xref: /openbmc/linux/drivers/nvme/host/pci.c (revision cdcc26d714c96e9de75c549f05d770b3ddaf2d21)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	u32 host_mem_descs_size;
157 	dma_addr_t host_mem_descs_dma;
158 	struct nvme_host_mem_buf_desc *host_mem_descs;
159 	void **host_mem_desc_bufs;
160 	unsigned int nr_allocated_queues;
161 	unsigned int nr_write_queues;
162 	unsigned int nr_poll_queues;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	__le32 *dbbuf_sq_db;
214 	__le32 *dbbuf_cq_db;
215 	__le32 *dbbuf_sq_ei;
216 	__le32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 union nvme_descriptor {
221 	struct nvme_sgl_desc	*sg_list;
222 	__le64			*prp_list;
223 };
224 
225 /*
226  * The nvme_iod describes the data in an I/O.
227  *
228  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
229  * to the actual struct scatterlist.
230  */
231 struct nvme_iod {
232 	struct nvme_request req;
233 	struct nvme_command cmd;
234 	bool aborted;
235 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
236 				   pool in use */
237 	unsigned int dma_len;	/* length of single DMA segment mapping */
238 	dma_addr_t first_dma;
239 	dma_addr_t meta_dma;
240 	struct sg_table sgt;
241 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
242 };
243 
244 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
245 {
246 	return dev->nr_allocated_queues * 8 * dev->db_stride;
247 }
248 
249 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
250 {
251 	unsigned int mem_size = nvme_dbbuf_size(dev);
252 
253 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
254 		return;
255 
256 	if (dev->dbbuf_dbs) {
257 		/*
258 		 * Clear the dbbuf memory so the driver doesn't observe stale
259 		 * values from the previous instantiation.
260 		 */
261 		memset(dev->dbbuf_dbs, 0, mem_size);
262 		memset(dev->dbbuf_eis, 0, mem_size);
263 		return;
264 	}
265 
266 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
267 					    &dev->dbbuf_dbs_dma_addr,
268 					    GFP_KERNEL);
269 	if (!dev->dbbuf_dbs)
270 		goto fail;
271 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
272 					    &dev->dbbuf_eis_dma_addr,
273 					    GFP_KERNEL);
274 	if (!dev->dbbuf_eis)
275 		goto fail_free_dbbuf_dbs;
276 	return;
277 
278 fail_free_dbbuf_dbs:
279 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
280 			  dev->dbbuf_dbs_dma_addr);
281 	dev->dbbuf_dbs = NULL;
282 fail:
283 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
284 }
285 
286 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
287 {
288 	unsigned int mem_size = nvme_dbbuf_size(dev);
289 
290 	if (dev->dbbuf_dbs) {
291 		dma_free_coherent(dev->dev, mem_size,
292 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
293 		dev->dbbuf_dbs = NULL;
294 	}
295 	if (dev->dbbuf_eis) {
296 		dma_free_coherent(dev->dev, mem_size,
297 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
298 		dev->dbbuf_eis = NULL;
299 	}
300 }
301 
302 static void nvme_dbbuf_init(struct nvme_dev *dev,
303 			    struct nvme_queue *nvmeq, int qid)
304 {
305 	if (!dev->dbbuf_dbs || !qid)
306 		return;
307 
308 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
311 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
312 }
313 
314 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
315 {
316 	if (!nvmeq->qid)
317 		return;
318 
319 	nvmeq->dbbuf_sq_db = NULL;
320 	nvmeq->dbbuf_cq_db = NULL;
321 	nvmeq->dbbuf_sq_ei = NULL;
322 	nvmeq->dbbuf_cq_ei = NULL;
323 }
324 
325 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 {
327 	struct nvme_command c = { };
328 	unsigned int i;
329 
330 	if (!dev->dbbuf_dbs)
331 		return;
332 
333 	c.dbbuf.opcode = nvme_admin_dbbuf;
334 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336 
337 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
338 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
339 		/* Free memory and continue on */
340 		nvme_dbbuf_dma_free(dev);
341 
342 		for (i = 1; i <= dev->online_queues; i++)
343 			nvme_dbbuf_free(&dev->queues[i]);
344 	}
345 }
346 
347 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
348 {
349 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
350 }
351 
352 /* Update dbbuf and return true if an MMIO is required */
353 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
354 					      volatile __le32 *dbbuf_ei)
355 {
356 	if (dbbuf_db) {
357 		u16 old_value, event_idx;
358 
359 		/*
360 		 * Ensure that the queue is written before updating
361 		 * the doorbell in memory
362 		 */
363 		wmb();
364 
365 		old_value = le32_to_cpu(*dbbuf_db);
366 		*dbbuf_db = cpu_to_le32(value);
367 
368 		/*
369 		 * Ensure that the doorbell is updated before reading the event
370 		 * index from memory.  The controller needs to provide similar
371 		 * ordering to ensure the envent index is updated before reading
372 		 * the doorbell.
373 		 */
374 		mb();
375 
376 		event_idx = le32_to_cpu(*dbbuf_ei);
377 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
378 			return false;
379 	}
380 
381 	return true;
382 }
383 
384 /*
385  * Will slightly overestimate the number of pages needed.  This is OK
386  * as it only leads to a small amount of wasted memory for the lifetime of
387  * the I/O.
388  */
389 static int nvme_pci_npages_prp(void)
390 {
391 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
392 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
393 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
394 }
395 
396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 				unsigned int hctx_idx)
398 {
399 	struct nvme_dev *dev = to_nvme_dev(data);
400 	struct nvme_queue *nvmeq = &dev->queues[0];
401 
402 	WARN_ON(hctx_idx != 0);
403 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404 
405 	hctx->driver_data = nvmeq;
406 	return 0;
407 }
408 
409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 			  unsigned int hctx_idx)
411 {
412 	struct nvme_dev *dev = to_nvme_dev(data);
413 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414 
415 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416 	hctx->driver_data = nvmeq;
417 	return 0;
418 }
419 
420 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
421 		struct request *req, unsigned int hctx_idx,
422 		unsigned int numa_node)
423 {
424 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425 
426 	nvme_req(req)->ctrl = set->driver_data;
427 	nvme_req(req)->cmd = &iod->cmd;
428 	return 0;
429 }
430 
431 static int queue_irq_offset(struct nvme_dev *dev)
432 {
433 	/* if we have more than 1 vec, admin queue offsets us by 1 */
434 	if (dev->num_vecs > 1)
435 		return 1;
436 
437 	return 0;
438 }
439 
440 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
441 {
442 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
443 	int i, qoff, offset;
444 
445 	offset = queue_irq_offset(dev);
446 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
447 		struct blk_mq_queue_map *map = &set->map[i];
448 
449 		map->nr_queues = dev->io_queues[i];
450 		if (!map->nr_queues) {
451 			BUG_ON(i == HCTX_TYPE_DEFAULT);
452 			continue;
453 		}
454 
455 		/*
456 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
457 		 * affinity), so use the regular blk-mq cpu mapping
458 		 */
459 		map->queue_offset = qoff;
460 		if (i != HCTX_TYPE_POLL && offset)
461 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
462 		else
463 			blk_mq_map_queues(map);
464 		qoff += map->nr_queues;
465 		offset += map->nr_queues;
466 	}
467 }
468 
469 /*
470  * Write sq tail if we are asked to, or if the next command would wrap.
471  */
472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474 	if (!write_sq) {
475 		u16 next_tail = nvmeq->sq_tail + 1;
476 
477 		if (next_tail == nvmeq->q_depth)
478 			next_tail = 0;
479 		if (next_tail != nvmeq->last_sq_tail)
480 			return;
481 	}
482 
483 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 		writel(nvmeq->sq_tail, nvmeq->q_db);
486 	nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488 
489 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
490 				    struct nvme_command *cmd)
491 {
492 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 		absolute_pointer(cmd), sizeof(*cmd));
494 	if (++nvmeq->sq_tail == nvmeq->q_depth)
495 		nvmeq->sq_tail = 0;
496 }
497 
498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 {
500 	struct nvme_queue *nvmeq = hctx->driver_data;
501 
502 	spin_lock(&nvmeq->sq_lock);
503 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504 		nvme_write_sq_db(nvmeq, true);
505 	spin_unlock(&nvmeq->sq_lock);
506 }
507 
508 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
509 				     int nseg)
510 {
511 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
512 	unsigned int avg_seg_size;
513 
514 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
515 
516 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
517 		return false;
518 	if (!nvmeq->qid)
519 		return false;
520 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
521 		return false;
522 	return true;
523 }
524 
525 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
526 {
527 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
528 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
529 	dma_addr_t dma_addr = iod->first_dma;
530 	int i;
531 
532 	for (i = 0; i < iod->nr_allocations; i++) {
533 		__le64 *prp_list = iod->list[i].prp_list;
534 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535 
536 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
537 		dma_addr = next_dma_addr;
538 	}
539 }
540 
541 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
542 {
543 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 
545 	if (iod->dma_len) {
546 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
547 			       rq_dma_dir(req));
548 		return;
549 	}
550 
551 	WARN_ON_ONCE(!iod->sgt.nents);
552 
553 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
554 
555 	if (iod->nr_allocations == 0)
556 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
557 			      iod->first_dma);
558 	else if (iod->nr_allocations == 1)
559 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
560 			      iod->first_dma);
561 	else
562 		nvme_free_prps(dev, req);
563 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
564 }
565 
566 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
567 {
568 	int i;
569 	struct scatterlist *sg;
570 
571 	for_each_sg(sgl, sg, nents, i) {
572 		dma_addr_t phys = sg_phys(sg);
573 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
574 			"dma_address:%pad dma_length:%d\n",
575 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
576 			sg_dma_len(sg));
577 	}
578 }
579 
580 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
581 		struct request *req, struct nvme_rw_command *cmnd)
582 {
583 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 	struct dma_pool *pool;
585 	int length = blk_rq_payload_bytes(req);
586 	struct scatterlist *sg = iod->sgt.sgl;
587 	int dma_len = sg_dma_len(sg);
588 	u64 dma_addr = sg_dma_address(sg);
589 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
590 	__le64 *prp_list;
591 	dma_addr_t prp_dma;
592 	int nprps, i;
593 
594 	length -= (NVME_CTRL_PAGE_SIZE - offset);
595 	if (length <= 0) {
596 		iod->first_dma = 0;
597 		goto done;
598 	}
599 
600 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
601 	if (dma_len) {
602 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
603 	} else {
604 		sg = sg_next(sg);
605 		dma_addr = sg_dma_address(sg);
606 		dma_len = sg_dma_len(sg);
607 	}
608 
609 	if (length <= NVME_CTRL_PAGE_SIZE) {
610 		iod->first_dma = dma_addr;
611 		goto done;
612 	}
613 
614 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
615 	if (nprps <= (256 / 8)) {
616 		pool = dev->prp_small_pool;
617 		iod->nr_allocations = 0;
618 	} else {
619 		pool = dev->prp_page_pool;
620 		iod->nr_allocations = 1;
621 	}
622 
623 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
624 	if (!prp_list) {
625 		iod->nr_allocations = -1;
626 		return BLK_STS_RESOURCE;
627 	}
628 	iod->list[0].prp_list = prp_list;
629 	iod->first_dma = prp_dma;
630 	i = 0;
631 	for (;;) {
632 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
633 			__le64 *old_prp_list = prp_list;
634 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
635 			if (!prp_list)
636 				goto free_prps;
637 			iod->list[iod->nr_allocations++].prp_list = prp_list;
638 			prp_list[0] = old_prp_list[i - 1];
639 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
640 			i = 1;
641 		}
642 		prp_list[i++] = cpu_to_le64(dma_addr);
643 		dma_len -= NVME_CTRL_PAGE_SIZE;
644 		dma_addr += NVME_CTRL_PAGE_SIZE;
645 		length -= NVME_CTRL_PAGE_SIZE;
646 		if (length <= 0)
647 			break;
648 		if (dma_len > 0)
649 			continue;
650 		if (unlikely(dma_len < 0))
651 			goto bad_sgl;
652 		sg = sg_next(sg);
653 		dma_addr = sg_dma_address(sg);
654 		dma_len = sg_dma_len(sg);
655 	}
656 done:
657 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
658 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659 	return BLK_STS_OK;
660 free_prps:
661 	nvme_free_prps(dev, req);
662 	return BLK_STS_RESOURCE;
663 bad_sgl:
664 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
665 			"Invalid SGL for payload:%d nents:%d\n",
666 			blk_rq_payload_bytes(req), iod->sgt.nents);
667 	return BLK_STS_IOERR;
668 }
669 
670 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
671 		struct scatterlist *sg)
672 {
673 	sge->addr = cpu_to_le64(sg_dma_address(sg));
674 	sge->length = cpu_to_le32(sg_dma_len(sg));
675 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
676 }
677 
678 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
679 		dma_addr_t dma_addr, int entries)
680 {
681 	sge->addr = cpu_to_le64(dma_addr);
682 	sge->length = cpu_to_le32(entries * sizeof(*sge));
683 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684 }
685 
686 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
687 		struct request *req, struct nvme_rw_command *cmd)
688 {
689 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
690 	struct dma_pool *pool;
691 	struct nvme_sgl_desc *sg_list;
692 	struct scatterlist *sg = iod->sgt.sgl;
693 	unsigned int entries = iod->sgt.nents;
694 	dma_addr_t sgl_dma;
695 	int i = 0;
696 
697 	/* setting the transfer type as SGL */
698 	cmd->flags = NVME_CMD_SGL_METABUF;
699 
700 	if (entries == 1) {
701 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
702 		return BLK_STS_OK;
703 	}
704 
705 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
706 		pool = dev->prp_small_pool;
707 		iod->nr_allocations = 0;
708 	} else {
709 		pool = dev->prp_page_pool;
710 		iod->nr_allocations = 1;
711 	}
712 
713 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
714 	if (!sg_list) {
715 		iod->nr_allocations = -1;
716 		return BLK_STS_RESOURCE;
717 	}
718 
719 	iod->list[0].sg_list = sg_list;
720 	iod->first_dma = sgl_dma;
721 
722 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
723 	do {
724 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
725 		sg = sg_next(sg);
726 	} while (--entries > 0);
727 
728 	return BLK_STS_OK;
729 }
730 
731 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
732 		struct request *req, struct nvme_rw_command *cmnd,
733 		struct bio_vec *bv)
734 {
735 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
736 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
737 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
738 
739 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
740 	if (dma_mapping_error(dev->dev, iod->first_dma))
741 		return BLK_STS_RESOURCE;
742 	iod->dma_len = bv->bv_len;
743 
744 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
745 	if (bv->bv_len > first_prp_len)
746 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
747 	else
748 		cmnd->dptr.prp2 = 0;
749 	return BLK_STS_OK;
750 }
751 
752 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
753 		struct request *req, struct nvme_rw_command *cmnd,
754 		struct bio_vec *bv)
755 {
756 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757 
758 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
759 	if (dma_mapping_error(dev->dev, iod->first_dma))
760 		return BLK_STS_RESOURCE;
761 	iod->dma_len = bv->bv_len;
762 
763 	cmnd->flags = NVME_CMD_SGL_METABUF;
764 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
765 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
766 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
767 	return BLK_STS_OK;
768 }
769 
770 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
771 		struct nvme_command *cmnd)
772 {
773 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
774 	blk_status_t ret = BLK_STS_RESOURCE;
775 	int rc;
776 
777 	if (blk_rq_nr_phys_segments(req) == 1) {
778 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
779 		struct bio_vec bv = req_bvec(req);
780 
781 		if (!is_pci_p2pdma_page(bv.bv_page)) {
782 			if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
783 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
784 				return nvme_setup_prp_simple(dev, req,
785 							     &cmnd->rw, &bv);
786 
787 			if (nvmeq->qid && sgl_threshold &&
788 			    nvme_ctrl_sgl_supported(&dev->ctrl))
789 				return nvme_setup_sgl_simple(dev, req,
790 							     &cmnd->rw, &bv);
791 		}
792 	}
793 
794 	iod->dma_len = 0;
795 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 	if (!iod->sgt.sgl)
797 		return BLK_STS_RESOURCE;
798 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
799 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
800 	if (!iod->sgt.orig_nents)
801 		goto out_free_sg;
802 
803 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
804 			     DMA_ATTR_NO_WARN);
805 	if (rc) {
806 		if (rc == -EREMOTEIO)
807 			ret = BLK_STS_TARGET;
808 		goto out_free_sg;
809 	}
810 
811 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
812 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
813 	else
814 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
815 	if (ret != BLK_STS_OK)
816 		goto out_unmap_sg;
817 	return BLK_STS_OK;
818 
819 out_unmap_sg:
820 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
821 out_free_sg:
822 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
823 	return ret;
824 }
825 
826 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
827 		struct nvme_command *cmnd)
828 {
829 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 	struct bio_vec bv = rq_integrity_vec(req);
831 
832 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
833 	if (dma_mapping_error(dev->dev, iod->meta_dma))
834 		return BLK_STS_IOERR;
835 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
836 	return BLK_STS_OK;
837 }
838 
839 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 	blk_status_t ret;
843 
844 	iod->aborted = false;
845 	iod->nr_allocations = -1;
846 	iod->sgt.nents = 0;
847 
848 	ret = nvme_setup_cmd(req->q->queuedata, req);
849 	if (ret)
850 		return ret;
851 
852 	if (blk_rq_nr_phys_segments(req)) {
853 		ret = nvme_map_data(dev, req, &iod->cmd);
854 		if (ret)
855 			goto out_free_cmd;
856 	}
857 
858 	if (blk_integrity_rq(req)) {
859 		ret = nvme_map_metadata(dev, req, &iod->cmd);
860 		if (ret)
861 			goto out_unmap_data;
862 	}
863 
864 	nvme_start_request(req);
865 	return BLK_STS_OK;
866 out_unmap_data:
867 	if (blk_rq_nr_phys_segments(req))
868 		nvme_unmap_data(dev, req);
869 out_free_cmd:
870 	nvme_cleanup_cmd(req);
871 	return ret;
872 }
873 
874 /*
875  * NOTE: ns is NULL when called on the admin queue.
876  */
877 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
878 			 const struct blk_mq_queue_data *bd)
879 {
880 	struct nvme_queue *nvmeq = hctx->driver_data;
881 	struct nvme_dev *dev = nvmeq->dev;
882 	struct request *req = bd->rq;
883 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
884 	blk_status_t ret;
885 
886 	/*
887 	 * We should not need to do this, but we're still using this to
888 	 * ensure we can drain requests on a dying queue.
889 	 */
890 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
891 		return BLK_STS_IOERR;
892 
893 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
894 		return nvme_fail_nonready_command(&dev->ctrl, req);
895 
896 	ret = nvme_prep_rq(dev, req);
897 	if (unlikely(ret))
898 		return ret;
899 	spin_lock(&nvmeq->sq_lock);
900 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
901 	nvme_write_sq_db(nvmeq, bd->last);
902 	spin_unlock(&nvmeq->sq_lock);
903 	return BLK_STS_OK;
904 }
905 
906 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
907 {
908 	struct request *req;
909 
910 	spin_lock(&nvmeq->sq_lock);
911 	while ((req = rq_list_pop(rqlist))) {
912 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
913 
914 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
915 	}
916 	nvme_write_sq_db(nvmeq, true);
917 	spin_unlock(&nvmeq->sq_lock);
918 }
919 
920 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
921 {
922 	/*
923 	 * We should not need to do this, but we're still using this to
924 	 * ensure we can drain requests on a dying queue.
925 	 */
926 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
927 		return false;
928 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
929 		return false;
930 
931 	req->mq_hctx->tags->rqs[req->tag] = req;
932 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
933 }
934 
935 static void nvme_queue_rqs(struct request **rqlist)
936 {
937 	struct request *submit_list = NULL;
938 	struct request *requeue_list = NULL;
939 	struct request **requeue_lastp = &requeue_list;
940 	struct nvme_queue *nvmeq = NULL;
941 	struct request *req;
942 
943 	while ((req = rq_list_pop(rqlist))) {
944 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
945 			nvme_submit_cmds(nvmeq, &submit_list);
946 		nvmeq = req->mq_hctx->driver_data;
947 
948 		if (nvme_prep_rq_batch(nvmeq, req))
949 			rq_list_add(&submit_list, req); /* reverse order */
950 		else
951 			rq_list_add_tail(&requeue_lastp, req);
952 	}
953 
954 	if (nvmeq)
955 		nvme_submit_cmds(nvmeq, &submit_list);
956 	*rqlist = requeue_list;
957 }
958 
959 static __always_inline void nvme_pci_unmap_rq(struct request *req)
960 {
961 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
962 	struct nvme_dev *dev = nvmeq->dev;
963 
964 	if (blk_integrity_rq(req)) {
965 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 
967 		dma_unmap_page(dev->dev, iod->meta_dma,
968 			       rq_integrity_vec(req).bv_len, rq_dma_dir(req));
969 	}
970 
971 	if (blk_rq_nr_phys_segments(req))
972 		nvme_unmap_data(dev, req);
973 }
974 
975 static void nvme_pci_complete_rq(struct request *req)
976 {
977 	nvme_pci_unmap_rq(req);
978 	nvme_complete_rq(req);
979 }
980 
981 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
982 {
983 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
984 }
985 
986 /* We read the CQE phase first to check if the rest of the entry is valid */
987 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
988 {
989 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
990 
991 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
992 }
993 
994 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
995 {
996 	u16 head = nvmeq->cq_head;
997 
998 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
999 					      nvmeq->dbbuf_cq_ei))
1000 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1001 }
1002 
1003 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1004 {
1005 	if (!nvmeq->qid)
1006 		return nvmeq->dev->admin_tagset.tags[0];
1007 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1008 }
1009 
1010 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1011 				   struct io_comp_batch *iob, u16 idx)
1012 {
1013 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1014 	__u16 command_id = READ_ONCE(cqe->command_id);
1015 	struct request *req;
1016 
1017 	/*
1018 	 * AEN requests are special as they don't time out and can
1019 	 * survive any kind of queue freeze and often don't respond to
1020 	 * aborts.  We don't even bother to allocate a struct request
1021 	 * for them but rather special case them here.
1022 	 */
1023 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1024 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1025 				cqe->status, &cqe->result);
1026 		return;
1027 	}
1028 
1029 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1030 	if (unlikely(!req)) {
1031 		dev_warn(nvmeq->dev->ctrl.device,
1032 			"invalid id %d completed on queue %d\n",
1033 			command_id, le16_to_cpu(cqe->sq_id));
1034 		return;
1035 	}
1036 
1037 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1038 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1039 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1040 					nvme_pci_complete_batch))
1041 		nvme_pci_complete_rq(req);
1042 }
1043 
1044 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1045 {
1046 	u32 tmp = nvmeq->cq_head + 1;
1047 
1048 	if (tmp == nvmeq->q_depth) {
1049 		nvmeq->cq_head = 0;
1050 		nvmeq->cq_phase ^= 1;
1051 	} else {
1052 		nvmeq->cq_head = tmp;
1053 	}
1054 }
1055 
1056 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1057 			       struct io_comp_batch *iob)
1058 {
1059 	int found = 0;
1060 
1061 	while (nvme_cqe_pending(nvmeq)) {
1062 		found++;
1063 		/*
1064 		 * load-load control dependency between phase and the rest of
1065 		 * the cqe requires a full read memory barrier
1066 		 */
1067 		dma_rmb();
1068 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1069 		nvme_update_cq_head(nvmeq);
1070 	}
1071 
1072 	if (found)
1073 		nvme_ring_cq_doorbell(nvmeq);
1074 	return found;
1075 }
1076 
1077 static irqreturn_t nvme_irq(int irq, void *data)
1078 {
1079 	struct nvme_queue *nvmeq = data;
1080 	DEFINE_IO_COMP_BATCH(iob);
1081 
1082 	if (nvme_poll_cq(nvmeq, &iob)) {
1083 		if (!rq_list_empty(iob.req_list))
1084 			nvme_pci_complete_batch(&iob);
1085 		return IRQ_HANDLED;
1086 	}
1087 	return IRQ_NONE;
1088 }
1089 
1090 static irqreturn_t nvme_irq_check(int irq, void *data)
1091 {
1092 	struct nvme_queue *nvmeq = data;
1093 
1094 	if (nvme_cqe_pending(nvmeq))
1095 		return IRQ_WAKE_THREAD;
1096 	return IRQ_NONE;
1097 }
1098 
1099 /*
1100  * Poll for completions for any interrupt driven queue
1101  * Can be called from any context.
1102  */
1103 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1104 {
1105 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1106 
1107 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1108 
1109 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1110 	nvme_poll_cq(nvmeq, NULL);
1111 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1112 }
1113 
1114 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1115 {
1116 	struct nvme_queue *nvmeq = hctx->driver_data;
1117 	bool found;
1118 
1119 	if (!nvme_cqe_pending(nvmeq))
1120 		return 0;
1121 
1122 	spin_lock(&nvmeq->cq_poll_lock);
1123 	found = nvme_poll_cq(nvmeq, iob);
1124 	spin_unlock(&nvmeq->cq_poll_lock);
1125 
1126 	return found;
1127 }
1128 
1129 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1130 {
1131 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1132 	struct nvme_queue *nvmeq = &dev->queues[0];
1133 	struct nvme_command c = { };
1134 
1135 	c.common.opcode = nvme_admin_async_event;
1136 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1137 
1138 	spin_lock(&nvmeq->sq_lock);
1139 	nvme_sq_copy_cmd(nvmeq, &c);
1140 	nvme_write_sq_db(nvmeq, true);
1141 	spin_unlock(&nvmeq->sq_lock);
1142 }
1143 
1144 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1145 {
1146 	struct nvme_command c = { };
1147 
1148 	c.delete_queue.opcode = opcode;
1149 	c.delete_queue.qid = cpu_to_le16(id);
1150 
1151 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1152 }
1153 
1154 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1155 		struct nvme_queue *nvmeq, s16 vector)
1156 {
1157 	struct nvme_command c = { };
1158 	int flags = NVME_QUEUE_PHYS_CONTIG;
1159 
1160 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1161 		flags |= NVME_CQ_IRQ_ENABLED;
1162 
1163 	/*
1164 	 * Note: we (ab)use the fact that the prp fields survive if no data
1165 	 * is attached to the request.
1166 	 */
1167 	c.create_cq.opcode = nvme_admin_create_cq;
1168 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1169 	c.create_cq.cqid = cpu_to_le16(qid);
1170 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1171 	c.create_cq.cq_flags = cpu_to_le16(flags);
1172 	c.create_cq.irq_vector = cpu_to_le16(vector);
1173 
1174 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1175 }
1176 
1177 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1178 						struct nvme_queue *nvmeq)
1179 {
1180 	struct nvme_ctrl *ctrl = &dev->ctrl;
1181 	struct nvme_command c = { };
1182 	int flags = NVME_QUEUE_PHYS_CONTIG;
1183 
1184 	/*
1185 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1186 	 * set. Since URGENT priority is zeroes, it makes all queues
1187 	 * URGENT.
1188 	 */
1189 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1190 		flags |= NVME_SQ_PRIO_MEDIUM;
1191 
1192 	/*
1193 	 * Note: we (ab)use the fact that the prp fields survive if no data
1194 	 * is attached to the request.
1195 	 */
1196 	c.create_sq.opcode = nvme_admin_create_sq;
1197 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1198 	c.create_sq.sqid = cpu_to_le16(qid);
1199 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1200 	c.create_sq.sq_flags = cpu_to_le16(flags);
1201 	c.create_sq.cqid = cpu_to_le16(qid);
1202 
1203 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1204 }
1205 
1206 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1207 {
1208 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1209 }
1210 
1211 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1212 {
1213 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1214 }
1215 
1216 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1217 {
1218 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1219 
1220 	dev_warn(nvmeq->dev->ctrl.device,
1221 		 "Abort status: 0x%x", nvme_req(req)->status);
1222 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1223 	blk_mq_free_request(req);
1224 	return RQ_END_IO_NONE;
1225 }
1226 
1227 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1228 {
1229 	/* If true, indicates loss of adapter communication, possibly by a
1230 	 * NVMe Subsystem reset.
1231 	 */
1232 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1233 
1234 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1235 	switch (nvme_ctrl_state(&dev->ctrl)) {
1236 	case NVME_CTRL_RESETTING:
1237 	case NVME_CTRL_CONNECTING:
1238 		return false;
1239 	default:
1240 		break;
1241 	}
1242 
1243 	/* We shouldn't reset unless the controller is on fatal error state
1244 	 * _or_ if we lost the communication with it.
1245 	 */
1246 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1253 {
1254 	/* Read a config register to help see what died. */
1255 	u16 pci_status;
1256 	int result;
1257 
1258 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1259 				      &pci_status);
1260 	if (result == PCIBIOS_SUCCESSFUL)
1261 		dev_warn(dev->ctrl.device,
1262 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1263 			 csts, pci_status);
1264 	else
1265 		dev_warn(dev->ctrl.device,
1266 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1267 			 csts, result);
1268 
1269 	if (csts != ~0)
1270 		return;
1271 
1272 	dev_warn(dev->ctrl.device,
1273 		 "Does your device have a faulty power saving mode enabled?\n");
1274 	dev_warn(dev->ctrl.device,
1275 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1276 }
1277 
1278 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1279 {
1280 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1281 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1282 	struct nvme_dev *dev = nvmeq->dev;
1283 	struct request *abort_req;
1284 	struct nvme_command cmd = { };
1285 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1286 
1287 	if (nvme_state_terminal(&dev->ctrl))
1288 		goto disable;
1289 
1290 	/* If PCI error recovery process is happening, we cannot reset or
1291 	 * the recovery mechanism will surely fail.
1292 	 */
1293 	mb();
1294 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1295 		return BLK_EH_RESET_TIMER;
1296 
1297 	/*
1298 	 * Reset immediately if the controller is failed
1299 	 */
1300 	if (nvme_should_reset(dev, csts)) {
1301 		nvme_warn_reset(dev, csts);
1302 		goto disable;
1303 	}
1304 
1305 	/*
1306 	 * Did we miss an interrupt?
1307 	 */
1308 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1309 		nvme_poll(req->mq_hctx, NULL);
1310 	else
1311 		nvme_poll_irqdisable(nvmeq);
1312 
1313 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1314 		dev_warn(dev->ctrl.device,
1315 			 "I/O %d QID %d timeout, completion polled\n",
1316 			 req->tag, nvmeq->qid);
1317 		return BLK_EH_DONE;
1318 	}
1319 
1320 	/*
1321 	 * Shutdown immediately if controller times out while starting. The
1322 	 * reset work will see the pci device disabled when it gets the forced
1323 	 * cancellation error. All outstanding requests are completed on
1324 	 * shutdown, so we return BLK_EH_DONE.
1325 	 */
1326 	switch (nvme_ctrl_state(&dev->ctrl)) {
1327 	case NVME_CTRL_CONNECTING:
1328 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1329 		fallthrough;
1330 	case NVME_CTRL_DELETING:
1331 		dev_warn_ratelimited(dev->ctrl.device,
1332 			 "I/O %d QID %d timeout, disable controller\n",
1333 			 req->tag, nvmeq->qid);
1334 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1335 		nvme_dev_disable(dev, true);
1336 		return BLK_EH_DONE;
1337 	case NVME_CTRL_RESETTING:
1338 		return BLK_EH_RESET_TIMER;
1339 	default:
1340 		break;
1341 	}
1342 
1343 	/*
1344 	 * Shutdown the controller immediately and schedule a reset if the
1345 	 * command was already aborted once before and still hasn't been
1346 	 * returned to the driver, or if this is the admin queue.
1347 	 */
1348 	if (!nvmeq->qid || iod->aborted) {
1349 		dev_warn(dev->ctrl.device,
1350 			 "I/O %d QID %d timeout, reset controller\n",
1351 			 req->tag, nvmeq->qid);
1352 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1353 		goto disable;
1354 	}
1355 
1356 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1357 		atomic_inc(&dev->ctrl.abort_limit);
1358 		return BLK_EH_RESET_TIMER;
1359 	}
1360 	iod->aborted = true;
1361 
1362 	cmd.abort.opcode = nvme_admin_abort_cmd;
1363 	cmd.abort.cid = nvme_cid(req);
1364 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1365 
1366 	dev_warn(nvmeq->dev->ctrl.device,
1367 		"I/O %d (%s) QID %d timeout, aborting\n",
1368 		 req->tag,
1369 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1370 		 nvmeq->qid);
1371 
1372 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1373 					 BLK_MQ_REQ_NOWAIT);
1374 	if (IS_ERR(abort_req)) {
1375 		atomic_inc(&dev->ctrl.abort_limit);
1376 		return BLK_EH_RESET_TIMER;
1377 	}
1378 	nvme_init_request(abort_req, &cmd);
1379 
1380 	abort_req->end_io = abort_endio;
1381 	abort_req->end_io_data = NULL;
1382 	blk_execute_rq_nowait(abort_req, false);
1383 
1384 	/*
1385 	 * The aborted req will be completed on receiving the abort req.
1386 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1387 	 * as the device then is in a faulty state.
1388 	 */
1389 	return BLK_EH_RESET_TIMER;
1390 
1391 disable:
1392 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1393 		if (nvme_state_terminal(&dev->ctrl))
1394 			nvme_dev_disable(dev, true);
1395 		return BLK_EH_DONE;
1396 	}
1397 
1398 	nvme_dev_disable(dev, false);
1399 	if (nvme_try_sched_reset(&dev->ctrl))
1400 		nvme_unquiesce_io_queues(&dev->ctrl);
1401 	return BLK_EH_DONE;
1402 }
1403 
1404 static void nvme_free_queue(struct nvme_queue *nvmeq)
1405 {
1406 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1407 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1408 	if (!nvmeq->sq_cmds)
1409 		return;
1410 
1411 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1412 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1413 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1414 	} else {
1415 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1416 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1417 	}
1418 }
1419 
1420 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1421 {
1422 	int i;
1423 
1424 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1425 		dev->ctrl.queue_count--;
1426 		nvme_free_queue(&dev->queues[i]);
1427 	}
1428 }
1429 
1430 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1431 {
1432 	struct nvme_queue *nvmeq = &dev->queues[qid];
1433 
1434 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1435 		return;
1436 
1437 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1438 	mb();
1439 
1440 	nvmeq->dev->online_queues--;
1441 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1442 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1443 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1444 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1445 }
1446 
1447 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1448 {
1449 	int i;
1450 
1451 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1452 		nvme_suspend_queue(dev, i);
1453 }
1454 
1455 /*
1456  * Called only on a device that has been disabled and after all other threads
1457  * that can check this device's completion queues have synced, except
1458  * nvme_poll(). This is the last chance for the driver to see a natural
1459  * completion before nvme_cancel_request() terminates all incomplete requests.
1460  */
1461 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1462 {
1463 	int i;
1464 
1465 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1466 		spin_lock(&dev->queues[i].cq_poll_lock);
1467 		nvme_poll_cq(&dev->queues[i], NULL);
1468 		spin_unlock(&dev->queues[i].cq_poll_lock);
1469 	}
1470 }
1471 
1472 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1473 				int entry_size)
1474 {
1475 	int q_depth = dev->q_depth;
1476 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1477 					  NVME_CTRL_PAGE_SIZE);
1478 
1479 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1480 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1481 
1482 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1483 		q_depth = div_u64(mem_per_q, entry_size);
1484 
1485 		/*
1486 		 * Ensure the reduced q_depth is above some threshold where it
1487 		 * would be better to map queues in system memory with the
1488 		 * original depth
1489 		 */
1490 		if (q_depth < 64)
1491 			return -ENOMEM;
1492 	}
1493 
1494 	return q_depth;
1495 }
1496 
1497 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1498 				int qid)
1499 {
1500 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1501 
1502 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1503 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1504 		if (nvmeq->sq_cmds) {
1505 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1506 							nvmeq->sq_cmds);
1507 			if (nvmeq->sq_dma_addr) {
1508 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1509 				return 0;
1510 			}
1511 
1512 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1513 		}
1514 	}
1515 
1516 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1517 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1518 	if (!nvmeq->sq_cmds)
1519 		return -ENOMEM;
1520 	return 0;
1521 }
1522 
1523 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1524 {
1525 	struct nvme_queue *nvmeq = &dev->queues[qid];
1526 
1527 	if (dev->ctrl.queue_count > qid)
1528 		return 0;
1529 
1530 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1531 	nvmeq->q_depth = depth;
1532 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1533 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1534 	if (!nvmeq->cqes)
1535 		goto free_nvmeq;
1536 
1537 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1538 		goto free_cqdma;
1539 
1540 	nvmeq->dev = dev;
1541 	spin_lock_init(&nvmeq->sq_lock);
1542 	spin_lock_init(&nvmeq->cq_poll_lock);
1543 	nvmeq->cq_head = 0;
1544 	nvmeq->cq_phase = 1;
1545 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1546 	nvmeq->qid = qid;
1547 	dev->ctrl.queue_count++;
1548 
1549 	return 0;
1550 
1551  free_cqdma:
1552 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1553 			  nvmeq->cq_dma_addr);
1554  free_nvmeq:
1555 	return -ENOMEM;
1556 }
1557 
1558 static int queue_request_irq(struct nvme_queue *nvmeq)
1559 {
1560 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1561 	int nr = nvmeq->dev->ctrl.instance;
1562 
1563 	if (use_threaded_interrupts) {
1564 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1565 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1566 	} else {
1567 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1568 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1569 	}
1570 }
1571 
1572 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1573 {
1574 	struct nvme_dev *dev = nvmeq->dev;
1575 
1576 	nvmeq->sq_tail = 0;
1577 	nvmeq->last_sq_tail = 0;
1578 	nvmeq->cq_head = 0;
1579 	nvmeq->cq_phase = 1;
1580 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1581 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1582 	nvme_dbbuf_init(dev, nvmeq, qid);
1583 	dev->online_queues++;
1584 	wmb(); /* ensure the first interrupt sees the initialization */
1585 }
1586 
1587 /*
1588  * Try getting shutdown_lock while setting up IO queues.
1589  */
1590 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1591 {
1592 	/*
1593 	 * Give up if the lock is being held by nvme_dev_disable.
1594 	 */
1595 	if (!mutex_trylock(&dev->shutdown_lock))
1596 		return -ENODEV;
1597 
1598 	/*
1599 	 * Controller is in wrong state, fail early.
1600 	 */
1601 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1602 		mutex_unlock(&dev->shutdown_lock);
1603 		return -ENODEV;
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1610 {
1611 	struct nvme_dev *dev = nvmeq->dev;
1612 	int result;
1613 	u16 vector = 0;
1614 
1615 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1616 
1617 	/*
1618 	 * A queue's vector matches the queue identifier unless the controller
1619 	 * has only one vector available.
1620 	 */
1621 	if (!polled)
1622 		vector = dev->num_vecs == 1 ? 0 : qid;
1623 	else
1624 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1625 
1626 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1627 	if (result)
1628 		return result;
1629 
1630 	result = adapter_alloc_sq(dev, qid, nvmeq);
1631 	if (result < 0)
1632 		return result;
1633 	if (result)
1634 		goto release_cq;
1635 
1636 	nvmeq->cq_vector = vector;
1637 
1638 	result = nvme_setup_io_queues_trylock(dev);
1639 	if (result)
1640 		return result;
1641 	nvme_init_queue(nvmeq, qid);
1642 	if (!polled) {
1643 		result = queue_request_irq(nvmeq);
1644 		if (result < 0)
1645 			goto release_sq;
1646 	}
1647 
1648 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1649 	mutex_unlock(&dev->shutdown_lock);
1650 	return result;
1651 
1652 release_sq:
1653 	dev->online_queues--;
1654 	mutex_unlock(&dev->shutdown_lock);
1655 	adapter_delete_sq(dev, qid);
1656 release_cq:
1657 	adapter_delete_cq(dev, qid);
1658 	return result;
1659 }
1660 
1661 static const struct blk_mq_ops nvme_mq_admin_ops = {
1662 	.queue_rq	= nvme_queue_rq,
1663 	.complete	= nvme_pci_complete_rq,
1664 	.init_hctx	= nvme_admin_init_hctx,
1665 	.init_request	= nvme_pci_init_request,
1666 	.timeout	= nvme_timeout,
1667 };
1668 
1669 static const struct blk_mq_ops nvme_mq_ops = {
1670 	.queue_rq	= nvme_queue_rq,
1671 	.queue_rqs	= nvme_queue_rqs,
1672 	.complete	= nvme_pci_complete_rq,
1673 	.commit_rqs	= nvme_commit_rqs,
1674 	.init_hctx	= nvme_init_hctx,
1675 	.init_request	= nvme_pci_init_request,
1676 	.map_queues	= nvme_pci_map_queues,
1677 	.timeout	= nvme_timeout,
1678 	.poll		= nvme_poll,
1679 };
1680 
1681 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1682 {
1683 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1684 		/*
1685 		 * If the controller was reset during removal, it's possible
1686 		 * user requests may be waiting on a stopped queue. Start the
1687 		 * queue to flush these to completion.
1688 		 */
1689 		nvme_unquiesce_admin_queue(&dev->ctrl);
1690 		nvme_remove_admin_tag_set(&dev->ctrl);
1691 	}
1692 }
1693 
1694 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1695 {
1696 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1697 }
1698 
1699 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1700 {
1701 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1702 
1703 	if (size <= dev->bar_mapped_size)
1704 		return 0;
1705 	if (size > pci_resource_len(pdev, 0))
1706 		return -ENOMEM;
1707 	if (dev->bar)
1708 		iounmap(dev->bar);
1709 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1710 	if (!dev->bar) {
1711 		dev->bar_mapped_size = 0;
1712 		return -ENOMEM;
1713 	}
1714 	dev->bar_mapped_size = size;
1715 	dev->dbs = dev->bar + NVME_REG_DBS;
1716 
1717 	return 0;
1718 }
1719 
1720 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1721 {
1722 	int result;
1723 	u32 aqa;
1724 	struct nvme_queue *nvmeq;
1725 
1726 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1727 	if (result < 0)
1728 		return result;
1729 
1730 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1731 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1732 
1733 	if (dev->subsystem &&
1734 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1735 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1736 
1737 	/*
1738 	 * If the device has been passed off to us in an enabled state, just
1739 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1740 	 * notification bits', but doing so may cause the device to complete
1741 	 * commands to the admin queue ... and we don't know what memory that
1742 	 * might be pointing at!
1743 	 */
1744 	result = nvme_disable_ctrl(&dev->ctrl, false);
1745 	if (result < 0)
1746 		return result;
1747 
1748 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1749 	if (result)
1750 		return result;
1751 
1752 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1753 
1754 	nvmeq = &dev->queues[0];
1755 	aqa = nvmeq->q_depth - 1;
1756 	aqa |= aqa << 16;
1757 
1758 	writel(aqa, dev->bar + NVME_REG_AQA);
1759 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1760 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1761 
1762 	result = nvme_enable_ctrl(&dev->ctrl);
1763 	if (result)
1764 		return result;
1765 
1766 	nvmeq->cq_vector = 0;
1767 	nvme_init_queue(nvmeq, 0);
1768 	result = queue_request_irq(nvmeq);
1769 	if (result) {
1770 		dev->online_queues--;
1771 		return result;
1772 	}
1773 
1774 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1775 	return result;
1776 }
1777 
1778 static int nvme_create_io_queues(struct nvme_dev *dev)
1779 {
1780 	unsigned i, max, rw_queues;
1781 	int ret = 0;
1782 
1783 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1784 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1785 			ret = -ENOMEM;
1786 			break;
1787 		}
1788 	}
1789 
1790 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1791 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1792 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1793 				dev->io_queues[HCTX_TYPE_READ];
1794 	} else {
1795 		rw_queues = max;
1796 	}
1797 
1798 	for (i = dev->online_queues; i <= max; i++) {
1799 		bool polled = i > rw_queues;
1800 
1801 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1802 		if (ret)
1803 			break;
1804 	}
1805 
1806 	/*
1807 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1808 	 * than the desired amount of queues, and even a controller without
1809 	 * I/O queues can still be used to issue admin commands.  This might
1810 	 * be useful to upgrade a buggy firmware for example.
1811 	 */
1812 	return ret >= 0 ? 0 : ret;
1813 }
1814 
1815 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1816 {
1817 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1818 
1819 	return 1ULL << (12 + 4 * szu);
1820 }
1821 
1822 static u32 nvme_cmb_size(struct nvme_dev *dev)
1823 {
1824 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1825 }
1826 
1827 static void nvme_map_cmb(struct nvme_dev *dev)
1828 {
1829 	u64 size, offset;
1830 	resource_size_t bar_size;
1831 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1832 	int bar;
1833 
1834 	if (dev->cmb_size)
1835 		return;
1836 
1837 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1838 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1839 
1840 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1841 	if (!dev->cmbsz)
1842 		return;
1843 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1844 
1845 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1846 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1847 	bar = NVME_CMB_BIR(dev->cmbloc);
1848 	bar_size = pci_resource_len(pdev, bar);
1849 
1850 	if (offset > bar_size)
1851 		return;
1852 
1853 	/*
1854 	 * Tell the controller about the host side address mapping the CMB,
1855 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1856 	 */
1857 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1858 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1859 			     (pci_bus_address(pdev, bar) + offset),
1860 			     dev->bar + NVME_REG_CMBMSC);
1861 	}
1862 
1863 	/*
1864 	 * Controllers may support a CMB size larger than their BAR,
1865 	 * for example, due to being behind a bridge. Reduce the CMB to
1866 	 * the reported size of the BAR
1867 	 */
1868 	if (size > bar_size - offset)
1869 		size = bar_size - offset;
1870 
1871 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1872 		dev_warn(dev->ctrl.device,
1873 			 "failed to register the CMB\n");
1874 		return;
1875 	}
1876 
1877 	dev->cmb_size = size;
1878 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1879 
1880 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1881 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1882 		pci_p2pmem_publish(pdev, true);
1883 
1884 	nvme_update_attrs(dev);
1885 }
1886 
1887 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1888 {
1889 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1890 	u64 dma_addr = dev->host_mem_descs_dma;
1891 	struct nvme_command c = { };
1892 	int ret;
1893 
1894 	c.features.opcode	= nvme_admin_set_features;
1895 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1896 	c.features.dword11	= cpu_to_le32(bits);
1897 	c.features.dword12	= cpu_to_le32(host_mem_size);
1898 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1899 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1900 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1901 
1902 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1903 	if (ret) {
1904 		dev_warn(dev->ctrl.device,
1905 			 "failed to set host mem (err %d, flags %#x).\n",
1906 			 ret, bits);
1907 	} else
1908 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1909 
1910 	return ret;
1911 }
1912 
1913 static void nvme_free_host_mem(struct nvme_dev *dev)
1914 {
1915 	int i;
1916 
1917 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1918 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1919 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1920 
1921 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1922 			       le64_to_cpu(desc->addr),
1923 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1924 	}
1925 
1926 	kfree(dev->host_mem_desc_bufs);
1927 	dev->host_mem_desc_bufs = NULL;
1928 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1929 			dev->host_mem_descs, dev->host_mem_descs_dma);
1930 	dev->host_mem_descs = NULL;
1931 	dev->host_mem_descs_size = 0;
1932 	dev->nr_host_mem_descs = 0;
1933 }
1934 
1935 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1936 		u32 chunk_size)
1937 {
1938 	struct nvme_host_mem_buf_desc *descs;
1939 	u32 max_entries, len, descs_size;
1940 	dma_addr_t descs_dma;
1941 	int i = 0;
1942 	void **bufs;
1943 	u64 size, tmp;
1944 
1945 	tmp = (preferred + chunk_size - 1);
1946 	do_div(tmp, chunk_size);
1947 	max_entries = tmp;
1948 
1949 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1950 		max_entries = dev->ctrl.hmmaxd;
1951 
1952 	descs_size = max_entries * sizeof(*descs);
1953 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
1954 			GFP_KERNEL);
1955 	if (!descs)
1956 		goto out;
1957 
1958 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1959 	if (!bufs)
1960 		goto out_free_descs;
1961 
1962 	for (size = 0; size < preferred && i < max_entries; size += len) {
1963 		dma_addr_t dma_addr;
1964 
1965 		len = min_t(u64, chunk_size, preferred - size);
1966 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1967 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1968 		if (!bufs[i])
1969 			break;
1970 
1971 		descs[i].addr = cpu_to_le64(dma_addr);
1972 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1973 		i++;
1974 	}
1975 
1976 	if (!size)
1977 		goto out_free_bufs;
1978 
1979 	dev->nr_host_mem_descs = i;
1980 	dev->host_mem_size = size;
1981 	dev->host_mem_descs = descs;
1982 	dev->host_mem_descs_dma = descs_dma;
1983 	dev->host_mem_descs_size = descs_size;
1984 	dev->host_mem_desc_bufs = bufs;
1985 	return 0;
1986 
1987 out_free_bufs:
1988 	while (--i >= 0) {
1989 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1990 
1991 		dma_free_attrs(dev->dev, size, bufs[i],
1992 			       le64_to_cpu(descs[i].addr),
1993 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1994 	}
1995 
1996 	kfree(bufs);
1997 out_free_descs:
1998 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
1999 out:
2000 	dev->host_mem_descs = NULL;
2001 	return -ENOMEM;
2002 }
2003 
2004 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2005 {
2006 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2007 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2008 	u64 chunk_size;
2009 
2010 	/* start big and work our way down */
2011 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2012 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2013 			if (!min || dev->host_mem_size >= min)
2014 				return 0;
2015 			nvme_free_host_mem(dev);
2016 		}
2017 	}
2018 
2019 	return -ENOMEM;
2020 }
2021 
2022 static int nvme_setup_host_mem(struct nvme_dev *dev)
2023 {
2024 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2025 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2026 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2027 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2028 	int ret;
2029 
2030 	if (!dev->ctrl.hmpre)
2031 		return 0;
2032 
2033 	preferred = min(preferred, max);
2034 	if (min > max) {
2035 		dev_warn(dev->ctrl.device,
2036 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2037 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2038 		nvme_free_host_mem(dev);
2039 		return 0;
2040 	}
2041 
2042 	/*
2043 	 * If we already have a buffer allocated check if we can reuse it.
2044 	 */
2045 	if (dev->host_mem_descs) {
2046 		if (dev->host_mem_size >= min)
2047 			enable_bits |= NVME_HOST_MEM_RETURN;
2048 		else
2049 			nvme_free_host_mem(dev);
2050 	}
2051 
2052 	if (!dev->host_mem_descs) {
2053 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2054 			dev_warn(dev->ctrl.device,
2055 				"failed to allocate host memory buffer.\n");
2056 			return 0; /* controller must work without HMB */
2057 		}
2058 
2059 		dev_info(dev->ctrl.device,
2060 			"allocated %lld MiB host memory buffer.\n",
2061 			dev->host_mem_size >> ilog2(SZ_1M));
2062 	}
2063 
2064 	ret = nvme_set_host_mem(dev, enable_bits);
2065 	if (ret)
2066 		nvme_free_host_mem(dev);
2067 	return ret;
2068 }
2069 
2070 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2071 		char *buf)
2072 {
2073 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2074 
2075 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2076 		       ndev->cmbloc, ndev->cmbsz);
2077 }
2078 static DEVICE_ATTR_RO(cmb);
2079 
2080 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2081 		char *buf)
2082 {
2083 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2084 
2085 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2086 }
2087 static DEVICE_ATTR_RO(cmbloc);
2088 
2089 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2090 		char *buf)
2091 {
2092 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2093 
2094 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2095 }
2096 static DEVICE_ATTR_RO(cmbsz);
2097 
2098 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2099 			char *buf)
2100 {
2101 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2102 
2103 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2104 }
2105 
2106 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2107 			 const char *buf, size_t count)
2108 {
2109 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2110 	bool new;
2111 	int ret;
2112 
2113 	if (kstrtobool(buf, &new) < 0)
2114 		return -EINVAL;
2115 
2116 	if (new == ndev->hmb)
2117 		return count;
2118 
2119 	if (new) {
2120 		ret = nvme_setup_host_mem(ndev);
2121 	} else {
2122 		ret = nvme_set_host_mem(ndev, 0);
2123 		if (!ret)
2124 			nvme_free_host_mem(ndev);
2125 	}
2126 
2127 	if (ret < 0)
2128 		return ret;
2129 
2130 	return count;
2131 }
2132 static DEVICE_ATTR_RW(hmb);
2133 
2134 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2135 		struct attribute *a, int n)
2136 {
2137 	struct nvme_ctrl *ctrl =
2138 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2139 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2140 
2141 	if (a == &dev_attr_cmb.attr ||
2142 	    a == &dev_attr_cmbloc.attr ||
2143 	    a == &dev_attr_cmbsz.attr) {
2144 	    	if (!dev->cmbsz)
2145 			return 0;
2146 	}
2147 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2148 		return 0;
2149 
2150 	return a->mode;
2151 }
2152 
2153 static struct attribute *nvme_pci_attrs[] = {
2154 	&dev_attr_cmb.attr,
2155 	&dev_attr_cmbloc.attr,
2156 	&dev_attr_cmbsz.attr,
2157 	&dev_attr_hmb.attr,
2158 	NULL,
2159 };
2160 
2161 static const struct attribute_group nvme_pci_dev_attrs_group = {
2162 	.attrs		= nvme_pci_attrs,
2163 	.is_visible	= nvme_pci_attrs_are_visible,
2164 };
2165 
2166 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2167 	&nvme_dev_attrs_group,
2168 	&nvme_pci_dev_attrs_group,
2169 	NULL,
2170 };
2171 
2172 static void nvme_update_attrs(struct nvme_dev *dev)
2173 {
2174 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2175 }
2176 
2177 /*
2178  * nirqs is the number of interrupts available for write and read
2179  * queues. The core already reserved an interrupt for the admin queue.
2180  */
2181 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2182 {
2183 	struct nvme_dev *dev = affd->priv;
2184 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2185 
2186 	/*
2187 	 * If there is no interrupt available for queues, ensure that
2188 	 * the default queue is set to 1. The affinity set size is
2189 	 * also set to one, but the irq core ignores it for this case.
2190 	 *
2191 	 * If only one interrupt is available or 'write_queue' == 0, combine
2192 	 * write and read queues.
2193 	 *
2194 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2195 	 * queue.
2196 	 */
2197 	if (!nrirqs) {
2198 		nrirqs = 1;
2199 		nr_read_queues = 0;
2200 	} else if (nrirqs == 1 || !nr_write_queues) {
2201 		nr_read_queues = 0;
2202 	} else if (nr_write_queues >= nrirqs) {
2203 		nr_read_queues = 1;
2204 	} else {
2205 		nr_read_queues = nrirqs - nr_write_queues;
2206 	}
2207 
2208 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2209 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2210 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2211 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2212 	affd->nr_sets = nr_read_queues ? 2 : 1;
2213 }
2214 
2215 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2216 {
2217 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2218 	struct irq_affinity affd = {
2219 		.pre_vectors	= 1,
2220 		.calc_sets	= nvme_calc_irq_sets,
2221 		.priv		= dev,
2222 	};
2223 	unsigned int irq_queues, poll_queues;
2224 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2225 
2226 	/*
2227 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2228 	 * left over for non-polled I/O.
2229 	 */
2230 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2231 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2232 
2233 	/*
2234 	 * Initialize for the single interrupt case, will be updated in
2235 	 * nvme_calc_irq_sets().
2236 	 */
2237 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2238 	dev->io_queues[HCTX_TYPE_READ] = 0;
2239 
2240 	/*
2241 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2242 	 * but some Apple controllers require all queues to use the first
2243 	 * vector.
2244 	 */
2245 	irq_queues = 1;
2246 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2247 		irq_queues += (nr_io_queues - poll_queues);
2248 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2249 		flags &= ~PCI_IRQ_MSI;
2250 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2251 					      &affd);
2252 }
2253 
2254 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2255 {
2256 	/*
2257 	 * If tags are shared with admin queue (Apple bug), then
2258 	 * make sure we only use one IO queue.
2259 	 */
2260 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2261 		return 1;
2262 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2263 }
2264 
2265 static int nvme_setup_io_queues(struct nvme_dev *dev)
2266 {
2267 	struct nvme_queue *adminq = &dev->queues[0];
2268 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2269 	unsigned int nr_io_queues;
2270 	unsigned long size;
2271 	int result;
2272 
2273 	/*
2274 	 * Sample the module parameters once at reset time so that we have
2275 	 * stable values to work with.
2276 	 */
2277 	dev->nr_write_queues = write_queues;
2278 	dev->nr_poll_queues = poll_queues;
2279 
2280 	nr_io_queues = dev->nr_allocated_queues - 1;
2281 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2282 	if (result < 0)
2283 		return result;
2284 
2285 	if (nr_io_queues == 0)
2286 		return 0;
2287 
2288 	/*
2289 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2290 	 * from set to unset. If there is a window to it is truely freed,
2291 	 * pci_free_irq_vectors() jumping into this window will crash.
2292 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2293 	 * nvme_dev_disable() path.
2294 	 */
2295 	result = nvme_setup_io_queues_trylock(dev);
2296 	if (result)
2297 		return result;
2298 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2299 		pci_free_irq(pdev, 0, adminq);
2300 
2301 	if (dev->cmb_use_sqes) {
2302 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2303 				sizeof(struct nvme_command));
2304 		if (result > 0) {
2305 			dev->q_depth = result;
2306 			dev->ctrl.sqsize = result - 1;
2307 		} else {
2308 			dev->cmb_use_sqes = false;
2309 		}
2310 	}
2311 
2312 	do {
2313 		size = db_bar_size(dev, nr_io_queues);
2314 		result = nvme_remap_bar(dev, size);
2315 		if (!result)
2316 			break;
2317 		if (!--nr_io_queues) {
2318 			result = -ENOMEM;
2319 			goto out_unlock;
2320 		}
2321 	} while (1);
2322 	adminq->q_db = dev->dbs;
2323 
2324  retry:
2325 	/* Deregister the admin queue's interrupt */
2326 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2327 		pci_free_irq(pdev, 0, adminq);
2328 
2329 	/*
2330 	 * If we enable msix early due to not intx, disable it again before
2331 	 * setting up the full range we need.
2332 	 */
2333 	pci_free_irq_vectors(pdev);
2334 
2335 	result = nvme_setup_irqs(dev, nr_io_queues);
2336 	if (result <= 0) {
2337 		result = -EIO;
2338 		goto out_unlock;
2339 	}
2340 
2341 	dev->num_vecs = result;
2342 	result = max(result - 1, 1);
2343 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2344 
2345 	/*
2346 	 * Should investigate if there's a performance win from allocating
2347 	 * more queues than interrupt vectors; it might allow the submission
2348 	 * path to scale better, even if the receive path is limited by the
2349 	 * number of interrupts.
2350 	 */
2351 	result = queue_request_irq(adminq);
2352 	if (result)
2353 		goto out_unlock;
2354 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2355 	mutex_unlock(&dev->shutdown_lock);
2356 
2357 	result = nvme_create_io_queues(dev);
2358 	if (result || dev->online_queues < 2)
2359 		return result;
2360 
2361 	if (dev->online_queues - 1 < dev->max_qid) {
2362 		nr_io_queues = dev->online_queues - 1;
2363 		nvme_delete_io_queues(dev);
2364 		result = nvme_setup_io_queues_trylock(dev);
2365 		if (result)
2366 			return result;
2367 		nvme_suspend_io_queues(dev);
2368 		goto retry;
2369 	}
2370 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2371 					dev->io_queues[HCTX_TYPE_DEFAULT],
2372 					dev->io_queues[HCTX_TYPE_READ],
2373 					dev->io_queues[HCTX_TYPE_POLL]);
2374 	return 0;
2375 out_unlock:
2376 	mutex_unlock(&dev->shutdown_lock);
2377 	return result;
2378 }
2379 
2380 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2381 					     blk_status_t error)
2382 {
2383 	struct nvme_queue *nvmeq = req->end_io_data;
2384 
2385 	blk_mq_free_request(req);
2386 	complete(&nvmeq->delete_done);
2387 	return RQ_END_IO_NONE;
2388 }
2389 
2390 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2391 					  blk_status_t error)
2392 {
2393 	struct nvme_queue *nvmeq = req->end_io_data;
2394 
2395 	if (error)
2396 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2397 
2398 	return nvme_del_queue_end(req, error);
2399 }
2400 
2401 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2402 {
2403 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2404 	struct request *req;
2405 	struct nvme_command cmd = { };
2406 
2407 	cmd.delete_queue.opcode = opcode;
2408 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2409 
2410 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2411 	if (IS_ERR(req))
2412 		return PTR_ERR(req);
2413 	nvme_init_request(req, &cmd);
2414 
2415 	if (opcode == nvme_admin_delete_cq)
2416 		req->end_io = nvme_del_cq_end;
2417 	else
2418 		req->end_io = nvme_del_queue_end;
2419 	req->end_io_data = nvmeq;
2420 
2421 	init_completion(&nvmeq->delete_done);
2422 	blk_execute_rq_nowait(req, false);
2423 	return 0;
2424 }
2425 
2426 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2427 {
2428 	int nr_queues = dev->online_queues - 1, sent = 0;
2429 	unsigned long timeout;
2430 
2431  retry:
2432 	timeout = NVME_ADMIN_TIMEOUT;
2433 	while (nr_queues > 0) {
2434 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2435 			break;
2436 		nr_queues--;
2437 		sent++;
2438 	}
2439 	while (sent) {
2440 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2441 
2442 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2443 				timeout);
2444 		if (timeout == 0)
2445 			return false;
2446 
2447 		sent--;
2448 		if (nr_queues)
2449 			goto retry;
2450 	}
2451 	return true;
2452 }
2453 
2454 static void nvme_delete_io_queues(struct nvme_dev *dev)
2455 {
2456 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2457 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2458 }
2459 
2460 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2461 {
2462 	if (dev->io_queues[HCTX_TYPE_POLL])
2463 		return 3;
2464 	if (dev->io_queues[HCTX_TYPE_READ])
2465 		return 2;
2466 	return 1;
2467 }
2468 
2469 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2470 {
2471 	if (!dev->ctrl.tagset) {
2472 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2473 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2474 		return true;
2475 	}
2476 
2477 	/* Give up if we are racing with nvme_dev_disable() */
2478 	if (!mutex_trylock(&dev->shutdown_lock))
2479 		return false;
2480 
2481 	/* Check if nvme_dev_disable() has been executed already */
2482 	if (!dev->online_queues) {
2483 		mutex_unlock(&dev->shutdown_lock);
2484 		return false;
2485 	}
2486 
2487 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2488 	/* free previously allocated queues that are no longer usable */
2489 	nvme_free_queues(dev, dev->online_queues);
2490 	mutex_unlock(&dev->shutdown_lock);
2491 	return true;
2492 }
2493 
2494 static int nvme_pci_enable(struct nvme_dev *dev)
2495 {
2496 	int result = -ENOMEM;
2497 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2498 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2499 
2500 	if (pci_enable_device_mem(pdev))
2501 		return result;
2502 
2503 	pci_set_master(pdev);
2504 
2505 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2506 		result = -ENODEV;
2507 		goto disable;
2508 	}
2509 
2510 	/*
2511 	 * Some devices and/or platforms don't advertise or work with INTx
2512 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2513 	 * adjust this later.
2514 	 */
2515 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2516 		flags &= ~PCI_IRQ_MSI;
2517 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2518 	if (result < 0)
2519 		goto disable;
2520 
2521 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2522 
2523 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2524 				io_queue_depth);
2525 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2526 	dev->dbs = dev->bar + 4096;
2527 
2528 	/*
2529 	 * Some Apple controllers require a non-standard SQE size.
2530 	 * Interestingly they also seem to ignore the CC:IOSQES register
2531 	 * so we don't bother updating it here.
2532 	 */
2533 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2534 		dev->io_sqes = 7;
2535 	else
2536 		dev->io_sqes = NVME_NVM_IOSQES;
2537 
2538 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2539 		dev->q_depth = 2;
2540 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2541 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2542 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2543 		dev->q_depth = 64;
2544 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2545                         "set queue depth=%u\n", dev->q_depth);
2546 	}
2547 
2548 	/*
2549 	 * Controllers with the shared tags quirk need the IO queue to be
2550 	 * big enough so that we get 32 tags for the admin queue
2551 	 */
2552 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2553 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2554 		dev->q_depth = NVME_AQ_DEPTH + 2;
2555 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2556 			 dev->q_depth);
2557 	}
2558 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2559 
2560 	nvme_map_cmb(dev);
2561 
2562 	pci_save_state(pdev);
2563 
2564 	result = nvme_pci_configure_admin_queue(dev);
2565 	if (result)
2566 		goto free_irq;
2567 	return result;
2568 
2569  free_irq:
2570 	pci_free_irq_vectors(pdev);
2571  disable:
2572 	pci_disable_device(pdev);
2573 	return result;
2574 }
2575 
2576 static void nvme_dev_unmap(struct nvme_dev *dev)
2577 {
2578 	if (dev->bar)
2579 		iounmap(dev->bar);
2580 	pci_release_mem_regions(to_pci_dev(dev->dev));
2581 }
2582 
2583 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2584 {
2585 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2586 	u32 csts;
2587 
2588 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2589 		return true;
2590 	if (pdev->error_state != pci_channel_io_normal)
2591 		return true;
2592 
2593 	csts = readl(dev->bar + NVME_REG_CSTS);
2594 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2595 }
2596 
2597 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2598 {
2599 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2600 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2601 	bool dead;
2602 
2603 	mutex_lock(&dev->shutdown_lock);
2604 	dead = nvme_pci_ctrl_is_dead(dev);
2605 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2606 		if (pci_is_enabled(pdev))
2607 			nvme_start_freeze(&dev->ctrl);
2608 		/*
2609 		 * Give the controller a chance to complete all entered requests
2610 		 * if doing a safe shutdown.
2611 		 */
2612 		if (!dead && shutdown)
2613 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2614 	}
2615 
2616 	nvme_quiesce_io_queues(&dev->ctrl);
2617 
2618 	if (!dead && dev->ctrl.queue_count > 0) {
2619 		nvme_delete_io_queues(dev);
2620 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2621 		nvme_poll_irqdisable(&dev->queues[0]);
2622 	}
2623 	nvme_suspend_io_queues(dev);
2624 	nvme_suspend_queue(dev, 0);
2625 	pci_free_irq_vectors(pdev);
2626 	if (pci_is_enabled(pdev))
2627 		pci_disable_device(pdev);
2628 	nvme_reap_pending_cqes(dev);
2629 
2630 	nvme_cancel_tagset(&dev->ctrl);
2631 	nvme_cancel_admin_tagset(&dev->ctrl);
2632 
2633 	/*
2634 	 * The driver will not be starting up queues again if shutting down so
2635 	 * must flush all entered requests to their failed completion to avoid
2636 	 * deadlocking blk-mq hot-cpu notifier.
2637 	 */
2638 	if (shutdown) {
2639 		nvme_unquiesce_io_queues(&dev->ctrl);
2640 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2641 			nvme_unquiesce_admin_queue(&dev->ctrl);
2642 	}
2643 	mutex_unlock(&dev->shutdown_lock);
2644 }
2645 
2646 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2647 {
2648 	if (!nvme_wait_reset(&dev->ctrl))
2649 		return -EBUSY;
2650 	nvme_dev_disable(dev, shutdown);
2651 	return 0;
2652 }
2653 
2654 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2655 {
2656 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2657 						NVME_CTRL_PAGE_SIZE,
2658 						NVME_CTRL_PAGE_SIZE, 0);
2659 	if (!dev->prp_page_pool)
2660 		return -ENOMEM;
2661 
2662 	/* Optimisation for I/Os between 4k and 128k */
2663 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2664 						256, 256, 0);
2665 	if (!dev->prp_small_pool) {
2666 		dma_pool_destroy(dev->prp_page_pool);
2667 		return -ENOMEM;
2668 	}
2669 	return 0;
2670 }
2671 
2672 static void nvme_release_prp_pools(struct nvme_dev *dev)
2673 {
2674 	dma_pool_destroy(dev->prp_page_pool);
2675 	dma_pool_destroy(dev->prp_small_pool);
2676 }
2677 
2678 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2679 {
2680 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2681 
2682 	dev->iod_mempool = mempool_create_node(1,
2683 			mempool_kmalloc, mempool_kfree,
2684 			(void *)alloc_size, GFP_KERNEL,
2685 			dev_to_node(dev->dev));
2686 	if (!dev->iod_mempool)
2687 		return -ENOMEM;
2688 	return 0;
2689 }
2690 
2691 static void nvme_free_tagset(struct nvme_dev *dev)
2692 {
2693 	if (dev->tagset.tags)
2694 		nvme_remove_io_tag_set(&dev->ctrl);
2695 	dev->ctrl.tagset = NULL;
2696 }
2697 
2698 /* pairs with nvme_pci_alloc_dev */
2699 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2700 {
2701 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2702 
2703 	nvme_free_tagset(dev);
2704 	put_device(dev->dev);
2705 	kfree(dev->queues);
2706 	kfree(dev);
2707 }
2708 
2709 static void nvme_reset_work(struct work_struct *work)
2710 {
2711 	struct nvme_dev *dev =
2712 		container_of(work, struct nvme_dev, ctrl.reset_work);
2713 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2714 	int result;
2715 
2716 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2717 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2718 			 dev->ctrl.state);
2719 		result = -ENODEV;
2720 		goto out;
2721 	}
2722 
2723 	/*
2724 	 * If we're called to reset a live controller first shut it down before
2725 	 * moving on.
2726 	 */
2727 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2728 		nvme_dev_disable(dev, false);
2729 	nvme_sync_queues(&dev->ctrl);
2730 
2731 	mutex_lock(&dev->shutdown_lock);
2732 	result = nvme_pci_enable(dev);
2733 	if (result)
2734 		goto out_unlock;
2735 	nvme_unquiesce_admin_queue(&dev->ctrl);
2736 	mutex_unlock(&dev->shutdown_lock);
2737 
2738 	/*
2739 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2740 	 * initializing procedure here.
2741 	 */
2742 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2743 		dev_warn(dev->ctrl.device,
2744 			"failed to mark controller CONNECTING\n");
2745 		result = -EBUSY;
2746 		goto out;
2747 	}
2748 
2749 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2750 	if (result)
2751 		goto out;
2752 
2753 	nvme_dbbuf_dma_alloc(dev);
2754 
2755 	result = nvme_setup_host_mem(dev);
2756 	if (result < 0)
2757 		goto out;
2758 
2759 	result = nvme_setup_io_queues(dev);
2760 	if (result)
2761 		goto out;
2762 
2763 	/*
2764 	 * Freeze and update the number of I/O queues as thos might have
2765 	 * changed.  If there are no I/O queues left after this reset, keep the
2766 	 * controller around but remove all namespaces.
2767 	 */
2768 	if (dev->online_queues > 1) {
2769 		nvme_dbbuf_set(dev);
2770 		nvme_unquiesce_io_queues(&dev->ctrl);
2771 		nvme_wait_freeze(&dev->ctrl);
2772 		if (!nvme_pci_update_nr_queues(dev))
2773 			goto out;
2774 		nvme_unfreeze(&dev->ctrl);
2775 	} else {
2776 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2777 		nvme_mark_namespaces_dead(&dev->ctrl);
2778 		nvme_unquiesce_io_queues(&dev->ctrl);
2779 		nvme_remove_namespaces(&dev->ctrl);
2780 		nvme_free_tagset(dev);
2781 	}
2782 
2783 	/*
2784 	 * If only admin queue live, keep it to do further investigation or
2785 	 * recovery.
2786 	 */
2787 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2788 		dev_warn(dev->ctrl.device,
2789 			"failed to mark controller live state\n");
2790 		result = -ENODEV;
2791 		goto out;
2792 	}
2793 
2794 	nvme_start_ctrl(&dev->ctrl);
2795 	return;
2796 
2797  out_unlock:
2798 	mutex_unlock(&dev->shutdown_lock);
2799  out:
2800 	/*
2801 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2802 	 * may be holding this pci_dev's device lock.
2803 	 */
2804 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2805 		 result);
2806 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2807 	nvme_dev_disable(dev, true);
2808 	nvme_sync_queues(&dev->ctrl);
2809 	nvme_mark_namespaces_dead(&dev->ctrl);
2810 	nvme_unquiesce_io_queues(&dev->ctrl);
2811 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2812 }
2813 
2814 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2815 {
2816 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2817 	return 0;
2818 }
2819 
2820 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2821 {
2822 	writel(val, to_nvme_dev(ctrl)->bar + off);
2823 	return 0;
2824 }
2825 
2826 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2827 {
2828 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2829 	return 0;
2830 }
2831 
2832 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2833 {
2834 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2835 
2836 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2837 }
2838 
2839 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2840 {
2841 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2842 	struct nvme_subsystem *subsys = ctrl->subsys;
2843 
2844 	dev_err(ctrl->device,
2845 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2846 		pdev->vendor, pdev->device,
2847 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2848 		subsys->model, nvme_strlen(subsys->firmware_rev,
2849 					   sizeof(subsys->firmware_rev)),
2850 		subsys->firmware_rev);
2851 }
2852 
2853 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2854 {
2855 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2856 
2857 	return dma_pci_p2pdma_supported(dev->dev);
2858 }
2859 
2860 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2861 	.name			= "pcie",
2862 	.module			= THIS_MODULE,
2863 	.flags			= NVME_F_METADATA_SUPPORTED,
2864 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2865 	.reg_read32		= nvme_pci_reg_read32,
2866 	.reg_write32		= nvme_pci_reg_write32,
2867 	.reg_read64		= nvme_pci_reg_read64,
2868 	.free_ctrl		= nvme_pci_free_ctrl,
2869 	.submit_async_event	= nvme_pci_submit_async_event,
2870 	.get_address		= nvme_pci_get_address,
2871 	.print_device_info	= nvme_pci_print_device_info,
2872 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2873 };
2874 
2875 static int nvme_dev_map(struct nvme_dev *dev)
2876 {
2877 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2878 
2879 	if (pci_request_mem_regions(pdev, "nvme"))
2880 		return -ENODEV;
2881 
2882 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2883 		goto release;
2884 
2885 	return 0;
2886   release:
2887 	pci_release_mem_regions(pdev);
2888 	return -ENODEV;
2889 }
2890 
2891 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2892 {
2893 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2894 		/*
2895 		 * Several Samsung devices seem to drop off the PCIe bus
2896 		 * randomly when APST is on and uses the deepest sleep state.
2897 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2898 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2899 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2900 		 * laptops.
2901 		 */
2902 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2903 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2904 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2905 			return NVME_QUIRK_NO_DEEPEST_PS;
2906 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2907 		/*
2908 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2909 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2910 		 * within few minutes after bootup on a Coffee Lake board -
2911 		 * ASUS PRIME Z370-A
2912 		 */
2913 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2914 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2915 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2916 			return NVME_QUIRK_NO_APST;
2917 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2918 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2919 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2920 		/*
2921 		 * Forcing to use host managed nvme power settings for
2922 		 * lowest idle power with quick resume latency on
2923 		 * Samsung and Toshiba SSDs based on suspend behavior
2924 		 * on Coffee Lake board for LENOVO C640
2925 		 */
2926 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2927 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2928 			return NVME_QUIRK_SIMPLE_SUSPEND;
2929 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2930 		   pdev->device == 0x500f)) {
2931 		/*
2932 		 * Exclude some Kingston NV1 and A2000 devices from
2933 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2934 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2935 		 */
2936 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2937 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2938 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2939 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2940 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2941 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
2942 		/*
2943 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
2944 		 * because of high power consumption (> 2 Watt) in s2idle
2945 		 * sleep. Only some boards with Intel CPU are affected.
2946 		 */
2947 		if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
2948 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
2949 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
2950 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
2951 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2952 	}
2953 
2954 	/*
2955 	 * NVMe SSD drops off the PCIe bus after system idle
2956 	 * for 10 hours on a Lenovo N60z board.
2957 	 */
2958 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
2959 		return NVME_QUIRK_NO_APST;
2960 
2961 	return 0;
2962 }
2963 
2964 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2965 		const struct pci_device_id *id)
2966 {
2967 	unsigned long quirks = id->driver_data;
2968 	int node = dev_to_node(&pdev->dev);
2969 	struct nvme_dev *dev;
2970 	int ret = -ENOMEM;
2971 
2972 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2973 	if (!dev)
2974 		return ERR_PTR(-ENOMEM);
2975 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2976 	mutex_init(&dev->shutdown_lock);
2977 
2978 	dev->nr_write_queues = write_queues;
2979 	dev->nr_poll_queues = poll_queues;
2980 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2981 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2982 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2983 	if (!dev->queues)
2984 		goto out_free_dev;
2985 
2986 	dev->dev = get_device(&pdev->dev);
2987 
2988 	quirks |= check_vendor_combination_bug(pdev);
2989 	if (!noacpi &&
2990 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2991 	    acpi_storage_d3(&pdev->dev)) {
2992 		/*
2993 		 * Some systems use a bios work around to ask for D3 on
2994 		 * platforms that support kernel managed suspend.
2995 		 */
2996 		dev_info(&pdev->dev,
2997 			 "platform quirk: setting simple suspend\n");
2998 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2999 	}
3000 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3001 			     quirks);
3002 	if (ret)
3003 		goto out_put_device;
3004 
3005 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3006 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3007 	else
3008 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3009 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3010 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3011 
3012 	/*
3013 	 * Limit the max command size to prevent iod->sg allocations going
3014 	 * over a single page.
3015 	 */
3016 	dev->ctrl.max_hw_sectors = min_t(u32,
3017 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3018 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3019 
3020 	/*
3021 	 * There is no support for SGLs for metadata (yet), so we are limited to
3022 	 * a single integrity segment for the separate metadata pointer.
3023 	 */
3024 	dev->ctrl.max_integrity_segments = 1;
3025 	return dev;
3026 
3027 out_put_device:
3028 	put_device(dev->dev);
3029 	kfree(dev->queues);
3030 out_free_dev:
3031 	kfree(dev);
3032 	return ERR_PTR(ret);
3033 }
3034 
3035 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3036 {
3037 	struct nvme_dev *dev;
3038 	int result = -ENOMEM;
3039 
3040 	dev = nvme_pci_alloc_dev(pdev, id);
3041 	if (IS_ERR(dev))
3042 		return PTR_ERR(dev);
3043 
3044 	result = nvme_dev_map(dev);
3045 	if (result)
3046 		goto out_uninit_ctrl;
3047 
3048 	result = nvme_setup_prp_pools(dev);
3049 	if (result)
3050 		goto out_dev_unmap;
3051 
3052 	result = nvme_pci_alloc_iod_mempool(dev);
3053 	if (result)
3054 		goto out_release_prp_pools;
3055 
3056 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3057 
3058 	result = nvme_pci_enable(dev);
3059 	if (result)
3060 		goto out_release_iod_mempool;
3061 
3062 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3063 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3064 	if (result)
3065 		goto out_disable;
3066 
3067 	/*
3068 	 * Mark the controller as connecting before sending admin commands to
3069 	 * allow the timeout handler to do the right thing.
3070 	 */
3071 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3072 		dev_warn(dev->ctrl.device,
3073 			"failed to mark controller CONNECTING\n");
3074 		result = -EBUSY;
3075 		goto out_disable;
3076 	}
3077 
3078 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3079 	if (result)
3080 		goto out_disable;
3081 
3082 	nvme_dbbuf_dma_alloc(dev);
3083 
3084 	result = nvme_setup_host_mem(dev);
3085 	if (result < 0)
3086 		goto out_disable;
3087 
3088 	result = nvme_setup_io_queues(dev);
3089 	if (result)
3090 		goto out_disable;
3091 
3092 	if (dev->online_queues > 1) {
3093 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3094 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3095 		nvme_dbbuf_set(dev);
3096 	}
3097 
3098 	if (!dev->ctrl.tagset)
3099 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3100 
3101 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3102 		dev_warn(dev->ctrl.device,
3103 			"failed to mark controller live state\n");
3104 		result = -ENODEV;
3105 		goto out_disable;
3106 	}
3107 
3108 	pci_set_drvdata(pdev, dev);
3109 
3110 	nvme_start_ctrl(&dev->ctrl);
3111 	nvme_put_ctrl(&dev->ctrl);
3112 	flush_work(&dev->ctrl.scan_work);
3113 	return 0;
3114 
3115 out_disable:
3116 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3117 	nvme_dev_disable(dev, true);
3118 	nvme_free_host_mem(dev);
3119 	nvme_dev_remove_admin(dev);
3120 	nvme_dbbuf_dma_free(dev);
3121 	nvme_free_queues(dev, 0);
3122 out_release_iod_mempool:
3123 	mempool_destroy(dev->iod_mempool);
3124 out_release_prp_pools:
3125 	nvme_release_prp_pools(dev);
3126 out_dev_unmap:
3127 	nvme_dev_unmap(dev);
3128 out_uninit_ctrl:
3129 	nvme_uninit_ctrl(&dev->ctrl);
3130 	nvme_put_ctrl(&dev->ctrl);
3131 	return result;
3132 }
3133 
3134 static void nvme_reset_prepare(struct pci_dev *pdev)
3135 {
3136 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3137 
3138 	/*
3139 	 * We don't need to check the return value from waiting for the reset
3140 	 * state as pci_dev device lock is held, making it impossible to race
3141 	 * with ->remove().
3142 	 */
3143 	nvme_disable_prepare_reset(dev, false);
3144 	nvme_sync_queues(&dev->ctrl);
3145 }
3146 
3147 static void nvme_reset_done(struct pci_dev *pdev)
3148 {
3149 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3150 
3151 	if (!nvme_try_sched_reset(&dev->ctrl))
3152 		flush_work(&dev->ctrl.reset_work);
3153 }
3154 
3155 static void nvme_shutdown(struct pci_dev *pdev)
3156 {
3157 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3158 
3159 	nvme_disable_prepare_reset(dev, true);
3160 }
3161 
3162 /*
3163  * The driver's remove may be called on a device in a partially initialized
3164  * state. This function must not have any dependencies on the device state in
3165  * order to proceed.
3166  */
3167 static void nvme_remove(struct pci_dev *pdev)
3168 {
3169 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3170 
3171 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3172 	pci_set_drvdata(pdev, NULL);
3173 
3174 	if (!pci_device_is_present(pdev)) {
3175 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3176 		nvme_dev_disable(dev, true);
3177 	}
3178 
3179 	flush_work(&dev->ctrl.reset_work);
3180 	nvme_stop_ctrl(&dev->ctrl);
3181 	nvme_remove_namespaces(&dev->ctrl);
3182 	nvme_dev_disable(dev, true);
3183 	nvme_free_host_mem(dev);
3184 	nvme_dev_remove_admin(dev);
3185 	nvme_dbbuf_dma_free(dev);
3186 	nvme_free_queues(dev, 0);
3187 	mempool_destroy(dev->iod_mempool);
3188 	nvme_release_prp_pools(dev);
3189 	nvme_dev_unmap(dev);
3190 	nvme_uninit_ctrl(&dev->ctrl);
3191 }
3192 
3193 #ifdef CONFIG_PM_SLEEP
3194 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3195 {
3196 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3197 }
3198 
3199 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3200 {
3201 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3202 }
3203 
3204 static int nvme_resume(struct device *dev)
3205 {
3206 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3207 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3208 
3209 	if (ndev->last_ps == U32_MAX ||
3210 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3211 		goto reset;
3212 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3213 		goto reset;
3214 
3215 	return 0;
3216 reset:
3217 	return nvme_try_sched_reset(ctrl);
3218 }
3219 
3220 static int nvme_suspend(struct device *dev)
3221 {
3222 	struct pci_dev *pdev = to_pci_dev(dev);
3223 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3224 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3225 	int ret = -EBUSY;
3226 
3227 	ndev->last_ps = U32_MAX;
3228 
3229 	/*
3230 	 * The platform does not remove power for a kernel managed suspend so
3231 	 * use host managed nvme power settings for lowest idle power if
3232 	 * possible. This should have quicker resume latency than a full device
3233 	 * shutdown.  But if the firmware is involved after the suspend or the
3234 	 * device does not support any non-default power states, shut down the
3235 	 * device fully.
3236 	 *
3237 	 * If ASPM is not enabled for the device, shut down the device and allow
3238 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3239 	 * down, so as to allow the platform to achieve its minimum low-power
3240 	 * state (which may not be possible if the link is up).
3241 	 */
3242 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3243 	    !pcie_aspm_enabled(pdev) ||
3244 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3245 		return nvme_disable_prepare_reset(ndev, true);
3246 
3247 	nvme_start_freeze(ctrl);
3248 	nvme_wait_freeze(ctrl);
3249 	nvme_sync_queues(ctrl);
3250 
3251 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3252 		goto unfreeze;
3253 
3254 	/*
3255 	 * Host memory access may not be successful in a system suspend state,
3256 	 * but the specification allows the controller to access memory in a
3257 	 * non-operational power state.
3258 	 */
3259 	if (ndev->hmb) {
3260 		ret = nvme_set_host_mem(ndev, 0);
3261 		if (ret < 0)
3262 			goto unfreeze;
3263 	}
3264 
3265 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3266 	if (ret < 0)
3267 		goto unfreeze;
3268 
3269 	/*
3270 	 * A saved state prevents pci pm from generically controlling the
3271 	 * device's power. If we're using protocol specific settings, we don't
3272 	 * want pci interfering.
3273 	 */
3274 	pci_save_state(pdev);
3275 
3276 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3277 	if (ret < 0)
3278 		goto unfreeze;
3279 
3280 	if (ret) {
3281 		/* discard the saved state */
3282 		pci_load_saved_state(pdev, NULL);
3283 
3284 		/*
3285 		 * Clearing npss forces a controller reset on resume. The
3286 		 * correct value will be rediscovered then.
3287 		 */
3288 		ret = nvme_disable_prepare_reset(ndev, true);
3289 		ctrl->npss = 0;
3290 	}
3291 unfreeze:
3292 	nvme_unfreeze(ctrl);
3293 	return ret;
3294 }
3295 
3296 static int nvme_simple_suspend(struct device *dev)
3297 {
3298 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3299 
3300 	return nvme_disable_prepare_reset(ndev, true);
3301 }
3302 
3303 static int nvme_simple_resume(struct device *dev)
3304 {
3305 	struct pci_dev *pdev = to_pci_dev(dev);
3306 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3307 
3308 	return nvme_try_sched_reset(&ndev->ctrl);
3309 }
3310 
3311 static const struct dev_pm_ops nvme_dev_pm_ops = {
3312 	.suspend	= nvme_suspend,
3313 	.resume		= nvme_resume,
3314 	.freeze		= nvme_simple_suspend,
3315 	.thaw		= nvme_simple_resume,
3316 	.poweroff	= nvme_simple_suspend,
3317 	.restore	= nvme_simple_resume,
3318 };
3319 #endif /* CONFIG_PM_SLEEP */
3320 
3321 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3322 						pci_channel_state_t state)
3323 {
3324 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3325 
3326 	/*
3327 	 * A frozen channel requires a reset. When detected, this method will
3328 	 * shutdown the controller to quiesce. The controller will be restarted
3329 	 * after the slot reset through driver's slot_reset callback.
3330 	 */
3331 	switch (state) {
3332 	case pci_channel_io_normal:
3333 		return PCI_ERS_RESULT_CAN_RECOVER;
3334 	case pci_channel_io_frozen:
3335 		dev_warn(dev->ctrl.device,
3336 			"frozen state error detected, reset controller\n");
3337 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3338 			nvme_dev_disable(dev, true);
3339 			return PCI_ERS_RESULT_DISCONNECT;
3340 		}
3341 		nvme_dev_disable(dev, false);
3342 		return PCI_ERS_RESULT_NEED_RESET;
3343 	case pci_channel_io_perm_failure:
3344 		dev_warn(dev->ctrl.device,
3345 			"failure state error detected, request disconnect\n");
3346 		return PCI_ERS_RESULT_DISCONNECT;
3347 	}
3348 	return PCI_ERS_RESULT_NEED_RESET;
3349 }
3350 
3351 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3352 {
3353 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3354 
3355 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3356 	pci_restore_state(pdev);
3357 	if (!nvme_try_sched_reset(&dev->ctrl))
3358 		nvme_unquiesce_io_queues(&dev->ctrl);
3359 	return PCI_ERS_RESULT_RECOVERED;
3360 }
3361 
3362 static void nvme_error_resume(struct pci_dev *pdev)
3363 {
3364 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3365 
3366 	flush_work(&dev->ctrl.reset_work);
3367 }
3368 
3369 static const struct pci_error_handlers nvme_err_handler = {
3370 	.error_detected	= nvme_error_detected,
3371 	.slot_reset	= nvme_slot_reset,
3372 	.resume		= nvme_error_resume,
3373 	.reset_prepare	= nvme_reset_prepare,
3374 	.reset_done	= nvme_reset_done,
3375 };
3376 
3377 static const struct pci_device_id nvme_id_table[] = {
3378 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3379 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3380 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3381 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3382 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3383 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3384 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3385 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3386 				NVME_QUIRK_DEALLOCATE_ZEROES |
3387 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3388 				NVME_QUIRK_BOGUS_NID, },
3389 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3390 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3391 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3392 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3393 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3394 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3395 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3396 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3397 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3398 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3399 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3400 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3401 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3402 				NVME_QUIRK_BOGUS_NID, },
3403 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3404 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3405 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3406 		.driver_data = NVME_QUIRK_QDEPTH_ONE },
3407 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3408 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3409 				NVME_QUIRK_BOGUS_NID, },
3410 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3411 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3412 				NVME_QUIRK_BOGUS_NID, },
3413 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3414 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3415 				NVME_QUIRK_NO_NS_DESC_LIST, },
3416 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3417 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3418 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3419 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3420 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3421 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3422 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3423 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3424 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3425 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3426 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3427 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3428 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3429 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3430 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3431 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3432 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3433 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3434 				NVME_QUIRK_BOGUS_NID, },
3435 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3436 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3437 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3438 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3439 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3440 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3441 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3442 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3443 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3444 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3445 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3446 				NVME_QUIRK_BOGUS_NID, },
3447 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3448 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3449 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3450 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3451 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3452 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3453 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3454 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3455 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3456 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3457 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3458 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3459 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3460 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3461 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3462 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3463 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3464 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3465 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3466 				NVME_QUIRK_BOGUS_NID, },
3467 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3468 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3469 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3470 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3471 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3472 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3473 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3474 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3475 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3476 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3477 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3478 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3479 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3480 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3481 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3482 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3483 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3484 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3485 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3486 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3487 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3488 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3489 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3490 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3491 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3492 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3493 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3494 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3495 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3496 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3497 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3498 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3499 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3500 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3501 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3502 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3503 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3504 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3505 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3506 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3507 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3508 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3509 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3510 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3511 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3512 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3513 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3514 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3515 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3516 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3517 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3518 		.driver_data = NVME_QUIRK_BOGUS_NID |
3519 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3520 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3521 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3522 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3523 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3524 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3525 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3526 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3527 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3528 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3529 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3530 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3531 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3532 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3533 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3534 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3535 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3536 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3537 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3538 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3539 		/*
3540 		 * Fix for the Apple controller found in the MacBook8,1 and
3541 		 * some MacBook7,1 to avoid controller resets and data loss.
3542 		 */
3543 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3544 				NVME_QUIRK_QDEPTH_ONE },
3545 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3546 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3547 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3548 				NVME_QUIRK_128_BYTES_SQES |
3549 				NVME_QUIRK_SHARED_TAGS |
3550 				NVME_QUIRK_SKIP_CID_GEN |
3551 				NVME_QUIRK_IDENTIFY_CNS },
3552 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3553 	{ 0, }
3554 };
3555 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3556 
3557 static struct pci_driver nvme_driver = {
3558 	.name		= "nvme",
3559 	.id_table	= nvme_id_table,
3560 	.probe		= nvme_probe,
3561 	.remove		= nvme_remove,
3562 	.shutdown	= nvme_shutdown,
3563 	.driver		= {
3564 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3565 #ifdef CONFIG_PM_SLEEP
3566 		.pm		= &nvme_dev_pm_ops,
3567 #endif
3568 	},
3569 	.sriov_configure = pci_sriov_configure_simple,
3570 	.err_handler	= &nvme_err_handler,
3571 };
3572 
3573 static int __init nvme_init(void)
3574 {
3575 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3576 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3577 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3578 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3579 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3580 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3581 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3582 
3583 	return pci_register_driver(&nvme_driver);
3584 }
3585 
3586 static void __exit nvme_exit(void)
3587 {
3588 	pci_unregister_driver(&nvme_driver);
3589 	flush_workqueue(nvme_wq);
3590 }
3591 
3592 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3593 MODULE_LICENSE("GPL");
3594 MODULE_VERSION("1.0");
3595 module_init(nvme_init);
3596 module_exit(nvme_exit);
3597