1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/aer.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/once.h> 20 #include <linux/pci.h> 21 #include <linux/suspend.h> 22 #include <linux/t10-pi.h> 23 #include <linux/types.h> 24 #include <linux/io-64-nonatomic-lo-hi.h> 25 #include <linux/sed-opal.h> 26 #include <linux/pci-p2pdma.h> 27 28 #include "trace.h" 29 #include "nvme.h" 30 31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 33 34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 35 36 /* 37 * These can be higher, but we need to ensure that any command doesn't 38 * require an sg allocation that needs more than a page of data. 39 */ 40 #define NVME_MAX_KB_SZ 4096 41 #define NVME_MAX_SEGS 127 42 43 static int use_threaded_interrupts; 44 module_param(use_threaded_interrupts, int, 0); 45 46 static bool use_cmb_sqes = true; 47 module_param(use_cmb_sqes, bool, 0444); 48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 49 50 static unsigned int max_host_mem_size_mb = 128; 51 module_param(max_host_mem_size_mb, uint, 0444); 52 MODULE_PARM_DESC(max_host_mem_size_mb, 53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 54 55 static unsigned int sgl_threshold = SZ_32K; 56 module_param(sgl_threshold, uint, 0644); 57 MODULE_PARM_DESC(sgl_threshold, 58 "Use SGLs when average request segment size is larger or equal to " 59 "this size. Use 0 to disable SGLs."); 60 61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 62 static const struct kernel_param_ops io_queue_depth_ops = { 63 .set = io_queue_depth_set, 64 .get = param_get_int, 65 }; 66 67 static int io_queue_depth = 1024; 68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 70 71 static unsigned int write_queues; 72 module_param(write_queues, uint, 0644); 73 MODULE_PARM_DESC(write_queues, 74 "Number of queues to use for writes. If not set, reads and writes " 75 "will share a queue set."); 76 77 static unsigned int poll_queues; 78 module_param(poll_queues, uint, 0644); 79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 80 81 struct nvme_dev; 82 struct nvme_queue; 83 84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 86 87 /* 88 * Represents an NVM Express device. Each nvme_dev is a PCI function. 89 */ 90 struct nvme_dev { 91 struct nvme_queue *queues; 92 struct blk_mq_tag_set tagset; 93 struct blk_mq_tag_set admin_tagset; 94 u32 __iomem *dbs; 95 struct device *dev; 96 struct dma_pool *prp_page_pool; 97 struct dma_pool *prp_small_pool; 98 unsigned online_queues; 99 unsigned max_qid; 100 unsigned io_queues[HCTX_MAX_TYPES]; 101 unsigned int num_vecs; 102 int q_depth; 103 int io_sqes; 104 u32 db_stride; 105 void __iomem *bar; 106 unsigned long bar_mapped_size; 107 struct work_struct remove_work; 108 struct mutex shutdown_lock; 109 bool subsystem; 110 u64 cmb_size; 111 bool cmb_use_sqes; 112 u32 cmbsz; 113 u32 cmbloc; 114 struct nvme_ctrl ctrl; 115 u32 last_ps; 116 117 mempool_t *iod_mempool; 118 119 /* shadow doorbell buffer support: */ 120 u32 *dbbuf_dbs; 121 dma_addr_t dbbuf_dbs_dma_addr; 122 u32 *dbbuf_eis; 123 dma_addr_t dbbuf_eis_dma_addr; 124 125 /* host memory buffer support: */ 126 u64 host_mem_size; 127 u32 nr_host_mem_descs; 128 dma_addr_t host_mem_descs_dma; 129 struct nvme_host_mem_buf_desc *host_mem_descs; 130 void **host_mem_desc_bufs; 131 }; 132 133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 134 { 135 int n = 0, ret; 136 137 ret = kstrtoint(val, 10, &n); 138 if (ret != 0 || n < 2) 139 return -EINVAL; 140 141 return param_set_int(val, kp); 142 } 143 144 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 145 { 146 return qid * 2 * stride; 147 } 148 149 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 150 { 151 return (qid * 2 + 1) * stride; 152 } 153 154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 155 { 156 return container_of(ctrl, struct nvme_dev, ctrl); 157 } 158 159 /* 160 * An NVM Express queue. Each device has at least two (one for admin 161 * commands and one for I/O commands). 162 */ 163 struct nvme_queue { 164 struct nvme_dev *dev; 165 spinlock_t sq_lock; 166 void *sq_cmds; 167 /* only used for poll queues: */ 168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 169 volatile struct nvme_completion *cqes; 170 dma_addr_t sq_dma_addr; 171 dma_addr_t cq_dma_addr; 172 u32 __iomem *q_db; 173 u16 q_depth; 174 u16 cq_vector; 175 u16 sq_tail; 176 u16 last_sq_tail; 177 u16 cq_head; 178 u16 qid; 179 u8 cq_phase; 180 u8 sqes; 181 unsigned long flags; 182 #define NVMEQ_ENABLED 0 183 #define NVMEQ_SQ_CMB 1 184 #define NVMEQ_DELETE_ERROR 2 185 #define NVMEQ_POLLED 3 186 u32 *dbbuf_sq_db; 187 u32 *dbbuf_cq_db; 188 u32 *dbbuf_sq_ei; 189 u32 *dbbuf_cq_ei; 190 struct completion delete_done; 191 }; 192 193 /* 194 * The nvme_iod describes the data in an I/O. 195 * 196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 197 * to the actual struct scatterlist. 198 */ 199 struct nvme_iod { 200 struct nvme_request req; 201 struct nvme_queue *nvmeq; 202 bool use_sgl; 203 int aborted; 204 int npages; /* In the PRP list. 0 means small pool in use */ 205 int nents; /* Used in scatterlist */ 206 dma_addr_t first_dma; 207 unsigned int dma_len; /* length of single DMA segment mapping */ 208 dma_addr_t meta_dma; 209 struct scatterlist *sg; 210 }; 211 212 static unsigned int max_io_queues(void) 213 { 214 return num_possible_cpus() + write_queues + poll_queues; 215 } 216 217 static unsigned int max_queue_count(void) 218 { 219 /* IO queues + admin queue */ 220 return 1 + max_io_queues(); 221 } 222 223 static inline unsigned int nvme_dbbuf_size(u32 stride) 224 { 225 return (max_queue_count() * 8 * stride); 226 } 227 228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 229 { 230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 231 232 if (dev->dbbuf_dbs) 233 return 0; 234 235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 236 &dev->dbbuf_dbs_dma_addr, 237 GFP_KERNEL); 238 if (!dev->dbbuf_dbs) 239 return -ENOMEM; 240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 241 &dev->dbbuf_eis_dma_addr, 242 GFP_KERNEL); 243 if (!dev->dbbuf_eis) { 244 dma_free_coherent(dev->dev, mem_size, 245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 246 dev->dbbuf_dbs = NULL; 247 return -ENOMEM; 248 } 249 250 return 0; 251 } 252 253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 254 { 255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 256 257 if (dev->dbbuf_dbs) { 258 dma_free_coherent(dev->dev, mem_size, 259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 260 dev->dbbuf_dbs = NULL; 261 } 262 if (dev->dbbuf_eis) { 263 dma_free_coherent(dev->dev, mem_size, 264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 265 dev->dbbuf_eis = NULL; 266 } 267 } 268 269 static void nvme_dbbuf_init(struct nvme_dev *dev, 270 struct nvme_queue *nvmeq, int qid) 271 { 272 if (!dev->dbbuf_dbs || !qid) 273 return; 274 275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 279 } 280 281 static void nvme_dbbuf_set(struct nvme_dev *dev) 282 { 283 struct nvme_command c; 284 285 if (!dev->dbbuf_dbs) 286 return; 287 288 memset(&c, 0, sizeof(c)); 289 c.dbbuf.opcode = nvme_admin_dbbuf; 290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 292 293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 295 /* Free memory and continue on */ 296 nvme_dbbuf_dma_free(dev); 297 } 298 } 299 300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 301 { 302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 303 } 304 305 /* Update dbbuf and return true if an MMIO is required */ 306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 307 volatile u32 *dbbuf_ei) 308 { 309 if (dbbuf_db) { 310 u16 old_value; 311 312 /* 313 * Ensure that the queue is written before updating 314 * the doorbell in memory 315 */ 316 wmb(); 317 318 old_value = *dbbuf_db; 319 *dbbuf_db = value; 320 321 /* 322 * Ensure that the doorbell is updated before reading the event 323 * index from memory. The controller needs to provide similar 324 * ordering to ensure the envent index is updated before reading 325 * the doorbell. 326 */ 327 mb(); 328 329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 330 return false; 331 } 332 333 return true; 334 } 335 336 /* 337 * Will slightly overestimate the number of pages needed. This is OK 338 * as it only leads to a small amount of wasted memory for the lifetime of 339 * the I/O. 340 */ 341 static int nvme_npages(unsigned size, struct nvme_dev *dev) 342 { 343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 344 dev->ctrl.page_size); 345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 346 } 347 348 /* 349 * Calculates the number of pages needed for the SGL segments. For example a 4k 350 * page can accommodate 256 SGL descriptors. 351 */ 352 static int nvme_pci_npages_sgl(unsigned int num_seg) 353 { 354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); 355 } 356 357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, 358 unsigned int size, unsigned int nseg, bool use_sgl) 359 { 360 size_t alloc_size; 361 362 if (use_sgl) 363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); 364 else 365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); 366 367 return alloc_size + sizeof(struct scatterlist) * nseg; 368 } 369 370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 371 unsigned int hctx_idx) 372 { 373 struct nvme_dev *dev = data; 374 struct nvme_queue *nvmeq = &dev->queues[0]; 375 376 WARN_ON(hctx_idx != 0); 377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 378 379 hctx->driver_data = nvmeq; 380 return 0; 381 } 382 383 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 384 unsigned int hctx_idx) 385 { 386 struct nvme_dev *dev = data; 387 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 388 389 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 390 hctx->driver_data = nvmeq; 391 return 0; 392 } 393 394 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 395 unsigned int hctx_idx, unsigned int numa_node) 396 { 397 struct nvme_dev *dev = set->driver_data; 398 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 399 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 400 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 401 402 BUG_ON(!nvmeq); 403 iod->nvmeq = nvmeq; 404 405 nvme_req(req)->ctrl = &dev->ctrl; 406 return 0; 407 } 408 409 static int queue_irq_offset(struct nvme_dev *dev) 410 { 411 /* if we have more than 1 vec, admin queue offsets us by 1 */ 412 if (dev->num_vecs > 1) 413 return 1; 414 415 return 0; 416 } 417 418 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 419 { 420 struct nvme_dev *dev = set->driver_data; 421 int i, qoff, offset; 422 423 offset = queue_irq_offset(dev); 424 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 425 struct blk_mq_queue_map *map = &set->map[i]; 426 427 map->nr_queues = dev->io_queues[i]; 428 if (!map->nr_queues) { 429 BUG_ON(i == HCTX_TYPE_DEFAULT); 430 continue; 431 } 432 433 /* 434 * The poll queue(s) doesn't have an IRQ (and hence IRQ 435 * affinity), so use the regular blk-mq cpu mapping 436 */ 437 map->queue_offset = qoff; 438 if (i != HCTX_TYPE_POLL && offset) 439 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 440 else 441 blk_mq_map_queues(map); 442 qoff += map->nr_queues; 443 offset += map->nr_queues; 444 } 445 446 return 0; 447 } 448 449 /* 450 * Write sq tail if we are asked to, or if the next command would wrap. 451 */ 452 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 453 { 454 if (!write_sq) { 455 u16 next_tail = nvmeq->sq_tail + 1; 456 457 if (next_tail == nvmeq->q_depth) 458 next_tail = 0; 459 if (next_tail != nvmeq->last_sq_tail) 460 return; 461 } 462 463 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 464 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 465 writel(nvmeq->sq_tail, nvmeq->q_db); 466 nvmeq->last_sq_tail = nvmeq->sq_tail; 467 } 468 469 /** 470 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 471 * @nvmeq: The queue to use 472 * @cmd: The command to send 473 * @write_sq: whether to write to the SQ doorbell 474 */ 475 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 476 bool write_sq) 477 { 478 spin_lock(&nvmeq->sq_lock); 479 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 480 cmd, sizeof(*cmd)); 481 if (++nvmeq->sq_tail == nvmeq->q_depth) 482 nvmeq->sq_tail = 0; 483 nvme_write_sq_db(nvmeq, write_sq); 484 spin_unlock(&nvmeq->sq_lock); 485 } 486 487 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 488 { 489 struct nvme_queue *nvmeq = hctx->driver_data; 490 491 spin_lock(&nvmeq->sq_lock); 492 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 493 nvme_write_sq_db(nvmeq, true); 494 spin_unlock(&nvmeq->sq_lock); 495 } 496 497 static void **nvme_pci_iod_list(struct request *req) 498 { 499 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 500 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 501 } 502 503 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 504 { 505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 506 int nseg = blk_rq_nr_phys_segments(req); 507 unsigned int avg_seg_size; 508 509 if (nseg == 0) 510 return false; 511 512 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 513 514 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 515 return false; 516 if (!iod->nvmeq->qid) 517 return false; 518 if (!sgl_threshold || avg_seg_size < sgl_threshold) 519 return false; 520 return true; 521 } 522 523 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 524 { 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 526 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; 527 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 528 int i; 529 530 if (iod->dma_len) { 531 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, 532 rq_dma_dir(req)); 533 return; 534 } 535 536 WARN_ON_ONCE(!iod->nents); 537 538 if (is_pci_p2pdma_page(sg_page(iod->sg))) 539 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 540 rq_dma_dir(req)); 541 else 542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 543 544 545 if (iod->npages == 0) 546 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 547 dma_addr); 548 549 for (i = 0; i < iod->npages; i++) { 550 void *addr = nvme_pci_iod_list(req)[i]; 551 552 if (iod->use_sgl) { 553 struct nvme_sgl_desc *sg_list = addr; 554 555 next_dma_addr = 556 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 557 } else { 558 __le64 *prp_list = addr; 559 560 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 561 } 562 563 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 564 dma_addr = next_dma_addr; 565 } 566 567 mempool_free(iod->sg, dev->iod_mempool); 568 } 569 570 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 571 { 572 int i; 573 struct scatterlist *sg; 574 575 for_each_sg(sgl, sg, nents, i) { 576 dma_addr_t phys = sg_phys(sg); 577 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 578 "dma_address:%pad dma_length:%d\n", 579 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 580 sg_dma_len(sg)); 581 } 582 } 583 584 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 585 struct request *req, struct nvme_rw_command *cmnd) 586 { 587 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 588 struct dma_pool *pool; 589 int length = blk_rq_payload_bytes(req); 590 struct scatterlist *sg = iod->sg; 591 int dma_len = sg_dma_len(sg); 592 u64 dma_addr = sg_dma_address(sg); 593 u32 page_size = dev->ctrl.page_size; 594 int offset = dma_addr & (page_size - 1); 595 __le64 *prp_list; 596 void **list = nvme_pci_iod_list(req); 597 dma_addr_t prp_dma; 598 int nprps, i; 599 600 length -= (page_size - offset); 601 if (length <= 0) { 602 iod->first_dma = 0; 603 goto done; 604 } 605 606 dma_len -= (page_size - offset); 607 if (dma_len) { 608 dma_addr += (page_size - offset); 609 } else { 610 sg = sg_next(sg); 611 dma_addr = sg_dma_address(sg); 612 dma_len = sg_dma_len(sg); 613 } 614 615 if (length <= page_size) { 616 iod->first_dma = dma_addr; 617 goto done; 618 } 619 620 nprps = DIV_ROUND_UP(length, page_size); 621 if (nprps <= (256 / 8)) { 622 pool = dev->prp_small_pool; 623 iod->npages = 0; 624 } else { 625 pool = dev->prp_page_pool; 626 iod->npages = 1; 627 } 628 629 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 630 if (!prp_list) { 631 iod->first_dma = dma_addr; 632 iod->npages = -1; 633 return BLK_STS_RESOURCE; 634 } 635 list[0] = prp_list; 636 iod->first_dma = prp_dma; 637 i = 0; 638 for (;;) { 639 if (i == page_size >> 3) { 640 __le64 *old_prp_list = prp_list; 641 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 642 if (!prp_list) 643 return BLK_STS_RESOURCE; 644 list[iod->npages++] = prp_list; 645 prp_list[0] = old_prp_list[i - 1]; 646 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 647 i = 1; 648 } 649 prp_list[i++] = cpu_to_le64(dma_addr); 650 dma_len -= page_size; 651 dma_addr += page_size; 652 length -= page_size; 653 if (length <= 0) 654 break; 655 if (dma_len > 0) 656 continue; 657 if (unlikely(dma_len < 0)) 658 goto bad_sgl; 659 sg = sg_next(sg); 660 dma_addr = sg_dma_address(sg); 661 dma_len = sg_dma_len(sg); 662 } 663 664 done: 665 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 666 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 667 668 return BLK_STS_OK; 669 670 bad_sgl: 671 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 672 "Invalid SGL for payload:%d nents:%d\n", 673 blk_rq_payload_bytes(req), iod->nents); 674 return BLK_STS_IOERR; 675 } 676 677 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 678 struct scatterlist *sg) 679 { 680 sge->addr = cpu_to_le64(sg_dma_address(sg)); 681 sge->length = cpu_to_le32(sg_dma_len(sg)); 682 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 683 } 684 685 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 686 dma_addr_t dma_addr, int entries) 687 { 688 sge->addr = cpu_to_le64(dma_addr); 689 if (entries < SGES_PER_PAGE) { 690 sge->length = cpu_to_le32(entries * sizeof(*sge)); 691 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 692 } else { 693 sge->length = cpu_to_le32(PAGE_SIZE); 694 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 695 } 696 } 697 698 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 699 struct request *req, struct nvme_rw_command *cmd, int entries) 700 { 701 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 702 struct dma_pool *pool; 703 struct nvme_sgl_desc *sg_list; 704 struct scatterlist *sg = iod->sg; 705 dma_addr_t sgl_dma; 706 int i = 0; 707 708 /* setting the transfer type as SGL */ 709 cmd->flags = NVME_CMD_SGL_METABUF; 710 711 if (entries == 1) { 712 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 713 return BLK_STS_OK; 714 } 715 716 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 717 pool = dev->prp_small_pool; 718 iod->npages = 0; 719 } else { 720 pool = dev->prp_page_pool; 721 iod->npages = 1; 722 } 723 724 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 725 if (!sg_list) { 726 iod->npages = -1; 727 return BLK_STS_RESOURCE; 728 } 729 730 nvme_pci_iod_list(req)[0] = sg_list; 731 iod->first_dma = sgl_dma; 732 733 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 734 735 do { 736 if (i == SGES_PER_PAGE) { 737 struct nvme_sgl_desc *old_sg_desc = sg_list; 738 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 739 740 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 741 if (!sg_list) 742 return BLK_STS_RESOURCE; 743 744 i = 0; 745 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 746 sg_list[i++] = *link; 747 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 748 } 749 750 nvme_pci_sgl_set_data(&sg_list[i++], sg); 751 sg = sg_next(sg); 752 } while (--entries > 0); 753 754 return BLK_STS_OK; 755 } 756 757 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 758 struct request *req, struct nvme_rw_command *cmnd, 759 struct bio_vec *bv) 760 { 761 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 762 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1); 763 unsigned int first_prp_len = dev->ctrl.page_size - offset; 764 765 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 766 if (dma_mapping_error(dev->dev, iod->first_dma)) 767 return BLK_STS_RESOURCE; 768 iod->dma_len = bv->bv_len; 769 770 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 771 if (bv->bv_len > first_prp_len) 772 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 773 return 0; 774 } 775 776 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 777 struct request *req, struct nvme_rw_command *cmnd, 778 struct bio_vec *bv) 779 { 780 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 781 782 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 783 if (dma_mapping_error(dev->dev, iod->first_dma)) 784 return BLK_STS_RESOURCE; 785 iod->dma_len = bv->bv_len; 786 787 cmnd->flags = NVME_CMD_SGL_METABUF; 788 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 789 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 790 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 791 return 0; 792 } 793 794 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 795 struct nvme_command *cmnd) 796 { 797 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 798 blk_status_t ret = BLK_STS_RESOURCE; 799 int nr_mapped; 800 801 if (blk_rq_nr_phys_segments(req) == 1) { 802 struct bio_vec bv = req_bvec(req); 803 804 if (!is_pci_p2pdma_page(bv.bv_page)) { 805 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2) 806 return nvme_setup_prp_simple(dev, req, 807 &cmnd->rw, &bv); 808 809 if (iod->nvmeq->qid && 810 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 811 return nvme_setup_sgl_simple(dev, req, 812 &cmnd->rw, &bv); 813 } 814 } 815 816 iod->dma_len = 0; 817 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 818 if (!iod->sg) 819 return BLK_STS_RESOURCE; 820 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 821 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 822 if (!iod->nents) 823 goto out; 824 825 if (is_pci_p2pdma_page(sg_page(iod->sg))) 826 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 827 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 828 else 829 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 830 rq_dma_dir(req), DMA_ATTR_NO_WARN); 831 if (!nr_mapped) 832 goto out; 833 834 iod->use_sgl = nvme_pci_use_sgls(dev, req); 835 if (iod->use_sgl) 836 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 837 else 838 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 839 out: 840 if (ret != BLK_STS_OK) 841 nvme_unmap_data(dev, req); 842 return ret; 843 } 844 845 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 846 struct nvme_command *cmnd) 847 { 848 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 849 850 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 851 rq_dma_dir(req), 0); 852 if (dma_mapping_error(dev->dev, iod->meta_dma)) 853 return BLK_STS_IOERR; 854 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 855 return 0; 856 } 857 858 /* 859 * NOTE: ns is NULL when called on the admin queue. 860 */ 861 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 862 const struct blk_mq_queue_data *bd) 863 { 864 struct nvme_ns *ns = hctx->queue->queuedata; 865 struct nvme_queue *nvmeq = hctx->driver_data; 866 struct nvme_dev *dev = nvmeq->dev; 867 struct request *req = bd->rq; 868 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 869 struct nvme_command cmnd; 870 blk_status_t ret; 871 872 iod->aborted = 0; 873 iod->npages = -1; 874 iod->nents = 0; 875 876 /* 877 * We should not need to do this, but we're still using this to 878 * ensure we can drain requests on a dying queue. 879 */ 880 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 881 return BLK_STS_IOERR; 882 883 ret = nvme_setup_cmd(ns, req, &cmnd); 884 if (ret) 885 return ret; 886 887 if (blk_rq_nr_phys_segments(req)) { 888 ret = nvme_map_data(dev, req, &cmnd); 889 if (ret) 890 goto out_free_cmd; 891 } 892 893 if (blk_integrity_rq(req)) { 894 ret = nvme_map_metadata(dev, req, &cmnd); 895 if (ret) 896 goto out_unmap_data; 897 } 898 899 blk_mq_start_request(req); 900 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 901 return BLK_STS_OK; 902 out_unmap_data: 903 nvme_unmap_data(dev, req); 904 out_free_cmd: 905 nvme_cleanup_cmd(req); 906 return ret; 907 } 908 909 static void nvme_pci_complete_rq(struct request *req) 910 { 911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 912 struct nvme_dev *dev = iod->nvmeq->dev; 913 914 if (blk_integrity_rq(req)) 915 dma_unmap_page(dev->dev, iod->meta_dma, 916 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 917 if (blk_rq_nr_phys_segments(req)) 918 nvme_unmap_data(dev, req); 919 nvme_complete_rq(req); 920 } 921 922 /* We read the CQE phase first to check if the rest of the entry is valid */ 923 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 924 { 925 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == 926 nvmeq->cq_phase; 927 } 928 929 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 930 { 931 u16 head = nvmeq->cq_head; 932 933 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 934 nvmeq->dbbuf_cq_ei)) 935 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 936 } 937 938 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 939 { 940 if (!nvmeq->qid) 941 return nvmeq->dev->admin_tagset.tags[0]; 942 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 943 } 944 945 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 946 { 947 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; 948 struct request *req; 949 950 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 951 dev_warn(nvmeq->dev->ctrl.device, 952 "invalid id %d completed on queue %d\n", 953 cqe->command_id, le16_to_cpu(cqe->sq_id)); 954 return; 955 } 956 957 /* 958 * AEN requests are special as they don't time out and can 959 * survive any kind of queue freeze and often don't respond to 960 * aborts. We don't even bother to allocate a struct request 961 * for them but rather special case them here. 962 */ 963 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { 964 nvme_complete_async_event(&nvmeq->dev->ctrl, 965 cqe->status, &cqe->result); 966 return; 967 } 968 969 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); 970 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 971 nvme_end_request(req, cqe->status, cqe->result); 972 } 973 974 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 975 { 976 u16 tmp = nvmeq->cq_head + 1; 977 978 if (tmp == nvmeq->q_depth) { 979 nvmeq->cq_head = 0; 980 nvmeq->cq_phase ^= 1; 981 } else { 982 nvmeq->cq_head = tmp; 983 } 984 } 985 986 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 987 { 988 int found = 0; 989 990 while (nvme_cqe_pending(nvmeq)) { 991 found++; 992 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 993 nvme_update_cq_head(nvmeq); 994 } 995 996 if (found) 997 nvme_ring_cq_doorbell(nvmeq); 998 return found; 999 } 1000 1001 static irqreturn_t nvme_irq(int irq, void *data) 1002 { 1003 struct nvme_queue *nvmeq = data; 1004 irqreturn_t ret = IRQ_NONE; 1005 1006 /* 1007 * The rmb/wmb pair ensures we see all updates from a previous run of 1008 * the irq handler, even if that was on another CPU. 1009 */ 1010 rmb(); 1011 if (nvme_process_cq(nvmeq)) 1012 ret = IRQ_HANDLED; 1013 wmb(); 1014 1015 return ret; 1016 } 1017 1018 static irqreturn_t nvme_irq_check(int irq, void *data) 1019 { 1020 struct nvme_queue *nvmeq = data; 1021 if (nvme_cqe_pending(nvmeq)) 1022 return IRQ_WAKE_THREAD; 1023 return IRQ_NONE; 1024 } 1025 1026 /* 1027 * Poll for completions for any interrupt driven queue 1028 * Can be called from any context. 1029 */ 1030 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1031 { 1032 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1033 1034 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1035 1036 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1037 nvme_process_cq(nvmeq); 1038 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1039 } 1040 1041 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1042 { 1043 struct nvme_queue *nvmeq = hctx->driver_data; 1044 bool found; 1045 1046 if (!nvme_cqe_pending(nvmeq)) 1047 return 0; 1048 1049 spin_lock(&nvmeq->cq_poll_lock); 1050 found = nvme_process_cq(nvmeq); 1051 spin_unlock(&nvmeq->cq_poll_lock); 1052 1053 return found; 1054 } 1055 1056 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1057 { 1058 struct nvme_dev *dev = to_nvme_dev(ctrl); 1059 struct nvme_queue *nvmeq = &dev->queues[0]; 1060 struct nvme_command c; 1061 1062 memset(&c, 0, sizeof(c)); 1063 c.common.opcode = nvme_admin_async_event; 1064 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1065 nvme_submit_cmd(nvmeq, &c, true); 1066 } 1067 1068 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1069 { 1070 struct nvme_command c; 1071 1072 memset(&c, 0, sizeof(c)); 1073 c.delete_queue.opcode = opcode; 1074 c.delete_queue.qid = cpu_to_le16(id); 1075 1076 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1077 } 1078 1079 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1080 struct nvme_queue *nvmeq, s16 vector) 1081 { 1082 struct nvme_command c; 1083 int flags = NVME_QUEUE_PHYS_CONTIG; 1084 1085 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1086 flags |= NVME_CQ_IRQ_ENABLED; 1087 1088 /* 1089 * Note: we (ab)use the fact that the prp fields survive if no data 1090 * is attached to the request. 1091 */ 1092 memset(&c, 0, sizeof(c)); 1093 c.create_cq.opcode = nvme_admin_create_cq; 1094 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1095 c.create_cq.cqid = cpu_to_le16(qid); 1096 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1097 c.create_cq.cq_flags = cpu_to_le16(flags); 1098 c.create_cq.irq_vector = cpu_to_le16(vector); 1099 1100 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1101 } 1102 1103 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1104 struct nvme_queue *nvmeq) 1105 { 1106 struct nvme_ctrl *ctrl = &dev->ctrl; 1107 struct nvme_command c; 1108 int flags = NVME_QUEUE_PHYS_CONTIG; 1109 1110 /* 1111 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1112 * set. Since URGENT priority is zeroes, it makes all queues 1113 * URGENT. 1114 */ 1115 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1116 flags |= NVME_SQ_PRIO_MEDIUM; 1117 1118 /* 1119 * Note: we (ab)use the fact that the prp fields survive if no data 1120 * is attached to the request. 1121 */ 1122 memset(&c, 0, sizeof(c)); 1123 c.create_sq.opcode = nvme_admin_create_sq; 1124 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1125 c.create_sq.sqid = cpu_to_le16(qid); 1126 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1127 c.create_sq.sq_flags = cpu_to_le16(flags); 1128 c.create_sq.cqid = cpu_to_le16(qid); 1129 1130 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1131 } 1132 1133 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1134 { 1135 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1136 } 1137 1138 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1139 { 1140 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1141 } 1142 1143 static void abort_endio(struct request *req, blk_status_t error) 1144 { 1145 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1146 struct nvme_queue *nvmeq = iod->nvmeq; 1147 1148 dev_warn(nvmeq->dev->ctrl.device, 1149 "Abort status: 0x%x", nvme_req(req)->status); 1150 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1151 blk_mq_free_request(req); 1152 } 1153 1154 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1155 { 1156 1157 /* If true, indicates loss of adapter communication, possibly by a 1158 * NVMe Subsystem reset. 1159 */ 1160 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1161 1162 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1163 switch (dev->ctrl.state) { 1164 case NVME_CTRL_RESETTING: 1165 case NVME_CTRL_CONNECTING: 1166 return false; 1167 default: 1168 break; 1169 } 1170 1171 /* We shouldn't reset unless the controller is on fatal error state 1172 * _or_ if we lost the communication with it. 1173 */ 1174 if (!(csts & NVME_CSTS_CFS) && !nssro) 1175 return false; 1176 1177 return true; 1178 } 1179 1180 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1181 { 1182 /* Read a config register to help see what died. */ 1183 u16 pci_status; 1184 int result; 1185 1186 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1187 &pci_status); 1188 if (result == PCIBIOS_SUCCESSFUL) 1189 dev_warn(dev->ctrl.device, 1190 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1191 csts, pci_status); 1192 else 1193 dev_warn(dev->ctrl.device, 1194 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1195 csts, result); 1196 } 1197 1198 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1199 { 1200 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1201 struct nvme_queue *nvmeq = iod->nvmeq; 1202 struct nvme_dev *dev = nvmeq->dev; 1203 struct request *abort_req; 1204 struct nvme_command cmd; 1205 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1206 1207 /* If PCI error recovery process is happening, we cannot reset or 1208 * the recovery mechanism will surely fail. 1209 */ 1210 mb(); 1211 if (pci_channel_offline(to_pci_dev(dev->dev))) 1212 return BLK_EH_RESET_TIMER; 1213 1214 /* 1215 * Reset immediately if the controller is failed 1216 */ 1217 if (nvme_should_reset(dev, csts)) { 1218 nvme_warn_reset(dev, csts); 1219 nvme_dev_disable(dev, false); 1220 nvme_reset_ctrl(&dev->ctrl); 1221 return BLK_EH_DONE; 1222 } 1223 1224 /* 1225 * Did we miss an interrupt? 1226 */ 1227 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1228 nvme_poll(req->mq_hctx); 1229 else 1230 nvme_poll_irqdisable(nvmeq); 1231 1232 if (blk_mq_request_completed(req)) { 1233 dev_warn(dev->ctrl.device, 1234 "I/O %d QID %d timeout, completion polled\n", 1235 req->tag, nvmeq->qid); 1236 return BLK_EH_DONE; 1237 } 1238 1239 /* 1240 * Shutdown immediately if controller times out while starting. The 1241 * reset work will see the pci device disabled when it gets the forced 1242 * cancellation error. All outstanding requests are completed on 1243 * shutdown, so we return BLK_EH_DONE. 1244 */ 1245 switch (dev->ctrl.state) { 1246 case NVME_CTRL_CONNECTING: 1247 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1248 /* fall through */ 1249 case NVME_CTRL_DELETING: 1250 dev_warn_ratelimited(dev->ctrl.device, 1251 "I/O %d QID %d timeout, disable controller\n", 1252 req->tag, nvmeq->qid); 1253 nvme_dev_disable(dev, true); 1254 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1255 return BLK_EH_DONE; 1256 case NVME_CTRL_RESETTING: 1257 return BLK_EH_RESET_TIMER; 1258 default: 1259 break; 1260 } 1261 1262 /* 1263 * Shutdown the controller immediately and schedule a reset if the 1264 * command was already aborted once before and still hasn't been 1265 * returned to the driver, or if this is the admin queue. 1266 */ 1267 if (!nvmeq->qid || iod->aborted) { 1268 dev_warn(dev->ctrl.device, 1269 "I/O %d QID %d timeout, reset controller\n", 1270 req->tag, nvmeq->qid); 1271 nvme_dev_disable(dev, false); 1272 nvme_reset_ctrl(&dev->ctrl); 1273 1274 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1275 return BLK_EH_DONE; 1276 } 1277 1278 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1279 atomic_inc(&dev->ctrl.abort_limit); 1280 return BLK_EH_RESET_TIMER; 1281 } 1282 iod->aborted = 1; 1283 1284 memset(&cmd, 0, sizeof(cmd)); 1285 cmd.abort.opcode = nvme_admin_abort_cmd; 1286 cmd.abort.cid = req->tag; 1287 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1288 1289 dev_warn(nvmeq->dev->ctrl.device, 1290 "I/O %d QID %d timeout, aborting\n", 1291 req->tag, nvmeq->qid); 1292 1293 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1294 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1295 if (IS_ERR(abort_req)) { 1296 atomic_inc(&dev->ctrl.abort_limit); 1297 return BLK_EH_RESET_TIMER; 1298 } 1299 1300 abort_req->timeout = ADMIN_TIMEOUT; 1301 abort_req->end_io_data = NULL; 1302 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1303 1304 /* 1305 * The aborted req will be completed on receiving the abort req. 1306 * We enable the timer again. If hit twice, it'll cause a device reset, 1307 * as the device then is in a faulty state. 1308 */ 1309 return BLK_EH_RESET_TIMER; 1310 } 1311 1312 static void nvme_free_queue(struct nvme_queue *nvmeq) 1313 { 1314 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1315 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1316 if (!nvmeq->sq_cmds) 1317 return; 1318 1319 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1320 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1321 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1322 } else { 1323 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1324 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1325 } 1326 } 1327 1328 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1329 { 1330 int i; 1331 1332 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1333 dev->ctrl.queue_count--; 1334 nvme_free_queue(&dev->queues[i]); 1335 } 1336 } 1337 1338 /** 1339 * nvme_suspend_queue - put queue into suspended state 1340 * @nvmeq: queue to suspend 1341 */ 1342 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1343 { 1344 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1345 return 1; 1346 1347 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1348 mb(); 1349 1350 nvmeq->dev->online_queues--; 1351 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1352 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1353 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1354 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1355 return 0; 1356 } 1357 1358 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1359 { 1360 int i; 1361 1362 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1363 nvme_suspend_queue(&dev->queues[i]); 1364 } 1365 1366 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1367 { 1368 struct nvme_queue *nvmeq = &dev->queues[0]; 1369 1370 if (shutdown) 1371 nvme_shutdown_ctrl(&dev->ctrl); 1372 else 1373 nvme_disable_ctrl(&dev->ctrl); 1374 1375 nvme_poll_irqdisable(nvmeq); 1376 } 1377 1378 /* 1379 * Called only on a device that has been disabled and after all other threads 1380 * that can check this device's completion queues have synced. This is the 1381 * last chance for the driver to see a natural completion before 1382 * nvme_cancel_request() terminates all incomplete requests. 1383 */ 1384 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1385 { 1386 int i; 1387 1388 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1389 nvme_process_cq(&dev->queues[i]); 1390 } 1391 1392 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1393 int entry_size) 1394 { 1395 int q_depth = dev->q_depth; 1396 unsigned q_size_aligned = roundup(q_depth * entry_size, 1397 dev->ctrl.page_size); 1398 1399 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1400 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1401 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1402 q_depth = div_u64(mem_per_q, entry_size); 1403 1404 /* 1405 * Ensure the reduced q_depth is above some threshold where it 1406 * would be better to map queues in system memory with the 1407 * original depth 1408 */ 1409 if (q_depth < 64) 1410 return -ENOMEM; 1411 } 1412 1413 return q_depth; 1414 } 1415 1416 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1417 int qid) 1418 { 1419 struct pci_dev *pdev = to_pci_dev(dev->dev); 1420 1421 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1422 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1423 if (nvmeq->sq_cmds) { 1424 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1425 nvmeq->sq_cmds); 1426 if (nvmeq->sq_dma_addr) { 1427 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1428 return 0; 1429 } 1430 1431 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1432 } 1433 } 1434 1435 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1436 &nvmeq->sq_dma_addr, GFP_KERNEL); 1437 if (!nvmeq->sq_cmds) 1438 return -ENOMEM; 1439 return 0; 1440 } 1441 1442 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1443 { 1444 struct nvme_queue *nvmeq = &dev->queues[qid]; 1445 1446 if (dev->ctrl.queue_count > qid) 1447 return 0; 1448 1449 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1450 nvmeq->q_depth = depth; 1451 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1452 &nvmeq->cq_dma_addr, GFP_KERNEL); 1453 if (!nvmeq->cqes) 1454 goto free_nvmeq; 1455 1456 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1457 goto free_cqdma; 1458 1459 nvmeq->dev = dev; 1460 spin_lock_init(&nvmeq->sq_lock); 1461 spin_lock_init(&nvmeq->cq_poll_lock); 1462 nvmeq->cq_head = 0; 1463 nvmeq->cq_phase = 1; 1464 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1465 nvmeq->qid = qid; 1466 dev->ctrl.queue_count++; 1467 1468 return 0; 1469 1470 free_cqdma: 1471 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1472 nvmeq->cq_dma_addr); 1473 free_nvmeq: 1474 return -ENOMEM; 1475 } 1476 1477 static int queue_request_irq(struct nvme_queue *nvmeq) 1478 { 1479 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1480 int nr = nvmeq->dev->ctrl.instance; 1481 1482 if (use_threaded_interrupts) { 1483 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1484 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1485 } else { 1486 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1487 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1488 } 1489 } 1490 1491 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1492 { 1493 struct nvme_dev *dev = nvmeq->dev; 1494 1495 nvmeq->sq_tail = 0; 1496 nvmeq->last_sq_tail = 0; 1497 nvmeq->cq_head = 0; 1498 nvmeq->cq_phase = 1; 1499 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1500 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1501 nvme_dbbuf_init(dev, nvmeq, qid); 1502 dev->online_queues++; 1503 wmb(); /* ensure the first interrupt sees the initialization */ 1504 } 1505 1506 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1507 { 1508 struct nvme_dev *dev = nvmeq->dev; 1509 int result; 1510 u16 vector = 0; 1511 1512 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1513 1514 /* 1515 * A queue's vector matches the queue identifier unless the controller 1516 * has only one vector available. 1517 */ 1518 if (!polled) 1519 vector = dev->num_vecs == 1 ? 0 : qid; 1520 else 1521 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1522 1523 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1524 if (result) 1525 return result; 1526 1527 result = adapter_alloc_sq(dev, qid, nvmeq); 1528 if (result < 0) 1529 return result; 1530 if (result) 1531 goto release_cq; 1532 1533 nvmeq->cq_vector = vector; 1534 nvme_init_queue(nvmeq, qid); 1535 1536 if (!polled) { 1537 result = queue_request_irq(nvmeq); 1538 if (result < 0) 1539 goto release_sq; 1540 } 1541 1542 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1543 return result; 1544 1545 release_sq: 1546 dev->online_queues--; 1547 adapter_delete_sq(dev, qid); 1548 release_cq: 1549 adapter_delete_cq(dev, qid); 1550 return result; 1551 } 1552 1553 static const struct blk_mq_ops nvme_mq_admin_ops = { 1554 .queue_rq = nvme_queue_rq, 1555 .complete = nvme_pci_complete_rq, 1556 .init_hctx = nvme_admin_init_hctx, 1557 .init_request = nvme_init_request, 1558 .timeout = nvme_timeout, 1559 }; 1560 1561 static const struct blk_mq_ops nvme_mq_ops = { 1562 .queue_rq = nvme_queue_rq, 1563 .complete = nvme_pci_complete_rq, 1564 .commit_rqs = nvme_commit_rqs, 1565 .init_hctx = nvme_init_hctx, 1566 .init_request = nvme_init_request, 1567 .map_queues = nvme_pci_map_queues, 1568 .timeout = nvme_timeout, 1569 .poll = nvme_poll, 1570 }; 1571 1572 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1573 { 1574 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1575 /* 1576 * If the controller was reset during removal, it's possible 1577 * user requests may be waiting on a stopped queue. Start the 1578 * queue to flush these to completion. 1579 */ 1580 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1581 blk_cleanup_queue(dev->ctrl.admin_q); 1582 blk_mq_free_tag_set(&dev->admin_tagset); 1583 } 1584 } 1585 1586 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1587 { 1588 if (!dev->ctrl.admin_q) { 1589 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1590 dev->admin_tagset.nr_hw_queues = 1; 1591 1592 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1593 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1594 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1595 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1596 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1597 dev->admin_tagset.driver_data = dev; 1598 1599 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1600 return -ENOMEM; 1601 dev->ctrl.admin_tagset = &dev->admin_tagset; 1602 1603 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1604 if (IS_ERR(dev->ctrl.admin_q)) { 1605 blk_mq_free_tag_set(&dev->admin_tagset); 1606 return -ENOMEM; 1607 } 1608 if (!blk_get_queue(dev->ctrl.admin_q)) { 1609 nvme_dev_remove_admin(dev); 1610 dev->ctrl.admin_q = NULL; 1611 return -ENODEV; 1612 } 1613 } else 1614 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1615 1616 return 0; 1617 } 1618 1619 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1620 { 1621 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1622 } 1623 1624 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1625 { 1626 struct pci_dev *pdev = to_pci_dev(dev->dev); 1627 1628 if (size <= dev->bar_mapped_size) 1629 return 0; 1630 if (size > pci_resource_len(pdev, 0)) 1631 return -ENOMEM; 1632 if (dev->bar) 1633 iounmap(dev->bar); 1634 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1635 if (!dev->bar) { 1636 dev->bar_mapped_size = 0; 1637 return -ENOMEM; 1638 } 1639 dev->bar_mapped_size = size; 1640 dev->dbs = dev->bar + NVME_REG_DBS; 1641 1642 return 0; 1643 } 1644 1645 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1646 { 1647 int result; 1648 u32 aqa; 1649 struct nvme_queue *nvmeq; 1650 1651 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1652 if (result < 0) 1653 return result; 1654 1655 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1656 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1657 1658 if (dev->subsystem && 1659 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1660 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1661 1662 result = nvme_disable_ctrl(&dev->ctrl); 1663 if (result < 0) 1664 return result; 1665 1666 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1667 if (result) 1668 return result; 1669 1670 nvmeq = &dev->queues[0]; 1671 aqa = nvmeq->q_depth - 1; 1672 aqa |= aqa << 16; 1673 1674 writel(aqa, dev->bar + NVME_REG_AQA); 1675 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1676 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1677 1678 result = nvme_enable_ctrl(&dev->ctrl); 1679 if (result) 1680 return result; 1681 1682 nvmeq->cq_vector = 0; 1683 nvme_init_queue(nvmeq, 0); 1684 result = queue_request_irq(nvmeq); 1685 if (result) { 1686 dev->online_queues--; 1687 return result; 1688 } 1689 1690 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1691 return result; 1692 } 1693 1694 static int nvme_create_io_queues(struct nvme_dev *dev) 1695 { 1696 unsigned i, max, rw_queues; 1697 int ret = 0; 1698 1699 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1700 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1701 ret = -ENOMEM; 1702 break; 1703 } 1704 } 1705 1706 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1707 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1708 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1709 dev->io_queues[HCTX_TYPE_READ]; 1710 } else { 1711 rw_queues = max; 1712 } 1713 1714 for (i = dev->online_queues; i <= max; i++) { 1715 bool polled = i > rw_queues; 1716 1717 ret = nvme_create_queue(&dev->queues[i], i, polled); 1718 if (ret) 1719 break; 1720 } 1721 1722 /* 1723 * Ignore failing Create SQ/CQ commands, we can continue with less 1724 * than the desired amount of queues, and even a controller without 1725 * I/O queues can still be used to issue admin commands. This might 1726 * be useful to upgrade a buggy firmware for example. 1727 */ 1728 return ret >= 0 ? 0 : ret; 1729 } 1730 1731 static ssize_t nvme_cmb_show(struct device *dev, 1732 struct device_attribute *attr, 1733 char *buf) 1734 { 1735 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1736 1737 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1738 ndev->cmbloc, ndev->cmbsz); 1739 } 1740 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1741 1742 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1743 { 1744 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1745 1746 return 1ULL << (12 + 4 * szu); 1747 } 1748 1749 static u32 nvme_cmb_size(struct nvme_dev *dev) 1750 { 1751 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1752 } 1753 1754 static void nvme_map_cmb(struct nvme_dev *dev) 1755 { 1756 u64 size, offset; 1757 resource_size_t bar_size; 1758 struct pci_dev *pdev = to_pci_dev(dev->dev); 1759 int bar; 1760 1761 if (dev->cmb_size) 1762 return; 1763 1764 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1765 if (!dev->cmbsz) 1766 return; 1767 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1768 1769 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1770 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1771 bar = NVME_CMB_BIR(dev->cmbloc); 1772 bar_size = pci_resource_len(pdev, bar); 1773 1774 if (offset > bar_size) 1775 return; 1776 1777 /* 1778 * Controllers may support a CMB size larger than their BAR, 1779 * for example, due to being behind a bridge. Reduce the CMB to 1780 * the reported size of the BAR 1781 */ 1782 if (size > bar_size - offset) 1783 size = bar_size - offset; 1784 1785 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1786 dev_warn(dev->ctrl.device, 1787 "failed to register the CMB\n"); 1788 return; 1789 } 1790 1791 dev->cmb_size = size; 1792 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1793 1794 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1795 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1796 pci_p2pmem_publish(pdev, true); 1797 1798 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1799 &dev_attr_cmb.attr, NULL)) 1800 dev_warn(dev->ctrl.device, 1801 "failed to add sysfs attribute for CMB\n"); 1802 } 1803 1804 static inline void nvme_release_cmb(struct nvme_dev *dev) 1805 { 1806 if (dev->cmb_size) { 1807 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1808 &dev_attr_cmb.attr, NULL); 1809 dev->cmb_size = 0; 1810 } 1811 } 1812 1813 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1814 { 1815 u64 dma_addr = dev->host_mem_descs_dma; 1816 struct nvme_command c; 1817 int ret; 1818 1819 memset(&c, 0, sizeof(c)); 1820 c.features.opcode = nvme_admin_set_features; 1821 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1822 c.features.dword11 = cpu_to_le32(bits); 1823 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1824 ilog2(dev->ctrl.page_size)); 1825 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1826 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1827 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1828 1829 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1830 if (ret) { 1831 dev_warn(dev->ctrl.device, 1832 "failed to set host mem (err %d, flags %#x).\n", 1833 ret, bits); 1834 } 1835 return ret; 1836 } 1837 1838 static void nvme_free_host_mem(struct nvme_dev *dev) 1839 { 1840 int i; 1841 1842 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1843 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1844 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1845 1846 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1847 le64_to_cpu(desc->addr), 1848 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1849 } 1850 1851 kfree(dev->host_mem_desc_bufs); 1852 dev->host_mem_desc_bufs = NULL; 1853 dma_free_coherent(dev->dev, 1854 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1855 dev->host_mem_descs, dev->host_mem_descs_dma); 1856 dev->host_mem_descs = NULL; 1857 dev->nr_host_mem_descs = 0; 1858 } 1859 1860 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1861 u32 chunk_size) 1862 { 1863 struct nvme_host_mem_buf_desc *descs; 1864 u32 max_entries, len; 1865 dma_addr_t descs_dma; 1866 int i = 0; 1867 void **bufs; 1868 u64 size, tmp; 1869 1870 tmp = (preferred + chunk_size - 1); 1871 do_div(tmp, chunk_size); 1872 max_entries = tmp; 1873 1874 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1875 max_entries = dev->ctrl.hmmaxd; 1876 1877 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1878 &descs_dma, GFP_KERNEL); 1879 if (!descs) 1880 goto out; 1881 1882 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1883 if (!bufs) 1884 goto out_free_descs; 1885 1886 for (size = 0; size < preferred && i < max_entries; size += len) { 1887 dma_addr_t dma_addr; 1888 1889 len = min_t(u64, chunk_size, preferred - size); 1890 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1891 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1892 if (!bufs[i]) 1893 break; 1894 1895 descs[i].addr = cpu_to_le64(dma_addr); 1896 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1897 i++; 1898 } 1899 1900 if (!size) 1901 goto out_free_bufs; 1902 1903 dev->nr_host_mem_descs = i; 1904 dev->host_mem_size = size; 1905 dev->host_mem_descs = descs; 1906 dev->host_mem_descs_dma = descs_dma; 1907 dev->host_mem_desc_bufs = bufs; 1908 return 0; 1909 1910 out_free_bufs: 1911 while (--i >= 0) { 1912 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1913 1914 dma_free_attrs(dev->dev, size, bufs[i], 1915 le64_to_cpu(descs[i].addr), 1916 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1917 } 1918 1919 kfree(bufs); 1920 out_free_descs: 1921 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1922 descs_dma); 1923 out: 1924 dev->host_mem_descs = NULL; 1925 return -ENOMEM; 1926 } 1927 1928 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1929 { 1930 u32 chunk_size; 1931 1932 /* start big and work our way down */ 1933 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1934 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1935 chunk_size /= 2) { 1936 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1937 if (!min || dev->host_mem_size >= min) 1938 return 0; 1939 nvme_free_host_mem(dev); 1940 } 1941 } 1942 1943 return -ENOMEM; 1944 } 1945 1946 static int nvme_setup_host_mem(struct nvme_dev *dev) 1947 { 1948 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1949 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1950 u64 min = (u64)dev->ctrl.hmmin * 4096; 1951 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1952 int ret; 1953 1954 preferred = min(preferred, max); 1955 if (min > max) { 1956 dev_warn(dev->ctrl.device, 1957 "min host memory (%lld MiB) above limit (%d MiB).\n", 1958 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1959 nvme_free_host_mem(dev); 1960 return 0; 1961 } 1962 1963 /* 1964 * If we already have a buffer allocated check if we can reuse it. 1965 */ 1966 if (dev->host_mem_descs) { 1967 if (dev->host_mem_size >= min) 1968 enable_bits |= NVME_HOST_MEM_RETURN; 1969 else 1970 nvme_free_host_mem(dev); 1971 } 1972 1973 if (!dev->host_mem_descs) { 1974 if (nvme_alloc_host_mem(dev, min, preferred)) { 1975 dev_warn(dev->ctrl.device, 1976 "failed to allocate host memory buffer.\n"); 1977 return 0; /* controller must work without HMB */ 1978 } 1979 1980 dev_info(dev->ctrl.device, 1981 "allocated %lld MiB host memory buffer.\n", 1982 dev->host_mem_size >> ilog2(SZ_1M)); 1983 } 1984 1985 ret = nvme_set_host_mem(dev, enable_bits); 1986 if (ret) 1987 nvme_free_host_mem(dev); 1988 return ret; 1989 } 1990 1991 /* 1992 * nirqs is the number of interrupts available for write and read 1993 * queues. The core already reserved an interrupt for the admin queue. 1994 */ 1995 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 1996 { 1997 struct nvme_dev *dev = affd->priv; 1998 unsigned int nr_read_queues; 1999 2000 /* 2001 * If there is no interupt available for queues, ensure that 2002 * the default queue is set to 1. The affinity set size is 2003 * also set to one, but the irq core ignores it for this case. 2004 * 2005 * If only one interrupt is available or 'write_queue' == 0, combine 2006 * write and read queues. 2007 * 2008 * If 'write_queues' > 0, ensure it leaves room for at least one read 2009 * queue. 2010 */ 2011 if (!nrirqs) { 2012 nrirqs = 1; 2013 nr_read_queues = 0; 2014 } else if (nrirqs == 1 || !write_queues) { 2015 nr_read_queues = 0; 2016 } else if (write_queues >= nrirqs) { 2017 nr_read_queues = 1; 2018 } else { 2019 nr_read_queues = nrirqs - write_queues; 2020 } 2021 2022 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2023 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2024 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2025 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2026 affd->nr_sets = nr_read_queues ? 2 : 1; 2027 } 2028 2029 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2030 { 2031 struct pci_dev *pdev = to_pci_dev(dev->dev); 2032 struct irq_affinity affd = { 2033 .pre_vectors = 1, 2034 .calc_sets = nvme_calc_irq_sets, 2035 .priv = dev, 2036 }; 2037 unsigned int irq_queues, this_p_queues; 2038 2039 /* 2040 * Poll queues don't need interrupts, but we need at least one IO 2041 * queue left over for non-polled IO. 2042 */ 2043 this_p_queues = poll_queues; 2044 if (this_p_queues >= nr_io_queues) { 2045 this_p_queues = nr_io_queues - 1; 2046 irq_queues = 1; 2047 } else { 2048 irq_queues = nr_io_queues - this_p_queues + 1; 2049 } 2050 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; 2051 2052 /* Initialize for the single interrupt case */ 2053 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2054 dev->io_queues[HCTX_TYPE_READ] = 0; 2055 2056 /* 2057 * Some Apple controllers require all queues to use the 2058 * first vector. 2059 */ 2060 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR) 2061 irq_queues = 1; 2062 2063 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2064 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2065 } 2066 2067 static void nvme_disable_io_queues(struct nvme_dev *dev) 2068 { 2069 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2070 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2071 } 2072 2073 static int nvme_setup_io_queues(struct nvme_dev *dev) 2074 { 2075 struct nvme_queue *adminq = &dev->queues[0]; 2076 struct pci_dev *pdev = to_pci_dev(dev->dev); 2077 int result, nr_io_queues; 2078 unsigned long size; 2079 2080 nr_io_queues = max_io_queues(); 2081 2082 /* 2083 * If tags are shared with admin queue (Apple bug), then 2084 * make sure we only use one IO queue. 2085 */ 2086 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2087 nr_io_queues = 1; 2088 2089 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2090 if (result < 0) 2091 return result; 2092 2093 if (nr_io_queues == 0) 2094 return 0; 2095 2096 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2097 2098 if (dev->cmb_use_sqes) { 2099 result = nvme_cmb_qdepth(dev, nr_io_queues, 2100 sizeof(struct nvme_command)); 2101 if (result > 0) 2102 dev->q_depth = result; 2103 else 2104 dev->cmb_use_sqes = false; 2105 } 2106 2107 do { 2108 size = db_bar_size(dev, nr_io_queues); 2109 result = nvme_remap_bar(dev, size); 2110 if (!result) 2111 break; 2112 if (!--nr_io_queues) 2113 return -ENOMEM; 2114 } while (1); 2115 adminq->q_db = dev->dbs; 2116 2117 retry: 2118 /* Deregister the admin queue's interrupt */ 2119 pci_free_irq(pdev, 0, adminq); 2120 2121 /* 2122 * If we enable msix early due to not intx, disable it again before 2123 * setting up the full range we need. 2124 */ 2125 pci_free_irq_vectors(pdev); 2126 2127 result = nvme_setup_irqs(dev, nr_io_queues); 2128 if (result <= 0) 2129 return -EIO; 2130 2131 dev->num_vecs = result; 2132 result = max(result - 1, 1); 2133 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2134 2135 /* 2136 * Should investigate if there's a performance win from allocating 2137 * more queues than interrupt vectors; it might allow the submission 2138 * path to scale better, even if the receive path is limited by the 2139 * number of interrupts. 2140 */ 2141 result = queue_request_irq(adminq); 2142 if (result) 2143 return result; 2144 set_bit(NVMEQ_ENABLED, &adminq->flags); 2145 2146 result = nvme_create_io_queues(dev); 2147 if (result || dev->online_queues < 2) 2148 return result; 2149 2150 if (dev->online_queues - 1 < dev->max_qid) { 2151 nr_io_queues = dev->online_queues - 1; 2152 nvme_disable_io_queues(dev); 2153 nvme_suspend_io_queues(dev); 2154 goto retry; 2155 } 2156 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2157 dev->io_queues[HCTX_TYPE_DEFAULT], 2158 dev->io_queues[HCTX_TYPE_READ], 2159 dev->io_queues[HCTX_TYPE_POLL]); 2160 return 0; 2161 } 2162 2163 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2164 { 2165 struct nvme_queue *nvmeq = req->end_io_data; 2166 2167 blk_mq_free_request(req); 2168 complete(&nvmeq->delete_done); 2169 } 2170 2171 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2172 { 2173 struct nvme_queue *nvmeq = req->end_io_data; 2174 2175 if (error) 2176 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2177 2178 nvme_del_queue_end(req, error); 2179 } 2180 2181 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2182 { 2183 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2184 struct request *req; 2185 struct nvme_command cmd; 2186 2187 memset(&cmd, 0, sizeof(cmd)); 2188 cmd.delete_queue.opcode = opcode; 2189 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2190 2191 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2192 if (IS_ERR(req)) 2193 return PTR_ERR(req); 2194 2195 req->timeout = ADMIN_TIMEOUT; 2196 req->end_io_data = nvmeq; 2197 2198 init_completion(&nvmeq->delete_done); 2199 blk_execute_rq_nowait(q, NULL, req, false, 2200 opcode == nvme_admin_delete_cq ? 2201 nvme_del_cq_end : nvme_del_queue_end); 2202 return 0; 2203 } 2204 2205 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2206 { 2207 int nr_queues = dev->online_queues - 1, sent = 0; 2208 unsigned long timeout; 2209 2210 retry: 2211 timeout = ADMIN_TIMEOUT; 2212 while (nr_queues > 0) { 2213 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2214 break; 2215 nr_queues--; 2216 sent++; 2217 } 2218 while (sent) { 2219 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2220 2221 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2222 timeout); 2223 if (timeout == 0) 2224 return false; 2225 2226 sent--; 2227 if (nr_queues) 2228 goto retry; 2229 } 2230 return true; 2231 } 2232 2233 static void nvme_dev_add(struct nvme_dev *dev) 2234 { 2235 int ret; 2236 2237 if (!dev->ctrl.tagset) { 2238 dev->tagset.ops = &nvme_mq_ops; 2239 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2240 dev->tagset.nr_maps = 2; /* default + read */ 2241 if (dev->io_queues[HCTX_TYPE_POLL]) 2242 dev->tagset.nr_maps++; 2243 dev->tagset.timeout = NVME_IO_TIMEOUT; 2244 dev->tagset.numa_node = dev_to_node(dev->dev); 2245 dev->tagset.queue_depth = 2246 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2247 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2248 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2249 dev->tagset.driver_data = dev; 2250 2251 /* 2252 * Some Apple controllers requires tags to be unique 2253 * across admin and IO queue, so reserve the first 32 2254 * tags of the IO queue. 2255 */ 2256 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2257 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2258 2259 ret = blk_mq_alloc_tag_set(&dev->tagset); 2260 if (ret) { 2261 dev_warn(dev->ctrl.device, 2262 "IO queues tagset allocation failed %d\n", ret); 2263 return; 2264 } 2265 dev->ctrl.tagset = &dev->tagset; 2266 } else { 2267 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2268 2269 /* Free previously allocated queues that are no longer usable */ 2270 nvme_free_queues(dev, dev->online_queues); 2271 } 2272 2273 nvme_dbbuf_set(dev); 2274 } 2275 2276 static int nvme_pci_enable(struct nvme_dev *dev) 2277 { 2278 int result = -ENOMEM; 2279 struct pci_dev *pdev = to_pci_dev(dev->dev); 2280 2281 if (pci_enable_device_mem(pdev)) 2282 return result; 2283 2284 pci_set_master(pdev); 2285 2286 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2287 goto disable; 2288 2289 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2290 result = -ENODEV; 2291 goto disable; 2292 } 2293 2294 /* 2295 * Some devices and/or platforms don't advertise or work with INTx 2296 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2297 * adjust this later. 2298 */ 2299 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2300 if (result < 0) 2301 return result; 2302 2303 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2304 2305 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2306 io_queue_depth); 2307 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2308 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2309 dev->dbs = dev->bar + 4096; 2310 2311 /* 2312 * Some Apple controllers require a non-standard SQE size. 2313 * Interestingly they also seem to ignore the CC:IOSQES register 2314 * so we don't bother updating it here. 2315 */ 2316 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2317 dev->io_sqes = 7; 2318 else 2319 dev->io_sqes = NVME_NVM_IOSQES; 2320 2321 /* 2322 * Temporary fix for the Apple controller found in the MacBook8,1 and 2323 * some MacBook7,1 to avoid controller resets and data loss. 2324 */ 2325 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2326 dev->q_depth = 2; 2327 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2328 "set queue depth=%u to work around controller resets\n", 2329 dev->q_depth); 2330 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2331 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2332 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2333 dev->q_depth = 64; 2334 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2335 "set queue depth=%u\n", dev->q_depth); 2336 } 2337 2338 /* 2339 * Controllers with the shared tags quirk need the IO queue to be 2340 * big enough so that we get 32 tags for the admin queue 2341 */ 2342 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2343 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2344 dev->q_depth = NVME_AQ_DEPTH + 2; 2345 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2346 dev->q_depth); 2347 } 2348 2349 2350 nvme_map_cmb(dev); 2351 2352 pci_enable_pcie_error_reporting(pdev); 2353 pci_save_state(pdev); 2354 return 0; 2355 2356 disable: 2357 pci_disable_device(pdev); 2358 return result; 2359 } 2360 2361 static void nvme_dev_unmap(struct nvme_dev *dev) 2362 { 2363 if (dev->bar) 2364 iounmap(dev->bar); 2365 pci_release_mem_regions(to_pci_dev(dev->dev)); 2366 } 2367 2368 static void nvme_pci_disable(struct nvme_dev *dev) 2369 { 2370 struct pci_dev *pdev = to_pci_dev(dev->dev); 2371 2372 pci_free_irq_vectors(pdev); 2373 2374 if (pci_is_enabled(pdev)) { 2375 pci_disable_pcie_error_reporting(pdev); 2376 pci_disable_device(pdev); 2377 } 2378 } 2379 2380 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2381 { 2382 bool dead = true, freeze = false; 2383 struct pci_dev *pdev = to_pci_dev(dev->dev); 2384 2385 mutex_lock(&dev->shutdown_lock); 2386 if (pci_is_enabled(pdev)) { 2387 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2388 2389 if (dev->ctrl.state == NVME_CTRL_LIVE || 2390 dev->ctrl.state == NVME_CTRL_RESETTING) { 2391 freeze = true; 2392 nvme_start_freeze(&dev->ctrl); 2393 } 2394 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2395 pdev->error_state != pci_channel_io_normal); 2396 } 2397 2398 /* 2399 * Give the controller a chance to complete all entered requests if 2400 * doing a safe shutdown. 2401 */ 2402 if (!dead && shutdown && freeze) 2403 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2404 2405 nvme_stop_queues(&dev->ctrl); 2406 2407 if (!dead && dev->ctrl.queue_count > 0) { 2408 nvme_disable_io_queues(dev); 2409 nvme_disable_admin_queue(dev, shutdown); 2410 } 2411 nvme_suspend_io_queues(dev); 2412 nvme_suspend_queue(&dev->queues[0]); 2413 nvme_pci_disable(dev); 2414 nvme_reap_pending_cqes(dev); 2415 2416 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2417 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2418 blk_mq_tagset_wait_completed_request(&dev->tagset); 2419 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2420 2421 /* 2422 * The driver will not be starting up queues again if shutting down so 2423 * must flush all entered requests to their failed completion to avoid 2424 * deadlocking blk-mq hot-cpu notifier. 2425 */ 2426 if (shutdown) { 2427 nvme_start_queues(&dev->ctrl); 2428 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2429 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2430 } 2431 mutex_unlock(&dev->shutdown_lock); 2432 } 2433 2434 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2435 { 2436 if (!nvme_wait_reset(&dev->ctrl)) 2437 return -EBUSY; 2438 nvme_dev_disable(dev, shutdown); 2439 return 0; 2440 } 2441 2442 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2443 { 2444 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2445 PAGE_SIZE, PAGE_SIZE, 0); 2446 if (!dev->prp_page_pool) 2447 return -ENOMEM; 2448 2449 /* Optimisation for I/Os between 4k and 128k */ 2450 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2451 256, 256, 0); 2452 if (!dev->prp_small_pool) { 2453 dma_pool_destroy(dev->prp_page_pool); 2454 return -ENOMEM; 2455 } 2456 return 0; 2457 } 2458 2459 static void nvme_release_prp_pools(struct nvme_dev *dev) 2460 { 2461 dma_pool_destroy(dev->prp_page_pool); 2462 dma_pool_destroy(dev->prp_small_pool); 2463 } 2464 2465 static void nvme_free_tagset(struct nvme_dev *dev) 2466 { 2467 if (dev->tagset.tags) 2468 blk_mq_free_tag_set(&dev->tagset); 2469 dev->ctrl.tagset = NULL; 2470 } 2471 2472 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2473 { 2474 struct nvme_dev *dev = to_nvme_dev(ctrl); 2475 2476 nvme_dbbuf_dma_free(dev); 2477 nvme_free_tagset(dev); 2478 if (dev->ctrl.admin_q) 2479 blk_put_queue(dev->ctrl.admin_q); 2480 free_opal_dev(dev->ctrl.opal_dev); 2481 mempool_destroy(dev->iod_mempool); 2482 put_device(dev->dev); 2483 kfree(dev->queues); 2484 kfree(dev); 2485 } 2486 2487 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2488 { 2489 /* 2490 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2491 * may be holding this pci_dev's device lock. 2492 */ 2493 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2494 nvme_get_ctrl(&dev->ctrl); 2495 nvme_dev_disable(dev, false); 2496 nvme_kill_queues(&dev->ctrl); 2497 if (!queue_work(nvme_wq, &dev->remove_work)) 2498 nvme_put_ctrl(&dev->ctrl); 2499 } 2500 2501 static void nvme_reset_work(struct work_struct *work) 2502 { 2503 struct nvme_dev *dev = 2504 container_of(work, struct nvme_dev, ctrl.reset_work); 2505 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2506 int result; 2507 2508 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2509 result = -ENODEV; 2510 goto out; 2511 } 2512 2513 /* 2514 * If we're called to reset a live controller first shut it down before 2515 * moving on. 2516 */ 2517 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2518 nvme_dev_disable(dev, false); 2519 nvme_sync_queues(&dev->ctrl); 2520 2521 mutex_lock(&dev->shutdown_lock); 2522 result = nvme_pci_enable(dev); 2523 if (result) 2524 goto out_unlock; 2525 2526 result = nvme_pci_configure_admin_queue(dev); 2527 if (result) 2528 goto out_unlock; 2529 2530 result = nvme_alloc_admin_tags(dev); 2531 if (result) 2532 goto out_unlock; 2533 2534 /* 2535 * Limit the max command size to prevent iod->sg allocations going 2536 * over a single page. 2537 */ 2538 dev->ctrl.max_hw_sectors = min_t(u32, 2539 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2540 dev->ctrl.max_segments = NVME_MAX_SEGS; 2541 2542 /* 2543 * Don't limit the IOMMU merged segment size. 2544 */ 2545 dma_set_max_seg_size(dev->dev, 0xffffffff); 2546 2547 mutex_unlock(&dev->shutdown_lock); 2548 2549 /* 2550 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2551 * initializing procedure here. 2552 */ 2553 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2554 dev_warn(dev->ctrl.device, 2555 "failed to mark controller CONNECTING\n"); 2556 result = -EBUSY; 2557 goto out; 2558 } 2559 2560 result = nvme_init_identify(&dev->ctrl); 2561 if (result) 2562 goto out; 2563 2564 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2565 if (!dev->ctrl.opal_dev) 2566 dev->ctrl.opal_dev = 2567 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2568 else if (was_suspend) 2569 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2570 } else { 2571 free_opal_dev(dev->ctrl.opal_dev); 2572 dev->ctrl.opal_dev = NULL; 2573 } 2574 2575 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2576 result = nvme_dbbuf_dma_alloc(dev); 2577 if (result) 2578 dev_warn(dev->dev, 2579 "unable to allocate dma for dbbuf\n"); 2580 } 2581 2582 if (dev->ctrl.hmpre) { 2583 result = nvme_setup_host_mem(dev); 2584 if (result < 0) 2585 goto out; 2586 } 2587 2588 result = nvme_setup_io_queues(dev); 2589 if (result) 2590 goto out; 2591 2592 /* 2593 * Keep the controller around but remove all namespaces if we don't have 2594 * any working I/O queue. 2595 */ 2596 if (dev->online_queues < 2) { 2597 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2598 nvme_kill_queues(&dev->ctrl); 2599 nvme_remove_namespaces(&dev->ctrl); 2600 nvme_free_tagset(dev); 2601 } else { 2602 nvme_start_queues(&dev->ctrl); 2603 nvme_wait_freeze(&dev->ctrl); 2604 nvme_dev_add(dev); 2605 nvme_unfreeze(&dev->ctrl); 2606 } 2607 2608 /* 2609 * If only admin queue live, keep it to do further investigation or 2610 * recovery. 2611 */ 2612 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2613 dev_warn(dev->ctrl.device, 2614 "failed to mark controller live state\n"); 2615 result = -ENODEV; 2616 goto out; 2617 } 2618 2619 nvme_start_ctrl(&dev->ctrl); 2620 return; 2621 2622 out_unlock: 2623 mutex_unlock(&dev->shutdown_lock); 2624 out: 2625 if (result) 2626 dev_warn(dev->ctrl.device, 2627 "Removing after probe failure status: %d\n", result); 2628 nvme_remove_dead_ctrl(dev); 2629 } 2630 2631 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2632 { 2633 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2634 struct pci_dev *pdev = to_pci_dev(dev->dev); 2635 2636 if (pci_get_drvdata(pdev)) 2637 device_release_driver(&pdev->dev); 2638 nvme_put_ctrl(&dev->ctrl); 2639 } 2640 2641 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2642 { 2643 *val = readl(to_nvme_dev(ctrl)->bar + off); 2644 return 0; 2645 } 2646 2647 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2648 { 2649 writel(val, to_nvme_dev(ctrl)->bar + off); 2650 return 0; 2651 } 2652 2653 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2654 { 2655 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2656 return 0; 2657 } 2658 2659 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2660 { 2661 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2662 2663 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2664 } 2665 2666 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2667 .name = "pcie", 2668 .module = THIS_MODULE, 2669 .flags = NVME_F_METADATA_SUPPORTED | 2670 NVME_F_PCI_P2PDMA, 2671 .reg_read32 = nvme_pci_reg_read32, 2672 .reg_write32 = nvme_pci_reg_write32, 2673 .reg_read64 = nvme_pci_reg_read64, 2674 .free_ctrl = nvme_pci_free_ctrl, 2675 .submit_async_event = nvme_pci_submit_async_event, 2676 .get_address = nvme_pci_get_address, 2677 }; 2678 2679 static int nvme_dev_map(struct nvme_dev *dev) 2680 { 2681 struct pci_dev *pdev = to_pci_dev(dev->dev); 2682 2683 if (pci_request_mem_regions(pdev, "nvme")) 2684 return -ENODEV; 2685 2686 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2687 goto release; 2688 2689 return 0; 2690 release: 2691 pci_release_mem_regions(pdev); 2692 return -ENODEV; 2693 } 2694 2695 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2696 { 2697 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2698 /* 2699 * Several Samsung devices seem to drop off the PCIe bus 2700 * randomly when APST is on and uses the deepest sleep state. 2701 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2702 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2703 * 950 PRO 256GB", but it seems to be restricted to two Dell 2704 * laptops. 2705 */ 2706 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2707 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2708 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2709 return NVME_QUIRK_NO_DEEPEST_PS; 2710 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2711 /* 2712 * Samsung SSD 960 EVO drops off the PCIe bus after system 2713 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2714 * within few minutes after bootup on a Coffee Lake board - 2715 * ASUS PRIME Z370-A 2716 */ 2717 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2718 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2719 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2720 return NVME_QUIRK_NO_APST; 2721 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2722 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2723 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2724 /* 2725 * Forcing to use host managed nvme power settings for 2726 * lowest idle power with quick resume latency on 2727 * Samsung and Toshiba SSDs based on suspend behavior 2728 * on Coffee Lake board for LENOVO C640 2729 */ 2730 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2731 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2732 return NVME_QUIRK_SIMPLE_SUSPEND; 2733 } 2734 2735 return 0; 2736 } 2737 2738 static void nvme_async_probe(void *data, async_cookie_t cookie) 2739 { 2740 struct nvme_dev *dev = data; 2741 2742 flush_work(&dev->ctrl.reset_work); 2743 flush_work(&dev->ctrl.scan_work); 2744 nvme_put_ctrl(&dev->ctrl); 2745 } 2746 2747 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2748 { 2749 int node, result = -ENOMEM; 2750 struct nvme_dev *dev; 2751 unsigned long quirks = id->driver_data; 2752 size_t alloc_size; 2753 2754 node = dev_to_node(&pdev->dev); 2755 if (node == NUMA_NO_NODE) 2756 set_dev_node(&pdev->dev, first_memory_node); 2757 2758 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2759 if (!dev) 2760 return -ENOMEM; 2761 2762 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue), 2763 GFP_KERNEL, node); 2764 if (!dev->queues) 2765 goto free; 2766 2767 dev->dev = get_device(&pdev->dev); 2768 pci_set_drvdata(pdev, dev); 2769 2770 result = nvme_dev_map(dev); 2771 if (result) 2772 goto put_pci; 2773 2774 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2775 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2776 mutex_init(&dev->shutdown_lock); 2777 2778 result = nvme_setup_prp_pools(dev); 2779 if (result) 2780 goto unmap; 2781 2782 quirks |= check_vendor_combination_bug(pdev); 2783 2784 /* 2785 * Double check that our mempool alloc size will cover the biggest 2786 * command we support. 2787 */ 2788 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, 2789 NVME_MAX_SEGS, true); 2790 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2791 2792 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2793 mempool_kfree, 2794 (void *) alloc_size, 2795 GFP_KERNEL, node); 2796 if (!dev->iod_mempool) { 2797 result = -ENOMEM; 2798 goto release_pools; 2799 } 2800 2801 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2802 quirks); 2803 if (result) 2804 goto release_mempool; 2805 2806 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2807 2808 nvme_reset_ctrl(&dev->ctrl); 2809 async_schedule(nvme_async_probe, dev); 2810 2811 return 0; 2812 2813 release_mempool: 2814 mempool_destroy(dev->iod_mempool); 2815 release_pools: 2816 nvme_release_prp_pools(dev); 2817 unmap: 2818 nvme_dev_unmap(dev); 2819 put_pci: 2820 put_device(dev->dev); 2821 free: 2822 kfree(dev->queues); 2823 kfree(dev); 2824 return result; 2825 } 2826 2827 static void nvme_reset_prepare(struct pci_dev *pdev) 2828 { 2829 struct nvme_dev *dev = pci_get_drvdata(pdev); 2830 2831 /* 2832 * We don't need to check the return value from waiting for the reset 2833 * state as pci_dev device lock is held, making it impossible to race 2834 * with ->remove(). 2835 */ 2836 nvme_disable_prepare_reset(dev, false); 2837 nvme_sync_queues(&dev->ctrl); 2838 } 2839 2840 static void nvme_reset_done(struct pci_dev *pdev) 2841 { 2842 struct nvme_dev *dev = pci_get_drvdata(pdev); 2843 2844 if (!nvme_try_sched_reset(&dev->ctrl)) 2845 flush_work(&dev->ctrl.reset_work); 2846 } 2847 2848 static void nvme_shutdown(struct pci_dev *pdev) 2849 { 2850 struct nvme_dev *dev = pci_get_drvdata(pdev); 2851 nvme_disable_prepare_reset(dev, true); 2852 } 2853 2854 /* 2855 * The driver's remove may be called on a device in a partially initialized 2856 * state. This function must not have any dependencies on the device state in 2857 * order to proceed. 2858 */ 2859 static void nvme_remove(struct pci_dev *pdev) 2860 { 2861 struct nvme_dev *dev = pci_get_drvdata(pdev); 2862 2863 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2864 pci_set_drvdata(pdev, NULL); 2865 2866 if (!pci_device_is_present(pdev)) { 2867 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2868 nvme_dev_disable(dev, true); 2869 nvme_dev_remove_admin(dev); 2870 } 2871 2872 flush_work(&dev->ctrl.reset_work); 2873 nvme_stop_ctrl(&dev->ctrl); 2874 nvme_remove_namespaces(&dev->ctrl); 2875 nvme_dev_disable(dev, true); 2876 nvme_release_cmb(dev); 2877 nvme_free_host_mem(dev); 2878 nvme_dev_remove_admin(dev); 2879 nvme_free_queues(dev, 0); 2880 nvme_release_prp_pools(dev); 2881 nvme_dev_unmap(dev); 2882 nvme_uninit_ctrl(&dev->ctrl); 2883 } 2884 2885 #ifdef CONFIG_PM_SLEEP 2886 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2887 { 2888 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2889 } 2890 2891 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 2892 { 2893 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 2894 } 2895 2896 static int nvme_resume(struct device *dev) 2897 { 2898 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2899 struct nvme_ctrl *ctrl = &ndev->ctrl; 2900 2901 if (ndev->last_ps == U32_MAX || 2902 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 2903 return nvme_try_sched_reset(&ndev->ctrl); 2904 return 0; 2905 } 2906 2907 static int nvme_suspend(struct device *dev) 2908 { 2909 struct pci_dev *pdev = to_pci_dev(dev); 2910 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2911 struct nvme_ctrl *ctrl = &ndev->ctrl; 2912 int ret = -EBUSY; 2913 2914 ndev->last_ps = U32_MAX; 2915 2916 /* 2917 * The platform does not remove power for a kernel managed suspend so 2918 * use host managed nvme power settings for lowest idle power if 2919 * possible. This should have quicker resume latency than a full device 2920 * shutdown. But if the firmware is involved after the suspend or the 2921 * device does not support any non-default power states, shut down the 2922 * device fully. 2923 * 2924 * If ASPM is not enabled for the device, shut down the device and allow 2925 * the PCI bus layer to put it into D3 in order to take the PCIe link 2926 * down, so as to allow the platform to achieve its minimum low-power 2927 * state (which may not be possible if the link is up). 2928 */ 2929 if (pm_suspend_via_firmware() || !ctrl->npss || 2930 !pcie_aspm_enabled(pdev) || 2931 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 2932 return nvme_disable_prepare_reset(ndev, true); 2933 2934 nvme_start_freeze(ctrl); 2935 nvme_wait_freeze(ctrl); 2936 nvme_sync_queues(ctrl); 2937 2938 if (ctrl->state != NVME_CTRL_LIVE) 2939 goto unfreeze; 2940 2941 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 2942 if (ret < 0) 2943 goto unfreeze; 2944 2945 /* 2946 * A saved state prevents pci pm from generically controlling the 2947 * device's power. If we're using protocol specific settings, we don't 2948 * want pci interfering. 2949 */ 2950 pci_save_state(pdev); 2951 2952 ret = nvme_set_power_state(ctrl, ctrl->npss); 2953 if (ret < 0) 2954 goto unfreeze; 2955 2956 if (ret) { 2957 /* discard the saved state */ 2958 pci_load_saved_state(pdev, NULL); 2959 2960 /* 2961 * Clearing npss forces a controller reset on resume. The 2962 * correct value will be rediscovered then. 2963 */ 2964 ret = nvme_disable_prepare_reset(ndev, true); 2965 ctrl->npss = 0; 2966 } 2967 unfreeze: 2968 nvme_unfreeze(ctrl); 2969 return ret; 2970 } 2971 2972 static int nvme_simple_suspend(struct device *dev) 2973 { 2974 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2975 return nvme_disable_prepare_reset(ndev, true); 2976 } 2977 2978 static int nvme_simple_resume(struct device *dev) 2979 { 2980 struct pci_dev *pdev = to_pci_dev(dev); 2981 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2982 2983 return nvme_try_sched_reset(&ndev->ctrl); 2984 } 2985 2986 static const struct dev_pm_ops nvme_dev_pm_ops = { 2987 .suspend = nvme_suspend, 2988 .resume = nvme_resume, 2989 .freeze = nvme_simple_suspend, 2990 .thaw = nvme_simple_resume, 2991 .poweroff = nvme_simple_suspend, 2992 .restore = nvme_simple_resume, 2993 }; 2994 #endif /* CONFIG_PM_SLEEP */ 2995 2996 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2997 pci_channel_state_t state) 2998 { 2999 struct nvme_dev *dev = pci_get_drvdata(pdev); 3000 3001 /* 3002 * A frozen channel requires a reset. When detected, this method will 3003 * shutdown the controller to quiesce. The controller will be restarted 3004 * after the slot reset through driver's slot_reset callback. 3005 */ 3006 switch (state) { 3007 case pci_channel_io_normal: 3008 return PCI_ERS_RESULT_CAN_RECOVER; 3009 case pci_channel_io_frozen: 3010 dev_warn(dev->ctrl.device, 3011 "frozen state error detected, reset controller\n"); 3012 nvme_dev_disable(dev, false); 3013 return PCI_ERS_RESULT_NEED_RESET; 3014 case pci_channel_io_perm_failure: 3015 dev_warn(dev->ctrl.device, 3016 "failure state error detected, request disconnect\n"); 3017 return PCI_ERS_RESULT_DISCONNECT; 3018 } 3019 return PCI_ERS_RESULT_NEED_RESET; 3020 } 3021 3022 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3023 { 3024 struct nvme_dev *dev = pci_get_drvdata(pdev); 3025 3026 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3027 pci_restore_state(pdev); 3028 nvme_reset_ctrl(&dev->ctrl); 3029 return PCI_ERS_RESULT_RECOVERED; 3030 } 3031 3032 static void nvme_error_resume(struct pci_dev *pdev) 3033 { 3034 struct nvme_dev *dev = pci_get_drvdata(pdev); 3035 3036 flush_work(&dev->ctrl.reset_work); 3037 } 3038 3039 static const struct pci_error_handlers nvme_err_handler = { 3040 .error_detected = nvme_error_detected, 3041 .slot_reset = nvme_slot_reset, 3042 .resume = nvme_error_resume, 3043 .reset_prepare = nvme_reset_prepare, 3044 .reset_done = nvme_reset_done, 3045 }; 3046 3047 static const struct pci_device_id nvme_id_table[] = { 3048 { PCI_VDEVICE(INTEL, 0x0953), 3049 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3050 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3051 { PCI_VDEVICE(INTEL, 0x0a53), 3052 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3053 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3054 { PCI_VDEVICE(INTEL, 0x0a54), 3055 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3056 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3057 { PCI_VDEVICE(INTEL, 0x0a55), 3058 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3059 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3060 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3061 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3062 NVME_QUIRK_MEDIUM_PRIO_SQ | 3063 NVME_QUIRK_NO_TEMP_THRESH_CHANGE }, 3064 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3065 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3066 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3067 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3068 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3069 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3070 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3071 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3072 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3073 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3074 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3075 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3076 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3077 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3078 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3079 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3080 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3081 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3082 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3083 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3084 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3085 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3086 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3087 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3088 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3089 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3090 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3091 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3092 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3093 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3094 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3095 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3096 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3097 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3098 NVME_QUIRK_128_BYTES_SQES | 3099 NVME_QUIRK_SHARED_TAGS }, 3100 { 0, } 3101 }; 3102 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3103 3104 static struct pci_driver nvme_driver = { 3105 .name = "nvme", 3106 .id_table = nvme_id_table, 3107 .probe = nvme_probe, 3108 .remove = nvme_remove, 3109 .shutdown = nvme_shutdown, 3110 #ifdef CONFIG_PM_SLEEP 3111 .driver = { 3112 .pm = &nvme_dev_pm_ops, 3113 }, 3114 #endif 3115 .sriov_configure = pci_sriov_configure_simple, 3116 .err_handler = &nvme_err_handler, 3117 }; 3118 3119 static int __init nvme_init(void) 3120 { 3121 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3122 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3123 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3124 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3125 3126 write_queues = min(write_queues, num_possible_cpus()); 3127 poll_queues = min(poll_queues, num_possible_cpus()); 3128 return pci_register_driver(&nvme_driver); 3129 } 3130 3131 static void __exit nvme_exit(void) 3132 { 3133 pci_unregister_driver(&nvme_driver); 3134 flush_workqueue(nvme_wq); 3135 } 3136 3137 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3138 MODULE_LICENSE("GPL"); 3139 MODULE_VERSION("1.0"); 3140 module_init(nvme_init); 3141 module_exit(nvme_exit); 3142