xref: /openbmc/linux/drivers/nvme/host/pci.c (revision d2574c33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/t10-pi.h>
22 #include <linux/types.h>
23 #include <linux/io-64-nonatomic-lo-hi.h>
24 #include <linux/sed-opal.h>
25 #include <linux/pci-p2pdma.h>
26 
27 #include "trace.h"
28 #include "nvme.h"
29 
30 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
31 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
32 
33 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
34 
35 /*
36  * These can be higher, but we need to ensure that any command doesn't
37  * require an sg allocation that needs more than a page of data.
38  */
39 #define NVME_MAX_KB_SZ	4096
40 #define NVME_MAX_SEGS	127
41 
42 static int use_threaded_interrupts;
43 module_param(use_threaded_interrupts, int, 0);
44 
45 static bool use_cmb_sqes = true;
46 module_param(use_cmb_sqes, bool, 0444);
47 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
48 
49 static unsigned int max_host_mem_size_mb = 128;
50 module_param(max_host_mem_size_mb, uint, 0444);
51 MODULE_PARM_DESC(max_host_mem_size_mb,
52 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
53 
54 static unsigned int sgl_threshold = SZ_32K;
55 module_param(sgl_threshold, uint, 0644);
56 MODULE_PARM_DESC(sgl_threshold,
57 		"Use SGLs when average request segment size is larger or equal to "
58 		"this size. Use 0 to disable SGLs.");
59 
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62 	.set = io_queue_depth_set,
63 	.get = param_get_int,
64 };
65 
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69 
70 static int queue_count_set(const char *val, const struct kernel_param *kp);
71 static const struct kernel_param_ops queue_count_ops = {
72 	.set = queue_count_set,
73 	.get = param_get_int,
74 };
75 
76 static int write_queues;
77 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
78 MODULE_PARM_DESC(write_queues,
79 	"Number of queues to use for writes. If not set, reads and writes "
80 	"will share a queue set.");
81 
82 static int poll_queues = 0;
83 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
84 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
85 
86 struct nvme_dev;
87 struct nvme_queue;
88 
89 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
90 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
91 
92 /*
93  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
94  */
95 struct nvme_dev {
96 	struct nvme_queue *queues;
97 	struct blk_mq_tag_set tagset;
98 	struct blk_mq_tag_set admin_tagset;
99 	u32 __iomem *dbs;
100 	struct device *dev;
101 	struct dma_pool *prp_page_pool;
102 	struct dma_pool *prp_small_pool;
103 	unsigned online_queues;
104 	unsigned max_qid;
105 	unsigned io_queues[HCTX_MAX_TYPES];
106 	unsigned int num_vecs;
107 	int q_depth;
108 	u32 db_stride;
109 	void __iomem *bar;
110 	unsigned long bar_mapped_size;
111 	struct work_struct remove_work;
112 	struct mutex shutdown_lock;
113 	bool subsystem;
114 	u64 cmb_size;
115 	bool cmb_use_sqes;
116 	u32 cmbsz;
117 	u32 cmbloc;
118 	struct nvme_ctrl ctrl;
119 
120 	mempool_t *iod_mempool;
121 
122 	/* shadow doorbell buffer support: */
123 	u32 *dbbuf_dbs;
124 	dma_addr_t dbbuf_dbs_dma_addr;
125 	u32 *dbbuf_eis;
126 	dma_addr_t dbbuf_eis_dma_addr;
127 
128 	/* host memory buffer support: */
129 	u64 host_mem_size;
130 	u32 nr_host_mem_descs;
131 	dma_addr_t host_mem_descs_dma;
132 	struct nvme_host_mem_buf_desc *host_mem_descs;
133 	void **host_mem_desc_bufs;
134 };
135 
136 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
137 {
138 	int n = 0, ret;
139 
140 	ret = kstrtoint(val, 10, &n);
141 	if (ret != 0 || n < 2)
142 		return -EINVAL;
143 
144 	return param_set_int(val, kp);
145 }
146 
147 static int queue_count_set(const char *val, const struct kernel_param *kp)
148 {
149 	int n = 0, ret;
150 
151 	ret = kstrtoint(val, 10, &n);
152 	if (ret)
153 		return ret;
154 	if (n > num_possible_cpus())
155 		n = num_possible_cpus();
156 
157 	return param_set_int(val, kp);
158 }
159 
160 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
161 {
162 	return qid * 2 * stride;
163 }
164 
165 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
166 {
167 	return (qid * 2 + 1) * stride;
168 }
169 
170 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
171 {
172 	return container_of(ctrl, struct nvme_dev, ctrl);
173 }
174 
175 /*
176  * An NVM Express queue.  Each device has at least two (one for admin
177  * commands and one for I/O commands).
178  */
179 struct nvme_queue {
180 	struct device *q_dmadev;
181 	struct nvme_dev *dev;
182 	spinlock_t sq_lock;
183 	struct nvme_command *sq_cmds;
184 	 /* only used for poll queues: */
185 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
186 	volatile struct nvme_completion *cqes;
187 	struct blk_mq_tags **tags;
188 	dma_addr_t sq_dma_addr;
189 	dma_addr_t cq_dma_addr;
190 	u32 __iomem *q_db;
191 	u16 q_depth;
192 	s16 cq_vector;
193 	u16 sq_tail;
194 	u16 last_sq_tail;
195 	u16 cq_head;
196 	u16 last_cq_head;
197 	u16 qid;
198 	u8 cq_phase;
199 	unsigned long flags;
200 #define NVMEQ_ENABLED		0
201 #define NVMEQ_SQ_CMB		1
202 #define NVMEQ_DELETE_ERROR	2
203 	u32 *dbbuf_sq_db;
204 	u32 *dbbuf_cq_db;
205 	u32 *dbbuf_sq_ei;
206 	u32 *dbbuf_cq_ei;
207 	struct completion delete_done;
208 };
209 
210 /*
211  * The nvme_iod describes the data in an I/O, including the list of PRP
212  * entries.  You can't see it in this data structure because C doesn't let
213  * me express that.  Use nvme_init_iod to ensure there's enough space
214  * allocated to store the PRP list.
215  */
216 struct nvme_iod {
217 	struct nvme_request req;
218 	struct nvme_queue *nvmeq;
219 	bool use_sgl;
220 	int aborted;
221 	int npages;		/* In the PRP list. 0 means small pool in use */
222 	int nents;		/* Used in scatterlist */
223 	int length;		/* Of data, in bytes */
224 	dma_addr_t first_dma;
225 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
226 	struct scatterlist *sg;
227 	struct scatterlist inline_sg[0];
228 };
229 
230 /*
231  * Check we didin't inadvertently grow the command struct
232  */
233 static inline void _nvme_check_size(void)
234 {
235 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
236 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
237 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
238 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
239 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
240 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
241 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
242 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
243 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
244 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
245 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
246 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
247 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
248 }
249 
250 static unsigned int max_io_queues(void)
251 {
252 	return num_possible_cpus() + write_queues + poll_queues;
253 }
254 
255 static unsigned int max_queue_count(void)
256 {
257 	/* IO queues + admin queue */
258 	return 1 + max_io_queues();
259 }
260 
261 static inline unsigned int nvme_dbbuf_size(u32 stride)
262 {
263 	return (max_queue_count() * 8 * stride);
264 }
265 
266 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
267 {
268 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
269 
270 	if (dev->dbbuf_dbs)
271 		return 0;
272 
273 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
274 					    &dev->dbbuf_dbs_dma_addr,
275 					    GFP_KERNEL);
276 	if (!dev->dbbuf_dbs)
277 		return -ENOMEM;
278 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
279 					    &dev->dbbuf_eis_dma_addr,
280 					    GFP_KERNEL);
281 	if (!dev->dbbuf_eis) {
282 		dma_free_coherent(dev->dev, mem_size,
283 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
284 		dev->dbbuf_dbs = NULL;
285 		return -ENOMEM;
286 	}
287 
288 	return 0;
289 }
290 
291 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
292 {
293 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
294 
295 	if (dev->dbbuf_dbs) {
296 		dma_free_coherent(dev->dev, mem_size,
297 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
298 		dev->dbbuf_dbs = NULL;
299 	}
300 	if (dev->dbbuf_eis) {
301 		dma_free_coherent(dev->dev, mem_size,
302 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
303 		dev->dbbuf_eis = NULL;
304 	}
305 }
306 
307 static void nvme_dbbuf_init(struct nvme_dev *dev,
308 			    struct nvme_queue *nvmeq, int qid)
309 {
310 	if (!dev->dbbuf_dbs || !qid)
311 		return;
312 
313 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
314 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
315 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
316 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
317 }
318 
319 static void nvme_dbbuf_set(struct nvme_dev *dev)
320 {
321 	struct nvme_command c;
322 
323 	if (!dev->dbbuf_dbs)
324 		return;
325 
326 	memset(&c, 0, sizeof(c));
327 	c.dbbuf.opcode = nvme_admin_dbbuf;
328 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
329 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
330 
331 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
332 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
333 		/* Free memory and continue on */
334 		nvme_dbbuf_dma_free(dev);
335 	}
336 }
337 
338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
339 {
340 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
341 }
342 
343 /* Update dbbuf and return true if an MMIO is required */
344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
345 					      volatile u32 *dbbuf_ei)
346 {
347 	if (dbbuf_db) {
348 		u16 old_value;
349 
350 		/*
351 		 * Ensure that the queue is written before updating
352 		 * the doorbell in memory
353 		 */
354 		wmb();
355 
356 		old_value = *dbbuf_db;
357 		*dbbuf_db = value;
358 
359 		/*
360 		 * Ensure that the doorbell is updated before reading the event
361 		 * index from memory.  The controller needs to provide similar
362 		 * ordering to ensure the envent index is updated before reading
363 		 * the doorbell.
364 		 */
365 		mb();
366 
367 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
368 			return false;
369 	}
370 
371 	return true;
372 }
373 
374 /*
375  * Max size of iod being embedded in the request payload
376  */
377 #define NVME_INT_PAGES		2
378 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
379 
380 /*
381  * Will slightly overestimate the number of pages needed.  This is OK
382  * as it only leads to a small amount of wasted memory for the lifetime of
383  * the I/O.
384  */
385 static int nvme_npages(unsigned size, struct nvme_dev *dev)
386 {
387 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
388 				      dev->ctrl.page_size);
389 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
390 }
391 
392 /*
393  * Calculates the number of pages needed for the SGL segments. For example a 4k
394  * page can accommodate 256 SGL descriptors.
395  */
396 static int nvme_pci_npages_sgl(unsigned int num_seg)
397 {
398 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
399 }
400 
401 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
402 		unsigned int size, unsigned int nseg, bool use_sgl)
403 {
404 	size_t alloc_size;
405 
406 	if (use_sgl)
407 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
408 	else
409 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
410 
411 	return alloc_size + sizeof(struct scatterlist) * nseg;
412 }
413 
414 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
415 {
416 	unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
417 				    NVME_INT_BYTES(dev), NVME_INT_PAGES,
418 				    use_sgl);
419 
420 	return sizeof(struct nvme_iod) + alloc_size;
421 }
422 
423 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
424 				unsigned int hctx_idx)
425 {
426 	struct nvme_dev *dev = data;
427 	struct nvme_queue *nvmeq = &dev->queues[0];
428 
429 	WARN_ON(hctx_idx != 0);
430 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
431 	WARN_ON(nvmeq->tags);
432 
433 	hctx->driver_data = nvmeq;
434 	nvmeq->tags = &dev->admin_tagset.tags[0];
435 	return 0;
436 }
437 
438 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
439 {
440 	struct nvme_queue *nvmeq = hctx->driver_data;
441 
442 	nvmeq->tags = NULL;
443 }
444 
445 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
446 			  unsigned int hctx_idx)
447 {
448 	struct nvme_dev *dev = data;
449 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
450 
451 	if (!nvmeq->tags)
452 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
453 
454 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
455 	hctx->driver_data = nvmeq;
456 	return 0;
457 }
458 
459 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
460 		unsigned int hctx_idx, unsigned int numa_node)
461 {
462 	struct nvme_dev *dev = set->driver_data;
463 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
464 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
465 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
466 
467 	BUG_ON(!nvmeq);
468 	iod->nvmeq = nvmeq;
469 
470 	nvme_req(req)->ctrl = &dev->ctrl;
471 	return 0;
472 }
473 
474 static int queue_irq_offset(struct nvme_dev *dev)
475 {
476 	/* if we have more than 1 vec, admin queue offsets us by 1 */
477 	if (dev->num_vecs > 1)
478 		return 1;
479 
480 	return 0;
481 }
482 
483 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
484 {
485 	struct nvme_dev *dev = set->driver_data;
486 	int i, qoff, offset;
487 
488 	offset = queue_irq_offset(dev);
489 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
490 		struct blk_mq_queue_map *map = &set->map[i];
491 
492 		map->nr_queues = dev->io_queues[i];
493 		if (!map->nr_queues) {
494 			BUG_ON(i == HCTX_TYPE_DEFAULT);
495 			continue;
496 		}
497 
498 		/*
499 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
500 		 * affinity), so use the regular blk-mq cpu mapping
501 		 */
502 		map->queue_offset = qoff;
503 		if (i != HCTX_TYPE_POLL)
504 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
505 		else
506 			blk_mq_map_queues(map);
507 		qoff += map->nr_queues;
508 		offset += map->nr_queues;
509 	}
510 
511 	return 0;
512 }
513 
514 /*
515  * Write sq tail if we are asked to, or if the next command would wrap.
516  */
517 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
518 {
519 	if (!write_sq) {
520 		u16 next_tail = nvmeq->sq_tail + 1;
521 
522 		if (next_tail == nvmeq->q_depth)
523 			next_tail = 0;
524 		if (next_tail != nvmeq->last_sq_tail)
525 			return;
526 	}
527 
528 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
529 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
530 		writel(nvmeq->sq_tail, nvmeq->q_db);
531 	nvmeq->last_sq_tail = nvmeq->sq_tail;
532 }
533 
534 /**
535  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
536  * @nvmeq: The queue to use
537  * @cmd: The command to send
538  * @write_sq: whether to write to the SQ doorbell
539  */
540 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
541 			    bool write_sq)
542 {
543 	spin_lock(&nvmeq->sq_lock);
544 	memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
545 	if (++nvmeq->sq_tail == nvmeq->q_depth)
546 		nvmeq->sq_tail = 0;
547 	nvme_write_sq_db(nvmeq, write_sq);
548 	spin_unlock(&nvmeq->sq_lock);
549 }
550 
551 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
552 {
553 	struct nvme_queue *nvmeq = hctx->driver_data;
554 
555 	spin_lock(&nvmeq->sq_lock);
556 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
557 		nvme_write_sq_db(nvmeq, true);
558 	spin_unlock(&nvmeq->sq_lock);
559 }
560 
561 static void **nvme_pci_iod_list(struct request *req)
562 {
563 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
564 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
565 }
566 
567 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
568 {
569 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
570 	int nseg = blk_rq_nr_phys_segments(req);
571 	unsigned int avg_seg_size;
572 
573 	if (nseg == 0)
574 		return false;
575 
576 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
577 
578 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
579 		return false;
580 	if (!iod->nvmeq->qid)
581 		return false;
582 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
583 		return false;
584 	return true;
585 }
586 
587 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
588 {
589 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
590 	int nseg = blk_rq_nr_phys_segments(rq);
591 	unsigned int size = blk_rq_payload_bytes(rq);
592 
593 	iod->use_sgl = nvme_pci_use_sgls(dev, rq);
594 
595 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
596 		iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
597 		if (!iod->sg)
598 			return BLK_STS_RESOURCE;
599 	} else {
600 		iod->sg = iod->inline_sg;
601 	}
602 
603 	iod->aborted = 0;
604 	iod->npages = -1;
605 	iod->nents = 0;
606 	iod->length = size;
607 
608 	return BLK_STS_OK;
609 }
610 
611 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
612 {
613 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
614 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
615 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
616 
617 	int i;
618 
619 	if (iod->npages == 0)
620 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
621 			dma_addr);
622 
623 	for (i = 0; i < iod->npages; i++) {
624 		void *addr = nvme_pci_iod_list(req)[i];
625 
626 		if (iod->use_sgl) {
627 			struct nvme_sgl_desc *sg_list = addr;
628 
629 			next_dma_addr =
630 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
631 		} else {
632 			__le64 *prp_list = addr;
633 
634 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
635 		}
636 
637 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
638 		dma_addr = next_dma_addr;
639 	}
640 
641 	if (iod->sg != iod->inline_sg)
642 		mempool_free(iod->sg, dev->iod_mempool);
643 }
644 
645 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
646 {
647 	int i;
648 	struct scatterlist *sg;
649 
650 	for_each_sg(sgl, sg, nents, i) {
651 		dma_addr_t phys = sg_phys(sg);
652 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
653 			"dma_address:%pad dma_length:%d\n",
654 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
655 			sg_dma_len(sg));
656 	}
657 }
658 
659 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
660 		struct request *req, struct nvme_rw_command *cmnd)
661 {
662 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
663 	struct dma_pool *pool;
664 	int length = blk_rq_payload_bytes(req);
665 	struct scatterlist *sg = iod->sg;
666 	int dma_len = sg_dma_len(sg);
667 	u64 dma_addr = sg_dma_address(sg);
668 	u32 page_size = dev->ctrl.page_size;
669 	int offset = dma_addr & (page_size - 1);
670 	__le64 *prp_list;
671 	void **list = nvme_pci_iod_list(req);
672 	dma_addr_t prp_dma;
673 	int nprps, i;
674 
675 	length -= (page_size - offset);
676 	if (length <= 0) {
677 		iod->first_dma = 0;
678 		goto done;
679 	}
680 
681 	dma_len -= (page_size - offset);
682 	if (dma_len) {
683 		dma_addr += (page_size - offset);
684 	} else {
685 		sg = sg_next(sg);
686 		dma_addr = sg_dma_address(sg);
687 		dma_len = sg_dma_len(sg);
688 	}
689 
690 	if (length <= page_size) {
691 		iod->first_dma = dma_addr;
692 		goto done;
693 	}
694 
695 	nprps = DIV_ROUND_UP(length, page_size);
696 	if (nprps <= (256 / 8)) {
697 		pool = dev->prp_small_pool;
698 		iod->npages = 0;
699 	} else {
700 		pool = dev->prp_page_pool;
701 		iod->npages = 1;
702 	}
703 
704 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
705 	if (!prp_list) {
706 		iod->first_dma = dma_addr;
707 		iod->npages = -1;
708 		return BLK_STS_RESOURCE;
709 	}
710 	list[0] = prp_list;
711 	iod->first_dma = prp_dma;
712 	i = 0;
713 	for (;;) {
714 		if (i == page_size >> 3) {
715 			__le64 *old_prp_list = prp_list;
716 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
717 			if (!prp_list)
718 				return BLK_STS_RESOURCE;
719 			list[iod->npages++] = prp_list;
720 			prp_list[0] = old_prp_list[i - 1];
721 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
722 			i = 1;
723 		}
724 		prp_list[i++] = cpu_to_le64(dma_addr);
725 		dma_len -= page_size;
726 		dma_addr += page_size;
727 		length -= page_size;
728 		if (length <= 0)
729 			break;
730 		if (dma_len > 0)
731 			continue;
732 		if (unlikely(dma_len < 0))
733 			goto bad_sgl;
734 		sg = sg_next(sg);
735 		dma_addr = sg_dma_address(sg);
736 		dma_len = sg_dma_len(sg);
737 	}
738 
739 done:
740 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
741 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
742 
743 	return BLK_STS_OK;
744 
745  bad_sgl:
746 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
747 			"Invalid SGL for payload:%d nents:%d\n",
748 			blk_rq_payload_bytes(req), iod->nents);
749 	return BLK_STS_IOERR;
750 }
751 
752 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
753 		struct scatterlist *sg)
754 {
755 	sge->addr = cpu_to_le64(sg_dma_address(sg));
756 	sge->length = cpu_to_le32(sg_dma_len(sg));
757 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
758 }
759 
760 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
761 		dma_addr_t dma_addr, int entries)
762 {
763 	sge->addr = cpu_to_le64(dma_addr);
764 	if (entries < SGES_PER_PAGE) {
765 		sge->length = cpu_to_le32(entries * sizeof(*sge));
766 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
767 	} else {
768 		sge->length = cpu_to_le32(PAGE_SIZE);
769 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
770 	}
771 }
772 
773 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
774 		struct request *req, struct nvme_rw_command *cmd, int entries)
775 {
776 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
777 	struct dma_pool *pool;
778 	struct nvme_sgl_desc *sg_list;
779 	struct scatterlist *sg = iod->sg;
780 	dma_addr_t sgl_dma;
781 	int i = 0;
782 
783 	/* setting the transfer type as SGL */
784 	cmd->flags = NVME_CMD_SGL_METABUF;
785 
786 	if (entries == 1) {
787 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
788 		return BLK_STS_OK;
789 	}
790 
791 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
792 		pool = dev->prp_small_pool;
793 		iod->npages = 0;
794 	} else {
795 		pool = dev->prp_page_pool;
796 		iod->npages = 1;
797 	}
798 
799 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
800 	if (!sg_list) {
801 		iod->npages = -1;
802 		return BLK_STS_RESOURCE;
803 	}
804 
805 	nvme_pci_iod_list(req)[0] = sg_list;
806 	iod->first_dma = sgl_dma;
807 
808 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
809 
810 	do {
811 		if (i == SGES_PER_PAGE) {
812 			struct nvme_sgl_desc *old_sg_desc = sg_list;
813 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
814 
815 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
816 			if (!sg_list)
817 				return BLK_STS_RESOURCE;
818 
819 			i = 0;
820 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
821 			sg_list[i++] = *link;
822 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
823 		}
824 
825 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
826 		sg = sg_next(sg);
827 	} while (--entries > 0);
828 
829 	return BLK_STS_OK;
830 }
831 
832 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
833 		struct nvme_command *cmnd)
834 {
835 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836 	struct request_queue *q = req->q;
837 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
838 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
839 	blk_status_t ret = BLK_STS_IOERR;
840 	int nr_mapped;
841 
842 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
843 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
844 	if (!iod->nents)
845 		goto out;
846 
847 	ret = BLK_STS_RESOURCE;
848 
849 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
850 		nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
851 					  dma_dir);
852 	else
853 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
854 					     dma_dir,  DMA_ATTR_NO_WARN);
855 	if (!nr_mapped)
856 		goto out;
857 
858 	if (iod->use_sgl)
859 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
860 	else
861 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
862 
863 	if (ret != BLK_STS_OK)
864 		goto out_unmap;
865 
866 	ret = BLK_STS_IOERR;
867 	if (blk_integrity_rq(req)) {
868 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
869 			goto out_unmap;
870 
871 		sg_init_table(&iod->meta_sg, 1);
872 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
873 			goto out_unmap;
874 
875 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
876 			goto out_unmap;
877 
878 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
879 	}
880 
881 	return BLK_STS_OK;
882 
883 out_unmap:
884 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
885 out:
886 	return ret;
887 }
888 
889 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
890 {
891 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
892 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
893 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
894 
895 	if (iod->nents) {
896 		/* P2PDMA requests do not need to be unmapped */
897 		if (!is_pci_p2pdma_page(sg_page(iod->sg)))
898 			dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
899 
900 		if (blk_integrity_rq(req))
901 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
902 	}
903 
904 	nvme_cleanup_cmd(req);
905 	nvme_free_iod(dev, req);
906 }
907 
908 /*
909  * NOTE: ns is NULL when called on the admin queue.
910  */
911 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
912 			 const struct blk_mq_queue_data *bd)
913 {
914 	struct nvme_ns *ns = hctx->queue->queuedata;
915 	struct nvme_queue *nvmeq = hctx->driver_data;
916 	struct nvme_dev *dev = nvmeq->dev;
917 	struct request *req = bd->rq;
918 	struct nvme_command cmnd;
919 	blk_status_t ret;
920 
921 	/*
922 	 * We should not need to do this, but we're still using this to
923 	 * ensure we can drain requests on a dying queue.
924 	 */
925 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
926 		return BLK_STS_IOERR;
927 
928 	ret = nvme_setup_cmd(ns, req, &cmnd);
929 	if (ret)
930 		return ret;
931 
932 	ret = nvme_init_iod(req, dev);
933 	if (ret)
934 		goto out_free_cmd;
935 
936 	if (blk_rq_nr_phys_segments(req)) {
937 		ret = nvme_map_data(dev, req, &cmnd);
938 		if (ret)
939 			goto out_cleanup_iod;
940 	}
941 
942 	blk_mq_start_request(req);
943 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
944 	return BLK_STS_OK;
945 out_cleanup_iod:
946 	nvme_free_iod(dev, req);
947 out_free_cmd:
948 	nvme_cleanup_cmd(req);
949 	return ret;
950 }
951 
952 static void nvme_pci_complete_rq(struct request *req)
953 {
954 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
955 
956 	nvme_unmap_data(iod->nvmeq->dev, req);
957 	nvme_complete_rq(req);
958 }
959 
960 /* We read the CQE phase first to check if the rest of the entry is valid */
961 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
962 {
963 	return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
964 			nvmeq->cq_phase;
965 }
966 
967 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
968 {
969 	u16 head = nvmeq->cq_head;
970 
971 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
972 					      nvmeq->dbbuf_cq_ei))
973 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
974 }
975 
976 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
977 {
978 	volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
979 	struct request *req;
980 
981 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
982 		dev_warn(nvmeq->dev->ctrl.device,
983 			"invalid id %d completed on queue %d\n",
984 			cqe->command_id, le16_to_cpu(cqe->sq_id));
985 		return;
986 	}
987 
988 	/*
989 	 * AEN requests are special as they don't time out and can
990 	 * survive any kind of queue freeze and often don't respond to
991 	 * aborts.  We don't even bother to allocate a struct request
992 	 * for them but rather special case them here.
993 	 */
994 	if (unlikely(nvmeq->qid == 0 &&
995 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
996 		nvme_complete_async_event(&nvmeq->dev->ctrl,
997 				cqe->status, &cqe->result);
998 		return;
999 	}
1000 
1001 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1002 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1003 	nvme_end_request(req, cqe->status, cqe->result);
1004 }
1005 
1006 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1007 {
1008 	while (start != end) {
1009 		nvme_handle_cqe(nvmeq, start);
1010 		if (++start == nvmeq->q_depth)
1011 			start = 0;
1012 	}
1013 }
1014 
1015 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1016 {
1017 	if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1018 		nvmeq->cq_head = 0;
1019 		nvmeq->cq_phase = !nvmeq->cq_phase;
1020 	} else {
1021 		nvmeq->cq_head++;
1022 	}
1023 }
1024 
1025 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1026 				  u16 *end, unsigned int tag)
1027 {
1028 	int found = 0;
1029 
1030 	*start = nvmeq->cq_head;
1031 	while (nvme_cqe_pending(nvmeq)) {
1032 		if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1033 			found++;
1034 		nvme_update_cq_head(nvmeq);
1035 	}
1036 	*end = nvmeq->cq_head;
1037 
1038 	if (*start != *end)
1039 		nvme_ring_cq_doorbell(nvmeq);
1040 	return found;
1041 }
1042 
1043 static irqreturn_t nvme_irq(int irq, void *data)
1044 {
1045 	struct nvme_queue *nvmeq = data;
1046 	irqreturn_t ret = IRQ_NONE;
1047 	u16 start, end;
1048 
1049 	/*
1050 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1051 	 * the irq handler, even if that was on another CPU.
1052 	 */
1053 	rmb();
1054 	if (nvmeq->cq_head != nvmeq->last_cq_head)
1055 		ret = IRQ_HANDLED;
1056 	nvme_process_cq(nvmeq, &start, &end, -1);
1057 	nvmeq->last_cq_head = nvmeq->cq_head;
1058 	wmb();
1059 
1060 	if (start != end) {
1061 		nvme_complete_cqes(nvmeq, start, end);
1062 		return IRQ_HANDLED;
1063 	}
1064 
1065 	return ret;
1066 }
1067 
1068 static irqreturn_t nvme_irq_check(int irq, void *data)
1069 {
1070 	struct nvme_queue *nvmeq = data;
1071 	if (nvme_cqe_pending(nvmeq))
1072 		return IRQ_WAKE_THREAD;
1073 	return IRQ_NONE;
1074 }
1075 
1076 /*
1077  * Poll for completions any queue, including those not dedicated to polling.
1078  * Can be called from any context.
1079  */
1080 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1081 {
1082 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1083 	u16 start, end;
1084 	int found;
1085 
1086 	/*
1087 	 * For a poll queue we need to protect against the polling thread
1088 	 * using the CQ lock.  For normal interrupt driven threads we have
1089 	 * to disable the interrupt to avoid racing with it.
1090 	 */
1091 	if (nvmeq->cq_vector == -1) {
1092 		spin_lock(&nvmeq->cq_poll_lock);
1093 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1094 		spin_unlock(&nvmeq->cq_poll_lock);
1095 	} else {
1096 		disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1098 		enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1099 	}
1100 
1101 	nvme_complete_cqes(nvmeq, start, end);
1102 	return found;
1103 }
1104 
1105 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1106 {
1107 	struct nvme_queue *nvmeq = hctx->driver_data;
1108 	u16 start, end;
1109 	bool found;
1110 
1111 	if (!nvme_cqe_pending(nvmeq))
1112 		return 0;
1113 
1114 	spin_lock(&nvmeq->cq_poll_lock);
1115 	found = nvme_process_cq(nvmeq, &start, &end, -1);
1116 	spin_unlock(&nvmeq->cq_poll_lock);
1117 
1118 	nvme_complete_cqes(nvmeq, start, end);
1119 	return found;
1120 }
1121 
1122 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1123 {
1124 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1125 	struct nvme_queue *nvmeq = &dev->queues[0];
1126 	struct nvme_command c;
1127 
1128 	memset(&c, 0, sizeof(c));
1129 	c.common.opcode = nvme_admin_async_event;
1130 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1131 	nvme_submit_cmd(nvmeq, &c, true);
1132 }
1133 
1134 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1135 {
1136 	struct nvme_command c;
1137 
1138 	memset(&c, 0, sizeof(c));
1139 	c.delete_queue.opcode = opcode;
1140 	c.delete_queue.qid = cpu_to_le16(id);
1141 
1142 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1143 }
1144 
1145 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1146 		struct nvme_queue *nvmeq, s16 vector)
1147 {
1148 	struct nvme_command c;
1149 	int flags = NVME_QUEUE_PHYS_CONTIG;
1150 
1151 	if (vector != -1)
1152 		flags |= NVME_CQ_IRQ_ENABLED;
1153 
1154 	/*
1155 	 * Note: we (ab)use the fact that the prp fields survive if no data
1156 	 * is attached to the request.
1157 	 */
1158 	memset(&c, 0, sizeof(c));
1159 	c.create_cq.opcode = nvme_admin_create_cq;
1160 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1161 	c.create_cq.cqid = cpu_to_le16(qid);
1162 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1163 	c.create_cq.cq_flags = cpu_to_le16(flags);
1164 	if (vector != -1)
1165 		c.create_cq.irq_vector = cpu_to_le16(vector);
1166 	else
1167 		c.create_cq.irq_vector = 0;
1168 
1169 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1170 }
1171 
1172 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1173 						struct nvme_queue *nvmeq)
1174 {
1175 	struct nvme_ctrl *ctrl = &dev->ctrl;
1176 	struct nvme_command c;
1177 	int flags = NVME_QUEUE_PHYS_CONTIG;
1178 
1179 	/*
1180 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1181 	 * set. Since URGENT priority is zeroes, it makes all queues
1182 	 * URGENT.
1183 	 */
1184 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1185 		flags |= NVME_SQ_PRIO_MEDIUM;
1186 
1187 	/*
1188 	 * Note: we (ab)use the fact that the prp fields survive if no data
1189 	 * is attached to the request.
1190 	 */
1191 	memset(&c, 0, sizeof(c));
1192 	c.create_sq.opcode = nvme_admin_create_sq;
1193 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1194 	c.create_sq.sqid = cpu_to_le16(qid);
1195 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1196 	c.create_sq.sq_flags = cpu_to_le16(flags);
1197 	c.create_sq.cqid = cpu_to_le16(qid);
1198 
1199 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1200 }
1201 
1202 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1203 {
1204 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1205 }
1206 
1207 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1208 {
1209 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1210 }
1211 
1212 static void abort_endio(struct request *req, blk_status_t error)
1213 {
1214 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1215 	struct nvme_queue *nvmeq = iod->nvmeq;
1216 
1217 	dev_warn(nvmeq->dev->ctrl.device,
1218 		 "Abort status: 0x%x", nvme_req(req)->status);
1219 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1220 	blk_mq_free_request(req);
1221 }
1222 
1223 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1224 {
1225 
1226 	/* If true, indicates loss of adapter communication, possibly by a
1227 	 * NVMe Subsystem reset.
1228 	 */
1229 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1230 
1231 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1232 	switch (dev->ctrl.state) {
1233 	case NVME_CTRL_RESETTING:
1234 	case NVME_CTRL_CONNECTING:
1235 		return false;
1236 	default:
1237 		break;
1238 	}
1239 
1240 	/* We shouldn't reset unless the controller is on fatal error state
1241 	 * _or_ if we lost the communication with it.
1242 	 */
1243 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1244 		return false;
1245 
1246 	return true;
1247 }
1248 
1249 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1250 {
1251 	/* Read a config register to help see what died. */
1252 	u16 pci_status;
1253 	int result;
1254 
1255 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1256 				      &pci_status);
1257 	if (result == PCIBIOS_SUCCESSFUL)
1258 		dev_warn(dev->ctrl.device,
1259 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1260 			 csts, pci_status);
1261 	else
1262 		dev_warn(dev->ctrl.device,
1263 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1264 			 csts, result);
1265 }
1266 
1267 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1268 {
1269 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1270 	struct nvme_queue *nvmeq = iod->nvmeq;
1271 	struct nvme_dev *dev = nvmeq->dev;
1272 	struct request *abort_req;
1273 	struct nvme_command cmd;
1274 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1275 
1276 	/* If PCI error recovery process is happening, we cannot reset or
1277 	 * the recovery mechanism will surely fail.
1278 	 */
1279 	mb();
1280 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1281 		return BLK_EH_RESET_TIMER;
1282 
1283 	/*
1284 	 * Reset immediately if the controller is failed
1285 	 */
1286 	if (nvme_should_reset(dev, csts)) {
1287 		nvme_warn_reset(dev, csts);
1288 		nvme_dev_disable(dev, false);
1289 		nvme_reset_ctrl(&dev->ctrl);
1290 		return BLK_EH_DONE;
1291 	}
1292 
1293 	/*
1294 	 * Did we miss an interrupt?
1295 	 */
1296 	if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1297 		dev_warn(dev->ctrl.device,
1298 			 "I/O %d QID %d timeout, completion polled\n",
1299 			 req->tag, nvmeq->qid);
1300 		return BLK_EH_DONE;
1301 	}
1302 
1303 	/*
1304 	 * Shutdown immediately if controller times out while starting. The
1305 	 * reset work will see the pci device disabled when it gets the forced
1306 	 * cancellation error. All outstanding requests are completed on
1307 	 * shutdown, so we return BLK_EH_DONE.
1308 	 */
1309 	switch (dev->ctrl.state) {
1310 	case NVME_CTRL_CONNECTING:
1311 	case NVME_CTRL_RESETTING:
1312 		dev_warn_ratelimited(dev->ctrl.device,
1313 			 "I/O %d QID %d timeout, disable controller\n",
1314 			 req->tag, nvmeq->qid);
1315 		nvme_dev_disable(dev, false);
1316 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1317 		return BLK_EH_DONE;
1318 	default:
1319 		break;
1320 	}
1321 
1322 	/*
1323  	 * Shutdown the controller immediately and schedule a reset if the
1324  	 * command was already aborted once before and still hasn't been
1325  	 * returned to the driver, or if this is the admin queue.
1326 	 */
1327 	if (!nvmeq->qid || iod->aborted) {
1328 		dev_warn(dev->ctrl.device,
1329 			 "I/O %d QID %d timeout, reset controller\n",
1330 			 req->tag, nvmeq->qid);
1331 		nvme_dev_disable(dev, false);
1332 		nvme_reset_ctrl(&dev->ctrl);
1333 
1334 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1335 		return BLK_EH_DONE;
1336 	}
1337 
1338 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1339 		atomic_inc(&dev->ctrl.abort_limit);
1340 		return BLK_EH_RESET_TIMER;
1341 	}
1342 	iod->aborted = 1;
1343 
1344 	memset(&cmd, 0, sizeof(cmd));
1345 	cmd.abort.opcode = nvme_admin_abort_cmd;
1346 	cmd.abort.cid = req->tag;
1347 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1348 
1349 	dev_warn(nvmeq->dev->ctrl.device,
1350 		"I/O %d QID %d timeout, aborting\n",
1351 		 req->tag, nvmeq->qid);
1352 
1353 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1354 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1355 	if (IS_ERR(abort_req)) {
1356 		atomic_inc(&dev->ctrl.abort_limit);
1357 		return BLK_EH_RESET_TIMER;
1358 	}
1359 
1360 	abort_req->timeout = ADMIN_TIMEOUT;
1361 	abort_req->end_io_data = NULL;
1362 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1363 
1364 	/*
1365 	 * The aborted req will be completed on receiving the abort req.
1366 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1367 	 * as the device then is in a faulty state.
1368 	 */
1369 	return BLK_EH_RESET_TIMER;
1370 }
1371 
1372 static void nvme_free_queue(struct nvme_queue *nvmeq)
1373 {
1374 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1375 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1376 	if (!nvmeq->sq_cmds)
1377 		return;
1378 
1379 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1380 		pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1381 				nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1382 	} else {
1383 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1384 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1385 	}
1386 }
1387 
1388 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1389 {
1390 	int i;
1391 
1392 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1393 		dev->ctrl.queue_count--;
1394 		nvme_free_queue(&dev->queues[i]);
1395 	}
1396 }
1397 
1398 /**
1399  * nvme_suspend_queue - put queue into suspended state
1400  * @nvmeq: queue to suspend
1401  */
1402 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1403 {
1404 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1405 		return 1;
1406 
1407 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1408 	mb();
1409 
1410 	nvmeq->dev->online_queues--;
1411 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1412 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1413 	if (nvmeq->cq_vector == -1)
1414 		return 0;
1415 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1416 	nvmeq->cq_vector = -1;
1417 	return 0;
1418 }
1419 
1420 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1421 {
1422 	int i;
1423 
1424 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1425 		nvme_suspend_queue(&dev->queues[i]);
1426 }
1427 
1428 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1429 {
1430 	struct nvme_queue *nvmeq = &dev->queues[0];
1431 
1432 	if (shutdown)
1433 		nvme_shutdown_ctrl(&dev->ctrl);
1434 	else
1435 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1436 
1437 	nvme_poll_irqdisable(nvmeq, -1);
1438 }
1439 
1440 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1441 				int entry_size)
1442 {
1443 	int q_depth = dev->q_depth;
1444 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1445 					  dev->ctrl.page_size);
1446 
1447 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1448 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1449 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1450 		q_depth = div_u64(mem_per_q, entry_size);
1451 
1452 		/*
1453 		 * Ensure the reduced q_depth is above some threshold where it
1454 		 * would be better to map queues in system memory with the
1455 		 * original depth
1456 		 */
1457 		if (q_depth < 64)
1458 			return -ENOMEM;
1459 	}
1460 
1461 	return q_depth;
1462 }
1463 
1464 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1465 				int qid, int depth)
1466 {
1467 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1468 
1469 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1470 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1471 		nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1472 						nvmeq->sq_cmds);
1473 		if (nvmeq->sq_dma_addr) {
1474 			set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1475 			return 0;
1476 		}
1477 	}
1478 
1479 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1480 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1481 	if (!nvmeq->sq_cmds)
1482 		return -ENOMEM;
1483 	return 0;
1484 }
1485 
1486 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1487 {
1488 	struct nvme_queue *nvmeq = &dev->queues[qid];
1489 
1490 	if (dev->ctrl.queue_count > qid)
1491 		return 0;
1492 
1493 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1494 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1495 	if (!nvmeq->cqes)
1496 		goto free_nvmeq;
1497 
1498 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1499 		goto free_cqdma;
1500 
1501 	nvmeq->q_dmadev = dev->dev;
1502 	nvmeq->dev = dev;
1503 	spin_lock_init(&nvmeq->sq_lock);
1504 	spin_lock_init(&nvmeq->cq_poll_lock);
1505 	nvmeq->cq_head = 0;
1506 	nvmeq->cq_phase = 1;
1507 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1508 	nvmeq->q_depth = depth;
1509 	nvmeq->qid = qid;
1510 	nvmeq->cq_vector = -1;
1511 	dev->ctrl.queue_count++;
1512 
1513 	return 0;
1514 
1515  free_cqdma:
1516 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1517 							nvmeq->cq_dma_addr);
1518  free_nvmeq:
1519 	return -ENOMEM;
1520 }
1521 
1522 static int queue_request_irq(struct nvme_queue *nvmeq)
1523 {
1524 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1525 	int nr = nvmeq->dev->ctrl.instance;
1526 
1527 	if (use_threaded_interrupts) {
1528 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1529 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1530 	} else {
1531 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1532 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1533 	}
1534 }
1535 
1536 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1537 {
1538 	struct nvme_dev *dev = nvmeq->dev;
1539 
1540 	nvmeq->sq_tail = 0;
1541 	nvmeq->last_sq_tail = 0;
1542 	nvmeq->cq_head = 0;
1543 	nvmeq->cq_phase = 1;
1544 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1545 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1546 	nvme_dbbuf_init(dev, nvmeq, qid);
1547 	dev->online_queues++;
1548 	wmb(); /* ensure the first interrupt sees the initialization */
1549 }
1550 
1551 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1552 {
1553 	struct nvme_dev *dev = nvmeq->dev;
1554 	int result;
1555 	s16 vector;
1556 
1557 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1558 
1559 	/*
1560 	 * A queue's vector matches the queue identifier unless the controller
1561 	 * has only one vector available.
1562 	 */
1563 	if (!polled)
1564 		vector = dev->num_vecs == 1 ? 0 : qid;
1565 	else
1566 		vector = -1;
1567 
1568 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1569 	if (result)
1570 		return result;
1571 
1572 	result = adapter_alloc_sq(dev, qid, nvmeq);
1573 	if (result < 0)
1574 		return result;
1575 	else if (result)
1576 		goto release_cq;
1577 
1578 	nvmeq->cq_vector = vector;
1579 	nvme_init_queue(nvmeq, qid);
1580 
1581 	if (vector != -1) {
1582 		result = queue_request_irq(nvmeq);
1583 		if (result < 0)
1584 			goto release_sq;
1585 	}
1586 
1587 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1588 	return result;
1589 
1590 release_sq:
1591 	nvmeq->cq_vector = -1;
1592 	dev->online_queues--;
1593 	adapter_delete_sq(dev, qid);
1594 release_cq:
1595 	adapter_delete_cq(dev, qid);
1596 	return result;
1597 }
1598 
1599 static const struct blk_mq_ops nvme_mq_admin_ops = {
1600 	.queue_rq	= nvme_queue_rq,
1601 	.complete	= nvme_pci_complete_rq,
1602 	.init_hctx	= nvme_admin_init_hctx,
1603 	.exit_hctx      = nvme_admin_exit_hctx,
1604 	.init_request	= nvme_init_request,
1605 	.timeout	= nvme_timeout,
1606 };
1607 
1608 static const struct blk_mq_ops nvme_mq_ops = {
1609 	.queue_rq	= nvme_queue_rq,
1610 	.complete	= nvme_pci_complete_rq,
1611 	.commit_rqs	= nvme_commit_rqs,
1612 	.init_hctx	= nvme_init_hctx,
1613 	.init_request	= nvme_init_request,
1614 	.map_queues	= nvme_pci_map_queues,
1615 	.timeout	= nvme_timeout,
1616 	.poll		= nvme_poll,
1617 };
1618 
1619 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1620 {
1621 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1622 		/*
1623 		 * If the controller was reset during removal, it's possible
1624 		 * user requests may be waiting on a stopped queue. Start the
1625 		 * queue to flush these to completion.
1626 		 */
1627 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1628 		blk_cleanup_queue(dev->ctrl.admin_q);
1629 		blk_mq_free_tag_set(&dev->admin_tagset);
1630 	}
1631 }
1632 
1633 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1634 {
1635 	if (!dev->ctrl.admin_q) {
1636 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1637 		dev->admin_tagset.nr_hw_queues = 1;
1638 
1639 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1640 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1641 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1642 		dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1643 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1644 		dev->admin_tagset.driver_data = dev;
1645 
1646 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1647 			return -ENOMEM;
1648 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1649 
1650 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1651 		if (IS_ERR(dev->ctrl.admin_q)) {
1652 			blk_mq_free_tag_set(&dev->admin_tagset);
1653 			return -ENOMEM;
1654 		}
1655 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1656 			nvme_dev_remove_admin(dev);
1657 			dev->ctrl.admin_q = NULL;
1658 			return -ENODEV;
1659 		}
1660 	} else
1661 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1662 
1663 	return 0;
1664 }
1665 
1666 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1667 {
1668 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1669 }
1670 
1671 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1672 {
1673 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1674 
1675 	if (size <= dev->bar_mapped_size)
1676 		return 0;
1677 	if (size > pci_resource_len(pdev, 0))
1678 		return -ENOMEM;
1679 	if (dev->bar)
1680 		iounmap(dev->bar);
1681 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1682 	if (!dev->bar) {
1683 		dev->bar_mapped_size = 0;
1684 		return -ENOMEM;
1685 	}
1686 	dev->bar_mapped_size = size;
1687 	dev->dbs = dev->bar + NVME_REG_DBS;
1688 
1689 	return 0;
1690 }
1691 
1692 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1693 {
1694 	int result;
1695 	u32 aqa;
1696 	struct nvme_queue *nvmeq;
1697 
1698 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1699 	if (result < 0)
1700 		return result;
1701 
1702 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1703 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1704 
1705 	if (dev->subsystem &&
1706 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1707 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1708 
1709 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1710 	if (result < 0)
1711 		return result;
1712 
1713 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1714 	if (result)
1715 		return result;
1716 
1717 	nvmeq = &dev->queues[0];
1718 	aqa = nvmeq->q_depth - 1;
1719 	aqa |= aqa << 16;
1720 
1721 	writel(aqa, dev->bar + NVME_REG_AQA);
1722 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1723 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1724 
1725 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1726 	if (result)
1727 		return result;
1728 
1729 	nvmeq->cq_vector = 0;
1730 	nvme_init_queue(nvmeq, 0);
1731 	result = queue_request_irq(nvmeq);
1732 	if (result) {
1733 		nvmeq->cq_vector = -1;
1734 		return result;
1735 	}
1736 
1737 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1738 	return result;
1739 }
1740 
1741 static int nvme_create_io_queues(struct nvme_dev *dev)
1742 {
1743 	unsigned i, max, rw_queues;
1744 	int ret = 0;
1745 
1746 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1747 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1748 			ret = -ENOMEM;
1749 			break;
1750 		}
1751 	}
1752 
1753 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1754 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1755 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1756 				dev->io_queues[HCTX_TYPE_READ];
1757 	} else {
1758 		rw_queues = max;
1759 	}
1760 
1761 	for (i = dev->online_queues; i <= max; i++) {
1762 		bool polled = i > rw_queues;
1763 
1764 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1765 		if (ret)
1766 			break;
1767 	}
1768 
1769 	/*
1770 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1771 	 * than the desired amount of queues, and even a controller without
1772 	 * I/O queues can still be used to issue admin commands.  This might
1773 	 * be useful to upgrade a buggy firmware for example.
1774 	 */
1775 	return ret >= 0 ? 0 : ret;
1776 }
1777 
1778 static ssize_t nvme_cmb_show(struct device *dev,
1779 			     struct device_attribute *attr,
1780 			     char *buf)
1781 {
1782 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1783 
1784 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1785 		       ndev->cmbloc, ndev->cmbsz);
1786 }
1787 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1788 
1789 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1790 {
1791 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1792 
1793 	return 1ULL << (12 + 4 * szu);
1794 }
1795 
1796 static u32 nvme_cmb_size(struct nvme_dev *dev)
1797 {
1798 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1799 }
1800 
1801 static void nvme_map_cmb(struct nvme_dev *dev)
1802 {
1803 	u64 size, offset;
1804 	resource_size_t bar_size;
1805 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1806 	int bar;
1807 
1808 	if (dev->cmb_size)
1809 		return;
1810 
1811 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1812 	if (!dev->cmbsz)
1813 		return;
1814 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1815 
1816 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1817 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1818 	bar = NVME_CMB_BIR(dev->cmbloc);
1819 	bar_size = pci_resource_len(pdev, bar);
1820 
1821 	if (offset > bar_size)
1822 		return;
1823 
1824 	/*
1825 	 * Controllers may support a CMB size larger than their BAR,
1826 	 * for example, due to being behind a bridge. Reduce the CMB to
1827 	 * the reported size of the BAR
1828 	 */
1829 	if (size > bar_size - offset)
1830 		size = bar_size - offset;
1831 
1832 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1833 		dev_warn(dev->ctrl.device,
1834 			 "failed to register the CMB\n");
1835 		return;
1836 	}
1837 
1838 	dev->cmb_size = size;
1839 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1840 
1841 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1842 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1843 		pci_p2pmem_publish(pdev, true);
1844 
1845 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1846 				    &dev_attr_cmb.attr, NULL))
1847 		dev_warn(dev->ctrl.device,
1848 			 "failed to add sysfs attribute for CMB\n");
1849 }
1850 
1851 static inline void nvme_release_cmb(struct nvme_dev *dev)
1852 {
1853 	if (dev->cmb_size) {
1854 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1855 					     &dev_attr_cmb.attr, NULL);
1856 		dev->cmb_size = 0;
1857 	}
1858 }
1859 
1860 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1861 {
1862 	u64 dma_addr = dev->host_mem_descs_dma;
1863 	struct nvme_command c;
1864 	int ret;
1865 
1866 	memset(&c, 0, sizeof(c));
1867 	c.features.opcode	= nvme_admin_set_features;
1868 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1869 	c.features.dword11	= cpu_to_le32(bits);
1870 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1871 					      ilog2(dev->ctrl.page_size));
1872 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1873 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1874 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1875 
1876 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1877 	if (ret) {
1878 		dev_warn(dev->ctrl.device,
1879 			 "failed to set host mem (err %d, flags %#x).\n",
1880 			 ret, bits);
1881 	}
1882 	return ret;
1883 }
1884 
1885 static void nvme_free_host_mem(struct nvme_dev *dev)
1886 {
1887 	int i;
1888 
1889 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1890 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1891 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1892 
1893 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1894 			       le64_to_cpu(desc->addr),
1895 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1896 	}
1897 
1898 	kfree(dev->host_mem_desc_bufs);
1899 	dev->host_mem_desc_bufs = NULL;
1900 	dma_free_coherent(dev->dev,
1901 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1902 			dev->host_mem_descs, dev->host_mem_descs_dma);
1903 	dev->host_mem_descs = NULL;
1904 	dev->nr_host_mem_descs = 0;
1905 }
1906 
1907 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1908 		u32 chunk_size)
1909 {
1910 	struct nvme_host_mem_buf_desc *descs;
1911 	u32 max_entries, len;
1912 	dma_addr_t descs_dma;
1913 	int i = 0;
1914 	void **bufs;
1915 	u64 size, tmp;
1916 
1917 	tmp = (preferred + chunk_size - 1);
1918 	do_div(tmp, chunk_size);
1919 	max_entries = tmp;
1920 
1921 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1922 		max_entries = dev->ctrl.hmmaxd;
1923 
1924 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1925 				   &descs_dma, GFP_KERNEL);
1926 	if (!descs)
1927 		goto out;
1928 
1929 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1930 	if (!bufs)
1931 		goto out_free_descs;
1932 
1933 	for (size = 0; size < preferred && i < max_entries; size += len) {
1934 		dma_addr_t dma_addr;
1935 
1936 		len = min_t(u64, chunk_size, preferred - size);
1937 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1938 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1939 		if (!bufs[i])
1940 			break;
1941 
1942 		descs[i].addr = cpu_to_le64(dma_addr);
1943 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1944 		i++;
1945 	}
1946 
1947 	if (!size)
1948 		goto out_free_bufs;
1949 
1950 	dev->nr_host_mem_descs = i;
1951 	dev->host_mem_size = size;
1952 	dev->host_mem_descs = descs;
1953 	dev->host_mem_descs_dma = descs_dma;
1954 	dev->host_mem_desc_bufs = bufs;
1955 	return 0;
1956 
1957 out_free_bufs:
1958 	while (--i >= 0) {
1959 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1960 
1961 		dma_free_attrs(dev->dev, size, bufs[i],
1962 			       le64_to_cpu(descs[i].addr),
1963 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1964 	}
1965 
1966 	kfree(bufs);
1967 out_free_descs:
1968 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1969 			descs_dma);
1970 out:
1971 	dev->host_mem_descs = NULL;
1972 	return -ENOMEM;
1973 }
1974 
1975 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1976 {
1977 	u32 chunk_size;
1978 
1979 	/* start big and work our way down */
1980 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1981 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1982 	     chunk_size /= 2) {
1983 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1984 			if (!min || dev->host_mem_size >= min)
1985 				return 0;
1986 			nvme_free_host_mem(dev);
1987 		}
1988 	}
1989 
1990 	return -ENOMEM;
1991 }
1992 
1993 static int nvme_setup_host_mem(struct nvme_dev *dev)
1994 {
1995 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1996 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1997 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1998 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1999 	int ret;
2000 
2001 	preferred = min(preferred, max);
2002 	if (min > max) {
2003 		dev_warn(dev->ctrl.device,
2004 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2005 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2006 		nvme_free_host_mem(dev);
2007 		return 0;
2008 	}
2009 
2010 	/*
2011 	 * If we already have a buffer allocated check if we can reuse it.
2012 	 */
2013 	if (dev->host_mem_descs) {
2014 		if (dev->host_mem_size >= min)
2015 			enable_bits |= NVME_HOST_MEM_RETURN;
2016 		else
2017 			nvme_free_host_mem(dev);
2018 	}
2019 
2020 	if (!dev->host_mem_descs) {
2021 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2022 			dev_warn(dev->ctrl.device,
2023 				"failed to allocate host memory buffer.\n");
2024 			return 0; /* controller must work without HMB */
2025 		}
2026 
2027 		dev_info(dev->ctrl.device,
2028 			"allocated %lld MiB host memory buffer.\n",
2029 			dev->host_mem_size >> ilog2(SZ_1M));
2030 	}
2031 
2032 	ret = nvme_set_host_mem(dev, enable_bits);
2033 	if (ret)
2034 		nvme_free_host_mem(dev);
2035 	return ret;
2036 }
2037 
2038 /*
2039  * nirqs is the number of interrupts available for write and read
2040  * queues. The core already reserved an interrupt for the admin queue.
2041  */
2042 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2043 {
2044 	struct nvme_dev *dev = affd->priv;
2045 	unsigned int nr_read_queues;
2046 
2047 	/*
2048 	 * If there is no interupt available for queues, ensure that
2049 	 * the default queue is set to 1. The affinity set size is
2050 	 * also set to one, but the irq core ignores it for this case.
2051 	 *
2052 	 * If only one interrupt is available or 'write_queue' == 0, combine
2053 	 * write and read queues.
2054 	 *
2055 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2056 	 * queue.
2057 	 */
2058 	if (!nrirqs) {
2059 		nrirqs = 1;
2060 		nr_read_queues = 0;
2061 	} else if (nrirqs == 1 || !write_queues) {
2062 		nr_read_queues = 0;
2063 	} else if (write_queues >= nrirqs) {
2064 		nr_read_queues = 1;
2065 	} else {
2066 		nr_read_queues = nrirqs - write_queues;
2067 	}
2068 
2069 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2070 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2071 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2072 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2073 	affd->nr_sets = nr_read_queues ? 2 : 1;
2074 }
2075 
2076 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2077 {
2078 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2079 	struct irq_affinity affd = {
2080 		.pre_vectors	= 1,
2081 		.calc_sets	= nvme_calc_irq_sets,
2082 		.priv		= dev,
2083 	};
2084 	unsigned int irq_queues, this_p_queues;
2085 
2086 	/*
2087 	 * Poll queues don't need interrupts, but we need at least one IO
2088 	 * queue left over for non-polled IO.
2089 	 */
2090 	this_p_queues = poll_queues;
2091 	if (this_p_queues >= nr_io_queues) {
2092 		this_p_queues = nr_io_queues - 1;
2093 		irq_queues = 1;
2094 	} else {
2095 		irq_queues = nr_io_queues - this_p_queues + 1;
2096 	}
2097 	dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2098 
2099 	/* Initialize for the single interrupt case */
2100 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2101 	dev->io_queues[HCTX_TYPE_READ] = 0;
2102 
2103 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2104 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2105 }
2106 
2107 static void nvme_disable_io_queues(struct nvme_dev *dev)
2108 {
2109 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2110 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2111 }
2112 
2113 static int nvme_setup_io_queues(struct nvme_dev *dev)
2114 {
2115 	struct nvme_queue *adminq = &dev->queues[0];
2116 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2117 	int result, nr_io_queues;
2118 	unsigned long size;
2119 
2120 	nr_io_queues = max_io_queues();
2121 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2122 	if (result < 0)
2123 		return result;
2124 
2125 	if (nr_io_queues == 0)
2126 		return 0;
2127 
2128 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2129 
2130 	if (dev->cmb_use_sqes) {
2131 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2132 				sizeof(struct nvme_command));
2133 		if (result > 0)
2134 			dev->q_depth = result;
2135 		else
2136 			dev->cmb_use_sqes = false;
2137 	}
2138 
2139 	do {
2140 		size = db_bar_size(dev, nr_io_queues);
2141 		result = nvme_remap_bar(dev, size);
2142 		if (!result)
2143 			break;
2144 		if (!--nr_io_queues)
2145 			return -ENOMEM;
2146 	} while (1);
2147 	adminq->q_db = dev->dbs;
2148 
2149  retry:
2150 	/* Deregister the admin queue's interrupt */
2151 	pci_free_irq(pdev, 0, adminq);
2152 
2153 	/*
2154 	 * If we enable msix early due to not intx, disable it again before
2155 	 * setting up the full range we need.
2156 	 */
2157 	pci_free_irq_vectors(pdev);
2158 
2159 	result = nvme_setup_irqs(dev, nr_io_queues);
2160 	if (result <= 0)
2161 		return -EIO;
2162 
2163 	dev->num_vecs = result;
2164 	result = max(result - 1, 1);
2165 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2166 
2167 	/*
2168 	 * Should investigate if there's a performance win from allocating
2169 	 * more queues than interrupt vectors; it might allow the submission
2170 	 * path to scale better, even if the receive path is limited by the
2171 	 * number of interrupts.
2172 	 */
2173 	result = queue_request_irq(adminq);
2174 	if (result) {
2175 		adminq->cq_vector = -1;
2176 		return result;
2177 	}
2178 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2179 
2180 	result = nvme_create_io_queues(dev);
2181 	if (result || dev->online_queues < 2)
2182 		return result;
2183 
2184 	if (dev->online_queues - 1 < dev->max_qid) {
2185 		nr_io_queues = dev->online_queues - 1;
2186 		nvme_disable_io_queues(dev);
2187 		nvme_suspend_io_queues(dev);
2188 		goto retry;
2189 	}
2190 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2191 					dev->io_queues[HCTX_TYPE_DEFAULT],
2192 					dev->io_queues[HCTX_TYPE_READ],
2193 					dev->io_queues[HCTX_TYPE_POLL]);
2194 	return 0;
2195 }
2196 
2197 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2198 {
2199 	struct nvme_queue *nvmeq = req->end_io_data;
2200 
2201 	blk_mq_free_request(req);
2202 	complete(&nvmeq->delete_done);
2203 }
2204 
2205 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2206 {
2207 	struct nvme_queue *nvmeq = req->end_io_data;
2208 
2209 	if (error)
2210 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2211 
2212 	nvme_del_queue_end(req, error);
2213 }
2214 
2215 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2216 {
2217 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2218 	struct request *req;
2219 	struct nvme_command cmd;
2220 
2221 	memset(&cmd, 0, sizeof(cmd));
2222 	cmd.delete_queue.opcode = opcode;
2223 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2224 
2225 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2226 	if (IS_ERR(req))
2227 		return PTR_ERR(req);
2228 
2229 	req->timeout = ADMIN_TIMEOUT;
2230 	req->end_io_data = nvmeq;
2231 
2232 	init_completion(&nvmeq->delete_done);
2233 	blk_execute_rq_nowait(q, NULL, req, false,
2234 			opcode == nvme_admin_delete_cq ?
2235 				nvme_del_cq_end : nvme_del_queue_end);
2236 	return 0;
2237 }
2238 
2239 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2240 {
2241 	int nr_queues = dev->online_queues - 1, sent = 0;
2242 	unsigned long timeout;
2243 
2244  retry:
2245 	timeout = ADMIN_TIMEOUT;
2246 	while (nr_queues > 0) {
2247 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2248 			break;
2249 		nr_queues--;
2250 		sent++;
2251 	}
2252 	while (sent) {
2253 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2254 
2255 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2256 				timeout);
2257 		if (timeout == 0)
2258 			return false;
2259 
2260 		/* handle any remaining CQEs */
2261 		if (opcode == nvme_admin_delete_cq &&
2262 		    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2263 			nvme_poll_irqdisable(nvmeq, -1);
2264 
2265 		sent--;
2266 		if (nr_queues)
2267 			goto retry;
2268 	}
2269 	return true;
2270 }
2271 
2272 /*
2273  * return error value only when tagset allocation failed
2274  */
2275 static int nvme_dev_add(struct nvme_dev *dev)
2276 {
2277 	int ret;
2278 
2279 	if (!dev->ctrl.tagset) {
2280 		dev->tagset.ops = &nvme_mq_ops;
2281 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2282 		dev->tagset.nr_maps = 2; /* default + read */
2283 		if (dev->io_queues[HCTX_TYPE_POLL])
2284 			dev->tagset.nr_maps++;
2285 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2286 		dev->tagset.numa_node = dev_to_node(dev->dev);
2287 		dev->tagset.queue_depth =
2288 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2289 		dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2290 		if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2291 			dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2292 					nvme_pci_cmd_size(dev, true));
2293 		}
2294 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2295 		dev->tagset.driver_data = dev;
2296 
2297 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2298 		if (ret) {
2299 			dev_warn(dev->ctrl.device,
2300 				"IO queues tagset allocation failed %d\n", ret);
2301 			return ret;
2302 		}
2303 		dev->ctrl.tagset = &dev->tagset;
2304 
2305 		nvme_dbbuf_set(dev);
2306 	} else {
2307 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2308 
2309 		/* Free previously allocated queues that are no longer usable */
2310 		nvme_free_queues(dev, dev->online_queues);
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 static int nvme_pci_enable(struct nvme_dev *dev)
2317 {
2318 	int result = -ENOMEM;
2319 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2320 
2321 	if (pci_enable_device_mem(pdev))
2322 		return result;
2323 
2324 	pci_set_master(pdev);
2325 
2326 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2327 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2328 		goto disable;
2329 
2330 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2331 		result = -ENODEV;
2332 		goto disable;
2333 	}
2334 
2335 	/*
2336 	 * Some devices and/or platforms don't advertise or work with INTx
2337 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2338 	 * adjust this later.
2339 	 */
2340 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2341 	if (result < 0)
2342 		return result;
2343 
2344 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2345 
2346 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2347 				io_queue_depth);
2348 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2349 	dev->dbs = dev->bar + 4096;
2350 
2351 	/*
2352 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2353 	 * some MacBook7,1 to avoid controller resets and data loss.
2354 	 */
2355 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2356 		dev->q_depth = 2;
2357 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2358 			"set queue depth=%u to work around controller resets\n",
2359 			dev->q_depth);
2360 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2361 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2362 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2363 		dev->q_depth = 64;
2364 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2365                         "set queue depth=%u\n", dev->q_depth);
2366 	}
2367 
2368 	nvme_map_cmb(dev);
2369 
2370 	pci_enable_pcie_error_reporting(pdev);
2371 	pci_save_state(pdev);
2372 	return 0;
2373 
2374  disable:
2375 	pci_disable_device(pdev);
2376 	return result;
2377 }
2378 
2379 static void nvme_dev_unmap(struct nvme_dev *dev)
2380 {
2381 	if (dev->bar)
2382 		iounmap(dev->bar);
2383 	pci_release_mem_regions(to_pci_dev(dev->dev));
2384 }
2385 
2386 static void nvme_pci_disable(struct nvme_dev *dev)
2387 {
2388 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2389 
2390 	pci_free_irq_vectors(pdev);
2391 
2392 	if (pci_is_enabled(pdev)) {
2393 		pci_disable_pcie_error_reporting(pdev);
2394 		pci_disable_device(pdev);
2395 	}
2396 }
2397 
2398 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2399 {
2400 	bool dead = true;
2401 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2402 
2403 	mutex_lock(&dev->shutdown_lock);
2404 	if (pci_is_enabled(pdev)) {
2405 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2406 
2407 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2408 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2409 			nvme_start_freeze(&dev->ctrl);
2410 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2411 			pdev->error_state  != pci_channel_io_normal);
2412 	}
2413 
2414 	/*
2415 	 * Give the controller a chance to complete all entered requests if
2416 	 * doing a safe shutdown.
2417 	 */
2418 	if (!dead) {
2419 		if (shutdown)
2420 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2421 	}
2422 
2423 	nvme_stop_queues(&dev->ctrl);
2424 
2425 	if (!dead && dev->ctrl.queue_count > 0) {
2426 		nvme_disable_io_queues(dev);
2427 		nvme_disable_admin_queue(dev, shutdown);
2428 	}
2429 	nvme_suspend_io_queues(dev);
2430 	nvme_suspend_queue(&dev->queues[0]);
2431 	nvme_pci_disable(dev);
2432 
2433 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2434 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2435 
2436 	/*
2437 	 * The driver will not be starting up queues again if shutting down so
2438 	 * must flush all entered requests to their failed completion to avoid
2439 	 * deadlocking blk-mq hot-cpu notifier.
2440 	 */
2441 	if (shutdown)
2442 		nvme_start_queues(&dev->ctrl);
2443 	mutex_unlock(&dev->shutdown_lock);
2444 }
2445 
2446 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2447 {
2448 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2449 						PAGE_SIZE, PAGE_SIZE, 0);
2450 	if (!dev->prp_page_pool)
2451 		return -ENOMEM;
2452 
2453 	/* Optimisation for I/Os between 4k and 128k */
2454 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2455 						256, 256, 0);
2456 	if (!dev->prp_small_pool) {
2457 		dma_pool_destroy(dev->prp_page_pool);
2458 		return -ENOMEM;
2459 	}
2460 	return 0;
2461 }
2462 
2463 static void nvme_release_prp_pools(struct nvme_dev *dev)
2464 {
2465 	dma_pool_destroy(dev->prp_page_pool);
2466 	dma_pool_destroy(dev->prp_small_pool);
2467 }
2468 
2469 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2470 {
2471 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2472 
2473 	nvme_dbbuf_dma_free(dev);
2474 	put_device(dev->dev);
2475 	if (dev->tagset.tags)
2476 		blk_mq_free_tag_set(&dev->tagset);
2477 	if (dev->ctrl.admin_q)
2478 		blk_put_queue(dev->ctrl.admin_q);
2479 	kfree(dev->queues);
2480 	free_opal_dev(dev->ctrl.opal_dev);
2481 	mempool_destroy(dev->iod_mempool);
2482 	kfree(dev);
2483 }
2484 
2485 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2486 {
2487 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2488 
2489 	nvme_get_ctrl(&dev->ctrl);
2490 	nvme_dev_disable(dev, false);
2491 	nvme_kill_queues(&dev->ctrl);
2492 	if (!queue_work(nvme_wq, &dev->remove_work))
2493 		nvme_put_ctrl(&dev->ctrl);
2494 }
2495 
2496 static void nvme_reset_work(struct work_struct *work)
2497 {
2498 	struct nvme_dev *dev =
2499 		container_of(work, struct nvme_dev, ctrl.reset_work);
2500 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2501 	int result = -ENODEV;
2502 	enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2503 
2504 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2505 		goto out;
2506 
2507 	/*
2508 	 * If we're called to reset a live controller first shut it down before
2509 	 * moving on.
2510 	 */
2511 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2512 		nvme_dev_disable(dev, false);
2513 
2514 	mutex_lock(&dev->shutdown_lock);
2515 	result = nvme_pci_enable(dev);
2516 	if (result)
2517 		goto out_unlock;
2518 
2519 	result = nvme_pci_configure_admin_queue(dev);
2520 	if (result)
2521 		goto out_unlock;
2522 
2523 	result = nvme_alloc_admin_tags(dev);
2524 	if (result)
2525 		goto out_unlock;
2526 
2527 	/*
2528 	 * Limit the max command size to prevent iod->sg allocations going
2529 	 * over a single page.
2530 	 */
2531 	dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2532 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2533 	mutex_unlock(&dev->shutdown_lock);
2534 
2535 	/*
2536 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2537 	 * initializing procedure here.
2538 	 */
2539 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2540 		dev_warn(dev->ctrl.device,
2541 			"failed to mark controller CONNECTING\n");
2542 		goto out;
2543 	}
2544 
2545 	result = nvme_init_identify(&dev->ctrl);
2546 	if (result)
2547 		goto out;
2548 
2549 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2550 		if (!dev->ctrl.opal_dev)
2551 			dev->ctrl.opal_dev =
2552 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2553 		else if (was_suspend)
2554 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2555 	} else {
2556 		free_opal_dev(dev->ctrl.opal_dev);
2557 		dev->ctrl.opal_dev = NULL;
2558 	}
2559 
2560 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2561 		result = nvme_dbbuf_dma_alloc(dev);
2562 		if (result)
2563 			dev_warn(dev->dev,
2564 				 "unable to allocate dma for dbbuf\n");
2565 	}
2566 
2567 	if (dev->ctrl.hmpre) {
2568 		result = nvme_setup_host_mem(dev);
2569 		if (result < 0)
2570 			goto out;
2571 	}
2572 
2573 	result = nvme_setup_io_queues(dev);
2574 	if (result)
2575 		goto out;
2576 
2577 	/*
2578 	 * Keep the controller around but remove all namespaces if we don't have
2579 	 * any working I/O queue.
2580 	 */
2581 	if (dev->online_queues < 2) {
2582 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2583 		nvme_kill_queues(&dev->ctrl);
2584 		nvme_remove_namespaces(&dev->ctrl);
2585 		new_state = NVME_CTRL_ADMIN_ONLY;
2586 	} else {
2587 		nvme_start_queues(&dev->ctrl);
2588 		nvme_wait_freeze(&dev->ctrl);
2589 		/* hit this only when allocate tagset fails */
2590 		if (nvme_dev_add(dev))
2591 			new_state = NVME_CTRL_ADMIN_ONLY;
2592 		nvme_unfreeze(&dev->ctrl);
2593 	}
2594 
2595 	/*
2596 	 * If only admin queue live, keep it to do further investigation or
2597 	 * recovery.
2598 	 */
2599 	if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2600 		dev_warn(dev->ctrl.device,
2601 			"failed to mark controller state %d\n", new_state);
2602 		goto out;
2603 	}
2604 
2605 	nvme_start_ctrl(&dev->ctrl);
2606 	return;
2607 
2608  out_unlock:
2609 	mutex_unlock(&dev->shutdown_lock);
2610  out:
2611 	nvme_remove_dead_ctrl(dev, result);
2612 }
2613 
2614 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2615 {
2616 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2617 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2618 
2619 	if (pci_get_drvdata(pdev))
2620 		device_release_driver(&pdev->dev);
2621 	nvme_put_ctrl(&dev->ctrl);
2622 }
2623 
2624 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2625 {
2626 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2627 	return 0;
2628 }
2629 
2630 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2631 {
2632 	writel(val, to_nvme_dev(ctrl)->bar + off);
2633 	return 0;
2634 }
2635 
2636 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2637 {
2638 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2639 	return 0;
2640 }
2641 
2642 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2643 {
2644 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2645 
2646 	return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2647 }
2648 
2649 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2650 	.name			= "pcie",
2651 	.module			= THIS_MODULE,
2652 	.flags			= NVME_F_METADATA_SUPPORTED |
2653 				  NVME_F_PCI_P2PDMA,
2654 	.reg_read32		= nvme_pci_reg_read32,
2655 	.reg_write32		= nvme_pci_reg_write32,
2656 	.reg_read64		= nvme_pci_reg_read64,
2657 	.free_ctrl		= nvme_pci_free_ctrl,
2658 	.submit_async_event	= nvme_pci_submit_async_event,
2659 	.get_address		= nvme_pci_get_address,
2660 };
2661 
2662 static int nvme_dev_map(struct nvme_dev *dev)
2663 {
2664 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2665 
2666 	if (pci_request_mem_regions(pdev, "nvme"))
2667 		return -ENODEV;
2668 
2669 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2670 		goto release;
2671 
2672 	return 0;
2673   release:
2674 	pci_release_mem_regions(pdev);
2675 	return -ENODEV;
2676 }
2677 
2678 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2679 {
2680 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2681 		/*
2682 		 * Several Samsung devices seem to drop off the PCIe bus
2683 		 * randomly when APST is on and uses the deepest sleep state.
2684 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2685 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2686 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2687 		 * laptops.
2688 		 */
2689 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2690 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2691 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2692 			return NVME_QUIRK_NO_DEEPEST_PS;
2693 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2694 		/*
2695 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2696 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2697 		 * within few minutes after bootup on a Coffee Lake board -
2698 		 * ASUS PRIME Z370-A
2699 		 */
2700 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2701 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2702 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2703 			return NVME_QUIRK_NO_APST;
2704 	}
2705 
2706 	return 0;
2707 }
2708 
2709 static void nvme_async_probe(void *data, async_cookie_t cookie)
2710 {
2711 	struct nvme_dev *dev = data;
2712 
2713 	nvme_reset_ctrl_sync(&dev->ctrl);
2714 	flush_work(&dev->ctrl.scan_work);
2715 	nvme_put_ctrl(&dev->ctrl);
2716 }
2717 
2718 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2719 {
2720 	int node, result = -ENOMEM;
2721 	struct nvme_dev *dev;
2722 	unsigned long quirks = id->driver_data;
2723 	size_t alloc_size;
2724 
2725 	node = dev_to_node(&pdev->dev);
2726 	if (node == NUMA_NO_NODE)
2727 		set_dev_node(&pdev->dev, first_memory_node);
2728 
2729 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2730 	if (!dev)
2731 		return -ENOMEM;
2732 
2733 	dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2734 					GFP_KERNEL, node);
2735 	if (!dev->queues)
2736 		goto free;
2737 
2738 	dev->dev = get_device(&pdev->dev);
2739 	pci_set_drvdata(pdev, dev);
2740 
2741 	result = nvme_dev_map(dev);
2742 	if (result)
2743 		goto put_pci;
2744 
2745 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2746 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2747 	mutex_init(&dev->shutdown_lock);
2748 
2749 	result = nvme_setup_prp_pools(dev);
2750 	if (result)
2751 		goto unmap;
2752 
2753 	quirks |= check_vendor_combination_bug(pdev);
2754 
2755 	/*
2756 	 * Double check that our mempool alloc size will cover the biggest
2757 	 * command we support.
2758 	 */
2759 	alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2760 						NVME_MAX_SEGS, true);
2761 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2762 
2763 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2764 						mempool_kfree,
2765 						(void *) alloc_size,
2766 						GFP_KERNEL, node);
2767 	if (!dev->iod_mempool) {
2768 		result = -ENOMEM;
2769 		goto release_pools;
2770 	}
2771 
2772 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2773 			quirks);
2774 	if (result)
2775 		goto release_mempool;
2776 
2777 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2778 
2779 	nvme_get_ctrl(&dev->ctrl);
2780 	async_schedule(nvme_async_probe, dev);
2781 
2782 	return 0;
2783 
2784  release_mempool:
2785 	mempool_destroy(dev->iod_mempool);
2786  release_pools:
2787 	nvme_release_prp_pools(dev);
2788  unmap:
2789 	nvme_dev_unmap(dev);
2790  put_pci:
2791 	put_device(dev->dev);
2792  free:
2793 	kfree(dev->queues);
2794 	kfree(dev);
2795 	return result;
2796 }
2797 
2798 static void nvme_reset_prepare(struct pci_dev *pdev)
2799 {
2800 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2801 	nvme_dev_disable(dev, false);
2802 }
2803 
2804 static void nvme_reset_done(struct pci_dev *pdev)
2805 {
2806 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2807 	nvme_reset_ctrl_sync(&dev->ctrl);
2808 }
2809 
2810 static void nvme_shutdown(struct pci_dev *pdev)
2811 {
2812 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2813 	nvme_dev_disable(dev, true);
2814 }
2815 
2816 /*
2817  * The driver's remove may be called on a device in a partially initialized
2818  * state. This function must not have any dependencies on the device state in
2819  * order to proceed.
2820  */
2821 static void nvme_remove(struct pci_dev *pdev)
2822 {
2823 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2824 
2825 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2826 	pci_set_drvdata(pdev, NULL);
2827 
2828 	if (!pci_device_is_present(pdev)) {
2829 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2830 		nvme_dev_disable(dev, true);
2831 		nvme_dev_remove_admin(dev);
2832 	}
2833 
2834 	flush_work(&dev->ctrl.reset_work);
2835 	nvme_stop_ctrl(&dev->ctrl);
2836 	nvme_remove_namespaces(&dev->ctrl);
2837 	nvme_dev_disable(dev, true);
2838 	nvme_release_cmb(dev);
2839 	nvme_free_host_mem(dev);
2840 	nvme_dev_remove_admin(dev);
2841 	nvme_free_queues(dev, 0);
2842 	nvme_uninit_ctrl(&dev->ctrl);
2843 	nvme_release_prp_pools(dev);
2844 	nvme_dev_unmap(dev);
2845 	nvme_put_ctrl(&dev->ctrl);
2846 }
2847 
2848 #ifdef CONFIG_PM_SLEEP
2849 static int nvme_suspend(struct device *dev)
2850 {
2851 	struct pci_dev *pdev = to_pci_dev(dev);
2852 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2853 
2854 	nvme_dev_disable(ndev, true);
2855 	return 0;
2856 }
2857 
2858 static int nvme_resume(struct device *dev)
2859 {
2860 	struct pci_dev *pdev = to_pci_dev(dev);
2861 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2862 
2863 	nvme_reset_ctrl(&ndev->ctrl);
2864 	return 0;
2865 }
2866 #endif
2867 
2868 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2869 
2870 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2871 						pci_channel_state_t state)
2872 {
2873 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2874 
2875 	/*
2876 	 * A frozen channel requires a reset. When detected, this method will
2877 	 * shutdown the controller to quiesce. The controller will be restarted
2878 	 * after the slot reset through driver's slot_reset callback.
2879 	 */
2880 	switch (state) {
2881 	case pci_channel_io_normal:
2882 		return PCI_ERS_RESULT_CAN_RECOVER;
2883 	case pci_channel_io_frozen:
2884 		dev_warn(dev->ctrl.device,
2885 			"frozen state error detected, reset controller\n");
2886 		nvme_dev_disable(dev, false);
2887 		return PCI_ERS_RESULT_NEED_RESET;
2888 	case pci_channel_io_perm_failure:
2889 		dev_warn(dev->ctrl.device,
2890 			"failure state error detected, request disconnect\n");
2891 		return PCI_ERS_RESULT_DISCONNECT;
2892 	}
2893 	return PCI_ERS_RESULT_NEED_RESET;
2894 }
2895 
2896 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2897 {
2898 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2899 
2900 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2901 	pci_restore_state(pdev);
2902 	nvme_reset_ctrl(&dev->ctrl);
2903 	return PCI_ERS_RESULT_RECOVERED;
2904 }
2905 
2906 static void nvme_error_resume(struct pci_dev *pdev)
2907 {
2908 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2909 
2910 	flush_work(&dev->ctrl.reset_work);
2911 }
2912 
2913 static const struct pci_error_handlers nvme_err_handler = {
2914 	.error_detected	= nvme_error_detected,
2915 	.slot_reset	= nvme_slot_reset,
2916 	.resume		= nvme_error_resume,
2917 	.reset_prepare	= nvme_reset_prepare,
2918 	.reset_done	= nvme_reset_done,
2919 };
2920 
2921 static const struct pci_device_id nvme_id_table[] = {
2922 	{ PCI_VDEVICE(INTEL, 0x0953),
2923 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2924 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2925 	{ PCI_VDEVICE(INTEL, 0x0a53),
2926 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2927 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2928 	{ PCI_VDEVICE(INTEL, 0x0a54),
2929 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2930 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2931 	{ PCI_VDEVICE(INTEL, 0x0a55),
2932 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2933 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2934 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2935 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2936 				NVME_QUIRK_MEDIUM_PRIO_SQ },
2937 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
2938 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2939 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2940 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
2941 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
2942 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2943 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2944 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2945 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2946 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
2947 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2948 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2949 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2950 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2951 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2952 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2953 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2954 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
2955 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2956 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
2957 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2958 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
2959 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2960 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2961 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2962 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2963 	{ 0, }
2964 };
2965 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2966 
2967 static struct pci_driver nvme_driver = {
2968 	.name		= "nvme",
2969 	.id_table	= nvme_id_table,
2970 	.probe		= nvme_probe,
2971 	.remove		= nvme_remove,
2972 	.shutdown	= nvme_shutdown,
2973 	.driver		= {
2974 		.pm	= &nvme_dev_pm_ops,
2975 	},
2976 	.sriov_configure = pci_sriov_configure_simple,
2977 	.err_handler	= &nvme_err_handler,
2978 };
2979 
2980 static int __init nvme_init(void)
2981 {
2982 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
2983 	return pci_register_driver(&nvme_driver);
2984 }
2985 
2986 static void __exit nvme_exit(void)
2987 {
2988 	pci_unregister_driver(&nvme_driver);
2989 	flush_workqueue(nvme_wq);
2990 	_nvme_check_size();
2991 }
2992 
2993 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2994 MODULE_LICENSE("GPL");
2995 MODULE_VERSION("1.0");
2996 module_init(nvme_init);
2997 module_exit(nvme_exit);
2998