(sg_dma_address(sg));
710 	sge->length = cpu_to_le32(sg_dma_len(sg));
711 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
712 }
713 
714 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
715 		dma_addr_t dma_addr, int entries)
716 {
717 	sge->addr = cpu_to_le64(dma_addr);
718 	if (entries < SGES_PER_PAGE) {
719 		sge->length = cpu_to_le32(entries * sizeof(*sge));
720 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
721 	} else {
722 		sge->length = cpu_to_le32(PAGE_SIZE);
723 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
724 	}
725 }
726 
727 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
728 		struct request *req, struct nvme_rw_command *cmd, int entries)
729 {
730 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
731 	struct dma_pool *pool;
732 	struct nvme_sgl_desc *sg_list;
733 	struct scatterlist *sg = iod->sg;
734 	dma_addr_t sgl_dma;
735 	int i = 0;
736 
737 	/* setting the transfer type as SGL */
738 	cmd->flags = NVME_CMD_SGL_METABUF;
739 
740 	if (entries == 1) {
741 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
742 		return BLK_STS_OK;
743 	}
744 
745 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
746 		pool = dev->prp_small_pool;
747 		iod->npages = 0;
748 	} else {
749 		pool = dev->prp_page_pool;
750 		iod->npages = 1;
751 	}
752 
753 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754 	if (!sg_list) {
755 		iod->npages = -1;
756 		return BLK_STS_RESOURCE;
757 	}
758 
759 	nvme_pci_iod_list(req)[0] = sg_list;
760 	iod->first_dma = sgl_dma;
761 
762 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
763 
764 	do {
765 		if (i == SGES_PER_PAGE) {
766 			struct nvme_sgl_desc *old_sg_desc = sg_list;
767 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
768 
769 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770 			if (!sg_list)
771 				return BLK_STS_RESOURCE;
772 
773 			i = 0;
774 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
775 			sg_list[i++] = *link;
776 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
777 		}
778 
779 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
780 		sg = sg_next(sg);
781 	} while (--entries > 0);
782 
783 	return BLK_STS_OK;
784 }
785 
786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
787 		struct nvme_command *cmnd)
788 {
789 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790 	struct request_queue *q = req->q;
791 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
792 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
793 	blk_status_t ret = BLK_STS_IOERR;
794 	int nr_mapped;
795 
796 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
797 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
798 	if (!iod->nents)
799 		goto out;
800 
801 	ret = BLK_STS_RESOURCE;
802 	nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
803 			DMA_ATTR_NO_WARN);
804 	if (!nr_mapped)
805 		goto out;
806 
807 	if (iod->use_sgl)
808 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
809 	else
810 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
811 
812 	if (ret != BLK_STS_OK)
813 		goto out_unmap;
814 
815 	ret = BLK_STS_IOERR;
816 	if (blk_integrity_rq(req)) {
817 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
818 			goto out_unmap;
819 
820 		sg_init_table(&iod->meta_sg, 1);
821 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
822 			goto out_unmap;
823 
824 		if (req_op(req) == REQ_OP_WRITE)
825 			nvme_dif_remap(req, nvme_dif_prep);
826 
827 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
828 			goto out_unmap;
829 	}
830 
831 	if (blk_integrity_rq(req))
832 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
833 	return BLK_STS_OK;
834 
835 out_unmap:
836 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
837 out:
838 	return ret;
839 }
840 
841 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
842 {
843 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
845 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
846 
847 	if (iod->nents) {
848 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
849 		if (blk_integrity_rq(req)) {
850 			if (req_op(req) == REQ_OP_READ)
851 				nvme_dif_remap(req, nvme_dif_complete);
852 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
853 		}
854 	}
855 
856 	nvme_cleanup_cmd(req);
857 	nvme_free_iod(dev, req);
858 }
859 
860 /*
861  * NOTE: ns is NULL when called on the admin queue.
862  */
863 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
864 			 const struct blk_mq_queue_data *bd)
865 {
866 	struct nvme_ns *ns = hctx->queue->queuedata;
867 	struct nvme_queue *nvmeq = hctx->driver_data;
868 	struct nvme_dev *dev = nvmeq->dev;
869 	struct request *req = bd->rq;
870 	struct nvme_command cmnd;
871 	blk_status_t ret;
872 
873 	ret = nvme_setup_cmd(ns, req, &cmnd);
874 	if (ret)
875 		return ret;
876 
877 	ret = nvme_init_iod(req, dev);
878 	if (ret)
879 		goto out_free_cmd;
880 
881 	if (blk_rq_nr_phys_segments(req)) {
882 		ret = nvme_map_data(dev, req, &cmnd);
883 		if (ret)
884 			goto out_cleanup_iod;
885 	}
886 
887 	blk_mq_start_request(req);
888 
889 	spin_lock_irq(&nvmeq->q_lock);
890 	if (unlikely(nvmeq->cq_vector < 0)) {
891 		ret = BLK_STS_IOERR;
892 		spin_unlock_irq(&nvmeq->q_lock);
893 		goto out_cleanup_iod;
894 	}
895 	__nvme_submit_cmd(nvmeq, &cmnd);
896 	nvme_process_cq(nvmeq);
897 	spin_unlock_irq(&nvmeq->q_lock);
898 	return BLK_STS_OK;
899 out_cleanup_iod:
900 	nvme_free_iod(dev, req);
901 out_free_cmd:
902 	nvme_cleanup_cmd(req);
903 	return ret;
904 }
905 
906 static void nvme_pci_complete_rq(struct request *req)
907 {
908 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909 
910 	nvme_unmap_data(iod->nvmeq->dev, req);
911 	nvme_complete_rq(req);
912 }
913 
914 /* We read the CQE phase first to check if the rest of the entry is valid */
915 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
916 		u16 phase)
917 {
918 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
919 }
920 
921 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
922 {
923 	u16 head = nvmeq->cq_head;
924 
925 	if (likely(nvmeq->cq_vector >= 0)) {
926 		if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
927 						      nvmeq->dbbuf_cq_ei))
928 			writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
929 	}
930 }
931 
932 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
933 		struct nvme_completion *cqe)
934 {
935 	struct request *req;
936 
937 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
938 		dev_warn(nvmeq->dev->ctrl.device,
939 			"invalid id %d completed on queue %d\n",
940 			cqe->command_id, le16_to_cpu(cqe->sq_id));
941 		return;
942 	}
943 
944 	/*
945 	 * AEN requests are special as they don't time out and can
946 	 * survive any kind of queue freeze and often don't respond to
947 	 * aborts.  We don't even bother to allocate a struct request
948 	 * for them but rather special case them here.
949 	 */
950 	if (unlikely(nvmeq->qid == 0 &&
951 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
952 		nvme_complete_async_event(&nvmeq->dev->ctrl,
953 				cqe->status, &cqe->result);
954 		return;
955 	}
956 
957 	nvmeq->cqe_seen = 1;
958 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
959 	nvme_end_request(req, cqe->status, cqe->result);
960 }
961 
962 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
963 		struct nvme_completion *cqe)
964 {
965 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
966 		*cqe = nvmeq->cqes[nvmeq->cq_head];
967 
968 		if (++nvmeq->cq_head == nvmeq->q_depth) {
969 			nvmeq->cq_head = 0;
970 			nvmeq->cq_phase = !nvmeq->cq_phase;
971 		}
972 		return true;
973 	}
974 	return false;
975 }
976 
977 static void nvme_process_cq(struct nvme_queue *nvmeq)
978 {
979 	struct nvme_completion cqe;
980 	int consumed = 0;
981 
982 	while (nvme_read_cqe(nvmeq, &cqe)) {
983 		nvme_handle_cqe(nvmeq, &cqe);
984 		consumed++;
985 	}
986 
987 	if (consumed)
988 		nvme_ring_cq_doorbell(nvmeq);
989 }
990 
991 static irqreturn_t nvme_irq(int irq, void *data)
992 {
993 	irqreturn_t result;
994 	struct nvme_queue *nvmeq = data;
995 	spin_lock(&nvmeq->q_lock);
996 	nvme_process_cq(nvmeq);
997 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
998 	nvmeq->cqe_seen = 0;
999 	spin_unlock(&nvmeq->q_lock);
1000 	return result;
1001 }
1002 
1003 static irqreturn_t nvme_irq_check(int irq, void *data)
1004 {
1005 	struct nvme_queue *nvmeq = data;
1006 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1007 		return IRQ_WAKE_THREAD;
1008 	return IRQ_NONE;
1009 }
1010 
1011 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1012 {
1013 	struct nvme_completion cqe;
1014 	int found = 0, consumed = 0;
1015 
1016 	if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1017 		return 0;
1018 
1019 	spin_lock_irq(&nvmeq->q_lock);
1020 	while (nvme_read_cqe(nvmeq, &cqe)) {
1021 		nvme_handle_cqe(nvmeq, &cqe);
1022 		consumed++;
1023 
1024 		if (tag == cqe.command_id) {
1025 			found = 1;
1026 			break;
1027 		}
1028        }
1029 
1030 	if (consumed)
1031 		nvme_ring_cq_doorbell(nvmeq);
1032 	spin_unlock_irq(&nvmeq->q_lock);
1033 
1034 	return found;
1035 }
1036 
1037 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1038 {
1039 	struct nvme_queue *nvmeq = hctx->driver_data;
1040 
1041 	return __nvme_poll(nvmeq, tag);
1042 }
1043 
1044 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1045 {
1046 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1047 	struct nvme_queue *nvmeq = &dev->queues[0];
1048 	struct nvme_command c;
1049 
1050 	memset(&c, 0, sizeof(c));
1051 	c.common.opcode = nvme_admin_async_event;
1052 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1053 
1054 	spin_lock_irq(&nvmeq->q_lock);
1055 	__nvme_submit_cmd(nvmeq, &c);
1056 	spin_unlock_irq(&nvmeq->q_lock);
1057 }
1058 
1059 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1060 {
1061 	struct nvme_command c;
1062 
1063 	memset(&c, 0, sizeof(c));
1064 	c.delete_queue.opcode = opcode;
1065 	c.delete_queue.qid = cpu_to_le16(id);
1066 
1067 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1068 }
1069 
1070 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1071 						struct nvme_queue *nvmeq)
1072 {
1073 	struct nvme_command c;
1074 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1075 
1076 	/*
1077 	 * Note: we (ab)use the fact that the prp fields survive if no data
1078 	 * is attached to the request.
1079 	 */
1080 	memset(&c, 0, sizeof(c));
1081 	c.create_cq.opcode = nvme_admin_create_cq;
1082 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1083 	c.create_cq.cqid = cpu_to_le16(qid);
1084 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1085 	c.create_cq.cq_flags = cpu_to_le16(flags);
1086 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1087 
1088 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1089 }
1090 
1091 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1092 						struct nvme_queue *nvmeq)
1093 {
1094 	struct nvme_command c;
1095 	int flags = NVME_QUEUE_PHYS_CONTIG;
1096 
1097 	/*
1098 	 * Note: we (ab)use the fact that the prp fields survive if no data
1099 	 * is attached to the request.
1100 	 */
1101 	memset(&c, 0, sizeof(c));
1102 	c.create_sq.opcode = nvme_admin_create_sq;
1103 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1104 	c.create_sq.sqid = cpu_to_le16(qid);
1105 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1106 	c.create_sq.sq_flags = cpu_to_le16(flags);
1107 	c.create_sq.cqid = cpu_to_le16(qid);
1108 
1109 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1110 }
1111 
1112 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1113 {
1114 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1115 }
1116 
1117 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1118 {
1119 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1120 }
1121 
1122 static void abort_endio(struct request *req, blk_status_t error)
1123 {
1124 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1125 	struct nvme_queue *nvmeq = iod->nvmeq;
1126 
1127 	dev_warn(nvmeq->dev->ctrl.device,
1128 		 "Abort status: 0x%x", nvme_req(req)->status);
1129 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1130 	blk_mq_free_request(req);
1131 }
1132 
1133 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1134 {
1135 
1136 	/* If true, indicates loss of adapter communication, possibly by a
1137 	 * NVMe Subsystem reset.
1138 	 */
1139 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1140 
1141 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1142 	switch (dev->ctrl.state) {
1143 	case NVME_CTRL_RESETTING:
1144 	case NVME_CTRL_CONNECTING:
1145 		return false;
1146 	default:
1147 		break;
1148 	}
1149 
1150 	/* We shouldn't reset unless the controller is on fatal error state
1151 	 * _or_ if we lost the communication with it.
1152 	 */
1153 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1154 		return false;
1155 
1156 	/* If PCI error recovery process is happening, we cannot reset or
1157 	 * the recovery mechanism will surely fail.
1158 	 */
1159 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1160 		return false;
1161 
1162 	return true;
1163 }
1164 
1165 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1166 {
1167 	/* Read a config register to help see what died. */
1168 	u16 pci_status;
1169 	int result;
1170 
1171 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1172 				      &pci_status);
1173 	if (result == PCIBIOS_SUCCESSFUL)
1174 		dev_warn(dev->ctrl.device,
1175 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1176 			 csts, pci_status);
1177 	else
1178 		dev_warn(dev->ctrl.device,
1179 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1180 			 csts, result);
1181 }
1182 
1183 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1184 {
1185 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1186 	struct nvme_queue *nvmeq = iod->nvmeq;
1187 	struct nvme_dev *dev = nvmeq->dev;
1188 	struct request *abort_req;
1189 	struct nvme_command cmd;
1190 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1191 
1192 	/*
1193 	 * Reset immediately if the controller is failed
1194 	 */
1195 	if (nvme_should_reset(dev, csts)) {
1196 		nvme_warn_reset(dev, csts);
1197 		nvme_dev_disable(dev, false);
1198 		nvme_reset_ctrl(&dev->ctrl);
1199 		return BLK_EH_HANDLED;
1200 	}
1201 
1202 	/*
1203 	 * Did we miss an interrupt?
1204 	 */
1205 	if (__nvme_poll(nvmeq, req->tag)) {
1206 		dev_warn(dev->ctrl.device,
1207 			 "I/O %d QID %d timeout, completion polled\n",
1208 			 req->tag, nvmeq->qid);
1209 		return BLK_EH_HANDLED;
1210 	}
1211 
1212 	/*
1213 	 * Shutdown immediately if controller times out while starting. The
1214 	 * reset work will see the pci device disabled when it gets the forced
1215 	 * cancellation error. All outstanding requests are completed on
1216 	 * shutdown, so we return BLK_EH_HANDLED.
1217 	 */
1218 	switch (dev->ctrl.state) {
1219 	case NVME_CTRL_CONNECTING:
1220 	case NVME_CTRL_RESETTING:
1221 		dev_warn(dev->ctrl.device,
1222 			 "I/O %d QID %d timeout, disable controller\n",
1223 			 req->tag, nvmeq->qid);
1224 		nvme_dev_disable(dev, false);
1225 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1226 		return BLK_EH_HANDLED;
1227 	default:
1228 		break;
1229 	}
1230 
1231 	/*
1232  	 * Shutdown the controller immediately and schedule a reset if the
1233  	 * command was already aborted once before and still hasn't been
1234  	 * returned to the driver, or if this is the admin queue.
1235 	 */
1236 	if (!nvmeq->qid || iod->aborted) {
1237 		dev_warn(dev->ctrl.device,
1238 			 "I/O %d QID %d timeout, reset controller\n",
1239 			 req->tag, nvmeq->qid);
1240 		nvme_dev_disable(dev, false);
1241 		nvme_reset_ctrl(&dev->ctrl);
1242 
1243 		/*
1244 		 * Mark the request as handled, since the inline shutdown
1245 		 * forces all outstanding requests to complete.
1246 		 */
1247 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1248 		return BLK_EH_HANDLED;
1249 	}
1250 
1251 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1252 		atomic_inc(&dev->ctrl.abort_limit);
1253 		return BLK_EH_RESET_TIMER;
1254 	}
1255 	iod->aborted = 1;
1256 
1257 	memset(&cmd, 0, sizeof(cmd));
1258 	cmd.abort.opcode = nvme_admin_abort_cmd;
1259 	cmd.abort.cid = req->tag;
1260 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1261 
1262 	dev_warn(nvmeq->dev->ctrl.device,
1263 		"I/O %d QID %d timeout, aborting\n",
1264 		 req->tag, nvmeq->qid);
1265 
1266 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1267 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1268 	if (IS_ERR(abort_req)) {
1269 		atomic_inc(&dev->ctrl.abort_limit);
1270 		return BLK_EH_RESET_TIMER;
1271 	}
1272 
1273 	abort_req->timeout = ADMIN_TIMEOUT;
1274 	abort_req->end_io_data = NULL;
1275 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1276 
1277 	/*
1278 	 * The aborted req will be completed on receiving the abort req.
1279 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1280 	 * as the device then is in a faulty state.
1281 	 */
1282 	return BLK_EH_RESET_TIMER;
1283 }
1284 
1285 static void nvme_free_queue(struct nvme_queue *nvmeq)
1286 {
1287 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1288 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1289 	if (nvmeq->sq_cmds)
1290 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1291 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1292 }
1293 
1294 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1295 {
1296 	int i;
1297 
1298 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1299 		dev->ctrl.queue_count--;
1300 		nvme_free_queue(&dev->queues[i]);
1301 	}
1302 }
1303 
1304 /**
1305  * nvme_suspend_queue - put queue into suspended state
1306  * @nvmeq - queue to suspend
1307  */
1308 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1309 {
1310 	int vector;
1311 
1312 	spin_lock_irq(&nvmeq->q_lock);
1313 	if (nvmeq->cq_vector == -1) {
1314 		spin_unlock_irq(&nvmeq->q_lock);
1315 		return 1;
1316 	}
1317 	vector = nvmeq->cq_vector;
1318 	nvmeq->dev->online_queues--;
1319 	nvmeq->cq_vector = -1;
1320 	spin_unlock_irq(&nvmeq->q_lock);
1321 
1322 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1323 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1324 
1325 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1326 
1327 	return 0;
1328 }
1329 
1330 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1331 {
1332 	struct nvme_queue *nvmeq = &dev->queues[0];
1333 
1334 	if (shutdown)
1335 		nvme_shutdown_ctrl(&dev->ctrl);
1336 	else
1337 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1338 
1339 	spin_lock_irq(&nvmeq->q_lock);
1340 	nvme_process_cq(nvmeq);
1341 	spin_unlock_irq(&nvmeq->q_lock);
1342 }
1343 
1344 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1345 				int entry_size)
1346 {
1347 	int q_depth = dev->q_depth;
1348 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1349 					  dev->ctrl.page_size);
1350 
1351 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1352 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1353 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1354 		q_depth = div_u64(mem_per_q, entry_size);
1355 
1356 		/*
1357 		 * Ensure the reduced q_depth is above some threshold where it
1358 		 * would be better to map queues in system memory with the
1359 		 * original depth
1360 		 */
1361 		if (q_depth < 64)
1362 			return -ENOMEM;
1363 	}
1364 
1365 	return q_depth;
1366 }
1367 
1368 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1369 				int qid, int depth)
1370 {
1371 	/* CMB SQEs will be mapped before creation */
1372 	if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1373 		return 0;
1374 
1375 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1376 					    &nvmeq->sq_dma_addr, GFP_KERNEL);
1377 	if (!nvmeq->sq_cmds)
1378 		return -ENOMEM;
1379 	return 0;
1380 }
1381 
1382 static int nvme_alloc_queue(struct nvme_dev *dev, int qid,
1383 		int depth, int node)
1384 {
1385 	struct nvme_queue *nvmeq = &dev->queues[qid];
1386 
1387 	if (dev->ctrl.queue_count > qid)
1388 		return 0;
1389 
1390 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1391 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1392 	if (!nvmeq->cqes)
1393 		goto free_nvmeq;
1394 
1395 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1396 		goto free_cqdma;
1397 
1398 	nvmeq->q_dmadev = dev->dev;
1399 	nvmeq->dev = dev;
1400 	spin_lock_init(&nvmeq->q_lock);
1401 	nvmeq->cq_head = 0;
1402 	nvmeq->cq_phase = 1;
1403 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1404 	nvmeq->q_depth = depth;
1405 	nvmeq->qid = qid;
1406 	nvmeq->cq_vector = -1;
1407 	dev->ctrl.queue_count++;
1408 
1409 	return 0;
1410 
1411  free_cqdma:
1412 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1413 							nvmeq->cq_dma_addr);
1414  free_nvmeq:
1415 	return -ENOMEM;
1416 }
1417 
1418 static int queue_request_irq(struct nvme_queue *nvmeq)
1419 {
1420 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1421 	int nr = nvmeq->dev->ctrl.instance;
1422 
1423 	if (use_threaded_interrupts) {
1424 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1425 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1426 	} else {
1427 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1428 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1429 	}
1430 }
1431 
1432 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1433 {
1434 	struct nvme_dev *dev = nvmeq->dev;
1435 
1436 	spin_lock_irq(&nvmeq->q_lock);
1437 	nvmeq->sq_tail = 0;
1438 	nvmeq->cq_head = 0;
1439 	nvmeq->cq_phase = 1;
1440 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1441 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1442 	nvme_dbbuf_init(dev, nvmeq, qid);
1443 	dev->online_queues++;
1444 	spin_unlock_irq(&nvmeq->q_lock);
1445 }
1446 
1447 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1448 {
1449 	struct nvme_dev *dev = nvmeq->dev;
1450 	int result;
1451 
1452 	if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1453 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1454 						      dev->ctrl.page_size);
1455 		nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1456 		nvmeq->sq_cmds_io = dev->cmb + offset;
1457 	}
1458 
1459 	nvmeq->cq_vector = qid - 1;
1460 	result = adapter_alloc_cq(dev, qid, nvmeq);
1461 	if (result < 0)
1462 		goto release_vector;
1463 
1464 	result = adapter_alloc_sq(dev, qid, nvmeq);
1465 	if (result < 0)
1466 		goto release_cq;
1467 
1468 	nvme_init_queue(nvmeq, qid);
1469 	result = queue_request_irq(nvmeq);
1470 	if (result < 0)
1471 		goto release_sq;
1472 
1473 	return result;
1474 
1475  release_sq:
1476 	dev->online_queues--;
1477 	adapter_delete_sq(dev, qid);
1478  release_cq:
1479 	adapter_delete_cq(dev, qid);
1480  release_vector:
1481 	nvmeq->cq_vector = -1;
1482 	return result;
1483 }
1484 
1485 static const struct blk_mq_ops nvme_mq_admin_ops = {
1486 	.queue_rq	= nvme_queue_rq,
1487 	.complete	= nvme_pci_complete_rq,
1488 	.init_hctx	= nvme_admin_init_hctx,
1489 	.exit_hctx      = nvme_admin_exit_hctx,
1490 	.init_request	= nvme_init_request,
1491 	.timeout	= nvme_timeout,
1492 };
1493 
1494 static const struct blk_mq_ops nvme_mq_ops = {
1495 	.queue_rq	= nvme_queue_rq,
1496 	.complete	= nvme_pci_complete_rq,
1497 	.init_hctx	= nvme_init_hctx,
1498 	.init_request	= nvme_init_request,
1499 	.map_queues	= nvme_pci_map_queues,
1500 	.timeout	= nvme_timeout,
1501 	.poll		= nvme_poll,
1502 };
1503 
1504 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1505 {
1506 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1507 		/*
1508 		 * If the controller was reset during removal, it's possible
1509 		 * user requests may be waiting on a stopped queue. Start the
1510 		 * queue to flush these to completion.
1511 		 */
1512 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1513 		blk_cleanup_queue(dev->ctrl.admin_q);
1514 		blk_mq_free_tag_set(&dev->admin_tagset);
1515 	}
1516 }
1517 
1518 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1519 {
1520 	if (!dev->ctrl.admin_q) {
1521 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1522 		dev->admin_tagset.nr_hw_queues = 1;
1523 
1524 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1525 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1526 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1527 		dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1528 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1529 		dev->admin_tagset.driver_data = dev;
1530 
1531 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1532 			return -ENOMEM;
1533 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1534 
1535 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1536 		if (IS_ERR(dev->ctrl.admin_q)) {
1537 			blk_mq_free_tag_set(&dev->admin_tagset);
1538 			return -ENOMEM;
1539 		}
1540 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1541 			nvme_dev_remove_admin(dev);
1542 			dev->ctrl.admin_q = NULL;
1543 			return -ENODEV;
1544 		}
1545 	} else
1546 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1547 
1548 	return 0;
1549 }
1550 
1551 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1552 {
1553 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1554 }
1555 
1556 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1557 {
1558 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1559 
1560 	if (size <= dev->bar_mapped_size)
1561 		return 0;
1562 	if (size > pci_resource_len(pdev, 0))
1563 		return -ENOMEM;
1564 	if (dev->bar)
1565 		iounmap(dev->bar);
1566 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1567 	if (!dev->bar) {
1568 		dev->bar_mapped_size = 0;
1569 		return -ENOMEM;
1570 	}
1571 	dev->bar_mapped_size = size;
1572 	dev->dbs = dev->bar + NVME_REG_DBS;
1573 
1574 	return 0;
1575 }
1576 
1577 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1578 {
1579 	int result;
1580 	u32 aqa;
1581 	struct nvme_queue *nvmeq;
1582 
1583 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1584 	if (result < 0)
1585 		return result;
1586 
1587 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1588 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1589 
1590 	if (dev->subsystem &&
1591 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1592 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1593 
1594 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1595 	if (result < 0)
1596 		return result;
1597 
1598 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1599 			dev_to_node(dev->dev));
1600 	if (result)
1601 		return result;
1602 
1603 	nvmeq = &dev->queues[0];
1604 	aqa = nvmeq->q_depth - 1;
1605 	aqa |= aqa << 16;
1606 
1607 	writel(aqa, dev->bar + NVME_REG_AQA);
1608 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1609 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1610 
1611 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1612 	if (result)
1613 		return result;
1614 
1615 	nvmeq->cq_vector = 0;
1616 	nvme_init_queue(nvmeq, 0);
1617 	result = queue_request_irq(nvmeq);
1618 	if (result) {
1619 		nvmeq->cq_vector = -1;
1620 		return result;
1621 	}
1622 
1623 	return result;
1624 }
1625 
1626 static int nvme_create_io_queues(struct nvme_dev *dev)
1627 {
1628 	unsigned i, max;
1629 	int ret = 0;
1630 
1631 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1632 		/* vector == qid - 1, match nvme_create_queue */
1633 		if (nvme_alloc_queue(dev, i, dev->q_depth,
1634 		     pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1635 			ret = -ENOMEM;
1636 			break;
1637 		}
1638 	}
1639 
1640 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1641 	for (i = dev->online_queues; i <= max; i++) {
1642 		ret = nvme_create_queue(&dev->queues[i], i);
1643 		if (ret)
1644 			break;
1645 	}
1646 
1647 	/*
1648 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1649 	 * than the desired amount of queues, and even a controller without
1650 	 * I/O queues can still be used to issue admin commands.  This might
1651 	 * be useful to upgrade a buggy firmware for example.
1652 	 */
1653 	return ret >= 0 ? 0 : ret;
1654 }
1655 
1656 static ssize_t nvme_cmb_show(struct device *dev,
1657 			     struct device_attribute *attr,
1658 			     char *buf)
1659 {
1660 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1661 
1662 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1663 		       ndev->cmbloc, ndev->cmbsz);
1664 }
1665 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1666 
1667 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1668 {
1669 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1670 
1671 	return 1ULL << (12 + 4 * szu);
1672 }
1673 
1674 static u32 nvme_cmb_size(struct nvme_dev *dev)
1675 {
1676 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1677 }
1678 
1679 static void nvme_map_cmb(struct nvme_dev *dev)
1680 {
1681 	u64 size, offset;
1682 	resource_size_t bar_size;
1683 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1684 	int bar;
1685 
1686 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1687 	if (!dev->cmbsz)
1688 		return;
1689 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1690 
1691 	if (!use_cmb_sqes)
1692 		return;
1693 
1694 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1695 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1696 	bar = NVME_CMB_BIR(dev->cmbloc);
1697 	bar_size = pci_resource_len(pdev, bar);
1698 
1699 	if (offset > bar_size)
1700 		return;
1701 
1702 	/*
1703 	 * Controllers may support a CMB size larger than their BAR,
1704 	 * for example, due to being behind a bridge. Reduce the CMB to
1705 	 * the reported size of the BAR
1706 	 */
1707 	if (size > bar_size - offset)
1708 		size = bar_size - offset;
1709 
1710 	dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1711 	if (!dev->cmb)
1712 		return;
1713 	dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1714 	dev->cmb_size = size;
1715 
1716 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1717 				    &dev_attr_cmb.attr, NULL))
1718 		dev_warn(dev->ctrl.device,
1719 			 "failed to add sysfs attribute for CMB\n");
1720 }
1721 
1722 static inline void nvme_release_cmb(struct nvme_dev *dev)
1723 {
1724 	if (dev->cmb) {
1725 		iounmap(dev->cmb);
1726 		dev->cmb = NULL;
1727 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1728 					     &dev_attr_cmb.attr, NULL);
1729 		dev->cmbsz = 0;
1730 	}
1731 }
1732 
1733 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1734 {
1735 	u64 dma_addr = dev->host_mem_descs_dma;
1736 	struct nvme_command c;
1737 	int ret;
1738 
1739 	memset(&c, 0, sizeof(c));
1740 	c.features.opcode	= nvme_admin_set_features;
1741 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1742 	c.features.dword11	= cpu_to_le32(bits);
1743 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1744 					      ilog2(dev->ctrl.page_size));
1745 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1746 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1747 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1748 
1749 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1750 	if (ret) {
1751 		dev_warn(dev->ctrl.device,
1752 			 "failed to set host mem (err %d, flags %#x).\n",
1753 			 ret, bits);
1754 	}
1755 	return ret;
1756 }
1757 
1758 static void nvme_free_host_mem(struct nvme_dev *dev)
1759 {
1760 	int i;
1761 
1762 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1763 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1764 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1765 
1766 		dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1767 				le64_to_cpu(desc->addr));
1768 	}
1769 
1770 	kfree(dev->host_mem_desc_bufs);
1771 	dev->host_mem_desc_bufs = NULL;
1772 	dma_free_coherent(dev->dev,
1773 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1774 			dev->host_mem_descs, dev->host_mem_descs_dma);
1775 	dev->host_mem_descs = NULL;
1776 	dev->nr_host_mem_descs = 0;
1777 }
1778 
1779 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1780 		u32 chunk_size)
1781 {
1782 	struct nvme_host_mem_buf_desc *descs;
1783 	u32 max_entries, len;
1784 	dma_addr_t descs_dma;
1785 	int i = 0;
1786 	void **bufs;
1787 	u64 size, tmp;
1788 
1789 	tmp = (preferred + chunk_size - 1);
1790 	do_div(tmp, chunk_size);
1791 	max_entries = tmp;
1792 
1793 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1794 		max_entries = dev->ctrl.hmmaxd;
1795 
1796 	descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1797 			&descs_dma, GFP_KERNEL);
1798 	if (!descs)
1799 		goto out;
1800 
1801 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1802 	if (!bufs)
1803 		goto out_free_descs;
1804 
1805 	for (size = 0; size < preferred && i < max_entries; size += len) {
1806 		dma_addr_t dma_addr;
1807 
1808 		len = min_t(u64, chunk_size, preferred - size);
1809 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1810 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1811 		if (!bufs[i])
1812 			break;
1813 
1814 		descs[i].addr = cpu_to_le64(dma_addr);
1815 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1816 		i++;
1817 	}
1818 
1819 	if (!size)
1820 		goto out_free_bufs;
1821 
1822 	dev->nr_host_mem_descs = i;
1823 	dev->host_mem_size = size;
1824 	dev->host_mem_descs = descs;
1825 	dev->host_mem_descs_dma = descs_dma;
1826 	dev->host_mem_desc_bufs = bufs;
1827 	return 0;
1828 
1829 out_free_bufs:
1830 	while (--i >= 0) {
1831 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1832 
1833 		dma_free_coherent(dev->dev, size, bufs[i],
1834 				le64_to_cpu(descs[i].addr));
1835 	}
1836 
1837 	kfree(bufs);
1838 out_free_descs:
1839 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1840 			descs_dma);
1841 out:
1842 	dev->host_mem_descs = NULL;
1843 	return -ENOMEM;
1844 }
1845 
1846 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1847 {
1848 	u32 chunk_size;
1849 
1850 	/* start big and work our way down */
1851 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1852 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1853 	     chunk_size /= 2) {
1854 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1855 			if (!min || dev->host_mem_size >= min)
1856 				return 0;
1857 			nvme_free_host_mem(dev);
1858 		}
1859 	}
1860 
1861 	return -ENOMEM;
1862 }
1863 
1864 static int nvme_setup_host_mem(struct nvme_dev *dev)
1865 {
1866 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1867 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1868 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1869 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1870 	int ret;
1871 
1872 	preferred = min(preferred, max);
1873 	if (min > max) {
1874 		dev_warn(dev->ctrl.device,
1875 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1876 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1877 		nvme_free_host_mem(dev);
1878 		return 0;
1879 	}
1880 
1881 	/*
1882 	 * If we already have a buffer allocated check if we can reuse it.
1883 	 */
1884 	if (dev->host_mem_descs) {
1885 		if (dev->host_mem_size >= min)
1886 			enable_bits |= NVME_HOST_MEM_RETURN;
1887 		else
1888 			nvme_free_host_mem(dev);
1889 	}
1890 
1891 	if (!dev->host_mem_descs) {
1892 		if (nvme_alloc_host_mem(dev, min, preferred)) {
1893 			dev_warn(dev->ctrl.device,
1894 				"failed to allocate host memory buffer.\n");
1895 			return 0; /* controller must work without HMB */
1896 		}
1897 
1898 		dev_info(dev->ctrl.device,
1899 			"allocated %lld MiB host memory buffer.\n",
1900 			dev->host_mem_size >> ilog2(SZ_1M));
1901 	}
1902 
1903 	ret = nvme_set_host_mem(dev, enable_bits);
1904 	if (ret)
1905 		nvme_free_host_mem(dev);
1906 	return ret;
1907 }
1908 
1909 static int nvme_setup_io_queues(struct nvme_dev *dev)
1910 {
1911 	struct nvme_queue *adminq = &dev->queues[0];
1912 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1913 	int result, nr_io_queues;
1914 	unsigned long size;
1915 
1916 	nr_io_queues = num_present_cpus();
1917 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1918 	if (result < 0)
1919 		return result;
1920 
1921 	if (nr_io_queues == 0)
1922 		return 0;
1923 
1924 	if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1925 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1926 				sizeof(struct nvme_command));
1927 		if (result > 0)
1928 			dev->q_depth = result;
1929 		else
1930 			nvme_release_cmb(dev);
1931 	}
1932 
1933 	do {
1934 		size = db_bar_size(dev, nr_io_queues);
1935 		result = nvme_remap_bar(dev, size);
1936 		if (!result)
1937 			break;
1938 		if (!--nr_io_queues)
1939 			return -ENOMEM;
1940 	} while (1);
1941 	adminq->q_db = dev->dbs;
1942 
1943 	/* Deregister the admin queue's interrupt */
1944 	pci_free_irq(pdev, 0, adminq);
1945 
1946 	/*
1947 	 * If we enable msix early due to not intx, disable it again before
1948 	 * setting up the full range we need.
1949 	 */
1950 	pci_free_irq_vectors(pdev);
1951 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1952 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1953 	if (nr_io_queues <= 0)
1954 		return -EIO;
1955 	dev->max_qid = nr_io_queues;
1956 
1957 	/*
1958 	 * Should investigate if there's a performance win from allocating
1959 	 * more queues than interrupt vectors; it might allow the submission
1960 	 * path to scale better, even if the receive path is limited by the
1961 	 * number of interrupts.
1962 	 */
1963 
1964 	result = queue_request_irq(adminq);
1965 	if (result) {
1966 		adminq->cq_vector = -1;
1967 		return result;
1968 	}
1969 	return nvme_create_io_queues(dev);
1970 }
1971 
1972 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1973 {
1974 	struct nvme_queue *nvmeq = req->end_io_data;
1975 
1976 	blk_mq_free_request(req);
1977 	complete(&nvmeq->dev->ioq_wait);
1978 }
1979 
1980 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1981 {
1982 	struct nvme_queue *nvmeq = req->end_io_data;
1983 
1984 	if (!error) {
1985 		unsigned long flags;
1986 
1987 		/*
1988 		 * We might be called with the AQ q_lock held
1989 		 * and the I/O queue q_lock should always
1990 		 * nest inside the AQ one.
1991 		 */
1992 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1993 					SINGLE_DEPTH_NESTING);
1994 		nvme_process_cq(nvmeq);
1995 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1996 	}
1997 
1998 	nvme_del_queue_end(req, error);
1999 }
2000 
2001 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2002 {
2003 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2004 	struct request *req;
2005 	struct nvme_command cmd;
2006 
2007 	memset(&cmd, 0, sizeof(cmd));
2008 	cmd.delete_queue.opcode = opcode;
2009 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2010 
2011 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2012 	if (IS_ERR(req))
2013 		return PTR_ERR(req);
2014 
2015 	req->timeout = ADMIN_TIMEOUT;
2016 	req->end_io_data = nvmeq;
2017 
2018 	blk_execute_rq_nowait(q, NULL, req, false,
2019 			opcode == nvme_admin_delete_cq ?
2020 				nvme_del_cq_end : nvme_del_queue_end);
2021 	return 0;
2022 }
2023 
2024 static void nvme_disable_io_queues(struct nvme_dev *dev)
2025 {
2026 	int pass, queues = dev->online_queues - 1;
2027 	unsigned long timeout;
2028 	u8 opcode = nvme_admin_delete_sq;
2029 
2030 	for (pass = 0; pass < 2; pass++) {
2031 		int sent = 0, i = queues;
2032 
2033 		reinit_completion(&dev->ioq_wait);
2034  retry:
2035 		timeout = ADMIN_TIMEOUT;
2036 		for (; i > 0; i--, sent++)
2037 			if (nvme_delete_queue(&dev->queues[i], opcode))
2038 				break;
2039 
2040 		while (sent--) {
2041 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2042 			if (timeout == 0)
2043 				return;
2044 			if (i)
2045 				goto retry;
2046 		}
2047 		opcode = nvme_admin_delete_cq;
2048 	}
2049 }
2050 
2051 /*
2052  * return error value only when tagset allocation failed
2053  */
2054 static int nvme_dev_add(struct nvme_dev *dev)
2055 {
2056 	int ret;
2057 
2058 	if (!dev->ctrl.tagset) {
2059 		dev->tagset.ops = &nvme_mq_ops;
2060 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2061 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2062 		dev->tagset.numa_node = dev_to_node(dev->dev);
2063 		dev->tagset.queue_depth =
2064 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2065 		dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2066 		if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2067 			dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2068 					nvme_pci_cmd_size(dev, true));
2069 		}
2070 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2071 		dev->tagset.driver_data = dev;
2072 
2073 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2074 		if (ret) {
2075 			dev_warn(dev->ctrl.device,
2076 				"IO queues tagset allocation failed %d\n", ret);
2077 			return ret;
2078 		}
2079 		dev->ctrl.tagset = &dev->tagset;
2080 
2081 		nvme_dbbuf_set(dev);
2082 	} else {
2083 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2084 
2085 		/* Free previously allocated queues that are no longer usable */
2086 		nvme_free_queues(dev, dev->online_queues);
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 static int nvme_pci_enable(struct nvme_dev *dev)
2093 {
2094 	int result = -ENOMEM;
2095 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2096 
2097 	if (pci_enable_device_mem(pdev))
2098 		return result;
2099 
2100 	pci_set_master(pdev);
2101 
2102 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2103 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2104 		goto disable;
2105 
2106 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2107 		result = -ENODEV;
2108 		goto disable;
2109 	}
2110 
2111 	/*
2112 	 * Some devices and/or platforms don't advertise or work with INTx
2113 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2114 	 * adjust this later.
2115 	 */
2116 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2117 	if (result < 0)
2118 		return result;
2119 
2120 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2121 
2122 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2123 				io_queue_depth);
2124 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2125 	dev->dbs = dev->bar + 4096;
2126 
2127 	/*
2128 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2129 	 * some MacBook7,1 to avoid controller resets and data loss.
2130 	 */
2131 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2132 		dev->q_depth = 2;
2133 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2134 			"set queue depth=%u to work around controller resets\n",
2135 			dev->q_depth);
2136 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2137 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2138 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2139 		dev->q_depth = 64;
2140 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2141                         "set queue depth=%u\n", dev->q_depth);
2142 	}
2143 
2144 	nvme_map_cmb(dev);
2145 
2146 	pci_enable_pcie_error_reporting(pdev);
2147 	pci_save_state(pdev);
2148 	return 0;
2149 
2150  disable:
2151 	pci_disable_device(pdev);
2152 	return result;
2153 }
2154 
2155 static void nvme_dev_unmap(struct nvme_dev *dev)
2156 {
2157 	if (dev->bar)
2158 		iounmap(dev->bar);
2159 	pci_release_mem_regions(to_pci_dev(dev->dev));
2160 }
2161 
2162 static void nvme_pci_disable(struct nvme_dev *dev)
2163 {
2164 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2165 
2166 	nvme_release_cmb(dev);
2167 	pci_free_irq_vectors(pdev);
2168 
2169 	if (pci_is_enabled(pdev)) {
2170 		pci_disable_pcie_error_reporting(pdev);
2171 		pci_disable_device(pdev);
2172 	}
2173 }
2174 
2175 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2176 {
2177 	int i;
2178 	bool dead = true;
2179 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2180 
2181 	mutex_lock(&dev->shutdown_lock);
2182 	if (pci_is_enabled(pdev)) {
2183 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2184 
2185 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2186 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2187 			nvme_start_freeze(&dev->ctrl);
2188 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2189 			pdev->error_state  != pci_channel_io_normal);
2190 	}
2191 
2192 	/*
2193 	 * Give the controller a chance to complete all entered requests if
2194 	 * doing a safe shutdown.
2195 	 */
2196 	if (!dead) {
2197 		if (shutdown)
2198 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2199 
2200 		/*
2201 		 * If the controller is still alive tell it to stop using the
2202 		 * host memory buffer.  In theory the shutdown / reset should
2203 		 * make sure that it doesn't access the host memoery anymore,
2204 		 * but I'd rather be safe than sorry..
2205 		 */
2206 		if (dev->host_mem_descs)
2207 			nvme_set_host_mem(dev, 0);
2208 
2209 	}
2210 	nvme_stop_queues(&dev->ctrl);
2211 
2212 	if (!dead) {
2213 		nvme_disable_io_queues(dev);
2214 		nvme_disable_admin_queue(dev, shutdown);
2215 	}
2216 	for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2217 		nvme_suspend_queue(&dev->queues[i]);
2218 
2219 	nvme_pci_disable(dev);
2220 
2221 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2222 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2223 
2224 	/*
2225 	 * The driver will not be starting up queues again if shutting down so
2226 	 * must flush all entered requests to their failed completion to avoid
2227 	 * deadlocking blk-mq hot-cpu notifier.
2228 	 */
2229 	if (shutdown)
2230 		nvme_start_queues(&dev->ctrl);
2231 	mutex_unlock(&dev->shutdown_lock);
2232 }
2233 
2234 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2235 {
2236 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2237 						PAGE_SIZE, PAGE_SIZE, 0);
2238 	if (!dev->prp_page_pool)
2239 		return -ENOMEM;
2240 
2241 	/* Optimisation for I/Os between 4k and 128k */
2242 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2243 						256, 256, 0);
2244 	if (!dev->prp_small_pool) {
2245 		dma_pool_destroy(dev->prp_page_pool);
2246 		return -ENOMEM;
2247 	}
2248 	return 0;
2249 }
2250 
2251 static void nvme_release_prp_pools(struct nvme_dev *dev)
2252 {
2253 	dma_pool_destroy(dev->prp_page_pool);
2254 	dma_pool_destroy(dev->prp_small_pool);
2255 }
2256 
2257 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2258 {
2259 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2260 
2261 	nvme_dbbuf_dma_free(dev);
2262 	put_device(dev->dev);
2263 	if (dev->tagset.tags)
2264 		blk_mq_free_tag_set(&dev->tagset);
2265 	if (dev->ctrl.admin_q)
2266 		blk_put_queue(dev->ctrl.admin_q);
2267 	kfree(dev->queues);
2268 	free_opal_dev(dev->ctrl.opal_dev);
2269 	kfree(dev);
2270 }
2271 
2272 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2273 {
2274 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2275 
2276 	nvme_get_ctrl(&dev->ctrl);
2277 	nvme_dev_disable(dev, false);
2278 	if (!queue_work(nvme_wq, &dev->remove_work))
2279 		nvme_put_ctrl(&dev->ctrl);
2280 }
2281 
2282 static void nvme_reset_work(struct work_struct *work)
2283 {
2284 	struct nvme_dev *dev =
2285 		container_of(work, struct nvme_dev, ctrl.reset_work);
2286 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2287 	int result = -ENODEV;
2288 	enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2289 
2290 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2291 		goto out;
2292 
2293 	/*
2294 	 * If we're called to reset a live controller first shut it down before
2295 	 * moving on.
2296 	 */
2297 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2298 		nvme_dev_disable(dev, false);
2299 
2300 	/*
2301 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2302 	 * initializing procedure here.
2303 	 */
2304 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2305 		dev_warn(dev->ctrl.device,
2306 			"failed to mark controller CONNECTING\n");
2307 		goto out;
2308 	}
2309 
2310 	result = nvme_pci_enable(dev);
2311 	if (result)
2312 		goto out;
2313 
2314 	result = nvme_pci_configure_admin_queue(dev);
2315 	if (result)
2316 		goto out;
2317 
2318 	result = nvme_alloc_admin_tags(dev);
2319 	if (result)
2320 		goto out;
2321 
2322 	result = nvme_init_identify(&dev->ctrl);
2323 	if (result)
2324 		goto out;
2325 
2326 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2327 		if (!dev->ctrl.opal_dev)
2328 			dev->ctrl.opal_dev =
2329 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2330 		else if (was_suspend)
2331 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2332 	} else {
2333 		free_opal_dev(dev->ctrl.opal_dev);
2334 		dev->ctrl.opal_dev = NULL;
2335 	}
2336 
2337 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2338 		result = nvme_dbbuf_dma_alloc(dev);
2339 		if (result)
2340 			dev_warn(dev->dev,
2341 				 "unable to allocate dma for dbbuf\n");
2342 	}
2343 
2344 	if (dev->ctrl.hmpre) {
2345 		result = nvme_setup_host_mem(dev);
2346 		if (result < 0)
2347 			goto out;
2348 	}
2349 
2350 	result = nvme_setup_io_queues(dev);
2351 	if (result)
2352 		goto out;
2353 
2354 	/*
2355 	 * Keep the controller around but remove all namespaces if we don't have
2356 	 * any working I/O queue.
2357 	 */
2358 	if (dev->online_queues < 2) {
2359 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2360 		nvme_kill_queues(&dev->ctrl);
2361 		nvme_remove_namespaces(&dev->ctrl);
2362 		new_state = NVME_CTRL_ADMIN_ONLY;
2363 	} else {
2364 		nvme_start_queues(&dev->ctrl);
2365 		nvme_wait_freeze(&dev->ctrl);
2366 		/* hit this only when allocate tagset fails */
2367 		if (nvme_dev_add(dev))
2368 			new_state = NVME_CTRL_ADMIN_ONLY;
2369 		nvme_unfreeze(&dev->ctrl);
2370 	}
2371 
2372 	/*
2373 	 * If only admin queue live, keep it to do further investigation or
2374 	 * recovery.
2375 	 */
2376 	if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2377 		dev_warn(dev->ctrl.device,
2378 			"failed to mark controller state %d\n", new_state);
2379 		goto out;
2380 	}
2381 
2382 	nvme_start_ctrl(&dev->ctrl);
2383 	return;
2384 
2385  out:
2386 	nvme_remove_dead_ctrl(dev, result);
2387 }
2388 
2389 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2390 {
2391 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2392 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2393 
2394 	nvme_kill_queues(&dev->ctrl);
2395 	if (pci_get_drvdata(pdev))
2396 		device_release_driver(&pdev->dev);
2397 	nvme_put_ctrl(&dev->ctrl);
2398 }
2399 
2400 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2401 {
2402 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2403 	return 0;
2404 }
2405 
2406 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2407 {
2408 	writel(val, to_nvme_dev(ctrl)->bar + off);
2409 	return 0;
2410 }
2411 
2412 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2413 {
2414 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2415 	return 0;
2416 }
2417 
2418 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2419 	.name			= "pcie",
2420 	.module			= THIS_MODULE,
2421 	.flags			= NVME_F_METADATA_SUPPORTED,
2422 	.reg_read32		= nvme_pci_reg_read32,
2423 	.reg_write32		= nvme_pci_reg_write32,
2424 	.reg_read64		= nvme_pci_reg_read64,
2425 	.free_ctrl		= nvme_pci_free_ctrl,
2426 	.submit_async_event	= nvme_pci_submit_async_event,
2427 };
2428 
2429 static int nvme_dev_map(struct nvme_dev *dev)
2430 {
2431 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2432 
2433 	if (pci_request_mem_regions(pdev, "nvme"))
2434 		return -ENODEV;
2435 
2436 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2437 		goto release;
2438 
2439 	return 0;
2440   release:
2441 	pci_release_mem_regions(pdev);
2442 	return -ENODEV;
2443 }
2444 
2445 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2446 {
2447 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2448 		/*
2449 		 * Several Samsung devices seem to drop off the PCIe bus
2450 		 * randomly when APST is on and uses the deepest sleep state.
2451 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2452 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2453 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2454 		 * laptops.
2455 		 */
2456 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2457 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2458 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2459 			return NVME_QUIRK_NO_DEEPEST_PS;
2460 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2461 		/*
2462 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2463 		 * suspend on a Ryzen board, ASUS PRIME B350M-A.
2464 		 */
2465 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2466 		    dmi_match(DMI_BOARD_NAME, "PRIME B350M-A"))
2467 			return NVME_QUIRK_NO_APST;
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2474 {
2475 	int node, result = -ENOMEM;
2476 	struct nvme_dev *dev;
2477 	unsigned long quirks = id->driver_data;
2478 
2479 	node = dev_to_node(&pdev->dev);
2480 	if (node == NUMA_NO_NODE)
2481 		set_dev_node(&pdev->dev, first_memory_node);
2482 
2483 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2484 	if (!dev)
2485 		return -ENOMEM;
2486 
2487 	dev->queues = kcalloc_node(num_possible_cpus() + 1,
2488 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2489 	if (!dev->queues)
2490 		goto free;
2491 
2492 	dev->dev = get_device(&pdev->dev);
2493 	pci_set_drvdata(pdev, dev);
2494 
2495 	result = nvme_dev_map(dev);
2496 	if (result)
2497 		goto put_pci;
2498 
2499 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2500 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2501 	mutex_init(&dev->shutdown_lock);
2502 	init_completion(&dev->ioq_wait);
2503 
2504 	result = nvme_setup_prp_pools(dev);
2505 	if (result)
2506 		goto unmap;
2507 
2508 	quirks |= check_vendor_combination_bug(pdev);
2509 
2510 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2511 			quirks);
2512 	if (result)
2513 		goto release_pools;
2514 
2515 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2516 
2517 	nvme_reset_ctrl(&dev->ctrl);
2518 
2519 	return 0;
2520 
2521  release_pools:
2522 	nvme_release_prp_pools(dev);
2523  unmap:
2524 	nvme_dev_unmap(dev);
2525  put_pci:
2526 	put_device(dev->dev);
2527  free:
2528 	kfree(dev->queues);
2529 	kfree(dev);
2530 	return result;
2531 }
2532 
2533 static void nvme_reset_prepare(struct pci_dev *pdev)
2534 {
2535 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2536 	nvme_dev_disable(dev, false);
2537 }
2538 
2539 static void nvme_reset_done(struct pci_dev *pdev)
2540 {
2541 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2542 	nvme_reset_ctrl_sync(&dev->ctrl);
2543 }
2544 
2545 static void nvme_shutdown(struct pci_dev *pdev)
2546 {
2547 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2548 	nvme_dev_disable(dev, true);
2549 }
2550 
2551 /*
2552  * The driver's remove may be called on a device in a partially initialized
2553  * state. This function must not have any dependencies on the device state in
2554  * order to proceed.
2555  */
2556 static void nvme_remove(struct pci_dev *pdev)
2557 {
2558 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2559 
2560 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2561 
2562 	cancel_work_sync(&dev->ctrl.reset_work);
2563 	pci_set_drvdata(pdev, NULL);
2564 
2565 	if (!pci_device_is_present(pdev)) {
2566 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2567 		nvme_dev_disable(dev, false);
2568 	}
2569 
2570 	flush_work(&dev->ctrl.reset_work);
2571 	nvme_stop_ctrl(&dev->ctrl);
2572 	nvme_remove_namespaces(&dev->ctrl);
2573 	nvme_dev_disable(dev, true);
2574 	nvme_free_host_mem(dev);
2575 	nvme_dev_remove_admin(dev);
2576 	nvme_free_queues(dev, 0);
2577 	nvme_uninit_ctrl(&dev->ctrl);
2578 	nvme_release_prp_pools(dev);
2579 	nvme_dev_unmap(dev);
2580 	nvme_put_ctrl(&dev->ctrl);
2581 }
2582 
2583 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2584 {
2585 	int ret = 0;
2586 
2587 	if (numvfs == 0) {
2588 		if (pci_vfs_assigned(pdev)) {
2589 			dev_warn(&pdev->dev,
2590 				"Cannot disable SR-IOV VFs while assigned\n");
2591 			return -EPERM;
2592 		}
2593 		pci_disable_sriov(pdev);
2594 		return 0;
2595 	}
2596 
2597 	ret = pci_enable_sriov(pdev, numvfs);
2598 	return ret ? ret : numvfs;
2599 }
2600 
2601 #ifdef CONFIG_PM_SLEEP
2602 static int nvme_suspend(struct device *dev)
2603 {
2604 	struct pci_dev *pdev = to_pci_dev(dev);
2605 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2606 
2607 	nvme_dev_disable(ndev, true);
2608 	return 0;
2609 }
2610 
2611 static int nvme_resume(struct device *dev)
2612 {
2613 	struct pci_dev *pdev = to_pci_dev(dev);
2614 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2615 
2616 	nvme_reset_ctrl(&ndev->ctrl);
2617 	return 0;
2618 }
2619 #endif
2620 
2621 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2622 
2623 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2624 						pci_channel_state_t state)
2625 {
2626 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2627 
2628 	/*
2629 	 * A frozen channel requires a reset. When detected, this method will
2630 	 * shutdown the controller to quiesce. The controller will be restarted
2631 	 * after the slot reset through driver's slot_reset callback.
2632 	 */
2633 	switch (state) {
2634 	case pci_channel_io_normal:
2635 		return PCI_ERS_RESULT_CAN_RECOVER;
2636 	case pci_channel_io_frozen:
2637 		dev_warn(dev->ctrl.device,
2638 			"frozen state error detected, reset controller\n");
2639 		nvme_dev_disable(dev, false);
2640 		return PCI_ERS_RESULT_NEED_RESET;
2641 	case pci_channel_io_perm_failure:
2642 		dev_warn(dev->ctrl.device,
2643 			"failure state error detected, request disconnect\n");
2644 		return PCI_ERS_RESULT_DISCONNECT;
2645 	}
2646 	return PCI_ERS_RESULT_NEED_RESET;
2647 }
2648 
2649 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2650 {
2651 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2652 
2653 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2654 	pci_restore_state(pdev);
2655 	nvme_reset_ctrl(&dev->ctrl);
2656 	return PCI_ERS_RESULT_RECOVERED;
2657 }
2658 
2659 static void nvme_error_resume(struct pci_dev *pdev)
2660 {
2661 	pci_cleanup_aer_uncorrect_error_status(pdev);
2662 }
2663 
2664 static const struct pci_error_handlers nvme_err_handler = {
2665 	.error_detected	= nvme_error_detected,
2666 	.slot_reset	= nvme_slot_reset,
2667 	.resume		= nvme_error_resume,
2668 	.reset_prepare	= nvme_reset_prepare,
2669 	.reset_done	= nvme_reset_done,
2670 };
2671 
2672 static const struct pci_device_id nvme_id_table[] = {
2673 	{ PCI_VDEVICE(INTEL, 0x0953),
2674 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2675 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2676 	{ PCI_VDEVICE(INTEL, 0x0a53),
2677 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2678 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2679 	{ PCI_VDEVICE(INTEL, 0x0a54),
2680 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2681 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2682 	{ PCI_VDEVICE(INTEL, 0x0a55),
2683 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2684 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2685 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2686 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2687 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2688 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2689 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2690 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2691 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
2692 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2693 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2694 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2695 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2696 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2697 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2698 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2699 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
2700 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2701 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
2702 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2703 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2704 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2705 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2706 	{ 0, }
2707 };
2708 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2709 
2710 static struct pci_driver nvme_driver = {
2711 	.name		= "nvme",
2712 	.id_table	= nvme_id_table,
2713 	.probe		= nvme_probe,
2714 	.remove		= nvme_remove,
2715 	.shutdown	= nvme_shutdown,
2716 	.driver		= {
2717 		.pm	= &nvme_dev_pm_ops,
2718 	},
2719 	.sriov_configure = nvme_pci_sriov_configure,
2720 	.err_handler	= &nvme_err_handler,
2721 };
2722 
2723 static int __init nvme_init(void)
2724 {
2725 	return pci_register_driver(&nvme_driver);
2726 }
2727 
2728 static void __exit nvme_exit(void)
2729 {
2730 	pci_unregister_driver(&nvme_driver);
2731 	flush_workqueue(nvme_wq);
2732 	_nvme_check_size();
2733 }
2734 
2735 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2736 MODULE_LICENSE("GPL");
2737 MODULE_VERSION("1.0");
2738 module_init(nvme_init);
2739 module_exit(nvme_exit);
2740