xref: /openbmc/linux/drivers/nvme/host/pci.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/once.h>
22 #include <linux/pci.h>
23 #include <linux/suspend.h>
24 #include <linux/t10-pi.h>
25 #include <linux/types.h>
26 #include <linux/io-64-nonatomic-lo-hi.h>
27 #include <linux/io-64-nonatomic-hi-lo.h>
28 #include <linux/sed-opal.h>
29 #include <linux/pci-p2pdma.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
38 
39 /*
40  * These can be higher, but we need to ensure that any command doesn't
41  * require an sg allocation that needs more than a page of data.
42  */
43 #define NVME_MAX_KB_SZ	4096
44 #define NVME_MAX_SEGS	127
45 
46 static int use_threaded_interrupts;
47 module_param(use_threaded_interrupts, int, 0);
48 
49 static bool use_cmb_sqes = true;
50 module_param(use_cmb_sqes, bool, 0444);
51 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
52 
53 static unsigned int max_host_mem_size_mb = 128;
54 module_param(max_host_mem_size_mb, uint, 0444);
55 MODULE_PARM_DESC(max_host_mem_size_mb,
56 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
57 
58 static unsigned int sgl_threshold = SZ_32K;
59 module_param(sgl_threshold, uint, 0644);
60 MODULE_PARM_DESC(sgl_threshold,
61 		"Use SGLs when average request segment size is larger or equal to "
62 		"this size. Use 0 to disable SGLs.");
63 
64 #define NVME_PCI_MIN_QUEUE_SIZE 2
65 #define NVME_PCI_MAX_QUEUE_SIZE 4095
66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67 static const struct kernel_param_ops io_queue_depth_ops = {
68 	.set = io_queue_depth_set,
69 	.get = param_get_uint,
70 };
71 
72 static unsigned int io_queue_depth = 1024;
73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
75 
76 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
77 {
78 	unsigned int n;
79 	int ret;
80 
81 	ret = kstrtouint(val, 10, &n);
82 	if (ret != 0 || n > num_possible_cpus())
83 		return -EINVAL;
84 	return param_set_uint(val, kp);
85 }
86 
87 static const struct kernel_param_ops io_queue_count_ops = {
88 	.set = io_queue_count_set,
89 	.get = param_get_uint,
90 };
91 
92 static unsigned int write_queues;
93 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
94 MODULE_PARM_DESC(write_queues,
95 	"Number of queues to use for writes. If not set, reads and writes "
96 	"will share a queue set.");
97 
98 static unsigned int poll_queues;
99 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
100 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
101 
102 static bool noacpi;
103 module_param(noacpi, bool, 0444);
104 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
105 
106 struct nvme_dev;
107 struct nvme_queue;
108 
109 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
110 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
111 
112 /*
113  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
114  */
115 struct nvme_dev {
116 	struct nvme_queue *queues;
117 	struct blk_mq_tag_set tagset;
118 	struct blk_mq_tag_set admin_tagset;
119 	u32 __iomem *dbs;
120 	struct device *dev;
121 	struct dma_pool *prp_page_pool;
122 	struct dma_pool *prp_small_pool;
123 	unsigned online_queues;
124 	unsigned max_qid;
125 	unsigned io_queues[HCTX_MAX_TYPES];
126 	unsigned int num_vecs;
127 	u32 q_depth;
128 	int io_sqes;
129 	u32 db_stride;
130 	void __iomem *bar;
131 	unsigned long bar_mapped_size;
132 	struct work_struct remove_work;
133 	struct mutex shutdown_lock;
134 	bool subsystem;
135 	u64 cmb_size;
136 	bool cmb_use_sqes;
137 	u32 cmbsz;
138 	u32 cmbloc;
139 	struct nvme_ctrl ctrl;
140 	u32 last_ps;
141 	bool hmb;
142 
143 	mempool_t *iod_mempool;
144 
145 	/* shadow doorbell buffer support: */
146 	u32 *dbbuf_dbs;
147 	dma_addr_t dbbuf_dbs_dma_addr;
148 	u32 *dbbuf_eis;
149 	dma_addr_t dbbuf_eis_dma_addr;
150 
151 	/* host memory buffer support: */
152 	u64 host_mem_size;
153 	u32 nr_host_mem_descs;
154 	dma_addr_t host_mem_descs_dma;
155 	struct nvme_host_mem_buf_desc *host_mem_descs;
156 	void **host_mem_desc_bufs;
157 	unsigned int nr_allocated_queues;
158 	unsigned int nr_write_queues;
159 	unsigned int nr_poll_queues;
160 
161 	bool attrs_added;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	u32 *dbbuf_sq_db;
213 	u32 *dbbuf_cq_db;
214 	u32 *dbbuf_sq_ei;
215 	u32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226 	struct nvme_request req;
227 	struct nvme_command cmd;
228 	struct nvme_queue *nvmeq;
229 	bool use_sgl;
230 	int aborted;
231 	int npages;		/* In the PRP list. 0 means small pool in use */
232 	int nents;		/* Used in scatterlist */
233 	dma_addr_t first_dma;
234 	unsigned int dma_len;	/* length of single DMA segment mapping */
235 	dma_addr_t meta_dma;
236 	struct scatterlist *sg;
237 };
238 
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs) {
249 		/*
250 		 * Clear the dbbuf memory so the driver doesn't observe stale
251 		 * values from the previous instantiation.
252 		 */
253 		memset(dev->dbbuf_dbs, 0, mem_size);
254 		memset(dev->dbbuf_eis, 0, mem_size);
255 		return 0;
256 	}
257 
258 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259 					    &dev->dbbuf_dbs_dma_addr,
260 					    GFP_KERNEL);
261 	if (!dev->dbbuf_dbs)
262 		return -ENOMEM;
263 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264 					    &dev->dbbuf_eis_dma_addr,
265 					    GFP_KERNEL);
266 	if (!dev->dbbuf_eis) {
267 		dma_free_coherent(dev->dev, mem_size,
268 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269 		dev->dbbuf_dbs = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 
276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278 	unsigned int mem_size = nvme_dbbuf_size(dev);
279 
280 	if (dev->dbbuf_dbs) {
281 		dma_free_coherent(dev->dev, mem_size,
282 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283 		dev->dbbuf_dbs = NULL;
284 	}
285 	if (dev->dbbuf_eis) {
286 		dma_free_coherent(dev->dev, mem_size,
287 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288 		dev->dbbuf_eis = NULL;
289 	}
290 }
291 
292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293 			    struct nvme_queue *nvmeq, int qid)
294 {
295 	if (!dev->dbbuf_dbs || !qid)
296 		return;
297 
298 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303 
304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306 	if (!nvmeq->qid)
307 		return;
308 
309 	nvmeq->dbbuf_sq_db = NULL;
310 	nvmeq->dbbuf_cq_db = NULL;
311 	nvmeq->dbbuf_sq_ei = NULL;
312 	nvmeq->dbbuf_cq_ei = NULL;
313 }
314 
315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317 	struct nvme_command c = { };
318 	unsigned int i;
319 
320 	if (!dev->dbbuf_dbs)
321 		return;
322 
323 	c.dbbuf.opcode = nvme_admin_dbbuf;
324 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326 
327 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329 		/* Free memory and continue on */
330 		nvme_dbbuf_dma_free(dev);
331 
332 		for (i = 1; i <= dev->online_queues; i++)
333 			nvme_dbbuf_free(&dev->queues[i]);
334 	}
335 }
336 
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341 
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344 					      volatile u32 *dbbuf_ei)
345 {
346 	if (dbbuf_db) {
347 		u16 old_value;
348 
349 		/*
350 		 * Ensure that the queue is written before updating
351 		 * the doorbell in memory
352 		 */
353 		wmb();
354 
355 		old_value = *dbbuf_db;
356 		*dbbuf_db = value;
357 
358 		/*
359 		 * Ensure that the doorbell is updated before reading the event
360 		 * index from memory.  The controller needs to provide similar
361 		 * ordering to ensure the envent index is updated before reading
362 		 * the doorbell.
363 		 */
364 		mb();
365 
366 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 			return false;
368 	}
369 
370 	return true;
371 }
372 
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_pci_npages_prp(void)
379 {
380 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381 				      NVME_CTRL_PAGE_SIZE);
382 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384 
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(void)
390 {
391 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392 			PAGE_SIZE);
393 }
394 
395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398 
399 	return sizeof(__le64 *) * npages +
400 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402 
403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 				unsigned int hctx_idx)
405 {
406 	struct nvme_dev *dev = data;
407 	struct nvme_queue *nvmeq = &dev->queues[0];
408 
409 	WARN_ON(hctx_idx != 0);
410 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411 
412 	hctx->driver_data = nvmeq;
413 	return 0;
414 }
415 
416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417 			  unsigned int hctx_idx)
418 {
419 	struct nvme_dev *dev = data;
420 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421 
422 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423 	hctx->driver_data = nvmeq;
424 	return 0;
425 }
426 
427 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
428 		unsigned int hctx_idx, unsigned int numa_node)
429 {
430 	struct nvme_dev *dev = set->driver_data;
431 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
432 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
433 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
434 
435 	BUG_ON(!nvmeq);
436 	iod->nvmeq = nvmeq;
437 
438 	nvme_req(req)->ctrl = &dev->ctrl;
439 	nvme_req(req)->cmd = &iod->cmd;
440 	return 0;
441 }
442 
443 static int queue_irq_offset(struct nvme_dev *dev)
444 {
445 	/* if we have more than 1 vec, admin queue offsets us by 1 */
446 	if (dev->num_vecs > 1)
447 		return 1;
448 
449 	return 0;
450 }
451 
452 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
453 {
454 	struct nvme_dev *dev = set->driver_data;
455 	int i, qoff, offset;
456 
457 	offset = queue_irq_offset(dev);
458 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
459 		struct blk_mq_queue_map *map = &set->map[i];
460 
461 		map->nr_queues = dev->io_queues[i];
462 		if (!map->nr_queues) {
463 			BUG_ON(i == HCTX_TYPE_DEFAULT);
464 			continue;
465 		}
466 
467 		/*
468 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
469 		 * affinity), so use the regular blk-mq cpu mapping
470 		 */
471 		map->queue_offset = qoff;
472 		if (i != HCTX_TYPE_POLL && offset)
473 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
474 		else
475 			blk_mq_map_queues(map);
476 		qoff += map->nr_queues;
477 		offset += map->nr_queues;
478 	}
479 
480 	return 0;
481 }
482 
483 /*
484  * Write sq tail if we are asked to, or if the next command would wrap.
485  */
486 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
487 {
488 	if (!write_sq) {
489 		u16 next_tail = nvmeq->sq_tail + 1;
490 
491 		if (next_tail == nvmeq->q_depth)
492 			next_tail = 0;
493 		if (next_tail != nvmeq->last_sq_tail)
494 			return;
495 	}
496 
497 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
498 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
499 		writel(nvmeq->sq_tail, nvmeq->q_db);
500 	nvmeq->last_sq_tail = nvmeq->sq_tail;
501 }
502 
503 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
504 				    struct nvme_command *cmd)
505 {
506 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
507 		absolute_pointer(cmd), sizeof(*cmd));
508 	if (++nvmeq->sq_tail == nvmeq->q_depth)
509 		nvmeq->sq_tail = 0;
510 }
511 
512 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
513 {
514 	struct nvme_queue *nvmeq = hctx->driver_data;
515 
516 	spin_lock(&nvmeq->sq_lock);
517 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
518 		nvme_write_sq_db(nvmeq, true);
519 	spin_unlock(&nvmeq->sq_lock);
520 }
521 
522 static void **nvme_pci_iod_list(struct request *req)
523 {
524 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
525 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
526 }
527 
528 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
529 {
530 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
531 	int nseg = blk_rq_nr_phys_segments(req);
532 	unsigned int avg_seg_size;
533 
534 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
535 
536 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
537 		return false;
538 	if (!iod->nvmeq->qid)
539 		return false;
540 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
541 		return false;
542 	return true;
543 }
544 
545 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
546 {
547 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
548 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
549 	dma_addr_t dma_addr = iod->first_dma;
550 	int i;
551 
552 	for (i = 0; i < iod->npages; i++) {
553 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
554 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
555 
556 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
557 		dma_addr = next_dma_addr;
558 	}
559 }
560 
561 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
562 {
563 	const int last_sg = SGES_PER_PAGE - 1;
564 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
565 	dma_addr_t dma_addr = iod->first_dma;
566 	int i;
567 
568 	for (i = 0; i < iod->npages; i++) {
569 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
570 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
571 
572 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
573 		dma_addr = next_dma_addr;
574 	}
575 }
576 
577 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
578 {
579 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
580 
581 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
582 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
583 				    rq_dma_dir(req));
584 	else
585 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
586 }
587 
588 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
589 {
590 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
591 
592 	if (iod->dma_len) {
593 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
594 			       rq_dma_dir(req));
595 		return;
596 	}
597 
598 	WARN_ON_ONCE(!iod->nents);
599 
600 	nvme_unmap_sg(dev, req);
601 	if (iod->npages == 0)
602 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
603 			      iod->first_dma);
604 	else if (iod->use_sgl)
605 		nvme_free_sgls(dev, req);
606 	else
607 		nvme_free_prps(dev, req);
608 	mempool_free(iod->sg, dev->iod_mempool);
609 }
610 
611 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
612 {
613 	int i;
614 	struct scatterlist *sg;
615 
616 	for_each_sg(sgl, sg, nents, i) {
617 		dma_addr_t phys = sg_phys(sg);
618 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
619 			"dma_address:%pad dma_length:%d\n",
620 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
621 			sg_dma_len(sg));
622 	}
623 }
624 
625 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
626 		struct request *req, struct nvme_rw_command *cmnd)
627 {
628 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
629 	struct dma_pool *pool;
630 	int length = blk_rq_payload_bytes(req);
631 	struct scatterlist *sg = iod->sg;
632 	int dma_len = sg_dma_len(sg);
633 	u64 dma_addr = sg_dma_address(sg);
634 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
635 	__le64 *prp_list;
636 	void **list = nvme_pci_iod_list(req);
637 	dma_addr_t prp_dma;
638 	int nprps, i;
639 
640 	length -= (NVME_CTRL_PAGE_SIZE - offset);
641 	if (length <= 0) {
642 		iod->first_dma = 0;
643 		goto done;
644 	}
645 
646 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
647 	if (dma_len) {
648 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
649 	} else {
650 		sg = sg_next(sg);
651 		dma_addr = sg_dma_address(sg);
652 		dma_len = sg_dma_len(sg);
653 	}
654 
655 	if (length <= NVME_CTRL_PAGE_SIZE) {
656 		iod->first_dma = dma_addr;
657 		goto done;
658 	}
659 
660 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
661 	if (nprps <= (256 / 8)) {
662 		pool = dev->prp_small_pool;
663 		iod->npages = 0;
664 	} else {
665 		pool = dev->prp_page_pool;
666 		iod->npages = 1;
667 	}
668 
669 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
670 	if (!prp_list) {
671 		iod->first_dma = dma_addr;
672 		iod->npages = -1;
673 		return BLK_STS_RESOURCE;
674 	}
675 	list[0] = prp_list;
676 	iod->first_dma = prp_dma;
677 	i = 0;
678 	for (;;) {
679 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
680 			__le64 *old_prp_list = prp_list;
681 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
682 			if (!prp_list)
683 				goto free_prps;
684 			list[iod->npages++] = prp_list;
685 			prp_list[0] = old_prp_list[i - 1];
686 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
687 			i = 1;
688 		}
689 		prp_list[i++] = cpu_to_le64(dma_addr);
690 		dma_len -= NVME_CTRL_PAGE_SIZE;
691 		dma_addr += NVME_CTRL_PAGE_SIZE;
692 		length -= NVME_CTRL_PAGE_SIZE;
693 		if (length <= 0)
694 			break;
695 		if (dma_len > 0)
696 			continue;
697 		if (unlikely(dma_len < 0))
698 			goto bad_sgl;
699 		sg = sg_next(sg);
700 		dma_addr = sg_dma_address(sg);
701 		dma_len = sg_dma_len(sg);
702 	}
703 done:
704 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
705 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
706 	return BLK_STS_OK;
707 free_prps:
708 	nvme_free_prps(dev, req);
709 	return BLK_STS_RESOURCE;
710 bad_sgl:
711 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
712 			"Invalid SGL for payload:%d nents:%d\n",
713 			blk_rq_payload_bytes(req), iod->nents);
714 	return BLK_STS_IOERR;
715 }
716 
717 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
718 		struct scatterlist *sg)
719 {
720 	sge->addr = cpu_to_le64(sg_dma_address(sg));
721 	sge->length = cpu_to_le32(sg_dma_len(sg));
722 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
723 }
724 
725 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
726 		dma_addr_t dma_addr, int entries)
727 {
728 	sge->addr = cpu_to_le64(dma_addr);
729 	if (entries < SGES_PER_PAGE) {
730 		sge->length = cpu_to_le32(entries * sizeof(*sge));
731 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
732 	} else {
733 		sge->length = cpu_to_le32(PAGE_SIZE);
734 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
735 	}
736 }
737 
738 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
739 		struct request *req, struct nvme_rw_command *cmd, int entries)
740 {
741 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
742 	struct dma_pool *pool;
743 	struct nvme_sgl_desc *sg_list;
744 	struct scatterlist *sg = iod->sg;
745 	dma_addr_t sgl_dma;
746 	int i = 0;
747 
748 	/* setting the transfer type as SGL */
749 	cmd->flags = NVME_CMD_SGL_METABUF;
750 
751 	if (entries == 1) {
752 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
753 		return BLK_STS_OK;
754 	}
755 
756 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
757 		pool = dev->prp_small_pool;
758 		iod->npages = 0;
759 	} else {
760 		pool = dev->prp_page_pool;
761 		iod->npages = 1;
762 	}
763 
764 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
765 	if (!sg_list) {
766 		iod->npages = -1;
767 		return BLK_STS_RESOURCE;
768 	}
769 
770 	nvme_pci_iod_list(req)[0] = sg_list;
771 	iod->first_dma = sgl_dma;
772 
773 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
774 
775 	do {
776 		if (i == SGES_PER_PAGE) {
777 			struct nvme_sgl_desc *old_sg_desc = sg_list;
778 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
779 
780 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
781 			if (!sg_list)
782 				goto free_sgls;
783 
784 			i = 0;
785 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
786 			sg_list[i++] = *link;
787 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
788 		}
789 
790 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
791 		sg = sg_next(sg);
792 	} while (--entries > 0);
793 
794 	return BLK_STS_OK;
795 free_sgls:
796 	nvme_free_sgls(dev, req);
797 	return BLK_STS_RESOURCE;
798 }
799 
800 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
801 		struct request *req, struct nvme_rw_command *cmnd,
802 		struct bio_vec *bv)
803 {
804 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
805 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
806 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
807 
808 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
809 	if (dma_mapping_error(dev->dev, iod->first_dma))
810 		return BLK_STS_RESOURCE;
811 	iod->dma_len = bv->bv_len;
812 
813 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
814 	if (bv->bv_len > first_prp_len)
815 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
816 	return BLK_STS_OK;
817 }
818 
819 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
820 		struct request *req, struct nvme_rw_command *cmnd,
821 		struct bio_vec *bv)
822 {
823 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
824 
825 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
826 	if (dma_mapping_error(dev->dev, iod->first_dma))
827 		return BLK_STS_RESOURCE;
828 	iod->dma_len = bv->bv_len;
829 
830 	cmnd->flags = NVME_CMD_SGL_METABUF;
831 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
832 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
833 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
834 	return BLK_STS_OK;
835 }
836 
837 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
838 		struct nvme_command *cmnd)
839 {
840 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 	blk_status_t ret = BLK_STS_RESOURCE;
842 	int nr_mapped;
843 
844 	if (blk_rq_nr_phys_segments(req) == 1) {
845 		struct bio_vec bv = req_bvec(req);
846 
847 		if (!is_pci_p2pdma_page(bv.bv_page)) {
848 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
849 				return nvme_setup_prp_simple(dev, req,
850 							     &cmnd->rw, &bv);
851 
852 			if (iod->nvmeq->qid && sgl_threshold &&
853 			    nvme_ctrl_sgl_supported(&dev->ctrl))
854 				return nvme_setup_sgl_simple(dev, req,
855 							     &cmnd->rw, &bv);
856 		}
857 	}
858 
859 	iod->dma_len = 0;
860 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
861 	if (!iod->sg)
862 		return BLK_STS_RESOURCE;
863 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
864 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
865 	if (!iod->nents)
866 		goto out_free_sg;
867 
868 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
869 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
870 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
871 	else
872 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
873 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
874 	if (!nr_mapped)
875 		goto out_free_sg;
876 
877 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
878 	if (iod->use_sgl)
879 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
880 	else
881 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
882 	if (ret != BLK_STS_OK)
883 		goto out_unmap_sg;
884 	return BLK_STS_OK;
885 
886 out_unmap_sg:
887 	nvme_unmap_sg(dev, req);
888 out_free_sg:
889 	mempool_free(iod->sg, dev->iod_mempool);
890 	return ret;
891 }
892 
893 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
894 		struct nvme_command *cmnd)
895 {
896 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
897 
898 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
899 			rq_dma_dir(req), 0);
900 	if (dma_mapping_error(dev->dev, iod->meta_dma))
901 		return BLK_STS_IOERR;
902 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
903 	return BLK_STS_OK;
904 }
905 
906 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
907 {
908 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909 	blk_status_t ret;
910 
911 	iod->aborted = 0;
912 	iod->npages = -1;
913 	iod->nents = 0;
914 
915 	ret = nvme_setup_cmd(req->q->queuedata, req);
916 	if (ret)
917 		return ret;
918 
919 	if (blk_rq_nr_phys_segments(req)) {
920 		ret = nvme_map_data(dev, req, &iod->cmd);
921 		if (ret)
922 			goto out_free_cmd;
923 	}
924 
925 	if (blk_integrity_rq(req)) {
926 		ret = nvme_map_metadata(dev, req, &iod->cmd);
927 		if (ret)
928 			goto out_unmap_data;
929 	}
930 
931 	blk_mq_start_request(req);
932 	return BLK_STS_OK;
933 out_unmap_data:
934 	nvme_unmap_data(dev, req);
935 out_free_cmd:
936 	nvme_cleanup_cmd(req);
937 	return ret;
938 }
939 
940 /*
941  * NOTE: ns is NULL when called on the admin queue.
942  */
943 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
944 			 const struct blk_mq_queue_data *bd)
945 {
946 	struct nvme_queue *nvmeq = hctx->driver_data;
947 	struct nvme_dev *dev = nvmeq->dev;
948 	struct request *req = bd->rq;
949 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
950 	blk_status_t ret;
951 
952 	/*
953 	 * We should not need to do this, but we're still using this to
954 	 * ensure we can drain requests on a dying queue.
955 	 */
956 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
957 		return BLK_STS_IOERR;
958 
959 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
960 		return nvme_fail_nonready_command(&dev->ctrl, req);
961 
962 	ret = nvme_prep_rq(dev, req);
963 	if (unlikely(ret))
964 		return ret;
965 	spin_lock(&nvmeq->sq_lock);
966 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
967 	nvme_write_sq_db(nvmeq, bd->last);
968 	spin_unlock(&nvmeq->sq_lock);
969 	return BLK_STS_OK;
970 }
971 
972 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
973 {
974 	spin_lock(&nvmeq->sq_lock);
975 	while (!rq_list_empty(*rqlist)) {
976 		struct request *req = rq_list_pop(rqlist);
977 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
978 
979 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
980 	}
981 	nvme_write_sq_db(nvmeq, true);
982 	spin_unlock(&nvmeq->sq_lock);
983 }
984 
985 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
986 {
987 	/*
988 	 * We should not need to do this, but we're still using this to
989 	 * ensure we can drain requests on a dying queue.
990 	 */
991 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
992 		return false;
993 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
994 		return false;
995 
996 	req->mq_hctx->tags->rqs[req->tag] = req;
997 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
998 }
999 
1000 static void nvme_queue_rqs(struct request **rqlist)
1001 {
1002 	struct request *req, *next, *prev = NULL;
1003 	struct request *requeue_list = NULL;
1004 
1005 	rq_list_for_each_safe(rqlist, req, next) {
1006 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1007 
1008 		if (!nvme_prep_rq_batch(nvmeq, req)) {
1009 			/* detach 'req' and add to remainder list */
1010 			rq_list_move(rqlist, &requeue_list, req, prev);
1011 
1012 			req = prev;
1013 			if (!req)
1014 				continue;
1015 		}
1016 
1017 		if (!next || req->mq_hctx != next->mq_hctx) {
1018 			/* detach rest of list, and submit */
1019 			req->rq_next = NULL;
1020 			nvme_submit_cmds(nvmeq, rqlist);
1021 			*rqlist = next;
1022 			prev = NULL;
1023 		} else
1024 			prev = req;
1025 	}
1026 
1027 	*rqlist = requeue_list;
1028 }
1029 
1030 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1031 {
1032 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1033 	struct nvme_dev *dev = iod->nvmeq->dev;
1034 
1035 	if (blk_integrity_rq(req))
1036 		dma_unmap_page(dev->dev, iod->meta_dma,
1037 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1038 	if (blk_rq_nr_phys_segments(req))
1039 		nvme_unmap_data(dev, req);
1040 }
1041 
1042 static void nvme_pci_complete_rq(struct request *req)
1043 {
1044 	nvme_pci_unmap_rq(req);
1045 	nvme_complete_rq(req);
1046 }
1047 
1048 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1049 {
1050 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1051 }
1052 
1053 /* We read the CQE phase first to check if the rest of the entry is valid */
1054 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1055 {
1056 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1057 
1058 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1059 }
1060 
1061 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1062 {
1063 	u16 head = nvmeq->cq_head;
1064 
1065 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1066 					      nvmeq->dbbuf_cq_ei))
1067 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1068 }
1069 
1070 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1071 {
1072 	if (!nvmeq->qid)
1073 		return nvmeq->dev->admin_tagset.tags[0];
1074 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1075 }
1076 
1077 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1078 				   struct io_comp_batch *iob, u16 idx)
1079 {
1080 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1081 	__u16 command_id = READ_ONCE(cqe->command_id);
1082 	struct request *req;
1083 
1084 	/*
1085 	 * AEN requests are special as they don't time out and can
1086 	 * survive any kind of queue freeze and often don't respond to
1087 	 * aborts.  We don't even bother to allocate a struct request
1088 	 * for them but rather special case them here.
1089 	 */
1090 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1091 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1092 				cqe->status, &cqe->result);
1093 		return;
1094 	}
1095 
1096 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1097 	if (unlikely(!req)) {
1098 		dev_warn(nvmeq->dev->ctrl.device,
1099 			"invalid id %d completed on queue %d\n",
1100 			command_id, le16_to_cpu(cqe->sq_id));
1101 		return;
1102 	}
1103 
1104 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1105 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1106 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1107 					nvme_pci_complete_batch))
1108 		nvme_pci_complete_rq(req);
1109 }
1110 
1111 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1112 {
1113 	u32 tmp = nvmeq->cq_head + 1;
1114 
1115 	if (tmp == nvmeq->q_depth) {
1116 		nvmeq->cq_head = 0;
1117 		nvmeq->cq_phase ^= 1;
1118 	} else {
1119 		nvmeq->cq_head = tmp;
1120 	}
1121 }
1122 
1123 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1124 			       struct io_comp_batch *iob)
1125 {
1126 	int found = 0;
1127 
1128 	while (nvme_cqe_pending(nvmeq)) {
1129 		found++;
1130 		/*
1131 		 * load-load control dependency between phase and the rest of
1132 		 * the cqe requires a full read memory barrier
1133 		 */
1134 		dma_rmb();
1135 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1136 		nvme_update_cq_head(nvmeq);
1137 	}
1138 
1139 	if (found)
1140 		nvme_ring_cq_doorbell(nvmeq);
1141 	return found;
1142 }
1143 
1144 static irqreturn_t nvme_irq(int irq, void *data)
1145 {
1146 	struct nvme_queue *nvmeq = data;
1147 	DEFINE_IO_COMP_BATCH(iob);
1148 
1149 	if (nvme_poll_cq(nvmeq, &iob)) {
1150 		if (!rq_list_empty(iob.req_list))
1151 			nvme_pci_complete_batch(&iob);
1152 		return IRQ_HANDLED;
1153 	}
1154 	return IRQ_NONE;
1155 }
1156 
1157 static irqreturn_t nvme_irq_check(int irq, void *data)
1158 {
1159 	struct nvme_queue *nvmeq = data;
1160 
1161 	if (nvme_cqe_pending(nvmeq))
1162 		return IRQ_WAKE_THREAD;
1163 	return IRQ_NONE;
1164 }
1165 
1166 /*
1167  * Poll for completions for any interrupt driven queue
1168  * Can be called from any context.
1169  */
1170 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1171 {
1172 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1173 
1174 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1175 
1176 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1177 	nvme_poll_cq(nvmeq, NULL);
1178 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1179 }
1180 
1181 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1182 {
1183 	struct nvme_queue *nvmeq = hctx->driver_data;
1184 	bool found;
1185 
1186 	if (!nvme_cqe_pending(nvmeq))
1187 		return 0;
1188 
1189 	spin_lock(&nvmeq->cq_poll_lock);
1190 	found = nvme_poll_cq(nvmeq, iob);
1191 	spin_unlock(&nvmeq->cq_poll_lock);
1192 
1193 	return found;
1194 }
1195 
1196 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1197 {
1198 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1199 	struct nvme_queue *nvmeq = &dev->queues[0];
1200 	struct nvme_command c = { };
1201 
1202 	c.common.opcode = nvme_admin_async_event;
1203 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1204 
1205 	spin_lock(&nvmeq->sq_lock);
1206 	nvme_sq_copy_cmd(nvmeq, &c);
1207 	nvme_write_sq_db(nvmeq, true);
1208 	spin_unlock(&nvmeq->sq_lock);
1209 }
1210 
1211 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1212 {
1213 	struct nvme_command c = { };
1214 
1215 	c.delete_queue.opcode = opcode;
1216 	c.delete_queue.qid = cpu_to_le16(id);
1217 
1218 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1219 }
1220 
1221 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1222 		struct nvme_queue *nvmeq, s16 vector)
1223 {
1224 	struct nvme_command c = { };
1225 	int flags = NVME_QUEUE_PHYS_CONTIG;
1226 
1227 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1228 		flags |= NVME_CQ_IRQ_ENABLED;
1229 
1230 	/*
1231 	 * Note: we (ab)use the fact that the prp fields survive if no data
1232 	 * is attached to the request.
1233 	 */
1234 	c.create_cq.opcode = nvme_admin_create_cq;
1235 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1236 	c.create_cq.cqid = cpu_to_le16(qid);
1237 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1238 	c.create_cq.cq_flags = cpu_to_le16(flags);
1239 	c.create_cq.irq_vector = cpu_to_le16(vector);
1240 
1241 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1242 }
1243 
1244 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1245 						struct nvme_queue *nvmeq)
1246 {
1247 	struct nvme_ctrl *ctrl = &dev->ctrl;
1248 	struct nvme_command c = { };
1249 	int flags = NVME_QUEUE_PHYS_CONTIG;
1250 
1251 	/*
1252 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1253 	 * set. Since URGENT priority is zeroes, it makes all queues
1254 	 * URGENT.
1255 	 */
1256 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1257 		flags |= NVME_SQ_PRIO_MEDIUM;
1258 
1259 	/*
1260 	 * Note: we (ab)use the fact that the prp fields survive if no data
1261 	 * is attached to the request.
1262 	 */
1263 	c.create_sq.opcode = nvme_admin_create_sq;
1264 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1265 	c.create_sq.sqid = cpu_to_le16(qid);
1266 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1267 	c.create_sq.sq_flags = cpu_to_le16(flags);
1268 	c.create_sq.cqid = cpu_to_le16(qid);
1269 
1270 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1271 }
1272 
1273 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1274 {
1275 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1276 }
1277 
1278 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1279 {
1280 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1281 }
1282 
1283 static void abort_endio(struct request *req, blk_status_t error)
1284 {
1285 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1286 	struct nvme_queue *nvmeq = iod->nvmeq;
1287 
1288 	dev_warn(nvmeq->dev->ctrl.device,
1289 		 "Abort status: 0x%x", nvme_req(req)->status);
1290 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1291 	blk_mq_free_request(req);
1292 }
1293 
1294 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1295 {
1296 	/* If true, indicates loss of adapter communication, possibly by a
1297 	 * NVMe Subsystem reset.
1298 	 */
1299 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1300 
1301 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1302 	switch (dev->ctrl.state) {
1303 	case NVME_CTRL_RESETTING:
1304 	case NVME_CTRL_CONNECTING:
1305 		return false;
1306 	default:
1307 		break;
1308 	}
1309 
1310 	/* We shouldn't reset unless the controller is on fatal error state
1311 	 * _or_ if we lost the communication with it.
1312 	 */
1313 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1314 		return false;
1315 
1316 	return true;
1317 }
1318 
1319 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1320 {
1321 	/* Read a config register to help see what died. */
1322 	u16 pci_status;
1323 	int result;
1324 
1325 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1326 				      &pci_status);
1327 	if (result == PCIBIOS_SUCCESSFUL)
1328 		dev_warn(dev->ctrl.device,
1329 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1330 			 csts, pci_status);
1331 	else
1332 		dev_warn(dev->ctrl.device,
1333 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1334 			 csts, result);
1335 }
1336 
1337 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1338 {
1339 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1340 	struct nvme_queue *nvmeq = iod->nvmeq;
1341 	struct nvme_dev *dev = nvmeq->dev;
1342 	struct request *abort_req;
1343 	struct nvme_command cmd = { };
1344 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1345 
1346 	/* If PCI error recovery process is happening, we cannot reset or
1347 	 * the recovery mechanism will surely fail.
1348 	 */
1349 	mb();
1350 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1351 		return BLK_EH_RESET_TIMER;
1352 
1353 	/*
1354 	 * Reset immediately if the controller is failed
1355 	 */
1356 	if (nvme_should_reset(dev, csts)) {
1357 		nvme_warn_reset(dev, csts);
1358 		nvme_dev_disable(dev, false);
1359 		nvme_reset_ctrl(&dev->ctrl);
1360 		return BLK_EH_DONE;
1361 	}
1362 
1363 	/*
1364 	 * Did we miss an interrupt?
1365 	 */
1366 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1367 		nvme_poll(req->mq_hctx, NULL);
1368 	else
1369 		nvme_poll_irqdisable(nvmeq);
1370 
1371 	if (blk_mq_request_completed(req)) {
1372 		dev_warn(dev->ctrl.device,
1373 			 "I/O %d QID %d timeout, completion polled\n",
1374 			 req->tag, nvmeq->qid);
1375 		return BLK_EH_DONE;
1376 	}
1377 
1378 	/*
1379 	 * Shutdown immediately if controller times out while starting. The
1380 	 * reset work will see the pci device disabled when it gets the forced
1381 	 * cancellation error. All outstanding requests are completed on
1382 	 * shutdown, so we return BLK_EH_DONE.
1383 	 */
1384 	switch (dev->ctrl.state) {
1385 	case NVME_CTRL_CONNECTING:
1386 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1387 		fallthrough;
1388 	case NVME_CTRL_DELETING:
1389 		dev_warn_ratelimited(dev->ctrl.device,
1390 			 "I/O %d QID %d timeout, disable controller\n",
1391 			 req->tag, nvmeq->qid);
1392 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1393 		nvme_dev_disable(dev, true);
1394 		return BLK_EH_DONE;
1395 	case NVME_CTRL_RESETTING:
1396 		return BLK_EH_RESET_TIMER;
1397 	default:
1398 		break;
1399 	}
1400 
1401 	/*
1402 	 * Shutdown the controller immediately and schedule a reset if the
1403 	 * command was already aborted once before and still hasn't been
1404 	 * returned to the driver, or if this is the admin queue.
1405 	 */
1406 	if (!nvmeq->qid || iod->aborted) {
1407 		dev_warn(dev->ctrl.device,
1408 			 "I/O %d QID %d timeout, reset controller\n",
1409 			 req->tag, nvmeq->qid);
1410 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1411 		nvme_dev_disable(dev, false);
1412 		nvme_reset_ctrl(&dev->ctrl);
1413 
1414 		return BLK_EH_DONE;
1415 	}
1416 
1417 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1418 		atomic_inc(&dev->ctrl.abort_limit);
1419 		return BLK_EH_RESET_TIMER;
1420 	}
1421 	iod->aborted = 1;
1422 
1423 	cmd.abort.opcode = nvme_admin_abort_cmd;
1424 	cmd.abort.cid = nvme_cid(req);
1425 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1426 
1427 	dev_warn(nvmeq->dev->ctrl.device,
1428 		"I/O %d QID %d timeout, aborting\n",
1429 		 req->tag, nvmeq->qid);
1430 
1431 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1432 			BLK_MQ_REQ_NOWAIT);
1433 	if (IS_ERR(abort_req)) {
1434 		atomic_inc(&dev->ctrl.abort_limit);
1435 		return BLK_EH_RESET_TIMER;
1436 	}
1437 
1438 	abort_req->end_io_data = NULL;
1439 	blk_execute_rq_nowait(abort_req, false, abort_endio);
1440 
1441 	/*
1442 	 * The aborted req will be completed on receiving the abort req.
1443 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1444 	 * as the device then is in a faulty state.
1445 	 */
1446 	return BLK_EH_RESET_TIMER;
1447 }
1448 
1449 static void nvme_free_queue(struct nvme_queue *nvmeq)
1450 {
1451 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1452 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1453 	if (!nvmeq->sq_cmds)
1454 		return;
1455 
1456 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1457 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1458 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1459 	} else {
1460 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1461 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1462 	}
1463 }
1464 
1465 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1466 {
1467 	int i;
1468 
1469 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1470 		dev->ctrl.queue_count--;
1471 		nvme_free_queue(&dev->queues[i]);
1472 	}
1473 }
1474 
1475 /**
1476  * nvme_suspend_queue - put queue into suspended state
1477  * @nvmeq: queue to suspend
1478  */
1479 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1480 {
1481 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1482 		return 1;
1483 
1484 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1485 	mb();
1486 
1487 	nvmeq->dev->online_queues--;
1488 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1489 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1490 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1491 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1492 	return 0;
1493 }
1494 
1495 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1496 {
1497 	int i;
1498 
1499 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1500 		nvme_suspend_queue(&dev->queues[i]);
1501 }
1502 
1503 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1504 {
1505 	struct nvme_queue *nvmeq = &dev->queues[0];
1506 
1507 	if (shutdown)
1508 		nvme_shutdown_ctrl(&dev->ctrl);
1509 	else
1510 		nvme_disable_ctrl(&dev->ctrl);
1511 
1512 	nvme_poll_irqdisable(nvmeq);
1513 }
1514 
1515 /*
1516  * Called only on a device that has been disabled and after all other threads
1517  * that can check this device's completion queues have synced, except
1518  * nvme_poll(). This is the last chance for the driver to see a natural
1519  * completion before nvme_cancel_request() terminates all incomplete requests.
1520  */
1521 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1522 {
1523 	int i;
1524 
1525 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1526 		spin_lock(&dev->queues[i].cq_poll_lock);
1527 		nvme_poll_cq(&dev->queues[i], NULL);
1528 		spin_unlock(&dev->queues[i].cq_poll_lock);
1529 	}
1530 }
1531 
1532 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1533 				int entry_size)
1534 {
1535 	int q_depth = dev->q_depth;
1536 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1537 					  NVME_CTRL_PAGE_SIZE);
1538 
1539 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1540 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1541 
1542 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1543 		q_depth = div_u64(mem_per_q, entry_size);
1544 
1545 		/*
1546 		 * Ensure the reduced q_depth is above some threshold where it
1547 		 * would be better to map queues in system memory with the
1548 		 * original depth
1549 		 */
1550 		if (q_depth < 64)
1551 			return -ENOMEM;
1552 	}
1553 
1554 	return q_depth;
1555 }
1556 
1557 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1558 				int qid)
1559 {
1560 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1561 
1562 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1563 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1564 		if (nvmeq->sq_cmds) {
1565 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1566 							nvmeq->sq_cmds);
1567 			if (nvmeq->sq_dma_addr) {
1568 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1569 				return 0;
1570 			}
1571 
1572 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1573 		}
1574 	}
1575 
1576 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1577 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1578 	if (!nvmeq->sq_cmds)
1579 		return -ENOMEM;
1580 	return 0;
1581 }
1582 
1583 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1584 {
1585 	struct nvme_queue *nvmeq = &dev->queues[qid];
1586 
1587 	if (dev->ctrl.queue_count > qid)
1588 		return 0;
1589 
1590 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1591 	nvmeq->q_depth = depth;
1592 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1593 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1594 	if (!nvmeq->cqes)
1595 		goto free_nvmeq;
1596 
1597 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1598 		goto free_cqdma;
1599 
1600 	nvmeq->dev = dev;
1601 	spin_lock_init(&nvmeq->sq_lock);
1602 	spin_lock_init(&nvmeq->cq_poll_lock);
1603 	nvmeq->cq_head = 0;
1604 	nvmeq->cq_phase = 1;
1605 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1606 	nvmeq->qid = qid;
1607 	dev->ctrl.queue_count++;
1608 
1609 	return 0;
1610 
1611  free_cqdma:
1612 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1613 			  nvmeq->cq_dma_addr);
1614  free_nvmeq:
1615 	return -ENOMEM;
1616 }
1617 
1618 static int queue_request_irq(struct nvme_queue *nvmeq)
1619 {
1620 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1621 	int nr = nvmeq->dev->ctrl.instance;
1622 
1623 	if (use_threaded_interrupts) {
1624 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1625 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1626 	} else {
1627 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1628 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1629 	}
1630 }
1631 
1632 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1633 {
1634 	struct nvme_dev *dev = nvmeq->dev;
1635 
1636 	nvmeq->sq_tail = 0;
1637 	nvmeq->last_sq_tail = 0;
1638 	nvmeq->cq_head = 0;
1639 	nvmeq->cq_phase = 1;
1640 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1641 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1642 	nvme_dbbuf_init(dev, nvmeq, qid);
1643 	dev->online_queues++;
1644 	wmb(); /* ensure the first interrupt sees the initialization */
1645 }
1646 
1647 /*
1648  * Try getting shutdown_lock while setting up IO queues.
1649  */
1650 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1651 {
1652 	/*
1653 	 * Give up if the lock is being held by nvme_dev_disable.
1654 	 */
1655 	if (!mutex_trylock(&dev->shutdown_lock))
1656 		return -ENODEV;
1657 
1658 	/*
1659 	 * Controller is in wrong state, fail early.
1660 	 */
1661 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1662 		mutex_unlock(&dev->shutdown_lock);
1663 		return -ENODEV;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1670 {
1671 	struct nvme_dev *dev = nvmeq->dev;
1672 	int result;
1673 	u16 vector = 0;
1674 
1675 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1676 
1677 	/*
1678 	 * A queue's vector matches the queue identifier unless the controller
1679 	 * has only one vector available.
1680 	 */
1681 	if (!polled)
1682 		vector = dev->num_vecs == 1 ? 0 : qid;
1683 	else
1684 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1685 
1686 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1687 	if (result)
1688 		return result;
1689 
1690 	result = adapter_alloc_sq(dev, qid, nvmeq);
1691 	if (result < 0)
1692 		return result;
1693 	if (result)
1694 		goto release_cq;
1695 
1696 	nvmeq->cq_vector = vector;
1697 
1698 	result = nvme_setup_io_queues_trylock(dev);
1699 	if (result)
1700 		return result;
1701 	nvme_init_queue(nvmeq, qid);
1702 	if (!polled) {
1703 		result = queue_request_irq(nvmeq);
1704 		if (result < 0)
1705 			goto release_sq;
1706 	}
1707 
1708 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1709 	mutex_unlock(&dev->shutdown_lock);
1710 	return result;
1711 
1712 release_sq:
1713 	dev->online_queues--;
1714 	mutex_unlock(&dev->shutdown_lock);
1715 	adapter_delete_sq(dev, qid);
1716 release_cq:
1717 	adapter_delete_cq(dev, qid);
1718 	return result;
1719 }
1720 
1721 static const struct blk_mq_ops nvme_mq_admin_ops = {
1722 	.queue_rq	= nvme_queue_rq,
1723 	.complete	= nvme_pci_complete_rq,
1724 	.init_hctx	= nvme_admin_init_hctx,
1725 	.init_request	= nvme_init_request,
1726 	.timeout	= nvme_timeout,
1727 };
1728 
1729 static const struct blk_mq_ops nvme_mq_ops = {
1730 	.queue_rq	= nvme_queue_rq,
1731 	.queue_rqs	= nvme_queue_rqs,
1732 	.complete	= nvme_pci_complete_rq,
1733 	.commit_rqs	= nvme_commit_rqs,
1734 	.init_hctx	= nvme_init_hctx,
1735 	.init_request	= nvme_init_request,
1736 	.map_queues	= nvme_pci_map_queues,
1737 	.timeout	= nvme_timeout,
1738 	.poll		= nvme_poll,
1739 };
1740 
1741 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1742 {
1743 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1744 		/*
1745 		 * If the controller was reset during removal, it's possible
1746 		 * user requests may be waiting on a stopped queue. Start the
1747 		 * queue to flush these to completion.
1748 		 */
1749 		nvme_start_admin_queue(&dev->ctrl);
1750 		blk_cleanup_queue(dev->ctrl.admin_q);
1751 		blk_mq_free_tag_set(&dev->admin_tagset);
1752 	}
1753 }
1754 
1755 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1756 {
1757 	if (!dev->ctrl.admin_q) {
1758 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1759 		dev->admin_tagset.nr_hw_queues = 1;
1760 
1761 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1762 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1763 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1764 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1765 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1766 		dev->admin_tagset.driver_data = dev;
1767 
1768 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1769 			return -ENOMEM;
1770 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1771 
1772 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1773 		if (IS_ERR(dev->ctrl.admin_q)) {
1774 			blk_mq_free_tag_set(&dev->admin_tagset);
1775 			return -ENOMEM;
1776 		}
1777 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1778 			nvme_dev_remove_admin(dev);
1779 			dev->ctrl.admin_q = NULL;
1780 			return -ENODEV;
1781 		}
1782 	} else
1783 		nvme_start_admin_queue(&dev->ctrl);
1784 
1785 	return 0;
1786 }
1787 
1788 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1789 {
1790 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1791 }
1792 
1793 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1794 {
1795 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1796 
1797 	if (size <= dev->bar_mapped_size)
1798 		return 0;
1799 	if (size > pci_resource_len(pdev, 0))
1800 		return -ENOMEM;
1801 	if (dev->bar)
1802 		iounmap(dev->bar);
1803 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1804 	if (!dev->bar) {
1805 		dev->bar_mapped_size = 0;
1806 		return -ENOMEM;
1807 	}
1808 	dev->bar_mapped_size = size;
1809 	dev->dbs = dev->bar + NVME_REG_DBS;
1810 
1811 	return 0;
1812 }
1813 
1814 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1815 {
1816 	int result;
1817 	u32 aqa;
1818 	struct nvme_queue *nvmeq;
1819 
1820 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1821 	if (result < 0)
1822 		return result;
1823 
1824 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1825 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1826 
1827 	if (dev->subsystem &&
1828 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1829 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1830 
1831 	result = nvme_disable_ctrl(&dev->ctrl);
1832 	if (result < 0)
1833 		return result;
1834 
1835 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1836 	if (result)
1837 		return result;
1838 
1839 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1840 
1841 	nvmeq = &dev->queues[0];
1842 	aqa = nvmeq->q_depth - 1;
1843 	aqa |= aqa << 16;
1844 
1845 	writel(aqa, dev->bar + NVME_REG_AQA);
1846 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1847 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1848 
1849 	result = nvme_enable_ctrl(&dev->ctrl);
1850 	if (result)
1851 		return result;
1852 
1853 	nvmeq->cq_vector = 0;
1854 	nvme_init_queue(nvmeq, 0);
1855 	result = queue_request_irq(nvmeq);
1856 	if (result) {
1857 		dev->online_queues--;
1858 		return result;
1859 	}
1860 
1861 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1862 	return result;
1863 }
1864 
1865 static int nvme_create_io_queues(struct nvme_dev *dev)
1866 {
1867 	unsigned i, max, rw_queues;
1868 	int ret = 0;
1869 
1870 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1871 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1872 			ret = -ENOMEM;
1873 			break;
1874 		}
1875 	}
1876 
1877 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1878 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1879 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1880 				dev->io_queues[HCTX_TYPE_READ];
1881 	} else {
1882 		rw_queues = max;
1883 	}
1884 
1885 	for (i = dev->online_queues; i <= max; i++) {
1886 		bool polled = i > rw_queues;
1887 
1888 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1889 		if (ret)
1890 			break;
1891 	}
1892 
1893 	/*
1894 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1895 	 * than the desired amount of queues, and even a controller without
1896 	 * I/O queues can still be used to issue admin commands.  This might
1897 	 * be useful to upgrade a buggy firmware for example.
1898 	 */
1899 	return ret >= 0 ? 0 : ret;
1900 }
1901 
1902 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1903 {
1904 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1905 
1906 	return 1ULL << (12 + 4 * szu);
1907 }
1908 
1909 static u32 nvme_cmb_size(struct nvme_dev *dev)
1910 {
1911 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1912 }
1913 
1914 static void nvme_map_cmb(struct nvme_dev *dev)
1915 {
1916 	u64 size, offset;
1917 	resource_size_t bar_size;
1918 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1919 	int bar;
1920 
1921 	if (dev->cmb_size)
1922 		return;
1923 
1924 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1925 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1926 
1927 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1928 	if (!dev->cmbsz)
1929 		return;
1930 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1931 
1932 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1933 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1934 	bar = NVME_CMB_BIR(dev->cmbloc);
1935 	bar_size = pci_resource_len(pdev, bar);
1936 
1937 	if (offset > bar_size)
1938 		return;
1939 
1940 	/*
1941 	 * Tell the controller about the host side address mapping the CMB,
1942 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1943 	 */
1944 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1945 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1946 			     (pci_bus_address(pdev, bar) + offset),
1947 			     dev->bar + NVME_REG_CMBMSC);
1948 	}
1949 
1950 	/*
1951 	 * Controllers may support a CMB size larger than their BAR,
1952 	 * for example, due to being behind a bridge. Reduce the CMB to
1953 	 * the reported size of the BAR
1954 	 */
1955 	if (size > bar_size - offset)
1956 		size = bar_size - offset;
1957 
1958 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1959 		dev_warn(dev->ctrl.device,
1960 			 "failed to register the CMB\n");
1961 		return;
1962 	}
1963 
1964 	dev->cmb_size = size;
1965 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1966 
1967 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1968 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1969 		pci_p2pmem_publish(pdev, true);
1970 }
1971 
1972 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1973 {
1974 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1975 	u64 dma_addr = dev->host_mem_descs_dma;
1976 	struct nvme_command c = { };
1977 	int ret;
1978 
1979 	c.features.opcode	= nvme_admin_set_features;
1980 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1981 	c.features.dword11	= cpu_to_le32(bits);
1982 	c.features.dword12	= cpu_to_le32(host_mem_size);
1983 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1984 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1985 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1986 
1987 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1988 	if (ret) {
1989 		dev_warn(dev->ctrl.device,
1990 			 "failed to set host mem (err %d, flags %#x).\n",
1991 			 ret, bits);
1992 	} else
1993 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1994 
1995 	return ret;
1996 }
1997 
1998 static void nvme_free_host_mem(struct nvme_dev *dev)
1999 {
2000 	int i;
2001 
2002 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2003 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2004 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2005 
2006 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2007 			       le64_to_cpu(desc->addr),
2008 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2009 	}
2010 
2011 	kfree(dev->host_mem_desc_bufs);
2012 	dev->host_mem_desc_bufs = NULL;
2013 	dma_free_coherent(dev->dev,
2014 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2015 			dev->host_mem_descs, dev->host_mem_descs_dma);
2016 	dev->host_mem_descs = NULL;
2017 	dev->nr_host_mem_descs = 0;
2018 }
2019 
2020 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2021 		u32 chunk_size)
2022 {
2023 	struct nvme_host_mem_buf_desc *descs;
2024 	u32 max_entries, len;
2025 	dma_addr_t descs_dma;
2026 	int i = 0;
2027 	void **bufs;
2028 	u64 size, tmp;
2029 
2030 	tmp = (preferred + chunk_size - 1);
2031 	do_div(tmp, chunk_size);
2032 	max_entries = tmp;
2033 
2034 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2035 		max_entries = dev->ctrl.hmmaxd;
2036 
2037 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2038 				   &descs_dma, GFP_KERNEL);
2039 	if (!descs)
2040 		goto out;
2041 
2042 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2043 	if (!bufs)
2044 		goto out_free_descs;
2045 
2046 	for (size = 0; size < preferred && i < max_entries; size += len) {
2047 		dma_addr_t dma_addr;
2048 
2049 		len = min_t(u64, chunk_size, preferred - size);
2050 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2051 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2052 		if (!bufs[i])
2053 			break;
2054 
2055 		descs[i].addr = cpu_to_le64(dma_addr);
2056 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2057 		i++;
2058 	}
2059 
2060 	if (!size)
2061 		goto out_free_bufs;
2062 
2063 	dev->nr_host_mem_descs = i;
2064 	dev->host_mem_size = size;
2065 	dev->host_mem_descs = descs;
2066 	dev->host_mem_descs_dma = descs_dma;
2067 	dev->host_mem_desc_bufs = bufs;
2068 	return 0;
2069 
2070 out_free_bufs:
2071 	while (--i >= 0) {
2072 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2073 
2074 		dma_free_attrs(dev->dev, size, bufs[i],
2075 			       le64_to_cpu(descs[i].addr),
2076 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2077 	}
2078 
2079 	kfree(bufs);
2080 out_free_descs:
2081 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2082 			descs_dma);
2083 out:
2084 	dev->host_mem_descs = NULL;
2085 	return -ENOMEM;
2086 }
2087 
2088 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2089 {
2090 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2091 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2092 	u64 chunk_size;
2093 
2094 	/* start big and work our way down */
2095 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2096 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2097 			if (!min || dev->host_mem_size >= min)
2098 				return 0;
2099 			nvme_free_host_mem(dev);
2100 		}
2101 	}
2102 
2103 	return -ENOMEM;
2104 }
2105 
2106 static int nvme_setup_host_mem(struct nvme_dev *dev)
2107 {
2108 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2109 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2110 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2111 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2112 	int ret;
2113 
2114 	preferred = min(preferred, max);
2115 	if (min > max) {
2116 		dev_warn(dev->ctrl.device,
2117 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2118 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2119 		nvme_free_host_mem(dev);
2120 		return 0;
2121 	}
2122 
2123 	/*
2124 	 * If we already have a buffer allocated check if we can reuse it.
2125 	 */
2126 	if (dev->host_mem_descs) {
2127 		if (dev->host_mem_size >= min)
2128 			enable_bits |= NVME_HOST_MEM_RETURN;
2129 		else
2130 			nvme_free_host_mem(dev);
2131 	}
2132 
2133 	if (!dev->host_mem_descs) {
2134 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2135 			dev_warn(dev->ctrl.device,
2136 				"failed to allocate host memory buffer.\n");
2137 			return 0; /* controller must work without HMB */
2138 		}
2139 
2140 		dev_info(dev->ctrl.device,
2141 			"allocated %lld MiB host memory buffer.\n",
2142 			dev->host_mem_size >> ilog2(SZ_1M));
2143 	}
2144 
2145 	ret = nvme_set_host_mem(dev, enable_bits);
2146 	if (ret)
2147 		nvme_free_host_mem(dev);
2148 	return ret;
2149 }
2150 
2151 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2152 		char *buf)
2153 {
2154 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2155 
2156 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2157 		       ndev->cmbloc, ndev->cmbsz);
2158 }
2159 static DEVICE_ATTR_RO(cmb);
2160 
2161 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2162 		char *buf)
2163 {
2164 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2165 
2166 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2167 }
2168 static DEVICE_ATTR_RO(cmbloc);
2169 
2170 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2171 		char *buf)
2172 {
2173 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2174 
2175 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2176 }
2177 static DEVICE_ATTR_RO(cmbsz);
2178 
2179 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2180 			char *buf)
2181 {
2182 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2183 
2184 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2185 }
2186 
2187 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2188 			 const char *buf, size_t count)
2189 {
2190 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2191 	bool new;
2192 	int ret;
2193 
2194 	if (strtobool(buf, &new) < 0)
2195 		return -EINVAL;
2196 
2197 	if (new == ndev->hmb)
2198 		return count;
2199 
2200 	if (new) {
2201 		ret = nvme_setup_host_mem(ndev);
2202 	} else {
2203 		ret = nvme_set_host_mem(ndev, 0);
2204 		if (!ret)
2205 			nvme_free_host_mem(ndev);
2206 	}
2207 
2208 	if (ret < 0)
2209 		return ret;
2210 
2211 	return count;
2212 }
2213 static DEVICE_ATTR_RW(hmb);
2214 
2215 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2216 		struct attribute *a, int n)
2217 {
2218 	struct nvme_ctrl *ctrl =
2219 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2220 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2221 
2222 	if (a == &dev_attr_cmb.attr ||
2223 	    a == &dev_attr_cmbloc.attr ||
2224 	    a == &dev_attr_cmbsz.attr) {
2225 	    	if (!dev->cmbsz)
2226 			return 0;
2227 	}
2228 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2229 		return 0;
2230 
2231 	return a->mode;
2232 }
2233 
2234 static struct attribute *nvme_pci_attrs[] = {
2235 	&dev_attr_cmb.attr,
2236 	&dev_attr_cmbloc.attr,
2237 	&dev_attr_cmbsz.attr,
2238 	&dev_attr_hmb.attr,
2239 	NULL,
2240 };
2241 
2242 static const struct attribute_group nvme_pci_attr_group = {
2243 	.attrs		= nvme_pci_attrs,
2244 	.is_visible	= nvme_pci_attrs_are_visible,
2245 };
2246 
2247 /*
2248  * nirqs is the number of interrupts available for write and read
2249  * queues. The core already reserved an interrupt for the admin queue.
2250  */
2251 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2252 {
2253 	struct nvme_dev *dev = affd->priv;
2254 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2255 
2256 	/*
2257 	 * If there is no interrupt available for queues, ensure that
2258 	 * the default queue is set to 1. The affinity set size is
2259 	 * also set to one, but the irq core ignores it for this case.
2260 	 *
2261 	 * If only one interrupt is available or 'write_queue' == 0, combine
2262 	 * write and read queues.
2263 	 *
2264 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2265 	 * queue.
2266 	 */
2267 	if (!nrirqs) {
2268 		nrirqs = 1;
2269 		nr_read_queues = 0;
2270 	} else if (nrirqs == 1 || !nr_write_queues) {
2271 		nr_read_queues = 0;
2272 	} else if (nr_write_queues >= nrirqs) {
2273 		nr_read_queues = 1;
2274 	} else {
2275 		nr_read_queues = nrirqs - nr_write_queues;
2276 	}
2277 
2278 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2279 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2280 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2281 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2282 	affd->nr_sets = nr_read_queues ? 2 : 1;
2283 }
2284 
2285 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2286 {
2287 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2288 	struct irq_affinity affd = {
2289 		.pre_vectors	= 1,
2290 		.calc_sets	= nvme_calc_irq_sets,
2291 		.priv		= dev,
2292 	};
2293 	unsigned int irq_queues, poll_queues;
2294 
2295 	/*
2296 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2297 	 * left over for non-polled I/O.
2298 	 */
2299 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2300 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2301 
2302 	/*
2303 	 * Initialize for the single interrupt case, will be updated in
2304 	 * nvme_calc_irq_sets().
2305 	 */
2306 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2307 	dev->io_queues[HCTX_TYPE_READ] = 0;
2308 
2309 	/*
2310 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2311 	 * but some Apple controllers require all queues to use the first
2312 	 * vector.
2313 	 */
2314 	irq_queues = 1;
2315 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2316 		irq_queues += (nr_io_queues - poll_queues);
2317 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2318 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2319 }
2320 
2321 static void nvme_disable_io_queues(struct nvme_dev *dev)
2322 {
2323 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2324 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2325 }
2326 
2327 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2328 {
2329 	/*
2330 	 * If tags are shared with admin queue (Apple bug), then
2331 	 * make sure we only use one IO queue.
2332 	 */
2333 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2334 		return 1;
2335 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2336 }
2337 
2338 static int nvme_setup_io_queues(struct nvme_dev *dev)
2339 {
2340 	struct nvme_queue *adminq = &dev->queues[0];
2341 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2342 	unsigned int nr_io_queues;
2343 	unsigned long size;
2344 	int result;
2345 
2346 	/*
2347 	 * Sample the module parameters once at reset time so that we have
2348 	 * stable values to work with.
2349 	 */
2350 	dev->nr_write_queues = write_queues;
2351 	dev->nr_poll_queues = poll_queues;
2352 
2353 	nr_io_queues = dev->nr_allocated_queues - 1;
2354 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2355 	if (result < 0)
2356 		return result;
2357 
2358 	if (nr_io_queues == 0)
2359 		return 0;
2360 
2361 	/*
2362 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2363 	 * from set to unset. If there is a window to it is truely freed,
2364 	 * pci_free_irq_vectors() jumping into this window will crash.
2365 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2366 	 * nvme_dev_disable() path.
2367 	 */
2368 	result = nvme_setup_io_queues_trylock(dev);
2369 	if (result)
2370 		return result;
2371 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2372 		pci_free_irq(pdev, 0, adminq);
2373 
2374 	if (dev->cmb_use_sqes) {
2375 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2376 				sizeof(struct nvme_command));
2377 		if (result > 0)
2378 			dev->q_depth = result;
2379 		else
2380 			dev->cmb_use_sqes = false;
2381 	}
2382 
2383 	do {
2384 		size = db_bar_size(dev, nr_io_queues);
2385 		result = nvme_remap_bar(dev, size);
2386 		if (!result)
2387 			break;
2388 		if (!--nr_io_queues) {
2389 			result = -ENOMEM;
2390 			goto out_unlock;
2391 		}
2392 	} while (1);
2393 	adminq->q_db = dev->dbs;
2394 
2395  retry:
2396 	/* Deregister the admin queue's interrupt */
2397 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2398 		pci_free_irq(pdev, 0, adminq);
2399 
2400 	/*
2401 	 * If we enable msix early due to not intx, disable it again before
2402 	 * setting up the full range we need.
2403 	 */
2404 	pci_free_irq_vectors(pdev);
2405 
2406 	result = nvme_setup_irqs(dev, nr_io_queues);
2407 	if (result <= 0) {
2408 		result = -EIO;
2409 		goto out_unlock;
2410 	}
2411 
2412 	dev->num_vecs = result;
2413 	result = max(result - 1, 1);
2414 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2415 
2416 	/*
2417 	 * Should investigate if there's a performance win from allocating
2418 	 * more queues than interrupt vectors; it might allow the submission
2419 	 * path to scale better, even if the receive path is limited by the
2420 	 * number of interrupts.
2421 	 */
2422 	result = queue_request_irq(adminq);
2423 	if (result)
2424 		goto out_unlock;
2425 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2426 	mutex_unlock(&dev->shutdown_lock);
2427 
2428 	result = nvme_create_io_queues(dev);
2429 	if (result || dev->online_queues < 2)
2430 		return result;
2431 
2432 	if (dev->online_queues - 1 < dev->max_qid) {
2433 		nr_io_queues = dev->online_queues - 1;
2434 		nvme_disable_io_queues(dev);
2435 		result = nvme_setup_io_queues_trylock(dev);
2436 		if (result)
2437 			return result;
2438 		nvme_suspend_io_queues(dev);
2439 		goto retry;
2440 	}
2441 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2442 					dev->io_queues[HCTX_TYPE_DEFAULT],
2443 					dev->io_queues[HCTX_TYPE_READ],
2444 					dev->io_queues[HCTX_TYPE_POLL]);
2445 	return 0;
2446 out_unlock:
2447 	mutex_unlock(&dev->shutdown_lock);
2448 	return result;
2449 }
2450 
2451 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2452 {
2453 	struct nvme_queue *nvmeq = req->end_io_data;
2454 
2455 	blk_mq_free_request(req);
2456 	complete(&nvmeq->delete_done);
2457 }
2458 
2459 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2460 {
2461 	struct nvme_queue *nvmeq = req->end_io_data;
2462 
2463 	if (error)
2464 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2465 
2466 	nvme_del_queue_end(req, error);
2467 }
2468 
2469 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2470 {
2471 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2472 	struct request *req;
2473 	struct nvme_command cmd = { };
2474 
2475 	cmd.delete_queue.opcode = opcode;
2476 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2477 
2478 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2479 	if (IS_ERR(req))
2480 		return PTR_ERR(req);
2481 
2482 	req->end_io_data = nvmeq;
2483 
2484 	init_completion(&nvmeq->delete_done);
2485 	blk_execute_rq_nowait(req, false, opcode == nvme_admin_delete_cq ?
2486 			nvme_del_cq_end : nvme_del_queue_end);
2487 	return 0;
2488 }
2489 
2490 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2491 {
2492 	int nr_queues = dev->online_queues - 1, sent = 0;
2493 	unsigned long timeout;
2494 
2495  retry:
2496 	timeout = NVME_ADMIN_TIMEOUT;
2497 	while (nr_queues > 0) {
2498 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2499 			break;
2500 		nr_queues--;
2501 		sent++;
2502 	}
2503 	while (sent) {
2504 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2505 
2506 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2507 				timeout);
2508 		if (timeout == 0)
2509 			return false;
2510 
2511 		sent--;
2512 		if (nr_queues)
2513 			goto retry;
2514 	}
2515 	return true;
2516 }
2517 
2518 static void nvme_dev_add(struct nvme_dev *dev)
2519 {
2520 	int ret;
2521 
2522 	if (!dev->ctrl.tagset) {
2523 		dev->tagset.ops = &nvme_mq_ops;
2524 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2525 		dev->tagset.nr_maps = 2; /* default + read */
2526 		if (dev->io_queues[HCTX_TYPE_POLL])
2527 			dev->tagset.nr_maps++;
2528 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2529 		dev->tagset.numa_node = dev->ctrl.numa_node;
2530 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2531 						BLK_MQ_MAX_DEPTH) - 1;
2532 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2533 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2534 		dev->tagset.driver_data = dev;
2535 
2536 		/*
2537 		 * Some Apple controllers requires tags to be unique
2538 		 * across admin and IO queue, so reserve the first 32
2539 		 * tags of the IO queue.
2540 		 */
2541 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2542 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2543 
2544 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2545 		if (ret) {
2546 			dev_warn(dev->ctrl.device,
2547 				"IO queues tagset allocation failed %d\n", ret);
2548 			return;
2549 		}
2550 		dev->ctrl.tagset = &dev->tagset;
2551 	} else {
2552 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2553 
2554 		/* Free previously allocated queues that are no longer usable */
2555 		nvme_free_queues(dev, dev->online_queues);
2556 	}
2557 
2558 	nvme_dbbuf_set(dev);
2559 }
2560 
2561 static int nvme_pci_enable(struct nvme_dev *dev)
2562 {
2563 	int result = -ENOMEM;
2564 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2565 	int dma_address_bits = 64;
2566 
2567 	if (pci_enable_device_mem(pdev))
2568 		return result;
2569 
2570 	pci_set_master(pdev);
2571 
2572 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2573 		dma_address_bits = 48;
2574 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2575 		goto disable;
2576 
2577 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2578 		result = -ENODEV;
2579 		goto disable;
2580 	}
2581 
2582 	/*
2583 	 * Some devices and/or platforms don't advertise or work with INTx
2584 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2585 	 * adjust this later.
2586 	 */
2587 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2588 	if (result < 0)
2589 		return result;
2590 
2591 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2592 
2593 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2594 				io_queue_depth);
2595 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2596 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2597 	dev->dbs = dev->bar + 4096;
2598 
2599 	/*
2600 	 * Some Apple controllers require a non-standard SQE size.
2601 	 * Interestingly they also seem to ignore the CC:IOSQES register
2602 	 * so we don't bother updating it here.
2603 	 */
2604 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2605 		dev->io_sqes = 7;
2606 	else
2607 		dev->io_sqes = NVME_NVM_IOSQES;
2608 
2609 	/*
2610 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2611 	 * some MacBook7,1 to avoid controller resets and data loss.
2612 	 */
2613 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2614 		dev->q_depth = 2;
2615 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2616 			"set queue depth=%u to work around controller resets\n",
2617 			dev->q_depth);
2618 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2619 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2620 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2621 		dev->q_depth = 64;
2622 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2623                         "set queue depth=%u\n", dev->q_depth);
2624 	}
2625 
2626 	/*
2627 	 * Controllers with the shared tags quirk need the IO queue to be
2628 	 * big enough so that we get 32 tags for the admin queue
2629 	 */
2630 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2631 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2632 		dev->q_depth = NVME_AQ_DEPTH + 2;
2633 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2634 			 dev->q_depth);
2635 	}
2636 
2637 
2638 	nvme_map_cmb(dev);
2639 
2640 	pci_enable_pcie_error_reporting(pdev);
2641 	pci_save_state(pdev);
2642 	return 0;
2643 
2644  disable:
2645 	pci_disable_device(pdev);
2646 	return result;
2647 }
2648 
2649 static void nvme_dev_unmap(struct nvme_dev *dev)
2650 {
2651 	if (dev->bar)
2652 		iounmap(dev->bar);
2653 	pci_release_mem_regions(to_pci_dev(dev->dev));
2654 }
2655 
2656 static void nvme_pci_disable(struct nvme_dev *dev)
2657 {
2658 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2659 
2660 	pci_free_irq_vectors(pdev);
2661 
2662 	if (pci_is_enabled(pdev)) {
2663 		pci_disable_pcie_error_reporting(pdev);
2664 		pci_disable_device(pdev);
2665 	}
2666 }
2667 
2668 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2669 {
2670 	bool dead = true, freeze = false;
2671 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2672 
2673 	mutex_lock(&dev->shutdown_lock);
2674 	if (pci_is_enabled(pdev)) {
2675 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2676 
2677 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2678 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2679 			freeze = true;
2680 			nvme_start_freeze(&dev->ctrl);
2681 		}
2682 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2683 			pdev->error_state  != pci_channel_io_normal);
2684 	}
2685 
2686 	/*
2687 	 * Give the controller a chance to complete all entered requests if
2688 	 * doing a safe shutdown.
2689 	 */
2690 	if (!dead && shutdown && freeze)
2691 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2692 
2693 	nvme_stop_queues(&dev->ctrl);
2694 
2695 	if (!dead && dev->ctrl.queue_count > 0) {
2696 		nvme_disable_io_queues(dev);
2697 		nvme_disable_admin_queue(dev, shutdown);
2698 	}
2699 	nvme_suspend_io_queues(dev);
2700 	nvme_suspend_queue(&dev->queues[0]);
2701 	nvme_pci_disable(dev);
2702 	nvme_reap_pending_cqes(dev);
2703 
2704 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2705 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2706 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2707 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2708 
2709 	/*
2710 	 * The driver will not be starting up queues again if shutting down so
2711 	 * must flush all entered requests to their failed completion to avoid
2712 	 * deadlocking blk-mq hot-cpu notifier.
2713 	 */
2714 	if (shutdown) {
2715 		nvme_start_queues(&dev->ctrl);
2716 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2717 			nvme_start_admin_queue(&dev->ctrl);
2718 	}
2719 	mutex_unlock(&dev->shutdown_lock);
2720 }
2721 
2722 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2723 {
2724 	if (!nvme_wait_reset(&dev->ctrl))
2725 		return -EBUSY;
2726 	nvme_dev_disable(dev, shutdown);
2727 	return 0;
2728 }
2729 
2730 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2731 {
2732 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2733 						NVME_CTRL_PAGE_SIZE,
2734 						NVME_CTRL_PAGE_SIZE, 0);
2735 	if (!dev->prp_page_pool)
2736 		return -ENOMEM;
2737 
2738 	/* Optimisation for I/Os between 4k and 128k */
2739 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2740 						256, 256, 0);
2741 	if (!dev->prp_small_pool) {
2742 		dma_pool_destroy(dev->prp_page_pool);
2743 		return -ENOMEM;
2744 	}
2745 	return 0;
2746 }
2747 
2748 static void nvme_release_prp_pools(struct nvme_dev *dev)
2749 {
2750 	dma_pool_destroy(dev->prp_page_pool);
2751 	dma_pool_destroy(dev->prp_small_pool);
2752 }
2753 
2754 static void nvme_free_tagset(struct nvme_dev *dev)
2755 {
2756 	if (dev->tagset.tags)
2757 		blk_mq_free_tag_set(&dev->tagset);
2758 	dev->ctrl.tagset = NULL;
2759 }
2760 
2761 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2762 {
2763 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2764 
2765 	nvme_dbbuf_dma_free(dev);
2766 	nvme_free_tagset(dev);
2767 	if (dev->ctrl.admin_q)
2768 		blk_put_queue(dev->ctrl.admin_q);
2769 	free_opal_dev(dev->ctrl.opal_dev);
2770 	mempool_destroy(dev->iod_mempool);
2771 	put_device(dev->dev);
2772 	kfree(dev->queues);
2773 	kfree(dev);
2774 }
2775 
2776 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2777 {
2778 	/*
2779 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2780 	 * may be holding this pci_dev's device lock.
2781 	 */
2782 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2783 	nvme_get_ctrl(&dev->ctrl);
2784 	nvme_dev_disable(dev, false);
2785 	nvme_kill_queues(&dev->ctrl);
2786 	if (!queue_work(nvme_wq, &dev->remove_work))
2787 		nvme_put_ctrl(&dev->ctrl);
2788 }
2789 
2790 static void nvme_reset_work(struct work_struct *work)
2791 {
2792 	struct nvme_dev *dev =
2793 		container_of(work, struct nvme_dev, ctrl.reset_work);
2794 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2795 	int result;
2796 
2797 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2798 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2799 			 dev->ctrl.state);
2800 		result = -ENODEV;
2801 		goto out;
2802 	}
2803 
2804 	/*
2805 	 * If we're called to reset a live controller first shut it down before
2806 	 * moving on.
2807 	 */
2808 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2809 		nvme_dev_disable(dev, false);
2810 	nvme_sync_queues(&dev->ctrl);
2811 
2812 	mutex_lock(&dev->shutdown_lock);
2813 	result = nvme_pci_enable(dev);
2814 	if (result)
2815 		goto out_unlock;
2816 
2817 	result = nvme_pci_configure_admin_queue(dev);
2818 	if (result)
2819 		goto out_unlock;
2820 
2821 	result = nvme_alloc_admin_tags(dev);
2822 	if (result)
2823 		goto out_unlock;
2824 
2825 	/*
2826 	 * Limit the max command size to prevent iod->sg allocations going
2827 	 * over a single page.
2828 	 */
2829 	dev->ctrl.max_hw_sectors = min_t(u32,
2830 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2831 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2832 
2833 	/*
2834 	 * Don't limit the IOMMU merged segment size.
2835 	 */
2836 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2837 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2838 
2839 	mutex_unlock(&dev->shutdown_lock);
2840 
2841 	/*
2842 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2843 	 * initializing procedure here.
2844 	 */
2845 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2846 		dev_warn(dev->ctrl.device,
2847 			"failed to mark controller CONNECTING\n");
2848 		result = -EBUSY;
2849 		goto out;
2850 	}
2851 
2852 	/*
2853 	 * We do not support an SGL for metadata (yet), so we are limited to a
2854 	 * single integrity segment for the separate metadata pointer.
2855 	 */
2856 	dev->ctrl.max_integrity_segments = 1;
2857 
2858 	result = nvme_init_ctrl_finish(&dev->ctrl);
2859 	if (result)
2860 		goto out;
2861 
2862 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2863 		if (!dev->ctrl.opal_dev)
2864 			dev->ctrl.opal_dev =
2865 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2866 		else if (was_suspend)
2867 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2868 	} else {
2869 		free_opal_dev(dev->ctrl.opal_dev);
2870 		dev->ctrl.opal_dev = NULL;
2871 	}
2872 
2873 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2874 		result = nvme_dbbuf_dma_alloc(dev);
2875 		if (result)
2876 			dev_warn(dev->dev,
2877 				 "unable to allocate dma for dbbuf\n");
2878 	}
2879 
2880 	if (dev->ctrl.hmpre) {
2881 		result = nvme_setup_host_mem(dev);
2882 		if (result < 0)
2883 			goto out;
2884 	}
2885 
2886 	result = nvme_setup_io_queues(dev);
2887 	if (result)
2888 		goto out;
2889 
2890 	/*
2891 	 * Keep the controller around but remove all namespaces if we don't have
2892 	 * any working I/O queue.
2893 	 */
2894 	if (dev->online_queues < 2) {
2895 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2896 		nvme_kill_queues(&dev->ctrl);
2897 		nvme_remove_namespaces(&dev->ctrl);
2898 		nvme_free_tagset(dev);
2899 	} else {
2900 		nvme_start_queues(&dev->ctrl);
2901 		nvme_wait_freeze(&dev->ctrl);
2902 		nvme_dev_add(dev);
2903 		nvme_unfreeze(&dev->ctrl);
2904 	}
2905 
2906 	/*
2907 	 * If only admin queue live, keep it to do further investigation or
2908 	 * recovery.
2909 	 */
2910 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2911 		dev_warn(dev->ctrl.device,
2912 			"failed to mark controller live state\n");
2913 		result = -ENODEV;
2914 		goto out;
2915 	}
2916 
2917 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2918 			&nvme_pci_attr_group))
2919 		dev->attrs_added = true;
2920 
2921 	nvme_start_ctrl(&dev->ctrl);
2922 	return;
2923 
2924  out_unlock:
2925 	mutex_unlock(&dev->shutdown_lock);
2926  out:
2927 	if (result)
2928 		dev_warn(dev->ctrl.device,
2929 			 "Removing after probe failure status: %d\n", result);
2930 	nvme_remove_dead_ctrl(dev);
2931 }
2932 
2933 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2934 {
2935 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2936 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2937 
2938 	if (pci_get_drvdata(pdev))
2939 		device_release_driver(&pdev->dev);
2940 	nvme_put_ctrl(&dev->ctrl);
2941 }
2942 
2943 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2944 {
2945 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2946 	return 0;
2947 }
2948 
2949 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2950 {
2951 	writel(val, to_nvme_dev(ctrl)->bar + off);
2952 	return 0;
2953 }
2954 
2955 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2956 {
2957 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2958 	return 0;
2959 }
2960 
2961 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2962 {
2963 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2964 
2965 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2966 }
2967 
2968 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2969 	.name			= "pcie",
2970 	.module			= THIS_MODULE,
2971 	.flags			= NVME_F_METADATA_SUPPORTED |
2972 				  NVME_F_PCI_P2PDMA,
2973 	.reg_read32		= nvme_pci_reg_read32,
2974 	.reg_write32		= nvme_pci_reg_write32,
2975 	.reg_read64		= nvme_pci_reg_read64,
2976 	.free_ctrl		= nvme_pci_free_ctrl,
2977 	.submit_async_event	= nvme_pci_submit_async_event,
2978 	.get_address		= nvme_pci_get_address,
2979 };
2980 
2981 static int nvme_dev_map(struct nvme_dev *dev)
2982 {
2983 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2984 
2985 	if (pci_request_mem_regions(pdev, "nvme"))
2986 		return -ENODEV;
2987 
2988 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2989 		goto release;
2990 
2991 	return 0;
2992   release:
2993 	pci_release_mem_regions(pdev);
2994 	return -ENODEV;
2995 }
2996 
2997 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2998 {
2999 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3000 		/*
3001 		 * Several Samsung devices seem to drop off the PCIe bus
3002 		 * randomly when APST is on and uses the deepest sleep state.
3003 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3004 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3005 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3006 		 * laptops.
3007 		 */
3008 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3009 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3010 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3011 			return NVME_QUIRK_NO_DEEPEST_PS;
3012 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3013 		/*
3014 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3015 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3016 		 * within few minutes after bootup on a Coffee Lake board -
3017 		 * ASUS PRIME Z370-A
3018 		 */
3019 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3020 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3021 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3022 			return NVME_QUIRK_NO_APST;
3023 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3024 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3025 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3026 		/*
3027 		 * Forcing to use host managed nvme power settings for
3028 		 * lowest idle power with quick resume latency on
3029 		 * Samsung and Toshiba SSDs based on suspend behavior
3030 		 * on Coffee Lake board for LENOVO C640
3031 		 */
3032 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3033 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3034 			return NVME_QUIRK_SIMPLE_SUSPEND;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 static void nvme_async_probe(void *data, async_cookie_t cookie)
3041 {
3042 	struct nvme_dev *dev = data;
3043 
3044 	flush_work(&dev->ctrl.reset_work);
3045 	flush_work(&dev->ctrl.scan_work);
3046 	nvme_put_ctrl(&dev->ctrl);
3047 }
3048 
3049 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3050 {
3051 	int node, result = -ENOMEM;
3052 	struct nvme_dev *dev;
3053 	unsigned long quirks = id->driver_data;
3054 	size_t alloc_size;
3055 
3056 	node = dev_to_node(&pdev->dev);
3057 	if (node == NUMA_NO_NODE)
3058 		set_dev_node(&pdev->dev, first_memory_node);
3059 
3060 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3061 	if (!dev)
3062 		return -ENOMEM;
3063 
3064 	dev->nr_write_queues = write_queues;
3065 	dev->nr_poll_queues = poll_queues;
3066 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3067 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3068 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3069 	if (!dev->queues)
3070 		goto free;
3071 
3072 	dev->dev = get_device(&pdev->dev);
3073 	pci_set_drvdata(pdev, dev);
3074 
3075 	result = nvme_dev_map(dev);
3076 	if (result)
3077 		goto put_pci;
3078 
3079 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3080 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3081 	mutex_init(&dev->shutdown_lock);
3082 
3083 	result = nvme_setup_prp_pools(dev);
3084 	if (result)
3085 		goto unmap;
3086 
3087 	quirks |= check_vendor_combination_bug(pdev);
3088 
3089 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3090 		/*
3091 		 * Some systems use a bios work around to ask for D3 on
3092 		 * platforms that support kernel managed suspend.
3093 		 */
3094 		dev_info(&pdev->dev,
3095 			 "platform quirk: setting simple suspend\n");
3096 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3097 	}
3098 
3099 	/*
3100 	 * Double check that our mempool alloc size will cover the biggest
3101 	 * command we support.
3102 	 */
3103 	alloc_size = nvme_pci_iod_alloc_size();
3104 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3105 
3106 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3107 						mempool_kfree,
3108 						(void *) alloc_size,
3109 						GFP_KERNEL, node);
3110 	if (!dev->iod_mempool) {
3111 		result = -ENOMEM;
3112 		goto release_pools;
3113 	}
3114 
3115 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3116 			quirks);
3117 	if (result)
3118 		goto release_mempool;
3119 
3120 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3121 
3122 	nvme_reset_ctrl(&dev->ctrl);
3123 	async_schedule(nvme_async_probe, dev);
3124 
3125 	return 0;
3126 
3127  release_mempool:
3128 	mempool_destroy(dev->iod_mempool);
3129  release_pools:
3130 	nvme_release_prp_pools(dev);
3131  unmap:
3132 	nvme_dev_unmap(dev);
3133  put_pci:
3134 	put_device(dev->dev);
3135  free:
3136 	kfree(dev->queues);
3137 	kfree(dev);
3138 	return result;
3139 }
3140 
3141 static void nvme_reset_prepare(struct pci_dev *pdev)
3142 {
3143 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3144 
3145 	/*
3146 	 * We don't need to check the return value from waiting for the reset
3147 	 * state as pci_dev device lock is held, making it impossible to race
3148 	 * with ->remove().
3149 	 */
3150 	nvme_disable_prepare_reset(dev, false);
3151 	nvme_sync_queues(&dev->ctrl);
3152 }
3153 
3154 static void nvme_reset_done(struct pci_dev *pdev)
3155 {
3156 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3157 
3158 	if (!nvme_try_sched_reset(&dev->ctrl))
3159 		flush_work(&dev->ctrl.reset_work);
3160 }
3161 
3162 static void nvme_shutdown(struct pci_dev *pdev)
3163 {
3164 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3165 
3166 	nvme_disable_prepare_reset(dev, true);
3167 }
3168 
3169 static void nvme_remove_attrs(struct nvme_dev *dev)
3170 {
3171 	if (dev->attrs_added)
3172 		sysfs_remove_group(&dev->ctrl.device->kobj,
3173 				   &nvme_pci_attr_group);
3174 }
3175 
3176 /*
3177  * The driver's remove may be called on a device in a partially initialized
3178  * state. This function must not have any dependencies on the device state in
3179  * order to proceed.
3180  */
3181 static void nvme_remove(struct pci_dev *pdev)
3182 {
3183 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3184 
3185 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3186 	pci_set_drvdata(pdev, NULL);
3187 
3188 	if (!pci_device_is_present(pdev)) {
3189 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3190 		nvme_dev_disable(dev, true);
3191 	}
3192 
3193 	flush_work(&dev->ctrl.reset_work);
3194 	nvme_stop_ctrl(&dev->ctrl);
3195 	nvme_remove_namespaces(&dev->ctrl);
3196 	nvme_dev_disable(dev, true);
3197 	nvme_remove_attrs(dev);
3198 	nvme_free_host_mem(dev);
3199 	nvme_dev_remove_admin(dev);
3200 	nvme_free_queues(dev, 0);
3201 	nvme_release_prp_pools(dev);
3202 	nvme_dev_unmap(dev);
3203 	nvme_uninit_ctrl(&dev->ctrl);
3204 }
3205 
3206 #ifdef CONFIG_PM_SLEEP
3207 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3208 {
3209 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3210 }
3211 
3212 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3213 {
3214 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3215 }
3216 
3217 static int nvme_resume(struct device *dev)
3218 {
3219 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3220 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3221 
3222 	if (ndev->last_ps == U32_MAX ||
3223 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3224 		goto reset;
3225 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3226 		goto reset;
3227 
3228 	return 0;
3229 reset:
3230 	return nvme_try_sched_reset(ctrl);
3231 }
3232 
3233 static int nvme_suspend(struct device *dev)
3234 {
3235 	struct pci_dev *pdev = to_pci_dev(dev);
3236 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3237 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3238 	int ret = -EBUSY;
3239 
3240 	ndev->last_ps = U32_MAX;
3241 
3242 	/*
3243 	 * The platform does not remove power for a kernel managed suspend so
3244 	 * use host managed nvme power settings for lowest idle power if
3245 	 * possible. This should have quicker resume latency than a full device
3246 	 * shutdown.  But if the firmware is involved after the suspend or the
3247 	 * device does not support any non-default power states, shut down the
3248 	 * device fully.
3249 	 *
3250 	 * If ASPM is not enabled for the device, shut down the device and allow
3251 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3252 	 * down, so as to allow the platform to achieve its minimum low-power
3253 	 * state (which may not be possible if the link is up).
3254 	 */
3255 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3256 	    !pcie_aspm_enabled(pdev) ||
3257 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3258 		return nvme_disable_prepare_reset(ndev, true);
3259 
3260 	nvme_start_freeze(ctrl);
3261 	nvme_wait_freeze(ctrl);
3262 	nvme_sync_queues(ctrl);
3263 
3264 	if (ctrl->state != NVME_CTRL_LIVE)
3265 		goto unfreeze;
3266 
3267 	/*
3268 	 * Host memory access may not be successful in a system suspend state,
3269 	 * but the specification allows the controller to access memory in a
3270 	 * non-operational power state.
3271 	 */
3272 	if (ndev->hmb) {
3273 		ret = nvme_set_host_mem(ndev, 0);
3274 		if (ret < 0)
3275 			goto unfreeze;
3276 	}
3277 
3278 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3279 	if (ret < 0)
3280 		goto unfreeze;
3281 
3282 	/*
3283 	 * A saved state prevents pci pm from generically controlling the
3284 	 * device's power. If we're using protocol specific settings, we don't
3285 	 * want pci interfering.
3286 	 */
3287 	pci_save_state(pdev);
3288 
3289 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3290 	if (ret < 0)
3291 		goto unfreeze;
3292 
3293 	if (ret) {
3294 		/* discard the saved state */
3295 		pci_load_saved_state(pdev, NULL);
3296 
3297 		/*
3298 		 * Clearing npss forces a controller reset on resume. The
3299 		 * correct value will be rediscovered then.
3300 		 */
3301 		ret = nvme_disable_prepare_reset(ndev, true);
3302 		ctrl->npss = 0;
3303 	}
3304 unfreeze:
3305 	nvme_unfreeze(ctrl);
3306 	return ret;
3307 }
3308 
3309 static int nvme_simple_suspend(struct device *dev)
3310 {
3311 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3312 
3313 	return nvme_disable_prepare_reset(ndev, true);
3314 }
3315 
3316 static int nvme_simple_resume(struct device *dev)
3317 {
3318 	struct pci_dev *pdev = to_pci_dev(dev);
3319 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3320 
3321 	return nvme_try_sched_reset(&ndev->ctrl);
3322 }
3323 
3324 static const struct dev_pm_ops nvme_dev_pm_ops = {
3325 	.suspend	= nvme_suspend,
3326 	.resume		= nvme_resume,
3327 	.freeze		= nvme_simple_suspend,
3328 	.thaw		= nvme_simple_resume,
3329 	.poweroff	= nvme_simple_suspend,
3330 	.restore	= nvme_simple_resume,
3331 };
3332 #endif /* CONFIG_PM_SLEEP */
3333 
3334 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3335 						pci_channel_state_t state)
3336 {
3337 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3338 
3339 	/*
3340 	 * A frozen channel requires a reset. When detected, this method will
3341 	 * shutdown the controller to quiesce. The controller will be restarted
3342 	 * after the slot reset through driver's slot_reset callback.
3343 	 */
3344 	switch (state) {
3345 	case pci_channel_io_normal:
3346 		return PCI_ERS_RESULT_CAN_RECOVER;
3347 	case pci_channel_io_frozen:
3348 		dev_warn(dev->ctrl.device,
3349 			"frozen state error detected, reset controller\n");
3350 		nvme_dev_disable(dev, false);
3351 		return PCI_ERS_RESULT_NEED_RESET;
3352 	case pci_channel_io_perm_failure:
3353 		dev_warn(dev->ctrl.device,
3354 			"failure state error detected, request disconnect\n");
3355 		return PCI_ERS_RESULT_DISCONNECT;
3356 	}
3357 	return PCI_ERS_RESULT_NEED_RESET;
3358 }
3359 
3360 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3361 {
3362 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3363 
3364 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3365 	pci_restore_state(pdev);
3366 	nvme_reset_ctrl(&dev->ctrl);
3367 	return PCI_ERS_RESULT_RECOVERED;
3368 }
3369 
3370 static void nvme_error_resume(struct pci_dev *pdev)
3371 {
3372 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3373 
3374 	flush_work(&dev->ctrl.reset_work);
3375 }
3376 
3377 static const struct pci_error_handlers nvme_err_handler = {
3378 	.error_detected	= nvme_error_detected,
3379 	.slot_reset	= nvme_slot_reset,
3380 	.resume		= nvme_error_resume,
3381 	.reset_prepare	= nvme_reset_prepare,
3382 	.reset_done	= nvme_reset_done,
3383 };
3384 
3385 static const struct pci_device_id nvme_id_table[] = {
3386 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3387 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3388 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3389 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3390 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3391 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3392 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3393 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3394 				NVME_QUIRK_DEALLOCATE_ZEROES |
3395 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3396 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3397 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3398 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3399 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3400 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3401 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3402 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3403 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3404 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3405 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3406 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3407 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3408 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3409 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3410 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3411 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3412 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3413 				NVME_QUIRK_NO_NS_DESC_LIST, },
3414 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3415 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3416 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3417 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3418 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3419 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3420 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3421 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3422 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3423 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3424 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3425 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3426 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3427 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3428 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3429 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3430 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3431 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3432 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3433 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3434 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3435 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3436 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3437 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3438 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3439 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3440 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3441 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3443 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3444 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3445 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3446 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3447 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3448 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3449 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3450 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3451 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3452 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3453 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3454 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3455 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3456 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3457 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3458 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3459 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3460 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3461 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3462 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3463 				NVME_QUIRK_128_BYTES_SQES |
3464 				NVME_QUIRK_SHARED_TAGS |
3465 				NVME_QUIRK_SKIP_CID_GEN },
3466 
3467 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3468 	{ 0, }
3469 };
3470 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3471 
3472 static struct pci_driver nvme_driver = {
3473 	.name		= "nvme",
3474 	.id_table	= nvme_id_table,
3475 	.probe		= nvme_probe,
3476 	.remove		= nvme_remove,
3477 	.shutdown	= nvme_shutdown,
3478 #ifdef CONFIG_PM_SLEEP
3479 	.driver		= {
3480 		.pm	= &nvme_dev_pm_ops,
3481 	},
3482 #endif
3483 	.sriov_configure = pci_sriov_configure_simple,
3484 	.err_handler	= &nvme_err_handler,
3485 };
3486 
3487 static int __init nvme_init(void)
3488 {
3489 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3490 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3491 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3492 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3493 
3494 	return pci_register_driver(&nvme_driver);
3495 }
3496 
3497 static void __exit nvme_exit(void)
3498 {
3499 	pci_unregister_driver(&nvme_driver);
3500 	flush_workqueue(nvme_wq);
3501 }
3502 
3503 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3504 MODULE_LICENSE("GPL");
3505 MODULE_VERSION("1.0");
3506 module_init(nvme_init);
3507 module_exit(nvme_exit);
3508