xref: /openbmc/linux/drivers/nvme/host/pci.c (revision d2c43ff1)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35 
36 #include "nvme.h"
37 
38 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
40 
41 /*
42  * We handle AEN commands ourselves and don't even let the
43  * block layer know about them.
44  */
45 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
46 
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49 
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53 
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58 
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61 	.set = io_queue_depth_set,
62 	.get = param_get_int,
63 };
64 
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68 
69 struct nvme_dev;
70 struct nvme_queue;
71 
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74 
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79 	struct nvme_queue **queues;
80 	struct blk_mq_tag_set tagset;
81 	struct blk_mq_tag_set admin_tagset;
82 	u32 __iomem *dbs;
83 	struct device *dev;
84 	struct dma_pool *prp_page_pool;
85 	struct dma_pool *prp_small_pool;
86 	unsigned online_queues;
87 	unsigned max_qid;
88 	int q_depth;
89 	u32 db_stride;
90 	void __iomem *bar;
91 	unsigned long bar_mapped_size;
92 	struct work_struct remove_work;
93 	struct mutex shutdown_lock;
94 	bool subsystem;
95 	void __iomem *cmb;
96 	dma_addr_t cmb_dma_addr;
97 	u64 cmb_size;
98 	u32 cmbsz;
99 	u32 cmbloc;
100 	struct nvme_ctrl ctrl;
101 	struct completion ioq_wait;
102 
103 	/* shadow doorbell buffer support: */
104 	u32 *dbbuf_dbs;
105 	dma_addr_t dbbuf_dbs_dma_addr;
106 	u32 *dbbuf_eis;
107 	dma_addr_t dbbuf_eis_dma_addr;
108 
109 	/* host memory buffer support: */
110 	u64 host_mem_size;
111 	u32 nr_host_mem_descs;
112 	struct nvme_host_mem_buf_desc *host_mem_descs;
113 	void **host_mem_desc_bufs;
114 };
115 
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117 {
118 	int n = 0, ret;
119 
120 	ret = kstrtoint(val, 10, &n);
121 	if (ret != 0 || n < 2)
122 		return -EINVAL;
123 
124 	return param_set_int(val, kp);
125 }
126 
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128 {
129 	return qid * 2 * stride;
130 }
131 
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133 {
134 	return (qid * 2 + 1) * stride;
135 }
136 
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138 {
139 	return container_of(ctrl, struct nvme_dev, ctrl);
140 }
141 
142 /*
143  * An NVM Express queue.  Each device has at least two (one for admin
144  * commands and one for I/O commands).
145  */
146 struct nvme_queue {
147 	struct device *q_dmadev;
148 	struct nvme_dev *dev;
149 	spinlock_t q_lock;
150 	struct nvme_command *sq_cmds;
151 	struct nvme_command __iomem *sq_cmds_io;
152 	volatile struct nvme_completion *cqes;
153 	struct blk_mq_tags **tags;
154 	dma_addr_t sq_dma_addr;
155 	dma_addr_t cq_dma_addr;
156 	u32 __iomem *q_db;
157 	u16 q_depth;
158 	s16 cq_vector;
159 	u16 sq_tail;
160 	u16 cq_head;
161 	u16 qid;
162 	u8 cq_phase;
163 	u8 cqe_seen;
164 	u32 *dbbuf_sq_db;
165 	u32 *dbbuf_cq_db;
166 	u32 *dbbuf_sq_ei;
167 	u32 *dbbuf_cq_ei;
168 };
169 
170 /*
171  * The nvme_iod describes the data in an I/O, including the list of PRP
172  * entries.  You can't see it in this data structure because C doesn't let
173  * me express that.  Use nvme_init_iod to ensure there's enough space
174  * allocated to store the PRP list.
175  */
176 struct nvme_iod {
177 	struct nvme_request req;
178 	struct nvme_queue *nvmeq;
179 	int aborted;
180 	int npages;		/* In the PRP list. 0 means small pool in use */
181 	int nents;		/* Used in scatterlist */
182 	int length;		/* Of data, in bytes */
183 	dma_addr_t first_dma;
184 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
185 	struct scatterlist *sg;
186 	struct scatterlist inline_sg[0];
187 };
188 
189 /*
190  * Check we didin't inadvertently grow the command struct
191  */
192 static inline void _nvme_check_size(void)
193 {
194 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
195 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
196 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
197 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
198 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
199 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
200 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
201 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
202 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
203 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
204 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
205 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
206 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
207 }
208 
209 static inline unsigned int nvme_dbbuf_size(u32 stride)
210 {
211 	return ((num_possible_cpus() + 1) * 8 * stride);
212 }
213 
214 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
215 {
216 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
217 
218 	if (dev->dbbuf_dbs)
219 		return 0;
220 
221 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
222 					    &dev->dbbuf_dbs_dma_addr,
223 					    GFP_KERNEL);
224 	if (!dev->dbbuf_dbs)
225 		return -ENOMEM;
226 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
227 					    &dev->dbbuf_eis_dma_addr,
228 					    GFP_KERNEL);
229 	if (!dev->dbbuf_eis) {
230 		dma_free_coherent(dev->dev, mem_size,
231 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232 		dev->dbbuf_dbs = NULL;
233 		return -ENOMEM;
234 	}
235 
236 	return 0;
237 }
238 
239 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
240 {
241 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
242 
243 	if (dev->dbbuf_dbs) {
244 		dma_free_coherent(dev->dev, mem_size,
245 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 		dev->dbbuf_dbs = NULL;
247 	}
248 	if (dev->dbbuf_eis) {
249 		dma_free_coherent(dev->dev, mem_size,
250 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
251 		dev->dbbuf_eis = NULL;
252 	}
253 }
254 
255 static void nvme_dbbuf_init(struct nvme_dev *dev,
256 			    struct nvme_queue *nvmeq, int qid)
257 {
258 	if (!dev->dbbuf_dbs || !qid)
259 		return;
260 
261 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
262 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
263 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
264 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
265 }
266 
267 static void nvme_dbbuf_set(struct nvme_dev *dev)
268 {
269 	struct nvme_command c;
270 
271 	if (!dev->dbbuf_dbs)
272 		return;
273 
274 	memset(&c, 0, sizeof(c));
275 	c.dbbuf.opcode = nvme_admin_dbbuf;
276 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
277 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
278 
279 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
280 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
281 		/* Free memory and continue on */
282 		nvme_dbbuf_dma_free(dev);
283 	}
284 }
285 
286 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
287 {
288 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
289 }
290 
291 /* Update dbbuf and return true if an MMIO is required */
292 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
293 					      volatile u32 *dbbuf_ei)
294 {
295 	if (dbbuf_db) {
296 		u16 old_value;
297 
298 		/*
299 		 * Ensure that the queue is written before updating
300 		 * the doorbell in memory
301 		 */
302 		wmb();
303 
304 		old_value = *dbbuf_db;
305 		*dbbuf_db = value;
306 
307 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
308 			return false;
309 	}
310 
311 	return true;
312 }
313 
314 /*
315  * Max size of iod being embedded in the request payload
316  */
317 #define NVME_INT_PAGES		2
318 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
319 
320 /*
321  * Will slightly overestimate the number of pages needed.  This is OK
322  * as it only leads to a small amount of wasted memory for the lifetime of
323  * the I/O.
324  */
325 static int nvme_npages(unsigned size, struct nvme_dev *dev)
326 {
327 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
328 				      dev->ctrl.page_size);
329 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
330 }
331 
332 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
333 		unsigned int size, unsigned int nseg)
334 {
335 	return sizeof(__le64 *) * nvme_npages(size, dev) +
336 			sizeof(struct scatterlist) * nseg;
337 }
338 
339 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
340 {
341 	return sizeof(struct nvme_iod) +
342 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
343 }
344 
345 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346 				unsigned int hctx_idx)
347 {
348 	struct nvme_dev *dev = data;
349 	struct nvme_queue *nvmeq = dev->queues[0];
350 
351 	WARN_ON(hctx_idx != 0);
352 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
353 	WARN_ON(nvmeq->tags);
354 
355 	hctx->driver_data = nvmeq;
356 	nvmeq->tags = &dev->admin_tagset.tags[0];
357 	return 0;
358 }
359 
360 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
361 {
362 	struct nvme_queue *nvmeq = hctx->driver_data;
363 
364 	nvmeq->tags = NULL;
365 }
366 
367 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
368 			  unsigned int hctx_idx)
369 {
370 	struct nvme_dev *dev = data;
371 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
372 
373 	if (!nvmeq->tags)
374 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
375 
376 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
377 	hctx->driver_data = nvmeq;
378 	return 0;
379 }
380 
381 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
382 		unsigned int hctx_idx, unsigned int numa_node)
383 {
384 	struct nvme_dev *dev = set->driver_data;
385 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
386 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
387 	struct nvme_queue *nvmeq = dev->queues[queue_idx];
388 
389 	BUG_ON(!nvmeq);
390 	iod->nvmeq = nvmeq;
391 	return 0;
392 }
393 
394 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
395 {
396 	struct nvme_dev *dev = set->driver_data;
397 
398 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
399 }
400 
401 /**
402  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
403  * @nvmeq: The queue to use
404  * @cmd: The command to send
405  *
406  * Safe to use from interrupt context
407  */
408 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
409 						struct nvme_command *cmd)
410 {
411 	u16 tail = nvmeq->sq_tail;
412 
413 	if (nvmeq->sq_cmds_io)
414 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
415 	else
416 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
417 
418 	if (++tail == nvmeq->q_depth)
419 		tail = 0;
420 	if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
421 					      nvmeq->dbbuf_sq_ei))
422 		writel(tail, nvmeq->q_db);
423 	nvmeq->sq_tail = tail;
424 }
425 
426 static __le64 **iod_list(struct request *req)
427 {
428 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429 	return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
430 }
431 
432 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
433 {
434 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
435 	int nseg = blk_rq_nr_phys_segments(rq);
436 	unsigned int size = blk_rq_payload_bytes(rq);
437 
438 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
439 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
440 		if (!iod->sg)
441 			return BLK_STS_RESOURCE;
442 	} else {
443 		iod->sg = iod->inline_sg;
444 	}
445 
446 	iod->aborted = 0;
447 	iod->npages = -1;
448 	iod->nents = 0;
449 	iod->length = size;
450 
451 	return BLK_STS_OK;
452 }
453 
454 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
455 {
456 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457 	const int last_prp = dev->ctrl.page_size / 8 - 1;
458 	int i;
459 	__le64 **list = iod_list(req);
460 	dma_addr_t prp_dma = iod->first_dma;
461 
462 	if (iod->npages == 0)
463 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464 	for (i = 0; i < iod->npages; i++) {
465 		__le64 *prp_list = list[i];
466 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468 		prp_dma = next_prp_dma;
469 	}
470 
471 	if (iod->sg != iod->inline_sg)
472 		kfree(iod->sg);
473 }
474 
475 #ifdef CONFIG_BLK_DEV_INTEGRITY
476 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
477 {
478 	if (be32_to_cpu(pi->ref_tag) == v)
479 		pi->ref_tag = cpu_to_be32(p);
480 }
481 
482 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
483 {
484 	if (be32_to_cpu(pi->ref_tag) == p)
485 		pi->ref_tag = cpu_to_be32(v);
486 }
487 
488 /**
489  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
490  *
491  * The virtual start sector is the one that was originally submitted by the
492  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
493  * start sector may be different. Remap protection information to match the
494  * physical LBA on writes, and back to the original seed on reads.
495  *
496  * Type 0 and 3 do not have a ref tag, so no remapping required.
497  */
498 static void nvme_dif_remap(struct request *req,
499 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
500 {
501 	struct nvme_ns *ns = req->rq_disk->private_data;
502 	struct bio_integrity_payload *bip;
503 	struct t10_pi_tuple *pi;
504 	void *p, *pmap;
505 	u32 i, nlb, ts, phys, virt;
506 
507 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
508 		return;
509 
510 	bip = bio_integrity(req->bio);
511 	if (!bip)
512 		return;
513 
514 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
515 
516 	p = pmap;
517 	virt = bip_get_seed(bip);
518 	phys = nvme_block_nr(ns, blk_rq_pos(req));
519 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
520 	ts = ns->disk->queue->integrity.tuple_size;
521 
522 	for (i = 0; i < nlb; i++, virt++, phys++) {
523 		pi = (struct t10_pi_tuple *)p;
524 		dif_swap(phys, virt, pi);
525 		p += ts;
526 	}
527 	kunmap_atomic(pmap);
528 }
529 #else /* CONFIG_BLK_DEV_INTEGRITY */
530 static void nvme_dif_remap(struct request *req,
531 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
532 {
533 }
534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 {
536 }
537 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
538 {
539 }
540 #endif
541 
542 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
543 {
544 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 	struct dma_pool *pool;
546 	int length = blk_rq_payload_bytes(req);
547 	struct scatterlist *sg = iod->sg;
548 	int dma_len = sg_dma_len(sg);
549 	u64 dma_addr = sg_dma_address(sg);
550 	u32 page_size = dev->ctrl.page_size;
551 	int offset = dma_addr & (page_size - 1);
552 	__le64 *prp_list;
553 	__le64 **list = iod_list(req);
554 	dma_addr_t prp_dma;
555 	int nprps, i;
556 
557 	length -= (page_size - offset);
558 	if (length <= 0)
559 		return BLK_STS_OK;
560 
561 	dma_len -= (page_size - offset);
562 	if (dma_len) {
563 		dma_addr += (page_size - offset);
564 	} else {
565 		sg = sg_next(sg);
566 		dma_addr = sg_dma_address(sg);
567 		dma_len = sg_dma_len(sg);
568 	}
569 
570 	if (length <= page_size) {
571 		iod->first_dma = dma_addr;
572 		return BLK_STS_OK;
573 	}
574 
575 	nprps = DIV_ROUND_UP(length, page_size);
576 	if (nprps <= (256 / 8)) {
577 		pool = dev->prp_small_pool;
578 		iod->npages = 0;
579 	} else {
580 		pool = dev->prp_page_pool;
581 		iod->npages = 1;
582 	}
583 
584 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
585 	if (!prp_list) {
586 		iod->first_dma = dma_addr;
587 		iod->npages = -1;
588 		return BLK_STS_RESOURCE;
589 	}
590 	list[0] = prp_list;
591 	iod->first_dma = prp_dma;
592 	i = 0;
593 	for (;;) {
594 		if (i == page_size >> 3) {
595 			__le64 *old_prp_list = prp_list;
596 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
597 			if (!prp_list)
598 				return BLK_STS_RESOURCE;
599 			list[iod->npages++] = prp_list;
600 			prp_list[0] = old_prp_list[i - 1];
601 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
602 			i = 1;
603 		}
604 		prp_list[i++] = cpu_to_le64(dma_addr);
605 		dma_len -= page_size;
606 		dma_addr += page_size;
607 		length -= page_size;
608 		if (length <= 0)
609 			break;
610 		if (dma_len > 0)
611 			continue;
612 		if (unlikely(dma_len < 0))
613 			goto bad_sgl;
614 		sg = sg_next(sg);
615 		dma_addr = sg_dma_address(sg);
616 		dma_len = sg_dma_len(sg);
617 	}
618 
619 	return BLK_STS_OK;
620 
621  bad_sgl:
622 	if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n",
623 				blk_rq_payload_bytes(req), iod->nents)) {
624 		for_each_sg(iod->sg, sg, iod->nents, i) {
625 			dma_addr_t phys = sg_phys(sg);
626 			pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
627 			       "dma_address:%pad dma_length:%d\n", i, &phys,
628 					sg->offset, sg->length,
629 					&sg_dma_address(sg),
630 					sg_dma_len(sg));
631 		}
632 	}
633 	return BLK_STS_IOERR;
634 
635 }
636 
637 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
638 		struct nvme_command *cmnd)
639 {
640 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
641 	struct request_queue *q = req->q;
642 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
643 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
644 	blk_status_t ret = BLK_STS_IOERR;
645 
646 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
647 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
648 	if (!iod->nents)
649 		goto out;
650 
651 	ret = BLK_STS_RESOURCE;
652 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
653 				DMA_ATTR_NO_WARN))
654 		goto out;
655 
656 	ret = nvme_setup_prps(dev, req);
657 	if (ret != BLK_STS_OK)
658 		goto out_unmap;
659 
660 	ret = BLK_STS_IOERR;
661 	if (blk_integrity_rq(req)) {
662 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
663 			goto out_unmap;
664 
665 		sg_init_table(&iod->meta_sg, 1);
666 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
667 			goto out_unmap;
668 
669 		if (rq_data_dir(req))
670 			nvme_dif_remap(req, nvme_dif_prep);
671 
672 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
673 			goto out_unmap;
674 	}
675 
676 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
677 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
678 	if (blk_integrity_rq(req))
679 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
680 	return BLK_STS_OK;
681 
682 out_unmap:
683 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
684 out:
685 	return ret;
686 }
687 
688 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
689 {
690 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
691 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
692 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
693 
694 	if (iod->nents) {
695 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
696 		if (blk_integrity_rq(req)) {
697 			if (!rq_data_dir(req))
698 				nvme_dif_remap(req, nvme_dif_complete);
699 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
700 		}
701 	}
702 
703 	nvme_cleanup_cmd(req);
704 	nvme_free_iod(dev, req);
705 }
706 
707 /*
708  * NOTE: ns is NULL when called on the admin queue.
709  */
710 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
711 			 const struct blk_mq_queue_data *bd)
712 {
713 	struct nvme_ns *ns = hctx->queue->queuedata;
714 	struct nvme_queue *nvmeq = hctx->driver_data;
715 	struct nvme_dev *dev = nvmeq->dev;
716 	struct request *req = bd->rq;
717 	struct nvme_command cmnd;
718 	blk_status_t ret;
719 
720 	ret = nvme_setup_cmd(ns, req, &cmnd);
721 	if (ret)
722 		return ret;
723 
724 	ret = nvme_init_iod(req, dev);
725 	if (ret)
726 		goto out_free_cmd;
727 
728 	if (blk_rq_nr_phys_segments(req)) {
729 		ret = nvme_map_data(dev, req, &cmnd);
730 		if (ret)
731 			goto out_cleanup_iod;
732 	}
733 
734 	blk_mq_start_request(req);
735 
736 	spin_lock_irq(&nvmeq->q_lock);
737 	if (unlikely(nvmeq->cq_vector < 0)) {
738 		ret = BLK_STS_IOERR;
739 		spin_unlock_irq(&nvmeq->q_lock);
740 		goto out_cleanup_iod;
741 	}
742 	__nvme_submit_cmd(nvmeq, &cmnd);
743 	nvme_process_cq(nvmeq);
744 	spin_unlock_irq(&nvmeq->q_lock);
745 	return BLK_STS_OK;
746 out_cleanup_iod:
747 	nvme_free_iod(dev, req);
748 out_free_cmd:
749 	nvme_cleanup_cmd(req);
750 	return ret;
751 }
752 
753 static void nvme_pci_complete_rq(struct request *req)
754 {
755 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756 
757 	nvme_unmap_data(iod->nvmeq->dev, req);
758 	nvme_complete_rq(req);
759 }
760 
761 /* We read the CQE phase first to check if the rest of the entry is valid */
762 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
763 		u16 phase)
764 {
765 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
766 }
767 
768 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
769 {
770 	u16 head = nvmeq->cq_head;
771 
772 	if (likely(nvmeq->cq_vector >= 0)) {
773 		if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
774 						      nvmeq->dbbuf_cq_ei))
775 			writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
776 	}
777 }
778 
779 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
780 		struct nvme_completion *cqe)
781 {
782 	struct request *req;
783 
784 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
785 		dev_warn(nvmeq->dev->ctrl.device,
786 			"invalid id %d completed on queue %d\n",
787 			cqe->command_id, le16_to_cpu(cqe->sq_id));
788 		return;
789 	}
790 
791 	/*
792 	 * AEN requests are special as they don't time out and can
793 	 * survive any kind of queue freeze and often don't respond to
794 	 * aborts.  We don't even bother to allocate a struct request
795 	 * for them but rather special case them here.
796 	 */
797 	if (unlikely(nvmeq->qid == 0 &&
798 			cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
799 		nvme_complete_async_event(&nvmeq->dev->ctrl,
800 				cqe->status, &cqe->result);
801 		return;
802 	}
803 
804 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
805 	nvme_end_request(req, cqe->status, cqe->result);
806 }
807 
808 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
809 		struct nvme_completion *cqe)
810 {
811 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
812 		*cqe = nvmeq->cqes[nvmeq->cq_head];
813 
814 		if (++nvmeq->cq_head == nvmeq->q_depth) {
815 			nvmeq->cq_head = 0;
816 			nvmeq->cq_phase = !nvmeq->cq_phase;
817 		}
818 		return true;
819 	}
820 	return false;
821 }
822 
823 static void nvme_process_cq(struct nvme_queue *nvmeq)
824 {
825 	struct nvme_completion cqe;
826 	int consumed = 0;
827 
828 	while (nvme_read_cqe(nvmeq, &cqe)) {
829 		nvme_handle_cqe(nvmeq, &cqe);
830 		consumed++;
831 	}
832 
833 	if (consumed) {
834 		nvme_ring_cq_doorbell(nvmeq);
835 		nvmeq->cqe_seen = 1;
836 	}
837 }
838 
839 static irqreturn_t nvme_irq(int irq, void *data)
840 {
841 	irqreturn_t result;
842 	struct nvme_queue *nvmeq = data;
843 	spin_lock(&nvmeq->q_lock);
844 	nvme_process_cq(nvmeq);
845 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
846 	nvmeq->cqe_seen = 0;
847 	spin_unlock(&nvmeq->q_lock);
848 	return result;
849 }
850 
851 static irqreturn_t nvme_irq_check(int irq, void *data)
852 {
853 	struct nvme_queue *nvmeq = data;
854 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
855 		return IRQ_WAKE_THREAD;
856 	return IRQ_NONE;
857 }
858 
859 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
860 {
861 	struct nvme_completion cqe;
862 	int found = 0, consumed = 0;
863 
864 	if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
865 		return 0;
866 
867 	spin_lock_irq(&nvmeq->q_lock);
868 	while (nvme_read_cqe(nvmeq, &cqe)) {
869 		nvme_handle_cqe(nvmeq, &cqe);
870 		consumed++;
871 
872 		if (tag == cqe.command_id) {
873 			found = 1;
874 			break;
875 		}
876        }
877 
878 	if (consumed)
879 		nvme_ring_cq_doorbell(nvmeq);
880 	spin_unlock_irq(&nvmeq->q_lock);
881 
882 	return found;
883 }
884 
885 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
886 {
887 	struct nvme_queue *nvmeq = hctx->driver_data;
888 
889 	return __nvme_poll(nvmeq, tag);
890 }
891 
892 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
893 {
894 	struct nvme_dev *dev = to_nvme_dev(ctrl);
895 	struct nvme_queue *nvmeq = dev->queues[0];
896 	struct nvme_command c;
897 
898 	memset(&c, 0, sizeof(c));
899 	c.common.opcode = nvme_admin_async_event;
900 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
901 
902 	spin_lock_irq(&nvmeq->q_lock);
903 	__nvme_submit_cmd(nvmeq, &c);
904 	spin_unlock_irq(&nvmeq->q_lock);
905 }
906 
907 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
908 {
909 	struct nvme_command c;
910 
911 	memset(&c, 0, sizeof(c));
912 	c.delete_queue.opcode = opcode;
913 	c.delete_queue.qid = cpu_to_le16(id);
914 
915 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
916 }
917 
918 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
919 						struct nvme_queue *nvmeq)
920 {
921 	struct nvme_command c;
922 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
923 
924 	/*
925 	 * Note: we (ab)use the fact the the prp fields survive if no data
926 	 * is attached to the request.
927 	 */
928 	memset(&c, 0, sizeof(c));
929 	c.create_cq.opcode = nvme_admin_create_cq;
930 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
931 	c.create_cq.cqid = cpu_to_le16(qid);
932 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
933 	c.create_cq.cq_flags = cpu_to_le16(flags);
934 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
935 
936 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
937 }
938 
939 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
940 						struct nvme_queue *nvmeq)
941 {
942 	struct nvme_command c;
943 	int flags = NVME_QUEUE_PHYS_CONTIG;
944 
945 	/*
946 	 * Note: we (ab)use the fact the the prp fields survive if no data
947 	 * is attached to the request.
948 	 */
949 	memset(&c, 0, sizeof(c));
950 	c.create_sq.opcode = nvme_admin_create_sq;
951 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
952 	c.create_sq.sqid = cpu_to_le16(qid);
953 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
954 	c.create_sq.sq_flags = cpu_to_le16(flags);
955 	c.create_sq.cqid = cpu_to_le16(qid);
956 
957 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
958 }
959 
960 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
961 {
962 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
963 }
964 
965 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
966 {
967 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
968 }
969 
970 static void abort_endio(struct request *req, blk_status_t error)
971 {
972 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
973 	struct nvme_queue *nvmeq = iod->nvmeq;
974 
975 	dev_warn(nvmeq->dev->ctrl.device,
976 		 "Abort status: 0x%x", nvme_req(req)->status);
977 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
978 	blk_mq_free_request(req);
979 }
980 
981 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
982 {
983 
984 	/* If true, indicates loss of adapter communication, possibly by a
985 	 * NVMe Subsystem reset.
986 	 */
987 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
988 
989 	/* If there is a reset ongoing, we shouldn't reset again. */
990 	if (dev->ctrl.state == NVME_CTRL_RESETTING)
991 		return false;
992 
993 	/* We shouldn't reset unless the controller is on fatal error state
994 	 * _or_ if we lost the communication with it.
995 	 */
996 	if (!(csts & NVME_CSTS_CFS) && !nssro)
997 		return false;
998 
999 	/* If PCI error recovery process is happening, we cannot reset or
1000 	 * the recovery mechanism will surely fail.
1001 	 */
1002 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1003 		return false;
1004 
1005 	return true;
1006 }
1007 
1008 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1009 {
1010 	/* Read a config register to help see what died. */
1011 	u16 pci_status;
1012 	int result;
1013 
1014 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1015 				      &pci_status);
1016 	if (result == PCIBIOS_SUCCESSFUL)
1017 		dev_warn(dev->ctrl.device,
1018 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1019 			 csts, pci_status);
1020 	else
1021 		dev_warn(dev->ctrl.device,
1022 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1023 			 csts, result);
1024 }
1025 
1026 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1027 {
1028 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1029 	struct nvme_queue *nvmeq = iod->nvmeq;
1030 	struct nvme_dev *dev = nvmeq->dev;
1031 	struct request *abort_req;
1032 	struct nvme_command cmd;
1033 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1034 
1035 	/*
1036 	 * Reset immediately if the controller is failed
1037 	 */
1038 	if (nvme_should_reset(dev, csts)) {
1039 		nvme_warn_reset(dev, csts);
1040 		nvme_dev_disable(dev, false);
1041 		nvme_reset_ctrl(&dev->ctrl);
1042 		return BLK_EH_HANDLED;
1043 	}
1044 
1045 	/*
1046 	 * Did we miss an interrupt?
1047 	 */
1048 	if (__nvme_poll(nvmeq, req->tag)) {
1049 		dev_warn(dev->ctrl.device,
1050 			 "I/O %d QID %d timeout, completion polled\n",
1051 			 req->tag, nvmeq->qid);
1052 		return BLK_EH_HANDLED;
1053 	}
1054 
1055 	/*
1056 	 * Shutdown immediately if controller times out while starting. The
1057 	 * reset work will see the pci device disabled when it gets the forced
1058 	 * cancellation error. All outstanding requests are completed on
1059 	 * shutdown, so we return BLK_EH_HANDLED.
1060 	 */
1061 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1062 		dev_warn(dev->ctrl.device,
1063 			 "I/O %d QID %d timeout, disable controller\n",
1064 			 req->tag, nvmeq->qid);
1065 		nvme_dev_disable(dev, false);
1066 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1067 		return BLK_EH_HANDLED;
1068 	}
1069 
1070 	/*
1071  	 * Shutdown the controller immediately and schedule a reset if the
1072  	 * command was already aborted once before and still hasn't been
1073  	 * returned to the driver, or if this is the admin queue.
1074 	 */
1075 	if (!nvmeq->qid || iod->aborted) {
1076 		dev_warn(dev->ctrl.device,
1077 			 "I/O %d QID %d timeout, reset controller\n",
1078 			 req->tag, nvmeq->qid);
1079 		nvme_dev_disable(dev, false);
1080 		nvme_reset_ctrl(&dev->ctrl);
1081 
1082 		/*
1083 		 * Mark the request as handled, since the inline shutdown
1084 		 * forces all outstanding requests to complete.
1085 		 */
1086 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1087 		return BLK_EH_HANDLED;
1088 	}
1089 
1090 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1091 		atomic_inc(&dev->ctrl.abort_limit);
1092 		return BLK_EH_RESET_TIMER;
1093 	}
1094 	iod->aborted = 1;
1095 
1096 	memset(&cmd, 0, sizeof(cmd));
1097 	cmd.abort.opcode = nvme_admin_abort_cmd;
1098 	cmd.abort.cid = req->tag;
1099 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1100 
1101 	dev_warn(nvmeq->dev->ctrl.device,
1102 		"I/O %d QID %d timeout, aborting\n",
1103 		 req->tag, nvmeq->qid);
1104 
1105 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1106 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1107 	if (IS_ERR(abort_req)) {
1108 		atomic_inc(&dev->ctrl.abort_limit);
1109 		return BLK_EH_RESET_TIMER;
1110 	}
1111 
1112 	abort_req->timeout = ADMIN_TIMEOUT;
1113 	abort_req->end_io_data = NULL;
1114 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1115 
1116 	/*
1117 	 * The aborted req will be completed on receiving the abort req.
1118 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1119 	 * as the device then is in a faulty state.
1120 	 */
1121 	return BLK_EH_RESET_TIMER;
1122 }
1123 
1124 static void nvme_free_queue(struct nvme_queue *nvmeq)
1125 {
1126 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1127 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1128 	if (nvmeq->sq_cmds)
1129 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1130 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1131 	kfree(nvmeq);
1132 }
1133 
1134 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1135 {
1136 	int i;
1137 
1138 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1139 		struct nvme_queue *nvmeq = dev->queues[i];
1140 		dev->ctrl.queue_count--;
1141 		dev->queues[i] = NULL;
1142 		nvme_free_queue(nvmeq);
1143 	}
1144 }
1145 
1146 /**
1147  * nvme_suspend_queue - put queue into suspended state
1148  * @nvmeq - queue to suspend
1149  */
1150 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1151 {
1152 	int vector;
1153 
1154 	spin_lock_irq(&nvmeq->q_lock);
1155 	if (nvmeq->cq_vector == -1) {
1156 		spin_unlock_irq(&nvmeq->q_lock);
1157 		return 1;
1158 	}
1159 	vector = nvmeq->cq_vector;
1160 	nvmeq->dev->online_queues--;
1161 	nvmeq->cq_vector = -1;
1162 	spin_unlock_irq(&nvmeq->q_lock);
1163 
1164 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1165 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1166 
1167 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1168 
1169 	return 0;
1170 }
1171 
1172 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1173 {
1174 	struct nvme_queue *nvmeq = dev->queues[0];
1175 
1176 	if (!nvmeq)
1177 		return;
1178 	if (nvme_suspend_queue(nvmeq))
1179 		return;
1180 
1181 	if (shutdown)
1182 		nvme_shutdown_ctrl(&dev->ctrl);
1183 	else
1184 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1185 
1186 	spin_lock_irq(&nvmeq->q_lock);
1187 	nvme_process_cq(nvmeq);
1188 	spin_unlock_irq(&nvmeq->q_lock);
1189 }
1190 
1191 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1192 				int entry_size)
1193 {
1194 	int q_depth = dev->q_depth;
1195 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1196 					  dev->ctrl.page_size);
1197 
1198 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1199 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1200 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1201 		q_depth = div_u64(mem_per_q, entry_size);
1202 
1203 		/*
1204 		 * Ensure the reduced q_depth is above some threshold where it
1205 		 * would be better to map queues in system memory with the
1206 		 * original depth
1207 		 */
1208 		if (q_depth < 64)
1209 			return -ENOMEM;
1210 	}
1211 
1212 	return q_depth;
1213 }
1214 
1215 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1216 				int qid, int depth)
1217 {
1218 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1219 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1220 						      dev->ctrl.page_size);
1221 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1222 		nvmeq->sq_cmds_io = dev->cmb + offset;
1223 	} else {
1224 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1225 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1226 		if (!nvmeq->sq_cmds)
1227 			return -ENOMEM;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1234 							int depth, int node)
1235 {
1236 	struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1237 							node);
1238 	if (!nvmeq)
1239 		return NULL;
1240 
1241 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1242 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1243 	if (!nvmeq->cqes)
1244 		goto free_nvmeq;
1245 
1246 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1247 		goto free_cqdma;
1248 
1249 	nvmeq->q_dmadev = dev->dev;
1250 	nvmeq->dev = dev;
1251 	spin_lock_init(&nvmeq->q_lock);
1252 	nvmeq->cq_head = 0;
1253 	nvmeq->cq_phase = 1;
1254 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1255 	nvmeq->q_depth = depth;
1256 	nvmeq->qid = qid;
1257 	nvmeq->cq_vector = -1;
1258 	dev->queues[qid] = nvmeq;
1259 	dev->ctrl.queue_count++;
1260 
1261 	return nvmeq;
1262 
1263  free_cqdma:
1264 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1265 							nvmeq->cq_dma_addr);
1266  free_nvmeq:
1267 	kfree(nvmeq);
1268 	return NULL;
1269 }
1270 
1271 static int queue_request_irq(struct nvme_queue *nvmeq)
1272 {
1273 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1274 	int nr = nvmeq->dev->ctrl.instance;
1275 
1276 	if (use_threaded_interrupts) {
1277 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1278 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1279 	} else {
1280 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1281 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1282 	}
1283 }
1284 
1285 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1286 {
1287 	struct nvme_dev *dev = nvmeq->dev;
1288 
1289 	spin_lock_irq(&nvmeq->q_lock);
1290 	nvmeq->sq_tail = 0;
1291 	nvmeq->cq_head = 0;
1292 	nvmeq->cq_phase = 1;
1293 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1294 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1295 	nvme_dbbuf_init(dev, nvmeq, qid);
1296 	dev->online_queues++;
1297 	spin_unlock_irq(&nvmeq->q_lock);
1298 }
1299 
1300 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1301 {
1302 	struct nvme_dev *dev = nvmeq->dev;
1303 	int result;
1304 
1305 	nvmeq->cq_vector = qid - 1;
1306 	result = adapter_alloc_cq(dev, qid, nvmeq);
1307 	if (result < 0)
1308 		return result;
1309 
1310 	result = adapter_alloc_sq(dev, qid, nvmeq);
1311 	if (result < 0)
1312 		goto release_cq;
1313 
1314 	result = queue_request_irq(nvmeq);
1315 	if (result < 0)
1316 		goto release_sq;
1317 
1318 	nvme_init_queue(nvmeq, qid);
1319 	return result;
1320 
1321  release_sq:
1322 	adapter_delete_sq(dev, qid);
1323  release_cq:
1324 	adapter_delete_cq(dev, qid);
1325 	return result;
1326 }
1327 
1328 static const struct blk_mq_ops nvme_mq_admin_ops = {
1329 	.queue_rq	= nvme_queue_rq,
1330 	.complete	= nvme_pci_complete_rq,
1331 	.init_hctx	= nvme_admin_init_hctx,
1332 	.exit_hctx      = nvme_admin_exit_hctx,
1333 	.init_request	= nvme_init_request,
1334 	.timeout	= nvme_timeout,
1335 };
1336 
1337 static const struct blk_mq_ops nvme_mq_ops = {
1338 	.queue_rq	= nvme_queue_rq,
1339 	.complete	= nvme_pci_complete_rq,
1340 	.init_hctx	= nvme_init_hctx,
1341 	.init_request	= nvme_init_request,
1342 	.map_queues	= nvme_pci_map_queues,
1343 	.timeout	= nvme_timeout,
1344 	.poll		= nvme_poll,
1345 };
1346 
1347 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1348 {
1349 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1350 		/*
1351 		 * If the controller was reset during removal, it's possible
1352 		 * user requests may be waiting on a stopped queue. Start the
1353 		 * queue to flush these to completion.
1354 		 */
1355 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1356 		blk_cleanup_queue(dev->ctrl.admin_q);
1357 		blk_mq_free_tag_set(&dev->admin_tagset);
1358 	}
1359 }
1360 
1361 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1362 {
1363 	if (!dev->ctrl.admin_q) {
1364 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1365 		dev->admin_tagset.nr_hw_queues = 1;
1366 
1367 		/*
1368 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1369 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1370 		 */
1371 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1372 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1373 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1374 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1375 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1376 		dev->admin_tagset.driver_data = dev;
1377 
1378 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1379 			return -ENOMEM;
1380 
1381 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1382 		if (IS_ERR(dev->ctrl.admin_q)) {
1383 			blk_mq_free_tag_set(&dev->admin_tagset);
1384 			return -ENOMEM;
1385 		}
1386 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1387 			nvme_dev_remove_admin(dev);
1388 			dev->ctrl.admin_q = NULL;
1389 			return -ENODEV;
1390 		}
1391 	} else
1392 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1393 
1394 	return 0;
1395 }
1396 
1397 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398 {
1399 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1400 }
1401 
1402 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1403 {
1404 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1405 
1406 	if (size <= dev->bar_mapped_size)
1407 		return 0;
1408 	if (size > pci_resource_len(pdev, 0))
1409 		return -ENOMEM;
1410 	if (dev->bar)
1411 		iounmap(dev->bar);
1412 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1413 	if (!dev->bar) {
1414 		dev->bar_mapped_size = 0;
1415 		return -ENOMEM;
1416 	}
1417 	dev->bar_mapped_size = size;
1418 	dev->dbs = dev->bar + NVME_REG_DBS;
1419 
1420 	return 0;
1421 }
1422 
1423 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1424 {
1425 	int result;
1426 	u32 aqa;
1427 	struct nvme_queue *nvmeq;
1428 
1429 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1430 	if (result < 0)
1431 		return result;
1432 
1433 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1434 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1435 
1436 	if (dev->subsystem &&
1437 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1438 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1439 
1440 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1441 	if (result < 0)
1442 		return result;
1443 
1444 	nvmeq = dev->queues[0];
1445 	if (!nvmeq) {
1446 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1447 					dev_to_node(dev->dev));
1448 		if (!nvmeq)
1449 			return -ENOMEM;
1450 	}
1451 
1452 	aqa = nvmeq->q_depth - 1;
1453 	aqa |= aqa << 16;
1454 
1455 	writel(aqa, dev->bar + NVME_REG_AQA);
1456 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1457 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1458 
1459 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1460 	if (result)
1461 		return result;
1462 
1463 	nvmeq->cq_vector = 0;
1464 	result = queue_request_irq(nvmeq);
1465 	if (result) {
1466 		nvmeq->cq_vector = -1;
1467 		return result;
1468 	}
1469 
1470 	return result;
1471 }
1472 
1473 static int nvme_create_io_queues(struct nvme_dev *dev)
1474 {
1475 	unsigned i, max;
1476 	int ret = 0;
1477 
1478 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1479 		/* vector == qid - 1, match nvme_create_queue */
1480 		if (!nvme_alloc_queue(dev, i, dev->q_depth,
1481 		     pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1482 			ret = -ENOMEM;
1483 			break;
1484 		}
1485 	}
1486 
1487 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1488 	for (i = dev->online_queues; i <= max; i++) {
1489 		ret = nvme_create_queue(dev->queues[i], i);
1490 		if (ret)
1491 			break;
1492 	}
1493 
1494 	/*
1495 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1496 	 * than the desired aount of queues, and even a controller without
1497 	 * I/O queues an still be used to issue admin commands.  This might
1498 	 * be useful to upgrade a buggy firmware for example.
1499 	 */
1500 	return ret >= 0 ? 0 : ret;
1501 }
1502 
1503 static ssize_t nvme_cmb_show(struct device *dev,
1504 			     struct device_attribute *attr,
1505 			     char *buf)
1506 {
1507 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1508 
1509 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1510 		       ndev->cmbloc, ndev->cmbsz);
1511 }
1512 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1513 
1514 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1515 {
1516 	u64 szu, size, offset;
1517 	resource_size_t bar_size;
1518 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1519 	void __iomem *cmb;
1520 	dma_addr_t dma_addr;
1521 
1522 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1523 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1524 		return NULL;
1525 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1526 
1527 	if (!use_cmb_sqes)
1528 		return NULL;
1529 
1530 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1531 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1532 	offset = szu * NVME_CMB_OFST(dev->cmbloc);
1533 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1534 
1535 	if (offset > bar_size)
1536 		return NULL;
1537 
1538 	/*
1539 	 * Controllers may support a CMB size larger than their BAR,
1540 	 * for example, due to being behind a bridge. Reduce the CMB to
1541 	 * the reported size of the BAR
1542 	 */
1543 	if (size > bar_size - offset)
1544 		size = bar_size - offset;
1545 
1546 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1547 	cmb = ioremap_wc(dma_addr, size);
1548 	if (!cmb)
1549 		return NULL;
1550 
1551 	dev->cmb_dma_addr = dma_addr;
1552 	dev->cmb_size = size;
1553 	return cmb;
1554 }
1555 
1556 static inline void nvme_release_cmb(struct nvme_dev *dev)
1557 {
1558 	if (dev->cmb) {
1559 		iounmap(dev->cmb);
1560 		dev->cmb = NULL;
1561 		if (dev->cmbsz) {
1562 			sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1563 						     &dev_attr_cmb.attr, NULL);
1564 			dev->cmbsz = 0;
1565 		}
1566 	}
1567 }
1568 
1569 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1570 {
1571 	size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1572 	struct nvme_command c;
1573 	u64 dma_addr;
1574 	int ret;
1575 
1576 	dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1577 			DMA_TO_DEVICE);
1578 	if (dma_mapping_error(dev->dev, dma_addr))
1579 		return -ENOMEM;
1580 
1581 	memset(&c, 0, sizeof(c));
1582 	c.features.opcode	= nvme_admin_set_features;
1583 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1584 	c.features.dword11	= cpu_to_le32(bits);
1585 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1586 					      ilog2(dev->ctrl.page_size));
1587 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1588 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1589 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1590 
1591 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1592 	if (ret) {
1593 		dev_warn(dev->ctrl.device,
1594 			 "failed to set host mem (err %d, flags %#x).\n",
1595 			 ret, bits);
1596 	}
1597 	dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1598 	return ret;
1599 }
1600 
1601 static void nvme_free_host_mem(struct nvme_dev *dev)
1602 {
1603 	int i;
1604 
1605 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1606 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1607 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1608 
1609 		dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1610 				le64_to_cpu(desc->addr));
1611 	}
1612 
1613 	kfree(dev->host_mem_desc_bufs);
1614 	dev->host_mem_desc_bufs = NULL;
1615 	kfree(dev->host_mem_descs);
1616 	dev->host_mem_descs = NULL;
1617 }
1618 
1619 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1620 {
1621 	struct nvme_host_mem_buf_desc *descs;
1622 	u32 chunk_size, max_entries, len;
1623 	int i = 0;
1624 	void **bufs;
1625 	u64 size = 0, tmp;
1626 
1627 	/* start big and work our way down */
1628 	chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1629 retry:
1630 	tmp = (preferred + chunk_size - 1);
1631 	do_div(tmp, chunk_size);
1632 	max_entries = tmp;
1633 	descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1634 	if (!descs)
1635 		goto out;
1636 
1637 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1638 	if (!bufs)
1639 		goto out_free_descs;
1640 
1641 	for (size = 0; size < preferred; size += len) {
1642 		dma_addr_t dma_addr;
1643 
1644 		len = min_t(u64, chunk_size, preferred - size);
1645 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1646 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1647 		if (!bufs[i])
1648 			break;
1649 
1650 		descs[i].addr = cpu_to_le64(dma_addr);
1651 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1652 		i++;
1653 	}
1654 
1655 	if (!size || (min && size < min)) {
1656 		dev_warn(dev->ctrl.device,
1657 			"failed to allocate host memory buffer.\n");
1658 		goto out_free_bufs;
1659 	}
1660 
1661 	dev_info(dev->ctrl.device,
1662 		"allocated %lld MiB host memory buffer.\n",
1663 		size >> ilog2(SZ_1M));
1664 	dev->nr_host_mem_descs = i;
1665 	dev->host_mem_size = size;
1666 	dev->host_mem_descs = descs;
1667 	dev->host_mem_desc_bufs = bufs;
1668 	return 0;
1669 
1670 out_free_bufs:
1671 	while (--i >= 0) {
1672 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1673 
1674 		dma_free_coherent(dev->dev, size, bufs[i],
1675 				le64_to_cpu(descs[i].addr));
1676 	}
1677 
1678 	kfree(bufs);
1679 out_free_descs:
1680 	kfree(descs);
1681 out:
1682 	/* try a smaller chunk size if we failed early */
1683 	if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1684 		chunk_size /= 2;
1685 		goto retry;
1686 	}
1687 	dev->host_mem_descs = NULL;
1688 	return -ENOMEM;
1689 }
1690 
1691 static void nvme_setup_host_mem(struct nvme_dev *dev)
1692 {
1693 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1694 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1695 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1696 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1697 
1698 	preferred = min(preferred, max);
1699 	if (min > max) {
1700 		dev_warn(dev->ctrl.device,
1701 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1702 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1703 		nvme_free_host_mem(dev);
1704 		return;
1705 	}
1706 
1707 	/*
1708 	 * If we already have a buffer allocated check if we can reuse it.
1709 	 */
1710 	if (dev->host_mem_descs) {
1711 		if (dev->host_mem_size >= min)
1712 			enable_bits |= NVME_HOST_MEM_RETURN;
1713 		else
1714 			nvme_free_host_mem(dev);
1715 	}
1716 
1717 	if (!dev->host_mem_descs) {
1718 		if (nvme_alloc_host_mem(dev, min, preferred))
1719 			return;
1720 	}
1721 
1722 	if (nvme_set_host_mem(dev, enable_bits))
1723 		nvme_free_host_mem(dev);
1724 }
1725 
1726 static int nvme_setup_io_queues(struct nvme_dev *dev)
1727 {
1728 	struct nvme_queue *adminq = dev->queues[0];
1729 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1730 	int result, nr_io_queues;
1731 	unsigned long size;
1732 
1733 	nr_io_queues = num_present_cpus();
1734 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1735 	if (result < 0)
1736 		return result;
1737 
1738 	if (nr_io_queues == 0)
1739 		return 0;
1740 
1741 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1742 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1743 				sizeof(struct nvme_command));
1744 		if (result > 0)
1745 			dev->q_depth = result;
1746 		else
1747 			nvme_release_cmb(dev);
1748 	}
1749 
1750 	do {
1751 		size = db_bar_size(dev, nr_io_queues);
1752 		result = nvme_remap_bar(dev, size);
1753 		if (!result)
1754 			break;
1755 		if (!--nr_io_queues)
1756 			return -ENOMEM;
1757 	} while (1);
1758 	adminq->q_db = dev->dbs;
1759 
1760 	/* Deregister the admin queue's interrupt */
1761 	pci_free_irq(pdev, 0, adminq);
1762 
1763 	/*
1764 	 * If we enable msix early due to not intx, disable it again before
1765 	 * setting up the full range we need.
1766 	 */
1767 	pci_free_irq_vectors(pdev);
1768 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1769 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1770 	if (nr_io_queues <= 0)
1771 		return -EIO;
1772 	dev->max_qid = nr_io_queues;
1773 
1774 	/*
1775 	 * Should investigate if there's a performance win from allocating
1776 	 * more queues than interrupt vectors; it might allow the submission
1777 	 * path to scale better, even if the receive path is limited by the
1778 	 * number of interrupts.
1779 	 */
1780 
1781 	result = queue_request_irq(adminq);
1782 	if (result) {
1783 		adminq->cq_vector = -1;
1784 		return result;
1785 	}
1786 	return nvme_create_io_queues(dev);
1787 }
1788 
1789 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1790 {
1791 	struct nvme_queue *nvmeq = req->end_io_data;
1792 
1793 	blk_mq_free_request(req);
1794 	complete(&nvmeq->dev->ioq_wait);
1795 }
1796 
1797 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1798 {
1799 	struct nvme_queue *nvmeq = req->end_io_data;
1800 
1801 	if (!error) {
1802 		unsigned long flags;
1803 
1804 		/*
1805 		 * We might be called with the AQ q_lock held
1806 		 * and the I/O queue q_lock should always
1807 		 * nest inside the AQ one.
1808 		 */
1809 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1810 					SINGLE_DEPTH_NESTING);
1811 		nvme_process_cq(nvmeq);
1812 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1813 	}
1814 
1815 	nvme_del_queue_end(req, error);
1816 }
1817 
1818 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1819 {
1820 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1821 	struct request *req;
1822 	struct nvme_command cmd;
1823 
1824 	memset(&cmd, 0, sizeof(cmd));
1825 	cmd.delete_queue.opcode = opcode;
1826 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1827 
1828 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1829 	if (IS_ERR(req))
1830 		return PTR_ERR(req);
1831 
1832 	req->timeout = ADMIN_TIMEOUT;
1833 	req->end_io_data = nvmeq;
1834 
1835 	blk_execute_rq_nowait(q, NULL, req, false,
1836 			opcode == nvme_admin_delete_cq ?
1837 				nvme_del_cq_end : nvme_del_queue_end);
1838 	return 0;
1839 }
1840 
1841 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1842 {
1843 	int pass;
1844 	unsigned long timeout;
1845 	u8 opcode = nvme_admin_delete_sq;
1846 
1847 	for (pass = 0; pass < 2; pass++) {
1848 		int sent = 0, i = queues;
1849 
1850 		reinit_completion(&dev->ioq_wait);
1851  retry:
1852 		timeout = ADMIN_TIMEOUT;
1853 		for (; i > 0; i--, sent++)
1854 			if (nvme_delete_queue(dev->queues[i], opcode))
1855 				break;
1856 
1857 		while (sent--) {
1858 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1859 			if (timeout == 0)
1860 				return;
1861 			if (i)
1862 				goto retry;
1863 		}
1864 		opcode = nvme_admin_delete_cq;
1865 	}
1866 }
1867 
1868 /*
1869  * Return: error value if an error occurred setting up the queues or calling
1870  * Identify Device.  0 if these succeeded, even if adding some of the
1871  * namespaces failed.  At the moment, these failures are silent.  TBD which
1872  * failures should be reported.
1873  */
1874 static int nvme_dev_add(struct nvme_dev *dev)
1875 {
1876 	if (!dev->ctrl.tagset) {
1877 		dev->tagset.ops = &nvme_mq_ops;
1878 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1879 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1880 		dev->tagset.numa_node = dev_to_node(dev->dev);
1881 		dev->tagset.queue_depth =
1882 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1883 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1884 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1885 		dev->tagset.driver_data = dev;
1886 
1887 		if (blk_mq_alloc_tag_set(&dev->tagset))
1888 			return 0;
1889 		dev->ctrl.tagset = &dev->tagset;
1890 
1891 		nvme_dbbuf_set(dev);
1892 	} else {
1893 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1894 
1895 		/* Free previously allocated queues that are no longer usable */
1896 		nvme_free_queues(dev, dev->online_queues);
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 static int nvme_pci_enable(struct nvme_dev *dev)
1903 {
1904 	int result = -ENOMEM;
1905 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1906 
1907 	if (pci_enable_device_mem(pdev))
1908 		return result;
1909 
1910 	pci_set_master(pdev);
1911 
1912 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1913 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1914 		goto disable;
1915 
1916 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1917 		result = -ENODEV;
1918 		goto disable;
1919 	}
1920 
1921 	/*
1922 	 * Some devices and/or platforms don't advertise or work with INTx
1923 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1924 	 * adjust this later.
1925 	 */
1926 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1927 	if (result < 0)
1928 		return result;
1929 
1930 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1931 
1932 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1933 				io_queue_depth);
1934 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1935 	dev->dbs = dev->bar + 4096;
1936 
1937 	/*
1938 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1939 	 * some MacBook7,1 to avoid controller resets and data loss.
1940 	 */
1941 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1942 		dev->q_depth = 2;
1943 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1944 			"set queue depth=%u to work around controller resets\n",
1945 			dev->q_depth);
1946 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1947 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1948 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1949 		dev->q_depth = 64;
1950 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1951                         "set queue depth=%u\n", dev->q_depth);
1952 	}
1953 
1954 	/*
1955 	 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1956 	 * populate sysfs if a CMB is implemented. Note that we add the
1957 	 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1958 	 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1959 	 * NULL as final argument to sysfs_add_file_to_group.
1960 	 */
1961 
1962 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1963 		dev->cmb = nvme_map_cmb(dev);
1964 
1965 		if (dev->cmbsz) {
1966 			if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1967 						    &dev_attr_cmb.attr, NULL))
1968 				dev_warn(dev->ctrl.device,
1969 					 "failed to add sysfs attribute for CMB\n");
1970 		}
1971 	}
1972 
1973 	pci_enable_pcie_error_reporting(pdev);
1974 	pci_save_state(pdev);
1975 	return 0;
1976 
1977  disable:
1978 	pci_disable_device(pdev);
1979 	return result;
1980 }
1981 
1982 static void nvme_dev_unmap(struct nvme_dev *dev)
1983 {
1984 	if (dev->bar)
1985 		iounmap(dev->bar);
1986 	pci_release_mem_regions(to_pci_dev(dev->dev));
1987 }
1988 
1989 static void nvme_pci_disable(struct nvme_dev *dev)
1990 {
1991 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1992 
1993 	nvme_release_cmb(dev);
1994 	pci_free_irq_vectors(pdev);
1995 
1996 	if (pci_is_enabled(pdev)) {
1997 		pci_disable_pcie_error_reporting(pdev);
1998 		pci_disable_device(pdev);
1999 	}
2000 }
2001 
2002 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2003 {
2004 	int i, queues;
2005 	bool dead = true;
2006 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2007 
2008 	mutex_lock(&dev->shutdown_lock);
2009 	if (pci_is_enabled(pdev)) {
2010 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2011 
2012 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2013 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2014 			nvme_start_freeze(&dev->ctrl);
2015 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2016 			pdev->error_state  != pci_channel_io_normal);
2017 	}
2018 
2019 	/*
2020 	 * Give the controller a chance to complete all entered requests if
2021 	 * doing a safe shutdown.
2022 	 */
2023 	if (!dead) {
2024 		if (shutdown)
2025 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2026 
2027 		/*
2028 		 * If the controller is still alive tell it to stop using the
2029 		 * host memory buffer.  In theory the shutdown / reset should
2030 		 * make sure that it doesn't access the host memoery anymore,
2031 		 * but I'd rather be safe than sorry..
2032 		 */
2033 		if (dev->host_mem_descs)
2034 			nvme_set_host_mem(dev, 0);
2035 
2036 	}
2037 	nvme_stop_queues(&dev->ctrl);
2038 
2039 	queues = dev->online_queues - 1;
2040 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2041 		nvme_suspend_queue(dev->queues[i]);
2042 
2043 	if (dead) {
2044 		/* A device might become IO incapable very soon during
2045 		 * probe, before the admin queue is configured. Thus,
2046 		 * queue_count can be 0 here.
2047 		 */
2048 		if (dev->ctrl.queue_count)
2049 			nvme_suspend_queue(dev->queues[0]);
2050 	} else {
2051 		nvme_disable_io_queues(dev, queues);
2052 		nvme_disable_admin_queue(dev, shutdown);
2053 	}
2054 	nvme_pci_disable(dev);
2055 
2056 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2057 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2058 
2059 	/*
2060 	 * The driver will not be starting up queues again if shutting down so
2061 	 * must flush all entered requests to their failed completion to avoid
2062 	 * deadlocking blk-mq hot-cpu notifier.
2063 	 */
2064 	if (shutdown)
2065 		nvme_start_queues(&dev->ctrl);
2066 	mutex_unlock(&dev->shutdown_lock);
2067 }
2068 
2069 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2070 {
2071 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2072 						PAGE_SIZE, PAGE_SIZE, 0);
2073 	if (!dev->prp_page_pool)
2074 		return -ENOMEM;
2075 
2076 	/* Optimisation for I/Os between 4k and 128k */
2077 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2078 						256, 256, 0);
2079 	if (!dev->prp_small_pool) {
2080 		dma_pool_destroy(dev->prp_page_pool);
2081 		return -ENOMEM;
2082 	}
2083 	return 0;
2084 }
2085 
2086 static void nvme_release_prp_pools(struct nvme_dev *dev)
2087 {
2088 	dma_pool_destroy(dev->prp_page_pool);
2089 	dma_pool_destroy(dev->prp_small_pool);
2090 }
2091 
2092 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2093 {
2094 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2095 
2096 	nvme_dbbuf_dma_free(dev);
2097 	put_device(dev->dev);
2098 	if (dev->tagset.tags)
2099 		blk_mq_free_tag_set(&dev->tagset);
2100 	if (dev->ctrl.admin_q)
2101 		blk_put_queue(dev->ctrl.admin_q);
2102 	kfree(dev->queues);
2103 	free_opal_dev(dev->ctrl.opal_dev);
2104 	kfree(dev);
2105 }
2106 
2107 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2108 {
2109 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2110 
2111 	kref_get(&dev->ctrl.kref);
2112 	nvme_dev_disable(dev, false);
2113 	if (!schedule_work(&dev->remove_work))
2114 		nvme_put_ctrl(&dev->ctrl);
2115 }
2116 
2117 static void nvme_reset_work(struct work_struct *work)
2118 {
2119 	struct nvme_dev *dev =
2120 		container_of(work, struct nvme_dev, ctrl.reset_work);
2121 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2122 	int result = -ENODEV;
2123 
2124 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2125 		goto out;
2126 
2127 	/*
2128 	 * If we're called to reset a live controller first shut it down before
2129 	 * moving on.
2130 	 */
2131 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2132 		nvme_dev_disable(dev, false);
2133 
2134 	result = nvme_pci_enable(dev);
2135 	if (result)
2136 		goto out;
2137 
2138 	result = nvme_pci_configure_admin_queue(dev);
2139 	if (result)
2140 		goto out;
2141 
2142 	nvme_init_queue(dev->queues[0], 0);
2143 	result = nvme_alloc_admin_tags(dev);
2144 	if (result)
2145 		goto out;
2146 
2147 	result = nvme_init_identify(&dev->ctrl);
2148 	if (result)
2149 		goto out;
2150 
2151 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2152 		if (!dev->ctrl.opal_dev)
2153 			dev->ctrl.opal_dev =
2154 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2155 		else if (was_suspend)
2156 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2157 	} else {
2158 		free_opal_dev(dev->ctrl.opal_dev);
2159 		dev->ctrl.opal_dev = NULL;
2160 	}
2161 
2162 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2163 		result = nvme_dbbuf_dma_alloc(dev);
2164 		if (result)
2165 			dev_warn(dev->dev,
2166 				 "unable to allocate dma for dbbuf\n");
2167 	}
2168 
2169 	if (dev->ctrl.hmpre)
2170 		nvme_setup_host_mem(dev);
2171 
2172 	result = nvme_setup_io_queues(dev);
2173 	if (result)
2174 		goto out;
2175 
2176 	/*
2177 	 * Keep the controller around but remove all namespaces if we don't have
2178 	 * any working I/O queue.
2179 	 */
2180 	if (dev->online_queues < 2) {
2181 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2182 		nvme_kill_queues(&dev->ctrl);
2183 		nvme_remove_namespaces(&dev->ctrl);
2184 	} else {
2185 		nvme_start_queues(&dev->ctrl);
2186 		nvme_wait_freeze(&dev->ctrl);
2187 		nvme_dev_add(dev);
2188 		nvme_unfreeze(&dev->ctrl);
2189 	}
2190 
2191 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2192 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2193 		goto out;
2194 	}
2195 
2196 	nvme_start_ctrl(&dev->ctrl);
2197 	return;
2198 
2199  out:
2200 	nvme_remove_dead_ctrl(dev, result);
2201 }
2202 
2203 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2204 {
2205 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2206 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2207 
2208 	nvme_kill_queues(&dev->ctrl);
2209 	if (pci_get_drvdata(pdev))
2210 		device_release_driver(&pdev->dev);
2211 	nvme_put_ctrl(&dev->ctrl);
2212 }
2213 
2214 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2215 {
2216 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2217 	return 0;
2218 }
2219 
2220 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2221 {
2222 	writel(val, to_nvme_dev(ctrl)->bar + off);
2223 	return 0;
2224 }
2225 
2226 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2227 {
2228 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2229 	return 0;
2230 }
2231 
2232 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2233 	.name			= "pcie",
2234 	.module			= THIS_MODULE,
2235 	.flags			= NVME_F_METADATA_SUPPORTED,
2236 	.reg_read32		= nvme_pci_reg_read32,
2237 	.reg_write32		= nvme_pci_reg_write32,
2238 	.reg_read64		= nvme_pci_reg_read64,
2239 	.free_ctrl		= nvme_pci_free_ctrl,
2240 	.submit_async_event	= nvme_pci_submit_async_event,
2241 };
2242 
2243 static int nvme_dev_map(struct nvme_dev *dev)
2244 {
2245 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2246 
2247 	if (pci_request_mem_regions(pdev, "nvme"))
2248 		return -ENODEV;
2249 
2250 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2251 		goto release;
2252 
2253 	return 0;
2254   release:
2255 	pci_release_mem_regions(pdev);
2256 	return -ENODEV;
2257 }
2258 
2259 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2260 {
2261 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2262 		/*
2263 		 * Several Samsung devices seem to drop off the PCIe bus
2264 		 * randomly when APST is on and uses the deepest sleep state.
2265 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2266 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2267 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2268 		 * laptops.
2269 		 */
2270 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2271 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2272 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2273 			return NVME_QUIRK_NO_DEEPEST_PS;
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2280 {
2281 	int node, result = -ENOMEM;
2282 	struct nvme_dev *dev;
2283 	unsigned long quirks = id->driver_data;
2284 
2285 	node = dev_to_node(&pdev->dev);
2286 	if (node == NUMA_NO_NODE)
2287 		set_dev_node(&pdev->dev, first_memory_node);
2288 
2289 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2290 	if (!dev)
2291 		return -ENOMEM;
2292 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2293 							GFP_KERNEL, node);
2294 	if (!dev->queues)
2295 		goto free;
2296 
2297 	dev->dev = get_device(&pdev->dev);
2298 	pci_set_drvdata(pdev, dev);
2299 
2300 	result = nvme_dev_map(dev);
2301 	if (result)
2302 		goto put_pci;
2303 
2304 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2305 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2306 	mutex_init(&dev->shutdown_lock);
2307 	init_completion(&dev->ioq_wait);
2308 
2309 	result = nvme_setup_prp_pools(dev);
2310 	if (result)
2311 		goto unmap;
2312 
2313 	quirks |= check_dell_samsung_bug(pdev);
2314 
2315 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2316 			quirks);
2317 	if (result)
2318 		goto release_pools;
2319 
2320 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2321 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2322 
2323 	queue_work(nvme_wq, &dev->ctrl.reset_work);
2324 	return 0;
2325 
2326  release_pools:
2327 	nvme_release_prp_pools(dev);
2328  unmap:
2329 	nvme_dev_unmap(dev);
2330  put_pci:
2331 	put_device(dev->dev);
2332  free:
2333 	kfree(dev->queues);
2334 	kfree(dev);
2335 	return result;
2336 }
2337 
2338 static void nvme_reset_prepare(struct pci_dev *pdev)
2339 {
2340 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2341 	nvme_dev_disable(dev, false);
2342 }
2343 
2344 static void nvme_reset_done(struct pci_dev *pdev)
2345 {
2346 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2347 	nvme_reset_ctrl(&dev->ctrl);
2348 }
2349 
2350 static void nvme_shutdown(struct pci_dev *pdev)
2351 {
2352 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2353 	nvme_dev_disable(dev, true);
2354 }
2355 
2356 /*
2357  * The driver's remove may be called on a device in a partially initialized
2358  * state. This function must not have any dependencies on the device state in
2359  * order to proceed.
2360  */
2361 static void nvme_remove(struct pci_dev *pdev)
2362 {
2363 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2364 
2365 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2366 
2367 	cancel_work_sync(&dev->ctrl.reset_work);
2368 	pci_set_drvdata(pdev, NULL);
2369 
2370 	if (!pci_device_is_present(pdev)) {
2371 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2372 		nvme_dev_disable(dev, false);
2373 	}
2374 
2375 	flush_work(&dev->ctrl.reset_work);
2376 	nvme_stop_ctrl(&dev->ctrl);
2377 	nvme_remove_namespaces(&dev->ctrl);
2378 	nvme_dev_disable(dev, true);
2379 	nvme_free_host_mem(dev);
2380 	nvme_dev_remove_admin(dev);
2381 	nvme_free_queues(dev, 0);
2382 	nvme_uninit_ctrl(&dev->ctrl);
2383 	nvme_release_prp_pools(dev);
2384 	nvme_dev_unmap(dev);
2385 	nvme_put_ctrl(&dev->ctrl);
2386 }
2387 
2388 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2389 {
2390 	int ret = 0;
2391 
2392 	if (numvfs == 0) {
2393 		if (pci_vfs_assigned(pdev)) {
2394 			dev_warn(&pdev->dev,
2395 				"Cannot disable SR-IOV VFs while assigned\n");
2396 			return -EPERM;
2397 		}
2398 		pci_disable_sriov(pdev);
2399 		return 0;
2400 	}
2401 
2402 	ret = pci_enable_sriov(pdev, numvfs);
2403 	return ret ? ret : numvfs;
2404 }
2405 
2406 #ifdef CONFIG_PM_SLEEP
2407 static int nvme_suspend(struct device *dev)
2408 {
2409 	struct pci_dev *pdev = to_pci_dev(dev);
2410 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2411 
2412 	nvme_dev_disable(ndev, true);
2413 	return 0;
2414 }
2415 
2416 static int nvme_resume(struct device *dev)
2417 {
2418 	struct pci_dev *pdev = to_pci_dev(dev);
2419 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2420 
2421 	nvme_reset_ctrl(&ndev->ctrl);
2422 	return 0;
2423 }
2424 #endif
2425 
2426 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2427 
2428 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2429 						pci_channel_state_t state)
2430 {
2431 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2432 
2433 	/*
2434 	 * A frozen channel requires a reset. When detected, this method will
2435 	 * shutdown the controller to quiesce. The controller will be restarted
2436 	 * after the slot reset through driver's slot_reset callback.
2437 	 */
2438 	switch (state) {
2439 	case pci_channel_io_normal:
2440 		return PCI_ERS_RESULT_CAN_RECOVER;
2441 	case pci_channel_io_frozen:
2442 		dev_warn(dev->ctrl.device,
2443 			"frozen state error detected, reset controller\n");
2444 		nvme_dev_disable(dev, false);
2445 		return PCI_ERS_RESULT_NEED_RESET;
2446 	case pci_channel_io_perm_failure:
2447 		dev_warn(dev->ctrl.device,
2448 			"failure state error detected, request disconnect\n");
2449 		return PCI_ERS_RESULT_DISCONNECT;
2450 	}
2451 	return PCI_ERS_RESULT_NEED_RESET;
2452 }
2453 
2454 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2455 {
2456 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2457 
2458 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2459 	pci_restore_state(pdev);
2460 	nvme_reset_ctrl(&dev->ctrl);
2461 	return PCI_ERS_RESULT_RECOVERED;
2462 }
2463 
2464 static void nvme_error_resume(struct pci_dev *pdev)
2465 {
2466 	pci_cleanup_aer_uncorrect_error_status(pdev);
2467 }
2468 
2469 static const struct pci_error_handlers nvme_err_handler = {
2470 	.error_detected	= nvme_error_detected,
2471 	.slot_reset	= nvme_slot_reset,
2472 	.resume		= nvme_error_resume,
2473 	.reset_prepare	= nvme_reset_prepare,
2474 	.reset_done	= nvme_reset_done,
2475 };
2476 
2477 static const struct pci_device_id nvme_id_table[] = {
2478 	{ PCI_VDEVICE(INTEL, 0x0953),
2479 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2480 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2481 	{ PCI_VDEVICE(INTEL, 0x0a53),
2482 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2483 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2484 	{ PCI_VDEVICE(INTEL, 0x0a54),
2485 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2486 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2487 	{ PCI_VDEVICE(INTEL, 0x0a55),
2488 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2489 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2490 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2491 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2492 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2493 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2494 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2495 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2496 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2497 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2498 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2499 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2500 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2501 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2502 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2503 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2504 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2505 	{ 0, }
2506 };
2507 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2508 
2509 static struct pci_driver nvme_driver = {
2510 	.name		= "nvme",
2511 	.id_table	= nvme_id_table,
2512 	.probe		= nvme_probe,
2513 	.remove		= nvme_remove,
2514 	.shutdown	= nvme_shutdown,
2515 	.driver		= {
2516 		.pm	= &nvme_dev_pm_ops,
2517 	},
2518 	.sriov_configure = nvme_pci_sriov_configure,
2519 	.err_handler	= &nvme_err_handler,
2520 };
2521 
2522 static int __init nvme_init(void)
2523 {
2524 	return pci_register_driver(&nvme_driver);
2525 }
2526 
2527 static void __exit nvme_exit(void)
2528 {
2529 	pci_unregister_driver(&nvme_driver);
2530 	_nvme_check_size();
2531 }
2532 
2533 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2534 MODULE_LICENSE("GPL");
2535 MODULE_VERSION("1.0");
2536 module_init(nvme_init);
2537 module_exit(nvme_exit);
2538