xref: /openbmc/linux/drivers/nvme/host/pci.c (revision cce8e04c)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33 #include <linux/pci-p2pdma.h>
34 
35 #include "trace.h"
36 #include "nvme.h"
37 
38 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
40 
41 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
42 
43 /*
44  * These can be higher, but we need to ensure that any command doesn't
45  * require an sg allocation that needs more than a page of data.
46  */
47 #define NVME_MAX_KB_SZ	4096
48 #define NVME_MAX_SEGS	127
49 
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52 
53 static bool use_cmb_sqes = true;
54 module_param(use_cmb_sqes, bool, 0444);
55 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
56 
57 static unsigned int max_host_mem_size_mb = 128;
58 module_param(max_host_mem_size_mb, uint, 0444);
59 MODULE_PARM_DESC(max_host_mem_size_mb,
60 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
61 
62 static unsigned int sgl_threshold = SZ_32K;
63 module_param(sgl_threshold, uint, 0644);
64 MODULE_PARM_DESC(sgl_threshold,
65 		"Use SGLs when average request segment size is larger or equal to "
66 		"this size. Use 0 to disable SGLs.");
67 
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_int,
72 };
73 
74 static int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
77 
78 static int queue_count_set(const char *val, const struct kernel_param *kp);
79 static const struct kernel_param_ops queue_count_ops = {
80 	.set = queue_count_set,
81 	.get = param_get_int,
82 };
83 
84 static int write_queues;
85 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
86 MODULE_PARM_DESC(write_queues,
87 	"Number of queues to use for writes. If not set, reads and writes "
88 	"will share a queue set.");
89 
90 static int poll_queues = 0;
91 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
92 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
93 
94 struct nvme_dev;
95 struct nvme_queue;
96 
97 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
98 
99 /*
100  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
101  */
102 struct nvme_dev {
103 	struct nvme_queue *queues;
104 	struct blk_mq_tag_set tagset;
105 	struct blk_mq_tag_set admin_tagset;
106 	u32 __iomem *dbs;
107 	struct device *dev;
108 	struct dma_pool *prp_page_pool;
109 	struct dma_pool *prp_small_pool;
110 	unsigned online_queues;
111 	unsigned max_qid;
112 	unsigned io_queues[HCTX_MAX_TYPES];
113 	unsigned int num_vecs;
114 	int q_depth;
115 	u32 db_stride;
116 	void __iomem *bar;
117 	unsigned long bar_mapped_size;
118 	struct work_struct remove_work;
119 	struct mutex shutdown_lock;
120 	bool subsystem;
121 	u64 cmb_size;
122 	bool cmb_use_sqes;
123 	u32 cmbsz;
124 	u32 cmbloc;
125 	struct nvme_ctrl ctrl;
126 
127 	mempool_t *iod_mempool;
128 
129 	/* shadow doorbell buffer support: */
130 	u32 *dbbuf_dbs;
131 	dma_addr_t dbbuf_dbs_dma_addr;
132 	u32 *dbbuf_eis;
133 	dma_addr_t dbbuf_eis_dma_addr;
134 
135 	/* host memory buffer support: */
136 	u64 host_mem_size;
137 	u32 nr_host_mem_descs;
138 	dma_addr_t host_mem_descs_dma;
139 	struct nvme_host_mem_buf_desc *host_mem_descs;
140 	void **host_mem_desc_bufs;
141 };
142 
143 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
144 {
145 	int n = 0, ret;
146 
147 	ret = kstrtoint(val, 10, &n);
148 	if (ret != 0 || n < 2)
149 		return -EINVAL;
150 
151 	return param_set_int(val, kp);
152 }
153 
154 static int queue_count_set(const char *val, const struct kernel_param *kp)
155 {
156 	int n = 0, ret;
157 
158 	ret = kstrtoint(val, 10, &n);
159 	if (n > num_possible_cpus())
160 		n = num_possible_cpus();
161 
162 	return param_set_int(val, kp);
163 }
164 
165 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
166 {
167 	return qid * 2 * stride;
168 }
169 
170 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
171 {
172 	return (qid * 2 + 1) * stride;
173 }
174 
175 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
176 {
177 	return container_of(ctrl, struct nvme_dev, ctrl);
178 }
179 
180 /*
181  * An NVM Express queue.  Each device has at least two (one for admin
182  * commands and one for I/O commands).
183  */
184 struct nvme_queue {
185 	struct device *q_dmadev;
186 	struct nvme_dev *dev;
187 	spinlock_t sq_lock;
188 	struct nvme_command *sq_cmds;
189 	 /* only used for poll queues: */
190 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
191 	volatile struct nvme_completion *cqes;
192 	struct blk_mq_tags **tags;
193 	dma_addr_t sq_dma_addr;
194 	dma_addr_t cq_dma_addr;
195 	u32 __iomem *q_db;
196 	u16 q_depth;
197 	s16 cq_vector;
198 	u16 sq_tail;
199 	u16 last_sq_tail;
200 	u16 cq_head;
201 	u16 last_cq_head;
202 	u16 qid;
203 	u8 cq_phase;
204 	unsigned long flags;
205 #define NVMEQ_ENABLED		0
206 #define NVMEQ_SQ_CMB		1
207 #define NVMEQ_DELETE_ERROR	2
208 	u32 *dbbuf_sq_db;
209 	u32 *dbbuf_cq_db;
210 	u32 *dbbuf_sq_ei;
211 	u32 *dbbuf_cq_ei;
212 	struct completion delete_done;
213 };
214 
215 /*
216  * The nvme_iod describes the data in an I/O, including the list of PRP
217  * entries.  You can't see it in this data structure because C doesn't let
218  * me express that.  Use nvme_init_iod to ensure there's enough space
219  * allocated to store the PRP list.
220  */
221 struct nvme_iod {
222 	struct nvme_request req;
223 	struct nvme_queue *nvmeq;
224 	bool use_sgl;
225 	int aborted;
226 	int npages;		/* In the PRP list. 0 means small pool in use */
227 	int nents;		/* Used in scatterlist */
228 	int length;		/* Of data, in bytes */
229 	dma_addr_t first_dma;
230 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
231 	struct scatterlist *sg;
232 	struct scatterlist inline_sg[0];
233 };
234 
235 /*
236  * Check we didin't inadvertently grow the command struct
237  */
238 static inline void _nvme_check_size(void)
239 {
240 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
241 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
242 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
243 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
244 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
245 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
246 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
247 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
248 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
249 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
250 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
251 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
252 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
253 }
254 
255 static unsigned int max_io_queues(void)
256 {
257 	return num_possible_cpus() + write_queues + poll_queues;
258 }
259 
260 static unsigned int max_queue_count(void)
261 {
262 	/* IO queues + admin queue */
263 	return 1 + max_io_queues();
264 }
265 
266 static inline unsigned int nvme_dbbuf_size(u32 stride)
267 {
268 	return (max_queue_count() * 8 * stride);
269 }
270 
271 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
272 {
273 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
274 
275 	if (dev->dbbuf_dbs)
276 		return 0;
277 
278 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
279 					    &dev->dbbuf_dbs_dma_addr,
280 					    GFP_KERNEL);
281 	if (!dev->dbbuf_dbs)
282 		return -ENOMEM;
283 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
284 					    &dev->dbbuf_eis_dma_addr,
285 					    GFP_KERNEL);
286 	if (!dev->dbbuf_eis) {
287 		dma_free_coherent(dev->dev, mem_size,
288 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
289 		dev->dbbuf_dbs = NULL;
290 		return -ENOMEM;
291 	}
292 
293 	return 0;
294 }
295 
296 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
297 {
298 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
299 
300 	if (dev->dbbuf_dbs) {
301 		dma_free_coherent(dev->dev, mem_size,
302 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
303 		dev->dbbuf_dbs = NULL;
304 	}
305 	if (dev->dbbuf_eis) {
306 		dma_free_coherent(dev->dev, mem_size,
307 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
308 		dev->dbbuf_eis = NULL;
309 	}
310 }
311 
312 static void nvme_dbbuf_init(struct nvme_dev *dev,
313 			    struct nvme_queue *nvmeq, int qid)
314 {
315 	if (!dev->dbbuf_dbs || !qid)
316 		return;
317 
318 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
319 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
320 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
321 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
322 }
323 
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 	struct nvme_command c;
327 
328 	if (!dev->dbbuf_dbs)
329 		return;
330 
331 	memset(&c, 0, sizeof(c));
332 	c.dbbuf.opcode = nvme_admin_dbbuf;
333 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335 
336 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 		/* Free memory and continue on */
339 		nvme_dbbuf_dma_free(dev);
340 	}
341 }
342 
343 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
344 {
345 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
346 }
347 
348 /* Update dbbuf and return true if an MMIO is required */
349 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
350 					      volatile u32 *dbbuf_ei)
351 {
352 	if (dbbuf_db) {
353 		u16 old_value;
354 
355 		/*
356 		 * Ensure that the queue is written before updating
357 		 * the doorbell in memory
358 		 */
359 		wmb();
360 
361 		old_value = *dbbuf_db;
362 		*dbbuf_db = value;
363 
364 		/*
365 		 * Ensure that the doorbell is updated before reading the event
366 		 * index from memory.  The controller needs to provide similar
367 		 * ordering to ensure the envent index is updated before reading
368 		 * the doorbell.
369 		 */
370 		mb();
371 
372 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
373 			return false;
374 	}
375 
376 	return true;
377 }
378 
379 /*
380  * Max size of iod being embedded in the request payload
381  */
382 #define NVME_INT_PAGES		2
383 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
384 
385 /*
386  * Will slightly overestimate the number of pages needed.  This is OK
387  * as it only leads to a small amount of wasted memory for the lifetime of
388  * the I/O.
389  */
390 static int nvme_npages(unsigned size, struct nvme_dev *dev)
391 {
392 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
393 				      dev->ctrl.page_size);
394 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
395 }
396 
397 /*
398  * Calculates the number of pages needed for the SGL segments. For example a 4k
399  * page can accommodate 256 SGL descriptors.
400  */
401 static int nvme_pci_npages_sgl(unsigned int num_seg)
402 {
403 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
404 }
405 
406 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
407 		unsigned int size, unsigned int nseg, bool use_sgl)
408 {
409 	size_t alloc_size;
410 
411 	if (use_sgl)
412 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
413 	else
414 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
415 
416 	return alloc_size + sizeof(struct scatterlist) * nseg;
417 }
418 
419 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
420 {
421 	unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
422 				    NVME_INT_BYTES(dev), NVME_INT_PAGES,
423 				    use_sgl);
424 
425 	return sizeof(struct nvme_iod) + alloc_size;
426 }
427 
428 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
429 				unsigned int hctx_idx)
430 {
431 	struct nvme_dev *dev = data;
432 	struct nvme_queue *nvmeq = &dev->queues[0];
433 
434 	WARN_ON(hctx_idx != 0);
435 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
436 	WARN_ON(nvmeq->tags);
437 
438 	hctx->driver_data = nvmeq;
439 	nvmeq->tags = &dev->admin_tagset.tags[0];
440 	return 0;
441 }
442 
443 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
444 {
445 	struct nvme_queue *nvmeq = hctx->driver_data;
446 
447 	nvmeq->tags = NULL;
448 }
449 
450 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
451 			  unsigned int hctx_idx)
452 {
453 	struct nvme_dev *dev = data;
454 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
455 
456 	if (!nvmeq->tags)
457 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
458 
459 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
460 	hctx->driver_data = nvmeq;
461 	return 0;
462 }
463 
464 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
465 		unsigned int hctx_idx, unsigned int numa_node)
466 {
467 	struct nvme_dev *dev = set->driver_data;
468 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
469 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
470 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
471 
472 	BUG_ON(!nvmeq);
473 	iod->nvmeq = nvmeq;
474 
475 	nvme_req(req)->ctrl = &dev->ctrl;
476 	return 0;
477 }
478 
479 static int queue_irq_offset(struct nvme_dev *dev)
480 {
481 	/* if we have more than 1 vec, admin queue offsets us by 1 */
482 	if (dev->num_vecs > 1)
483 		return 1;
484 
485 	return 0;
486 }
487 
488 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
489 {
490 	struct nvme_dev *dev = set->driver_data;
491 	int i, qoff, offset;
492 
493 	offset = queue_irq_offset(dev);
494 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
495 		struct blk_mq_queue_map *map = &set->map[i];
496 
497 		map->nr_queues = dev->io_queues[i];
498 		if (!map->nr_queues) {
499 			BUG_ON(i == HCTX_TYPE_DEFAULT);
500 			continue;
501 		}
502 
503 		/*
504 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
505 		 * affinity), so use the regular blk-mq cpu mapping
506 		 */
507 		map->queue_offset = qoff;
508 		if (i != HCTX_TYPE_POLL)
509 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
510 		else
511 			blk_mq_map_queues(map);
512 		qoff += map->nr_queues;
513 		offset += map->nr_queues;
514 	}
515 
516 	return 0;
517 }
518 
519 /*
520  * Write sq tail if we are asked to, or if the next command would wrap.
521  */
522 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
523 {
524 	if (!write_sq) {
525 		u16 next_tail = nvmeq->sq_tail + 1;
526 
527 		if (next_tail == nvmeq->q_depth)
528 			next_tail = 0;
529 		if (next_tail != nvmeq->last_sq_tail)
530 			return;
531 	}
532 
533 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
534 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
535 		writel(nvmeq->sq_tail, nvmeq->q_db);
536 	nvmeq->last_sq_tail = nvmeq->sq_tail;
537 }
538 
539 /**
540  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
541  * @nvmeq: The queue to use
542  * @cmd: The command to send
543  * @write_sq: whether to write to the SQ doorbell
544  */
545 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
546 			    bool write_sq)
547 {
548 	spin_lock(&nvmeq->sq_lock);
549 	memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
550 	if (++nvmeq->sq_tail == nvmeq->q_depth)
551 		nvmeq->sq_tail = 0;
552 	nvme_write_sq_db(nvmeq, write_sq);
553 	spin_unlock(&nvmeq->sq_lock);
554 }
555 
556 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
557 {
558 	struct nvme_queue *nvmeq = hctx->driver_data;
559 
560 	spin_lock(&nvmeq->sq_lock);
561 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
562 		nvme_write_sq_db(nvmeq, true);
563 	spin_unlock(&nvmeq->sq_lock);
564 }
565 
566 static void **nvme_pci_iod_list(struct request *req)
567 {
568 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
570 }
571 
572 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
573 {
574 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
575 	int nseg = blk_rq_nr_phys_segments(req);
576 	unsigned int avg_seg_size;
577 
578 	if (nseg == 0)
579 		return false;
580 
581 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
582 
583 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
584 		return false;
585 	if (!iod->nvmeq->qid)
586 		return false;
587 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
588 		return false;
589 	return true;
590 }
591 
592 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
593 {
594 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
595 	int nseg = blk_rq_nr_phys_segments(rq);
596 	unsigned int size = blk_rq_payload_bytes(rq);
597 
598 	iod->use_sgl = nvme_pci_use_sgls(dev, rq);
599 
600 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
601 		iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
602 		if (!iod->sg)
603 			return BLK_STS_RESOURCE;
604 	} else {
605 		iod->sg = iod->inline_sg;
606 	}
607 
608 	iod->aborted = 0;
609 	iod->npages = -1;
610 	iod->nents = 0;
611 	iod->length = size;
612 
613 	return BLK_STS_OK;
614 }
615 
616 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
617 {
618 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
620 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
621 
622 	int i;
623 
624 	if (iod->npages == 0)
625 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
626 			dma_addr);
627 
628 	for (i = 0; i < iod->npages; i++) {
629 		void *addr = nvme_pci_iod_list(req)[i];
630 
631 		if (iod->use_sgl) {
632 			struct nvme_sgl_desc *sg_list = addr;
633 
634 			next_dma_addr =
635 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
636 		} else {
637 			__le64 *prp_list = addr;
638 
639 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
640 		}
641 
642 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
643 		dma_addr = next_dma_addr;
644 	}
645 
646 	if (iod->sg != iod->inline_sg)
647 		mempool_free(iod->sg, dev->iod_mempool);
648 }
649 
650 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
651 {
652 	int i;
653 	struct scatterlist *sg;
654 
655 	for_each_sg(sgl, sg, nents, i) {
656 		dma_addr_t phys = sg_phys(sg);
657 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
658 			"dma_address:%pad dma_length:%d\n",
659 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
660 			sg_dma_len(sg));
661 	}
662 }
663 
664 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
665 		struct request *req, struct nvme_rw_command *cmnd)
666 {
667 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
668 	struct dma_pool *pool;
669 	int length = blk_rq_payload_bytes(req);
670 	struct scatterlist *sg = iod->sg;
671 	int dma_len = sg_dma_len(sg);
672 	u64 dma_addr = sg_dma_address(sg);
673 	u32 page_size = dev->ctrl.page_size;
674 	int offset = dma_addr & (page_size - 1);
675 	__le64 *prp_list;
676 	void **list = nvme_pci_iod_list(req);
677 	dma_addr_t prp_dma;
678 	int nprps, i;
679 
680 	length -= (page_size - offset);
681 	if (length <= 0) {
682 		iod->first_dma = 0;
683 		goto done;
684 	}
685 
686 	dma_len -= (page_size - offset);
687 	if (dma_len) {
688 		dma_addr += (page_size - offset);
689 	} else {
690 		sg = sg_next(sg);
691 		dma_addr = sg_dma_address(sg);
692 		dma_len = sg_dma_len(sg);
693 	}
694 
695 	if (length <= page_size) {
696 		iod->first_dma = dma_addr;
697 		goto done;
698 	}
699 
700 	nprps = DIV_ROUND_UP(length, page_size);
701 	if (nprps <= (256 / 8)) {
702 		pool = dev->prp_small_pool;
703 		iod->npages = 0;
704 	} else {
705 		pool = dev->prp_page_pool;
706 		iod->npages = 1;
707 	}
708 
709 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
710 	if (!prp_list) {
711 		iod->first_dma = dma_addr;
712 		iod->npages = -1;
713 		return BLK_STS_RESOURCE;
714 	}
715 	list[0] = prp_list;
716 	iod->first_dma = prp_dma;
717 	i = 0;
718 	for (;;) {
719 		if (i == page_size >> 3) {
720 			__le64 *old_prp_list = prp_list;
721 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
722 			if (!prp_list)
723 				return BLK_STS_RESOURCE;
724 			list[iod->npages++] = prp_list;
725 			prp_list[0] = old_prp_list[i - 1];
726 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
727 			i = 1;
728 		}
729 		prp_list[i++] = cpu_to_le64(dma_addr);
730 		dma_len -= page_size;
731 		dma_addr += page_size;
732 		length -= page_size;
733 		if (length <= 0)
734 			break;
735 		if (dma_len > 0)
736 			continue;
737 		if (unlikely(dma_len < 0))
738 			goto bad_sgl;
739 		sg = sg_next(sg);
740 		dma_addr = sg_dma_address(sg);
741 		dma_len = sg_dma_len(sg);
742 	}
743 
744 done:
745 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
746 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
747 
748 	return BLK_STS_OK;
749 
750  bad_sgl:
751 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
752 			"Invalid SGL for payload:%d nents:%d\n",
753 			blk_rq_payload_bytes(req), iod->nents);
754 	return BLK_STS_IOERR;
755 }
756 
757 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
758 		struct scatterlist *sg)
759 {
760 	sge->addr = cpu_to_le64(sg_dma_address(sg));
761 	sge->length = cpu_to_le32(sg_dma_len(sg));
762 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
763 }
764 
765 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
766 		dma_addr_t dma_addr, int entries)
767 {
768 	sge->addr = cpu_to_le64(dma_addr);
769 	if (entries < SGES_PER_PAGE) {
770 		sge->length = cpu_to_le32(entries * sizeof(*sge));
771 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
772 	} else {
773 		sge->length = cpu_to_le32(PAGE_SIZE);
774 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
775 	}
776 }
777 
778 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
779 		struct request *req, struct nvme_rw_command *cmd, int entries)
780 {
781 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
782 	struct dma_pool *pool;
783 	struct nvme_sgl_desc *sg_list;
784 	struct scatterlist *sg = iod->sg;
785 	dma_addr_t sgl_dma;
786 	int i = 0;
787 
788 	/* setting the transfer type as SGL */
789 	cmd->flags = NVME_CMD_SGL_METABUF;
790 
791 	if (entries == 1) {
792 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
793 		return BLK_STS_OK;
794 	}
795 
796 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
797 		pool = dev->prp_small_pool;
798 		iod->npages = 0;
799 	} else {
800 		pool = dev->prp_page_pool;
801 		iod->npages = 1;
802 	}
803 
804 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
805 	if (!sg_list) {
806 		iod->npages = -1;
807 		return BLK_STS_RESOURCE;
808 	}
809 
810 	nvme_pci_iod_list(req)[0] = sg_list;
811 	iod->first_dma = sgl_dma;
812 
813 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
814 
815 	do {
816 		if (i == SGES_PER_PAGE) {
817 			struct nvme_sgl_desc *old_sg_desc = sg_list;
818 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
819 
820 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
821 			if (!sg_list)
822 				return BLK_STS_RESOURCE;
823 
824 			i = 0;
825 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
826 			sg_list[i++] = *link;
827 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
828 		}
829 
830 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
831 		sg = sg_next(sg);
832 	} while (--entries > 0);
833 
834 	return BLK_STS_OK;
835 }
836 
837 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
838 		struct nvme_command *cmnd)
839 {
840 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 	struct request_queue *q = req->q;
842 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
843 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
844 	blk_status_t ret = BLK_STS_IOERR;
845 	int nr_mapped;
846 
847 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
848 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
849 	if (!iod->nents)
850 		goto out;
851 
852 	ret = BLK_STS_RESOURCE;
853 
854 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
855 		nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
856 					  dma_dir);
857 	else
858 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
859 					     dma_dir,  DMA_ATTR_NO_WARN);
860 	if (!nr_mapped)
861 		goto out;
862 
863 	if (iod->use_sgl)
864 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
865 	else
866 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
867 
868 	if (ret != BLK_STS_OK)
869 		goto out_unmap;
870 
871 	ret = BLK_STS_IOERR;
872 	if (blk_integrity_rq(req)) {
873 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
874 			goto out_unmap;
875 
876 		sg_init_table(&iod->meta_sg, 1);
877 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
878 			goto out_unmap;
879 
880 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
881 			goto out_unmap;
882 
883 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
884 	}
885 
886 	return BLK_STS_OK;
887 
888 out_unmap:
889 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
890 out:
891 	return ret;
892 }
893 
894 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
895 {
896 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
897 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
898 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
899 
900 	if (iod->nents) {
901 		/* P2PDMA requests do not need to be unmapped */
902 		if (!is_pci_p2pdma_page(sg_page(iod->sg)))
903 			dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
904 
905 		if (blk_integrity_rq(req))
906 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
907 	}
908 
909 	nvme_cleanup_cmd(req);
910 	nvme_free_iod(dev, req);
911 }
912 
913 /*
914  * NOTE: ns is NULL when called on the admin queue.
915  */
916 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
917 			 const struct blk_mq_queue_data *bd)
918 {
919 	struct nvme_ns *ns = hctx->queue->queuedata;
920 	struct nvme_queue *nvmeq = hctx->driver_data;
921 	struct nvme_dev *dev = nvmeq->dev;
922 	struct request *req = bd->rq;
923 	struct nvme_command cmnd;
924 	blk_status_t ret;
925 
926 	/*
927 	 * We should not need to do this, but we're still using this to
928 	 * ensure we can drain requests on a dying queue.
929 	 */
930 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
931 		return BLK_STS_IOERR;
932 
933 	ret = nvme_setup_cmd(ns, req, &cmnd);
934 	if (ret)
935 		return ret;
936 
937 	ret = nvme_init_iod(req, dev);
938 	if (ret)
939 		goto out_free_cmd;
940 
941 	if (blk_rq_nr_phys_segments(req)) {
942 		ret = nvme_map_data(dev, req, &cmnd);
943 		if (ret)
944 			goto out_cleanup_iod;
945 	}
946 
947 	blk_mq_start_request(req);
948 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
949 	return BLK_STS_OK;
950 out_cleanup_iod:
951 	nvme_free_iod(dev, req);
952 out_free_cmd:
953 	nvme_cleanup_cmd(req);
954 	return ret;
955 }
956 
957 static void nvme_pci_complete_rq(struct request *req)
958 {
959 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
960 
961 	nvme_unmap_data(iod->nvmeq->dev, req);
962 	nvme_complete_rq(req);
963 }
964 
965 /* We read the CQE phase first to check if the rest of the entry is valid */
966 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
967 {
968 	return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
969 			nvmeq->cq_phase;
970 }
971 
972 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
973 {
974 	u16 head = nvmeq->cq_head;
975 
976 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
977 					      nvmeq->dbbuf_cq_ei))
978 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
979 }
980 
981 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
982 {
983 	volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
984 	struct request *req;
985 
986 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
987 		dev_warn(nvmeq->dev->ctrl.device,
988 			"invalid id %d completed on queue %d\n",
989 			cqe->command_id, le16_to_cpu(cqe->sq_id));
990 		return;
991 	}
992 
993 	/*
994 	 * AEN requests are special as they don't time out and can
995 	 * survive any kind of queue freeze and often don't respond to
996 	 * aborts.  We don't even bother to allocate a struct request
997 	 * for them but rather special case them here.
998 	 */
999 	if (unlikely(nvmeq->qid == 0 &&
1000 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
1001 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1002 				cqe->status, &cqe->result);
1003 		return;
1004 	}
1005 
1006 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1007 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1008 	nvme_end_request(req, cqe->status, cqe->result);
1009 }
1010 
1011 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1012 {
1013 	while (start != end) {
1014 		nvme_handle_cqe(nvmeq, start);
1015 		if (++start == nvmeq->q_depth)
1016 			start = 0;
1017 	}
1018 }
1019 
1020 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1021 {
1022 	if (++nvmeq->cq_head == nvmeq->q_depth) {
1023 		nvmeq->cq_head = 0;
1024 		nvmeq->cq_phase = !nvmeq->cq_phase;
1025 	}
1026 }
1027 
1028 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1029 				  u16 *end, unsigned int tag)
1030 {
1031 	int found = 0;
1032 
1033 	*start = nvmeq->cq_head;
1034 	while (nvme_cqe_pending(nvmeq)) {
1035 		if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1036 			found++;
1037 		nvme_update_cq_head(nvmeq);
1038 	}
1039 	*end = nvmeq->cq_head;
1040 
1041 	if (*start != *end)
1042 		nvme_ring_cq_doorbell(nvmeq);
1043 	return found;
1044 }
1045 
1046 static irqreturn_t nvme_irq(int irq, void *data)
1047 {
1048 	struct nvme_queue *nvmeq = data;
1049 	irqreturn_t ret = IRQ_NONE;
1050 	u16 start, end;
1051 
1052 	/*
1053 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1054 	 * the irq handler, even if that was on another CPU.
1055 	 */
1056 	rmb();
1057 	if (nvmeq->cq_head != nvmeq->last_cq_head)
1058 		ret = IRQ_HANDLED;
1059 	nvme_process_cq(nvmeq, &start, &end, -1);
1060 	nvmeq->last_cq_head = nvmeq->cq_head;
1061 	wmb();
1062 
1063 	if (start != end) {
1064 		nvme_complete_cqes(nvmeq, start, end);
1065 		return IRQ_HANDLED;
1066 	}
1067 
1068 	return ret;
1069 }
1070 
1071 static irqreturn_t nvme_irq_check(int irq, void *data)
1072 {
1073 	struct nvme_queue *nvmeq = data;
1074 	if (nvme_cqe_pending(nvmeq))
1075 		return IRQ_WAKE_THREAD;
1076 	return IRQ_NONE;
1077 }
1078 
1079 /*
1080  * Poll for completions any queue, including those not dedicated to polling.
1081  * Can be called from any context.
1082  */
1083 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1084 {
1085 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1086 	u16 start, end;
1087 	int found;
1088 
1089 	/*
1090 	 * For a poll queue we need to protect against the polling thread
1091 	 * using the CQ lock.  For normal interrupt driven threads we have
1092 	 * to disable the interrupt to avoid racing with it.
1093 	 */
1094 	if (nvmeq->cq_vector == -1) {
1095 		spin_lock(&nvmeq->cq_poll_lock);
1096 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1097 		spin_unlock(&nvmeq->cq_poll_lock);
1098 	} else {
1099 		disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1100 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1101 		enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1102 	}
1103 
1104 	nvme_complete_cqes(nvmeq, start, end);
1105 	return found;
1106 }
1107 
1108 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1109 {
1110 	struct nvme_queue *nvmeq = hctx->driver_data;
1111 	u16 start, end;
1112 	bool found;
1113 
1114 	if (!nvme_cqe_pending(nvmeq))
1115 		return 0;
1116 
1117 	spin_lock(&nvmeq->cq_poll_lock);
1118 	found = nvme_process_cq(nvmeq, &start, &end, -1);
1119 	spin_unlock(&nvmeq->cq_poll_lock);
1120 
1121 	nvme_complete_cqes(nvmeq, start, end);
1122 	return found;
1123 }
1124 
1125 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1126 {
1127 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1128 	struct nvme_queue *nvmeq = &dev->queues[0];
1129 	struct nvme_command c;
1130 
1131 	memset(&c, 0, sizeof(c));
1132 	c.common.opcode = nvme_admin_async_event;
1133 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1134 	nvme_submit_cmd(nvmeq, &c, true);
1135 }
1136 
1137 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1138 {
1139 	struct nvme_command c;
1140 
1141 	memset(&c, 0, sizeof(c));
1142 	c.delete_queue.opcode = opcode;
1143 	c.delete_queue.qid = cpu_to_le16(id);
1144 
1145 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1146 }
1147 
1148 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1149 		struct nvme_queue *nvmeq, s16 vector)
1150 {
1151 	struct nvme_command c;
1152 	int flags = NVME_QUEUE_PHYS_CONTIG;
1153 
1154 	if (vector != -1)
1155 		flags |= NVME_CQ_IRQ_ENABLED;
1156 
1157 	/*
1158 	 * Note: we (ab)use the fact that the prp fields survive if no data
1159 	 * is attached to the request.
1160 	 */
1161 	memset(&c, 0, sizeof(c));
1162 	c.create_cq.opcode = nvme_admin_create_cq;
1163 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1164 	c.create_cq.cqid = cpu_to_le16(qid);
1165 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1166 	c.create_cq.cq_flags = cpu_to_le16(flags);
1167 	if (vector != -1)
1168 		c.create_cq.irq_vector = cpu_to_le16(vector);
1169 	else
1170 		c.create_cq.irq_vector = 0;
1171 
1172 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1173 }
1174 
1175 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1176 						struct nvme_queue *nvmeq)
1177 {
1178 	struct nvme_ctrl *ctrl = &dev->ctrl;
1179 	struct nvme_command c;
1180 	int flags = NVME_QUEUE_PHYS_CONTIG;
1181 
1182 	/*
1183 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1184 	 * set. Since URGENT priority is zeroes, it makes all queues
1185 	 * URGENT.
1186 	 */
1187 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1188 		flags |= NVME_SQ_PRIO_MEDIUM;
1189 
1190 	/*
1191 	 * Note: we (ab)use the fact that the prp fields survive if no data
1192 	 * is attached to the request.
1193 	 */
1194 	memset(&c, 0, sizeof(c));
1195 	c.create_sq.opcode = nvme_admin_create_sq;
1196 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1197 	c.create_sq.sqid = cpu_to_le16(qid);
1198 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1199 	c.create_sq.sq_flags = cpu_to_le16(flags);
1200 	c.create_sq.cqid = cpu_to_le16(qid);
1201 
1202 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1203 }
1204 
1205 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1206 {
1207 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1208 }
1209 
1210 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1211 {
1212 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1213 }
1214 
1215 static void abort_endio(struct request *req, blk_status_t error)
1216 {
1217 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1218 	struct nvme_queue *nvmeq = iod->nvmeq;
1219 
1220 	dev_warn(nvmeq->dev->ctrl.device,
1221 		 "Abort status: 0x%x", nvme_req(req)->status);
1222 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1223 	blk_mq_free_request(req);
1224 }
1225 
1226 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1227 {
1228 
1229 	/* If true, indicates loss of adapter communication, possibly by a
1230 	 * NVMe Subsystem reset.
1231 	 */
1232 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1233 
1234 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1235 	switch (dev->ctrl.state) {
1236 	case NVME_CTRL_RESETTING:
1237 	case NVME_CTRL_CONNECTING:
1238 		return false;
1239 	default:
1240 		break;
1241 	}
1242 
1243 	/* We shouldn't reset unless the controller is on fatal error state
1244 	 * _or_ if we lost the communication with it.
1245 	 */
1246 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1253 {
1254 	/* Read a config register to help see what died. */
1255 	u16 pci_status;
1256 	int result;
1257 
1258 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1259 				      &pci_status);
1260 	if (result == PCIBIOS_SUCCESSFUL)
1261 		dev_warn(dev->ctrl.device,
1262 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1263 			 csts, pci_status);
1264 	else
1265 		dev_warn(dev->ctrl.device,
1266 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1267 			 csts, result);
1268 }
1269 
1270 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1271 {
1272 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1273 	struct nvme_queue *nvmeq = iod->nvmeq;
1274 	struct nvme_dev *dev = nvmeq->dev;
1275 	struct request *abort_req;
1276 	struct nvme_command cmd;
1277 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1278 
1279 	/* If PCI error recovery process is happening, we cannot reset or
1280 	 * the recovery mechanism will surely fail.
1281 	 */
1282 	mb();
1283 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1284 		return BLK_EH_RESET_TIMER;
1285 
1286 	/*
1287 	 * Reset immediately if the controller is failed
1288 	 */
1289 	if (nvme_should_reset(dev, csts)) {
1290 		nvme_warn_reset(dev, csts);
1291 		nvme_dev_disable(dev, false);
1292 		nvme_reset_ctrl(&dev->ctrl);
1293 		return BLK_EH_DONE;
1294 	}
1295 
1296 	/*
1297 	 * Did we miss an interrupt?
1298 	 */
1299 	if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1300 		dev_warn(dev->ctrl.device,
1301 			 "I/O %d QID %d timeout, completion polled\n",
1302 			 req->tag, nvmeq->qid);
1303 		return BLK_EH_DONE;
1304 	}
1305 
1306 	/*
1307 	 * Shutdown immediately if controller times out while starting. The
1308 	 * reset work will see the pci device disabled when it gets the forced
1309 	 * cancellation error. All outstanding requests are completed on
1310 	 * shutdown, so we return BLK_EH_DONE.
1311 	 */
1312 	switch (dev->ctrl.state) {
1313 	case NVME_CTRL_CONNECTING:
1314 	case NVME_CTRL_RESETTING:
1315 		dev_warn_ratelimited(dev->ctrl.device,
1316 			 "I/O %d QID %d timeout, disable controller\n",
1317 			 req->tag, nvmeq->qid);
1318 		nvme_dev_disable(dev, false);
1319 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1320 		return BLK_EH_DONE;
1321 	default:
1322 		break;
1323 	}
1324 
1325 	/*
1326  	 * Shutdown the controller immediately and schedule a reset if the
1327  	 * command was already aborted once before and still hasn't been
1328  	 * returned to the driver, or if this is the admin queue.
1329 	 */
1330 	if (!nvmeq->qid || iod->aborted) {
1331 		dev_warn(dev->ctrl.device,
1332 			 "I/O %d QID %d timeout, reset controller\n",
1333 			 req->tag, nvmeq->qid);
1334 		nvme_dev_disable(dev, false);
1335 		nvme_reset_ctrl(&dev->ctrl);
1336 
1337 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1338 		return BLK_EH_DONE;
1339 	}
1340 
1341 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1342 		atomic_inc(&dev->ctrl.abort_limit);
1343 		return BLK_EH_RESET_TIMER;
1344 	}
1345 	iod->aborted = 1;
1346 
1347 	memset(&cmd, 0, sizeof(cmd));
1348 	cmd.abort.opcode = nvme_admin_abort_cmd;
1349 	cmd.abort.cid = req->tag;
1350 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1351 
1352 	dev_warn(nvmeq->dev->ctrl.device,
1353 		"I/O %d QID %d timeout, aborting\n",
1354 		 req->tag, nvmeq->qid);
1355 
1356 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1357 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1358 	if (IS_ERR(abort_req)) {
1359 		atomic_inc(&dev->ctrl.abort_limit);
1360 		return BLK_EH_RESET_TIMER;
1361 	}
1362 
1363 	abort_req->timeout = ADMIN_TIMEOUT;
1364 	abort_req->end_io_data = NULL;
1365 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1366 
1367 	/*
1368 	 * The aborted req will be completed on receiving the abort req.
1369 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1370 	 * as the device then is in a faulty state.
1371 	 */
1372 	return BLK_EH_RESET_TIMER;
1373 }
1374 
1375 static void nvme_free_queue(struct nvme_queue *nvmeq)
1376 {
1377 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1378 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1379 	if (!nvmeq->sq_cmds)
1380 		return;
1381 
1382 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1383 		pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1384 				nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1385 	} else {
1386 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1387 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1388 	}
1389 }
1390 
1391 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1392 {
1393 	int i;
1394 
1395 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1396 		dev->ctrl.queue_count--;
1397 		nvme_free_queue(&dev->queues[i]);
1398 	}
1399 }
1400 
1401 /**
1402  * nvme_suspend_queue - put queue into suspended state
1403  * @nvmeq: queue to suspend
1404  */
1405 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1406 {
1407 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1408 		return 1;
1409 
1410 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1411 	mb();
1412 
1413 	nvmeq->dev->online_queues--;
1414 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1415 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1416 	if (nvmeq->cq_vector == -1)
1417 		return 0;
1418 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1419 	nvmeq->cq_vector = -1;
1420 	return 0;
1421 }
1422 
1423 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1424 {
1425 	struct nvme_queue *nvmeq = &dev->queues[0];
1426 
1427 	if (shutdown)
1428 		nvme_shutdown_ctrl(&dev->ctrl);
1429 	else
1430 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1431 
1432 	nvme_poll_irqdisable(nvmeq, -1);
1433 }
1434 
1435 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1436 				int entry_size)
1437 {
1438 	int q_depth = dev->q_depth;
1439 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1440 					  dev->ctrl.page_size);
1441 
1442 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1443 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1444 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1445 		q_depth = div_u64(mem_per_q, entry_size);
1446 
1447 		/*
1448 		 * Ensure the reduced q_depth is above some threshold where it
1449 		 * would be better to map queues in system memory with the
1450 		 * original depth
1451 		 */
1452 		if (q_depth < 64)
1453 			return -ENOMEM;
1454 	}
1455 
1456 	return q_depth;
1457 }
1458 
1459 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1460 				int qid, int depth)
1461 {
1462 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1463 
1464 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1465 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1466 		nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1467 						nvmeq->sq_cmds);
1468 		if (nvmeq->sq_dma_addr) {
1469 			set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1470 			return 0;
1471 		}
1472 	}
1473 
1474 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1475 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1476 	if (!nvmeq->sq_cmds)
1477 		return -ENOMEM;
1478 	return 0;
1479 }
1480 
1481 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1482 {
1483 	struct nvme_queue *nvmeq = &dev->queues[qid];
1484 
1485 	if (dev->ctrl.queue_count > qid)
1486 		return 0;
1487 
1488 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1489 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1490 	if (!nvmeq->cqes)
1491 		goto free_nvmeq;
1492 
1493 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1494 		goto free_cqdma;
1495 
1496 	nvmeq->q_dmadev = dev->dev;
1497 	nvmeq->dev = dev;
1498 	spin_lock_init(&nvmeq->sq_lock);
1499 	spin_lock_init(&nvmeq->cq_poll_lock);
1500 	nvmeq->cq_head = 0;
1501 	nvmeq->cq_phase = 1;
1502 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1503 	nvmeq->q_depth = depth;
1504 	nvmeq->qid = qid;
1505 	nvmeq->cq_vector = -1;
1506 	dev->ctrl.queue_count++;
1507 
1508 	return 0;
1509 
1510  free_cqdma:
1511 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1512 							nvmeq->cq_dma_addr);
1513  free_nvmeq:
1514 	return -ENOMEM;
1515 }
1516 
1517 static int queue_request_irq(struct nvme_queue *nvmeq)
1518 {
1519 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1520 	int nr = nvmeq->dev->ctrl.instance;
1521 
1522 	if (use_threaded_interrupts) {
1523 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1524 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1525 	} else {
1526 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1527 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1528 	}
1529 }
1530 
1531 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1532 {
1533 	struct nvme_dev *dev = nvmeq->dev;
1534 
1535 	nvmeq->sq_tail = 0;
1536 	nvmeq->last_sq_tail = 0;
1537 	nvmeq->cq_head = 0;
1538 	nvmeq->cq_phase = 1;
1539 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1540 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1541 	nvme_dbbuf_init(dev, nvmeq, qid);
1542 	dev->online_queues++;
1543 	wmb(); /* ensure the first interrupt sees the initialization */
1544 }
1545 
1546 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1547 {
1548 	struct nvme_dev *dev = nvmeq->dev;
1549 	int result;
1550 	s16 vector;
1551 
1552 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1553 
1554 	/*
1555 	 * A queue's vector matches the queue identifier unless the controller
1556 	 * has only one vector available.
1557 	 */
1558 	if (!polled)
1559 		vector = dev->num_vecs == 1 ? 0 : qid;
1560 	else
1561 		vector = -1;
1562 
1563 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1564 	if (result)
1565 		return result;
1566 
1567 	result = adapter_alloc_sq(dev, qid, nvmeq);
1568 	if (result < 0)
1569 		return result;
1570 	else if (result)
1571 		goto release_cq;
1572 
1573 	nvmeq->cq_vector = vector;
1574 	nvme_init_queue(nvmeq, qid);
1575 
1576 	if (vector != -1) {
1577 		result = queue_request_irq(nvmeq);
1578 		if (result < 0)
1579 			goto release_sq;
1580 	}
1581 
1582 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1583 	return result;
1584 
1585 release_sq:
1586 	nvmeq->cq_vector = -1;
1587 	dev->online_queues--;
1588 	adapter_delete_sq(dev, qid);
1589 release_cq:
1590 	adapter_delete_cq(dev, qid);
1591 	return result;
1592 }
1593 
1594 static const struct blk_mq_ops nvme_mq_admin_ops = {
1595 	.queue_rq	= nvme_queue_rq,
1596 	.complete	= nvme_pci_complete_rq,
1597 	.init_hctx	= nvme_admin_init_hctx,
1598 	.exit_hctx      = nvme_admin_exit_hctx,
1599 	.init_request	= nvme_init_request,
1600 	.timeout	= nvme_timeout,
1601 };
1602 
1603 static const struct blk_mq_ops nvme_mq_ops = {
1604 	.queue_rq	= nvme_queue_rq,
1605 	.complete	= nvme_pci_complete_rq,
1606 	.commit_rqs	= nvme_commit_rqs,
1607 	.init_hctx	= nvme_init_hctx,
1608 	.init_request	= nvme_init_request,
1609 	.map_queues	= nvme_pci_map_queues,
1610 	.timeout	= nvme_timeout,
1611 	.poll		= nvme_poll,
1612 };
1613 
1614 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1615 {
1616 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1617 		/*
1618 		 * If the controller was reset during removal, it's possible
1619 		 * user requests may be waiting on a stopped queue. Start the
1620 		 * queue to flush these to completion.
1621 		 */
1622 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1623 		blk_cleanup_queue(dev->ctrl.admin_q);
1624 		blk_mq_free_tag_set(&dev->admin_tagset);
1625 	}
1626 }
1627 
1628 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1629 {
1630 	if (!dev->ctrl.admin_q) {
1631 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1632 		dev->admin_tagset.nr_hw_queues = 1;
1633 
1634 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1635 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1636 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1637 		dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1638 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1639 		dev->admin_tagset.driver_data = dev;
1640 
1641 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1642 			return -ENOMEM;
1643 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1644 
1645 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1646 		if (IS_ERR(dev->ctrl.admin_q)) {
1647 			blk_mq_free_tag_set(&dev->admin_tagset);
1648 			return -ENOMEM;
1649 		}
1650 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1651 			nvme_dev_remove_admin(dev);
1652 			dev->ctrl.admin_q = NULL;
1653 			return -ENODEV;
1654 		}
1655 	} else
1656 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1657 
1658 	return 0;
1659 }
1660 
1661 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1662 {
1663 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1664 }
1665 
1666 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1667 {
1668 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1669 
1670 	if (size <= dev->bar_mapped_size)
1671 		return 0;
1672 	if (size > pci_resource_len(pdev, 0))
1673 		return -ENOMEM;
1674 	if (dev->bar)
1675 		iounmap(dev->bar);
1676 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1677 	if (!dev->bar) {
1678 		dev->bar_mapped_size = 0;
1679 		return -ENOMEM;
1680 	}
1681 	dev->bar_mapped_size = size;
1682 	dev->dbs = dev->bar + NVME_REG_DBS;
1683 
1684 	return 0;
1685 }
1686 
1687 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1688 {
1689 	int result;
1690 	u32 aqa;
1691 	struct nvme_queue *nvmeq;
1692 
1693 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1694 	if (result < 0)
1695 		return result;
1696 
1697 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1698 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1699 
1700 	if (dev->subsystem &&
1701 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1702 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1703 
1704 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1705 	if (result < 0)
1706 		return result;
1707 
1708 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1709 	if (result)
1710 		return result;
1711 
1712 	nvmeq = &dev->queues[0];
1713 	aqa = nvmeq->q_depth - 1;
1714 	aqa |= aqa << 16;
1715 
1716 	writel(aqa, dev->bar + NVME_REG_AQA);
1717 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1718 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1719 
1720 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1721 	if (result)
1722 		return result;
1723 
1724 	nvmeq->cq_vector = 0;
1725 	nvme_init_queue(nvmeq, 0);
1726 	result = queue_request_irq(nvmeq);
1727 	if (result) {
1728 		nvmeq->cq_vector = -1;
1729 		return result;
1730 	}
1731 
1732 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1733 	return result;
1734 }
1735 
1736 static int nvme_create_io_queues(struct nvme_dev *dev)
1737 {
1738 	unsigned i, max, rw_queues;
1739 	int ret = 0;
1740 
1741 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1742 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1743 			ret = -ENOMEM;
1744 			break;
1745 		}
1746 	}
1747 
1748 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1749 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1750 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1751 				dev->io_queues[HCTX_TYPE_READ];
1752 	} else {
1753 		rw_queues = max;
1754 	}
1755 
1756 	for (i = dev->online_queues; i <= max; i++) {
1757 		bool polled = i > rw_queues;
1758 
1759 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1760 		if (ret)
1761 			break;
1762 	}
1763 
1764 	/*
1765 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1766 	 * than the desired amount of queues, and even a controller without
1767 	 * I/O queues can still be used to issue admin commands.  This might
1768 	 * be useful to upgrade a buggy firmware for example.
1769 	 */
1770 	return ret >= 0 ? 0 : ret;
1771 }
1772 
1773 static ssize_t nvme_cmb_show(struct device *dev,
1774 			     struct device_attribute *attr,
1775 			     char *buf)
1776 {
1777 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1778 
1779 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1780 		       ndev->cmbloc, ndev->cmbsz);
1781 }
1782 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1783 
1784 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1785 {
1786 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1787 
1788 	return 1ULL << (12 + 4 * szu);
1789 }
1790 
1791 static u32 nvme_cmb_size(struct nvme_dev *dev)
1792 {
1793 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1794 }
1795 
1796 static void nvme_map_cmb(struct nvme_dev *dev)
1797 {
1798 	u64 size, offset;
1799 	resource_size_t bar_size;
1800 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1801 	int bar;
1802 
1803 	if (dev->cmb_size)
1804 		return;
1805 
1806 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1807 	if (!dev->cmbsz)
1808 		return;
1809 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1810 
1811 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1812 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1813 	bar = NVME_CMB_BIR(dev->cmbloc);
1814 	bar_size = pci_resource_len(pdev, bar);
1815 
1816 	if (offset > bar_size)
1817 		return;
1818 
1819 	/*
1820 	 * Controllers may support a CMB size larger than their BAR,
1821 	 * for example, due to being behind a bridge. Reduce the CMB to
1822 	 * the reported size of the BAR
1823 	 */
1824 	if (size > bar_size - offset)
1825 		size = bar_size - offset;
1826 
1827 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1828 		dev_warn(dev->ctrl.device,
1829 			 "failed to register the CMB\n");
1830 		return;
1831 	}
1832 
1833 	dev->cmb_size = size;
1834 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1835 
1836 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1837 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1838 		pci_p2pmem_publish(pdev, true);
1839 
1840 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1841 				    &dev_attr_cmb.attr, NULL))
1842 		dev_warn(dev->ctrl.device,
1843 			 "failed to add sysfs attribute for CMB\n");
1844 }
1845 
1846 static inline void nvme_release_cmb(struct nvme_dev *dev)
1847 {
1848 	if (dev->cmb_size) {
1849 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1850 					     &dev_attr_cmb.attr, NULL);
1851 		dev->cmb_size = 0;
1852 	}
1853 }
1854 
1855 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1856 {
1857 	u64 dma_addr = dev->host_mem_descs_dma;
1858 	struct nvme_command c;
1859 	int ret;
1860 
1861 	memset(&c, 0, sizeof(c));
1862 	c.features.opcode	= nvme_admin_set_features;
1863 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1864 	c.features.dword11	= cpu_to_le32(bits);
1865 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1866 					      ilog2(dev->ctrl.page_size));
1867 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1868 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1869 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1870 
1871 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1872 	if (ret) {
1873 		dev_warn(dev->ctrl.device,
1874 			 "failed to set host mem (err %d, flags %#x).\n",
1875 			 ret, bits);
1876 	}
1877 	return ret;
1878 }
1879 
1880 static void nvme_free_host_mem(struct nvme_dev *dev)
1881 {
1882 	int i;
1883 
1884 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1885 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1886 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1887 
1888 		dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1889 				le64_to_cpu(desc->addr));
1890 	}
1891 
1892 	kfree(dev->host_mem_desc_bufs);
1893 	dev->host_mem_desc_bufs = NULL;
1894 	dma_free_coherent(dev->dev,
1895 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1896 			dev->host_mem_descs, dev->host_mem_descs_dma);
1897 	dev->host_mem_descs = NULL;
1898 	dev->nr_host_mem_descs = 0;
1899 }
1900 
1901 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1902 		u32 chunk_size)
1903 {
1904 	struct nvme_host_mem_buf_desc *descs;
1905 	u32 max_entries, len;
1906 	dma_addr_t descs_dma;
1907 	int i = 0;
1908 	void **bufs;
1909 	u64 size, tmp;
1910 
1911 	tmp = (preferred + chunk_size - 1);
1912 	do_div(tmp, chunk_size);
1913 	max_entries = tmp;
1914 
1915 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1916 		max_entries = dev->ctrl.hmmaxd;
1917 
1918 	descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1919 			&descs_dma, GFP_KERNEL);
1920 	if (!descs)
1921 		goto out;
1922 
1923 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1924 	if (!bufs)
1925 		goto out_free_descs;
1926 
1927 	for (size = 0; size < preferred && i < max_entries; size += len) {
1928 		dma_addr_t dma_addr;
1929 
1930 		len = min_t(u64, chunk_size, preferred - size);
1931 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1932 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1933 		if (!bufs[i])
1934 			break;
1935 
1936 		descs[i].addr = cpu_to_le64(dma_addr);
1937 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1938 		i++;
1939 	}
1940 
1941 	if (!size)
1942 		goto out_free_bufs;
1943 
1944 	dev->nr_host_mem_descs = i;
1945 	dev->host_mem_size = size;
1946 	dev->host_mem_descs = descs;
1947 	dev->host_mem_descs_dma = descs_dma;
1948 	dev->host_mem_desc_bufs = bufs;
1949 	return 0;
1950 
1951 out_free_bufs:
1952 	while (--i >= 0) {
1953 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1954 
1955 		dma_free_coherent(dev->dev, size, bufs[i],
1956 				le64_to_cpu(descs[i].addr));
1957 	}
1958 
1959 	kfree(bufs);
1960 out_free_descs:
1961 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1962 			descs_dma);
1963 out:
1964 	dev->host_mem_descs = NULL;
1965 	return -ENOMEM;
1966 }
1967 
1968 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1969 {
1970 	u32 chunk_size;
1971 
1972 	/* start big and work our way down */
1973 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1974 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1975 	     chunk_size /= 2) {
1976 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1977 			if (!min || dev->host_mem_size >= min)
1978 				return 0;
1979 			nvme_free_host_mem(dev);
1980 		}
1981 	}
1982 
1983 	return -ENOMEM;
1984 }
1985 
1986 static int nvme_setup_host_mem(struct nvme_dev *dev)
1987 {
1988 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1989 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1990 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1991 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1992 	int ret;
1993 
1994 	preferred = min(preferred, max);
1995 	if (min > max) {
1996 		dev_warn(dev->ctrl.device,
1997 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1998 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1999 		nvme_free_host_mem(dev);
2000 		return 0;
2001 	}
2002 
2003 	/*
2004 	 * If we already have a buffer allocated check if we can reuse it.
2005 	 */
2006 	if (dev->host_mem_descs) {
2007 		if (dev->host_mem_size >= min)
2008 			enable_bits |= NVME_HOST_MEM_RETURN;
2009 		else
2010 			nvme_free_host_mem(dev);
2011 	}
2012 
2013 	if (!dev->host_mem_descs) {
2014 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2015 			dev_warn(dev->ctrl.device,
2016 				"failed to allocate host memory buffer.\n");
2017 			return 0; /* controller must work without HMB */
2018 		}
2019 
2020 		dev_info(dev->ctrl.device,
2021 			"allocated %lld MiB host memory buffer.\n",
2022 			dev->host_mem_size >> ilog2(SZ_1M));
2023 	}
2024 
2025 	ret = nvme_set_host_mem(dev, enable_bits);
2026 	if (ret)
2027 		nvme_free_host_mem(dev);
2028 	return ret;
2029 }
2030 
2031 static void nvme_calc_io_queues(struct nvme_dev *dev, unsigned int irq_queues)
2032 {
2033 	unsigned int this_w_queues = write_queues;
2034 
2035 	/*
2036 	 * Setup read/write queue split
2037 	 */
2038 	if (irq_queues == 1) {
2039 		dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2040 		dev->io_queues[HCTX_TYPE_READ] = 0;
2041 		return;
2042 	}
2043 
2044 	/*
2045 	 * If 'write_queues' is set, ensure it leaves room for at least
2046 	 * one read queue
2047 	 */
2048 	if (this_w_queues >= irq_queues)
2049 		this_w_queues = irq_queues - 1;
2050 
2051 	/*
2052 	 * If 'write_queues' is set to zero, reads and writes will share
2053 	 * a queue set.
2054 	 */
2055 	if (!this_w_queues) {
2056 		dev->io_queues[HCTX_TYPE_DEFAULT] = irq_queues;
2057 		dev->io_queues[HCTX_TYPE_READ] = 0;
2058 	} else {
2059 		dev->io_queues[HCTX_TYPE_DEFAULT] = this_w_queues;
2060 		dev->io_queues[HCTX_TYPE_READ] = irq_queues - this_w_queues;
2061 	}
2062 }
2063 
2064 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2065 {
2066 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2067 	int irq_sets[2];
2068 	struct irq_affinity affd = {
2069 		.pre_vectors = 1,
2070 		.nr_sets = ARRAY_SIZE(irq_sets),
2071 		.sets = irq_sets,
2072 	};
2073 	int result = 0;
2074 	unsigned int irq_queues, this_p_queues;
2075 
2076 	/*
2077 	 * Poll queues don't need interrupts, but we need at least one IO
2078 	 * queue left over for non-polled IO.
2079 	 */
2080 	this_p_queues = poll_queues;
2081 	if (this_p_queues >= nr_io_queues) {
2082 		this_p_queues = nr_io_queues - 1;
2083 		irq_queues = 1;
2084 	} else {
2085 		irq_queues = nr_io_queues - this_p_queues;
2086 	}
2087 	dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2088 
2089 	/*
2090 	 * For irq sets, we have to ask for minvec == maxvec. This passes
2091 	 * any reduction back to us, so we can adjust our queue counts and
2092 	 * IRQ vector needs.
2093 	 */
2094 	do {
2095 		nvme_calc_io_queues(dev, irq_queues);
2096 		irq_sets[0] = dev->io_queues[HCTX_TYPE_DEFAULT];
2097 		irq_sets[1] = dev->io_queues[HCTX_TYPE_READ];
2098 		if (!irq_sets[1])
2099 			affd.nr_sets = 1;
2100 
2101 		/*
2102 		 * If we got a failure and we're down to asking for just
2103 		 * 1 + 1 queues, just ask for a single vector. We'll share
2104 		 * that between the single IO queue and the admin queue.
2105 		 */
2106 		if (result >= 0 && irq_queues > 1)
2107 			irq_queues = irq_sets[0] + irq_sets[1] + 1;
2108 
2109 		result = pci_alloc_irq_vectors_affinity(pdev, irq_queues,
2110 				irq_queues,
2111 				PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2112 
2113 		/*
2114 		 * Need to reduce our vec counts. If we get ENOSPC, the
2115 		 * platform should support mulitple vecs, we just need
2116 		 * to decrease our ask. If we get EINVAL, the platform
2117 		 * likely does not. Back down to ask for just one vector.
2118 		 */
2119 		if (result == -ENOSPC) {
2120 			irq_queues--;
2121 			if (!irq_queues)
2122 				return result;
2123 			continue;
2124 		} else if (result == -EINVAL) {
2125 			irq_queues = 1;
2126 			continue;
2127 		} else if (result <= 0)
2128 			return -EIO;
2129 		break;
2130 	} while (1);
2131 
2132 	return result;
2133 }
2134 
2135 static int nvme_setup_io_queues(struct nvme_dev *dev)
2136 {
2137 	struct nvme_queue *adminq = &dev->queues[0];
2138 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2139 	int result, nr_io_queues;
2140 	unsigned long size;
2141 
2142 	nr_io_queues = max_io_queues();
2143 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2144 	if (result < 0)
2145 		return result;
2146 
2147 	if (nr_io_queues == 0)
2148 		return 0;
2149 
2150 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2151 
2152 	if (dev->cmb_use_sqes) {
2153 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2154 				sizeof(struct nvme_command));
2155 		if (result > 0)
2156 			dev->q_depth = result;
2157 		else
2158 			dev->cmb_use_sqes = false;
2159 	}
2160 
2161 	do {
2162 		size = db_bar_size(dev, nr_io_queues);
2163 		result = nvme_remap_bar(dev, size);
2164 		if (!result)
2165 			break;
2166 		if (!--nr_io_queues)
2167 			return -ENOMEM;
2168 	} while (1);
2169 	adminq->q_db = dev->dbs;
2170 
2171 	/* Deregister the admin queue's interrupt */
2172 	pci_free_irq(pdev, 0, adminq);
2173 
2174 	/*
2175 	 * If we enable msix early due to not intx, disable it again before
2176 	 * setting up the full range we need.
2177 	 */
2178 	pci_free_irq_vectors(pdev);
2179 
2180 	result = nvme_setup_irqs(dev, nr_io_queues);
2181 	if (result <= 0)
2182 		return -EIO;
2183 
2184 	dev->num_vecs = result;
2185 	result = max(result - 1, 1);
2186 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2187 
2188 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2189 					dev->io_queues[HCTX_TYPE_DEFAULT],
2190 					dev->io_queues[HCTX_TYPE_READ],
2191 					dev->io_queues[HCTX_TYPE_POLL]);
2192 
2193 	/*
2194 	 * Should investigate if there's a performance win from allocating
2195 	 * more queues than interrupt vectors; it might allow the submission
2196 	 * path to scale better, even if the receive path is limited by the
2197 	 * number of interrupts.
2198 	 */
2199 
2200 	result = queue_request_irq(adminq);
2201 	if (result) {
2202 		adminq->cq_vector = -1;
2203 		return result;
2204 	}
2205 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2206 	return nvme_create_io_queues(dev);
2207 }
2208 
2209 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2210 {
2211 	struct nvme_queue *nvmeq = req->end_io_data;
2212 
2213 	blk_mq_free_request(req);
2214 	complete(&nvmeq->delete_done);
2215 }
2216 
2217 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2218 {
2219 	struct nvme_queue *nvmeq = req->end_io_data;
2220 
2221 	if (error)
2222 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2223 
2224 	nvme_del_queue_end(req, error);
2225 }
2226 
2227 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2228 {
2229 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2230 	struct request *req;
2231 	struct nvme_command cmd;
2232 
2233 	memset(&cmd, 0, sizeof(cmd));
2234 	cmd.delete_queue.opcode = opcode;
2235 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2236 
2237 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2238 	if (IS_ERR(req))
2239 		return PTR_ERR(req);
2240 
2241 	req->timeout = ADMIN_TIMEOUT;
2242 	req->end_io_data = nvmeq;
2243 
2244 	init_completion(&nvmeq->delete_done);
2245 	blk_execute_rq_nowait(q, NULL, req, false,
2246 			opcode == nvme_admin_delete_cq ?
2247 				nvme_del_cq_end : nvme_del_queue_end);
2248 	return 0;
2249 }
2250 
2251 static bool nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2252 {
2253 	int nr_queues = dev->online_queues - 1, sent = 0;
2254 	unsigned long timeout;
2255 
2256  retry:
2257 	timeout = ADMIN_TIMEOUT;
2258 	while (nr_queues > 0) {
2259 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2260 			break;
2261 		nr_queues--;
2262 		sent++;
2263 	}
2264 	while (sent) {
2265 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2266 
2267 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2268 				timeout);
2269 		if (timeout == 0)
2270 			return false;
2271 
2272 		/* handle any remaining CQEs */
2273 		if (opcode == nvme_admin_delete_cq &&
2274 		    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2275 			nvme_poll_irqdisable(nvmeq, -1);
2276 
2277 		sent--;
2278 		if (nr_queues)
2279 			goto retry;
2280 	}
2281 	return true;
2282 }
2283 
2284 /*
2285  * return error value only when tagset allocation failed
2286  */
2287 static int nvme_dev_add(struct nvme_dev *dev)
2288 {
2289 	int ret;
2290 
2291 	if (!dev->ctrl.tagset) {
2292 		dev->tagset.ops = &nvme_mq_ops;
2293 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2294 		dev->tagset.nr_maps = 2; /* default + read */
2295 		if (dev->io_queues[HCTX_TYPE_POLL])
2296 			dev->tagset.nr_maps++;
2297 		dev->tagset.nr_maps = HCTX_MAX_TYPES;
2298 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2299 		dev->tagset.numa_node = dev_to_node(dev->dev);
2300 		dev->tagset.queue_depth =
2301 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2302 		dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2303 		if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2304 			dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2305 					nvme_pci_cmd_size(dev, true));
2306 		}
2307 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2308 		dev->tagset.driver_data = dev;
2309 
2310 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2311 		if (ret) {
2312 			dev_warn(dev->ctrl.device,
2313 				"IO queues tagset allocation failed %d\n", ret);
2314 			return ret;
2315 		}
2316 		dev->ctrl.tagset = &dev->tagset;
2317 
2318 		nvme_dbbuf_set(dev);
2319 	} else {
2320 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2321 
2322 		/* Free previously allocated queues that are no longer usable */
2323 		nvme_free_queues(dev, dev->online_queues);
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 static int nvme_pci_enable(struct nvme_dev *dev)
2330 {
2331 	int result = -ENOMEM;
2332 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2333 
2334 	if (pci_enable_device_mem(pdev))
2335 		return result;
2336 
2337 	pci_set_master(pdev);
2338 
2339 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2340 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2341 		goto disable;
2342 
2343 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2344 		result = -ENODEV;
2345 		goto disable;
2346 	}
2347 
2348 	/*
2349 	 * Some devices and/or platforms don't advertise or work with INTx
2350 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2351 	 * adjust this later.
2352 	 */
2353 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2354 	if (result < 0)
2355 		return result;
2356 
2357 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2358 
2359 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2360 				io_queue_depth);
2361 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2362 	dev->dbs = dev->bar + 4096;
2363 
2364 	/*
2365 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2366 	 * some MacBook7,1 to avoid controller resets and data loss.
2367 	 */
2368 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2369 		dev->q_depth = 2;
2370 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2371 			"set queue depth=%u to work around controller resets\n",
2372 			dev->q_depth);
2373 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2374 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2375 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2376 		dev->q_depth = 64;
2377 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2378                         "set queue depth=%u\n", dev->q_depth);
2379 	}
2380 
2381 	nvme_map_cmb(dev);
2382 
2383 	pci_enable_pcie_error_reporting(pdev);
2384 	pci_save_state(pdev);
2385 	return 0;
2386 
2387  disable:
2388 	pci_disable_device(pdev);
2389 	return result;
2390 }
2391 
2392 static void nvme_dev_unmap(struct nvme_dev *dev)
2393 {
2394 	if (dev->bar)
2395 		iounmap(dev->bar);
2396 	pci_release_mem_regions(to_pci_dev(dev->dev));
2397 }
2398 
2399 static void nvme_pci_disable(struct nvme_dev *dev)
2400 {
2401 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2402 
2403 	pci_free_irq_vectors(pdev);
2404 
2405 	if (pci_is_enabled(pdev)) {
2406 		pci_disable_pcie_error_reporting(pdev);
2407 		pci_disable_device(pdev);
2408 	}
2409 }
2410 
2411 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2412 {
2413 	int i;
2414 	bool dead = true;
2415 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2416 
2417 	mutex_lock(&dev->shutdown_lock);
2418 	if (pci_is_enabled(pdev)) {
2419 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2420 
2421 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2422 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2423 			nvme_start_freeze(&dev->ctrl);
2424 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2425 			pdev->error_state  != pci_channel_io_normal);
2426 	}
2427 
2428 	/*
2429 	 * Give the controller a chance to complete all entered requests if
2430 	 * doing a safe shutdown.
2431 	 */
2432 	if (!dead) {
2433 		if (shutdown)
2434 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2435 	}
2436 
2437 	nvme_stop_queues(&dev->ctrl);
2438 
2439 	if (!dead && dev->ctrl.queue_count > 0) {
2440 		if (nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2441 			nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2442 		nvme_disable_admin_queue(dev, shutdown);
2443 	}
2444 	for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2445 		nvme_suspend_queue(&dev->queues[i]);
2446 
2447 	nvme_pci_disable(dev);
2448 
2449 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2450 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2451 
2452 	/*
2453 	 * The driver will not be starting up queues again if shutting down so
2454 	 * must flush all entered requests to their failed completion to avoid
2455 	 * deadlocking blk-mq hot-cpu notifier.
2456 	 */
2457 	if (shutdown)
2458 		nvme_start_queues(&dev->ctrl);
2459 	mutex_unlock(&dev->shutdown_lock);
2460 }
2461 
2462 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2463 {
2464 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2465 						PAGE_SIZE, PAGE_SIZE, 0);
2466 	if (!dev->prp_page_pool)
2467 		return -ENOMEM;
2468 
2469 	/* Optimisation for I/Os between 4k and 128k */
2470 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2471 						256, 256, 0);
2472 	if (!dev->prp_small_pool) {
2473 		dma_pool_destroy(dev->prp_page_pool);
2474 		return -ENOMEM;
2475 	}
2476 	return 0;
2477 }
2478 
2479 static void nvme_release_prp_pools(struct nvme_dev *dev)
2480 {
2481 	dma_pool_destroy(dev->prp_page_pool);
2482 	dma_pool_destroy(dev->prp_small_pool);
2483 }
2484 
2485 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2486 {
2487 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2488 
2489 	nvme_dbbuf_dma_free(dev);
2490 	put_device(dev->dev);
2491 	if (dev->tagset.tags)
2492 		blk_mq_free_tag_set(&dev->tagset);
2493 	if (dev->ctrl.admin_q)
2494 		blk_put_queue(dev->ctrl.admin_q);
2495 	kfree(dev->queues);
2496 	free_opal_dev(dev->ctrl.opal_dev);
2497 	mempool_destroy(dev->iod_mempool);
2498 	kfree(dev);
2499 }
2500 
2501 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2502 {
2503 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2504 
2505 	nvme_get_ctrl(&dev->ctrl);
2506 	nvme_dev_disable(dev, false);
2507 	nvme_kill_queues(&dev->ctrl);
2508 	if (!queue_work(nvme_wq, &dev->remove_work))
2509 		nvme_put_ctrl(&dev->ctrl);
2510 }
2511 
2512 static void nvme_reset_work(struct work_struct *work)
2513 {
2514 	struct nvme_dev *dev =
2515 		container_of(work, struct nvme_dev, ctrl.reset_work);
2516 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2517 	int result = -ENODEV;
2518 	enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2519 
2520 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2521 		goto out;
2522 
2523 	/*
2524 	 * If we're called to reset a live controller first shut it down before
2525 	 * moving on.
2526 	 */
2527 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2528 		nvme_dev_disable(dev, false);
2529 
2530 	/*
2531 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2532 	 * initializing procedure here.
2533 	 */
2534 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2535 		dev_warn(dev->ctrl.device,
2536 			"failed to mark controller CONNECTING\n");
2537 		goto out;
2538 	}
2539 
2540 	result = nvme_pci_enable(dev);
2541 	if (result)
2542 		goto out;
2543 
2544 	result = nvme_pci_configure_admin_queue(dev);
2545 	if (result)
2546 		goto out;
2547 
2548 	result = nvme_alloc_admin_tags(dev);
2549 	if (result)
2550 		goto out;
2551 
2552 	/*
2553 	 * Limit the max command size to prevent iod->sg allocations going
2554 	 * over a single page.
2555 	 */
2556 	dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2557 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2558 
2559 	result = nvme_init_identify(&dev->ctrl);
2560 	if (result)
2561 		goto out;
2562 
2563 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2564 		if (!dev->ctrl.opal_dev)
2565 			dev->ctrl.opal_dev =
2566 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2567 		else if (was_suspend)
2568 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2569 	} else {
2570 		free_opal_dev(dev->ctrl.opal_dev);
2571 		dev->ctrl.opal_dev = NULL;
2572 	}
2573 
2574 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2575 		result = nvme_dbbuf_dma_alloc(dev);
2576 		if (result)
2577 			dev_warn(dev->dev,
2578 				 "unable to allocate dma for dbbuf\n");
2579 	}
2580 
2581 	if (dev->ctrl.hmpre) {
2582 		result = nvme_setup_host_mem(dev);
2583 		if (result < 0)
2584 			goto out;
2585 	}
2586 
2587 	result = nvme_setup_io_queues(dev);
2588 	if (result)
2589 		goto out;
2590 
2591 	/*
2592 	 * Keep the controller around but remove all namespaces if we don't have
2593 	 * any working I/O queue.
2594 	 */
2595 	if (dev->online_queues < 2) {
2596 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2597 		nvme_kill_queues(&dev->ctrl);
2598 		nvme_remove_namespaces(&dev->ctrl);
2599 		new_state = NVME_CTRL_ADMIN_ONLY;
2600 	} else {
2601 		nvme_start_queues(&dev->ctrl);
2602 		nvme_wait_freeze(&dev->ctrl);
2603 		/* hit this only when allocate tagset fails */
2604 		if (nvme_dev_add(dev))
2605 			new_state = NVME_CTRL_ADMIN_ONLY;
2606 		nvme_unfreeze(&dev->ctrl);
2607 	}
2608 
2609 	/*
2610 	 * If only admin queue live, keep it to do further investigation or
2611 	 * recovery.
2612 	 */
2613 	if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2614 		dev_warn(dev->ctrl.device,
2615 			"failed to mark controller state %d\n", new_state);
2616 		goto out;
2617 	}
2618 
2619 	nvme_start_ctrl(&dev->ctrl);
2620 	return;
2621 
2622  out:
2623 	nvme_remove_dead_ctrl(dev, result);
2624 }
2625 
2626 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2627 {
2628 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2629 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2630 
2631 	if (pci_get_drvdata(pdev))
2632 		device_release_driver(&pdev->dev);
2633 	nvme_put_ctrl(&dev->ctrl);
2634 }
2635 
2636 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2637 {
2638 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2639 	return 0;
2640 }
2641 
2642 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2643 {
2644 	writel(val, to_nvme_dev(ctrl)->bar + off);
2645 	return 0;
2646 }
2647 
2648 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2649 {
2650 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2651 	return 0;
2652 }
2653 
2654 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2655 {
2656 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2657 
2658 	return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2659 }
2660 
2661 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2662 	.name			= "pcie",
2663 	.module			= THIS_MODULE,
2664 	.flags			= NVME_F_METADATA_SUPPORTED |
2665 				  NVME_F_PCI_P2PDMA,
2666 	.reg_read32		= nvme_pci_reg_read32,
2667 	.reg_write32		= nvme_pci_reg_write32,
2668 	.reg_read64		= nvme_pci_reg_read64,
2669 	.free_ctrl		= nvme_pci_free_ctrl,
2670 	.submit_async_event	= nvme_pci_submit_async_event,
2671 	.get_address		= nvme_pci_get_address,
2672 };
2673 
2674 static int nvme_dev_map(struct nvme_dev *dev)
2675 {
2676 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2677 
2678 	if (pci_request_mem_regions(pdev, "nvme"))
2679 		return -ENODEV;
2680 
2681 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2682 		goto release;
2683 
2684 	return 0;
2685   release:
2686 	pci_release_mem_regions(pdev);
2687 	return -ENODEV;
2688 }
2689 
2690 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2691 {
2692 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2693 		/*
2694 		 * Several Samsung devices seem to drop off the PCIe bus
2695 		 * randomly when APST is on and uses the deepest sleep state.
2696 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2697 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2698 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2699 		 * laptops.
2700 		 */
2701 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2702 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2703 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2704 			return NVME_QUIRK_NO_DEEPEST_PS;
2705 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2706 		/*
2707 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2708 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2709 		 * within few minutes after bootup on a Coffee Lake board -
2710 		 * ASUS PRIME Z370-A
2711 		 */
2712 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2713 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2714 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2715 			return NVME_QUIRK_NO_APST;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 static void nvme_async_probe(void *data, async_cookie_t cookie)
2722 {
2723 	struct nvme_dev *dev = data;
2724 
2725 	nvme_reset_ctrl_sync(&dev->ctrl);
2726 	flush_work(&dev->ctrl.scan_work);
2727 	nvme_put_ctrl(&dev->ctrl);
2728 }
2729 
2730 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2731 {
2732 	int node, result = -ENOMEM;
2733 	struct nvme_dev *dev;
2734 	unsigned long quirks = id->driver_data;
2735 	size_t alloc_size;
2736 
2737 	node = dev_to_node(&pdev->dev);
2738 	if (node == NUMA_NO_NODE)
2739 		set_dev_node(&pdev->dev, first_memory_node);
2740 
2741 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2742 	if (!dev)
2743 		return -ENOMEM;
2744 
2745 	dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2746 					GFP_KERNEL, node);
2747 	if (!dev->queues)
2748 		goto free;
2749 
2750 	dev->dev = get_device(&pdev->dev);
2751 	pci_set_drvdata(pdev, dev);
2752 
2753 	result = nvme_dev_map(dev);
2754 	if (result)
2755 		goto put_pci;
2756 
2757 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2758 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2759 	mutex_init(&dev->shutdown_lock);
2760 
2761 	result = nvme_setup_prp_pools(dev);
2762 	if (result)
2763 		goto unmap;
2764 
2765 	quirks |= check_vendor_combination_bug(pdev);
2766 
2767 	/*
2768 	 * Double check that our mempool alloc size will cover the biggest
2769 	 * command we support.
2770 	 */
2771 	alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2772 						NVME_MAX_SEGS, true);
2773 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2774 
2775 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2776 						mempool_kfree,
2777 						(void *) alloc_size,
2778 						GFP_KERNEL, node);
2779 	if (!dev->iod_mempool) {
2780 		result = -ENOMEM;
2781 		goto release_pools;
2782 	}
2783 
2784 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2785 			quirks);
2786 	if (result)
2787 		goto release_mempool;
2788 
2789 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2790 
2791 	nvme_get_ctrl(&dev->ctrl);
2792 	async_schedule(nvme_async_probe, dev);
2793 
2794 	return 0;
2795 
2796  release_mempool:
2797 	mempool_destroy(dev->iod_mempool);
2798  release_pools:
2799 	nvme_release_prp_pools(dev);
2800  unmap:
2801 	nvme_dev_unmap(dev);
2802  put_pci:
2803 	put_device(dev->dev);
2804  free:
2805 	kfree(dev->queues);
2806 	kfree(dev);
2807 	return result;
2808 }
2809 
2810 static void nvme_reset_prepare(struct pci_dev *pdev)
2811 {
2812 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2813 	nvme_dev_disable(dev, false);
2814 }
2815 
2816 static void nvme_reset_done(struct pci_dev *pdev)
2817 {
2818 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2819 	nvme_reset_ctrl_sync(&dev->ctrl);
2820 }
2821 
2822 static void nvme_shutdown(struct pci_dev *pdev)
2823 {
2824 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2825 	nvme_dev_disable(dev, true);
2826 }
2827 
2828 /*
2829  * The driver's remove may be called on a device in a partially initialized
2830  * state. This function must not have any dependencies on the device state in
2831  * order to proceed.
2832  */
2833 static void nvme_remove(struct pci_dev *pdev)
2834 {
2835 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2836 
2837 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2838 	pci_set_drvdata(pdev, NULL);
2839 
2840 	if (!pci_device_is_present(pdev)) {
2841 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2842 		nvme_dev_disable(dev, true);
2843 		nvme_dev_remove_admin(dev);
2844 	}
2845 
2846 	flush_work(&dev->ctrl.reset_work);
2847 	nvme_stop_ctrl(&dev->ctrl);
2848 	nvme_remove_namespaces(&dev->ctrl);
2849 	nvme_dev_disable(dev, true);
2850 	nvme_release_cmb(dev);
2851 	nvme_free_host_mem(dev);
2852 	nvme_dev_remove_admin(dev);
2853 	nvme_free_queues(dev, 0);
2854 	nvme_uninit_ctrl(&dev->ctrl);
2855 	nvme_release_prp_pools(dev);
2856 	nvme_dev_unmap(dev);
2857 	nvme_put_ctrl(&dev->ctrl);
2858 }
2859 
2860 #ifdef CONFIG_PM_SLEEP
2861 static int nvme_suspend(struct device *dev)
2862 {
2863 	struct pci_dev *pdev = to_pci_dev(dev);
2864 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2865 
2866 	nvme_dev_disable(ndev, true);
2867 	return 0;
2868 }
2869 
2870 static int nvme_resume(struct device *dev)
2871 {
2872 	struct pci_dev *pdev = to_pci_dev(dev);
2873 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2874 
2875 	nvme_reset_ctrl(&ndev->ctrl);
2876 	return 0;
2877 }
2878 #endif
2879 
2880 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2881 
2882 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2883 						pci_channel_state_t state)
2884 {
2885 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2886 
2887 	/*
2888 	 * A frozen channel requires a reset. When detected, this method will
2889 	 * shutdown the controller to quiesce. The controller will be restarted
2890 	 * after the slot reset through driver's slot_reset callback.
2891 	 */
2892 	switch (state) {
2893 	case pci_channel_io_normal:
2894 		return PCI_ERS_RESULT_CAN_RECOVER;
2895 	case pci_channel_io_frozen:
2896 		dev_warn(dev->ctrl.device,
2897 			"frozen state error detected, reset controller\n");
2898 		nvme_dev_disable(dev, false);
2899 		return PCI_ERS_RESULT_NEED_RESET;
2900 	case pci_channel_io_perm_failure:
2901 		dev_warn(dev->ctrl.device,
2902 			"failure state error detected, request disconnect\n");
2903 		return PCI_ERS_RESULT_DISCONNECT;
2904 	}
2905 	return PCI_ERS_RESULT_NEED_RESET;
2906 }
2907 
2908 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2909 {
2910 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2911 
2912 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2913 	pci_restore_state(pdev);
2914 	nvme_reset_ctrl(&dev->ctrl);
2915 	return PCI_ERS_RESULT_RECOVERED;
2916 }
2917 
2918 static void nvme_error_resume(struct pci_dev *pdev)
2919 {
2920 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2921 
2922 	flush_work(&dev->ctrl.reset_work);
2923 }
2924 
2925 static const struct pci_error_handlers nvme_err_handler = {
2926 	.error_detected	= nvme_error_detected,
2927 	.slot_reset	= nvme_slot_reset,
2928 	.resume		= nvme_error_resume,
2929 	.reset_prepare	= nvme_reset_prepare,
2930 	.reset_done	= nvme_reset_done,
2931 };
2932 
2933 static const struct pci_device_id nvme_id_table[] = {
2934 	{ PCI_VDEVICE(INTEL, 0x0953),
2935 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2936 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2937 	{ PCI_VDEVICE(INTEL, 0x0a53),
2938 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2939 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2940 	{ PCI_VDEVICE(INTEL, 0x0a54),
2941 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2942 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2943 	{ PCI_VDEVICE(INTEL, 0x0a55),
2944 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2945 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2946 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2947 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2948 				NVME_QUIRK_MEDIUM_PRIO_SQ },
2949 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2950 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2951 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2952 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2953 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2954 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2955 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
2956 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2957 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2958 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2959 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2960 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2961 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2962 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2963 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
2964 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2965 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
2966 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2967 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
2968 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2969 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2970 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2971 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2972 	{ 0, }
2973 };
2974 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2975 
2976 static struct pci_driver nvme_driver = {
2977 	.name		= "nvme",
2978 	.id_table	= nvme_id_table,
2979 	.probe		= nvme_probe,
2980 	.remove		= nvme_remove,
2981 	.shutdown	= nvme_shutdown,
2982 	.driver		= {
2983 		.pm	= &nvme_dev_pm_ops,
2984 	},
2985 	.sriov_configure = pci_sriov_configure_simple,
2986 	.err_handler	= &nvme_err_handler,
2987 };
2988 
2989 static int __init nvme_init(void)
2990 {
2991 	return pci_register_driver(&nvme_driver);
2992 }
2993 
2994 static void __exit nvme_exit(void)
2995 {
2996 	pci_unregister_driver(&nvme_driver);
2997 	flush_workqueue(nvme_wq);
2998 	_nvme_check_size();
2999 }
3000 
3001 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3002 MODULE_LICENSE("GPL");
3003 MODULE_VERSION("1.0");
3004 module_init(nvme_init);
3005 module_exit(nvme_exit);
3006