1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/dmi.h> 21 #include <linux/init.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/mutex.h> 27 #include <linux/pci.h> 28 #include <linux/poison.h> 29 #include <linux/t10-pi.h> 30 #include <linux/timer.h> 31 #include <linux/types.h> 32 #include <linux/io-64-nonatomic-lo-hi.h> 33 #include <asm/unaligned.h> 34 #include <linux/sed-opal.h> 35 36 #include "nvme.h" 37 38 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 39 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 40 41 /* 42 * We handle AEN commands ourselves and don't even let the 43 * block layer know about them. 44 */ 45 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 46 47 static int use_threaded_interrupts; 48 module_param(use_threaded_interrupts, int, 0); 49 50 static bool use_cmb_sqes = true; 51 module_param(use_cmb_sqes, bool, 0644); 52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 53 54 static unsigned int max_host_mem_size_mb = 128; 55 module_param(max_host_mem_size_mb, uint, 0444); 56 MODULE_PARM_DESC(max_host_mem_size_mb, 57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 58 59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 60 static const struct kernel_param_ops io_queue_depth_ops = { 61 .set = io_queue_depth_set, 62 .get = param_get_int, 63 }; 64 65 static int io_queue_depth = 1024; 66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 68 69 struct nvme_dev; 70 struct nvme_queue; 71 72 static void nvme_process_cq(struct nvme_queue *nvmeq); 73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 74 75 /* 76 * Represents an NVM Express device. Each nvme_dev is a PCI function. 77 */ 78 struct nvme_dev { 79 struct nvme_queue **queues; 80 struct blk_mq_tag_set tagset; 81 struct blk_mq_tag_set admin_tagset; 82 u32 __iomem *dbs; 83 struct device *dev; 84 struct dma_pool *prp_page_pool; 85 struct dma_pool *prp_small_pool; 86 unsigned online_queues; 87 unsigned max_qid; 88 int q_depth; 89 u32 db_stride; 90 void __iomem *bar; 91 unsigned long bar_mapped_size; 92 struct work_struct remove_work; 93 struct mutex shutdown_lock; 94 bool subsystem; 95 void __iomem *cmb; 96 dma_addr_t cmb_dma_addr; 97 u64 cmb_size; 98 u32 cmbsz; 99 u32 cmbloc; 100 struct nvme_ctrl ctrl; 101 struct completion ioq_wait; 102 103 /* shadow doorbell buffer support: */ 104 u32 *dbbuf_dbs; 105 dma_addr_t dbbuf_dbs_dma_addr; 106 u32 *dbbuf_eis; 107 dma_addr_t dbbuf_eis_dma_addr; 108 109 /* host memory buffer support: */ 110 u64 host_mem_size; 111 u32 nr_host_mem_descs; 112 struct nvme_host_mem_buf_desc *host_mem_descs; 113 void **host_mem_desc_bufs; 114 }; 115 116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 117 { 118 int n = 0, ret; 119 120 ret = kstrtoint(val, 10, &n); 121 if (ret != 0 || n < 2) 122 return -EINVAL; 123 124 return param_set_int(val, kp); 125 } 126 127 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 128 { 129 return qid * 2 * stride; 130 } 131 132 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 133 { 134 return (qid * 2 + 1) * stride; 135 } 136 137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 138 { 139 return container_of(ctrl, struct nvme_dev, ctrl); 140 } 141 142 /* 143 * An NVM Express queue. Each device has at least two (one for admin 144 * commands and one for I/O commands). 145 */ 146 struct nvme_queue { 147 struct device *q_dmadev; 148 struct nvme_dev *dev; 149 spinlock_t q_lock; 150 struct nvme_command *sq_cmds; 151 struct nvme_command __iomem *sq_cmds_io; 152 volatile struct nvme_completion *cqes; 153 struct blk_mq_tags **tags; 154 dma_addr_t sq_dma_addr; 155 dma_addr_t cq_dma_addr; 156 u32 __iomem *q_db; 157 u16 q_depth; 158 s16 cq_vector; 159 u16 sq_tail; 160 u16 cq_head; 161 u16 qid; 162 u8 cq_phase; 163 u8 cqe_seen; 164 u32 *dbbuf_sq_db; 165 u32 *dbbuf_cq_db; 166 u32 *dbbuf_sq_ei; 167 u32 *dbbuf_cq_ei; 168 }; 169 170 /* 171 * The nvme_iod describes the data in an I/O, including the list of PRP 172 * entries. You can't see it in this data structure because C doesn't let 173 * me express that. Use nvme_init_iod to ensure there's enough space 174 * allocated to store the PRP list. 175 */ 176 struct nvme_iod { 177 struct nvme_request req; 178 struct nvme_queue *nvmeq; 179 int aborted; 180 int npages; /* In the PRP list. 0 means small pool in use */ 181 int nents; /* Used in scatterlist */ 182 int length; /* Of data, in bytes */ 183 dma_addr_t first_dma; 184 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 185 struct scatterlist *sg; 186 struct scatterlist inline_sg[0]; 187 }; 188 189 /* 190 * Check we didin't inadvertently grow the command struct 191 */ 192 static inline void _nvme_check_size(void) 193 { 194 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 195 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 196 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 197 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 198 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 199 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 200 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 201 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 202 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 203 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 204 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 205 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 206 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 207 } 208 209 static inline unsigned int nvme_dbbuf_size(u32 stride) 210 { 211 return ((num_possible_cpus() + 1) * 8 * stride); 212 } 213 214 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 215 { 216 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 217 218 if (dev->dbbuf_dbs) 219 return 0; 220 221 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 222 &dev->dbbuf_dbs_dma_addr, 223 GFP_KERNEL); 224 if (!dev->dbbuf_dbs) 225 return -ENOMEM; 226 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 227 &dev->dbbuf_eis_dma_addr, 228 GFP_KERNEL); 229 if (!dev->dbbuf_eis) { 230 dma_free_coherent(dev->dev, mem_size, 231 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 232 dev->dbbuf_dbs = NULL; 233 return -ENOMEM; 234 } 235 236 return 0; 237 } 238 239 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 240 { 241 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 242 243 if (dev->dbbuf_dbs) { 244 dma_free_coherent(dev->dev, mem_size, 245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 246 dev->dbbuf_dbs = NULL; 247 } 248 if (dev->dbbuf_eis) { 249 dma_free_coherent(dev->dev, mem_size, 250 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 251 dev->dbbuf_eis = NULL; 252 } 253 } 254 255 static void nvme_dbbuf_init(struct nvme_dev *dev, 256 struct nvme_queue *nvmeq, int qid) 257 { 258 if (!dev->dbbuf_dbs || !qid) 259 return; 260 261 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 262 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 263 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 264 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 265 } 266 267 static void nvme_dbbuf_set(struct nvme_dev *dev) 268 { 269 struct nvme_command c; 270 271 if (!dev->dbbuf_dbs) 272 return; 273 274 memset(&c, 0, sizeof(c)); 275 c.dbbuf.opcode = nvme_admin_dbbuf; 276 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 277 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 278 279 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 280 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 281 /* Free memory and continue on */ 282 nvme_dbbuf_dma_free(dev); 283 } 284 } 285 286 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 287 { 288 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 289 } 290 291 /* Update dbbuf and return true if an MMIO is required */ 292 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 293 volatile u32 *dbbuf_ei) 294 { 295 if (dbbuf_db) { 296 u16 old_value; 297 298 /* 299 * Ensure that the queue is written before updating 300 * the doorbell in memory 301 */ 302 wmb(); 303 304 old_value = *dbbuf_db; 305 *dbbuf_db = value; 306 307 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 308 return false; 309 } 310 311 return true; 312 } 313 314 /* 315 * Max size of iod being embedded in the request payload 316 */ 317 #define NVME_INT_PAGES 2 318 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 319 320 /* 321 * Will slightly overestimate the number of pages needed. This is OK 322 * as it only leads to a small amount of wasted memory for the lifetime of 323 * the I/O. 324 */ 325 static int nvme_npages(unsigned size, struct nvme_dev *dev) 326 { 327 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 328 dev->ctrl.page_size); 329 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 330 } 331 332 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 333 unsigned int size, unsigned int nseg) 334 { 335 return sizeof(__le64 *) * nvme_npages(size, dev) + 336 sizeof(struct scatterlist) * nseg; 337 } 338 339 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 340 { 341 return sizeof(struct nvme_iod) + 342 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 343 } 344 345 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 346 unsigned int hctx_idx) 347 { 348 struct nvme_dev *dev = data; 349 struct nvme_queue *nvmeq = dev->queues[0]; 350 351 WARN_ON(hctx_idx != 0); 352 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 353 WARN_ON(nvmeq->tags); 354 355 hctx->driver_data = nvmeq; 356 nvmeq->tags = &dev->admin_tagset.tags[0]; 357 return 0; 358 } 359 360 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 361 { 362 struct nvme_queue *nvmeq = hctx->driver_data; 363 364 nvmeq->tags = NULL; 365 } 366 367 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 368 unsigned int hctx_idx) 369 { 370 struct nvme_dev *dev = data; 371 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 372 373 if (!nvmeq->tags) 374 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 375 376 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 377 hctx->driver_data = nvmeq; 378 return 0; 379 } 380 381 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 382 unsigned int hctx_idx, unsigned int numa_node) 383 { 384 struct nvme_dev *dev = set->driver_data; 385 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 386 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 387 struct nvme_queue *nvmeq = dev->queues[queue_idx]; 388 389 BUG_ON(!nvmeq); 390 iod->nvmeq = nvmeq; 391 return 0; 392 } 393 394 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 395 { 396 struct nvme_dev *dev = set->driver_data; 397 398 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 399 } 400 401 /** 402 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 403 * @nvmeq: The queue to use 404 * @cmd: The command to send 405 * 406 * Safe to use from interrupt context 407 */ 408 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 409 struct nvme_command *cmd) 410 { 411 u16 tail = nvmeq->sq_tail; 412 413 if (nvmeq->sq_cmds_io) 414 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 415 else 416 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 417 418 if (++tail == nvmeq->q_depth) 419 tail = 0; 420 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db, 421 nvmeq->dbbuf_sq_ei)) 422 writel(tail, nvmeq->q_db); 423 nvmeq->sq_tail = tail; 424 } 425 426 static __le64 **iod_list(struct request *req) 427 { 428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 429 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 430 } 431 432 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev) 433 { 434 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 435 int nseg = blk_rq_nr_phys_segments(rq); 436 unsigned int size = blk_rq_payload_bytes(rq); 437 438 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 439 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 440 if (!iod->sg) 441 return BLK_STS_RESOURCE; 442 } else { 443 iod->sg = iod->inline_sg; 444 } 445 446 iod->aborted = 0; 447 iod->npages = -1; 448 iod->nents = 0; 449 iod->length = size; 450 451 return BLK_STS_OK; 452 } 453 454 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 455 { 456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 457 const int last_prp = dev->ctrl.page_size / 8 - 1; 458 int i; 459 __le64 **list = iod_list(req); 460 dma_addr_t prp_dma = iod->first_dma; 461 462 if (iod->npages == 0) 463 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 464 for (i = 0; i < iod->npages; i++) { 465 __le64 *prp_list = list[i]; 466 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 467 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 468 prp_dma = next_prp_dma; 469 } 470 471 if (iod->sg != iod->inline_sg) 472 kfree(iod->sg); 473 } 474 475 #ifdef CONFIG_BLK_DEV_INTEGRITY 476 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 477 { 478 if (be32_to_cpu(pi->ref_tag) == v) 479 pi->ref_tag = cpu_to_be32(p); 480 } 481 482 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 483 { 484 if (be32_to_cpu(pi->ref_tag) == p) 485 pi->ref_tag = cpu_to_be32(v); 486 } 487 488 /** 489 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 490 * 491 * The virtual start sector is the one that was originally submitted by the 492 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 493 * start sector may be different. Remap protection information to match the 494 * physical LBA on writes, and back to the original seed on reads. 495 * 496 * Type 0 and 3 do not have a ref tag, so no remapping required. 497 */ 498 static void nvme_dif_remap(struct request *req, 499 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 500 { 501 struct nvme_ns *ns = req->rq_disk->private_data; 502 struct bio_integrity_payload *bip; 503 struct t10_pi_tuple *pi; 504 void *p, *pmap; 505 u32 i, nlb, ts, phys, virt; 506 507 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 508 return; 509 510 bip = bio_integrity(req->bio); 511 if (!bip) 512 return; 513 514 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 515 516 p = pmap; 517 virt = bip_get_seed(bip); 518 phys = nvme_block_nr(ns, blk_rq_pos(req)); 519 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 520 ts = ns->disk->queue->integrity.tuple_size; 521 522 for (i = 0; i < nlb; i++, virt++, phys++) { 523 pi = (struct t10_pi_tuple *)p; 524 dif_swap(phys, virt, pi); 525 p += ts; 526 } 527 kunmap_atomic(pmap); 528 } 529 #else /* CONFIG_BLK_DEV_INTEGRITY */ 530 static void nvme_dif_remap(struct request *req, 531 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 532 { 533 } 534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 535 { 536 } 537 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 538 { 539 } 540 #endif 541 542 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req) 543 { 544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 545 struct dma_pool *pool; 546 int length = blk_rq_payload_bytes(req); 547 struct scatterlist *sg = iod->sg; 548 int dma_len = sg_dma_len(sg); 549 u64 dma_addr = sg_dma_address(sg); 550 u32 page_size = dev->ctrl.page_size; 551 int offset = dma_addr & (page_size - 1); 552 __le64 *prp_list; 553 __le64 **list = iod_list(req); 554 dma_addr_t prp_dma; 555 int nprps, i; 556 557 length -= (page_size - offset); 558 if (length <= 0) 559 return BLK_STS_OK; 560 561 dma_len -= (page_size - offset); 562 if (dma_len) { 563 dma_addr += (page_size - offset); 564 } else { 565 sg = sg_next(sg); 566 dma_addr = sg_dma_address(sg); 567 dma_len = sg_dma_len(sg); 568 } 569 570 if (length <= page_size) { 571 iod->first_dma = dma_addr; 572 return BLK_STS_OK; 573 } 574 575 nprps = DIV_ROUND_UP(length, page_size); 576 if (nprps <= (256 / 8)) { 577 pool = dev->prp_small_pool; 578 iod->npages = 0; 579 } else { 580 pool = dev->prp_page_pool; 581 iod->npages = 1; 582 } 583 584 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 585 if (!prp_list) { 586 iod->first_dma = dma_addr; 587 iod->npages = -1; 588 return BLK_STS_RESOURCE; 589 } 590 list[0] = prp_list; 591 iod->first_dma = prp_dma; 592 i = 0; 593 for (;;) { 594 if (i == page_size >> 3) { 595 __le64 *old_prp_list = prp_list; 596 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 597 if (!prp_list) 598 return BLK_STS_RESOURCE; 599 list[iod->npages++] = prp_list; 600 prp_list[0] = old_prp_list[i - 1]; 601 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 602 i = 1; 603 } 604 prp_list[i++] = cpu_to_le64(dma_addr); 605 dma_len -= page_size; 606 dma_addr += page_size; 607 length -= page_size; 608 if (length <= 0) 609 break; 610 if (dma_len > 0) 611 continue; 612 if (unlikely(dma_len < 0)) 613 goto bad_sgl; 614 sg = sg_next(sg); 615 dma_addr = sg_dma_address(sg); 616 dma_len = sg_dma_len(sg); 617 } 618 619 return BLK_STS_OK; 620 621 bad_sgl: 622 if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n", 623 blk_rq_payload_bytes(req), iod->nents)) { 624 for_each_sg(iod->sg, sg, iod->nents, i) { 625 dma_addr_t phys = sg_phys(sg); 626 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 627 "dma_address:%pad dma_length:%d\n", i, &phys, 628 sg->offset, sg->length, 629 &sg_dma_address(sg), 630 sg_dma_len(sg)); 631 } 632 } 633 return BLK_STS_IOERR; 634 635 } 636 637 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 638 struct nvme_command *cmnd) 639 { 640 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 641 struct request_queue *q = req->q; 642 enum dma_data_direction dma_dir = rq_data_dir(req) ? 643 DMA_TO_DEVICE : DMA_FROM_DEVICE; 644 blk_status_t ret = BLK_STS_IOERR; 645 646 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 647 iod->nents = blk_rq_map_sg(q, req, iod->sg); 648 if (!iod->nents) 649 goto out; 650 651 ret = BLK_STS_RESOURCE; 652 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 653 DMA_ATTR_NO_WARN)) 654 goto out; 655 656 ret = nvme_setup_prps(dev, req); 657 if (ret != BLK_STS_OK) 658 goto out_unmap; 659 660 ret = BLK_STS_IOERR; 661 if (blk_integrity_rq(req)) { 662 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 663 goto out_unmap; 664 665 sg_init_table(&iod->meta_sg, 1); 666 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 667 goto out_unmap; 668 669 if (rq_data_dir(req)) 670 nvme_dif_remap(req, nvme_dif_prep); 671 672 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 673 goto out_unmap; 674 } 675 676 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 677 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 678 if (blk_integrity_rq(req)) 679 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 680 return BLK_STS_OK; 681 682 out_unmap: 683 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 684 out: 685 return ret; 686 } 687 688 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 689 { 690 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 691 enum dma_data_direction dma_dir = rq_data_dir(req) ? 692 DMA_TO_DEVICE : DMA_FROM_DEVICE; 693 694 if (iod->nents) { 695 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 696 if (blk_integrity_rq(req)) { 697 if (!rq_data_dir(req)) 698 nvme_dif_remap(req, nvme_dif_complete); 699 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 700 } 701 } 702 703 nvme_cleanup_cmd(req); 704 nvme_free_iod(dev, req); 705 } 706 707 /* 708 * NOTE: ns is NULL when called on the admin queue. 709 */ 710 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 711 const struct blk_mq_queue_data *bd) 712 { 713 struct nvme_ns *ns = hctx->queue->queuedata; 714 struct nvme_queue *nvmeq = hctx->driver_data; 715 struct nvme_dev *dev = nvmeq->dev; 716 struct request *req = bd->rq; 717 struct nvme_command cmnd; 718 blk_status_t ret; 719 720 ret = nvme_setup_cmd(ns, req, &cmnd); 721 if (ret) 722 return ret; 723 724 ret = nvme_init_iod(req, dev); 725 if (ret) 726 goto out_free_cmd; 727 728 if (blk_rq_nr_phys_segments(req)) { 729 ret = nvme_map_data(dev, req, &cmnd); 730 if (ret) 731 goto out_cleanup_iod; 732 } 733 734 blk_mq_start_request(req); 735 736 spin_lock_irq(&nvmeq->q_lock); 737 if (unlikely(nvmeq->cq_vector < 0)) { 738 ret = BLK_STS_IOERR; 739 spin_unlock_irq(&nvmeq->q_lock); 740 goto out_cleanup_iod; 741 } 742 __nvme_submit_cmd(nvmeq, &cmnd); 743 nvme_process_cq(nvmeq); 744 spin_unlock_irq(&nvmeq->q_lock); 745 return BLK_STS_OK; 746 out_cleanup_iod: 747 nvme_free_iod(dev, req); 748 out_free_cmd: 749 nvme_cleanup_cmd(req); 750 return ret; 751 } 752 753 static void nvme_pci_complete_rq(struct request *req) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 nvme_unmap_data(iod->nvmeq->dev, req); 758 nvme_complete_rq(req); 759 } 760 761 /* We read the CQE phase first to check if the rest of the entry is valid */ 762 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 763 u16 phase) 764 { 765 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 766 } 767 768 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 769 { 770 u16 head = nvmeq->cq_head; 771 772 if (likely(nvmeq->cq_vector >= 0)) { 773 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 774 nvmeq->dbbuf_cq_ei)) 775 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 776 } 777 } 778 779 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 780 struct nvme_completion *cqe) 781 { 782 struct request *req; 783 784 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 785 dev_warn(nvmeq->dev->ctrl.device, 786 "invalid id %d completed on queue %d\n", 787 cqe->command_id, le16_to_cpu(cqe->sq_id)); 788 return; 789 } 790 791 /* 792 * AEN requests are special as they don't time out and can 793 * survive any kind of queue freeze and often don't respond to 794 * aborts. We don't even bother to allocate a struct request 795 * for them but rather special case them here. 796 */ 797 if (unlikely(nvmeq->qid == 0 && 798 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) { 799 nvme_complete_async_event(&nvmeq->dev->ctrl, 800 cqe->status, &cqe->result); 801 return; 802 } 803 804 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); 805 nvme_end_request(req, cqe->status, cqe->result); 806 } 807 808 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq, 809 struct nvme_completion *cqe) 810 { 811 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 812 *cqe = nvmeq->cqes[nvmeq->cq_head]; 813 814 if (++nvmeq->cq_head == nvmeq->q_depth) { 815 nvmeq->cq_head = 0; 816 nvmeq->cq_phase = !nvmeq->cq_phase; 817 } 818 return true; 819 } 820 return false; 821 } 822 823 static void nvme_process_cq(struct nvme_queue *nvmeq) 824 { 825 struct nvme_completion cqe; 826 int consumed = 0; 827 828 while (nvme_read_cqe(nvmeq, &cqe)) { 829 nvme_handle_cqe(nvmeq, &cqe); 830 consumed++; 831 } 832 833 if (consumed) { 834 nvme_ring_cq_doorbell(nvmeq); 835 nvmeq->cqe_seen = 1; 836 } 837 } 838 839 static irqreturn_t nvme_irq(int irq, void *data) 840 { 841 irqreturn_t result; 842 struct nvme_queue *nvmeq = data; 843 spin_lock(&nvmeq->q_lock); 844 nvme_process_cq(nvmeq); 845 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 846 nvmeq->cqe_seen = 0; 847 spin_unlock(&nvmeq->q_lock); 848 return result; 849 } 850 851 static irqreturn_t nvme_irq_check(int irq, void *data) 852 { 853 struct nvme_queue *nvmeq = data; 854 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 855 return IRQ_WAKE_THREAD; 856 return IRQ_NONE; 857 } 858 859 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag) 860 { 861 struct nvme_completion cqe; 862 int found = 0, consumed = 0; 863 864 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 865 return 0; 866 867 spin_lock_irq(&nvmeq->q_lock); 868 while (nvme_read_cqe(nvmeq, &cqe)) { 869 nvme_handle_cqe(nvmeq, &cqe); 870 consumed++; 871 872 if (tag == cqe.command_id) { 873 found = 1; 874 break; 875 } 876 } 877 878 if (consumed) 879 nvme_ring_cq_doorbell(nvmeq); 880 spin_unlock_irq(&nvmeq->q_lock); 881 882 return found; 883 } 884 885 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 886 { 887 struct nvme_queue *nvmeq = hctx->driver_data; 888 889 return __nvme_poll(nvmeq, tag); 890 } 891 892 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 893 { 894 struct nvme_dev *dev = to_nvme_dev(ctrl); 895 struct nvme_queue *nvmeq = dev->queues[0]; 896 struct nvme_command c; 897 898 memset(&c, 0, sizeof(c)); 899 c.common.opcode = nvme_admin_async_event; 900 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 901 902 spin_lock_irq(&nvmeq->q_lock); 903 __nvme_submit_cmd(nvmeq, &c); 904 spin_unlock_irq(&nvmeq->q_lock); 905 } 906 907 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 908 { 909 struct nvme_command c; 910 911 memset(&c, 0, sizeof(c)); 912 c.delete_queue.opcode = opcode; 913 c.delete_queue.qid = cpu_to_le16(id); 914 915 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 916 } 917 918 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 919 struct nvme_queue *nvmeq) 920 { 921 struct nvme_command c; 922 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 923 924 /* 925 * Note: we (ab)use the fact the the prp fields survive if no data 926 * is attached to the request. 927 */ 928 memset(&c, 0, sizeof(c)); 929 c.create_cq.opcode = nvme_admin_create_cq; 930 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 931 c.create_cq.cqid = cpu_to_le16(qid); 932 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 933 c.create_cq.cq_flags = cpu_to_le16(flags); 934 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 935 936 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 937 } 938 939 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 940 struct nvme_queue *nvmeq) 941 { 942 struct nvme_command c; 943 int flags = NVME_QUEUE_PHYS_CONTIG; 944 945 /* 946 * Note: we (ab)use the fact the the prp fields survive if no data 947 * is attached to the request. 948 */ 949 memset(&c, 0, sizeof(c)); 950 c.create_sq.opcode = nvme_admin_create_sq; 951 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 952 c.create_sq.sqid = cpu_to_le16(qid); 953 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 954 c.create_sq.sq_flags = cpu_to_le16(flags); 955 c.create_sq.cqid = cpu_to_le16(qid); 956 957 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 958 } 959 960 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 961 { 962 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 963 } 964 965 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 966 { 967 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 968 } 969 970 static void abort_endio(struct request *req, blk_status_t error) 971 { 972 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 973 struct nvme_queue *nvmeq = iod->nvmeq; 974 975 dev_warn(nvmeq->dev->ctrl.device, 976 "Abort status: 0x%x", nvme_req(req)->status); 977 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 978 blk_mq_free_request(req); 979 } 980 981 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 982 { 983 984 /* If true, indicates loss of adapter communication, possibly by a 985 * NVMe Subsystem reset. 986 */ 987 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 988 989 /* If there is a reset ongoing, we shouldn't reset again. */ 990 if (dev->ctrl.state == NVME_CTRL_RESETTING) 991 return false; 992 993 /* We shouldn't reset unless the controller is on fatal error state 994 * _or_ if we lost the communication with it. 995 */ 996 if (!(csts & NVME_CSTS_CFS) && !nssro) 997 return false; 998 999 /* If PCI error recovery process is happening, we cannot reset or 1000 * the recovery mechanism will surely fail. 1001 */ 1002 if (pci_channel_offline(to_pci_dev(dev->dev))) 1003 return false; 1004 1005 return true; 1006 } 1007 1008 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1009 { 1010 /* Read a config register to help see what died. */ 1011 u16 pci_status; 1012 int result; 1013 1014 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1015 &pci_status); 1016 if (result == PCIBIOS_SUCCESSFUL) 1017 dev_warn(dev->ctrl.device, 1018 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1019 csts, pci_status); 1020 else 1021 dev_warn(dev->ctrl.device, 1022 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1023 csts, result); 1024 } 1025 1026 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1027 { 1028 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1029 struct nvme_queue *nvmeq = iod->nvmeq; 1030 struct nvme_dev *dev = nvmeq->dev; 1031 struct request *abort_req; 1032 struct nvme_command cmd; 1033 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1034 1035 /* 1036 * Reset immediately if the controller is failed 1037 */ 1038 if (nvme_should_reset(dev, csts)) { 1039 nvme_warn_reset(dev, csts); 1040 nvme_dev_disable(dev, false); 1041 nvme_reset_ctrl(&dev->ctrl); 1042 return BLK_EH_HANDLED; 1043 } 1044 1045 /* 1046 * Did we miss an interrupt? 1047 */ 1048 if (__nvme_poll(nvmeq, req->tag)) { 1049 dev_warn(dev->ctrl.device, 1050 "I/O %d QID %d timeout, completion polled\n", 1051 req->tag, nvmeq->qid); 1052 return BLK_EH_HANDLED; 1053 } 1054 1055 /* 1056 * Shutdown immediately if controller times out while starting. The 1057 * reset work will see the pci device disabled when it gets the forced 1058 * cancellation error. All outstanding requests are completed on 1059 * shutdown, so we return BLK_EH_HANDLED. 1060 */ 1061 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 1062 dev_warn(dev->ctrl.device, 1063 "I/O %d QID %d timeout, disable controller\n", 1064 req->tag, nvmeq->qid); 1065 nvme_dev_disable(dev, false); 1066 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1067 return BLK_EH_HANDLED; 1068 } 1069 1070 /* 1071 * Shutdown the controller immediately and schedule a reset if the 1072 * command was already aborted once before and still hasn't been 1073 * returned to the driver, or if this is the admin queue. 1074 */ 1075 if (!nvmeq->qid || iod->aborted) { 1076 dev_warn(dev->ctrl.device, 1077 "I/O %d QID %d timeout, reset controller\n", 1078 req->tag, nvmeq->qid); 1079 nvme_dev_disable(dev, false); 1080 nvme_reset_ctrl(&dev->ctrl); 1081 1082 /* 1083 * Mark the request as handled, since the inline shutdown 1084 * forces all outstanding requests to complete. 1085 */ 1086 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1087 return BLK_EH_HANDLED; 1088 } 1089 1090 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1091 atomic_inc(&dev->ctrl.abort_limit); 1092 return BLK_EH_RESET_TIMER; 1093 } 1094 iod->aborted = 1; 1095 1096 memset(&cmd, 0, sizeof(cmd)); 1097 cmd.abort.opcode = nvme_admin_abort_cmd; 1098 cmd.abort.cid = req->tag; 1099 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1100 1101 dev_warn(nvmeq->dev->ctrl.device, 1102 "I/O %d QID %d timeout, aborting\n", 1103 req->tag, nvmeq->qid); 1104 1105 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1106 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1107 if (IS_ERR(abort_req)) { 1108 atomic_inc(&dev->ctrl.abort_limit); 1109 return BLK_EH_RESET_TIMER; 1110 } 1111 1112 abort_req->timeout = ADMIN_TIMEOUT; 1113 abort_req->end_io_data = NULL; 1114 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1115 1116 /* 1117 * The aborted req will be completed on receiving the abort req. 1118 * We enable the timer again. If hit twice, it'll cause a device reset, 1119 * as the device then is in a faulty state. 1120 */ 1121 return BLK_EH_RESET_TIMER; 1122 } 1123 1124 static void nvme_free_queue(struct nvme_queue *nvmeq) 1125 { 1126 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1127 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1128 if (nvmeq->sq_cmds) 1129 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1130 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1131 kfree(nvmeq); 1132 } 1133 1134 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1135 { 1136 int i; 1137 1138 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1139 struct nvme_queue *nvmeq = dev->queues[i]; 1140 dev->ctrl.queue_count--; 1141 dev->queues[i] = NULL; 1142 nvme_free_queue(nvmeq); 1143 } 1144 } 1145 1146 /** 1147 * nvme_suspend_queue - put queue into suspended state 1148 * @nvmeq - queue to suspend 1149 */ 1150 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1151 { 1152 int vector; 1153 1154 spin_lock_irq(&nvmeq->q_lock); 1155 if (nvmeq->cq_vector == -1) { 1156 spin_unlock_irq(&nvmeq->q_lock); 1157 return 1; 1158 } 1159 vector = nvmeq->cq_vector; 1160 nvmeq->dev->online_queues--; 1161 nvmeq->cq_vector = -1; 1162 spin_unlock_irq(&nvmeq->q_lock); 1163 1164 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1165 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1166 1167 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq); 1168 1169 return 0; 1170 } 1171 1172 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1173 { 1174 struct nvme_queue *nvmeq = dev->queues[0]; 1175 1176 if (!nvmeq) 1177 return; 1178 if (nvme_suspend_queue(nvmeq)) 1179 return; 1180 1181 if (shutdown) 1182 nvme_shutdown_ctrl(&dev->ctrl); 1183 else 1184 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1185 1186 spin_lock_irq(&nvmeq->q_lock); 1187 nvme_process_cq(nvmeq); 1188 spin_unlock_irq(&nvmeq->q_lock); 1189 } 1190 1191 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1192 int entry_size) 1193 { 1194 int q_depth = dev->q_depth; 1195 unsigned q_size_aligned = roundup(q_depth * entry_size, 1196 dev->ctrl.page_size); 1197 1198 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1199 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1200 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1201 q_depth = div_u64(mem_per_q, entry_size); 1202 1203 /* 1204 * Ensure the reduced q_depth is above some threshold where it 1205 * would be better to map queues in system memory with the 1206 * original depth 1207 */ 1208 if (q_depth < 64) 1209 return -ENOMEM; 1210 } 1211 1212 return q_depth; 1213 } 1214 1215 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1216 int qid, int depth) 1217 { 1218 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1219 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1220 dev->ctrl.page_size); 1221 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1222 nvmeq->sq_cmds_io = dev->cmb + offset; 1223 } else { 1224 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1225 &nvmeq->sq_dma_addr, GFP_KERNEL); 1226 if (!nvmeq->sq_cmds) 1227 return -ENOMEM; 1228 } 1229 1230 return 0; 1231 } 1232 1233 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1234 int depth, int node) 1235 { 1236 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL, 1237 node); 1238 if (!nvmeq) 1239 return NULL; 1240 1241 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1242 &nvmeq->cq_dma_addr, GFP_KERNEL); 1243 if (!nvmeq->cqes) 1244 goto free_nvmeq; 1245 1246 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1247 goto free_cqdma; 1248 1249 nvmeq->q_dmadev = dev->dev; 1250 nvmeq->dev = dev; 1251 spin_lock_init(&nvmeq->q_lock); 1252 nvmeq->cq_head = 0; 1253 nvmeq->cq_phase = 1; 1254 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1255 nvmeq->q_depth = depth; 1256 nvmeq->qid = qid; 1257 nvmeq->cq_vector = -1; 1258 dev->queues[qid] = nvmeq; 1259 dev->ctrl.queue_count++; 1260 1261 return nvmeq; 1262 1263 free_cqdma: 1264 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1265 nvmeq->cq_dma_addr); 1266 free_nvmeq: 1267 kfree(nvmeq); 1268 return NULL; 1269 } 1270 1271 static int queue_request_irq(struct nvme_queue *nvmeq) 1272 { 1273 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1274 int nr = nvmeq->dev->ctrl.instance; 1275 1276 if (use_threaded_interrupts) { 1277 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1278 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1279 } else { 1280 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1281 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1282 } 1283 } 1284 1285 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1286 { 1287 struct nvme_dev *dev = nvmeq->dev; 1288 1289 spin_lock_irq(&nvmeq->q_lock); 1290 nvmeq->sq_tail = 0; 1291 nvmeq->cq_head = 0; 1292 nvmeq->cq_phase = 1; 1293 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1294 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1295 nvme_dbbuf_init(dev, nvmeq, qid); 1296 dev->online_queues++; 1297 spin_unlock_irq(&nvmeq->q_lock); 1298 } 1299 1300 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1301 { 1302 struct nvme_dev *dev = nvmeq->dev; 1303 int result; 1304 1305 nvmeq->cq_vector = qid - 1; 1306 result = adapter_alloc_cq(dev, qid, nvmeq); 1307 if (result < 0) 1308 return result; 1309 1310 result = adapter_alloc_sq(dev, qid, nvmeq); 1311 if (result < 0) 1312 goto release_cq; 1313 1314 result = queue_request_irq(nvmeq); 1315 if (result < 0) 1316 goto release_sq; 1317 1318 nvme_init_queue(nvmeq, qid); 1319 return result; 1320 1321 release_sq: 1322 adapter_delete_sq(dev, qid); 1323 release_cq: 1324 adapter_delete_cq(dev, qid); 1325 return result; 1326 } 1327 1328 static const struct blk_mq_ops nvme_mq_admin_ops = { 1329 .queue_rq = nvme_queue_rq, 1330 .complete = nvme_pci_complete_rq, 1331 .init_hctx = nvme_admin_init_hctx, 1332 .exit_hctx = nvme_admin_exit_hctx, 1333 .init_request = nvme_init_request, 1334 .timeout = nvme_timeout, 1335 }; 1336 1337 static const struct blk_mq_ops nvme_mq_ops = { 1338 .queue_rq = nvme_queue_rq, 1339 .complete = nvme_pci_complete_rq, 1340 .init_hctx = nvme_init_hctx, 1341 .init_request = nvme_init_request, 1342 .map_queues = nvme_pci_map_queues, 1343 .timeout = nvme_timeout, 1344 .poll = nvme_poll, 1345 }; 1346 1347 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1348 { 1349 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1350 /* 1351 * If the controller was reset during removal, it's possible 1352 * user requests may be waiting on a stopped queue. Start the 1353 * queue to flush these to completion. 1354 */ 1355 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1356 blk_cleanup_queue(dev->ctrl.admin_q); 1357 blk_mq_free_tag_set(&dev->admin_tagset); 1358 } 1359 } 1360 1361 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1362 { 1363 if (!dev->ctrl.admin_q) { 1364 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1365 dev->admin_tagset.nr_hw_queues = 1; 1366 1367 /* 1368 * Subtract one to leave an empty queue entry for 'Full Queue' 1369 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1370 */ 1371 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1372 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1373 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1374 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1375 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1376 dev->admin_tagset.driver_data = dev; 1377 1378 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1379 return -ENOMEM; 1380 1381 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1382 if (IS_ERR(dev->ctrl.admin_q)) { 1383 blk_mq_free_tag_set(&dev->admin_tagset); 1384 return -ENOMEM; 1385 } 1386 if (!blk_get_queue(dev->ctrl.admin_q)) { 1387 nvme_dev_remove_admin(dev); 1388 dev->ctrl.admin_q = NULL; 1389 return -ENODEV; 1390 } 1391 } else 1392 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1393 1394 return 0; 1395 } 1396 1397 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1398 { 1399 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1400 } 1401 1402 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1403 { 1404 struct pci_dev *pdev = to_pci_dev(dev->dev); 1405 1406 if (size <= dev->bar_mapped_size) 1407 return 0; 1408 if (size > pci_resource_len(pdev, 0)) 1409 return -ENOMEM; 1410 if (dev->bar) 1411 iounmap(dev->bar); 1412 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1413 if (!dev->bar) { 1414 dev->bar_mapped_size = 0; 1415 return -ENOMEM; 1416 } 1417 dev->bar_mapped_size = size; 1418 dev->dbs = dev->bar + NVME_REG_DBS; 1419 1420 return 0; 1421 } 1422 1423 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1424 { 1425 int result; 1426 u32 aqa; 1427 struct nvme_queue *nvmeq; 1428 1429 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1430 if (result < 0) 1431 return result; 1432 1433 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1434 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1435 1436 if (dev->subsystem && 1437 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1438 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1439 1440 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1441 if (result < 0) 1442 return result; 1443 1444 nvmeq = dev->queues[0]; 1445 if (!nvmeq) { 1446 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH, 1447 dev_to_node(dev->dev)); 1448 if (!nvmeq) 1449 return -ENOMEM; 1450 } 1451 1452 aqa = nvmeq->q_depth - 1; 1453 aqa |= aqa << 16; 1454 1455 writel(aqa, dev->bar + NVME_REG_AQA); 1456 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1457 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1458 1459 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); 1460 if (result) 1461 return result; 1462 1463 nvmeq->cq_vector = 0; 1464 result = queue_request_irq(nvmeq); 1465 if (result) { 1466 nvmeq->cq_vector = -1; 1467 return result; 1468 } 1469 1470 return result; 1471 } 1472 1473 static int nvme_create_io_queues(struct nvme_dev *dev) 1474 { 1475 unsigned i, max; 1476 int ret = 0; 1477 1478 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1479 /* vector == qid - 1, match nvme_create_queue */ 1480 if (!nvme_alloc_queue(dev, i, dev->q_depth, 1481 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) { 1482 ret = -ENOMEM; 1483 break; 1484 } 1485 } 1486 1487 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1488 for (i = dev->online_queues; i <= max; i++) { 1489 ret = nvme_create_queue(dev->queues[i], i); 1490 if (ret) 1491 break; 1492 } 1493 1494 /* 1495 * Ignore failing Create SQ/CQ commands, we can continue with less 1496 * than the desired aount of queues, and even a controller without 1497 * I/O queues an still be used to issue admin commands. This might 1498 * be useful to upgrade a buggy firmware for example. 1499 */ 1500 return ret >= 0 ? 0 : ret; 1501 } 1502 1503 static ssize_t nvme_cmb_show(struct device *dev, 1504 struct device_attribute *attr, 1505 char *buf) 1506 { 1507 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1508 1509 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1510 ndev->cmbloc, ndev->cmbsz); 1511 } 1512 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1513 1514 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1515 { 1516 u64 szu, size, offset; 1517 resource_size_t bar_size; 1518 struct pci_dev *pdev = to_pci_dev(dev->dev); 1519 void __iomem *cmb; 1520 dma_addr_t dma_addr; 1521 1522 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1523 if (!(NVME_CMB_SZ(dev->cmbsz))) 1524 return NULL; 1525 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1526 1527 if (!use_cmb_sqes) 1528 return NULL; 1529 1530 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1531 size = szu * NVME_CMB_SZ(dev->cmbsz); 1532 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1533 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1534 1535 if (offset > bar_size) 1536 return NULL; 1537 1538 /* 1539 * Controllers may support a CMB size larger than their BAR, 1540 * for example, due to being behind a bridge. Reduce the CMB to 1541 * the reported size of the BAR 1542 */ 1543 if (size > bar_size - offset) 1544 size = bar_size - offset; 1545 1546 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1547 cmb = ioremap_wc(dma_addr, size); 1548 if (!cmb) 1549 return NULL; 1550 1551 dev->cmb_dma_addr = dma_addr; 1552 dev->cmb_size = size; 1553 return cmb; 1554 } 1555 1556 static inline void nvme_release_cmb(struct nvme_dev *dev) 1557 { 1558 if (dev->cmb) { 1559 iounmap(dev->cmb); 1560 dev->cmb = NULL; 1561 if (dev->cmbsz) { 1562 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1563 &dev_attr_cmb.attr, NULL); 1564 dev->cmbsz = 0; 1565 } 1566 } 1567 } 1568 1569 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1570 { 1571 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs); 1572 struct nvme_command c; 1573 u64 dma_addr; 1574 int ret; 1575 1576 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len, 1577 DMA_TO_DEVICE); 1578 if (dma_mapping_error(dev->dev, dma_addr)) 1579 return -ENOMEM; 1580 1581 memset(&c, 0, sizeof(c)); 1582 c.features.opcode = nvme_admin_set_features; 1583 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1584 c.features.dword11 = cpu_to_le32(bits); 1585 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1586 ilog2(dev->ctrl.page_size)); 1587 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1588 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1589 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1590 1591 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1592 if (ret) { 1593 dev_warn(dev->ctrl.device, 1594 "failed to set host mem (err %d, flags %#x).\n", 1595 ret, bits); 1596 } 1597 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE); 1598 return ret; 1599 } 1600 1601 static void nvme_free_host_mem(struct nvme_dev *dev) 1602 { 1603 int i; 1604 1605 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1606 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1607 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1608 1609 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i], 1610 le64_to_cpu(desc->addr)); 1611 } 1612 1613 kfree(dev->host_mem_desc_bufs); 1614 dev->host_mem_desc_bufs = NULL; 1615 kfree(dev->host_mem_descs); 1616 dev->host_mem_descs = NULL; 1617 } 1618 1619 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1620 { 1621 struct nvme_host_mem_buf_desc *descs; 1622 u32 chunk_size, max_entries, len; 1623 int i = 0; 1624 void **bufs; 1625 u64 size = 0, tmp; 1626 1627 /* start big and work our way down */ 1628 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER); 1629 retry: 1630 tmp = (preferred + chunk_size - 1); 1631 do_div(tmp, chunk_size); 1632 max_entries = tmp; 1633 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL); 1634 if (!descs) 1635 goto out; 1636 1637 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1638 if (!bufs) 1639 goto out_free_descs; 1640 1641 for (size = 0; size < preferred; size += len) { 1642 dma_addr_t dma_addr; 1643 1644 len = min_t(u64, chunk_size, preferred - size); 1645 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1646 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1647 if (!bufs[i]) 1648 break; 1649 1650 descs[i].addr = cpu_to_le64(dma_addr); 1651 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1652 i++; 1653 } 1654 1655 if (!size || (min && size < min)) { 1656 dev_warn(dev->ctrl.device, 1657 "failed to allocate host memory buffer.\n"); 1658 goto out_free_bufs; 1659 } 1660 1661 dev_info(dev->ctrl.device, 1662 "allocated %lld MiB host memory buffer.\n", 1663 size >> ilog2(SZ_1M)); 1664 dev->nr_host_mem_descs = i; 1665 dev->host_mem_size = size; 1666 dev->host_mem_descs = descs; 1667 dev->host_mem_desc_bufs = bufs; 1668 return 0; 1669 1670 out_free_bufs: 1671 while (--i >= 0) { 1672 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1673 1674 dma_free_coherent(dev->dev, size, bufs[i], 1675 le64_to_cpu(descs[i].addr)); 1676 } 1677 1678 kfree(bufs); 1679 out_free_descs: 1680 kfree(descs); 1681 out: 1682 /* try a smaller chunk size if we failed early */ 1683 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) { 1684 chunk_size /= 2; 1685 goto retry; 1686 } 1687 dev->host_mem_descs = NULL; 1688 return -ENOMEM; 1689 } 1690 1691 static void nvme_setup_host_mem(struct nvme_dev *dev) 1692 { 1693 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1694 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1695 u64 min = (u64)dev->ctrl.hmmin * 4096; 1696 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1697 1698 preferred = min(preferred, max); 1699 if (min > max) { 1700 dev_warn(dev->ctrl.device, 1701 "min host memory (%lld MiB) above limit (%d MiB).\n", 1702 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1703 nvme_free_host_mem(dev); 1704 return; 1705 } 1706 1707 /* 1708 * If we already have a buffer allocated check if we can reuse it. 1709 */ 1710 if (dev->host_mem_descs) { 1711 if (dev->host_mem_size >= min) 1712 enable_bits |= NVME_HOST_MEM_RETURN; 1713 else 1714 nvme_free_host_mem(dev); 1715 } 1716 1717 if (!dev->host_mem_descs) { 1718 if (nvme_alloc_host_mem(dev, min, preferred)) 1719 return; 1720 } 1721 1722 if (nvme_set_host_mem(dev, enable_bits)) 1723 nvme_free_host_mem(dev); 1724 } 1725 1726 static int nvme_setup_io_queues(struct nvme_dev *dev) 1727 { 1728 struct nvme_queue *adminq = dev->queues[0]; 1729 struct pci_dev *pdev = to_pci_dev(dev->dev); 1730 int result, nr_io_queues; 1731 unsigned long size; 1732 1733 nr_io_queues = num_present_cpus(); 1734 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1735 if (result < 0) 1736 return result; 1737 1738 if (nr_io_queues == 0) 1739 return 0; 1740 1741 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1742 result = nvme_cmb_qdepth(dev, nr_io_queues, 1743 sizeof(struct nvme_command)); 1744 if (result > 0) 1745 dev->q_depth = result; 1746 else 1747 nvme_release_cmb(dev); 1748 } 1749 1750 do { 1751 size = db_bar_size(dev, nr_io_queues); 1752 result = nvme_remap_bar(dev, size); 1753 if (!result) 1754 break; 1755 if (!--nr_io_queues) 1756 return -ENOMEM; 1757 } while (1); 1758 adminq->q_db = dev->dbs; 1759 1760 /* Deregister the admin queue's interrupt */ 1761 pci_free_irq(pdev, 0, adminq); 1762 1763 /* 1764 * If we enable msix early due to not intx, disable it again before 1765 * setting up the full range we need. 1766 */ 1767 pci_free_irq_vectors(pdev); 1768 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1769 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1770 if (nr_io_queues <= 0) 1771 return -EIO; 1772 dev->max_qid = nr_io_queues; 1773 1774 /* 1775 * Should investigate if there's a performance win from allocating 1776 * more queues than interrupt vectors; it might allow the submission 1777 * path to scale better, even if the receive path is limited by the 1778 * number of interrupts. 1779 */ 1780 1781 result = queue_request_irq(adminq); 1782 if (result) { 1783 adminq->cq_vector = -1; 1784 return result; 1785 } 1786 return nvme_create_io_queues(dev); 1787 } 1788 1789 static void nvme_del_queue_end(struct request *req, blk_status_t error) 1790 { 1791 struct nvme_queue *nvmeq = req->end_io_data; 1792 1793 blk_mq_free_request(req); 1794 complete(&nvmeq->dev->ioq_wait); 1795 } 1796 1797 static void nvme_del_cq_end(struct request *req, blk_status_t error) 1798 { 1799 struct nvme_queue *nvmeq = req->end_io_data; 1800 1801 if (!error) { 1802 unsigned long flags; 1803 1804 /* 1805 * We might be called with the AQ q_lock held 1806 * and the I/O queue q_lock should always 1807 * nest inside the AQ one. 1808 */ 1809 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1810 SINGLE_DEPTH_NESTING); 1811 nvme_process_cq(nvmeq); 1812 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1813 } 1814 1815 nvme_del_queue_end(req, error); 1816 } 1817 1818 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1819 { 1820 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1821 struct request *req; 1822 struct nvme_command cmd; 1823 1824 memset(&cmd, 0, sizeof(cmd)); 1825 cmd.delete_queue.opcode = opcode; 1826 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1827 1828 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1829 if (IS_ERR(req)) 1830 return PTR_ERR(req); 1831 1832 req->timeout = ADMIN_TIMEOUT; 1833 req->end_io_data = nvmeq; 1834 1835 blk_execute_rq_nowait(q, NULL, req, false, 1836 opcode == nvme_admin_delete_cq ? 1837 nvme_del_cq_end : nvme_del_queue_end); 1838 return 0; 1839 } 1840 1841 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1842 { 1843 int pass; 1844 unsigned long timeout; 1845 u8 opcode = nvme_admin_delete_sq; 1846 1847 for (pass = 0; pass < 2; pass++) { 1848 int sent = 0, i = queues; 1849 1850 reinit_completion(&dev->ioq_wait); 1851 retry: 1852 timeout = ADMIN_TIMEOUT; 1853 for (; i > 0; i--, sent++) 1854 if (nvme_delete_queue(dev->queues[i], opcode)) 1855 break; 1856 1857 while (sent--) { 1858 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1859 if (timeout == 0) 1860 return; 1861 if (i) 1862 goto retry; 1863 } 1864 opcode = nvme_admin_delete_cq; 1865 } 1866 } 1867 1868 /* 1869 * Return: error value if an error occurred setting up the queues or calling 1870 * Identify Device. 0 if these succeeded, even if adding some of the 1871 * namespaces failed. At the moment, these failures are silent. TBD which 1872 * failures should be reported. 1873 */ 1874 static int nvme_dev_add(struct nvme_dev *dev) 1875 { 1876 if (!dev->ctrl.tagset) { 1877 dev->tagset.ops = &nvme_mq_ops; 1878 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1879 dev->tagset.timeout = NVME_IO_TIMEOUT; 1880 dev->tagset.numa_node = dev_to_node(dev->dev); 1881 dev->tagset.queue_depth = 1882 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1883 dev->tagset.cmd_size = nvme_cmd_size(dev); 1884 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1885 dev->tagset.driver_data = dev; 1886 1887 if (blk_mq_alloc_tag_set(&dev->tagset)) 1888 return 0; 1889 dev->ctrl.tagset = &dev->tagset; 1890 1891 nvme_dbbuf_set(dev); 1892 } else { 1893 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1894 1895 /* Free previously allocated queues that are no longer usable */ 1896 nvme_free_queues(dev, dev->online_queues); 1897 } 1898 1899 return 0; 1900 } 1901 1902 static int nvme_pci_enable(struct nvme_dev *dev) 1903 { 1904 int result = -ENOMEM; 1905 struct pci_dev *pdev = to_pci_dev(dev->dev); 1906 1907 if (pci_enable_device_mem(pdev)) 1908 return result; 1909 1910 pci_set_master(pdev); 1911 1912 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1913 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1914 goto disable; 1915 1916 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1917 result = -ENODEV; 1918 goto disable; 1919 } 1920 1921 /* 1922 * Some devices and/or platforms don't advertise or work with INTx 1923 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1924 * adjust this later. 1925 */ 1926 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1927 if (result < 0) 1928 return result; 1929 1930 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1931 1932 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 1933 io_queue_depth); 1934 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 1935 dev->dbs = dev->bar + 4096; 1936 1937 /* 1938 * Temporary fix for the Apple controller found in the MacBook8,1 and 1939 * some MacBook7,1 to avoid controller resets and data loss. 1940 */ 1941 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1942 dev->q_depth = 2; 1943 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 1944 "set queue depth=%u to work around controller resets\n", 1945 dev->q_depth); 1946 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 1947 (pdev->device == 0xa821 || pdev->device == 0xa822) && 1948 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 1949 dev->q_depth = 64; 1950 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 1951 "set queue depth=%u\n", dev->q_depth); 1952 } 1953 1954 /* 1955 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1956 * populate sysfs if a CMB is implemented. Note that we add the 1957 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1958 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1959 * NULL as final argument to sysfs_add_file_to_group. 1960 */ 1961 1962 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1963 dev->cmb = nvme_map_cmb(dev); 1964 1965 if (dev->cmbsz) { 1966 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1967 &dev_attr_cmb.attr, NULL)) 1968 dev_warn(dev->ctrl.device, 1969 "failed to add sysfs attribute for CMB\n"); 1970 } 1971 } 1972 1973 pci_enable_pcie_error_reporting(pdev); 1974 pci_save_state(pdev); 1975 return 0; 1976 1977 disable: 1978 pci_disable_device(pdev); 1979 return result; 1980 } 1981 1982 static void nvme_dev_unmap(struct nvme_dev *dev) 1983 { 1984 if (dev->bar) 1985 iounmap(dev->bar); 1986 pci_release_mem_regions(to_pci_dev(dev->dev)); 1987 } 1988 1989 static void nvme_pci_disable(struct nvme_dev *dev) 1990 { 1991 struct pci_dev *pdev = to_pci_dev(dev->dev); 1992 1993 nvme_release_cmb(dev); 1994 pci_free_irq_vectors(pdev); 1995 1996 if (pci_is_enabled(pdev)) { 1997 pci_disable_pcie_error_reporting(pdev); 1998 pci_disable_device(pdev); 1999 } 2000 } 2001 2002 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2003 { 2004 int i, queues; 2005 bool dead = true; 2006 struct pci_dev *pdev = to_pci_dev(dev->dev); 2007 2008 mutex_lock(&dev->shutdown_lock); 2009 if (pci_is_enabled(pdev)) { 2010 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2011 2012 if (dev->ctrl.state == NVME_CTRL_LIVE || 2013 dev->ctrl.state == NVME_CTRL_RESETTING) 2014 nvme_start_freeze(&dev->ctrl); 2015 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2016 pdev->error_state != pci_channel_io_normal); 2017 } 2018 2019 /* 2020 * Give the controller a chance to complete all entered requests if 2021 * doing a safe shutdown. 2022 */ 2023 if (!dead) { 2024 if (shutdown) 2025 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2026 2027 /* 2028 * If the controller is still alive tell it to stop using the 2029 * host memory buffer. In theory the shutdown / reset should 2030 * make sure that it doesn't access the host memoery anymore, 2031 * but I'd rather be safe than sorry.. 2032 */ 2033 if (dev->host_mem_descs) 2034 nvme_set_host_mem(dev, 0); 2035 2036 } 2037 nvme_stop_queues(&dev->ctrl); 2038 2039 queues = dev->online_queues - 1; 2040 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 2041 nvme_suspend_queue(dev->queues[i]); 2042 2043 if (dead) { 2044 /* A device might become IO incapable very soon during 2045 * probe, before the admin queue is configured. Thus, 2046 * queue_count can be 0 here. 2047 */ 2048 if (dev->ctrl.queue_count) 2049 nvme_suspend_queue(dev->queues[0]); 2050 } else { 2051 nvme_disable_io_queues(dev, queues); 2052 nvme_disable_admin_queue(dev, shutdown); 2053 } 2054 nvme_pci_disable(dev); 2055 2056 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2057 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2058 2059 /* 2060 * The driver will not be starting up queues again if shutting down so 2061 * must flush all entered requests to their failed completion to avoid 2062 * deadlocking blk-mq hot-cpu notifier. 2063 */ 2064 if (shutdown) 2065 nvme_start_queues(&dev->ctrl); 2066 mutex_unlock(&dev->shutdown_lock); 2067 } 2068 2069 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2070 { 2071 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2072 PAGE_SIZE, PAGE_SIZE, 0); 2073 if (!dev->prp_page_pool) 2074 return -ENOMEM; 2075 2076 /* Optimisation for I/Os between 4k and 128k */ 2077 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2078 256, 256, 0); 2079 if (!dev->prp_small_pool) { 2080 dma_pool_destroy(dev->prp_page_pool); 2081 return -ENOMEM; 2082 } 2083 return 0; 2084 } 2085 2086 static void nvme_release_prp_pools(struct nvme_dev *dev) 2087 { 2088 dma_pool_destroy(dev->prp_page_pool); 2089 dma_pool_destroy(dev->prp_small_pool); 2090 } 2091 2092 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2093 { 2094 struct nvme_dev *dev = to_nvme_dev(ctrl); 2095 2096 nvme_dbbuf_dma_free(dev); 2097 put_device(dev->dev); 2098 if (dev->tagset.tags) 2099 blk_mq_free_tag_set(&dev->tagset); 2100 if (dev->ctrl.admin_q) 2101 blk_put_queue(dev->ctrl.admin_q); 2102 kfree(dev->queues); 2103 free_opal_dev(dev->ctrl.opal_dev); 2104 kfree(dev); 2105 } 2106 2107 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 2108 { 2109 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 2110 2111 kref_get(&dev->ctrl.kref); 2112 nvme_dev_disable(dev, false); 2113 if (!schedule_work(&dev->remove_work)) 2114 nvme_put_ctrl(&dev->ctrl); 2115 } 2116 2117 static void nvme_reset_work(struct work_struct *work) 2118 { 2119 struct nvme_dev *dev = 2120 container_of(work, struct nvme_dev, ctrl.reset_work); 2121 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2122 int result = -ENODEV; 2123 2124 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) 2125 goto out; 2126 2127 /* 2128 * If we're called to reset a live controller first shut it down before 2129 * moving on. 2130 */ 2131 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2132 nvme_dev_disable(dev, false); 2133 2134 result = nvme_pci_enable(dev); 2135 if (result) 2136 goto out; 2137 2138 result = nvme_pci_configure_admin_queue(dev); 2139 if (result) 2140 goto out; 2141 2142 nvme_init_queue(dev->queues[0], 0); 2143 result = nvme_alloc_admin_tags(dev); 2144 if (result) 2145 goto out; 2146 2147 result = nvme_init_identify(&dev->ctrl); 2148 if (result) 2149 goto out; 2150 2151 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2152 if (!dev->ctrl.opal_dev) 2153 dev->ctrl.opal_dev = 2154 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2155 else if (was_suspend) 2156 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2157 } else { 2158 free_opal_dev(dev->ctrl.opal_dev); 2159 dev->ctrl.opal_dev = NULL; 2160 } 2161 2162 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2163 result = nvme_dbbuf_dma_alloc(dev); 2164 if (result) 2165 dev_warn(dev->dev, 2166 "unable to allocate dma for dbbuf\n"); 2167 } 2168 2169 if (dev->ctrl.hmpre) 2170 nvme_setup_host_mem(dev); 2171 2172 result = nvme_setup_io_queues(dev); 2173 if (result) 2174 goto out; 2175 2176 /* 2177 * Keep the controller around but remove all namespaces if we don't have 2178 * any working I/O queue. 2179 */ 2180 if (dev->online_queues < 2) { 2181 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2182 nvme_kill_queues(&dev->ctrl); 2183 nvme_remove_namespaces(&dev->ctrl); 2184 } else { 2185 nvme_start_queues(&dev->ctrl); 2186 nvme_wait_freeze(&dev->ctrl); 2187 nvme_dev_add(dev); 2188 nvme_unfreeze(&dev->ctrl); 2189 } 2190 2191 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2192 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 2193 goto out; 2194 } 2195 2196 nvme_start_ctrl(&dev->ctrl); 2197 return; 2198 2199 out: 2200 nvme_remove_dead_ctrl(dev, result); 2201 } 2202 2203 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2204 { 2205 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2206 struct pci_dev *pdev = to_pci_dev(dev->dev); 2207 2208 nvme_kill_queues(&dev->ctrl); 2209 if (pci_get_drvdata(pdev)) 2210 device_release_driver(&pdev->dev); 2211 nvme_put_ctrl(&dev->ctrl); 2212 } 2213 2214 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2215 { 2216 *val = readl(to_nvme_dev(ctrl)->bar + off); 2217 return 0; 2218 } 2219 2220 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2221 { 2222 writel(val, to_nvme_dev(ctrl)->bar + off); 2223 return 0; 2224 } 2225 2226 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2227 { 2228 *val = readq(to_nvme_dev(ctrl)->bar + off); 2229 return 0; 2230 } 2231 2232 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2233 .name = "pcie", 2234 .module = THIS_MODULE, 2235 .flags = NVME_F_METADATA_SUPPORTED, 2236 .reg_read32 = nvme_pci_reg_read32, 2237 .reg_write32 = nvme_pci_reg_write32, 2238 .reg_read64 = nvme_pci_reg_read64, 2239 .free_ctrl = nvme_pci_free_ctrl, 2240 .submit_async_event = nvme_pci_submit_async_event, 2241 }; 2242 2243 static int nvme_dev_map(struct nvme_dev *dev) 2244 { 2245 struct pci_dev *pdev = to_pci_dev(dev->dev); 2246 2247 if (pci_request_mem_regions(pdev, "nvme")) 2248 return -ENODEV; 2249 2250 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2251 goto release; 2252 2253 return 0; 2254 release: 2255 pci_release_mem_regions(pdev); 2256 return -ENODEV; 2257 } 2258 2259 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev) 2260 { 2261 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2262 /* 2263 * Several Samsung devices seem to drop off the PCIe bus 2264 * randomly when APST is on and uses the deepest sleep state. 2265 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2266 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2267 * 950 PRO 256GB", but it seems to be restricted to two Dell 2268 * laptops. 2269 */ 2270 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2271 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2272 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2273 return NVME_QUIRK_NO_DEEPEST_PS; 2274 } 2275 2276 return 0; 2277 } 2278 2279 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2280 { 2281 int node, result = -ENOMEM; 2282 struct nvme_dev *dev; 2283 unsigned long quirks = id->driver_data; 2284 2285 node = dev_to_node(&pdev->dev); 2286 if (node == NUMA_NO_NODE) 2287 set_dev_node(&pdev->dev, first_memory_node); 2288 2289 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2290 if (!dev) 2291 return -ENOMEM; 2292 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 2293 GFP_KERNEL, node); 2294 if (!dev->queues) 2295 goto free; 2296 2297 dev->dev = get_device(&pdev->dev); 2298 pci_set_drvdata(pdev, dev); 2299 2300 result = nvme_dev_map(dev); 2301 if (result) 2302 goto put_pci; 2303 2304 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2305 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2306 mutex_init(&dev->shutdown_lock); 2307 init_completion(&dev->ioq_wait); 2308 2309 result = nvme_setup_prp_pools(dev); 2310 if (result) 2311 goto unmap; 2312 2313 quirks |= check_dell_samsung_bug(pdev); 2314 2315 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2316 quirks); 2317 if (result) 2318 goto release_pools; 2319 2320 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING); 2321 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2322 2323 queue_work(nvme_wq, &dev->ctrl.reset_work); 2324 return 0; 2325 2326 release_pools: 2327 nvme_release_prp_pools(dev); 2328 unmap: 2329 nvme_dev_unmap(dev); 2330 put_pci: 2331 put_device(dev->dev); 2332 free: 2333 kfree(dev->queues); 2334 kfree(dev); 2335 return result; 2336 } 2337 2338 static void nvme_reset_prepare(struct pci_dev *pdev) 2339 { 2340 struct nvme_dev *dev = pci_get_drvdata(pdev); 2341 nvme_dev_disable(dev, false); 2342 } 2343 2344 static void nvme_reset_done(struct pci_dev *pdev) 2345 { 2346 struct nvme_dev *dev = pci_get_drvdata(pdev); 2347 nvme_reset_ctrl(&dev->ctrl); 2348 } 2349 2350 static void nvme_shutdown(struct pci_dev *pdev) 2351 { 2352 struct nvme_dev *dev = pci_get_drvdata(pdev); 2353 nvme_dev_disable(dev, true); 2354 } 2355 2356 /* 2357 * The driver's remove may be called on a device in a partially initialized 2358 * state. This function must not have any dependencies on the device state in 2359 * order to proceed. 2360 */ 2361 static void nvme_remove(struct pci_dev *pdev) 2362 { 2363 struct nvme_dev *dev = pci_get_drvdata(pdev); 2364 2365 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2366 2367 cancel_work_sync(&dev->ctrl.reset_work); 2368 pci_set_drvdata(pdev, NULL); 2369 2370 if (!pci_device_is_present(pdev)) { 2371 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2372 nvme_dev_disable(dev, false); 2373 } 2374 2375 flush_work(&dev->ctrl.reset_work); 2376 nvme_stop_ctrl(&dev->ctrl); 2377 nvme_remove_namespaces(&dev->ctrl); 2378 nvme_dev_disable(dev, true); 2379 nvme_free_host_mem(dev); 2380 nvme_dev_remove_admin(dev); 2381 nvme_free_queues(dev, 0); 2382 nvme_uninit_ctrl(&dev->ctrl); 2383 nvme_release_prp_pools(dev); 2384 nvme_dev_unmap(dev); 2385 nvme_put_ctrl(&dev->ctrl); 2386 } 2387 2388 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2389 { 2390 int ret = 0; 2391 2392 if (numvfs == 0) { 2393 if (pci_vfs_assigned(pdev)) { 2394 dev_warn(&pdev->dev, 2395 "Cannot disable SR-IOV VFs while assigned\n"); 2396 return -EPERM; 2397 } 2398 pci_disable_sriov(pdev); 2399 return 0; 2400 } 2401 2402 ret = pci_enable_sriov(pdev, numvfs); 2403 return ret ? ret : numvfs; 2404 } 2405 2406 #ifdef CONFIG_PM_SLEEP 2407 static int nvme_suspend(struct device *dev) 2408 { 2409 struct pci_dev *pdev = to_pci_dev(dev); 2410 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2411 2412 nvme_dev_disable(ndev, true); 2413 return 0; 2414 } 2415 2416 static int nvme_resume(struct device *dev) 2417 { 2418 struct pci_dev *pdev = to_pci_dev(dev); 2419 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2420 2421 nvme_reset_ctrl(&ndev->ctrl); 2422 return 0; 2423 } 2424 #endif 2425 2426 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2427 2428 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2429 pci_channel_state_t state) 2430 { 2431 struct nvme_dev *dev = pci_get_drvdata(pdev); 2432 2433 /* 2434 * A frozen channel requires a reset. When detected, this method will 2435 * shutdown the controller to quiesce. The controller will be restarted 2436 * after the slot reset through driver's slot_reset callback. 2437 */ 2438 switch (state) { 2439 case pci_channel_io_normal: 2440 return PCI_ERS_RESULT_CAN_RECOVER; 2441 case pci_channel_io_frozen: 2442 dev_warn(dev->ctrl.device, 2443 "frozen state error detected, reset controller\n"); 2444 nvme_dev_disable(dev, false); 2445 return PCI_ERS_RESULT_NEED_RESET; 2446 case pci_channel_io_perm_failure: 2447 dev_warn(dev->ctrl.device, 2448 "failure state error detected, request disconnect\n"); 2449 return PCI_ERS_RESULT_DISCONNECT; 2450 } 2451 return PCI_ERS_RESULT_NEED_RESET; 2452 } 2453 2454 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2455 { 2456 struct nvme_dev *dev = pci_get_drvdata(pdev); 2457 2458 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2459 pci_restore_state(pdev); 2460 nvme_reset_ctrl(&dev->ctrl); 2461 return PCI_ERS_RESULT_RECOVERED; 2462 } 2463 2464 static void nvme_error_resume(struct pci_dev *pdev) 2465 { 2466 pci_cleanup_aer_uncorrect_error_status(pdev); 2467 } 2468 2469 static const struct pci_error_handlers nvme_err_handler = { 2470 .error_detected = nvme_error_detected, 2471 .slot_reset = nvme_slot_reset, 2472 .resume = nvme_error_resume, 2473 .reset_prepare = nvme_reset_prepare, 2474 .reset_done = nvme_reset_done, 2475 }; 2476 2477 static const struct pci_device_id nvme_id_table[] = { 2478 { PCI_VDEVICE(INTEL, 0x0953), 2479 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2480 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2481 { PCI_VDEVICE(INTEL, 0x0a53), 2482 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2483 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2484 { PCI_VDEVICE(INTEL, 0x0a54), 2485 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2486 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2487 { PCI_VDEVICE(INTEL, 0x0a55), 2488 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2489 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2490 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 2491 .driver_data = NVME_QUIRK_NO_DEEPEST_PS }, 2492 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2493 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2494 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2495 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2496 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2497 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2498 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 2499 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2500 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 2501 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2502 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2503 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2504 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 2505 { 0, } 2506 }; 2507 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2508 2509 static struct pci_driver nvme_driver = { 2510 .name = "nvme", 2511 .id_table = nvme_id_table, 2512 .probe = nvme_probe, 2513 .remove = nvme_remove, 2514 .shutdown = nvme_shutdown, 2515 .driver = { 2516 .pm = &nvme_dev_pm_ops, 2517 }, 2518 .sriov_configure = nvme_pci_sriov_configure, 2519 .err_handler = &nvme_err_handler, 2520 }; 2521 2522 static int __init nvme_init(void) 2523 { 2524 return pci_register_driver(&nvme_driver); 2525 } 2526 2527 static void __exit nvme_exit(void) 2528 { 2529 pci_unregister_driver(&nvme_driver); 2530 _nvme_check_size(); 2531 } 2532 2533 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2534 MODULE_LICENSE("GPL"); 2535 MODULE_VERSION("1.0"); 2536 module_init(nvme_init); 2537 module_exit(nvme_exit); 2538