1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 145 mempool_t *iod_mempool; 146 147 /* shadow doorbell buffer support: */ 148 __le32 *dbbuf_dbs; 149 dma_addr_t dbbuf_dbs_dma_addr; 150 __le32 *dbbuf_eis; 151 dma_addr_t dbbuf_eis_dma_addr; 152 153 /* host memory buffer support: */ 154 u64 host_mem_size; 155 u32 nr_host_mem_descs; 156 u32 host_mem_descs_size; 157 dma_addr_t host_mem_descs_dma; 158 struct nvme_host_mem_buf_desc *host_mem_descs; 159 void **host_mem_desc_bufs; 160 unsigned int nr_allocated_queues; 161 unsigned int nr_write_queues; 162 unsigned int nr_poll_queues; 163 }; 164 165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 166 { 167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 168 NVME_PCI_MAX_QUEUE_SIZE); 169 } 170 171 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 172 { 173 return qid * 2 * stride; 174 } 175 176 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 177 { 178 return (qid * 2 + 1) * stride; 179 } 180 181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 182 { 183 return container_of(ctrl, struct nvme_dev, ctrl); 184 } 185 186 /* 187 * An NVM Express queue. Each device has at least two (one for admin 188 * commands and one for I/O commands). 189 */ 190 struct nvme_queue { 191 struct nvme_dev *dev; 192 spinlock_t sq_lock; 193 void *sq_cmds; 194 /* only used for poll queues: */ 195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 196 struct nvme_completion *cqes; 197 dma_addr_t sq_dma_addr; 198 dma_addr_t cq_dma_addr; 199 u32 __iomem *q_db; 200 u32 q_depth; 201 u16 cq_vector; 202 u16 sq_tail; 203 u16 last_sq_tail; 204 u16 cq_head; 205 u16 qid; 206 u8 cq_phase; 207 u8 sqes; 208 unsigned long flags; 209 #define NVMEQ_ENABLED 0 210 #define NVMEQ_SQ_CMB 1 211 #define NVMEQ_DELETE_ERROR 2 212 #define NVMEQ_POLLED 3 213 __le32 *dbbuf_sq_db; 214 __le32 *dbbuf_cq_db; 215 __le32 *dbbuf_sq_ei; 216 __le32 *dbbuf_cq_ei; 217 struct completion delete_done; 218 }; 219 220 union nvme_descriptor { 221 struct nvme_sgl_desc *sg_list; 222 __le64 *prp_list; 223 }; 224 225 /* 226 * The nvme_iod describes the data in an I/O. 227 * 228 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 229 * to the actual struct scatterlist. 230 */ 231 struct nvme_iod { 232 struct nvme_request req; 233 struct nvme_command cmd; 234 bool aborted; 235 s8 nr_allocations; /* PRP list pool allocations. 0 means small 236 pool in use */ 237 unsigned int dma_len; /* length of single DMA segment mapping */ 238 dma_addr_t first_dma; 239 dma_addr_t meta_dma; 240 struct sg_table sgt; 241 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 242 }; 243 244 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 245 { 246 return dev->nr_allocated_queues * 8 * dev->db_stride; 247 } 248 249 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 250 { 251 unsigned int mem_size = nvme_dbbuf_size(dev); 252 253 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 254 return; 255 256 if (dev->dbbuf_dbs) { 257 /* 258 * Clear the dbbuf memory so the driver doesn't observe stale 259 * values from the previous instantiation. 260 */ 261 memset(dev->dbbuf_dbs, 0, mem_size); 262 memset(dev->dbbuf_eis, 0, mem_size); 263 return; 264 } 265 266 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 267 &dev->dbbuf_dbs_dma_addr, 268 GFP_KERNEL); 269 if (!dev->dbbuf_dbs) 270 goto fail; 271 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 272 &dev->dbbuf_eis_dma_addr, 273 GFP_KERNEL); 274 if (!dev->dbbuf_eis) 275 goto fail_free_dbbuf_dbs; 276 return; 277 278 fail_free_dbbuf_dbs: 279 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 280 dev->dbbuf_dbs_dma_addr); 281 dev->dbbuf_dbs = NULL; 282 fail: 283 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 284 } 285 286 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 287 { 288 unsigned int mem_size = nvme_dbbuf_size(dev); 289 290 if (dev->dbbuf_dbs) { 291 dma_free_coherent(dev->dev, mem_size, 292 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 293 dev->dbbuf_dbs = NULL; 294 } 295 if (dev->dbbuf_eis) { 296 dma_free_coherent(dev->dev, mem_size, 297 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 298 dev->dbbuf_eis = NULL; 299 } 300 } 301 302 static void nvme_dbbuf_init(struct nvme_dev *dev, 303 struct nvme_queue *nvmeq, int qid) 304 { 305 if (!dev->dbbuf_dbs || !qid) 306 return; 307 308 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 311 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 312 } 313 314 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 315 { 316 if (!nvmeq->qid) 317 return; 318 319 nvmeq->dbbuf_sq_db = NULL; 320 nvmeq->dbbuf_cq_db = NULL; 321 nvmeq->dbbuf_sq_ei = NULL; 322 nvmeq->dbbuf_cq_ei = NULL; 323 } 324 325 static void nvme_dbbuf_set(struct nvme_dev *dev) 326 { 327 struct nvme_command c = { }; 328 unsigned int i; 329 330 if (!dev->dbbuf_dbs) 331 return; 332 333 c.dbbuf.opcode = nvme_admin_dbbuf; 334 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 335 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 336 337 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 338 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 339 /* Free memory and continue on */ 340 nvme_dbbuf_dma_free(dev); 341 342 for (i = 1; i <= dev->online_queues; i++) 343 nvme_dbbuf_free(&dev->queues[i]); 344 } 345 } 346 347 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 348 { 349 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 350 } 351 352 /* Update dbbuf and return true if an MMIO is required */ 353 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 354 volatile __le32 *dbbuf_ei) 355 { 356 if (dbbuf_db) { 357 u16 old_value, event_idx; 358 359 /* 360 * Ensure that the queue is written before updating 361 * the doorbell in memory 362 */ 363 wmb(); 364 365 old_value = le32_to_cpu(*dbbuf_db); 366 *dbbuf_db = cpu_to_le32(value); 367 368 /* 369 * Ensure that the doorbell is updated before reading the event 370 * index from memory. The controller needs to provide similar 371 * ordering to ensure the envent index is updated before reading 372 * the doorbell. 373 */ 374 mb(); 375 376 event_idx = le32_to_cpu(*dbbuf_ei); 377 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 378 return false; 379 } 380 381 return true; 382 } 383 384 /* 385 * Will slightly overestimate the number of pages needed. This is OK 386 * as it only leads to a small amount of wasted memory for the lifetime of 387 * the I/O. 388 */ 389 static int nvme_pci_npages_prp(void) 390 { 391 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 392 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 393 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 394 } 395 396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 397 unsigned int hctx_idx) 398 { 399 struct nvme_dev *dev = to_nvme_dev(data); 400 struct nvme_queue *nvmeq = &dev->queues[0]; 401 402 WARN_ON(hctx_idx != 0); 403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 404 405 hctx->driver_data = nvmeq; 406 return 0; 407 } 408 409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 410 unsigned int hctx_idx) 411 { 412 struct nvme_dev *dev = to_nvme_dev(data); 413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 414 415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 416 hctx->driver_data = nvmeq; 417 return 0; 418 } 419 420 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 421 struct request *req, unsigned int hctx_idx, 422 unsigned int numa_node) 423 { 424 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 425 426 nvme_req(req)->ctrl = set->driver_data; 427 nvme_req(req)->cmd = &iod->cmd; 428 return 0; 429 } 430 431 static int queue_irq_offset(struct nvme_dev *dev) 432 { 433 /* if we have more than 1 vec, admin queue offsets us by 1 */ 434 if (dev->num_vecs > 1) 435 return 1; 436 437 return 0; 438 } 439 440 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 441 { 442 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 443 int i, qoff, offset; 444 445 offset = queue_irq_offset(dev); 446 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 447 struct blk_mq_queue_map *map = &set->map[i]; 448 449 map->nr_queues = dev->io_queues[i]; 450 if (!map->nr_queues) { 451 BUG_ON(i == HCTX_TYPE_DEFAULT); 452 continue; 453 } 454 455 /* 456 * The poll queue(s) doesn't have an IRQ (and hence IRQ 457 * affinity), so use the regular blk-mq cpu mapping 458 */ 459 map->queue_offset = qoff; 460 if (i != HCTX_TYPE_POLL && offset) 461 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 462 else 463 blk_mq_map_queues(map); 464 qoff += map->nr_queues; 465 offset += map->nr_queues; 466 } 467 } 468 469 /* 470 * Write sq tail if we are asked to, or if the next command would wrap. 471 */ 472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 473 { 474 if (!write_sq) { 475 u16 next_tail = nvmeq->sq_tail + 1; 476 477 if (next_tail == nvmeq->q_depth) 478 next_tail = 0; 479 if (next_tail != nvmeq->last_sq_tail) 480 return; 481 } 482 483 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 484 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 485 writel(nvmeq->sq_tail, nvmeq->q_db); 486 nvmeq->last_sq_tail = nvmeq->sq_tail; 487 } 488 489 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 490 struct nvme_command *cmd) 491 { 492 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 493 absolute_pointer(cmd), sizeof(*cmd)); 494 if (++nvmeq->sq_tail == nvmeq->q_depth) 495 nvmeq->sq_tail = 0; 496 } 497 498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 499 { 500 struct nvme_queue *nvmeq = hctx->driver_data; 501 502 spin_lock(&nvmeq->sq_lock); 503 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 504 nvme_write_sq_db(nvmeq, true); 505 spin_unlock(&nvmeq->sq_lock); 506 } 507 508 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 509 int nseg) 510 { 511 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 512 unsigned int avg_seg_size; 513 514 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 515 516 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 517 return false; 518 if (!nvmeq->qid) 519 return false; 520 if (!sgl_threshold || avg_seg_size < sgl_threshold) 521 return false; 522 return true; 523 } 524 525 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 526 { 527 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 528 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 529 dma_addr_t dma_addr = iod->first_dma; 530 int i; 531 532 for (i = 0; i < iod->nr_allocations; i++) { 533 __le64 *prp_list = iod->list[i].prp_list; 534 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 535 536 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 537 dma_addr = next_dma_addr; 538 } 539 } 540 541 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 542 { 543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 544 545 if (iod->dma_len) { 546 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 547 rq_dma_dir(req)); 548 return; 549 } 550 551 WARN_ON_ONCE(!iod->sgt.nents); 552 553 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 554 555 if (iod->nr_allocations == 0) 556 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 557 iod->first_dma); 558 else if (iod->nr_allocations == 1) 559 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 560 iod->first_dma); 561 else 562 nvme_free_prps(dev, req); 563 mempool_free(iod->sgt.sgl, dev->iod_mempool); 564 } 565 566 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 567 { 568 int i; 569 struct scatterlist *sg; 570 571 for_each_sg(sgl, sg, nents, i) { 572 dma_addr_t phys = sg_phys(sg); 573 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 574 "dma_address:%pad dma_length:%d\n", 575 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 576 sg_dma_len(sg)); 577 } 578 } 579 580 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 581 struct request *req, struct nvme_rw_command *cmnd) 582 { 583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 584 struct dma_pool *pool; 585 int length = blk_rq_payload_bytes(req); 586 struct scatterlist *sg = iod->sgt.sgl; 587 int dma_len = sg_dma_len(sg); 588 u64 dma_addr = sg_dma_address(sg); 589 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 590 __le64 *prp_list; 591 dma_addr_t prp_dma; 592 int nprps, i; 593 594 length -= (NVME_CTRL_PAGE_SIZE - offset); 595 if (length <= 0) { 596 iod->first_dma = 0; 597 goto done; 598 } 599 600 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 601 if (dma_len) { 602 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 603 } else { 604 sg = sg_next(sg); 605 dma_addr = sg_dma_address(sg); 606 dma_len = sg_dma_len(sg); 607 } 608 609 if (length <= NVME_CTRL_PAGE_SIZE) { 610 iod->first_dma = dma_addr; 611 goto done; 612 } 613 614 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 615 if (nprps <= (256 / 8)) { 616 pool = dev->prp_small_pool; 617 iod->nr_allocations = 0; 618 } else { 619 pool = dev->prp_page_pool; 620 iod->nr_allocations = 1; 621 } 622 623 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 624 if (!prp_list) { 625 iod->nr_allocations = -1; 626 return BLK_STS_RESOURCE; 627 } 628 iod->list[0].prp_list = prp_list; 629 iod->first_dma = prp_dma; 630 i = 0; 631 for (;;) { 632 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 633 __le64 *old_prp_list = prp_list; 634 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 635 if (!prp_list) 636 goto free_prps; 637 iod->list[iod->nr_allocations++].prp_list = prp_list; 638 prp_list[0] = old_prp_list[i - 1]; 639 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 640 i = 1; 641 } 642 prp_list[i++] = cpu_to_le64(dma_addr); 643 dma_len -= NVME_CTRL_PAGE_SIZE; 644 dma_addr += NVME_CTRL_PAGE_SIZE; 645 length -= NVME_CTRL_PAGE_SIZE; 646 if (length <= 0) 647 break; 648 if (dma_len > 0) 649 continue; 650 if (unlikely(dma_len < 0)) 651 goto bad_sgl; 652 sg = sg_next(sg); 653 dma_addr = sg_dma_address(sg); 654 dma_len = sg_dma_len(sg); 655 } 656 done: 657 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 658 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 659 return BLK_STS_OK; 660 free_prps: 661 nvme_free_prps(dev, req); 662 return BLK_STS_RESOURCE; 663 bad_sgl: 664 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 665 "Invalid SGL for payload:%d nents:%d\n", 666 blk_rq_payload_bytes(req), iod->sgt.nents); 667 return BLK_STS_IOERR; 668 } 669 670 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 671 struct scatterlist *sg) 672 { 673 sge->addr = cpu_to_le64(sg_dma_address(sg)); 674 sge->length = cpu_to_le32(sg_dma_len(sg)); 675 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 676 } 677 678 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 679 dma_addr_t dma_addr, int entries) 680 { 681 sge->addr = cpu_to_le64(dma_addr); 682 sge->length = cpu_to_le32(entries * sizeof(*sge)); 683 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 684 } 685 686 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 687 struct request *req, struct nvme_rw_command *cmd) 688 { 689 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 690 struct dma_pool *pool; 691 struct nvme_sgl_desc *sg_list; 692 struct scatterlist *sg = iod->sgt.sgl; 693 unsigned int entries = iod->sgt.nents; 694 dma_addr_t sgl_dma; 695 int i = 0; 696 697 /* setting the transfer type as SGL */ 698 cmd->flags = NVME_CMD_SGL_METABUF; 699 700 if (entries == 1) { 701 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 702 return BLK_STS_OK; 703 } 704 705 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 706 pool = dev->prp_small_pool; 707 iod->nr_allocations = 0; 708 } else { 709 pool = dev->prp_page_pool; 710 iod->nr_allocations = 1; 711 } 712 713 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 714 if (!sg_list) { 715 iod->nr_allocations = -1; 716 return BLK_STS_RESOURCE; 717 } 718 719 iod->list[0].sg_list = sg_list; 720 iod->first_dma = sgl_dma; 721 722 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 723 do { 724 nvme_pci_sgl_set_data(&sg_list[i++], sg); 725 sg = sg_next(sg); 726 } while (--entries > 0); 727 728 return BLK_STS_OK; 729 } 730 731 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 732 struct request *req, struct nvme_rw_command *cmnd, 733 struct bio_vec *bv) 734 { 735 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 736 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 737 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 738 739 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 740 if (dma_mapping_error(dev->dev, iod->first_dma)) 741 return BLK_STS_RESOURCE; 742 iod->dma_len = bv->bv_len; 743 744 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 745 if (bv->bv_len > first_prp_len) 746 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 747 else 748 cmnd->dptr.prp2 = 0; 749 return BLK_STS_OK; 750 } 751 752 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 753 struct request *req, struct nvme_rw_command *cmnd, 754 struct bio_vec *bv) 755 { 756 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 757 758 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 759 if (dma_mapping_error(dev->dev, iod->first_dma)) 760 return BLK_STS_RESOURCE; 761 iod->dma_len = bv->bv_len; 762 763 cmnd->flags = NVME_CMD_SGL_METABUF; 764 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 765 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 766 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 767 return BLK_STS_OK; 768 } 769 770 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 771 struct nvme_command *cmnd) 772 { 773 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 774 blk_status_t ret = BLK_STS_RESOURCE; 775 int rc; 776 777 if (blk_rq_nr_phys_segments(req) == 1) { 778 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 779 struct bio_vec bv = req_bvec(req); 780 781 if (!is_pci_p2pdma_page(bv.bv_page)) { 782 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 783 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 784 return nvme_setup_prp_simple(dev, req, 785 &cmnd->rw, &bv); 786 787 if (nvmeq->qid && sgl_threshold && 788 nvme_ctrl_sgl_supported(&dev->ctrl)) 789 return nvme_setup_sgl_simple(dev, req, 790 &cmnd->rw, &bv); 791 } 792 } 793 794 iod->dma_len = 0; 795 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 796 if (!iod->sgt.sgl) 797 return BLK_STS_RESOURCE; 798 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 799 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 800 if (!iod->sgt.orig_nents) 801 goto out_free_sg; 802 803 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 804 DMA_ATTR_NO_WARN); 805 if (rc) { 806 if (rc == -EREMOTEIO) 807 ret = BLK_STS_TARGET; 808 goto out_free_sg; 809 } 810 811 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 812 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 813 else 814 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 815 if (ret != BLK_STS_OK) 816 goto out_unmap_sg; 817 return BLK_STS_OK; 818 819 out_unmap_sg: 820 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 821 out_free_sg: 822 mempool_free(iod->sgt.sgl, dev->iod_mempool); 823 return ret; 824 } 825 826 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 827 struct nvme_command *cmnd) 828 { 829 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 830 struct bio_vec bv = rq_integrity_vec(req); 831 832 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0); 833 if (dma_mapping_error(dev->dev, iod->meta_dma)) 834 return BLK_STS_IOERR; 835 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 836 return BLK_STS_OK; 837 } 838 839 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 840 { 841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 842 blk_status_t ret; 843 844 iod->aborted = false; 845 iod->nr_allocations = -1; 846 iod->sgt.nents = 0; 847 848 ret = nvme_setup_cmd(req->q->queuedata, req); 849 if (ret) 850 return ret; 851 852 if (blk_rq_nr_phys_segments(req)) { 853 ret = nvme_map_data(dev, req, &iod->cmd); 854 if (ret) 855 goto out_free_cmd; 856 } 857 858 if (blk_integrity_rq(req)) { 859 ret = nvme_map_metadata(dev, req, &iod->cmd); 860 if (ret) 861 goto out_unmap_data; 862 } 863 864 nvme_start_request(req); 865 return BLK_STS_OK; 866 out_unmap_data: 867 if (blk_rq_nr_phys_segments(req)) 868 nvme_unmap_data(dev, req); 869 out_free_cmd: 870 nvme_cleanup_cmd(req); 871 return ret; 872 } 873 874 /* 875 * NOTE: ns is NULL when called on the admin queue. 876 */ 877 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 878 const struct blk_mq_queue_data *bd) 879 { 880 struct nvme_queue *nvmeq = hctx->driver_data; 881 struct nvme_dev *dev = nvmeq->dev; 882 struct request *req = bd->rq; 883 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 884 blk_status_t ret; 885 886 /* 887 * We should not need to do this, but we're still using this to 888 * ensure we can drain requests on a dying queue. 889 */ 890 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 891 return BLK_STS_IOERR; 892 893 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 894 return nvme_fail_nonready_command(&dev->ctrl, req); 895 896 ret = nvme_prep_rq(dev, req); 897 if (unlikely(ret)) 898 return ret; 899 spin_lock(&nvmeq->sq_lock); 900 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 901 nvme_write_sq_db(nvmeq, bd->last); 902 spin_unlock(&nvmeq->sq_lock); 903 return BLK_STS_OK; 904 } 905 906 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 907 { 908 struct request *req; 909 910 spin_lock(&nvmeq->sq_lock); 911 while ((req = rq_list_pop(rqlist))) { 912 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 913 914 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 915 } 916 nvme_write_sq_db(nvmeq, true); 917 spin_unlock(&nvmeq->sq_lock); 918 } 919 920 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 921 { 922 /* 923 * We should not need to do this, but we're still using this to 924 * ensure we can drain requests on a dying queue. 925 */ 926 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 927 return false; 928 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 929 return false; 930 931 req->mq_hctx->tags->rqs[req->tag] = req; 932 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 933 } 934 935 static void nvme_queue_rqs(struct request **rqlist) 936 { 937 struct request *submit_list = NULL; 938 struct request *requeue_list = NULL; 939 struct request **requeue_lastp = &requeue_list; 940 struct nvme_queue *nvmeq = NULL; 941 struct request *req; 942 943 while ((req = rq_list_pop(rqlist))) { 944 if (nvmeq && nvmeq != req->mq_hctx->driver_data) 945 nvme_submit_cmds(nvmeq, &submit_list); 946 nvmeq = req->mq_hctx->driver_data; 947 948 if (nvme_prep_rq_batch(nvmeq, req)) 949 rq_list_add(&submit_list, req); /* reverse order */ 950 else 951 rq_list_add_tail(&requeue_lastp, req); 952 } 953 954 if (nvmeq) 955 nvme_submit_cmds(nvmeq, &submit_list); 956 *rqlist = requeue_list; 957 } 958 959 static __always_inline void nvme_pci_unmap_rq(struct request *req) 960 { 961 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 962 struct nvme_dev *dev = nvmeq->dev; 963 964 if (blk_integrity_rq(req)) { 965 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 966 967 dma_unmap_page(dev->dev, iod->meta_dma, 968 rq_integrity_vec(req).bv_len, rq_dma_dir(req)); 969 } 970 971 if (blk_rq_nr_phys_segments(req)) 972 nvme_unmap_data(dev, req); 973 } 974 975 static void nvme_pci_complete_rq(struct request *req) 976 { 977 nvme_pci_unmap_rq(req); 978 nvme_complete_rq(req); 979 } 980 981 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 982 { 983 nvme_complete_batch(iob, nvme_pci_unmap_rq); 984 } 985 986 /* We read the CQE phase first to check if the rest of the entry is valid */ 987 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 988 { 989 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 990 991 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 992 } 993 994 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 995 { 996 u16 head = nvmeq->cq_head; 997 998 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 999 nvmeq->dbbuf_cq_ei)) 1000 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1001 } 1002 1003 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1004 { 1005 if (!nvmeq->qid) 1006 return nvmeq->dev->admin_tagset.tags[0]; 1007 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1008 } 1009 1010 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1011 struct io_comp_batch *iob, u16 idx) 1012 { 1013 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1014 __u16 command_id = READ_ONCE(cqe->command_id); 1015 struct request *req; 1016 1017 /* 1018 * AEN requests are special as they don't time out and can 1019 * survive any kind of queue freeze and often don't respond to 1020 * aborts. We don't even bother to allocate a struct request 1021 * for them but rather special case them here. 1022 */ 1023 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1024 nvme_complete_async_event(&nvmeq->dev->ctrl, 1025 cqe->status, &cqe->result); 1026 return; 1027 } 1028 1029 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1030 if (unlikely(!req)) { 1031 dev_warn(nvmeq->dev->ctrl.device, 1032 "invalid id %d completed on queue %d\n", 1033 command_id, le16_to_cpu(cqe->sq_id)); 1034 return; 1035 } 1036 1037 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1038 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1039 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1040 nvme_pci_complete_batch)) 1041 nvme_pci_complete_rq(req); 1042 } 1043 1044 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1045 { 1046 u32 tmp = nvmeq->cq_head + 1; 1047 1048 if (tmp == nvmeq->q_depth) { 1049 nvmeq->cq_head = 0; 1050 nvmeq->cq_phase ^= 1; 1051 } else { 1052 nvmeq->cq_head = tmp; 1053 } 1054 } 1055 1056 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1057 struct io_comp_batch *iob) 1058 { 1059 int found = 0; 1060 1061 while (nvme_cqe_pending(nvmeq)) { 1062 found++; 1063 /* 1064 * load-load control dependency between phase and the rest of 1065 * the cqe requires a full read memory barrier 1066 */ 1067 dma_rmb(); 1068 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1069 nvme_update_cq_head(nvmeq); 1070 } 1071 1072 if (found) 1073 nvme_ring_cq_doorbell(nvmeq); 1074 return found; 1075 } 1076 1077 static irqreturn_t nvme_irq(int irq, void *data) 1078 { 1079 struct nvme_queue *nvmeq = data; 1080 DEFINE_IO_COMP_BATCH(iob); 1081 1082 if (nvme_poll_cq(nvmeq, &iob)) { 1083 if (!rq_list_empty(iob.req_list)) 1084 nvme_pci_complete_batch(&iob); 1085 return IRQ_HANDLED; 1086 } 1087 return IRQ_NONE; 1088 } 1089 1090 static irqreturn_t nvme_irq_check(int irq, void *data) 1091 { 1092 struct nvme_queue *nvmeq = data; 1093 1094 if (nvme_cqe_pending(nvmeq)) 1095 return IRQ_WAKE_THREAD; 1096 return IRQ_NONE; 1097 } 1098 1099 /* 1100 * Poll for completions for any interrupt driven queue 1101 * Can be called from any context. 1102 */ 1103 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1104 { 1105 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1106 1107 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1108 1109 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1110 nvme_poll_cq(nvmeq, NULL); 1111 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1112 } 1113 1114 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1115 { 1116 struct nvme_queue *nvmeq = hctx->driver_data; 1117 bool found; 1118 1119 if (!nvme_cqe_pending(nvmeq)) 1120 return 0; 1121 1122 spin_lock(&nvmeq->cq_poll_lock); 1123 found = nvme_poll_cq(nvmeq, iob); 1124 spin_unlock(&nvmeq->cq_poll_lock); 1125 1126 return found; 1127 } 1128 1129 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1130 { 1131 struct nvme_dev *dev = to_nvme_dev(ctrl); 1132 struct nvme_queue *nvmeq = &dev->queues[0]; 1133 struct nvme_command c = { }; 1134 1135 c.common.opcode = nvme_admin_async_event; 1136 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1137 1138 spin_lock(&nvmeq->sq_lock); 1139 nvme_sq_copy_cmd(nvmeq, &c); 1140 nvme_write_sq_db(nvmeq, true); 1141 spin_unlock(&nvmeq->sq_lock); 1142 } 1143 1144 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1145 { 1146 struct nvme_command c = { }; 1147 1148 c.delete_queue.opcode = opcode; 1149 c.delete_queue.qid = cpu_to_le16(id); 1150 1151 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1152 } 1153 1154 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1155 struct nvme_queue *nvmeq, s16 vector) 1156 { 1157 struct nvme_command c = { }; 1158 int flags = NVME_QUEUE_PHYS_CONTIG; 1159 1160 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1161 flags |= NVME_CQ_IRQ_ENABLED; 1162 1163 /* 1164 * Note: we (ab)use the fact that the prp fields survive if no data 1165 * is attached to the request. 1166 */ 1167 c.create_cq.opcode = nvme_admin_create_cq; 1168 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1169 c.create_cq.cqid = cpu_to_le16(qid); 1170 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1171 c.create_cq.cq_flags = cpu_to_le16(flags); 1172 c.create_cq.irq_vector = cpu_to_le16(vector); 1173 1174 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1175 } 1176 1177 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1178 struct nvme_queue *nvmeq) 1179 { 1180 struct nvme_ctrl *ctrl = &dev->ctrl; 1181 struct nvme_command c = { }; 1182 int flags = NVME_QUEUE_PHYS_CONTIG; 1183 1184 /* 1185 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1186 * set. Since URGENT priority is zeroes, it makes all queues 1187 * URGENT. 1188 */ 1189 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1190 flags |= NVME_SQ_PRIO_MEDIUM; 1191 1192 /* 1193 * Note: we (ab)use the fact that the prp fields survive if no data 1194 * is attached to the request. 1195 */ 1196 c.create_sq.opcode = nvme_admin_create_sq; 1197 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1198 c.create_sq.sqid = cpu_to_le16(qid); 1199 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1200 c.create_sq.sq_flags = cpu_to_le16(flags); 1201 c.create_sq.cqid = cpu_to_le16(qid); 1202 1203 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1204 } 1205 1206 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1207 { 1208 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1209 } 1210 1211 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1212 { 1213 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1214 } 1215 1216 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1217 { 1218 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1219 1220 dev_warn(nvmeq->dev->ctrl.device, 1221 "Abort status: 0x%x", nvme_req(req)->status); 1222 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1223 blk_mq_free_request(req); 1224 return RQ_END_IO_NONE; 1225 } 1226 1227 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1228 { 1229 /* If true, indicates loss of adapter communication, possibly by a 1230 * NVMe Subsystem reset. 1231 */ 1232 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1233 1234 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1235 switch (nvme_ctrl_state(&dev->ctrl)) { 1236 case NVME_CTRL_RESETTING: 1237 case NVME_CTRL_CONNECTING: 1238 return false; 1239 default: 1240 break; 1241 } 1242 1243 /* We shouldn't reset unless the controller is on fatal error state 1244 * _or_ if we lost the communication with it. 1245 */ 1246 if (!(csts & NVME_CSTS_CFS) && !nssro) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1253 { 1254 /* Read a config register to help see what died. */ 1255 u16 pci_status; 1256 int result; 1257 1258 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1259 &pci_status); 1260 if (result == PCIBIOS_SUCCESSFUL) 1261 dev_warn(dev->ctrl.device, 1262 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1263 csts, pci_status); 1264 else 1265 dev_warn(dev->ctrl.device, 1266 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1267 csts, result); 1268 1269 if (csts != ~0) 1270 return; 1271 1272 dev_warn(dev->ctrl.device, 1273 "Does your device have a faulty power saving mode enabled?\n"); 1274 dev_warn(dev->ctrl.device, 1275 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1276 } 1277 1278 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1279 { 1280 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1281 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1282 struct nvme_dev *dev = nvmeq->dev; 1283 struct request *abort_req; 1284 struct nvme_command cmd = { }; 1285 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1286 1287 if (nvme_state_terminal(&dev->ctrl)) 1288 goto disable; 1289 1290 /* If PCI error recovery process is happening, we cannot reset or 1291 * the recovery mechanism will surely fail. 1292 */ 1293 mb(); 1294 if (pci_channel_offline(to_pci_dev(dev->dev))) 1295 return BLK_EH_RESET_TIMER; 1296 1297 /* 1298 * Reset immediately if the controller is failed 1299 */ 1300 if (nvme_should_reset(dev, csts)) { 1301 nvme_warn_reset(dev, csts); 1302 goto disable; 1303 } 1304 1305 /* 1306 * Did we miss an interrupt? 1307 */ 1308 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1309 nvme_poll(req->mq_hctx, NULL); 1310 else 1311 nvme_poll_irqdisable(nvmeq); 1312 1313 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1314 dev_warn(dev->ctrl.device, 1315 "I/O %d QID %d timeout, completion polled\n", 1316 req->tag, nvmeq->qid); 1317 return BLK_EH_DONE; 1318 } 1319 1320 /* 1321 * Shutdown immediately if controller times out while starting. The 1322 * reset work will see the pci device disabled when it gets the forced 1323 * cancellation error. All outstanding requests are completed on 1324 * shutdown, so we return BLK_EH_DONE. 1325 */ 1326 switch (nvme_ctrl_state(&dev->ctrl)) { 1327 case NVME_CTRL_CONNECTING: 1328 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1329 fallthrough; 1330 case NVME_CTRL_DELETING: 1331 dev_warn_ratelimited(dev->ctrl.device, 1332 "I/O %d QID %d timeout, disable controller\n", 1333 req->tag, nvmeq->qid); 1334 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1335 nvme_dev_disable(dev, true); 1336 return BLK_EH_DONE; 1337 case NVME_CTRL_RESETTING: 1338 return BLK_EH_RESET_TIMER; 1339 default: 1340 break; 1341 } 1342 1343 /* 1344 * Shutdown the controller immediately and schedule a reset if the 1345 * command was already aborted once before and still hasn't been 1346 * returned to the driver, or if this is the admin queue. 1347 */ 1348 if (!nvmeq->qid || iod->aborted) { 1349 dev_warn(dev->ctrl.device, 1350 "I/O %d QID %d timeout, reset controller\n", 1351 req->tag, nvmeq->qid); 1352 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1353 goto disable; 1354 } 1355 1356 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1357 atomic_inc(&dev->ctrl.abort_limit); 1358 return BLK_EH_RESET_TIMER; 1359 } 1360 iod->aborted = true; 1361 1362 cmd.abort.opcode = nvme_admin_abort_cmd; 1363 cmd.abort.cid = nvme_cid(req); 1364 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1365 1366 dev_warn(nvmeq->dev->ctrl.device, 1367 "I/O %d (%s) QID %d timeout, aborting\n", 1368 req->tag, 1369 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1370 nvmeq->qid); 1371 1372 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1373 BLK_MQ_REQ_NOWAIT); 1374 if (IS_ERR(abort_req)) { 1375 atomic_inc(&dev->ctrl.abort_limit); 1376 return BLK_EH_RESET_TIMER; 1377 } 1378 nvme_init_request(abort_req, &cmd); 1379 1380 abort_req->end_io = abort_endio; 1381 abort_req->end_io_data = NULL; 1382 blk_execute_rq_nowait(abort_req, false); 1383 1384 /* 1385 * The aborted req will be completed on receiving the abort req. 1386 * We enable the timer again. If hit twice, it'll cause a device reset, 1387 * as the device then is in a faulty state. 1388 */ 1389 return BLK_EH_RESET_TIMER; 1390 1391 disable: 1392 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1393 if (nvme_state_terminal(&dev->ctrl)) 1394 nvme_dev_disable(dev, true); 1395 return BLK_EH_DONE; 1396 } 1397 1398 nvme_dev_disable(dev, false); 1399 if (nvme_try_sched_reset(&dev->ctrl)) 1400 nvme_unquiesce_io_queues(&dev->ctrl); 1401 return BLK_EH_DONE; 1402 } 1403 1404 static void nvme_free_queue(struct nvme_queue *nvmeq) 1405 { 1406 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1407 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1408 if (!nvmeq->sq_cmds) 1409 return; 1410 1411 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1412 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1413 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1414 } else { 1415 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1416 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1417 } 1418 } 1419 1420 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1421 { 1422 int i; 1423 1424 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1425 dev->ctrl.queue_count--; 1426 nvme_free_queue(&dev->queues[i]); 1427 } 1428 } 1429 1430 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1431 { 1432 struct nvme_queue *nvmeq = &dev->queues[qid]; 1433 1434 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1435 return; 1436 1437 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1438 mb(); 1439 1440 nvmeq->dev->online_queues--; 1441 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1442 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1443 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1444 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1445 } 1446 1447 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1448 { 1449 int i; 1450 1451 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1452 nvme_suspend_queue(dev, i); 1453 } 1454 1455 /* 1456 * Called only on a device that has been disabled and after all other threads 1457 * that can check this device's completion queues have synced, except 1458 * nvme_poll(). This is the last chance for the driver to see a natural 1459 * completion before nvme_cancel_request() terminates all incomplete requests. 1460 */ 1461 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1462 { 1463 int i; 1464 1465 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1466 spin_lock(&dev->queues[i].cq_poll_lock); 1467 nvme_poll_cq(&dev->queues[i], NULL); 1468 spin_unlock(&dev->queues[i].cq_poll_lock); 1469 } 1470 } 1471 1472 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1473 int entry_size) 1474 { 1475 int q_depth = dev->q_depth; 1476 unsigned q_size_aligned = roundup(q_depth * entry_size, 1477 NVME_CTRL_PAGE_SIZE); 1478 1479 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1480 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1481 1482 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1483 q_depth = div_u64(mem_per_q, entry_size); 1484 1485 /* 1486 * Ensure the reduced q_depth is above some threshold where it 1487 * would be better to map queues in system memory with the 1488 * original depth 1489 */ 1490 if (q_depth < 64) 1491 return -ENOMEM; 1492 } 1493 1494 return q_depth; 1495 } 1496 1497 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1498 int qid) 1499 { 1500 struct pci_dev *pdev = to_pci_dev(dev->dev); 1501 1502 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1503 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1504 if (nvmeq->sq_cmds) { 1505 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1506 nvmeq->sq_cmds); 1507 if (nvmeq->sq_dma_addr) { 1508 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1509 return 0; 1510 } 1511 1512 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1513 } 1514 } 1515 1516 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1517 &nvmeq->sq_dma_addr, GFP_KERNEL); 1518 if (!nvmeq->sq_cmds) 1519 return -ENOMEM; 1520 return 0; 1521 } 1522 1523 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1524 { 1525 struct nvme_queue *nvmeq = &dev->queues[qid]; 1526 1527 if (dev->ctrl.queue_count > qid) 1528 return 0; 1529 1530 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1531 nvmeq->q_depth = depth; 1532 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1533 &nvmeq->cq_dma_addr, GFP_KERNEL); 1534 if (!nvmeq->cqes) 1535 goto free_nvmeq; 1536 1537 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1538 goto free_cqdma; 1539 1540 nvmeq->dev = dev; 1541 spin_lock_init(&nvmeq->sq_lock); 1542 spin_lock_init(&nvmeq->cq_poll_lock); 1543 nvmeq->cq_head = 0; 1544 nvmeq->cq_phase = 1; 1545 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1546 nvmeq->qid = qid; 1547 dev->ctrl.queue_count++; 1548 1549 return 0; 1550 1551 free_cqdma: 1552 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1553 nvmeq->cq_dma_addr); 1554 free_nvmeq: 1555 return -ENOMEM; 1556 } 1557 1558 static int queue_request_irq(struct nvme_queue *nvmeq) 1559 { 1560 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1561 int nr = nvmeq->dev->ctrl.instance; 1562 1563 if (use_threaded_interrupts) { 1564 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1565 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1566 } else { 1567 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1568 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1569 } 1570 } 1571 1572 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1573 { 1574 struct nvme_dev *dev = nvmeq->dev; 1575 1576 nvmeq->sq_tail = 0; 1577 nvmeq->last_sq_tail = 0; 1578 nvmeq->cq_head = 0; 1579 nvmeq->cq_phase = 1; 1580 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1581 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1582 nvme_dbbuf_init(dev, nvmeq, qid); 1583 dev->online_queues++; 1584 wmb(); /* ensure the first interrupt sees the initialization */ 1585 } 1586 1587 /* 1588 * Try getting shutdown_lock while setting up IO queues. 1589 */ 1590 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1591 { 1592 /* 1593 * Give up if the lock is being held by nvme_dev_disable. 1594 */ 1595 if (!mutex_trylock(&dev->shutdown_lock)) 1596 return -ENODEV; 1597 1598 /* 1599 * Controller is in wrong state, fail early. 1600 */ 1601 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1602 mutex_unlock(&dev->shutdown_lock); 1603 return -ENODEV; 1604 } 1605 1606 return 0; 1607 } 1608 1609 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1610 { 1611 struct nvme_dev *dev = nvmeq->dev; 1612 int result; 1613 u16 vector = 0; 1614 1615 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1616 1617 /* 1618 * A queue's vector matches the queue identifier unless the controller 1619 * has only one vector available. 1620 */ 1621 if (!polled) 1622 vector = dev->num_vecs == 1 ? 0 : qid; 1623 else 1624 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1625 1626 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1627 if (result) 1628 return result; 1629 1630 result = adapter_alloc_sq(dev, qid, nvmeq); 1631 if (result < 0) 1632 return result; 1633 if (result) 1634 goto release_cq; 1635 1636 nvmeq->cq_vector = vector; 1637 1638 result = nvme_setup_io_queues_trylock(dev); 1639 if (result) 1640 return result; 1641 nvme_init_queue(nvmeq, qid); 1642 if (!polled) { 1643 result = queue_request_irq(nvmeq); 1644 if (result < 0) 1645 goto release_sq; 1646 } 1647 1648 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1649 mutex_unlock(&dev->shutdown_lock); 1650 return result; 1651 1652 release_sq: 1653 dev->online_queues--; 1654 mutex_unlock(&dev->shutdown_lock); 1655 adapter_delete_sq(dev, qid); 1656 release_cq: 1657 adapter_delete_cq(dev, qid); 1658 return result; 1659 } 1660 1661 static const struct blk_mq_ops nvme_mq_admin_ops = { 1662 .queue_rq = nvme_queue_rq, 1663 .complete = nvme_pci_complete_rq, 1664 .init_hctx = nvme_admin_init_hctx, 1665 .init_request = nvme_pci_init_request, 1666 .timeout = nvme_timeout, 1667 }; 1668 1669 static const struct blk_mq_ops nvme_mq_ops = { 1670 .queue_rq = nvme_queue_rq, 1671 .queue_rqs = nvme_queue_rqs, 1672 .complete = nvme_pci_complete_rq, 1673 .commit_rqs = nvme_commit_rqs, 1674 .init_hctx = nvme_init_hctx, 1675 .init_request = nvme_pci_init_request, 1676 .map_queues = nvme_pci_map_queues, 1677 .timeout = nvme_timeout, 1678 .poll = nvme_poll, 1679 }; 1680 1681 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1682 { 1683 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1684 /* 1685 * If the controller was reset during removal, it's possible 1686 * user requests may be waiting on a stopped queue. Start the 1687 * queue to flush these to completion. 1688 */ 1689 nvme_unquiesce_admin_queue(&dev->ctrl); 1690 nvme_remove_admin_tag_set(&dev->ctrl); 1691 } 1692 } 1693 1694 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1695 { 1696 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1697 } 1698 1699 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1700 { 1701 struct pci_dev *pdev = to_pci_dev(dev->dev); 1702 1703 if (size <= dev->bar_mapped_size) 1704 return 0; 1705 if (size > pci_resource_len(pdev, 0)) 1706 return -ENOMEM; 1707 if (dev->bar) 1708 iounmap(dev->bar); 1709 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1710 if (!dev->bar) { 1711 dev->bar_mapped_size = 0; 1712 return -ENOMEM; 1713 } 1714 dev->bar_mapped_size = size; 1715 dev->dbs = dev->bar + NVME_REG_DBS; 1716 1717 return 0; 1718 } 1719 1720 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1721 { 1722 int result; 1723 u32 aqa; 1724 struct nvme_queue *nvmeq; 1725 1726 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1727 if (result < 0) 1728 return result; 1729 1730 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1731 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1732 1733 if (dev->subsystem && 1734 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1735 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1736 1737 /* 1738 * If the device has been passed off to us in an enabled state, just 1739 * clear the enabled bit. The spec says we should set the 'shutdown 1740 * notification bits', but doing so may cause the device to complete 1741 * commands to the admin queue ... and we don't know what memory that 1742 * might be pointing at! 1743 */ 1744 result = nvme_disable_ctrl(&dev->ctrl, false); 1745 if (result < 0) 1746 return result; 1747 1748 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1749 if (result) 1750 return result; 1751 1752 dev->ctrl.numa_node = dev_to_node(dev->dev); 1753 1754 nvmeq = &dev->queues[0]; 1755 aqa = nvmeq->q_depth - 1; 1756 aqa |= aqa << 16; 1757 1758 writel(aqa, dev->bar + NVME_REG_AQA); 1759 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1760 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1761 1762 result = nvme_enable_ctrl(&dev->ctrl); 1763 if (result) 1764 return result; 1765 1766 nvmeq->cq_vector = 0; 1767 nvme_init_queue(nvmeq, 0); 1768 result = queue_request_irq(nvmeq); 1769 if (result) { 1770 dev->online_queues--; 1771 return result; 1772 } 1773 1774 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1775 return result; 1776 } 1777 1778 static int nvme_create_io_queues(struct nvme_dev *dev) 1779 { 1780 unsigned i, max, rw_queues; 1781 int ret = 0; 1782 1783 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1784 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1785 ret = -ENOMEM; 1786 break; 1787 } 1788 } 1789 1790 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1791 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1792 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1793 dev->io_queues[HCTX_TYPE_READ]; 1794 } else { 1795 rw_queues = max; 1796 } 1797 1798 for (i = dev->online_queues; i <= max; i++) { 1799 bool polled = i > rw_queues; 1800 1801 ret = nvme_create_queue(&dev->queues[i], i, polled); 1802 if (ret) 1803 break; 1804 } 1805 1806 /* 1807 * Ignore failing Create SQ/CQ commands, we can continue with less 1808 * than the desired amount of queues, and even a controller without 1809 * I/O queues can still be used to issue admin commands. This might 1810 * be useful to upgrade a buggy firmware for example. 1811 */ 1812 return ret >= 0 ? 0 : ret; 1813 } 1814 1815 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1816 { 1817 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1818 1819 return 1ULL << (12 + 4 * szu); 1820 } 1821 1822 static u32 nvme_cmb_size(struct nvme_dev *dev) 1823 { 1824 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1825 } 1826 1827 static void nvme_map_cmb(struct nvme_dev *dev) 1828 { 1829 u64 size, offset; 1830 resource_size_t bar_size; 1831 struct pci_dev *pdev = to_pci_dev(dev->dev); 1832 int bar; 1833 1834 if (dev->cmb_size) 1835 return; 1836 1837 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1838 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1839 1840 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1841 if (!dev->cmbsz) 1842 return; 1843 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1844 1845 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1846 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1847 bar = NVME_CMB_BIR(dev->cmbloc); 1848 bar_size = pci_resource_len(pdev, bar); 1849 1850 if (offset > bar_size) 1851 return; 1852 1853 /* 1854 * Tell the controller about the host side address mapping the CMB, 1855 * and enable CMB decoding for the NVMe 1.4+ scheme: 1856 */ 1857 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1858 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1859 (pci_bus_address(pdev, bar) + offset), 1860 dev->bar + NVME_REG_CMBMSC); 1861 } 1862 1863 /* 1864 * Controllers may support a CMB size larger than their BAR, 1865 * for example, due to being behind a bridge. Reduce the CMB to 1866 * the reported size of the BAR 1867 */ 1868 if (size > bar_size - offset) 1869 size = bar_size - offset; 1870 1871 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1872 dev_warn(dev->ctrl.device, 1873 "failed to register the CMB\n"); 1874 return; 1875 } 1876 1877 dev->cmb_size = size; 1878 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1879 1880 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1881 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1882 pci_p2pmem_publish(pdev, true); 1883 1884 nvme_update_attrs(dev); 1885 } 1886 1887 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1888 { 1889 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1890 u64 dma_addr = dev->host_mem_descs_dma; 1891 struct nvme_command c = { }; 1892 int ret; 1893 1894 c.features.opcode = nvme_admin_set_features; 1895 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1896 c.features.dword11 = cpu_to_le32(bits); 1897 c.features.dword12 = cpu_to_le32(host_mem_size); 1898 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1899 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1900 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1901 1902 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1903 if (ret) { 1904 dev_warn(dev->ctrl.device, 1905 "failed to set host mem (err %d, flags %#x).\n", 1906 ret, bits); 1907 } else 1908 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1909 1910 return ret; 1911 } 1912 1913 static void nvme_free_host_mem(struct nvme_dev *dev) 1914 { 1915 int i; 1916 1917 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1918 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1919 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1920 1921 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1922 le64_to_cpu(desc->addr), 1923 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1924 } 1925 1926 kfree(dev->host_mem_desc_bufs); 1927 dev->host_mem_desc_bufs = NULL; 1928 dma_free_coherent(dev->dev, dev->host_mem_descs_size, 1929 dev->host_mem_descs, dev->host_mem_descs_dma); 1930 dev->host_mem_descs = NULL; 1931 dev->host_mem_descs_size = 0; 1932 dev->nr_host_mem_descs = 0; 1933 } 1934 1935 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1936 u32 chunk_size) 1937 { 1938 struct nvme_host_mem_buf_desc *descs; 1939 u32 max_entries, len, descs_size; 1940 dma_addr_t descs_dma; 1941 int i = 0; 1942 void **bufs; 1943 u64 size, tmp; 1944 1945 tmp = (preferred + chunk_size - 1); 1946 do_div(tmp, chunk_size); 1947 max_entries = tmp; 1948 1949 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1950 max_entries = dev->ctrl.hmmaxd; 1951 1952 descs_size = max_entries * sizeof(*descs); 1953 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma, 1954 GFP_KERNEL); 1955 if (!descs) 1956 goto out; 1957 1958 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1959 if (!bufs) 1960 goto out_free_descs; 1961 1962 for (size = 0; size < preferred && i < max_entries; size += len) { 1963 dma_addr_t dma_addr; 1964 1965 len = min_t(u64, chunk_size, preferred - size); 1966 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1967 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1968 if (!bufs[i]) 1969 break; 1970 1971 descs[i].addr = cpu_to_le64(dma_addr); 1972 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1973 i++; 1974 } 1975 1976 if (!size) 1977 goto out_free_bufs; 1978 1979 dev->nr_host_mem_descs = i; 1980 dev->host_mem_size = size; 1981 dev->host_mem_descs = descs; 1982 dev->host_mem_descs_dma = descs_dma; 1983 dev->host_mem_descs_size = descs_size; 1984 dev->host_mem_desc_bufs = bufs; 1985 return 0; 1986 1987 out_free_bufs: 1988 while (--i >= 0) { 1989 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1990 1991 dma_free_attrs(dev->dev, size, bufs[i], 1992 le64_to_cpu(descs[i].addr), 1993 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1994 } 1995 1996 kfree(bufs); 1997 out_free_descs: 1998 dma_free_coherent(dev->dev, descs_size, descs, descs_dma); 1999 out: 2000 dev->host_mem_descs = NULL; 2001 return -ENOMEM; 2002 } 2003 2004 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2005 { 2006 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2007 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2008 u64 chunk_size; 2009 2010 /* start big and work our way down */ 2011 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2012 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2013 if (!min || dev->host_mem_size >= min) 2014 return 0; 2015 nvme_free_host_mem(dev); 2016 } 2017 } 2018 2019 return -ENOMEM; 2020 } 2021 2022 static int nvme_setup_host_mem(struct nvme_dev *dev) 2023 { 2024 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2025 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2026 u64 min = (u64)dev->ctrl.hmmin * 4096; 2027 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2028 int ret; 2029 2030 if (!dev->ctrl.hmpre) 2031 return 0; 2032 2033 preferred = min(preferred, max); 2034 if (min > max) { 2035 dev_warn(dev->ctrl.device, 2036 "min host memory (%lld MiB) above limit (%d MiB).\n", 2037 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2038 nvme_free_host_mem(dev); 2039 return 0; 2040 } 2041 2042 /* 2043 * If we already have a buffer allocated check if we can reuse it. 2044 */ 2045 if (dev->host_mem_descs) { 2046 if (dev->host_mem_size >= min) 2047 enable_bits |= NVME_HOST_MEM_RETURN; 2048 else 2049 nvme_free_host_mem(dev); 2050 } 2051 2052 if (!dev->host_mem_descs) { 2053 if (nvme_alloc_host_mem(dev, min, preferred)) { 2054 dev_warn(dev->ctrl.device, 2055 "failed to allocate host memory buffer.\n"); 2056 return 0; /* controller must work without HMB */ 2057 } 2058 2059 dev_info(dev->ctrl.device, 2060 "allocated %lld MiB host memory buffer.\n", 2061 dev->host_mem_size >> ilog2(SZ_1M)); 2062 } 2063 2064 ret = nvme_set_host_mem(dev, enable_bits); 2065 if (ret) 2066 nvme_free_host_mem(dev); 2067 return ret; 2068 } 2069 2070 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2071 char *buf) 2072 { 2073 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2074 2075 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2076 ndev->cmbloc, ndev->cmbsz); 2077 } 2078 static DEVICE_ATTR_RO(cmb); 2079 2080 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2081 char *buf) 2082 { 2083 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2084 2085 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2086 } 2087 static DEVICE_ATTR_RO(cmbloc); 2088 2089 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2090 char *buf) 2091 { 2092 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2093 2094 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2095 } 2096 static DEVICE_ATTR_RO(cmbsz); 2097 2098 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2099 char *buf) 2100 { 2101 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2102 2103 return sysfs_emit(buf, "%d\n", ndev->hmb); 2104 } 2105 2106 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2107 const char *buf, size_t count) 2108 { 2109 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2110 bool new; 2111 int ret; 2112 2113 if (kstrtobool(buf, &new) < 0) 2114 return -EINVAL; 2115 2116 if (new == ndev->hmb) 2117 return count; 2118 2119 if (new) { 2120 ret = nvme_setup_host_mem(ndev); 2121 } else { 2122 ret = nvme_set_host_mem(ndev, 0); 2123 if (!ret) 2124 nvme_free_host_mem(ndev); 2125 } 2126 2127 if (ret < 0) 2128 return ret; 2129 2130 return count; 2131 } 2132 static DEVICE_ATTR_RW(hmb); 2133 2134 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2135 struct attribute *a, int n) 2136 { 2137 struct nvme_ctrl *ctrl = 2138 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2139 struct nvme_dev *dev = to_nvme_dev(ctrl); 2140 2141 if (a == &dev_attr_cmb.attr || 2142 a == &dev_attr_cmbloc.attr || 2143 a == &dev_attr_cmbsz.attr) { 2144 if (!dev->cmbsz) 2145 return 0; 2146 } 2147 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2148 return 0; 2149 2150 return a->mode; 2151 } 2152 2153 static struct attribute *nvme_pci_attrs[] = { 2154 &dev_attr_cmb.attr, 2155 &dev_attr_cmbloc.attr, 2156 &dev_attr_cmbsz.attr, 2157 &dev_attr_hmb.attr, 2158 NULL, 2159 }; 2160 2161 static const struct attribute_group nvme_pci_dev_attrs_group = { 2162 .attrs = nvme_pci_attrs, 2163 .is_visible = nvme_pci_attrs_are_visible, 2164 }; 2165 2166 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2167 &nvme_dev_attrs_group, 2168 &nvme_pci_dev_attrs_group, 2169 NULL, 2170 }; 2171 2172 static void nvme_update_attrs(struct nvme_dev *dev) 2173 { 2174 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2175 } 2176 2177 /* 2178 * nirqs is the number of interrupts available for write and read 2179 * queues. The core already reserved an interrupt for the admin queue. 2180 */ 2181 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2182 { 2183 struct nvme_dev *dev = affd->priv; 2184 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2185 2186 /* 2187 * If there is no interrupt available for queues, ensure that 2188 * the default queue is set to 1. The affinity set size is 2189 * also set to one, but the irq core ignores it for this case. 2190 * 2191 * If only one interrupt is available or 'write_queue' == 0, combine 2192 * write and read queues. 2193 * 2194 * If 'write_queues' > 0, ensure it leaves room for at least one read 2195 * queue. 2196 */ 2197 if (!nrirqs) { 2198 nrirqs = 1; 2199 nr_read_queues = 0; 2200 } else if (nrirqs == 1 || !nr_write_queues) { 2201 nr_read_queues = 0; 2202 } else if (nr_write_queues >= nrirqs) { 2203 nr_read_queues = 1; 2204 } else { 2205 nr_read_queues = nrirqs - nr_write_queues; 2206 } 2207 2208 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2209 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2210 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2211 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2212 affd->nr_sets = nr_read_queues ? 2 : 1; 2213 } 2214 2215 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2216 { 2217 struct pci_dev *pdev = to_pci_dev(dev->dev); 2218 struct irq_affinity affd = { 2219 .pre_vectors = 1, 2220 .calc_sets = nvme_calc_irq_sets, 2221 .priv = dev, 2222 }; 2223 unsigned int irq_queues, poll_queues; 2224 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2225 2226 /* 2227 * Poll queues don't need interrupts, but we need at least one I/O queue 2228 * left over for non-polled I/O. 2229 */ 2230 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2231 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2232 2233 /* 2234 * Initialize for the single interrupt case, will be updated in 2235 * nvme_calc_irq_sets(). 2236 */ 2237 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2238 dev->io_queues[HCTX_TYPE_READ] = 0; 2239 2240 /* 2241 * We need interrupts for the admin queue and each non-polled I/O queue, 2242 * but some Apple controllers require all queues to use the first 2243 * vector. 2244 */ 2245 irq_queues = 1; 2246 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2247 irq_queues += (nr_io_queues - poll_queues); 2248 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2249 flags &= ~PCI_IRQ_MSI; 2250 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2251 &affd); 2252 } 2253 2254 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2255 { 2256 /* 2257 * If tags are shared with admin queue (Apple bug), then 2258 * make sure we only use one IO queue. 2259 */ 2260 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2261 return 1; 2262 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2263 } 2264 2265 static int nvme_setup_io_queues(struct nvme_dev *dev) 2266 { 2267 struct nvme_queue *adminq = &dev->queues[0]; 2268 struct pci_dev *pdev = to_pci_dev(dev->dev); 2269 unsigned int nr_io_queues; 2270 unsigned long size; 2271 int result; 2272 2273 /* 2274 * Sample the module parameters once at reset time so that we have 2275 * stable values to work with. 2276 */ 2277 dev->nr_write_queues = write_queues; 2278 dev->nr_poll_queues = poll_queues; 2279 2280 nr_io_queues = dev->nr_allocated_queues - 1; 2281 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2282 if (result < 0) 2283 return result; 2284 2285 if (nr_io_queues == 0) 2286 return 0; 2287 2288 /* 2289 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2290 * from set to unset. If there is a window to it is truely freed, 2291 * pci_free_irq_vectors() jumping into this window will crash. 2292 * And take lock to avoid racing with pci_free_irq_vectors() in 2293 * nvme_dev_disable() path. 2294 */ 2295 result = nvme_setup_io_queues_trylock(dev); 2296 if (result) 2297 return result; 2298 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2299 pci_free_irq(pdev, 0, adminq); 2300 2301 if (dev->cmb_use_sqes) { 2302 result = nvme_cmb_qdepth(dev, nr_io_queues, 2303 sizeof(struct nvme_command)); 2304 if (result > 0) { 2305 dev->q_depth = result; 2306 dev->ctrl.sqsize = result - 1; 2307 } else { 2308 dev->cmb_use_sqes = false; 2309 } 2310 } 2311 2312 do { 2313 size = db_bar_size(dev, nr_io_queues); 2314 result = nvme_remap_bar(dev, size); 2315 if (!result) 2316 break; 2317 if (!--nr_io_queues) { 2318 result = -ENOMEM; 2319 goto out_unlock; 2320 } 2321 } while (1); 2322 adminq->q_db = dev->dbs; 2323 2324 retry: 2325 /* Deregister the admin queue's interrupt */ 2326 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2327 pci_free_irq(pdev, 0, adminq); 2328 2329 /* 2330 * If we enable msix early due to not intx, disable it again before 2331 * setting up the full range we need. 2332 */ 2333 pci_free_irq_vectors(pdev); 2334 2335 result = nvme_setup_irqs(dev, nr_io_queues); 2336 if (result <= 0) { 2337 result = -EIO; 2338 goto out_unlock; 2339 } 2340 2341 dev->num_vecs = result; 2342 result = max(result - 1, 1); 2343 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2344 2345 /* 2346 * Should investigate if there's a performance win from allocating 2347 * more queues than interrupt vectors; it might allow the submission 2348 * path to scale better, even if the receive path is limited by the 2349 * number of interrupts. 2350 */ 2351 result = queue_request_irq(adminq); 2352 if (result) 2353 goto out_unlock; 2354 set_bit(NVMEQ_ENABLED, &adminq->flags); 2355 mutex_unlock(&dev->shutdown_lock); 2356 2357 result = nvme_create_io_queues(dev); 2358 if (result || dev->online_queues < 2) 2359 return result; 2360 2361 if (dev->online_queues - 1 < dev->max_qid) { 2362 nr_io_queues = dev->online_queues - 1; 2363 nvme_delete_io_queues(dev); 2364 result = nvme_setup_io_queues_trylock(dev); 2365 if (result) 2366 return result; 2367 nvme_suspend_io_queues(dev); 2368 goto retry; 2369 } 2370 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2371 dev->io_queues[HCTX_TYPE_DEFAULT], 2372 dev->io_queues[HCTX_TYPE_READ], 2373 dev->io_queues[HCTX_TYPE_POLL]); 2374 return 0; 2375 out_unlock: 2376 mutex_unlock(&dev->shutdown_lock); 2377 return result; 2378 } 2379 2380 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2381 blk_status_t error) 2382 { 2383 struct nvme_queue *nvmeq = req->end_io_data; 2384 2385 blk_mq_free_request(req); 2386 complete(&nvmeq->delete_done); 2387 return RQ_END_IO_NONE; 2388 } 2389 2390 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2391 blk_status_t error) 2392 { 2393 struct nvme_queue *nvmeq = req->end_io_data; 2394 2395 if (error) 2396 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2397 2398 return nvme_del_queue_end(req, error); 2399 } 2400 2401 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2402 { 2403 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2404 struct request *req; 2405 struct nvme_command cmd = { }; 2406 2407 cmd.delete_queue.opcode = opcode; 2408 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2409 2410 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2411 if (IS_ERR(req)) 2412 return PTR_ERR(req); 2413 nvme_init_request(req, &cmd); 2414 2415 if (opcode == nvme_admin_delete_cq) 2416 req->end_io = nvme_del_cq_end; 2417 else 2418 req->end_io = nvme_del_queue_end; 2419 req->end_io_data = nvmeq; 2420 2421 init_completion(&nvmeq->delete_done); 2422 blk_execute_rq_nowait(req, false); 2423 return 0; 2424 } 2425 2426 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2427 { 2428 int nr_queues = dev->online_queues - 1, sent = 0; 2429 unsigned long timeout; 2430 2431 retry: 2432 timeout = NVME_ADMIN_TIMEOUT; 2433 while (nr_queues > 0) { 2434 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2435 break; 2436 nr_queues--; 2437 sent++; 2438 } 2439 while (sent) { 2440 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2441 2442 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2443 timeout); 2444 if (timeout == 0) 2445 return false; 2446 2447 sent--; 2448 if (nr_queues) 2449 goto retry; 2450 } 2451 return true; 2452 } 2453 2454 static void nvme_delete_io_queues(struct nvme_dev *dev) 2455 { 2456 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2457 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2458 } 2459 2460 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2461 { 2462 if (dev->io_queues[HCTX_TYPE_POLL]) 2463 return 3; 2464 if (dev->io_queues[HCTX_TYPE_READ]) 2465 return 2; 2466 return 1; 2467 } 2468 2469 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) 2470 { 2471 if (!dev->ctrl.tagset) { 2472 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2473 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2474 return true; 2475 } 2476 2477 /* Give up if we are racing with nvme_dev_disable() */ 2478 if (!mutex_trylock(&dev->shutdown_lock)) 2479 return false; 2480 2481 /* Check if nvme_dev_disable() has been executed already */ 2482 if (!dev->online_queues) { 2483 mutex_unlock(&dev->shutdown_lock); 2484 return false; 2485 } 2486 2487 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2488 /* free previously allocated queues that are no longer usable */ 2489 nvme_free_queues(dev, dev->online_queues); 2490 mutex_unlock(&dev->shutdown_lock); 2491 return true; 2492 } 2493 2494 static int nvme_pci_enable(struct nvme_dev *dev) 2495 { 2496 int result = -ENOMEM; 2497 struct pci_dev *pdev = to_pci_dev(dev->dev); 2498 unsigned int flags = PCI_IRQ_ALL_TYPES; 2499 2500 if (pci_enable_device_mem(pdev)) 2501 return result; 2502 2503 pci_set_master(pdev); 2504 2505 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2506 result = -ENODEV; 2507 goto disable; 2508 } 2509 2510 /* 2511 * Some devices and/or platforms don't advertise or work with INTx 2512 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2513 * adjust this later. 2514 */ 2515 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2516 flags &= ~PCI_IRQ_MSI; 2517 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2518 if (result < 0) 2519 goto disable; 2520 2521 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2522 2523 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2524 io_queue_depth); 2525 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2526 dev->dbs = dev->bar + 4096; 2527 2528 /* 2529 * Some Apple controllers require a non-standard SQE size. 2530 * Interestingly they also seem to ignore the CC:IOSQES register 2531 * so we don't bother updating it here. 2532 */ 2533 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2534 dev->io_sqes = 7; 2535 else 2536 dev->io_sqes = NVME_NVM_IOSQES; 2537 2538 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { 2539 dev->q_depth = 2; 2540 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2541 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2542 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2543 dev->q_depth = 64; 2544 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2545 "set queue depth=%u\n", dev->q_depth); 2546 } 2547 2548 /* 2549 * Controllers with the shared tags quirk need the IO queue to be 2550 * big enough so that we get 32 tags for the admin queue 2551 */ 2552 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2553 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2554 dev->q_depth = NVME_AQ_DEPTH + 2; 2555 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2556 dev->q_depth); 2557 } 2558 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2559 2560 nvme_map_cmb(dev); 2561 2562 pci_save_state(pdev); 2563 2564 result = nvme_pci_configure_admin_queue(dev); 2565 if (result) 2566 goto free_irq; 2567 return result; 2568 2569 free_irq: 2570 pci_free_irq_vectors(pdev); 2571 disable: 2572 pci_disable_device(pdev); 2573 return result; 2574 } 2575 2576 static void nvme_dev_unmap(struct nvme_dev *dev) 2577 { 2578 if (dev->bar) 2579 iounmap(dev->bar); 2580 pci_release_mem_regions(to_pci_dev(dev->dev)); 2581 } 2582 2583 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2584 { 2585 struct pci_dev *pdev = to_pci_dev(dev->dev); 2586 u32 csts; 2587 2588 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2589 return true; 2590 if (pdev->error_state != pci_channel_io_normal) 2591 return true; 2592 2593 csts = readl(dev->bar + NVME_REG_CSTS); 2594 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2595 } 2596 2597 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2598 { 2599 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2600 struct pci_dev *pdev = to_pci_dev(dev->dev); 2601 bool dead; 2602 2603 mutex_lock(&dev->shutdown_lock); 2604 dead = nvme_pci_ctrl_is_dead(dev); 2605 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2606 if (pci_is_enabled(pdev)) 2607 nvme_start_freeze(&dev->ctrl); 2608 /* 2609 * Give the controller a chance to complete all entered requests 2610 * if doing a safe shutdown. 2611 */ 2612 if (!dead && shutdown) 2613 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2614 } 2615 2616 nvme_quiesce_io_queues(&dev->ctrl); 2617 2618 if (!dead && dev->ctrl.queue_count > 0) { 2619 nvme_delete_io_queues(dev); 2620 nvme_disable_ctrl(&dev->ctrl, shutdown); 2621 nvme_poll_irqdisable(&dev->queues[0]); 2622 } 2623 nvme_suspend_io_queues(dev); 2624 nvme_suspend_queue(dev, 0); 2625 pci_free_irq_vectors(pdev); 2626 if (pci_is_enabled(pdev)) 2627 pci_disable_device(pdev); 2628 nvme_reap_pending_cqes(dev); 2629 2630 nvme_cancel_tagset(&dev->ctrl); 2631 nvme_cancel_admin_tagset(&dev->ctrl); 2632 2633 /* 2634 * The driver will not be starting up queues again if shutting down so 2635 * must flush all entered requests to their failed completion to avoid 2636 * deadlocking blk-mq hot-cpu notifier. 2637 */ 2638 if (shutdown) { 2639 nvme_unquiesce_io_queues(&dev->ctrl); 2640 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2641 nvme_unquiesce_admin_queue(&dev->ctrl); 2642 } 2643 mutex_unlock(&dev->shutdown_lock); 2644 } 2645 2646 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2647 { 2648 if (!nvme_wait_reset(&dev->ctrl)) 2649 return -EBUSY; 2650 nvme_dev_disable(dev, shutdown); 2651 return 0; 2652 } 2653 2654 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2655 { 2656 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2657 NVME_CTRL_PAGE_SIZE, 2658 NVME_CTRL_PAGE_SIZE, 0); 2659 if (!dev->prp_page_pool) 2660 return -ENOMEM; 2661 2662 /* Optimisation for I/Os between 4k and 128k */ 2663 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2664 256, 256, 0); 2665 if (!dev->prp_small_pool) { 2666 dma_pool_destroy(dev->prp_page_pool); 2667 return -ENOMEM; 2668 } 2669 return 0; 2670 } 2671 2672 static void nvme_release_prp_pools(struct nvme_dev *dev) 2673 { 2674 dma_pool_destroy(dev->prp_page_pool); 2675 dma_pool_destroy(dev->prp_small_pool); 2676 } 2677 2678 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2679 { 2680 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2681 2682 dev->iod_mempool = mempool_create_node(1, 2683 mempool_kmalloc, mempool_kfree, 2684 (void *)alloc_size, GFP_KERNEL, 2685 dev_to_node(dev->dev)); 2686 if (!dev->iod_mempool) 2687 return -ENOMEM; 2688 return 0; 2689 } 2690 2691 static void nvme_free_tagset(struct nvme_dev *dev) 2692 { 2693 if (dev->tagset.tags) 2694 nvme_remove_io_tag_set(&dev->ctrl); 2695 dev->ctrl.tagset = NULL; 2696 } 2697 2698 /* pairs with nvme_pci_alloc_dev */ 2699 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2700 { 2701 struct nvme_dev *dev = to_nvme_dev(ctrl); 2702 2703 nvme_free_tagset(dev); 2704 put_device(dev->dev); 2705 kfree(dev->queues); 2706 kfree(dev); 2707 } 2708 2709 static void nvme_reset_work(struct work_struct *work) 2710 { 2711 struct nvme_dev *dev = 2712 container_of(work, struct nvme_dev, ctrl.reset_work); 2713 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2714 int result; 2715 2716 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2717 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2718 dev->ctrl.state); 2719 result = -ENODEV; 2720 goto out; 2721 } 2722 2723 /* 2724 * If we're called to reset a live controller first shut it down before 2725 * moving on. 2726 */ 2727 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2728 nvme_dev_disable(dev, false); 2729 nvme_sync_queues(&dev->ctrl); 2730 2731 mutex_lock(&dev->shutdown_lock); 2732 result = nvme_pci_enable(dev); 2733 if (result) 2734 goto out_unlock; 2735 nvme_unquiesce_admin_queue(&dev->ctrl); 2736 mutex_unlock(&dev->shutdown_lock); 2737 2738 /* 2739 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2740 * initializing procedure here. 2741 */ 2742 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2743 dev_warn(dev->ctrl.device, 2744 "failed to mark controller CONNECTING\n"); 2745 result = -EBUSY; 2746 goto out; 2747 } 2748 2749 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2750 if (result) 2751 goto out; 2752 2753 nvme_dbbuf_dma_alloc(dev); 2754 2755 result = nvme_setup_host_mem(dev); 2756 if (result < 0) 2757 goto out; 2758 2759 result = nvme_setup_io_queues(dev); 2760 if (result) 2761 goto out; 2762 2763 /* 2764 * Freeze and update the number of I/O queues as thos might have 2765 * changed. If there are no I/O queues left after this reset, keep the 2766 * controller around but remove all namespaces. 2767 */ 2768 if (dev->online_queues > 1) { 2769 nvme_dbbuf_set(dev); 2770 nvme_unquiesce_io_queues(&dev->ctrl); 2771 nvme_wait_freeze(&dev->ctrl); 2772 if (!nvme_pci_update_nr_queues(dev)) 2773 goto out; 2774 nvme_unfreeze(&dev->ctrl); 2775 } else { 2776 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2777 nvme_mark_namespaces_dead(&dev->ctrl); 2778 nvme_unquiesce_io_queues(&dev->ctrl); 2779 nvme_remove_namespaces(&dev->ctrl); 2780 nvme_free_tagset(dev); 2781 } 2782 2783 /* 2784 * If only admin queue live, keep it to do further investigation or 2785 * recovery. 2786 */ 2787 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2788 dev_warn(dev->ctrl.device, 2789 "failed to mark controller live state\n"); 2790 result = -ENODEV; 2791 goto out; 2792 } 2793 2794 nvme_start_ctrl(&dev->ctrl); 2795 return; 2796 2797 out_unlock: 2798 mutex_unlock(&dev->shutdown_lock); 2799 out: 2800 /* 2801 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2802 * may be holding this pci_dev's device lock. 2803 */ 2804 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2805 result); 2806 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2807 nvme_dev_disable(dev, true); 2808 nvme_sync_queues(&dev->ctrl); 2809 nvme_mark_namespaces_dead(&dev->ctrl); 2810 nvme_unquiesce_io_queues(&dev->ctrl); 2811 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2812 } 2813 2814 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2815 { 2816 *val = readl(to_nvme_dev(ctrl)->bar + off); 2817 return 0; 2818 } 2819 2820 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2821 { 2822 writel(val, to_nvme_dev(ctrl)->bar + off); 2823 return 0; 2824 } 2825 2826 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2827 { 2828 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2829 return 0; 2830 } 2831 2832 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2833 { 2834 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2835 2836 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2837 } 2838 2839 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2840 { 2841 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2842 struct nvme_subsystem *subsys = ctrl->subsys; 2843 2844 dev_err(ctrl->device, 2845 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2846 pdev->vendor, pdev->device, 2847 nvme_strlen(subsys->model, sizeof(subsys->model)), 2848 subsys->model, nvme_strlen(subsys->firmware_rev, 2849 sizeof(subsys->firmware_rev)), 2850 subsys->firmware_rev); 2851 } 2852 2853 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2854 { 2855 struct nvme_dev *dev = to_nvme_dev(ctrl); 2856 2857 return dma_pci_p2pdma_supported(dev->dev); 2858 } 2859 2860 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2861 .name = "pcie", 2862 .module = THIS_MODULE, 2863 .flags = NVME_F_METADATA_SUPPORTED, 2864 .dev_attr_groups = nvme_pci_dev_attr_groups, 2865 .reg_read32 = nvme_pci_reg_read32, 2866 .reg_write32 = nvme_pci_reg_write32, 2867 .reg_read64 = nvme_pci_reg_read64, 2868 .free_ctrl = nvme_pci_free_ctrl, 2869 .submit_async_event = nvme_pci_submit_async_event, 2870 .get_address = nvme_pci_get_address, 2871 .print_device_info = nvme_pci_print_device_info, 2872 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2873 }; 2874 2875 static int nvme_dev_map(struct nvme_dev *dev) 2876 { 2877 struct pci_dev *pdev = to_pci_dev(dev->dev); 2878 2879 if (pci_request_mem_regions(pdev, "nvme")) 2880 return -ENODEV; 2881 2882 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2883 goto release; 2884 2885 return 0; 2886 release: 2887 pci_release_mem_regions(pdev); 2888 return -ENODEV; 2889 } 2890 2891 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2892 { 2893 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2894 /* 2895 * Several Samsung devices seem to drop off the PCIe bus 2896 * randomly when APST is on and uses the deepest sleep state. 2897 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2898 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2899 * 950 PRO 256GB", but it seems to be restricted to two Dell 2900 * laptops. 2901 */ 2902 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2903 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2904 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2905 return NVME_QUIRK_NO_DEEPEST_PS; 2906 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2907 /* 2908 * Samsung SSD 960 EVO drops off the PCIe bus after system 2909 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2910 * within few minutes after bootup on a Coffee Lake board - 2911 * ASUS PRIME Z370-A 2912 */ 2913 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2914 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2915 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2916 return NVME_QUIRK_NO_APST; 2917 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2918 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2919 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2920 /* 2921 * Forcing to use host managed nvme power settings for 2922 * lowest idle power with quick resume latency on 2923 * Samsung and Toshiba SSDs based on suspend behavior 2924 * on Coffee Lake board for LENOVO C640 2925 */ 2926 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2927 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2928 return NVME_QUIRK_SIMPLE_SUSPEND; 2929 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 2930 pdev->device == 0x500f)) { 2931 /* 2932 * Exclude some Kingston NV1 and A2000 devices from 2933 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 2934 * lot fo energy with s2idle sleep on some TUXEDO platforms. 2935 */ 2936 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 2937 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 2938 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 2939 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 2940 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2941 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 2942 /* 2943 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 2944 * because of high power consumption (> 2 Watt) in s2idle 2945 * sleep. Only some boards with Intel CPU are affected. 2946 */ 2947 if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 2948 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 2949 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 2950 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 2951 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2952 } 2953 2954 /* 2955 * NVMe SSD drops off the PCIe bus after system idle 2956 * for 10 hours on a Lenovo N60z board. 2957 */ 2958 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 2959 return NVME_QUIRK_NO_APST; 2960 2961 return 0; 2962 } 2963 2964 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2965 const struct pci_device_id *id) 2966 { 2967 unsigned long quirks = id->driver_data; 2968 int node = dev_to_node(&pdev->dev); 2969 struct nvme_dev *dev; 2970 int ret = -ENOMEM; 2971 2972 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2973 if (!dev) 2974 return ERR_PTR(-ENOMEM); 2975 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2976 mutex_init(&dev->shutdown_lock); 2977 2978 dev->nr_write_queues = write_queues; 2979 dev->nr_poll_queues = poll_queues; 2980 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2981 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2982 sizeof(struct nvme_queue), GFP_KERNEL, node); 2983 if (!dev->queues) 2984 goto out_free_dev; 2985 2986 dev->dev = get_device(&pdev->dev); 2987 2988 quirks |= check_vendor_combination_bug(pdev); 2989 if (!noacpi && 2990 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 2991 acpi_storage_d3(&pdev->dev)) { 2992 /* 2993 * Some systems use a bios work around to ask for D3 on 2994 * platforms that support kernel managed suspend. 2995 */ 2996 dev_info(&pdev->dev, 2997 "platform quirk: setting simple suspend\n"); 2998 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2999 } 3000 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3001 quirks); 3002 if (ret) 3003 goto out_put_device; 3004 3005 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3006 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3007 else 3008 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3009 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3010 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3011 3012 /* 3013 * Limit the max command size to prevent iod->sg allocations going 3014 * over a single page. 3015 */ 3016 dev->ctrl.max_hw_sectors = min_t(u32, 3017 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 3018 dev->ctrl.max_segments = NVME_MAX_SEGS; 3019 3020 /* 3021 * There is no support for SGLs for metadata (yet), so we are limited to 3022 * a single integrity segment for the separate metadata pointer. 3023 */ 3024 dev->ctrl.max_integrity_segments = 1; 3025 return dev; 3026 3027 out_put_device: 3028 put_device(dev->dev); 3029 kfree(dev->queues); 3030 out_free_dev: 3031 kfree(dev); 3032 return ERR_PTR(ret); 3033 } 3034 3035 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3036 { 3037 struct nvme_dev *dev; 3038 int result = -ENOMEM; 3039 3040 dev = nvme_pci_alloc_dev(pdev, id); 3041 if (IS_ERR(dev)) 3042 return PTR_ERR(dev); 3043 3044 result = nvme_dev_map(dev); 3045 if (result) 3046 goto out_uninit_ctrl; 3047 3048 result = nvme_setup_prp_pools(dev); 3049 if (result) 3050 goto out_dev_unmap; 3051 3052 result = nvme_pci_alloc_iod_mempool(dev); 3053 if (result) 3054 goto out_release_prp_pools; 3055 3056 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3057 3058 result = nvme_pci_enable(dev); 3059 if (result) 3060 goto out_release_iod_mempool; 3061 3062 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3063 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3064 if (result) 3065 goto out_disable; 3066 3067 /* 3068 * Mark the controller as connecting before sending admin commands to 3069 * allow the timeout handler to do the right thing. 3070 */ 3071 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3072 dev_warn(dev->ctrl.device, 3073 "failed to mark controller CONNECTING\n"); 3074 result = -EBUSY; 3075 goto out_disable; 3076 } 3077 3078 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3079 if (result) 3080 goto out_disable; 3081 3082 nvme_dbbuf_dma_alloc(dev); 3083 3084 result = nvme_setup_host_mem(dev); 3085 if (result < 0) 3086 goto out_disable; 3087 3088 result = nvme_setup_io_queues(dev); 3089 if (result) 3090 goto out_disable; 3091 3092 if (dev->online_queues > 1) { 3093 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3094 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3095 nvme_dbbuf_set(dev); 3096 } 3097 3098 if (!dev->ctrl.tagset) 3099 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3100 3101 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3102 dev_warn(dev->ctrl.device, 3103 "failed to mark controller live state\n"); 3104 result = -ENODEV; 3105 goto out_disable; 3106 } 3107 3108 pci_set_drvdata(pdev, dev); 3109 3110 nvme_start_ctrl(&dev->ctrl); 3111 nvme_put_ctrl(&dev->ctrl); 3112 flush_work(&dev->ctrl.scan_work); 3113 return 0; 3114 3115 out_disable: 3116 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3117 nvme_dev_disable(dev, true); 3118 nvme_free_host_mem(dev); 3119 nvme_dev_remove_admin(dev); 3120 nvme_dbbuf_dma_free(dev); 3121 nvme_free_queues(dev, 0); 3122 out_release_iod_mempool: 3123 mempool_destroy(dev->iod_mempool); 3124 out_release_prp_pools: 3125 nvme_release_prp_pools(dev); 3126 out_dev_unmap: 3127 nvme_dev_unmap(dev); 3128 out_uninit_ctrl: 3129 nvme_uninit_ctrl(&dev->ctrl); 3130 nvme_put_ctrl(&dev->ctrl); 3131 return result; 3132 } 3133 3134 static void nvme_reset_prepare(struct pci_dev *pdev) 3135 { 3136 struct nvme_dev *dev = pci_get_drvdata(pdev); 3137 3138 /* 3139 * We don't need to check the return value from waiting for the reset 3140 * state as pci_dev device lock is held, making it impossible to race 3141 * with ->remove(). 3142 */ 3143 nvme_disable_prepare_reset(dev, false); 3144 nvme_sync_queues(&dev->ctrl); 3145 } 3146 3147 static void nvme_reset_done(struct pci_dev *pdev) 3148 { 3149 struct nvme_dev *dev = pci_get_drvdata(pdev); 3150 3151 if (!nvme_try_sched_reset(&dev->ctrl)) 3152 flush_work(&dev->ctrl.reset_work); 3153 } 3154 3155 static void nvme_shutdown(struct pci_dev *pdev) 3156 { 3157 struct nvme_dev *dev = pci_get_drvdata(pdev); 3158 3159 nvme_disable_prepare_reset(dev, true); 3160 } 3161 3162 /* 3163 * The driver's remove may be called on a device in a partially initialized 3164 * state. This function must not have any dependencies on the device state in 3165 * order to proceed. 3166 */ 3167 static void nvme_remove(struct pci_dev *pdev) 3168 { 3169 struct nvme_dev *dev = pci_get_drvdata(pdev); 3170 3171 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3172 pci_set_drvdata(pdev, NULL); 3173 3174 if (!pci_device_is_present(pdev)) { 3175 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3176 nvme_dev_disable(dev, true); 3177 } 3178 3179 flush_work(&dev->ctrl.reset_work); 3180 nvme_stop_ctrl(&dev->ctrl); 3181 nvme_remove_namespaces(&dev->ctrl); 3182 nvme_dev_disable(dev, true); 3183 nvme_free_host_mem(dev); 3184 nvme_dev_remove_admin(dev); 3185 nvme_dbbuf_dma_free(dev); 3186 nvme_free_queues(dev, 0); 3187 mempool_destroy(dev->iod_mempool); 3188 nvme_release_prp_pools(dev); 3189 nvme_dev_unmap(dev); 3190 nvme_uninit_ctrl(&dev->ctrl); 3191 } 3192 3193 #ifdef CONFIG_PM_SLEEP 3194 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3195 { 3196 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3197 } 3198 3199 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3200 { 3201 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3202 } 3203 3204 static int nvme_resume(struct device *dev) 3205 { 3206 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3207 struct nvme_ctrl *ctrl = &ndev->ctrl; 3208 3209 if (ndev->last_ps == U32_MAX || 3210 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3211 goto reset; 3212 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3213 goto reset; 3214 3215 return 0; 3216 reset: 3217 return nvme_try_sched_reset(ctrl); 3218 } 3219 3220 static int nvme_suspend(struct device *dev) 3221 { 3222 struct pci_dev *pdev = to_pci_dev(dev); 3223 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3224 struct nvme_ctrl *ctrl = &ndev->ctrl; 3225 int ret = -EBUSY; 3226 3227 ndev->last_ps = U32_MAX; 3228 3229 /* 3230 * The platform does not remove power for a kernel managed suspend so 3231 * use host managed nvme power settings for lowest idle power if 3232 * possible. This should have quicker resume latency than a full device 3233 * shutdown. But if the firmware is involved after the suspend or the 3234 * device does not support any non-default power states, shut down the 3235 * device fully. 3236 * 3237 * If ASPM is not enabled for the device, shut down the device and allow 3238 * the PCI bus layer to put it into D3 in order to take the PCIe link 3239 * down, so as to allow the platform to achieve its minimum low-power 3240 * state (which may not be possible if the link is up). 3241 */ 3242 if (pm_suspend_via_firmware() || !ctrl->npss || 3243 !pcie_aspm_enabled(pdev) || 3244 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3245 return nvme_disable_prepare_reset(ndev, true); 3246 3247 nvme_start_freeze(ctrl); 3248 nvme_wait_freeze(ctrl); 3249 nvme_sync_queues(ctrl); 3250 3251 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3252 goto unfreeze; 3253 3254 /* 3255 * Host memory access may not be successful in a system suspend state, 3256 * but the specification allows the controller to access memory in a 3257 * non-operational power state. 3258 */ 3259 if (ndev->hmb) { 3260 ret = nvme_set_host_mem(ndev, 0); 3261 if (ret < 0) 3262 goto unfreeze; 3263 } 3264 3265 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3266 if (ret < 0) 3267 goto unfreeze; 3268 3269 /* 3270 * A saved state prevents pci pm from generically controlling the 3271 * device's power. If we're using protocol specific settings, we don't 3272 * want pci interfering. 3273 */ 3274 pci_save_state(pdev); 3275 3276 ret = nvme_set_power_state(ctrl, ctrl->npss); 3277 if (ret < 0) 3278 goto unfreeze; 3279 3280 if (ret) { 3281 /* discard the saved state */ 3282 pci_load_saved_state(pdev, NULL); 3283 3284 /* 3285 * Clearing npss forces a controller reset on resume. The 3286 * correct value will be rediscovered then. 3287 */ 3288 ret = nvme_disable_prepare_reset(ndev, true); 3289 ctrl->npss = 0; 3290 } 3291 unfreeze: 3292 nvme_unfreeze(ctrl); 3293 return ret; 3294 } 3295 3296 static int nvme_simple_suspend(struct device *dev) 3297 { 3298 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3299 3300 return nvme_disable_prepare_reset(ndev, true); 3301 } 3302 3303 static int nvme_simple_resume(struct device *dev) 3304 { 3305 struct pci_dev *pdev = to_pci_dev(dev); 3306 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3307 3308 return nvme_try_sched_reset(&ndev->ctrl); 3309 } 3310 3311 static const struct dev_pm_ops nvme_dev_pm_ops = { 3312 .suspend = nvme_suspend, 3313 .resume = nvme_resume, 3314 .freeze = nvme_simple_suspend, 3315 .thaw = nvme_simple_resume, 3316 .poweroff = nvme_simple_suspend, 3317 .restore = nvme_simple_resume, 3318 }; 3319 #endif /* CONFIG_PM_SLEEP */ 3320 3321 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3322 pci_channel_state_t state) 3323 { 3324 struct nvme_dev *dev = pci_get_drvdata(pdev); 3325 3326 /* 3327 * A frozen channel requires a reset. When detected, this method will 3328 * shutdown the controller to quiesce. The controller will be restarted 3329 * after the slot reset through driver's slot_reset callback. 3330 */ 3331 switch (state) { 3332 case pci_channel_io_normal: 3333 return PCI_ERS_RESULT_CAN_RECOVER; 3334 case pci_channel_io_frozen: 3335 dev_warn(dev->ctrl.device, 3336 "frozen state error detected, reset controller\n"); 3337 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3338 nvme_dev_disable(dev, true); 3339 return PCI_ERS_RESULT_DISCONNECT; 3340 } 3341 nvme_dev_disable(dev, false); 3342 return PCI_ERS_RESULT_NEED_RESET; 3343 case pci_channel_io_perm_failure: 3344 dev_warn(dev->ctrl.device, 3345 "failure state error detected, request disconnect\n"); 3346 return PCI_ERS_RESULT_DISCONNECT; 3347 } 3348 return PCI_ERS_RESULT_NEED_RESET; 3349 } 3350 3351 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3352 { 3353 struct nvme_dev *dev = pci_get_drvdata(pdev); 3354 3355 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3356 pci_restore_state(pdev); 3357 if (!nvme_try_sched_reset(&dev->ctrl)) 3358 nvme_unquiesce_io_queues(&dev->ctrl); 3359 return PCI_ERS_RESULT_RECOVERED; 3360 } 3361 3362 static void nvme_error_resume(struct pci_dev *pdev) 3363 { 3364 struct nvme_dev *dev = pci_get_drvdata(pdev); 3365 3366 flush_work(&dev->ctrl.reset_work); 3367 } 3368 3369 static const struct pci_error_handlers nvme_err_handler = { 3370 .error_detected = nvme_error_detected, 3371 .slot_reset = nvme_slot_reset, 3372 .resume = nvme_error_resume, 3373 .reset_prepare = nvme_reset_prepare, 3374 .reset_done = nvme_reset_done, 3375 }; 3376 3377 static const struct pci_device_id nvme_id_table[] = { 3378 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3379 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3380 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3381 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3382 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3383 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3384 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3385 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3386 NVME_QUIRK_DEALLOCATE_ZEROES | 3387 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3388 NVME_QUIRK_BOGUS_NID, }, 3389 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3390 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3391 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3392 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3393 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3394 NVME_QUIRK_MEDIUM_PRIO_SQ | 3395 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3396 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3397 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3398 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3399 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3400 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3401 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3402 NVME_QUIRK_BOGUS_NID, }, 3403 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3404 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3405 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ 3406 .driver_data = NVME_QUIRK_QDEPTH_ONE }, 3407 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3408 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3409 NVME_QUIRK_BOGUS_NID, }, 3410 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3411 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3412 NVME_QUIRK_BOGUS_NID, }, 3413 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3414 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3415 NVME_QUIRK_NO_NS_DESC_LIST, }, 3416 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3417 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3418 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3419 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3420 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3421 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3422 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3423 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3424 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3425 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3426 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3427 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3428 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3429 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3430 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3431 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3432 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3433 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3434 NVME_QUIRK_BOGUS_NID, }, 3435 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3436 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3437 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3438 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3439 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3440 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3441 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3442 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3443 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3444 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3445 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3446 NVME_QUIRK_BOGUS_NID, }, 3447 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3448 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3449 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3450 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3451 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3452 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3453 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3454 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3455 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3456 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3457 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3458 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3459 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3460 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3461 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3462 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3463 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3464 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3465 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3466 NVME_QUIRK_BOGUS_NID, }, 3467 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3468 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3469 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3470 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3471 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3472 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3473 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3474 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3475 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3476 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3477 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3478 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3479 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3480 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3481 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3482 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3483 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3484 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3485 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3486 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3487 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3488 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3489 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3490 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3491 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3492 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3493 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3494 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3495 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3496 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3497 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3498 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3499 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3500 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3501 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3502 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3503 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3504 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3505 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3506 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3507 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3508 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3509 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3510 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3511 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3512 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3513 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3514 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3515 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3516 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3517 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3518 .driver_data = NVME_QUIRK_BOGUS_NID | 3519 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3520 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3521 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3522 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3523 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3524 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3525 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3526 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3527 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3528 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3529 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3530 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3531 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3532 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3533 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3534 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3535 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3536 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3537 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3538 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3539 /* 3540 * Fix for the Apple controller found in the MacBook8,1 and 3541 * some MacBook7,1 to avoid controller resets and data loss. 3542 */ 3543 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3544 NVME_QUIRK_QDEPTH_ONE }, 3545 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3546 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3547 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3548 NVME_QUIRK_128_BYTES_SQES | 3549 NVME_QUIRK_SHARED_TAGS | 3550 NVME_QUIRK_SKIP_CID_GEN | 3551 NVME_QUIRK_IDENTIFY_CNS }, 3552 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3553 { 0, } 3554 }; 3555 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3556 3557 static struct pci_driver nvme_driver = { 3558 .name = "nvme", 3559 .id_table = nvme_id_table, 3560 .probe = nvme_probe, 3561 .remove = nvme_remove, 3562 .shutdown = nvme_shutdown, 3563 .driver = { 3564 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3565 #ifdef CONFIG_PM_SLEEP 3566 .pm = &nvme_dev_pm_ops, 3567 #endif 3568 }, 3569 .sriov_configure = pci_sriov_configure_simple, 3570 .err_handler = &nvme_err_handler, 3571 }; 3572 3573 static int __init nvme_init(void) 3574 { 3575 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3576 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3577 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3578 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3579 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3580 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3581 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3582 3583 return pci_register_driver(&nvme_driver); 3584 } 3585 3586 static void __exit nvme_exit(void) 3587 { 3588 pci_unregister_driver(&nvme_driver); 3589 flush_workqueue(nvme_wq); 3590 } 3591 3592 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3593 MODULE_LICENSE("GPL"); 3594 MODULE_VERSION("1.0"); 3595 module_init(nvme_init); 3596 module_exit(nvme_exit); 3597