xref: /openbmc/linux/drivers/nvme/host/pci.c (revision bbecb07f)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
32 
33 #include "nvme.h"
34 
35 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 static int use_threaded_interrupts;
41 module_param(use_threaded_interrupts, int, 0);
42 
43 static bool use_cmb_sqes = true;
44 module_param(use_cmb_sqes, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
46 
47 static unsigned int max_host_mem_size_mb = 128;
48 module_param(max_host_mem_size_mb, uint, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb,
50 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
51 
52 static unsigned int sgl_threshold = SZ_32K;
53 module_param(sgl_threshold, uint, 0644);
54 MODULE_PARM_DESC(sgl_threshold,
55 		"Use SGLs when average request segment size is larger or equal to "
56 		"this size. Use 0 to disable SGLs.");
57 
58 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
59 static const struct kernel_param_ops io_queue_depth_ops = {
60 	.set = io_queue_depth_set,
61 	.get = param_get_int,
62 };
63 
64 static int io_queue_depth = 1024;
65 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
66 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
67 
68 struct nvme_dev;
69 struct nvme_queue;
70 
71 static void nvme_process_cq(struct nvme_queue *nvmeq);
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
73 
74 /*
75  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
76  */
77 struct nvme_dev {
78 	struct nvme_queue **queues;
79 	struct blk_mq_tag_set tagset;
80 	struct blk_mq_tag_set admin_tagset;
81 	u32 __iomem *dbs;
82 	struct device *dev;
83 	struct dma_pool *prp_page_pool;
84 	struct dma_pool *prp_small_pool;
85 	unsigned online_queues;
86 	unsigned max_qid;
87 	int q_depth;
88 	u32 db_stride;
89 	void __iomem *bar;
90 	unsigned long bar_mapped_size;
91 	struct work_struct remove_work;
92 	struct mutex shutdown_lock;
93 	bool subsystem;
94 	void __iomem *cmb;
95 	pci_bus_addr_t cmb_bus_addr;
96 	u64 cmb_size;
97 	u32 cmbsz;
98 	u32 cmbloc;
99 	struct nvme_ctrl ctrl;
100 	struct completion ioq_wait;
101 
102 	/* shadow doorbell buffer support: */
103 	u32 *dbbuf_dbs;
104 	dma_addr_t dbbuf_dbs_dma_addr;
105 	u32 *dbbuf_eis;
106 	dma_addr_t dbbuf_eis_dma_addr;
107 
108 	/* host memory buffer support: */
109 	u64 host_mem_size;
110 	u32 nr_host_mem_descs;
111 	dma_addr_t host_mem_descs_dma;
112 	struct nvme_host_mem_buf_desc *host_mem_descs;
113 	void **host_mem_desc_bufs;
114 };
115 
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117 {
118 	int n = 0, ret;
119 
120 	ret = kstrtoint(val, 10, &n);
121 	if (ret != 0 || n < 2)
122 		return -EINVAL;
123 
124 	return param_set_int(val, kp);
125 }
126 
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128 {
129 	return qid * 2 * stride;
130 }
131 
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133 {
134 	return (qid * 2 + 1) * stride;
135 }
136 
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138 {
139 	return container_of(ctrl, struct nvme_dev, ctrl);
140 }
141 
142 /*
143  * An NVM Express queue.  Each device has at least two (one for admin
144  * commands and one for I/O commands).
145  */
146 struct nvme_queue {
147 	struct device *q_dmadev;
148 	struct nvme_dev *dev;
149 	spinlock_t q_lock;
150 	struct nvme_command *sq_cmds;
151 	struct nvme_command __iomem *sq_cmds_io;
152 	volatile struct nvme_completion *cqes;
153 	struct blk_mq_tags **tags;
154 	dma_addr_t sq_dma_addr;
155 	dma_addr_t cq_dma_addr;
156 	u32 __iomem *q_db;
157 	u16 q_depth;
158 	s16 cq_vector;
159 	u16 sq_tail;
160 	u16 cq_head;
161 	u16 qid;
162 	u8 cq_phase;
163 	u8 cqe_seen;
164 	u32 *dbbuf_sq_db;
165 	u32 *dbbuf_cq_db;
166 	u32 *dbbuf_sq_ei;
167 	u32 *dbbuf_cq_ei;
168 };
169 
170 /*
171  * The nvme_iod describes the data in an I/O, including the list of PRP
172  * entries.  You can't see it in this data structure because C doesn't let
173  * me express that.  Use nvme_init_iod to ensure there's enough space
174  * allocated to store the PRP list.
175  */
176 struct nvme_iod {
177 	struct nvme_request req;
178 	struct nvme_queue *nvmeq;
179 	bool use_sgl;
180 	int aborted;
181 	int npages;		/* In the PRP list. 0 means small pool in use */
182 	int nents;		/* Used in scatterlist */
183 	int length;		/* Of data, in bytes */
184 	dma_addr_t first_dma;
185 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
186 	struct scatterlist *sg;
187 	struct scatterlist inline_sg[0];
188 };
189 
190 /*
191  * Check we didin't inadvertently grow the command struct
192  */
193 static inline void _nvme_check_size(void)
194 {
195 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
196 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
197 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
198 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
199 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
200 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
201 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
202 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
203 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
204 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
205 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
206 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
207 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
208 }
209 
210 static inline unsigned int nvme_dbbuf_size(u32 stride)
211 {
212 	return ((num_possible_cpus() + 1) * 8 * stride);
213 }
214 
215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
216 {
217 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
218 
219 	if (dev->dbbuf_dbs)
220 		return 0;
221 
222 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
223 					    &dev->dbbuf_dbs_dma_addr,
224 					    GFP_KERNEL);
225 	if (!dev->dbbuf_dbs)
226 		return -ENOMEM;
227 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
228 					    &dev->dbbuf_eis_dma_addr,
229 					    GFP_KERNEL);
230 	if (!dev->dbbuf_eis) {
231 		dma_free_coherent(dev->dev, mem_size,
232 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 		dev->dbbuf_dbs = NULL;
234 		return -ENOMEM;
235 	}
236 
237 	return 0;
238 }
239 
240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
241 {
242 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
243 
244 	if (dev->dbbuf_dbs) {
245 		dma_free_coherent(dev->dev, mem_size,
246 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
247 		dev->dbbuf_dbs = NULL;
248 	}
249 	if (dev->dbbuf_eis) {
250 		dma_free_coherent(dev->dev, mem_size,
251 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
252 		dev->dbbuf_eis = NULL;
253 	}
254 }
255 
256 static void nvme_dbbuf_init(struct nvme_dev *dev,
257 			    struct nvme_queue *nvmeq, int qid)
258 {
259 	if (!dev->dbbuf_dbs || !qid)
260 		return;
261 
262 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
263 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
264 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
265 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
266 }
267 
268 static void nvme_dbbuf_set(struct nvme_dev *dev)
269 {
270 	struct nvme_command c;
271 
272 	if (!dev->dbbuf_dbs)
273 		return;
274 
275 	memset(&c, 0, sizeof(c));
276 	c.dbbuf.opcode = nvme_admin_dbbuf;
277 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
278 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
279 
280 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
281 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
282 		/* Free memory and continue on */
283 		nvme_dbbuf_dma_free(dev);
284 	}
285 }
286 
287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
288 {
289 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
290 }
291 
292 /* Update dbbuf and return true if an MMIO is required */
293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
294 					      volatile u32 *dbbuf_ei)
295 {
296 	if (dbbuf_db) {
297 		u16 old_value;
298 
299 		/*
300 		 * Ensure that the queue is written before updating
301 		 * the doorbell in memory
302 		 */
303 		wmb();
304 
305 		old_value = *dbbuf_db;
306 		*dbbuf_db = value;
307 
308 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
309 			return false;
310 	}
311 
312 	return true;
313 }
314 
315 /*
316  * Max size of iod being embedded in the request payload
317  */
318 #define NVME_INT_PAGES		2
319 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
320 
321 /*
322  * Will slightly overestimate the number of pages needed.  This is OK
323  * as it only leads to a small amount of wasted memory for the lifetime of
324  * the I/O.
325  */
326 static int nvme_npages(unsigned size, struct nvme_dev *dev)
327 {
328 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
329 				      dev->ctrl.page_size);
330 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
331 }
332 
333 /*
334  * Calculates the number of pages needed for the SGL segments. For example a 4k
335  * page can accommodate 256 SGL descriptors.
336  */
337 static int nvme_pci_npages_sgl(unsigned int num_seg)
338 {
339 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
340 }
341 
342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
343 		unsigned int size, unsigned int nseg, bool use_sgl)
344 {
345 	size_t alloc_size;
346 
347 	if (use_sgl)
348 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
349 	else
350 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
351 
352 	return alloc_size + sizeof(struct scatterlist) * nseg;
353 }
354 
355 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
356 {
357 	unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
358 				    NVME_INT_BYTES(dev), NVME_INT_PAGES,
359 				    use_sgl);
360 
361 	return sizeof(struct nvme_iod) + alloc_size;
362 }
363 
364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
365 				unsigned int hctx_idx)
366 {
367 	struct nvme_dev *dev = data;
368 	struct nvme_queue *nvmeq = dev->queues[0];
369 
370 	WARN_ON(hctx_idx != 0);
371 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
372 	WARN_ON(nvmeq->tags);
373 
374 	hctx->driver_data = nvmeq;
375 	nvmeq->tags = &dev->admin_tagset.tags[0];
376 	return 0;
377 }
378 
379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380 {
381 	struct nvme_queue *nvmeq = hctx->driver_data;
382 
383 	nvmeq->tags = NULL;
384 }
385 
386 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
387 			  unsigned int hctx_idx)
388 {
389 	struct nvme_dev *dev = data;
390 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
391 
392 	if (!nvmeq->tags)
393 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
394 
395 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
396 	hctx->driver_data = nvmeq;
397 	return 0;
398 }
399 
400 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
401 		unsigned int hctx_idx, unsigned int numa_node)
402 {
403 	struct nvme_dev *dev = set->driver_data;
404 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
405 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
406 	struct nvme_queue *nvmeq = dev->queues[queue_idx];
407 
408 	BUG_ON(!nvmeq);
409 	iod->nvmeq = nvmeq;
410 	return 0;
411 }
412 
413 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
414 {
415 	struct nvme_dev *dev = set->driver_data;
416 
417 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
418 }
419 
420 /**
421  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
422  * @nvmeq: The queue to use
423  * @cmd: The command to send
424  *
425  * Safe to use from interrupt context
426  */
427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
428 						struct nvme_command *cmd)
429 {
430 	u16 tail = nvmeq->sq_tail;
431 
432 	if (nvmeq->sq_cmds_io)
433 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
434 	else
435 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
436 
437 	if (++tail == nvmeq->q_depth)
438 		tail = 0;
439 	if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
440 					      nvmeq->dbbuf_sq_ei))
441 		writel(tail, nvmeq->q_db);
442 	nvmeq->sq_tail = tail;
443 }
444 
445 static void **nvme_pci_iod_list(struct request *req)
446 {
447 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
448 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
449 }
450 
451 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
452 {
453 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
454 	int nseg = blk_rq_nr_phys_segments(rq);
455 	unsigned int size = blk_rq_payload_bytes(rq);
456 
457 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
458 		size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
459 				iod->use_sgl);
460 
461 		iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
462 		if (!iod->sg)
463 			return BLK_STS_RESOURCE;
464 	} else {
465 		iod->sg = iod->inline_sg;
466 	}
467 
468 	iod->aborted = 0;
469 	iod->npages = -1;
470 	iod->nents = 0;
471 	iod->length = size;
472 
473 	return BLK_STS_OK;
474 }
475 
476 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
477 {
478 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
479 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
480 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
481 
482 	int i;
483 
484 	if (iod->npages == 0)
485 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
486 			dma_addr);
487 
488 	for (i = 0; i < iod->npages; i++) {
489 		void *addr = nvme_pci_iod_list(req)[i];
490 
491 		if (iod->use_sgl) {
492 			struct nvme_sgl_desc *sg_list = addr;
493 
494 			next_dma_addr =
495 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
496 		} else {
497 			__le64 *prp_list = addr;
498 
499 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
500 		}
501 
502 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
503 		dma_addr = next_dma_addr;
504 	}
505 
506 	if (iod->sg != iod->inline_sg)
507 		kfree(iod->sg);
508 }
509 
510 #ifdef CONFIG_BLK_DEV_INTEGRITY
511 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
512 {
513 	if (be32_to_cpu(pi->ref_tag) == v)
514 		pi->ref_tag = cpu_to_be32(p);
515 }
516 
517 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
518 {
519 	if (be32_to_cpu(pi->ref_tag) == p)
520 		pi->ref_tag = cpu_to_be32(v);
521 }
522 
523 /**
524  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
525  *
526  * The virtual start sector is the one that was originally submitted by the
527  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
528  * start sector may be different. Remap protection information to match the
529  * physical LBA on writes, and back to the original seed on reads.
530  *
531  * Type 0 and 3 do not have a ref tag, so no remapping required.
532  */
533 static void nvme_dif_remap(struct request *req,
534 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
535 {
536 	struct nvme_ns *ns = req->rq_disk->private_data;
537 	struct bio_integrity_payload *bip;
538 	struct t10_pi_tuple *pi;
539 	void *p, *pmap;
540 	u32 i, nlb, ts, phys, virt;
541 
542 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
543 		return;
544 
545 	bip = bio_integrity(req->bio);
546 	if (!bip)
547 		return;
548 
549 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
550 
551 	p = pmap;
552 	virt = bip_get_seed(bip);
553 	phys = nvme_block_nr(ns, blk_rq_pos(req));
554 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
555 	ts = ns->disk->queue->integrity.tuple_size;
556 
557 	for (i = 0; i < nlb; i++, virt++, phys++) {
558 		pi = (struct t10_pi_tuple *)p;
559 		dif_swap(phys, virt, pi);
560 		p += ts;
561 	}
562 	kunmap_atomic(pmap);
563 }
564 #else /* CONFIG_BLK_DEV_INTEGRITY */
565 static void nvme_dif_remap(struct request *req,
566 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
567 {
568 }
569 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
570 {
571 }
572 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
573 {
574 }
575 #endif
576 
577 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
578 {
579 	int i;
580 	struct scatterlist *sg;
581 
582 	for_each_sg(sgl, sg, nents, i) {
583 		dma_addr_t phys = sg_phys(sg);
584 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
585 			"dma_address:%pad dma_length:%d\n",
586 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
587 			sg_dma_len(sg));
588 	}
589 }
590 
591 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
592 		struct request *req, struct nvme_rw_command *cmnd)
593 {
594 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595 	struct dma_pool *pool;
596 	int length = blk_rq_payload_bytes(req);
597 	struct scatterlist *sg = iod->sg;
598 	int dma_len = sg_dma_len(sg);
599 	u64 dma_addr = sg_dma_address(sg);
600 	u32 page_size = dev->ctrl.page_size;
601 	int offset = dma_addr & (page_size - 1);
602 	__le64 *prp_list;
603 	void **list = nvme_pci_iod_list(req);
604 	dma_addr_t prp_dma;
605 	int nprps, i;
606 
607 	iod->use_sgl = false;
608 
609 	length -= (page_size - offset);
610 	if (length <= 0) {
611 		iod->first_dma = 0;
612 		goto done;
613 	}
614 
615 	dma_len -= (page_size - offset);
616 	if (dma_len) {
617 		dma_addr += (page_size - offset);
618 	} else {
619 		sg = sg_next(sg);
620 		dma_addr = sg_dma_address(sg);
621 		dma_len = sg_dma_len(sg);
622 	}
623 
624 	if (length <= page_size) {
625 		iod->first_dma = dma_addr;
626 		goto done;
627 	}
628 
629 	nprps = DIV_ROUND_UP(length, page_size);
630 	if (nprps <= (256 / 8)) {
631 		pool = dev->prp_small_pool;
632 		iod->npages = 0;
633 	} else {
634 		pool = dev->prp_page_pool;
635 		iod->npages = 1;
636 	}
637 
638 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
639 	if (!prp_list) {
640 		iod->first_dma = dma_addr;
641 		iod->npages = -1;
642 		return BLK_STS_RESOURCE;
643 	}
644 	list[0] = prp_list;
645 	iod->first_dma = prp_dma;
646 	i = 0;
647 	for (;;) {
648 		if (i == page_size >> 3) {
649 			__le64 *old_prp_list = prp_list;
650 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
651 			if (!prp_list)
652 				return BLK_STS_RESOURCE;
653 			list[iod->npages++] = prp_list;
654 			prp_list[0] = old_prp_list[i - 1];
655 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
656 			i = 1;
657 		}
658 		prp_list[i++] = cpu_to_le64(dma_addr);
659 		dma_len -= page_size;
660 		dma_addr += page_size;
661 		length -= page_size;
662 		if (length <= 0)
663 			break;
664 		if (dma_len > 0)
665 			continue;
666 		if (unlikely(dma_len < 0))
667 			goto bad_sgl;
668 		sg = sg_next(sg);
669 		dma_addr = sg_dma_address(sg);
670 		dma_len = sg_dma_len(sg);
671 	}
672 
673 done:
674 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
675 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
676 
677 	return BLK_STS_OK;
678 
679  bad_sgl:
680 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
681 			"Invalid SGL for payload:%d nents:%d\n",
682 			blk_rq_payload_bytes(req), iod->nents);
683 	return BLK_STS_IOERR;
684 }
685 
686 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
687 		struct scatterlist *sg)
688 {
689 	sge->addr = cpu_to_le64(sg_dma_address(sg));
690 	sge->length = cpu_to_le32(sg_dma_len(sg));
691 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
692 }
693 
694 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
695 		dma_addr_t dma_addr, int entries)
696 {
697 	sge->addr = cpu_to_le64(dma_addr);
698 	if (entries < SGES_PER_PAGE) {
699 		sge->length = cpu_to_le32(entries * sizeof(*sge));
700 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
701 	} else {
702 		sge->length = cpu_to_le32(PAGE_SIZE);
703 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
704 	}
705 }
706 
707 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
708 		struct request *req, struct nvme_rw_command *cmd)
709 {
710 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
711 	int length = blk_rq_payload_bytes(req);
712 	struct dma_pool *pool;
713 	struct nvme_sgl_desc *sg_list;
714 	struct scatterlist *sg = iod->sg;
715 	int entries = iod->nents, i = 0;
716 	dma_addr_t sgl_dma;
717 
718 	iod->use_sgl = true;
719 
720 	/* setting the transfer type as SGL */
721 	cmd->flags = NVME_CMD_SGL_METABUF;
722 
723 	if (length == sg_dma_len(sg)) {
724 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
725 		return BLK_STS_OK;
726 	}
727 
728 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
729 		pool = dev->prp_small_pool;
730 		iod->npages = 0;
731 	} else {
732 		pool = dev->prp_page_pool;
733 		iod->npages = 1;
734 	}
735 
736 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
737 	if (!sg_list) {
738 		iod->npages = -1;
739 		return BLK_STS_RESOURCE;
740 	}
741 
742 	nvme_pci_iod_list(req)[0] = sg_list;
743 	iod->first_dma = sgl_dma;
744 
745 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
746 
747 	do {
748 		if (i == SGES_PER_PAGE) {
749 			struct nvme_sgl_desc *old_sg_desc = sg_list;
750 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
751 
752 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
753 			if (!sg_list)
754 				return BLK_STS_RESOURCE;
755 
756 			i = 0;
757 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
758 			sg_list[i++] = *link;
759 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
760 		}
761 
762 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
763 
764 		length -= sg_dma_len(sg);
765 		sg = sg_next(sg);
766 		entries--;
767 	} while (length > 0);
768 
769 	WARN_ON(entries > 0);
770 	return BLK_STS_OK;
771 }
772 
773 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
774 {
775 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
776 	unsigned int avg_seg_size;
777 
778 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req),
779 			blk_rq_nr_phys_segments(req));
780 
781 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
782 		return false;
783 	if (!iod->nvmeq->qid)
784 		return false;
785 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
786 		return false;
787 	return true;
788 }
789 
790 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
791 		struct nvme_command *cmnd)
792 {
793 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
794 	struct request_queue *q = req->q;
795 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
796 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
797 	blk_status_t ret = BLK_STS_IOERR;
798 
799 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
800 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
801 	if (!iod->nents)
802 		goto out;
803 
804 	ret = BLK_STS_RESOURCE;
805 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
806 				DMA_ATTR_NO_WARN))
807 		goto out;
808 
809 	if (nvme_pci_use_sgls(dev, req))
810 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811 	else
812 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813 
814 	if (ret != BLK_STS_OK)
815 		goto out_unmap;
816 
817 	ret = BLK_STS_IOERR;
818 	if (blk_integrity_rq(req)) {
819 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
820 			goto out_unmap;
821 
822 		sg_init_table(&iod->meta_sg, 1);
823 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
824 			goto out_unmap;
825 
826 		if (req_op(req) == REQ_OP_WRITE)
827 			nvme_dif_remap(req, nvme_dif_prep);
828 
829 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
830 			goto out_unmap;
831 	}
832 
833 	if (blk_integrity_rq(req))
834 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
835 	return BLK_STS_OK;
836 
837 out_unmap:
838 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
839 out:
840 	return ret;
841 }
842 
843 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
844 {
845 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
847 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
848 
849 	if (iod->nents) {
850 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
851 		if (blk_integrity_rq(req)) {
852 			if (req_op(req) == REQ_OP_READ)
853 				nvme_dif_remap(req, nvme_dif_complete);
854 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
855 		}
856 	}
857 
858 	nvme_cleanup_cmd(req);
859 	nvme_free_iod(dev, req);
860 }
861 
862 /*
863  * NOTE: ns is NULL when called on the admin queue.
864  */
865 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
866 			 const struct blk_mq_queue_data *bd)
867 {
868 	struct nvme_ns *ns = hctx->queue->queuedata;
869 	struct nvme_queue *nvmeq = hctx->driver_data;
870 	struct nvme_dev *dev = nvmeq->dev;
871 	struct request *req = bd->rq;
872 	struct nvme_command cmnd;
873 	blk_status_t ret;
874 
875 	ret = nvme_setup_cmd(ns, req, &cmnd);
876 	if (ret)
877 		return ret;
878 
879 	ret = nvme_init_iod(req, dev);
880 	if (ret)
881 		goto out_free_cmd;
882 
883 	if (blk_rq_nr_phys_segments(req)) {
884 		ret = nvme_map_data(dev, req, &cmnd);
885 		if (ret)
886 			goto out_cleanup_iod;
887 	}
888 
889 	blk_mq_start_request(req);
890 
891 	spin_lock_irq(&nvmeq->q_lock);
892 	if (unlikely(nvmeq->cq_vector < 0)) {
893 		ret = BLK_STS_IOERR;
894 		spin_unlock_irq(&nvmeq->q_lock);
895 		goto out_cleanup_iod;
896 	}
897 	__nvme_submit_cmd(nvmeq, &cmnd);
898 	nvme_process_cq(nvmeq);
899 	spin_unlock_irq(&nvmeq->q_lock);
900 	return BLK_STS_OK;
901 out_cleanup_iod:
902 	nvme_free_iod(dev, req);
903 out_free_cmd:
904 	nvme_cleanup_cmd(req);
905 	return ret;
906 }
907 
908 static void nvme_pci_complete_rq(struct request *req)
909 {
910 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911 
912 	nvme_unmap_data(iod->nvmeq->dev, req);
913 	nvme_complete_rq(req);
914 }
915 
916 /* We read the CQE phase first to check if the rest of the entry is valid */
917 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
918 		u16 phase)
919 {
920 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
921 }
922 
923 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
924 {
925 	u16 head = nvmeq->cq_head;
926 
927 	if (likely(nvmeq->cq_vector >= 0)) {
928 		if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
929 						      nvmeq->dbbuf_cq_ei))
930 			writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
931 	}
932 }
933 
934 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
935 		struct nvme_completion *cqe)
936 {
937 	struct request *req;
938 
939 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
940 		dev_warn(nvmeq->dev->ctrl.device,
941 			"invalid id %d completed on queue %d\n",
942 			cqe->command_id, le16_to_cpu(cqe->sq_id));
943 		return;
944 	}
945 
946 	/*
947 	 * AEN requests are special as they don't time out and can
948 	 * survive any kind of queue freeze and often don't respond to
949 	 * aborts.  We don't even bother to allocate a struct request
950 	 * for them but rather special case them here.
951 	 */
952 	if (unlikely(nvmeq->qid == 0 &&
953 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
954 		nvme_complete_async_event(&nvmeq->dev->ctrl,
955 				cqe->status, &cqe->result);
956 		return;
957 	}
958 
959 	nvmeq->cqe_seen = 1;
960 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
961 	nvme_end_request(req, cqe->status, cqe->result);
962 }
963 
964 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
965 		struct nvme_completion *cqe)
966 {
967 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
968 		*cqe = nvmeq->cqes[nvmeq->cq_head];
969 
970 		if (++nvmeq->cq_head == nvmeq->q_depth) {
971 			nvmeq->cq_head = 0;
972 			nvmeq->cq_phase = !nvmeq->cq_phase;
973 		}
974 		return true;
975 	}
976 	return false;
977 }
978 
979 static void nvme_process_cq(struct nvme_queue *nvmeq)
980 {
981 	struct nvme_completion cqe;
982 	int consumed = 0;
983 
984 	while (nvme_read_cqe(nvmeq, &cqe)) {
985 		nvme_handle_cqe(nvmeq, &cqe);
986 		consumed++;
987 	}
988 
989 	if (consumed)
990 		nvme_ring_cq_doorbell(nvmeq);
991 }
992 
993 static irqreturn_t nvme_irq(int irq, void *data)
994 {
995 	irqreturn_t result;
996 	struct nvme_queue *nvmeq = data;
997 	spin_lock(&nvmeq->q_lock);
998 	nvme_process_cq(nvmeq);
999 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1000 	nvmeq->cqe_seen = 0;
1001 	spin_unlock(&nvmeq->q_lock);
1002 	return result;
1003 }
1004 
1005 static irqreturn_t nvme_irq_check(int irq, void *data)
1006 {
1007 	struct nvme_queue *nvmeq = data;
1008 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1009 		return IRQ_WAKE_THREAD;
1010 	return IRQ_NONE;
1011 }
1012 
1013 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1014 {
1015 	struct nvme_completion cqe;
1016 	int found = 0, consumed = 0;
1017 
1018 	if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1019 		return 0;
1020 
1021 	spin_lock_irq(&nvmeq->q_lock);
1022 	while (nvme_read_cqe(nvmeq, &cqe)) {
1023 		nvme_handle_cqe(nvmeq, &cqe);
1024 		consumed++;
1025 
1026 		if (tag == cqe.command_id) {
1027 			found = 1;
1028 			break;
1029 		}
1030        }
1031 
1032 	if (consumed)
1033 		nvme_ring_cq_doorbell(nvmeq);
1034 	spin_unlock_irq(&nvmeq->q_lock);
1035 
1036 	return found;
1037 }
1038 
1039 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1040 {
1041 	struct nvme_queue *nvmeq = hctx->driver_data;
1042 
1043 	return __nvme_poll(nvmeq, tag);
1044 }
1045 
1046 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1047 {
1048 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1049 	struct nvme_queue *nvmeq = dev->queues[0];
1050 	struct nvme_command c;
1051 
1052 	memset(&c, 0, sizeof(c));
1053 	c.common.opcode = nvme_admin_async_event;
1054 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1055 
1056 	spin_lock_irq(&nvmeq->q_lock);
1057 	__nvme_submit_cmd(nvmeq, &c);
1058 	spin_unlock_irq(&nvmeq->q_lock);
1059 }
1060 
1061 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1062 {
1063 	struct nvme_command c;
1064 
1065 	memset(&c, 0, sizeof(c));
1066 	c.delete_queue.opcode = opcode;
1067 	c.delete_queue.qid = cpu_to_le16(id);
1068 
1069 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1070 }
1071 
1072 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1073 						struct nvme_queue *nvmeq)
1074 {
1075 	struct nvme_command c;
1076 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1077 
1078 	/*
1079 	 * Note: we (ab)use the fact that the prp fields survive if no data
1080 	 * is attached to the request.
1081 	 */
1082 	memset(&c, 0, sizeof(c));
1083 	c.create_cq.opcode = nvme_admin_create_cq;
1084 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1085 	c.create_cq.cqid = cpu_to_le16(qid);
1086 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1087 	c.create_cq.cq_flags = cpu_to_le16(flags);
1088 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1089 
1090 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1091 }
1092 
1093 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1094 						struct nvme_queue *nvmeq)
1095 {
1096 	struct nvme_command c;
1097 	int flags = NVME_QUEUE_PHYS_CONTIG;
1098 
1099 	/*
1100 	 * Note: we (ab)use the fact that the prp fields survive if no data
1101 	 * is attached to the request.
1102 	 */
1103 	memset(&c, 0, sizeof(c));
1104 	c.create_sq.opcode = nvme_admin_create_sq;
1105 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1106 	c.create_sq.sqid = cpu_to_le16(qid);
1107 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1108 	c.create_sq.sq_flags = cpu_to_le16(flags);
1109 	c.create_sq.cqid = cpu_to_le16(qid);
1110 
1111 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1112 }
1113 
1114 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1115 {
1116 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1117 }
1118 
1119 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1120 {
1121 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1122 }
1123 
1124 static void abort_endio(struct request *req, blk_status_t error)
1125 {
1126 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1127 	struct nvme_queue *nvmeq = iod->nvmeq;
1128 
1129 	dev_warn(nvmeq->dev->ctrl.device,
1130 		 "Abort status: 0x%x", nvme_req(req)->status);
1131 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1132 	blk_mq_free_request(req);
1133 }
1134 
1135 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1136 {
1137 
1138 	/* If true, indicates loss of adapter communication, possibly by a
1139 	 * NVMe Subsystem reset.
1140 	 */
1141 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1142 
1143 	/* If there is a reset ongoing, we shouldn't reset again. */
1144 	if (dev->ctrl.state == NVME_CTRL_RESETTING)
1145 		return false;
1146 
1147 	/* We shouldn't reset unless the controller is on fatal error state
1148 	 * _or_ if we lost the communication with it.
1149 	 */
1150 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1151 		return false;
1152 
1153 	/* If PCI error recovery process is happening, we cannot reset or
1154 	 * the recovery mechanism will surely fail.
1155 	 */
1156 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1157 		return false;
1158 
1159 	return true;
1160 }
1161 
1162 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1163 {
1164 	/* Read a config register to help see what died. */
1165 	u16 pci_status;
1166 	int result;
1167 
1168 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1169 				      &pci_status);
1170 	if (result == PCIBIOS_SUCCESSFUL)
1171 		dev_warn(dev->ctrl.device,
1172 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1173 			 csts, pci_status);
1174 	else
1175 		dev_warn(dev->ctrl.device,
1176 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1177 			 csts, result);
1178 }
1179 
1180 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1181 {
1182 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1183 	struct nvme_queue *nvmeq = iod->nvmeq;
1184 	struct nvme_dev *dev = nvmeq->dev;
1185 	struct request *abort_req;
1186 	struct nvme_command cmd;
1187 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1188 
1189 	/*
1190 	 * Reset immediately if the controller is failed
1191 	 */
1192 	if (nvme_should_reset(dev, csts)) {
1193 		nvme_warn_reset(dev, csts);
1194 		nvme_dev_disable(dev, false);
1195 		nvme_reset_ctrl(&dev->ctrl);
1196 		return BLK_EH_HANDLED;
1197 	}
1198 
1199 	/*
1200 	 * Did we miss an interrupt?
1201 	 */
1202 	if (__nvme_poll(nvmeq, req->tag)) {
1203 		dev_warn(dev->ctrl.device,
1204 			 "I/O %d QID %d timeout, completion polled\n",
1205 			 req->tag, nvmeq->qid);
1206 		return BLK_EH_HANDLED;
1207 	}
1208 
1209 	/*
1210 	 * Shutdown immediately if controller times out while starting. The
1211 	 * reset work will see the pci device disabled when it gets the forced
1212 	 * cancellation error. All outstanding requests are completed on
1213 	 * shutdown, so we return BLK_EH_HANDLED.
1214 	 */
1215 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1216 		dev_warn(dev->ctrl.device,
1217 			 "I/O %d QID %d timeout, disable controller\n",
1218 			 req->tag, nvmeq->qid);
1219 		nvme_dev_disable(dev, false);
1220 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1221 		return BLK_EH_HANDLED;
1222 	}
1223 
1224 	/*
1225  	 * Shutdown the controller immediately and schedule a reset if the
1226  	 * command was already aborted once before and still hasn't been
1227  	 * returned to the driver, or if this is the admin queue.
1228 	 */
1229 	if (!nvmeq->qid || iod->aborted) {
1230 		dev_warn(dev->ctrl.device,
1231 			 "I/O %d QID %d timeout, reset controller\n",
1232 			 req->tag, nvmeq->qid);
1233 		nvme_dev_disable(dev, false);
1234 		nvme_reset_ctrl(&dev->ctrl);
1235 
1236 		/*
1237 		 * Mark the request as handled, since the inline shutdown
1238 		 * forces all outstanding requests to complete.
1239 		 */
1240 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1241 		return BLK_EH_HANDLED;
1242 	}
1243 
1244 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1245 		atomic_inc(&dev->ctrl.abort_limit);
1246 		return BLK_EH_RESET_TIMER;
1247 	}
1248 	iod->aborted = 1;
1249 
1250 	memset(&cmd, 0, sizeof(cmd));
1251 	cmd.abort.opcode = nvme_admin_abort_cmd;
1252 	cmd.abort.cid = req->tag;
1253 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1254 
1255 	dev_warn(nvmeq->dev->ctrl.device,
1256 		"I/O %d QID %d timeout, aborting\n",
1257 		 req->tag, nvmeq->qid);
1258 
1259 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1260 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1261 	if (IS_ERR(abort_req)) {
1262 		atomic_inc(&dev->ctrl.abort_limit);
1263 		return BLK_EH_RESET_TIMER;
1264 	}
1265 
1266 	abort_req->timeout = ADMIN_TIMEOUT;
1267 	abort_req->end_io_data = NULL;
1268 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1269 
1270 	/*
1271 	 * The aborted req will be completed on receiving the abort req.
1272 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1273 	 * as the device then is in a faulty state.
1274 	 */
1275 	return BLK_EH_RESET_TIMER;
1276 }
1277 
1278 static void nvme_free_queue(struct nvme_queue *nvmeq)
1279 {
1280 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1281 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1282 	if (nvmeq->sq_cmds)
1283 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1284 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1285 	kfree(nvmeq);
1286 }
1287 
1288 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1289 {
1290 	int i;
1291 
1292 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1293 		struct nvme_queue *nvmeq = dev->queues[i];
1294 		dev->ctrl.queue_count--;
1295 		dev->queues[i] = NULL;
1296 		nvme_free_queue(nvmeq);
1297 	}
1298 }
1299 
1300 /**
1301  * nvme_suspend_queue - put queue into suspended state
1302  * @nvmeq - queue to suspend
1303  */
1304 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1305 {
1306 	int vector;
1307 
1308 	spin_lock_irq(&nvmeq->q_lock);
1309 	if (nvmeq->cq_vector == -1) {
1310 		spin_unlock_irq(&nvmeq->q_lock);
1311 		return 1;
1312 	}
1313 	vector = nvmeq->cq_vector;
1314 	nvmeq->dev->online_queues--;
1315 	nvmeq->cq_vector = -1;
1316 	spin_unlock_irq(&nvmeq->q_lock);
1317 
1318 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1319 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1320 
1321 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1322 
1323 	return 0;
1324 }
1325 
1326 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1327 {
1328 	struct nvme_queue *nvmeq = dev->queues[0];
1329 
1330 	if (!nvmeq)
1331 		return;
1332 	if (nvme_suspend_queue(nvmeq))
1333 		return;
1334 
1335 	if (shutdown)
1336 		nvme_shutdown_ctrl(&dev->ctrl);
1337 	else
1338 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1339 
1340 	spin_lock_irq(&nvmeq->q_lock);
1341 	nvme_process_cq(nvmeq);
1342 	spin_unlock_irq(&nvmeq->q_lock);
1343 }
1344 
1345 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1346 				int entry_size)
1347 {
1348 	int q_depth = dev->q_depth;
1349 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1350 					  dev->ctrl.page_size);
1351 
1352 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1353 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1354 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1355 		q_depth = div_u64(mem_per_q, entry_size);
1356 
1357 		/*
1358 		 * Ensure the reduced q_depth is above some threshold where it
1359 		 * would be better to map queues in system memory with the
1360 		 * original depth
1361 		 */
1362 		if (q_depth < 64)
1363 			return -ENOMEM;
1364 	}
1365 
1366 	return q_depth;
1367 }
1368 
1369 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1370 				int qid, int depth)
1371 {
1372 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1373 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1374 						      dev->ctrl.page_size);
1375 		nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1376 		nvmeq->sq_cmds_io = dev->cmb + offset;
1377 	} else {
1378 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1379 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1380 		if (!nvmeq->sq_cmds)
1381 			return -ENOMEM;
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1388 							int depth, int node)
1389 {
1390 	struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1391 							node);
1392 	if (!nvmeq)
1393 		return NULL;
1394 
1395 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1396 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1397 	if (!nvmeq->cqes)
1398 		goto free_nvmeq;
1399 
1400 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1401 		goto free_cqdma;
1402 
1403 	nvmeq->q_dmadev = dev->dev;
1404 	nvmeq->dev = dev;
1405 	spin_lock_init(&nvmeq->q_lock);
1406 	nvmeq->cq_head = 0;
1407 	nvmeq->cq_phase = 1;
1408 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1409 	nvmeq->q_depth = depth;
1410 	nvmeq->qid = qid;
1411 	nvmeq->cq_vector = -1;
1412 	dev->queues[qid] = nvmeq;
1413 	dev->ctrl.queue_count++;
1414 
1415 	return nvmeq;
1416 
1417  free_cqdma:
1418 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1419 							nvmeq->cq_dma_addr);
1420  free_nvmeq:
1421 	kfree(nvmeq);
1422 	return NULL;
1423 }
1424 
1425 static int queue_request_irq(struct nvme_queue *nvmeq)
1426 {
1427 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1428 	int nr = nvmeq->dev->ctrl.instance;
1429 
1430 	if (use_threaded_interrupts) {
1431 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1432 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1433 	} else {
1434 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1435 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1436 	}
1437 }
1438 
1439 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1440 {
1441 	struct nvme_dev *dev = nvmeq->dev;
1442 
1443 	spin_lock_irq(&nvmeq->q_lock);
1444 	nvmeq->sq_tail = 0;
1445 	nvmeq->cq_head = 0;
1446 	nvmeq->cq_phase = 1;
1447 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1448 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1449 	nvme_dbbuf_init(dev, nvmeq, qid);
1450 	dev->online_queues++;
1451 	spin_unlock_irq(&nvmeq->q_lock);
1452 }
1453 
1454 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1455 {
1456 	struct nvme_dev *dev = nvmeq->dev;
1457 	int result;
1458 
1459 	nvmeq->cq_vector = qid - 1;
1460 	result = adapter_alloc_cq(dev, qid, nvmeq);
1461 	if (result < 0)
1462 		return result;
1463 
1464 	result = adapter_alloc_sq(dev, qid, nvmeq);
1465 	if (result < 0)
1466 		goto release_cq;
1467 
1468 	nvme_init_queue(nvmeq, qid);
1469 	result = queue_request_irq(nvmeq);
1470 	if (result < 0)
1471 		goto release_sq;
1472 
1473 	return result;
1474 
1475  release_sq:
1476 	adapter_delete_sq(dev, qid);
1477  release_cq:
1478 	adapter_delete_cq(dev, qid);
1479 	return result;
1480 }
1481 
1482 static const struct blk_mq_ops nvme_mq_admin_ops = {
1483 	.queue_rq	= nvme_queue_rq,
1484 	.complete	= nvme_pci_complete_rq,
1485 	.init_hctx	= nvme_admin_init_hctx,
1486 	.exit_hctx      = nvme_admin_exit_hctx,
1487 	.init_request	= nvme_init_request,
1488 	.timeout	= nvme_timeout,
1489 };
1490 
1491 static const struct blk_mq_ops nvme_mq_ops = {
1492 	.queue_rq	= nvme_queue_rq,
1493 	.complete	= nvme_pci_complete_rq,
1494 	.init_hctx	= nvme_init_hctx,
1495 	.init_request	= nvme_init_request,
1496 	.map_queues	= nvme_pci_map_queues,
1497 	.timeout	= nvme_timeout,
1498 	.poll		= nvme_poll,
1499 };
1500 
1501 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1502 {
1503 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1504 		/*
1505 		 * If the controller was reset during removal, it's possible
1506 		 * user requests may be waiting on a stopped queue. Start the
1507 		 * queue to flush these to completion.
1508 		 */
1509 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1510 		blk_cleanup_queue(dev->ctrl.admin_q);
1511 		blk_mq_free_tag_set(&dev->admin_tagset);
1512 	}
1513 }
1514 
1515 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1516 {
1517 	if (!dev->ctrl.admin_q) {
1518 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1519 		dev->admin_tagset.nr_hw_queues = 1;
1520 
1521 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1522 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1523 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1524 		dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1525 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1526 		dev->admin_tagset.driver_data = dev;
1527 
1528 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1529 			return -ENOMEM;
1530 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1531 
1532 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1533 		if (IS_ERR(dev->ctrl.admin_q)) {
1534 			blk_mq_free_tag_set(&dev->admin_tagset);
1535 			return -ENOMEM;
1536 		}
1537 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1538 			nvme_dev_remove_admin(dev);
1539 			dev->ctrl.admin_q = NULL;
1540 			return -ENODEV;
1541 		}
1542 	} else
1543 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1544 
1545 	return 0;
1546 }
1547 
1548 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1549 {
1550 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1551 }
1552 
1553 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1554 {
1555 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1556 
1557 	if (size <= dev->bar_mapped_size)
1558 		return 0;
1559 	if (size > pci_resource_len(pdev, 0))
1560 		return -ENOMEM;
1561 	if (dev->bar)
1562 		iounmap(dev->bar);
1563 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1564 	if (!dev->bar) {
1565 		dev->bar_mapped_size = 0;
1566 		return -ENOMEM;
1567 	}
1568 	dev->bar_mapped_size = size;
1569 	dev->dbs = dev->bar + NVME_REG_DBS;
1570 
1571 	return 0;
1572 }
1573 
1574 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1575 {
1576 	int result;
1577 	u32 aqa;
1578 	struct nvme_queue *nvmeq;
1579 
1580 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1581 	if (result < 0)
1582 		return result;
1583 
1584 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1585 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1586 
1587 	if (dev->subsystem &&
1588 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1589 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1590 
1591 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1592 	if (result < 0)
1593 		return result;
1594 
1595 	nvmeq = dev->queues[0];
1596 	if (!nvmeq) {
1597 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1598 					dev_to_node(dev->dev));
1599 		if (!nvmeq)
1600 			return -ENOMEM;
1601 	}
1602 
1603 	aqa = nvmeq->q_depth - 1;
1604 	aqa |= aqa << 16;
1605 
1606 	writel(aqa, dev->bar + NVME_REG_AQA);
1607 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1608 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1609 
1610 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1611 	if (result)
1612 		return result;
1613 
1614 	nvmeq->cq_vector = 0;
1615 	nvme_init_queue(nvmeq, 0);
1616 	result = queue_request_irq(nvmeq);
1617 	if (result) {
1618 		nvmeq->cq_vector = -1;
1619 		return result;
1620 	}
1621 
1622 	return result;
1623 }
1624 
1625 static int nvme_create_io_queues(struct nvme_dev *dev)
1626 {
1627 	unsigned i, max;
1628 	int ret = 0;
1629 
1630 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1631 		/* vector == qid - 1, match nvme_create_queue */
1632 		if (!nvme_alloc_queue(dev, i, dev->q_depth,
1633 		     pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1634 			ret = -ENOMEM;
1635 			break;
1636 		}
1637 	}
1638 
1639 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1640 	for (i = dev->online_queues; i <= max; i++) {
1641 		ret = nvme_create_queue(dev->queues[i], i);
1642 		if (ret)
1643 			break;
1644 	}
1645 
1646 	/*
1647 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1648 	 * than the desired aount of queues, and even a controller without
1649 	 * I/O queues an still be used to issue admin commands.  This might
1650 	 * be useful to upgrade a buggy firmware for example.
1651 	 */
1652 	return ret >= 0 ? 0 : ret;
1653 }
1654 
1655 static ssize_t nvme_cmb_show(struct device *dev,
1656 			     struct device_attribute *attr,
1657 			     char *buf)
1658 {
1659 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1660 
1661 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1662 		       ndev->cmbloc, ndev->cmbsz);
1663 }
1664 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1665 
1666 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1667 {
1668 	u64 szu, size, offset;
1669 	resource_size_t bar_size;
1670 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1671 	void __iomem *cmb;
1672 	int bar;
1673 
1674 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1675 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1676 		return NULL;
1677 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1678 
1679 	if (!use_cmb_sqes)
1680 		return NULL;
1681 
1682 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1683 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1684 	offset = szu * NVME_CMB_OFST(dev->cmbloc);
1685 	bar = NVME_CMB_BIR(dev->cmbloc);
1686 	bar_size = pci_resource_len(pdev, bar);
1687 
1688 	if (offset > bar_size)
1689 		return NULL;
1690 
1691 	/*
1692 	 * Controllers may support a CMB size larger than their BAR,
1693 	 * for example, due to being behind a bridge. Reduce the CMB to
1694 	 * the reported size of the BAR
1695 	 */
1696 	if (size > bar_size - offset)
1697 		size = bar_size - offset;
1698 
1699 	cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1700 	if (!cmb)
1701 		return NULL;
1702 
1703 	dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1704 	dev->cmb_size = size;
1705 	return cmb;
1706 }
1707 
1708 static inline void nvme_release_cmb(struct nvme_dev *dev)
1709 {
1710 	if (dev->cmb) {
1711 		iounmap(dev->cmb);
1712 		dev->cmb = NULL;
1713 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1714 					     &dev_attr_cmb.attr, NULL);
1715 		dev->cmbsz = 0;
1716 	}
1717 }
1718 
1719 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1720 {
1721 	u64 dma_addr = dev->host_mem_descs_dma;
1722 	struct nvme_command c;
1723 	int ret;
1724 
1725 	memset(&c, 0, sizeof(c));
1726 	c.features.opcode	= nvme_admin_set_features;
1727 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1728 	c.features.dword11	= cpu_to_le32(bits);
1729 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1730 					      ilog2(dev->ctrl.page_size));
1731 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1732 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1733 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1734 
1735 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1736 	if (ret) {
1737 		dev_warn(dev->ctrl.device,
1738 			 "failed to set host mem (err %d, flags %#x).\n",
1739 			 ret, bits);
1740 	}
1741 	return ret;
1742 }
1743 
1744 static void nvme_free_host_mem(struct nvme_dev *dev)
1745 {
1746 	int i;
1747 
1748 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1749 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1750 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1751 
1752 		dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1753 				le64_to_cpu(desc->addr));
1754 	}
1755 
1756 	kfree(dev->host_mem_desc_bufs);
1757 	dev->host_mem_desc_bufs = NULL;
1758 	dma_free_coherent(dev->dev,
1759 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1760 			dev->host_mem_descs, dev->host_mem_descs_dma);
1761 	dev->host_mem_descs = NULL;
1762 	dev->nr_host_mem_descs = 0;
1763 }
1764 
1765 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1766 		u32 chunk_size)
1767 {
1768 	struct nvme_host_mem_buf_desc *descs;
1769 	u32 max_entries, len;
1770 	dma_addr_t descs_dma;
1771 	int i = 0;
1772 	void **bufs;
1773 	u64 size = 0, tmp;
1774 
1775 	tmp = (preferred + chunk_size - 1);
1776 	do_div(tmp, chunk_size);
1777 	max_entries = tmp;
1778 
1779 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1780 		max_entries = dev->ctrl.hmmaxd;
1781 
1782 	descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1783 			&descs_dma, GFP_KERNEL);
1784 	if (!descs)
1785 		goto out;
1786 
1787 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1788 	if (!bufs)
1789 		goto out_free_descs;
1790 
1791 	for (size = 0; size < preferred && i < max_entries; size += len) {
1792 		dma_addr_t dma_addr;
1793 
1794 		len = min_t(u64, chunk_size, preferred - size);
1795 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1796 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1797 		if (!bufs[i])
1798 			break;
1799 
1800 		descs[i].addr = cpu_to_le64(dma_addr);
1801 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1802 		i++;
1803 	}
1804 
1805 	if (!size)
1806 		goto out_free_bufs;
1807 
1808 	dev->nr_host_mem_descs = i;
1809 	dev->host_mem_size = size;
1810 	dev->host_mem_descs = descs;
1811 	dev->host_mem_descs_dma = descs_dma;
1812 	dev->host_mem_desc_bufs = bufs;
1813 	return 0;
1814 
1815 out_free_bufs:
1816 	while (--i >= 0) {
1817 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1818 
1819 		dma_free_coherent(dev->dev, size, bufs[i],
1820 				le64_to_cpu(descs[i].addr));
1821 	}
1822 
1823 	kfree(bufs);
1824 out_free_descs:
1825 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1826 			descs_dma);
1827 out:
1828 	dev->host_mem_descs = NULL;
1829 	return -ENOMEM;
1830 }
1831 
1832 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1833 {
1834 	u32 chunk_size;
1835 
1836 	/* start big and work our way down */
1837 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1838 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1839 	     chunk_size /= 2) {
1840 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1841 			if (!min || dev->host_mem_size >= min)
1842 				return 0;
1843 			nvme_free_host_mem(dev);
1844 		}
1845 	}
1846 
1847 	return -ENOMEM;
1848 }
1849 
1850 static int nvme_setup_host_mem(struct nvme_dev *dev)
1851 {
1852 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1853 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1854 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1855 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1856 	int ret = 0;
1857 
1858 	preferred = min(preferred, max);
1859 	if (min > max) {
1860 		dev_warn(dev->ctrl.device,
1861 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1862 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1863 		nvme_free_host_mem(dev);
1864 		return 0;
1865 	}
1866 
1867 	/*
1868 	 * If we already have a buffer allocated check if we can reuse it.
1869 	 */
1870 	if (dev->host_mem_descs) {
1871 		if (dev->host_mem_size >= min)
1872 			enable_bits |= NVME_HOST_MEM_RETURN;
1873 		else
1874 			nvme_free_host_mem(dev);
1875 	}
1876 
1877 	if (!dev->host_mem_descs) {
1878 		if (nvme_alloc_host_mem(dev, min, preferred)) {
1879 			dev_warn(dev->ctrl.device,
1880 				"failed to allocate host memory buffer.\n");
1881 			return 0; /* controller must work without HMB */
1882 		}
1883 
1884 		dev_info(dev->ctrl.device,
1885 			"allocated %lld MiB host memory buffer.\n",
1886 			dev->host_mem_size >> ilog2(SZ_1M));
1887 	}
1888 
1889 	ret = nvme_set_host_mem(dev, enable_bits);
1890 	if (ret)
1891 		nvme_free_host_mem(dev);
1892 	return ret;
1893 }
1894 
1895 static int nvme_setup_io_queues(struct nvme_dev *dev)
1896 {
1897 	struct nvme_queue *adminq = dev->queues[0];
1898 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1899 	int result, nr_io_queues;
1900 	unsigned long size;
1901 
1902 	nr_io_queues = num_present_cpus();
1903 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1904 	if (result < 0)
1905 		return result;
1906 
1907 	if (nr_io_queues == 0)
1908 		return 0;
1909 
1910 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1911 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1912 				sizeof(struct nvme_command));
1913 		if (result > 0)
1914 			dev->q_depth = result;
1915 		else
1916 			nvme_release_cmb(dev);
1917 	}
1918 
1919 	do {
1920 		size = db_bar_size(dev, nr_io_queues);
1921 		result = nvme_remap_bar(dev, size);
1922 		if (!result)
1923 			break;
1924 		if (!--nr_io_queues)
1925 			return -ENOMEM;
1926 	} while (1);
1927 	adminq->q_db = dev->dbs;
1928 
1929 	/* Deregister the admin queue's interrupt */
1930 	pci_free_irq(pdev, 0, adminq);
1931 
1932 	/*
1933 	 * If we enable msix early due to not intx, disable it again before
1934 	 * setting up the full range we need.
1935 	 */
1936 	pci_free_irq_vectors(pdev);
1937 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1938 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1939 	if (nr_io_queues <= 0)
1940 		return -EIO;
1941 	dev->max_qid = nr_io_queues;
1942 
1943 	/*
1944 	 * Should investigate if there's a performance win from allocating
1945 	 * more queues than interrupt vectors; it might allow the submission
1946 	 * path to scale better, even if the receive path is limited by the
1947 	 * number of interrupts.
1948 	 */
1949 
1950 	result = queue_request_irq(adminq);
1951 	if (result) {
1952 		adminq->cq_vector = -1;
1953 		return result;
1954 	}
1955 	return nvme_create_io_queues(dev);
1956 }
1957 
1958 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1959 {
1960 	struct nvme_queue *nvmeq = req->end_io_data;
1961 
1962 	blk_mq_free_request(req);
1963 	complete(&nvmeq->dev->ioq_wait);
1964 }
1965 
1966 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1967 {
1968 	struct nvme_queue *nvmeq = req->end_io_data;
1969 
1970 	if (!error) {
1971 		unsigned long flags;
1972 
1973 		/*
1974 		 * We might be called with the AQ q_lock held
1975 		 * and the I/O queue q_lock should always
1976 		 * nest inside the AQ one.
1977 		 */
1978 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1979 					SINGLE_DEPTH_NESTING);
1980 		nvme_process_cq(nvmeq);
1981 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1982 	}
1983 
1984 	nvme_del_queue_end(req, error);
1985 }
1986 
1987 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1988 {
1989 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1990 	struct request *req;
1991 	struct nvme_command cmd;
1992 
1993 	memset(&cmd, 0, sizeof(cmd));
1994 	cmd.delete_queue.opcode = opcode;
1995 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1996 
1997 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1998 	if (IS_ERR(req))
1999 		return PTR_ERR(req);
2000 
2001 	req->timeout = ADMIN_TIMEOUT;
2002 	req->end_io_data = nvmeq;
2003 
2004 	blk_execute_rq_nowait(q, NULL, req, false,
2005 			opcode == nvme_admin_delete_cq ?
2006 				nvme_del_cq_end : nvme_del_queue_end);
2007 	return 0;
2008 }
2009 
2010 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
2011 {
2012 	int pass;
2013 	unsigned long timeout;
2014 	u8 opcode = nvme_admin_delete_sq;
2015 
2016 	for (pass = 0; pass < 2; pass++) {
2017 		int sent = 0, i = queues;
2018 
2019 		reinit_completion(&dev->ioq_wait);
2020  retry:
2021 		timeout = ADMIN_TIMEOUT;
2022 		for (; i > 0; i--, sent++)
2023 			if (nvme_delete_queue(dev->queues[i], opcode))
2024 				break;
2025 
2026 		while (sent--) {
2027 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2028 			if (timeout == 0)
2029 				return;
2030 			if (i)
2031 				goto retry;
2032 		}
2033 		opcode = nvme_admin_delete_cq;
2034 	}
2035 }
2036 
2037 /*
2038  * Return: error value if an error occurred setting up the queues or calling
2039  * Identify Device.  0 if these succeeded, even if adding some of the
2040  * namespaces failed.  At the moment, these failures are silent.  TBD which
2041  * failures should be reported.
2042  */
2043 static int nvme_dev_add(struct nvme_dev *dev)
2044 {
2045 	if (!dev->ctrl.tagset) {
2046 		dev->tagset.ops = &nvme_mq_ops;
2047 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2048 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2049 		dev->tagset.numa_node = dev_to_node(dev->dev);
2050 		dev->tagset.queue_depth =
2051 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2052 		dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2053 		if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2054 			dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2055 					nvme_pci_cmd_size(dev, true));
2056 		}
2057 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2058 		dev->tagset.driver_data = dev;
2059 
2060 		if (blk_mq_alloc_tag_set(&dev->tagset))
2061 			return 0;
2062 		dev->ctrl.tagset = &dev->tagset;
2063 
2064 		nvme_dbbuf_set(dev);
2065 	} else {
2066 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2067 
2068 		/* Free previously allocated queues that are no longer usable */
2069 		nvme_free_queues(dev, dev->online_queues);
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 static int nvme_pci_enable(struct nvme_dev *dev)
2076 {
2077 	int result = -ENOMEM;
2078 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2079 
2080 	if (pci_enable_device_mem(pdev))
2081 		return result;
2082 
2083 	pci_set_master(pdev);
2084 
2085 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2086 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2087 		goto disable;
2088 
2089 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2090 		result = -ENODEV;
2091 		goto disable;
2092 	}
2093 
2094 	/*
2095 	 * Some devices and/or platforms don't advertise or work with INTx
2096 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2097 	 * adjust this later.
2098 	 */
2099 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2100 	if (result < 0)
2101 		return result;
2102 
2103 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2104 
2105 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2106 				io_queue_depth);
2107 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2108 	dev->dbs = dev->bar + 4096;
2109 
2110 	/*
2111 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2112 	 * some MacBook7,1 to avoid controller resets and data loss.
2113 	 */
2114 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2115 		dev->q_depth = 2;
2116 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2117 			"set queue depth=%u to work around controller resets\n",
2118 			dev->q_depth);
2119 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2120 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2121 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2122 		dev->q_depth = 64;
2123 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2124                         "set queue depth=%u\n", dev->q_depth);
2125 	}
2126 
2127 	/*
2128 	 * CMBs can currently only exist on >=1.2 PCIe devices. We only
2129 	 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
2130 	 * has no name we can pass NULL as final argument to
2131 	 * sysfs_add_file_to_group.
2132 	 */
2133 
2134 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
2135 		dev->cmb = nvme_map_cmb(dev);
2136 		if (dev->cmb) {
2137 			if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
2138 						    &dev_attr_cmb.attr, NULL))
2139 				dev_warn(dev->ctrl.device,
2140 					 "failed to add sysfs attribute for CMB\n");
2141 		}
2142 	}
2143 
2144 	pci_enable_pcie_error_reporting(pdev);
2145 	pci_save_state(pdev);
2146 	return 0;
2147 
2148  disable:
2149 	pci_disable_device(pdev);
2150 	return result;
2151 }
2152 
2153 static void nvme_dev_unmap(struct nvme_dev *dev)
2154 {
2155 	if (dev->bar)
2156 		iounmap(dev->bar);
2157 	pci_release_mem_regions(to_pci_dev(dev->dev));
2158 }
2159 
2160 static void nvme_pci_disable(struct nvme_dev *dev)
2161 {
2162 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2163 
2164 	nvme_release_cmb(dev);
2165 	pci_free_irq_vectors(pdev);
2166 
2167 	if (pci_is_enabled(pdev)) {
2168 		pci_disable_pcie_error_reporting(pdev);
2169 		pci_disable_device(pdev);
2170 	}
2171 }
2172 
2173 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2174 {
2175 	int i, queues;
2176 	bool dead = true;
2177 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2178 
2179 	mutex_lock(&dev->shutdown_lock);
2180 	if (pci_is_enabled(pdev)) {
2181 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2182 
2183 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2184 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2185 			nvme_start_freeze(&dev->ctrl);
2186 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2187 			pdev->error_state  != pci_channel_io_normal);
2188 	}
2189 
2190 	/*
2191 	 * Give the controller a chance to complete all entered requests if
2192 	 * doing a safe shutdown.
2193 	 */
2194 	if (!dead) {
2195 		if (shutdown)
2196 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2197 
2198 		/*
2199 		 * If the controller is still alive tell it to stop using the
2200 		 * host memory buffer.  In theory the shutdown / reset should
2201 		 * make sure that it doesn't access the host memoery anymore,
2202 		 * but I'd rather be safe than sorry..
2203 		 */
2204 		if (dev->host_mem_descs)
2205 			nvme_set_host_mem(dev, 0);
2206 
2207 	}
2208 	nvme_stop_queues(&dev->ctrl);
2209 
2210 	queues = dev->online_queues - 1;
2211 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2212 		nvme_suspend_queue(dev->queues[i]);
2213 
2214 	if (dead) {
2215 		/* A device might become IO incapable very soon during
2216 		 * probe, before the admin queue is configured. Thus,
2217 		 * queue_count can be 0 here.
2218 		 */
2219 		if (dev->ctrl.queue_count)
2220 			nvme_suspend_queue(dev->queues[0]);
2221 	} else {
2222 		nvme_disable_io_queues(dev, queues);
2223 		nvme_disable_admin_queue(dev, shutdown);
2224 	}
2225 	nvme_pci_disable(dev);
2226 
2227 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2228 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2229 
2230 	/*
2231 	 * The driver will not be starting up queues again if shutting down so
2232 	 * must flush all entered requests to their failed completion to avoid
2233 	 * deadlocking blk-mq hot-cpu notifier.
2234 	 */
2235 	if (shutdown)
2236 		nvme_start_queues(&dev->ctrl);
2237 	mutex_unlock(&dev->shutdown_lock);
2238 }
2239 
2240 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2241 {
2242 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2243 						PAGE_SIZE, PAGE_SIZE, 0);
2244 	if (!dev->prp_page_pool)
2245 		return -ENOMEM;
2246 
2247 	/* Optimisation for I/Os between 4k and 128k */
2248 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2249 						256, 256, 0);
2250 	if (!dev->prp_small_pool) {
2251 		dma_pool_destroy(dev->prp_page_pool);
2252 		return -ENOMEM;
2253 	}
2254 	return 0;
2255 }
2256 
2257 static void nvme_release_prp_pools(struct nvme_dev *dev)
2258 {
2259 	dma_pool_destroy(dev->prp_page_pool);
2260 	dma_pool_destroy(dev->prp_small_pool);
2261 }
2262 
2263 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2264 {
2265 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2266 
2267 	nvme_dbbuf_dma_free(dev);
2268 	put_device(dev->dev);
2269 	if (dev->tagset.tags)
2270 		blk_mq_free_tag_set(&dev->tagset);
2271 	if (dev->ctrl.admin_q)
2272 		blk_put_queue(dev->ctrl.admin_q);
2273 	kfree(dev->queues);
2274 	free_opal_dev(dev->ctrl.opal_dev);
2275 	kfree(dev);
2276 }
2277 
2278 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2279 {
2280 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2281 
2282 	nvme_get_ctrl(&dev->ctrl);
2283 	nvme_dev_disable(dev, false);
2284 	if (!queue_work(nvme_wq, &dev->remove_work))
2285 		nvme_put_ctrl(&dev->ctrl);
2286 }
2287 
2288 static void nvme_reset_work(struct work_struct *work)
2289 {
2290 	struct nvme_dev *dev =
2291 		container_of(work, struct nvme_dev, ctrl.reset_work);
2292 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2293 	int result = -ENODEV;
2294 
2295 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2296 		goto out;
2297 
2298 	/*
2299 	 * If we're called to reset a live controller first shut it down before
2300 	 * moving on.
2301 	 */
2302 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2303 		nvme_dev_disable(dev, false);
2304 
2305 	result = nvme_pci_enable(dev);
2306 	if (result)
2307 		goto out;
2308 
2309 	result = nvme_pci_configure_admin_queue(dev);
2310 	if (result)
2311 		goto out;
2312 
2313 	result = nvme_alloc_admin_tags(dev);
2314 	if (result)
2315 		goto out;
2316 
2317 	result = nvme_init_identify(&dev->ctrl);
2318 	if (result)
2319 		goto out;
2320 
2321 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2322 		if (!dev->ctrl.opal_dev)
2323 			dev->ctrl.opal_dev =
2324 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2325 		else if (was_suspend)
2326 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2327 	} else {
2328 		free_opal_dev(dev->ctrl.opal_dev);
2329 		dev->ctrl.opal_dev = NULL;
2330 	}
2331 
2332 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2333 		result = nvme_dbbuf_dma_alloc(dev);
2334 		if (result)
2335 			dev_warn(dev->dev,
2336 				 "unable to allocate dma for dbbuf\n");
2337 	}
2338 
2339 	if (dev->ctrl.hmpre) {
2340 		result = nvme_setup_host_mem(dev);
2341 		if (result < 0)
2342 			goto out;
2343 	}
2344 
2345 	result = nvme_setup_io_queues(dev);
2346 	if (result)
2347 		goto out;
2348 
2349 	/*
2350 	 * Keep the controller around but remove all namespaces if we don't have
2351 	 * any working I/O queue.
2352 	 */
2353 	if (dev->online_queues < 2) {
2354 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2355 		nvme_kill_queues(&dev->ctrl);
2356 		nvme_remove_namespaces(&dev->ctrl);
2357 	} else {
2358 		nvme_start_queues(&dev->ctrl);
2359 		nvme_wait_freeze(&dev->ctrl);
2360 		nvme_dev_add(dev);
2361 		nvme_unfreeze(&dev->ctrl);
2362 	}
2363 
2364 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2365 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2366 		goto out;
2367 	}
2368 
2369 	nvme_start_ctrl(&dev->ctrl);
2370 	return;
2371 
2372  out:
2373 	nvme_remove_dead_ctrl(dev, result);
2374 }
2375 
2376 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2377 {
2378 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2379 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2380 
2381 	nvme_kill_queues(&dev->ctrl);
2382 	if (pci_get_drvdata(pdev))
2383 		device_release_driver(&pdev->dev);
2384 	nvme_put_ctrl(&dev->ctrl);
2385 }
2386 
2387 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2388 {
2389 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2390 	return 0;
2391 }
2392 
2393 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2394 {
2395 	writel(val, to_nvme_dev(ctrl)->bar + off);
2396 	return 0;
2397 }
2398 
2399 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2400 {
2401 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2402 	return 0;
2403 }
2404 
2405 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2406 	.name			= "pcie",
2407 	.module			= THIS_MODULE,
2408 	.flags			= NVME_F_METADATA_SUPPORTED,
2409 	.reg_read32		= nvme_pci_reg_read32,
2410 	.reg_write32		= nvme_pci_reg_write32,
2411 	.reg_read64		= nvme_pci_reg_read64,
2412 	.free_ctrl		= nvme_pci_free_ctrl,
2413 	.submit_async_event	= nvme_pci_submit_async_event,
2414 };
2415 
2416 static int nvme_dev_map(struct nvme_dev *dev)
2417 {
2418 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2419 
2420 	if (pci_request_mem_regions(pdev, "nvme"))
2421 		return -ENODEV;
2422 
2423 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2424 		goto release;
2425 
2426 	return 0;
2427   release:
2428 	pci_release_mem_regions(pdev);
2429 	return -ENODEV;
2430 }
2431 
2432 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2433 {
2434 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2435 		/*
2436 		 * Several Samsung devices seem to drop off the PCIe bus
2437 		 * randomly when APST is on and uses the deepest sleep state.
2438 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2439 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2440 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2441 		 * laptops.
2442 		 */
2443 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2444 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2445 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2446 			return NVME_QUIRK_NO_DEEPEST_PS;
2447 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2448 		/*
2449 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2450 		 * suspend on a Ryzen board, ASUS PRIME B350M-A.
2451 		 */
2452 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2453 		    dmi_match(DMI_BOARD_NAME, "PRIME B350M-A"))
2454 			return NVME_QUIRK_NO_APST;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2461 {
2462 	int node, result = -ENOMEM;
2463 	struct nvme_dev *dev;
2464 	unsigned long quirks = id->driver_data;
2465 
2466 	node = dev_to_node(&pdev->dev);
2467 	if (node == NUMA_NO_NODE)
2468 		set_dev_node(&pdev->dev, first_memory_node);
2469 
2470 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2471 	if (!dev)
2472 		return -ENOMEM;
2473 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2474 							GFP_KERNEL, node);
2475 	if (!dev->queues)
2476 		goto free;
2477 
2478 	dev->dev = get_device(&pdev->dev);
2479 	pci_set_drvdata(pdev, dev);
2480 
2481 	result = nvme_dev_map(dev);
2482 	if (result)
2483 		goto put_pci;
2484 
2485 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2486 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2487 	mutex_init(&dev->shutdown_lock);
2488 	init_completion(&dev->ioq_wait);
2489 
2490 	result = nvme_setup_prp_pools(dev);
2491 	if (result)
2492 		goto unmap;
2493 
2494 	quirks |= check_vendor_combination_bug(pdev);
2495 
2496 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2497 			quirks);
2498 	if (result)
2499 		goto release_pools;
2500 
2501 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2502 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2503 
2504 	queue_work(nvme_wq, &dev->ctrl.reset_work);
2505 	return 0;
2506 
2507  release_pools:
2508 	nvme_release_prp_pools(dev);
2509  unmap:
2510 	nvme_dev_unmap(dev);
2511  put_pci:
2512 	put_device(dev->dev);
2513  free:
2514 	kfree(dev->queues);
2515 	kfree(dev);
2516 	return result;
2517 }
2518 
2519 static void nvme_reset_prepare(struct pci_dev *pdev)
2520 {
2521 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2522 	nvme_dev_disable(dev, false);
2523 }
2524 
2525 static void nvme_reset_done(struct pci_dev *pdev)
2526 {
2527 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2528 	nvme_reset_ctrl(&dev->ctrl);
2529 }
2530 
2531 static void nvme_shutdown(struct pci_dev *pdev)
2532 {
2533 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2534 	nvme_dev_disable(dev, true);
2535 }
2536 
2537 /*
2538  * The driver's remove may be called on a device in a partially initialized
2539  * state. This function must not have any dependencies on the device state in
2540  * order to proceed.
2541  */
2542 static void nvme_remove(struct pci_dev *pdev)
2543 {
2544 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2545 
2546 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2547 
2548 	cancel_work_sync(&dev->ctrl.reset_work);
2549 	pci_set_drvdata(pdev, NULL);
2550 
2551 	if (!pci_device_is_present(pdev)) {
2552 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2553 		nvme_dev_disable(dev, false);
2554 	}
2555 
2556 	flush_work(&dev->ctrl.reset_work);
2557 	nvme_stop_ctrl(&dev->ctrl);
2558 	nvme_remove_namespaces(&dev->ctrl);
2559 	nvme_dev_disable(dev, true);
2560 	nvme_free_host_mem(dev);
2561 	nvme_dev_remove_admin(dev);
2562 	nvme_free_queues(dev, 0);
2563 	nvme_uninit_ctrl(&dev->ctrl);
2564 	nvme_release_prp_pools(dev);
2565 	nvme_dev_unmap(dev);
2566 	nvme_put_ctrl(&dev->ctrl);
2567 }
2568 
2569 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2570 {
2571 	int ret = 0;
2572 
2573 	if (numvfs == 0) {
2574 		if (pci_vfs_assigned(pdev)) {
2575 			dev_warn(&pdev->dev,
2576 				"Cannot disable SR-IOV VFs while assigned\n");
2577 			return -EPERM;
2578 		}
2579 		pci_disable_sriov(pdev);
2580 		return 0;
2581 	}
2582 
2583 	ret = pci_enable_sriov(pdev, numvfs);
2584 	return ret ? ret : numvfs;
2585 }
2586 
2587 #ifdef CONFIG_PM_SLEEP
2588 static int nvme_suspend(struct device *dev)
2589 {
2590 	struct pci_dev *pdev = to_pci_dev(dev);
2591 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2592 
2593 	nvme_dev_disable(ndev, true);
2594 	return 0;
2595 }
2596 
2597 static int nvme_resume(struct device *dev)
2598 {
2599 	struct pci_dev *pdev = to_pci_dev(dev);
2600 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2601 
2602 	nvme_reset_ctrl(&ndev->ctrl);
2603 	return 0;
2604 }
2605 #endif
2606 
2607 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2608 
2609 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2610 						pci_channel_state_t state)
2611 {
2612 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2613 
2614 	/*
2615 	 * A frozen channel requires a reset. When detected, this method will
2616 	 * shutdown the controller to quiesce. The controller will be restarted
2617 	 * after the slot reset through driver's slot_reset callback.
2618 	 */
2619 	switch (state) {
2620 	case pci_channel_io_normal:
2621 		return PCI_ERS_RESULT_CAN_RECOVER;
2622 	case pci_channel_io_frozen:
2623 		dev_warn(dev->ctrl.device,
2624 			"frozen state error detected, reset controller\n");
2625 		nvme_dev_disable(dev, false);
2626 		return PCI_ERS_RESULT_NEED_RESET;
2627 	case pci_channel_io_perm_failure:
2628 		dev_warn(dev->ctrl.device,
2629 			"failure state error detected, request disconnect\n");
2630 		return PCI_ERS_RESULT_DISCONNECT;
2631 	}
2632 	return PCI_ERS_RESULT_NEED_RESET;
2633 }
2634 
2635 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2636 {
2637 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2638 
2639 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2640 	pci_restore_state(pdev);
2641 	nvme_reset_ctrl(&dev->ctrl);
2642 	return PCI_ERS_RESULT_RECOVERED;
2643 }
2644 
2645 static void nvme_error_resume(struct pci_dev *pdev)
2646 {
2647 	pci_cleanup_aer_uncorrect_error_status(pdev);
2648 }
2649 
2650 static const struct pci_error_handlers nvme_err_handler = {
2651 	.error_detected	= nvme_error_detected,
2652 	.slot_reset	= nvme_slot_reset,
2653 	.resume		= nvme_error_resume,
2654 	.reset_prepare	= nvme_reset_prepare,
2655 	.reset_done	= nvme_reset_done,
2656 };
2657 
2658 static const struct pci_device_id nvme_id_table[] = {
2659 	{ PCI_VDEVICE(INTEL, 0x0953),
2660 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2661 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2662 	{ PCI_VDEVICE(INTEL, 0x0a53),
2663 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2664 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2665 	{ PCI_VDEVICE(INTEL, 0x0a54),
2666 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2667 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2668 	{ PCI_VDEVICE(INTEL, 0x0a55),
2669 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2670 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2671 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2672 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2673 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2674 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2675 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2676 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2677 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
2678 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2679 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2680 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2681 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2682 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2683 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2684 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2685 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
2686 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2687 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
2688 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2689 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2690 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2691 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2692 	{ 0, }
2693 };
2694 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2695 
2696 static struct pci_driver nvme_driver = {
2697 	.name		= "nvme",
2698 	.id_table	= nvme_id_table,
2699 	.probe		= nvme_probe,
2700 	.remove		= nvme_remove,
2701 	.shutdown	= nvme_shutdown,
2702 	.driver		= {
2703 		.pm	= &nvme_dev_pm_ops,
2704 	},
2705 	.sriov_configure = nvme_pci_sriov_configure,
2706 	.err_handler	= &nvme_err_handler,
2707 };
2708 
2709 static int __init nvme_init(void)
2710 {
2711 	return pci_register_driver(&nvme_driver);
2712 }
2713 
2714 static void __exit nvme_exit(void)
2715 {
2716 	pci_unregister_driver(&nvme_driver);
2717 	flush_workqueue(nvme_wq);
2718 	_nvme_check_size();
2719 }
2720 
2721 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2722 MODULE_LICENSE("GPL");
2723 MODULE_VERSION("1.0");
2724 module_init(nvme_init);
2725 module_exit(nvme_exit);
2726