1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/errno.h> 23 #include <linux/fs.h> 24 #include <linux/genhd.h> 25 #include <linux/hdreg.h> 26 #include <linux/idr.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/timer.h> 43 #include <linux/types.h> 44 #include <linux/io-64-nonatomic-lo-hi.h> 45 #include <asm/unaligned.h> 46 47 #include "nvme.h" 48 49 #define NVME_Q_DEPTH 1024 50 #define NVME_AQ_DEPTH 256 51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 53 54 /* 55 * We handle AEN commands ourselves and don't even let the 56 * block layer know about them. 57 */ 58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 59 60 static int use_threaded_interrupts; 61 module_param(use_threaded_interrupts, int, 0); 62 63 static bool use_cmb_sqes = true; 64 module_param(use_cmb_sqes, bool, 0644); 65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 66 67 static struct workqueue_struct *nvme_workq; 68 69 struct nvme_dev; 70 struct nvme_queue; 71 72 static int nvme_reset(struct nvme_dev *dev); 73 static void nvme_process_cq(struct nvme_queue *nvmeq); 74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 75 76 /* 77 * Represents an NVM Express device. Each nvme_dev is a PCI function. 78 */ 79 struct nvme_dev { 80 struct nvme_queue **queues; 81 struct blk_mq_tag_set tagset; 82 struct blk_mq_tag_set admin_tagset; 83 u32 __iomem *dbs; 84 struct device *dev; 85 struct dma_pool *prp_page_pool; 86 struct dma_pool *prp_small_pool; 87 unsigned queue_count; 88 unsigned online_queues; 89 unsigned max_qid; 90 int q_depth; 91 u32 db_stride; 92 void __iomem *bar; 93 struct work_struct reset_work; 94 struct work_struct remove_work; 95 struct timer_list watchdog_timer; 96 struct mutex shutdown_lock; 97 bool subsystem; 98 void __iomem *cmb; 99 dma_addr_t cmb_dma_addr; 100 u64 cmb_size; 101 u32 cmbsz; 102 u32 cmbloc; 103 struct nvme_ctrl ctrl; 104 struct completion ioq_wait; 105 }; 106 107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 108 { 109 return container_of(ctrl, struct nvme_dev, ctrl); 110 } 111 112 /* 113 * An NVM Express queue. Each device has at least two (one for admin 114 * commands and one for I/O commands). 115 */ 116 struct nvme_queue { 117 struct device *q_dmadev; 118 struct nvme_dev *dev; 119 char irqname[24]; /* nvme4294967295-65535\0 */ 120 spinlock_t q_lock; 121 struct nvme_command *sq_cmds; 122 struct nvme_command __iomem *sq_cmds_io; 123 volatile struct nvme_completion *cqes; 124 struct blk_mq_tags **tags; 125 dma_addr_t sq_dma_addr; 126 dma_addr_t cq_dma_addr; 127 u32 __iomem *q_db; 128 u16 q_depth; 129 s16 cq_vector; 130 u16 sq_tail; 131 u16 cq_head; 132 u16 qid; 133 u8 cq_phase; 134 u8 cqe_seen; 135 }; 136 137 /* 138 * The nvme_iod describes the data in an I/O, including the list of PRP 139 * entries. You can't see it in this data structure because C doesn't let 140 * me express that. Use nvme_init_iod to ensure there's enough space 141 * allocated to store the PRP list. 142 */ 143 struct nvme_iod { 144 struct nvme_queue *nvmeq; 145 int aborted; 146 int npages; /* In the PRP list. 0 means small pool in use */ 147 int nents; /* Used in scatterlist */ 148 int length; /* Of data, in bytes */ 149 dma_addr_t first_dma; 150 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 151 struct scatterlist *sg; 152 struct scatterlist inline_sg[0]; 153 }; 154 155 /* 156 * Check we didin't inadvertently grow the command struct 157 */ 158 static inline void _nvme_check_size(void) 159 { 160 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 161 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 162 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 163 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 164 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 165 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 166 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 167 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 168 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 169 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 170 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 171 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 172 } 173 174 /* 175 * Max size of iod being embedded in the request payload 176 */ 177 #define NVME_INT_PAGES 2 178 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 179 180 /* 181 * Will slightly overestimate the number of pages needed. This is OK 182 * as it only leads to a small amount of wasted memory for the lifetime of 183 * the I/O. 184 */ 185 static int nvme_npages(unsigned size, struct nvme_dev *dev) 186 { 187 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 188 dev->ctrl.page_size); 189 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 190 } 191 192 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 193 unsigned int size, unsigned int nseg) 194 { 195 return sizeof(__le64 *) * nvme_npages(size, dev) + 196 sizeof(struct scatterlist) * nseg; 197 } 198 199 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 200 { 201 return sizeof(struct nvme_iod) + 202 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 203 } 204 205 static int nvmeq_irq(struct nvme_queue *nvmeq) 206 { 207 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); 208 } 209 210 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 211 unsigned int hctx_idx) 212 { 213 struct nvme_dev *dev = data; 214 struct nvme_queue *nvmeq = dev->queues[0]; 215 216 WARN_ON(hctx_idx != 0); 217 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 218 WARN_ON(nvmeq->tags); 219 220 hctx->driver_data = nvmeq; 221 nvmeq->tags = &dev->admin_tagset.tags[0]; 222 return 0; 223 } 224 225 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 226 { 227 struct nvme_queue *nvmeq = hctx->driver_data; 228 229 nvmeq->tags = NULL; 230 } 231 232 static int nvme_admin_init_request(void *data, struct request *req, 233 unsigned int hctx_idx, unsigned int rq_idx, 234 unsigned int numa_node) 235 { 236 struct nvme_dev *dev = data; 237 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 238 struct nvme_queue *nvmeq = dev->queues[0]; 239 240 BUG_ON(!nvmeq); 241 iod->nvmeq = nvmeq; 242 return 0; 243 } 244 245 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 246 unsigned int hctx_idx) 247 { 248 struct nvme_dev *dev = data; 249 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 250 251 if (!nvmeq->tags) 252 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 253 254 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 255 hctx->driver_data = nvmeq; 256 return 0; 257 } 258 259 static int nvme_init_request(void *data, struct request *req, 260 unsigned int hctx_idx, unsigned int rq_idx, 261 unsigned int numa_node) 262 { 263 struct nvme_dev *dev = data; 264 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 265 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 266 267 BUG_ON(!nvmeq); 268 iod->nvmeq = nvmeq; 269 return 0; 270 } 271 272 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 273 { 274 struct nvme_dev *dev = set->driver_data; 275 276 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 277 } 278 279 /** 280 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 281 * @nvmeq: The queue to use 282 * @cmd: The command to send 283 * 284 * Safe to use from interrupt context 285 */ 286 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 287 struct nvme_command *cmd) 288 { 289 u16 tail = nvmeq->sq_tail; 290 291 if (nvmeq->sq_cmds_io) 292 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 293 else 294 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 295 296 if (++tail == nvmeq->q_depth) 297 tail = 0; 298 writel(tail, nvmeq->q_db); 299 nvmeq->sq_tail = tail; 300 } 301 302 static __le64 **iod_list(struct request *req) 303 { 304 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 305 return (__le64 **)(iod->sg + req->nr_phys_segments); 306 } 307 308 static int nvme_init_iod(struct request *rq, unsigned size, 309 struct nvme_dev *dev) 310 { 311 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 312 int nseg = rq->nr_phys_segments; 313 314 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 315 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 316 if (!iod->sg) 317 return BLK_MQ_RQ_QUEUE_BUSY; 318 } else { 319 iod->sg = iod->inline_sg; 320 } 321 322 iod->aborted = 0; 323 iod->npages = -1; 324 iod->nents = 0; 325 iod->length = size; 326 327 if (!(rq->cmd_flags & REQ_DONTPREP)) { 328 rq->retries = 0; 329 rq->cmd_flags |= REQ_DONTPREP; 330 } 331 return 0; 332 } 333 334 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 335 { 336 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 337 const int last_prp = dev->ctrl.page_size / 8 - 1; 338 int i; 339 __le64 **list = iod_list(req); 340 dma_addr_t prp_dma = iod->first_dma; 341 342 nvme_cleanup_cmd(req); 343 344 if (iod->npages == 0) 345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 346 for (i = 0; i < iod->npages; i++) { 347 __le64 *prp_list = list[i]; 348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 350 prp_dma = next_prp_dma; 351 } 352 353 if (iod->sg != iod->inline_sg) 354 kfree(iod->sg); 355 } 356 357 #ifdef CONFIG_BLK_DEV_INTEGRITY 358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 359 { 360 if (be32_to_cpu(pi->ref_tag) == v) 361 pi->ref_tag = cpu_to_be32(p); 362 } 363 364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 365 { 366 if (be32_to_cpu(pi->ref_tag) == p) 367 pi->ref_tag = cpu_to_be32(v); 368 } 369 370 /** 371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 372 * 373 * The virtual start sector is the one that was originally submitted by the 374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 375 * start sector may be different. Remap protection information to match the 376 * physical LBA on writes, and back to the original seed on reads. 377 * 378 * Type 0 and 3 do not have a ref tag, so no remapping required. 379 */ 380 static void nvme_dif_remap(struct request *req, 381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 382 { 383 struct nvme_ns *ns = req->rq_disk->private_data; 384 struct bio_integrity_payload *bip; 385 struct t10_pi_tuple *pi; 386 void *p, *pmap; 387 u32 i, nlb, ts, phys, virt; 388 389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 390 return; 391 392 bip = bio_integrity(req->bio); 393 if (!bip) 394 return; 395 396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 397 398 p = pmap; 399 virt = bip_get_seed(bip); 400 phys = nvme_block_nr(ns, blk_rq_pos(req)); 401 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 402 ts = ns->disk->queue->integrity.tuple_size; 403 404 for (i = 0; i < nlb; i++, virt++, phys++) { 405 pi = (struct t10_pi_tuple *)p; 406 dif_swap(phys, virt, pi); 407 p += ts; 408 } 409 kunmap_atomic(pmap); 410 } 411 #else /* CONFIG_BLK_DEV_INTEGRITY */ 412 static void nvme_dif_remap(struct request *req, 413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 414 { 415 } 416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 417 { 418 } 419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 420 { 421 } 422 #endif 423 424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, 425 int total_len) 426 { 427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 428 struct dma_pool *pool; 429 int length = total_len; 430 struct scatterlist *sg = iod->sg; 431 int dma_len = sg_dma_len(sg); 432 u64 dma_addr = sg_dma_address(sg); 433 u32 page_size = dev->ctrl.page_size; 434 int offset = dma_addr & (page_size - 1); 435 __le64 *prp_list; 436 __le64 **list = iod_list(req); 437 dma_addr_t prp_dma; 438 int nprps, i; 439 440 length -= (page_size - offset); 441 if (length <= 0) 442 return true; 443 444 dma_len -= (page_size - offset); 445 if (dma_len) { 446 dma_addr += (page_size - offset); 447 } else { 448 sg = sg_next(sg); 449 dma_addr = sg_dma_address(sg); 450 dma_len = sg_dma_len(sg); 451 } 452 453 if (length <= page_size) { 454 iod->first_dma = dma_addr; 455 return true; 456 } 457 458 nprps = DIV_ROUND_UP(length, page_size); 459 if (nprps <= (256 / 8)) { 460 pool = dev->prp_small_pool; 461 iod->npages = 0; 462 } else { 463 pool = dev->prp_page_pool; 464 iod->npages = 1; 465 } 466 467 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 468 if (!prp_list) { 469 iod->first_dma = dma_addr; 470 iod->npages = -1; 471 return false; 472 } 473 list[0] = prp_list; 474 iod->first_dma = prp_dma; 475 i = 0; 476 for (;;) { 477 if (i == page_size >> 3) { 478 __le64 *old_prp_list = prp_list; 479 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 480 if (!prp_list) 481 return false; 482 list[iod->npages++] = prp_list; 483 prp_list[0] = old_prp_list[i - 1]; 484 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 485 i = 1; 486 } 487 prp_list[i++] = cpu_to_le64(dma_addr); 488 dma_len -= page_size; 489 dma_addr += page_size; 490 length -= page_size; 491 if (length <= 0) 492 break; 493 if (dma_len > 0) 494 continue; 495 BUG_ON(dma_len < 0); 496 sg = sg_next(sg); 497 dma_addr = sg_dma_address(sg); 498 dma_len = sg_dma_len(sg); 499 } 500 501 return true; 502 } 503 504 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 505 unsigned size, struct nvme_command *cmnd) 506 { 507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 508 struct request_queue *q = req->q; 509 enum dma_data_direction dma_dir = rq_data_dir(req) ? 510 DMA_TO_DEVICE : DMA_FROM_DEVICE; 511 int ret = BLK_MQ_RQ_QUEUE_ERROR; 512 513 sg_init_table(iod->sg, req->nr_phys_segments); 514 iod->nents = blk_rq_map_sg(q, req, iod->sg); 515 if (!iod->nents) 516 goto out; 517 518 ret = BLK_MQ_RQ_QUEUE_BUSY; 519 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 520 DMA_ATTR_NO_WARN)) 521 goto out; 522 523 if (!nvme_setup_prps(dev, req, size)) 524 goto out_unmap; 525 526 ret = BLK_MQ_RQ_QUEUE_ERROR; 527 if (blk_integrity_rq(req)) { 528 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 529 goto out_unmap; 530 531 sg_init_table(&iod->meta_sg, 1); 532 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 533 goto out_unmap; 534 535 if (rq_data_dir(req)) 536 nvme_dif_remap(req, nvme_dif_prep); 537 538 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 539 goto out_unmap; 540 } 541 542 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 543 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 544 if (blk_integrity_rq(req)) 545 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 546 return BLK_MQ_RQ_QUEUE_OK; 547 548 out_unmap: 549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 550 out: 551 return ret; 552 } 553 554 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 555 { 556 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 557 enum dma_data_direction dma_dir = rq_data_dir(req) ? 558 DMA_TO_DEVICE : DMA_FROM_DEVICE; 559 560 if (iod->nents) { 561 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 562 if (blk_integrity_rq(req)) { 563 if (!rq_data_dir(req)) 564 nvme_dif_remap(req, nvme_dif_complete); 565 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 566 } 567 } 568 569 nvme_free_iod(dev, req); 570 } 571 572 /* 573 * NOTE: ns is NULL when called on the admin queue. 574 */ 575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 576 const struct blk_mq_queue_data *bd) 577 { 578 struct nvme_ns *ns = hctx->queue->queuedata; 579 struct nvme_queue *nvmeq = hctx->driver_data; 580 struct nvme_dev *dev = nvmeq->dev; 581 struct request *req = bd->rq; 582 struct nvme_command cmnd; 583 unsigned map_len; 584 int ret = BLK_MQ_RQ_QUEUE_OK; 585 586 /* 587 * If formated with metadata, require the block layer provide a buffer 588 * unless this namespace is formated such that the metadata can be 589 * stripped/generated by the controller with PRACT=1. 590 */ 591 if (ns && ns->ms && !blk_integrity_rq(req)) { 592 if (!(ns->pi_type && ns->ms == 8) && 593 req->cmd_type != REQ_TYPE_DRV_PRIV) { 594 blk_mq_end_request(req, -EFAULT); 595 return BLK_MQ_RQ_QUEUE_OK; 596 } 597 } 598 599 map_len = nvme_map_len(req); 600 ret = nvme_init_iod(req, map_len, dev); 601 if (ret) 602 return ret; 603 604 ret = nvme_setup_cmd(ns, req, &cmnd); 605 if (ret) 606 goto out; 607 608 if (req->nr_phys_segments) 609 ret = nvme_map_data(dev, req, map_len, &cmnd); 610 611 if (ret) 612 goto out; 613 614 cmnd.common.command_id = req->tag; 615 blk_mq_start_request(req); 616 617 spin_lock_irq(&nvmeq->q_lock); 618 if (unlikely(nvmeq->cq_vector < 0)) { 619 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) 620 ret = BLK_MQ_RQ_QUEUE_BUSY; 621 else 622 ret = BLK_MQ_RQ_QUEUE_ERROR; 623 spin_unlock_irq(&nvmeq->q_lock); 624 goto out; 625 } 626 __nvme_submit_cmd(nvmeq, &cmnd); 627 nvme_process_cq(nvmeq); 628 spin_unlock_irq(&nvmeq->q_lock); 629 return BLK_MQ_RQ_QUEUE_OK; 630 out: 631 nvme_free_iod(dev, req); 632 return ret; 633 } 634 635 static void nvme_complete_rq(struct request *req) 636 { 637 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 638 struct nvme_dev *dev = iod->nvmeq->dev; 639 int error = 0; 640 641 nvme_unmap_data(dev, req); 642 643 if (unlikely(req->errors)) { 644 if (nvme_req_needs_retry(req, req->errors)) { 645 req->retries++; 646 nvme_requeue_req(req); 647 return; 648 } 649 650 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 651 error = req->errors; 652 else 653 error = nvme_error_status(req->errors); 654 } 655 656 if (unlikely(iod->aborted)) { 657 dev_warn(dev->ctrl.device, 658 "completing aborted command with status: %04x\n", 659 req->errors); 660 } 661 662 blk_mq_end_request(req, error); 663 } 664 665 /* We read the CQE phase first to check if the rest of the entry is valid */ 666 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 667 u16 phase) 668 { 669 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 670 } 671 672 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 673 { 674 u16 head, phase; 675 676 head = nvmeq->cq_head; 677 phase = nvmeq->cq_phase; 678 679 while (nvme_cqe_valid(nvmeq, head, phase)) { 680 struct nvme_completion cqe = nvmeq->cqes[head]; 681 struct request *req; 682 683 if (++head == nvmeq->q_depth) { 684 head = 0; 685 phase = !phase; 686 } 687 688 if (tag && *tag == cqe.command_id) 689 *tag = -1; 690 691 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 692 dev_warn(nvmeq->dev->ctrl.device, 693 "invalid id %d completed on queue %d\n", 694 cqe.command_id, le16_to_cpu(cqe.sq_id)); 695 continue; 696 } 697 698 /* 699 * AEN requests are special as they don't time out and can 700 * survive any kind of queue freeze and often don't respond to 701 * aborts. We don't even bother to allocate a struct request 702 * for them but rather special case them here. 703 */ 704 if (unlikely(nvmeq->qid == 0 && 705 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 706 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe); 707 continue; 708 } 709 710 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 711 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) 712 memcpy(req->special, &cqe, sizeof(cqe)); 713 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 714 715 } 716 717 /* If the controller ignores the cq head doorbell and continuously 718 * writes to the queue, it is theoretically possible to wrap around 719 * the queue twice and mistakenly return IRQ_NONE. Linux only 720 * requires that 0.1% of your interrupts are handled, so this isn't 721 * a big problem. 722 */ 723 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 724 return; 725 726 if (likely(nvmeq->cq_vector >= 0)) 727 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 728 nvmeq->cq_head = head; 729 nvmeq->cq_phase = phase; 730 731 nvmeq->cqe_seen = 1; 732 } 733 734 static void nvme_process_cq(struct nvme_queue *nvmeq) 735 { 736 __nvme_process_cq(nvmeq, NULL); 737 } 738 739 static irqreturn_t nvme_irq(int irq, void *data) 740 { 741 irqreturn_t result; 742 struct nvme_queue *nvmeq = data; 743 spin_lock(&nvmeq->q_lock); 744 nvme_process_cq(nvmeq); 745 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 746 nvmeq->cqe_seen = 0; 747 spin_unlock(&nvmeq->q_lock); 748 return result; 749 } 750 751 static irqreturn_t nvme_irq_check(int irq, void *data) 752 { 753 struct nvme_queue *nvmeq = data; 754 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 755 return IRQ_WAKE_THREAD; 756 return IRQ_NONE; 757 } 758 759 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 760 { 761 struct nvme_queue *nvmeq = hctx->driver_data; 762 763 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 764 spin_lock_irq(&nvmeq->q_lock); 765 __nvme_process_cq(nvmeq, &tag); 766 spin_unlock_irq(&nvmeq->q_lock); 767 768 if (tag == -1) 769 return 1; 770 } 771 772 return 0; 773 } 774 775 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 776 { 777 struct nvme_dev *dev = to_nvme_dev(ctrl); 778 struct nvme_queue *nvmeq = dev->queues[0]; 779 struct nvme_command c; 780 781 memset(&c, 0, sizeof(c)); 782 c.common.opcode = nvme_admin_async_event; 783 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 784 785 spin_lock_irq(&nvmeq->q_lock); 786 __nvme_submit_cmd(nvmeq, &c); 787 spin_unlock_irq(&nvmeq->q_lock); 788 } 789 790 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 791 { 792 struct nvme_command c; 793 794 memset(&c, 0, sizeof(c)); 795 c.delete_queue.opcode = opcode; 796 c.delete_queue.qid = cpu_to_le16(id); 797 798 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 799 } 800 801 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 802 struct nvme_queue *nvmeq) 803 { 804 struct nvme_command c; 805 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 806 807 /* 808 * Note: we (ab)use the fact the the prp fields survive if no data 809 * is attached to the request. 810 */ 811 memset(&c, 0, sizeof(c)); 812 c.create_cq.opcode = nvme_admin_create_cq; 813 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 814 c.create_cq.cqid = cpu_to_le16(qid); 815 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 816 c.create_cq.cq_flags = cpu_to_le16(flags); 817 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 818 819 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 820 } 821 822 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 823 struct nvme_queue *nvmeq) 824 { 825 struct nvme_command c; 826 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 827 828 /* 829 * Note: we (ab)use the fact the the prp fields survive if no data 830 * is attached to the request. 831 */ 832 memset(&c, 0, sizeof(c)); 833 c.create_sq.opcode = nvme_admin_create_sq; 834 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 835 c.create_sq.sqid = cpu_to_le16(qid); 836 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 837 c.create_sq.sq_flags = cpu_to_le16(flags); 838 c.create_sq.cqid = cpu_to_le16(qid); 839 840 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 841 } 842 843 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 844 { 845 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 846 } 847 848 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 849 { 850 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 851 } 852 853 static void abort_endio(struct request *req, int error) 854 { 855 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 856 struct nvme_queue *nvmeq = iod->nvmeq; 857 u16 status = req->errors; 858 859 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 860 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 861 blk_mq_free_request(req); 862 } 863 864 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 865 { 866 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 867 struct nvme_queue *nvmeq = iod->nvmeq; 868 struct nvme_dev *dev = nvmeq->dev; 869 struct request *abort_req; 870 struct nvme_command cmd; 871 872 /* 873 * Shutdown immediately if controller times out while starting. The 874 * reset work will see the pci device disabled when it gets the forced 875 * cancellation error. All outstanding requests are completed on 876 * shutdown, so we return BLK_EH_HANDLED. 877 */ 878 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 879 dev_warn(dev->ctrl.device, 880 "I/O %d QID %d timeout, disable controller\n", 881 req->tag, nvmeq->qid); 882 nvme_dev_disable(dev, false); 883 req->errors = NVME_SC_CANCELLED; 884 return BLK_EH_HANDLED; 885 } 886 887 /* 888 * Shutdown the controller immediately and schedule a reset if the 889 * command was already aborted once before and still hasn't been 890 * returned to the driver, or if this is the admin queue. 891 */ 892 if (!nvmeq->qid || iod->aborted) { 893 dev_warn(dev->ctrl.device, 894 "I/O %d QID %d timeout, reset controller\n", 895 req->tag, nvmeq->qid); 896 nvme_dev_disable(dev, false); 897 nvme_reset(dev); 898 899 /* 900 * Mark the request as handled, since the inline shutdown 901 * forces all outstanding requests to complete. 902 */ 903 req->errors = NVME_SC_CANCELLED; 904 return BLK_EH_HANDLED; 905 } 906 907 iod->aborted = 1; 908 909 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 910 atomic_inc(&dev->ctrl.abort_limit); 911 return BLK_EH_RESET_TIMER; 912 } 913 914 memset(&cmd, 0, sizeof(cmd)); 915 cmd.abort.opcode = nvme_admin_abort_cmd; 916 cmd.abort.cid = req->tag; 917 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 918 919 dev_warn(nvmeq->dev->ctrl.device, 920 "I/O %d QID %d timeout, aborting\n", 921 req->tag, nvmeq->qid); 922 923 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 924 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 925 if (IS_ERR(abort_req)) { 926 atomic_inc(&dev->ctrl.abort_limit); 927 return BLK_EH_RESET_TIMER; 928 } 929 930 abort_req->timeout = ADMIN_TIMEOUT; 931 abort_req->end_io_data = NULL; 932 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 933 934 /* 935 * The aborted req will be completed on receiving the abort req. 936 * We enable the timer again. If hit twice, it'll cause a device reset, 937 * as the device then is in a faulty state. 938 */ 939 return BLK_EH_RESET_TIMER; 940 } 941 942 static void nvme_free_queue(struct nvme_queue *nvmeq) 943 { 944 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 945 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 946 if (nvmeq->sq_cmds) 947 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 948 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 949 kfree(nvmeq); 950 } 951 952 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 953 { 954 int i; 955 956 for (i = dev->queue_count - 1; i >= lowest; i--) { 957 struct nvme_queue *nvmeq = dev->queues[i]; 958 dev->queue_count--; 959 dev->queues[i] = NULL; 960 nvme_free_queue(nvmeq); 961 } 962 } 963 964 /** 965 * nvme_suspend_queue - put queue into suspended state 966 * @nvmeq - queue to suspend 967 */ 968 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 969 { 970 int vector; 971 972 spin_lock_irq(&nvmeq->q_lock); 973 if (nvmeq->cq_vector == -1) { 974 spin_unlock_irq(&nvmeq->q_lock); 975 return 1; 976 } 977 vector = nvmeq_irq(nvmeq); 978 nvmeq->dev->online_queues--; 979 nvmeq->cq_vector = -1; 980 spin_unlock_irq(&nvmeq->q_lock); 981 982 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 983 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 984 985 free_irq(vector, nvmeq); 986 987 return 0; 988 } 989 990 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 991 { 992 struct nvme_queue *nvmeq = dev->queues[0]; 993 994 if (!nvmeq) 995 return; 996 if (nvme_suspend_queue(nvmeq)) 997 return; 998 999 if (shutdown) 1000 nvme_shutdown_ctrl(&dev->ctrl); 1001 else 1002 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 1003 dev->bar + NVME_REG_CAP)); 1004 1005 spin_lock_irq(&nvmeq->q_lock); 1006 nvme_process_cq(nvmeq); 1007 spin_unlock_irq(&nvmeq->q_lock); 1008 } 1009 1010 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1011 int entry_size) 1012 { 1013 int q_depth = dev->q_depth; 1014 unsigned q_size_aligned = roundup(q_depth * entry_size, 1015 dev->ctrl.page_size); 1016 1017 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1018 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1019 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1020 q_depth = div_u64(mem_per_q, entry_size); 1021 1022 /* 1023 * Ensure the reduced q_depth is above some threshold where it 1024 * would be better to map queues in system memory with the 1025 * original depth 1026 */ 1027 if (q_depth < 64) 1028 return -ENOMEM; 1029 } 1030 1031 return q_depth; 1032 } 1033 1034 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1035 int qid, int depth) 1036 { 1037 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1038 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1039 dev->ctrl.page_size); 1040 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1041 nvmeq->sq_cmds_io = dev->cmb + offset; 1042 } else { 1043 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1044 &nvmeq->sq_dma_addr, GFP_KERNEL); 1045 if (!nvmeq->sq_cmds) 1046 return -ENOMEM; 1047 } 1048 1049 return 0; 1050 } 1051 1052 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1053 int depth) 1054 { 1055 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1056 if (!nvmeq) 1057 return NULL; 1058 1059 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1060 &nvmeq->cq_dma_addr, GFP_KERNEL); 1061 if (!nvmeq->cqes) 1062 goto free_nvmeq; 1063 1064 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1065 goto free_cqdma; 1066 1067 nvmeq->q_dmadev = dev->dev; 1068 nvmeq->dev = dev; 1069 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1070 dev->ctrl.instance, qid); 1071 spin_lock_init(&nvmeq->q_lock); 1072 nvmeq->cq_head = 0; 1073 nvmeq->cq_phase = 1; 1074 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1075 nvmeq->q_depth = depth; 1076 nvmeq->qid = qid; 1077 nvmeq->cq_vector = -1; 1078 dev->queues[qid] = nvmeq; 1079 dev->queue_count++; 1080 1081 return nvmeq; 1082 1083 free_cqdma: 1084 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1085 nvmeq->cq_dma_addr); 1086 free_nvmeq: 1087 kfree(nvmeq); 1088 return NULL; 1089 } 1090 1091 static int queue_request_irq(struct nvme_queue *nvmeq) 1092 { 1093 if (use_threaded_interrupts) 1094 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, 1095 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); 1096 else 1097 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, 1098 nvmeq->irqname, nvmeq); 1099 } 1100 1101 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1102 { 1103 struct nvme_dev *dev = nvmeq->dev; 1104 1105 spin_lock_irq(&nvmeq->q_lock); 1106 nvmeq->sq_tail = 0; 1107 nvmeq->cq_head = 0; 1108 nvmeq->cq_phase = 1; 1109 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1110 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1111 dev->online_queues++; 1112 spin_unlock_irq(&nvmeq->q_lock); 1113 } 1114 1115 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1116 { 1117 struct nvme_dev *dev = nvmeq->dev; 1118 int result; 1119 1120 nvmeq->cq_vector = qid - 1; 1121 result = adapter_alloc_cq(dev, qid, nvmeq); 1122 if (result < 0) 1123 return result; 1124 1125 result = adapter_alloc_sq(dev, qid, nvmeq); 1126 if (result < 0) 1127 goto release_cq; 1128 1129 result = queue_request_irq(nvmeq); 1130 if (result < 0) 1131 goto release_sq; 1132 1133 nvme_init_queue(nvmeq, qid); 1134 return result; 1135 1136 release_sq: 1137 adapter_delete_sq(dev, qid); 1138 release_cq: 1139 adapter_delete_cq(dev, qid); 1140 return result; 1141 } 1142 1143 static struct blk_mq_ops nvme_mq_admin_ops = { 1144 .queue_rq = nvme_queue_rq, 1145 .complete = nvme_complete_rq, 1146 .init_hctx = nvme_admin_init_hctx, 1147 .exit_hctx = nvme_admin_exit_hctx, 1148 .init_request = nvme_admin_init_request, 1149 .timeout = nvme_timeout, 1150 }; 1151 1152 static struct blk_mq_ops nvme_mq_ops = { 1153 .queue_rq = nvme_queue_rq, 1154 .complete = nvme_complete_rq, 1155 .init_hctx = nvme_init_hctx, 1156 .init_request = nvme_init_request, 1157 .map_queues = nvme_pci_map_queues, 1158 .timeout = nvme_timeout, 1159 .poll = nvme_poll, 1160 }; 1161 1162 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1163 { 1164 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1165 /* 1166 * If the controller was reset during removal, it's possible 1167 * user requests may be waiting on a stopped queue. Start the 1168 * queue to flush these to completion. 1169 */ 1170 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1171 blk_cleanup_queue(dev->ctrl.admin_q); 1172 blk_mq_free_tag_set(&dev->admin_tagset); 1173 } 1174 } 1175 1176 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1177 { 1178 if (!dev->ctrl.admin_q) { 1179 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1180 dev->admin_tagset.nr_hw_queues = 1; 1181 1182 /* 1183 * Subtract one to leave an empty queue entry for 'Full Queue' 1184 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1185 */ 1186 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1187 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1188 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1189 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1190 dev->admin_tagset.driver_data = dev; 1191 1192 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1193 return -ENOMEM; 1194 1195 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1196 if (IS_ERR(dev->ctrl.admin_q)) { 1197 blk_mq_free_tag_set(&dev->admin_tagset); 1198 return -ENOMEM; 1199 } 1200 if (!blk_get_queue(dev->ctrl.admin_q)) { 1201 nvme_dev_remove_admin(dev); 1202 dev->ctrl.admin_q = NULL; 1203 return -ENODEV; 1204 } 1205 } else 1206 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1207 1208 return 0; 1209 } 1210 1211 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1212 { 1213 int result; 1214 u32 aqa; 1215 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1216 struct nvme_queue *nvmeq; 1217 1218 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1219 NVME_CAP_NSSRC(cap) : 0; 1220 1221 if (dev->subsystem && 1222 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1223 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1224 1225 result = nvme_disable_ctrl(&dev->ctrl, cap); 1226 if (result < 0) 1227 return result; 1228 1229 nvmeq = dev->queues[0]; 1230 if (!nvmeq) { 1231 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1232 if (!nvmeq) 1233 return -ENOMEM; 1234 } 1235 1236 aqa = nvmeq->q_depth - 1; 1237 aqa |= aqa << 16; 1238 1239 writel(aqa, dev->bar + NVME_REG_AQA); 1240 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1241 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1242 1243 result = nvme_enable_ctrl(&dev->ctrl, cap); 1244 if (result) 1245 return result; 1246 1247 nvmeq->cq_vector = 0; 1248 result = queue_request_irq(nvmeq); 1249 if (result) { 1250 nvmeq->cq_vector = -1; 1251 return result; 1252 } 1253 1254 return result; 1255 } 1256 1257 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1258 { 1259 1260 /* If true, indicates loss of adapter communication, possibly by a 1261 * NVMe Subsystem reset. 1262 */ 1263 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1264 1265 /* If there is a reset ongoing, we shouldn't reset again. */ 1266 if (work_busy(&dev->reset_work)) 1267 return false; 1268 1269 /* We shouldn't reset unless the controller is on fatal error state 1270 * _or_ if we lost the communication with it. 1271 */ 1272 if (!(csts & NVME_CSTS_CFS) && !nssro) 1273 return false; 1274 1275 /* If PCI error recovery process is happening, we cannot reset or 1276 * the recovery mechanism will surely fail. 1277 */ 1278 if (pci_channel_offline(to_pci_dev(dev->dev))) 1279 return false; 1280 1281 return true; 1282 } 1283 1284 static void nvme_watchdog_timer(unsigned long data) 1285 { 1286 struct nvme_dev *dev = (struct nvme_dev *)data; 1287 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1288 1289 /* Skip controllers under certain specific conditions. */ 1290 if (nvme_should_reset(dev, csts)) { 1291 if (!nvme_reset(dev)) 1292 dev_warn(dev->dev, 1293 "Failed status: 0x%x, reset controller.\n", 1294 csts); 1295 return; 1296 } 1297 1298 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1299 } 1300 1301 static int nvme_create_io_queues(struct nvme_dev *dev) 1302 { 1303 unsigned i, max; 1304 int ret = 0; 1305 1306 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1307 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1308 ret = -ENOMEM; 1309 break; 1310 } 1311 } 1312 1313 max = min(dev->max_qid, dev->queue_count - 1); 1314 for (i = dev->online_queues; i <= max; i++) { 1315 ret = nvme_create_queue(dev->queues[i], i); 1316 if (ret) 1317 break; 1318 } 1319 1320 /* 1321 * Ignore failing Create SQ/CQ commands, we can continue with less 1322 * than the desired aount of queues, and even a controller without 1323 * I/O queues an still be used to issue admin commands. This might 1324 * be useful to upgrade a buggy firmware for example. 1325 */ 1326 return ret >= 0 ? 0 : ret; 1327 } 1328 1329 static ssize_t nvme_cmb_show(struct device *dev, 1330 struct device_attribute *attr, 1331 char *buf) 1332 { 1333 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1334 1335 return snprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1336 ndev->cmbloc, ndev->cmbsz); 1337 } 1338 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1339 1340 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1341 { 1342 u64 szu, size, offset; 1343 resource_size_t bar_size; 1344 struct pci_dev *pdev = to_pci_dev(dev->dev); 1345 void __iomem *cmb; 1346 dma_addr_t dma_addr; 1347 1348 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1349 if (!(NVME_CMB_SZ(dev->cmbsz))) 1350 return NULL; 1351 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1352 1353 if (!use_cmb_sqes) 1354 return NULL; 1355 1356 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1357 size = szu * NVME_CMB_SZ(dev->cmbsz); 1358 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1359 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1360 1361 if (offset > bar_size) 1362 return NULL; 1363 1364 /* 1365 * Controllers may support a CMB size larger than their BAR, 1366 * for example, due to being behind a bridge. Reduce the CMB to 1367 * the reported size of the BAR 1368 */ 1369 if (size > bar_size - offset) 1370 size = bar_size - offset; 1371 1372 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1373 cmb = ioremap_wc(dma_addr, size); 1374 if (!cmb) 1375 return NULL; 1376 1377 dev->cmb_dma_addr = dma_addr; 1378 dev->cmb_size = size; 1379 return cmb; 1380 } 1381 1382 static inline void nvme_release_cmb(struct nvme_dev *dev) 1383 { 1384 if (dev->cmb) { 1385 iounmap(dev->cmb); 1386 dev->cmb = NULL; 1387 } 1388 } 1389 1390 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1391 { 1392 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1393 } 1394 1395 static int nvme_setup_io_queues(struct nvme_dev *dev) 1396 { 1397 struct nvme_queue *adminq = dev->queues[0]; 1398 struct pci_dev *pdev = to_pci_dev(dev->dev); 1399 int result, nr_io_queues, size; 1400 1401 nr_io_queues = num_online_cpus(); 1402 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1403 if (result < 0) 1404 return result; 1405 1406 if (nr_io_queues == 0) 1407 return 0; 1408 1409 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1410 result = nvme_cmb_qdepth(dev, nr_io_queues, 1411 sizeof(struct nvme_command)); 1412 if (result > 0) 1413 dev->q_depth = result; 1414 else 1415 nvme_release_cmb(dev); 1416 } 1417 1418 size = db_bar_size(dev, nr_io_queues); 1419 if (size > 8192) { 1420 iounmap(dev->bar); 1421 do { 1422 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1423 if (dev->bar) 1424 break; 1425 if (!--nr_io_queues) 1426 return -ENOMEM; 1427 size = db_bar_size(dev, nr_io_queues); 1428 } while (1); 1429 dev->dbs = dev->bar + 4096; 1430 adminq->q_db = dev->dbs; 1431 } 1432 1433 /* Deregister the admin queue's interrupt */ 1434 free_irq(pci_irq_vector(pdev, 0), adminq); 1435 1436 /* 1437 * If we enable msix early due to not intx, disable it again before 1438 * setting up the full range we need. 1439 */ 1440 pci_free_irq_vectors(pdev); 1441 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1442 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1443 if (nr_io_queues <= 0) 1444 return -EIO; 1445 dev->max_qid = nr_io_queues; 1446 1447 /* 1448 * Should investigate if there's a performance win from allocating 1449 * more queues than interrupt vectors; it might allow the submission 1450 * path to scale better, even if the receive path is limited by the 1451 * number of interrupts. 1452 */ 1453 1454 result = queue_request_irq(adminq); 1455 if (result) { 1456 adminq->cq_vector = -1; 1457 return result; 1458 } 1459 return nvme_create_io_queues(dev); 1460 } 1461 1462 static void nvme_del_queue_end(struct request *req, int error) 1463 { 1464 struct nvme_queue *nvmeq = req->end_io_data; 1465 1466 blk_mq_free_request(req); 1467 complete(&nvmeq->dev->ioq_wait); 1468 } 1469 1470 static void nvme_del_cq_end(struct request *req, int error) 1471 { 1472 struct nvme_queue *nvmeq = req->end_io_data; 1473 1474 if (!error) { 1475 unsigned long flags; 1476 1477 /* 1478 * We might be called with the AQ q_lock held 1479 * and the I/O queue q_lock should always 1480 * nest inside the AQ one. 1481 */ 1482 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1483 SINGLE_DEPTH_NESTING); 1484 nvme_process_cq(nvmeq); 1485 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1486 } 1487 1488 nvme_del_queue_end(req, error); 1489 } 1490 1491 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1492 { 1493 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1494 struct request *req; 1495 struct nvme_command cmd; 1496 1497 memset(&cmd, 0, sizeof(cmd)); 1498 cmd.delete_queue.opcode = opcode; 1499 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1500 1501 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1502 if (IS_ERR(req)) 1503 return PTR_ERR(req); 1504 1505 req->timeout = ADMIN_TIMEOUT; 1506 req->end_io_data = nvmeq; 1507 1508 blk_execute_rq_nowait(q, NULL, req, false, 1509 opcode == nvme_admin_delete_cq ? 1510 nvme_del_cq_end : nvme_del_queue_end); 1511 return 0; 1512 } 1513 1514 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1515 { 1516 int pass; 1517 unsigned long timeout; 1518 u8 opcode = nvme_admin_delete_sq; 1519 1520 for (pass = 0; pass < 2; pass++) { 1521 int sent = 0, i = queues; 1522 1523 reinit_completion(&dev->ioq_wait); 1524 retry: 1525 timeout = ADMIN_TIMEOUT; 1526 for (; i > 0; i--, sent++) 1527 if (nvme_delete_queue(dev->queues[i], opcode)) 1528 break; 1529 1530 while (sent--) { 1531 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1532 if (timeout == 0) 1533 return; 1534 if (i) 1535 goto retry; 1536 } 1537 opcode = nvme_admin_delete_cq; 1538 } 1539 } 1540 1541 /* 1542 * Return: error value if an error occurred setting up the queues or calling 1543 * Identify Device. 0 if these succeeded, even if adding some of the 1544 * namespaces failed. At the moment, these failures are silent. TBD which 1545 * failures should be reported. 1546 */ 1547 static int nvme_dev_add(struct nvme_dev *dev) 1548 { 1549 if (!dev->ctrl.tagset) { 1550 dev->tagset.ops = &nvme_mq_ops; 1551 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1552 dev->tagset.timeout = NVME_IO_TIMEOUT; 1553 dev->tagset.numa_node = dev_to_node(dev->dev); 1554 dev->tagset.queue_depth = 1555 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1556 dev->tagset.cmd_size = nvme_cmd_size(dev); 1557 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1558 dev->tagset.driver_data = dev; 1559 1560 if (blk_mq_alloc_tag_set(&dev->tagset)) 1561 return 0; 1562 dev->ctrl.tagset = &dev->tagset; 1563 } else { 1564 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1565 1566 /* Free previously allocated queues that are no longer usable */ 1567 nvme_free_queues(dev, dev->online_queues); 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int nvme_pci_enable(struct nvme_dev *dev) 1574 { 1575 u64 cap; 1576 int result = -ENOMEM; 1577 struct pci_dev *pdev = to_pci_dev(dev->dev); 1578 1579 if (pci_enable_device_mem(pdev)) 1580 return result; 1581 1582 pci_set_master(pdev); 1583 1584 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1585 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1586 goto disable; 1587 1588 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1589 result = -ENODEV; 1590 goto disable; 1591 } 1592 1593 /* 1594 * Some devices and/or platforms don't advertise or work with INTx 1595 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1596 * adjust this later. 1597 */ 1598 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1599 if (result < 0) 1600 return result; 1601 1602 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1603 1604 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1605 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1606 dev->dbs = dev->bar + 4096; 1607 1608 /* 1609 * Temporary fix for the Apple controller found in the MacBook8,1 and 1610 * some MacBook7,1 to avoid controller resets and data loss. 1611 */ 1612 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1613 dev->q_depth = 2; 1614 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1615 "queue depth=%u to work around controller resets\n", 1616 dev->q_depth); 1617 } 1618 1619 /* 1620 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1621 * populate sysfs if a CMB is implemented. Note that we add the 1622 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1623 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1624 * NULL as final argument to sysfs_add_file_to_group. 1625 */ 1626 1627 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1628 dev->cmb = nvme_map_cmb(dev); 1629 1630 if (dev->cmbsz) { 1631 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1632 &dev_attr_cmb.attr, NULL)) 1633 dev_warn(dev->dev, 1634 "failed to add sysfs attribute for CMB\n"); 1635 } 1636 } 1637 1638 pci_enable_pcie_error_reporting(pdev); 1639 pci_save_state(pdev); 1640 return 0; 1641 1642 disable: 1643 pci_disable_device(pdev); 1644 return result; 1645 } 1646 1647 static void nvme_dev_unmap(struct nvme_dev *dev) 1648 { 1649 if (dev->bar) 1650 iounmap(dev->bar); 1651 pci_release_mem_regions(to_pci_dev(dev->dev)); 1652 } 1653 1654 static void nvme_pci_disable(struct nvme_dev *dev) 1655 { 1656 struct pci_dev *pdev = to_pci_dev(dev->dev); 1657 1658 pci_free_irq_vectors(pdev); 1659 1660 if (pci_is_enabled(pdev)) { 1661 pci_disable_pcie_error_reporting(pdev); 1662 pci_disable_device(pdev); 1663 } 1664 } 1665 1666 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1667 { 1668 int i, queues; 1669 u32 csts = -1; 1670 1671 del_timer_sync(&dev->watchdog_timer); 1672 1673 mutex_lock(&dev->shutdown_lock); 1674 if (pci_is_enabled(to_pci_dev(dev->dev))) { 1675 nvme_stop_queues(&dev->ctrl); 1676 csts = readl(dev->bar + NVME_REG_CSTS); 1677 } 1678 1679 queues = dev->online_queues - 1; 1680 for (i = dev->queue_count - 1; i > 0; i--) 1681 nvme_suspend_queue(dev->queues[i]); 1682 1683 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1684 /* A device might become IO incapable very soon during 1685 * probe, before the admin queue is configured. Thus, 1686 * queue_count can be 0 here. 1687 */ 1688 if (dev->queue_count) 1689 nvme_suspend_queue(dev->queues[0]); 1690 } else { 1691 nvme_disable_io_queues(dev, queues); 1692 nvme_disable_admin_queue(dev, shutdown); 1693 } 1694 nvme_pci_disable(dev); 1695 1696 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1697 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1698 mutex_unlock(&dev->shutdown_lock); 1699 } 1700 1701 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1702 { 1703 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1704 PAGE_SIZE, PAGE_SIZE, 0); 1705 if (!dev->prp_page_pool) 1706 return -ENOMEM; 1707 1708 /* Optimisation for I/Os between 4k and 128k */ 1709 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1710 256, 256, 0); 1711 if (!dev->prp_small_pool) { 1712 dma_pool_destroy(dev->prp_page_pool); 1713 return -ENOMEM; 1714 } 1715 return 0; 1716 } 1717 1718 static void nvme_release_prp_pools(struct nvme_dev *dev) 1719 { 1720 dma_pool_destroy(dev->prp_page_pool); 1721 dma_pool_destroy(dev->prp_small_pool); 1722 } 1723 1724 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1725 { 1726 struct nvme_dev *dev = to_nvme_dev(ctrl); 1727 1728 put_device(dev->dev); 1729 if (dev->tagset.tags) 1730 blk_mq_free_tag_set(&dev->tagset); 1731 if (dev->ctrl.admin_q) 1732 blk_put_queue(dev->ctrl.admin_q); 1733 kfree(dev->queues); 1734 kfree(dev); 1735 } 1736 1737 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1738 { 1739 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1740 1741 kref_get(&dev->ctrl.kref); 1742 nvme_dev_disable(dev, false); 1743 if (!schedule_work(&dev->remove_work)) 1744 nvme_put_ctrl(&dev->ctrl); 1745 } 1746 1747 static void nvme_reset_work(struct work_struct *work) 1748 { 1749 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1750 int result = -ENODEV; 1751 1752 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1753 goto out; 1754 1755 /* 1756 * If we're called to reset a live controller first shut it down before 1757 * moving on. 1758 */ 1759 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1760 nvme_dev_disable(dev, false); 1761 1762 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1763 goto out; 1764 1765 result = nvme_pci_enable(dev); 1766 if (result) 1767 goto out; 1768 1769 result = nvme_configure_admin_queue(dev); 1770 if (result) 1771 goto out; 1772 1773 nvme_init_queue(dev->queues[0], 0); 1774 result = nvme_alloc_admin_tags(dev); 1775 if (result) 1776 goto out; 1777 1778 result = nvme_init_identify(&dev->ctrl); 1779 if (result) 1780 goto out; 1781 1782 result = nvme_setup_io_queues(dev); 1783 if (result) 1784 goto out; 1785 1786 /* 1787 * A controller that can not execute IO typically requires user 1788 * intervention to correct. For such degraded controllers, the driver 1789 * should not submit commands the user did not request, so skip 1790 * registering for asynchronous event notification on this condition. 1791 */ 1792 if (dev->online_queues > 1) 1793 nvme_queue_async_events(&dev->ctrl); 1794 1795 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1796 1797 /* 1798 * Keep the controller around but remove all namespaces if we don't have 1799 * any working I/O queue. 1800 */ 1801 if (dev->online_queues < 2) { 1802 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1803 nvme_kill_queues(&dev->ctrl); 1804 nvme_remove_namespaces(&dev->ctrl); 1805 } else { 1806 nvme_start_queues(&dev->ctrl); 1807 nvme_dev_add(dev); 1808 } 1809 1810 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1811 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1812 goto out; 1813 } 1814 1815 if (dev->online_queues > 1) 1816 nvme_queue_scan(&dev->ctrl); 1817 return; 1818 1819 out: 1820 nvme_remove_dead_ctrl(dev, result); 1821 } 1822 1823 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1824 { 1825 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1826 struct pci_dev *pdev = to_pci_dev(dev->dev); 1827 1828 nvme_kill_queues(&dev->ctrl); 1829 if (pci_get_drvdata(pdev)) 1830 device_release_driver(&pdev->dev); 1831 nvme_put_ctrl(&dev->ctrl); 1832 } 1833 1834 static int nvme_reset(struct nvme_dev *dev) 1835 { 1836 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1837 return -ENODEV; 1838 if (work_busy(&dev->reset_work)) 1839 return -ENODEV; 1840 if (!queue_work(nvme_workq, &dev->reset_work)) 1841 return -EBUSY; 1842 return 0; 1843 } 1844 1845 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1846 { 1847 *val = readl(to_nvme_dev(ctrl)->bar + off); 1848 return 0; 1849 } 1850 1851 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1852 { 1853 writel(val, to_nvme_dev(ctrl)->bar + off); 1854 return 0; 1855 } 1856 1857 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1858 { 1859 *val = readq(to_nvme_dev(ctrl)->bar + off); 1860 return 0; 1861 } 1862 1863 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1864 { 1865 struct nvme_dev *dev = to_nvme_dev(ctrl); 1866 int ret = nvme_reset(dev); 1867 1868 if (!ret) 1869 flush_work(&dev->reset_work); 1870 return ret; 1871 } 1872 1873 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1874 .name = "pcie", 1875 .module = THIS_MODULE, 1876 .reg_read32 = nvme_pci_reg_read32, 1877 .reg_write32 = nvme_pci_reg_write32, 1878 .reg_read64 = nvme_pci_reg_read64, 1879 .reset_ctrl = nvme_pci_reset_ctrl, 1880 .free_ctrl = nvme_pci_free_ctrl, 1881 .submit_async_event = nvme_pci_submit_async_event, 1882 }; 1883 1884 static int nvme_dev_map(struct nvme_dev *dev) 1885 { 1886 struct pci_dev *pdev = to_pci_dev(dev->dev); 1887 1888 if (pci_request_mem_regions(pdev, "nvme")) 1889 return -ENODEV; 1890 1891 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1892 if (!dev->bar) 1893 goto release; 1894 1895 return 0; 1896 release: 1897 pci_release_mem_regions(pdev); 1898 return -ENODEV; 1899 } 1900 1901 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1902 { 1903 int node, result = -ENOMEM; 1904 struct nvme_dev *dev; 1905 1906 node = dev_to_node(&pdev->dev); 1907 if (node == NUMA_NO_NODE) 1908 set_dev_node(&pdev->dev, first_memory_node); 1909 1910 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 1911 if (!dev) 1912 return -ENOMEM; 1913 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 1914 GFP_KERNEL, node); 1915 if (!dev->queues) 1916 goto free; 1917 1918 dev->dev = get_device(&pdev->dev); 1919 pci_set_drvdata(pdev, dev); 1920 1921 result = nvme_dev_map(dev); 1922 if (result) 1923 goto free; 1924 1925 INIT_WORK(&dev->reset_work, nvme_reset_work); 1926 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 1927 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 1928 (unsigned long)dev); 1929 mutex_init(&dev->shutdown_lock); 1930 init_completion(&dev->ioq_wait); 1931 1932 result = nvme_setup_prp_pools(dev); 1933 if (result) 1934 goto put_pci; 1935 1936 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 1937 id->driver_data); 1938 if (result) 1939 goto release_pools; 1940 1941 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 1942 1943 queue_work(nvme_workq, &dev->reset_work); 1944 return 0; 1945 1946 release_pools: 1947 nvme_release_prp_pools(dev); 1948 put_pci: 1949 put_device(dev->dev); 1950 nvme_dev_unmap(dev); 1951 free: 1952 kfree(dev->queues); 1953 kfree(dev); 1954 return result; 1955 } 1956 1957 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 1958 { 1959 struct nvme_dev *dev = pci_get_drvdata(pdev); 1960 1961 if (prepare) 1962 nvme_dev_disable(dev, false); 1963 else 1964 nvme_reset(dev); 1965 } 1966 1967 static void nvme_shutdown(struct pci_dev *pdev) 1968 { 1969 struct nvme_dev *dev = pci_get_drvdata(pdev); 1970 nvme_dev_disable(dev, true); 1971 } 1972 1973 /* 1974 * The driver's remove may be called on a device in a partially initialized 1975 * state. This function must not have any dependencies on the device state in 1976 * order to proceed. 1977 */ 1978 static void nvme_remove(struct pci_dev *pdev) 1979 { 1980 struct nvme_dev *dev = pci_get_drvdata(pdev); 1981 1982 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1983 1984 pci_set_drvdata(pdev, NULL); 1985 1986 if (!pci_device_is_present(pdev)) 1987 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 1988 1989 flush_work(&dev->reset_work); 1990 nvme_uninit_ctrl(&dev->ctrl); 1991 nvme_dev_disable(dev, true); 1992 nvme_dev_remove_admin(dev); 1993 nvme_free_queues(dev, 0); 1994 nvme_release_cmb(dev); 1995 nvme_release_prp_pools(dev); 1996 nvme_dev_unmap(dev); 1997 nvme_put_ctrl(&dev->ctrl); 1998 } 1999 2000 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2001 { 2002 int ret = 0; 2003 2004 if (numvfs == 0) { 2005 if (pci_vfs_assigned(pdev)) { 2006 dev_warn(&pdev->dev, 2007 "Cannot disable SR-IOV VFs while assigned\n"); 2008 return -EPERM; 2009 } 2010 pci_disable_sriov(pdev); 2011 return 0; 2012 } 2013 2014 ret = pci_enable_sriov(pdev, numvfs); 2015 return ret ? ret : numvfs; 2016 } 2017 2018 #ifdef CONFIG_PM_SLEEP 2019 static int nvme_suspend(struct device *dev) 2020 { 2021 struct pci_dev *pdev = to_pci_dev(dev); 2022 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2023 2024 nvme_dev_disable(ndev, true); 2025 return 0; 2026 } 2027 2028 static int nvme_resume(struct device *dev) 2029 { 2030 struct pci_dev *pdev = to_pci_dev(dev); 2031 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2032 2033 nvme_reset(ndev); 2034 return 0; 2035 } 2036 #endif 2037 2038 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2039 2040 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2041 pci_channel_state_t state) 2042 { 2043 struct nvme_dev *dev = pci_get_drvdata(pdev); 2044 2045 /* 2046 * A frozen channel requires a reset. When detected, this method will 2047 * shutdown the controller to quiesce. The controller will be restarted 2048 * after the slot reset through driver's slot_reset callback. 2049 */ 2050 switch (state) { 2051 case pci_channel_io_normal: 2052 return PCI_ERS_RESULT_CAN_RECOVER; 2053 case pci_channel_io_frozen: 2054 dev_warn(dev->ctrl.device, 2055 "frozen state error detected, reset controller\n"); 2056 nvme_dev_disable(dev, false); 2057 return PCI_ERS_RESULT_NEED_RESET; 2058 case pci_channel_io_perm_failure: 2059 dev_warn(dev->ctrl.device, 2060 "failure state error detected, request disconnect\n"); 2061 return PCI_ERS_RESULT_DISCONNECT; 2062 } 2063 return PCI_ERS_RESULT_NEED_RESET; 2064 } 2065 2066 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2067 { 2068 struct nvme_dev *dev = pci_get_drvdata(pdev); 2069 2070 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2071 pci_restore_state(pdev); 2072 nvme_reset(dev); 2073 return PCI_ERS_RESULT_RECOVERED; 2074 } 2075 2076 static void nvme_error_resume(struct pci_dev *pdev) 2077 { 2078 pci_cleanup_aer_uncorrect_error_status(pdev); 2079 } 2080 2081 static const struct pci_error_handlers nvme_err_handler = { 2082 .error_detected = nvme_error_detected, 2083 .slot_reset = nvme_slot_reset, 2084 .resume = nvme_error_resume, 2085 .reset_notify = nvme_reset_notify, 2086 }; 2087 2088 /* Move to pci_ids.h later */ 2089 #define PCI_CLASS_STORAGE_EXPRESS 0x010802 2090 2091 static const struct pci_device_id nvme_id_table[] = { 2092 { PCI_VDEVICE(INTEL, 0x0953), 2093 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2094 NVME_QUIRK_DISCARD_ZEROES, }, 2095 { PCI_VDEVICE(INTEL, 0x0a53), 2096 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2097 NVME_QUIRK_DISCARD_ZEROES, }, 2098 { PCI_VDEVICE(INTEL, 0x0a54), 2099 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2100 NVME_QUIRK_DISCARD_ZEROES, }, 2101 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2102 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2103 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2104 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2105 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2106 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2107 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2108 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2109 { 0, } 2110 }; 2111 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2112 2113 static struct pci_driver nvme_driver = { 2114 .name = "nvme", 2115 .id_table = nvme_id_table, 2116 .probe = nvme_probe, 2117 .remove = nvme_remove, 2118 .shutdown = nvme_shutdown, 2119 .driver = { 2120 .pm = &nvme_dev_pm_ops, 2121 }, 2122 .sriov_configure = nvme_pci_sriov_configure, 2123 .err_handler = &nvme_err_handler, 2124 }; 2125 2126 static int __init nvme_init(void) 2127 { 2128 int result; 2129 2130 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2131 if (!nvme_workq) 2132 return -ENOMEM; 2133 2134 result = pci_register_driver(&nvme_driver); 2135 if (result) 2136 destroy_workqueue(nvme_workq); 2137 return result; 2138 } 2139 2140 static void __exit nvme_exit(void) 2141 { 2142 pci_unregister_driver(&nvme_driver); 2143 destroy_workqueue(nvme_workq); 2144 _nvme_check_size(); 2145 } 2146 2147 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2148 MODULE_LICENSE("GPL"); 2149 MODULE_VERSION("1.0"); 2150 module_init(nvme_init); 2151 module_exit(nvme_exit); 2152