1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/blkdev.h> 17 #include <linux/blk-mq.h> 18 #include <linux/blk-mq-pci.h> 19 #include <linux/dmi.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/mm.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/once.h> 27 #include <linux/pci.h> 28 #include <linux/t10-pi.h> 29 #include <linux/types.h> 30 #include <linux/io-64-nonatomic-lo-hi.h> 31 #include <linux/sed-opal.h> 32 33 #include "nvme.h" 34 35 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 36 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 static int use_threaded_interrupts; 41 module_param(use_threaded_interrupts, int, 0); 42 43 static bool use_cmb_sqes = true; 44 module_param(use_cmb_sqes, bool, 0644); 45 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 46 47 static unsigned int max_host_mem_size_mb = 128; 48 module_param(max_host_mem_size_mb, uint, 0444); 49 MODULE_PARM_DESC(max_host_mem_size_mb, 50 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 51 52 static unsigned int sgl_threshold = SZ_32K; 53 module_param(sgl_threshold, uint, 0644); 54 MODULE_PARM_DESC(sgl_threshold, 55 "Use SGLs when average request segment size is larger or equal to " 56 "this size. Use 0 to disable SGLs."); 57 58 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 59 static const struct kernel_param_ops io_queue_depth_ops = { 60 .set = io_queue_depth_set, 61 .get = param_get_int, 62 }; 63 64 static int io_queue_depth = 1024; 65 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 66 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 67 68 struct nvme_dev; 69 struct nvme_queue; 70 71 static void nvme_process_cq(struct nvme_queue *nvmeq); 72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 73 74 /* 75 * Represents an NVM Express device. Each nvme_dev is a PCI function. 76 */ 77 struct nvme_dev { 78 struct nvme_queue **queues; 79 struct blk_mq_tag_set tagset; 80 struct blk_mq_tag_set admin_tagset; 81 u32 __iomem *dbs; 82 struct device *dev; 83 struct dma_pool *prp_page_pool; 84 struct dma_pool *prp_small_pool; 85 unsigned online_queues; 86 unsigned max_qid; 87 int q_depth; 88 u32 db_stride; 89 void __iomem *bar; 90 unsigned long bar_mapped_size; 91 struct work_struct remove_work; 92 struct mutex shutdown_lock; 93 bool subsystem; 94 void __iomem *cmb; 95 pci_bus_addr_t cmb_bus_addr; 96 u64 cmb_size; 97 u32 cmbsz; 98 u32 cmbloc; 99 struct nvme_ctrl ctrl; 100 struct completion ioq_wait; 101 102 /* shadow doorbell buffer support: */ 103 u32 *dbbuf_dbs; 104 dma_addr_t dbbuf_dbs_dma_addr; 105 u32 *dbbuf_eis; 106 dma_addr_t dbbuf_eis_dma_addr; 107 108 /* host memory buffer support: */ 109 u64 host_mem_size; 110 u32 nr_host_mem_descs; 111 dma_addr_t host_mem_descs_dma; 112 struct nvme_host_mem_buf_desc *host_mem_descs; 113 void **host_mem_desc_bufs; 114 }; 115 116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 117 { 118 int n = 0, ret; 119 120 ret = kstrtoint(val, 10, &n); 121 if (ret != 0 || n < 2) 122 return -EINVAL; 123 124 return param_set_int(val, kp); 125 } 126 127 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 128 { 129 return qid * 2 * stride; 130 } 131 132 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 133 { 134 return (qid * 2 + 1) * stride; 135 } 136 137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 138 { 139 return container_of(ctrl, struct nvme_dev, ctrl); 140 } 141 142 /* 143 * An NVM Express queue. Each device has at least two (one for admin 144 * commands and one for I/O commands). 145 */ 146 struct nvme_queue { 147 struct device *q_dmadev; 148 struct nvme_dev *dev; 149 spinlock_t q_lock; 150 struct nvme_command *sq_cmds; 151 struct nvme_command __iomem *sq_cmds_io; 152 volatile struct nvme_completion *cqes; 153 struct blk_mq_tags **tags; 154 dma_addr_t sq_dma_addr; 155 dma_addr_t cq_dma_addr; 156 u32 __iomem *q_db; 157 u16 q_depth; 158 s16 cq_vector; 159 u16 sq_tail; 160 u16 cq_head; 161 u16 qid; 162 u8 cq_phase; 163 u8 cqe_seen; 164 u32 *dbbuf_sq_db; 165 u32 *dbbuf_cq_db; 166 u32 *dbbuf_sq_ei; 167 u32 *dbbuf_cq_ei; 168 }; 169 170 /* 171 * The nvme_iod describes the data in an I/O, including the list of PRP 172 * entries. You can't see it in this data structure because C doesn't let 173 * me express that. Use nvme_init_iod to ensure there's enough space 174 * allocated to store the PRP list. 175 */ 176 struct nvme_iod { 177 struct nvme_request req; 178 struct nvme_queue *nvmeq; 179 bool use_sgl; 180 int aborted; 181 int npages; /* In the PRP list. 0 means small pool in use */ 182 int nents; /* Used in scatterlist */ 183 int length; /* Of data, in bytes */ 184 dma_addr_t first_dma; 185 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 186 struct scatterlist *sg; 187 struct scatterlist inline_sg[0]; 188 }; 189 190 /* 191 * Check we didin't inadvertently grow the command struct 192 */ 193 static inline void _nvme_check_size(void) 194 { 195 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 196 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 197 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 198 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 199 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 200 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 201 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 202 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 203 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 204 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 205 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 206 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 207 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 208 } 209 210 static inline unsigned int nvme_dbbuf_size(u32 stride) 211 { 212 return ((num_possible_cpus() + 1) * 8 * stride); 213 } 214 215 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 216 { 217 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 218 219 if (dev->dbbuf_dbs) 220 return 0; 221 222 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 223 &dev->dbbuf_dbs_dma_addr, 224 GFP_KERNEL); 225 if (!dev->dbbuf_dbs) 226 return -ENOMEM; 227 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 228 &dev->dbbuf_eis_dma_addr, 229 GFP_KERNEL); 230 if (!dev->dbbuf_eis) { 231 dma_free_coherent(dev->dev, mem_size, 232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 233 dev->dbbuf_dbs = NULL; 234 return -ENOMEM; 235 } 236 237 return 0; 238 } 239 240 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 241 { 242 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 243 244 if (dev->dbbuf_dbs) { 245 dma_free_coherent(dev->dev, mem_size, 246 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 247 dev->dbbuf_dbs = NULL; 248 } 249 if (dev->dbbuf_eis) { 250 dma_free_coherent(dev->dev, mem_size, 251 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 252 dev->dbbuf_eis = NULL; 253 } 254 } 255 256 static void nvme_dbbuf_init(struct nvme_dev *dev, 257 struct nvme_queue *nvmeq, int qid) 258 { 259 if (!dev->dbbuf_dbs || !qid) 260 return; 261 262 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 263 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 264 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 265 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 266 } 267 268 static void nvme_dbbuf_set(struct nvme_dev *dev) 269 { 270 struct nvme_command c; 271 272 if (!dev->dbbuf_dbs) 273 return; 274 275 memset(&c, 0, sizeof(c)); 276 c.dbbuf.opcode = nvme_admin_dbbuf; 277 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 278 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 279 280 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 281 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 282 /* Free memory and continue on */ 283 nvme_dbbuf_dma_free(dev); 284 } 285 } 286 287 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 288 { 289 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 290 } 291 292 /* Update dbbuf and return true if an MMIO is required */ 293 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 294 volatile u32 *dbbuf_ei) 295 { 296 if (dbbuf_db) { 297 u16 old_value; 298 299 /* 300 * Ensure that the queue is written before updating 301 * the doorbell in memory 302 */ 303 wmb(); 304 305 old_value = *dbbuf_db; 306 *dbbuf_db = value; 307 308 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 309 return false; 310 } 311 312 return true; 313 } 314 315 /* 316 * Max size of iod being embedded in the request payload 317 */ 318 #define NVME_INT_PAGES 2 319 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 320 321 /* 322 * Will slightly overestimate the number of pages needed. This is OK 323 * as it only leads to a small amount of wasted memory for the lifetime of 324 * the I/O. 325 */ 326 static int nvme_npages(unsigned size, struct nvme_dev *dev) 327 { 328 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 329 dev->ctrl.page_size); 330 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 331 } 332 333 /* 334 * Calculates the number of pages needed for the SGL segments. For example a 4k 335 * page can accommodate 256 SGL descriptors. 336 */ 337 static int nvme_pci_npages_sgl(unsigned int num_seg) 338 { 339 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); 340 } 341 342 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, 343 unsigned int size, unsigned int nseg, bool use_sgl) 344 { 345 size_t alloc_size; 346 347 if (use_sgl) 348 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); 349 else 350 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); 351 352 return alloc_size + sizeof(struct scatterlist) * nseg; 353 } 354 355 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl) 356 { 357 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev, 358 NVME_INT_BYTES(dev), NVME_INT_PAGES, 359 use_sgl); 360 361 return sizeof(struct nvme_iod) + alloc_size; 362 } 363 364 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 365 unsigned int hctx_idx) 366 { 367 struct nvme_dev *dev = data; 368 struct nvme_queue *nvmeq = dev->queues[0]; 369 370 WARN_ON(hctx_idx != 0); 371 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 372 WARN_ON(nvmeq->tags); 373 374 hctx->driver_data = nvmeq; 375 nvmeq->tags = &dev->admin_tagset.tags[0]; 376 return 0; 377 } 378 379 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 380 { 381 struct nvme_queue *nvmeq = hctx->driver_data; 382 383 nvmeq->tags = NULL; 384 } 385 386 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 387 unsigned int hctx_idx) 388 { 389 struct nvme_dev *dev = data; 390 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 391 392 if (!nvmeq->tags) 393 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 394 395 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 396 hctx->driver_data = nvmeq; 397 return 0; 398 } 399 400 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 401 unsigned int hctx_idx, unsigned int numa_node) 402 { 403 struct nvme_dev *dev = set->driver_data; 404 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 405 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 406 struct nvme_queue *nvmeq = dev->queues[queue_idx]; 407 408 BUG_ON(!nvmeq); 409 iod->nvmeq = nvmeq; 410 return 0; 411 } 412 413 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 414 { 415 struct nvme_dev *dev = set->driver_data; 416 417 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 418 } 419 420 /** 421 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 422 * @nvmeq: The queue to use 423 * @cmd: The command to send 424 * 425 * Safe to use from interrupt context 426 */ 427 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 428 struct nvme_command *cmd) 429 { 430 u16 tail = nvmeq->sq_tail; 431 432 if (nvmeq->sq_cmds_io) 433 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 434 else 435 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 436 437 if (++tail == nvmeq->q_depth) 438 tail = 0; 439 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db, 440 nvmeq->dbbuf_sq_ei)) 441 writel(tail, nvmeq->q_db); 442 nvmeq->sq_tail = tail; 443 } 444 445 static void **nvme_pci_iod_list(struct request *req) 446 { 447 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 448 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 449 } 450 451 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev) 452 { 453 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 454 int nseg = blk_rq_nr_phys_segments(rq); 455 unsigned int size = blk_rq_payload_bytes(rq); 456 457 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 458 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg, 459 iod->use_sgl); 460 461 iod->sg = kmalloc(alloc_size, GFP_ATOMIC); 462 if (!iod->sg) 463 return BLK_STS_RESOURCE; 464 } else { 465 iod->sg = iod->inline_sg; 466 } 467 468 iod->aborted = 0; 469 iod->npages = -1; 470 iod->nents = 0; 471 iod->length = size; 472 473 return BLK_STS_OK; 474 } 475 476 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 477 { 478 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 479 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; 480 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 481 482 int i; 483 484 if (iod->npages == 0) 485 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 486 dma_addr); 487 488 for (i = 0; i < iod->npages; i++) { 489 void *addr = nvme_pci_iod_list(req)[i]; 490 491 if (iod->use_sgl) { 492 struct nvme_sgl_desc *sg_list = addr; 493 494 next_dma_addr = 495 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 496 } else { 497 __le64 *prp_list = addr; 498 499 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 500 } 501 502 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 503 dma_addr = next_dma_addr; 504 } 505 506 if (iod->sg != iod->inline_sg) 507 kfree(iod->sg); 508 } 509 510 #ifdef CONFIG_BLK_DEV_INTEGRITY 511 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 512 { 513 if (be32_to_cpu(pi->ref_tag) == v) 514 pi->ref_tag = cpu_to_be32(p); 515 } 516 517 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 518 { 519 if (be32_to_cpu(pi->ref_tag) == p) 520 pi->ref_tag = cpu_to_be32(v); 521 } 522 523 /** 524 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 525 * 526 * The virtual start sector is the one that was originally submitted by the 527 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 528 * start sector may be different. Remap protection information to match the 529 * physical LBA on writes, and back to the original seed on reads. 530 * 531 * Type 0 and 3 do not have a ref tag, so no remapping required. 532 */ 533 static void nvme_dif_remap(struct request *req, 534 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 535 { 536 struct nvme_ns *ns = req->rq_disk->private_data; 537 struct bio_integrity_payload *bip; 538 struct t10_pi_tuple *pi; 539 void *p, *pmap; 540 u32 i, nlb, ts, phys, virt; 541 542 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 543 return; 544 545 bip = bio_integrity(req->bio); 546 if (!bip) 547 return; 548 549 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 550 551 p = pmap; 552 virt = bip_get_seed(bip); 553 phys = nvme_block_nr(ns, blk_rq_pos(req)); 554 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 555 ts = ns->disk->queue->integrity.tuple_size; 556 557 for (i = 0; i < nlb; i++, virt++, phys++) { 558 pi = (struct t10_pi_tuple *)p; 559 dif_swap(phys, virt, pi); 560 p += ts; 561 } 562 kunmap_atomic(pmap); 563 } 564 #else /* CONFIG_BLK_DEV_INTEGRITY */ 565 static void nvme_dif_remap(struct request *req, 566 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 567 { 568 } 569 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 570 { 571 } 572 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 573 { 574 } 575 #endif 576 577 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 578 { 579 int i; 580 struct scatterlist *sg; 581 582 for_each_sg(sgl, sg, nents, i) { 583 dma_addr_t phys = sg_phys(sg); 584 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 585 "dma_address:%pad dma_length:%d\n", 586 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 587 sg_dma_len(sg)); 588 } 589 } 590 591 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 592 struct request *req, struct nvme_rw_command *cmnd) 593 { 594 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 595 struct dma_pool *pool; 596 int length = blk_rq_payload_bytes(req); 597 struct scatterlist *sg = iod->sg; 598 int dma_len = sg_dma_len(sg); 599 u64 dma_addr = sg_dma_address(sg); 600 u32 page_size = dev->ctrl.page_size; 601 int offset = dma_addr & (page_size - 1); 602 __le64 *prp_list; 603 void **list = nvme_pci_iod_list(req); 604 dma_addr_t prp_dma; 605 int nprps, i; 606 607 iod->use_sgl = false; 608 609 length -= (page_size - offset); 610 if (length <= 0) { 611 iod->first_dma = 0; 612 goto done; 613 } 614 615 dma_len -= (page_size - offset); 616 if (dma_len) { 617 dma_addr += (page_size - offset); 618 } else { 619 sg = sg_next(sg); 620 dma_addr = sg_dma_address(sg); 621 dma_len = sg_dma_len(sg); 622 } 623 624 if (length <= page_size) { 625 iod->first_dma = dma_addr; 626 goto done; 627 } 628 629 nprps = DIV_ROUND_UP(length, page_size); 630 if (nprps <= (256 / 8)) { 631 pool = dev->prp_small_pool; 632 iod->npages = 0; 633 } else { 634 pool = dev->prp_page_pool; 635 iod->npages = 1; 636 } 637 638 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 639 if (!prp_list) { 640 iod->first_dma = dma_addr; 641 iod->npages = -1; 642 return BLK_STS_RESOURCE; 643 } 644 list[0] = prp_list; 645 iod->first_dma = prp_dma; 646 i = 0; 647 for (;;) { 648 if (i == page_size >> 3) { 649 __le64 *old_prp_list = prp_list; 650 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 651 if (!prp_list) 652 return BLK_STS_RESOURCE; 653 list[iod->npages++] = prp_list; 654 prp_list[0] = old_prp_list[i - 1]; 655 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 656 i = 1; 657 } 658 prp_list[i++] = cpu_to_le64(dma_addr); 659 dma_len -= page_size; 660 dma_addr += page_size; 661 length -= page_size; 662 if (length <= 0) 663 break; 664 if (dma_len > 0) 665 continue; 666 if (unlikely(dma_len < 0)) 667 goto bad_sgl; 668 sg = sg_next(sg); 669 dma_addr = sg_dma_address(sg); 670 dma_len = sg_dma_len(sg); 671 } 672 673 done: 674 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 675 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 676 677 return BLK_STS_OK; 678 679 bad_sgl: 680 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 681 "Invalid SGL for payload:%d nents:%d\n", 682 blk_rq_payload_bytes(req), iod->nents); 683 return BLK_STS_IOERR; 684 } 685 686 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 687 struct scatterlist *sg) 688 { 689 sge->addr = cpu_to_le64(sg_dma_address(sg)); 690 sge->length = cpu_to_le32(sg_dma_len(sg)); 691 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 692 } 693 694 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 695 dma_addr_t dma_addr, int entries) 696 { 697 sge->addr = cpu_to_le64(dma_addr); 698 if (entries < SGES_PER_PAGE) { 699 sge->length = cpu_to_le32(entries * sizeof(*sge)); 700 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 701 } else { 702 sge->length = cpu_to_le32(PAGE_SIZE); 703 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 704 } 705 } 706 707 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 708 struct request *req, struct nvme_rw_command *cmd) 709 { 710 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 711 int length = blk_rq_payload_bytes(req); 712 struct dma_pool *pool; 713 struct nvme_sgl_desc *sg_list; 714 struct scatterlist *sg = iod->sg; 715 int entries = iod->nents, i = 0; 716 dma_addr_t sgl_dma; 717 718 iod->use_sgl = true; 719 720 /* setting the transfer type as SGL */ 721 cmd->flags = NVME_CMD_SGL_METABUF; 722 723 if (length == sg_dma_len(sg)) { 724 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 725 return BLK_STS_OK; 726 } 727 728 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 729 pool = dev->prp_small_pool; 730 iod->npages = 0; 731 } else { 732 pool = dev->prp_page_pool; 733 iod->npages = 1; 734 } 735 736 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 737 if (!sg_list) { 738 iod->npages = -1; 739 return BLK_STS_RESOURCE; 740 } 741 742 nvme_pci_iod_list(req)[0] = sg_list; 743 iod->first_dma = sgl_dma; 744 745 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 746 747 do { 748 if (i == SGES_PER_PAGE) { 749 struct nvme_sgl_desc *old_sg_desc = sg_list; 750 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 751 752 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 753 if (!sg_list) 754 return BLK_STS_RESOURCE; 755 756 i = 0; 757 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 758 sg_list[i++] = *link; 759 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 760 } 761 762 nvme_pci_sgl_set_data(&sg_list[i++], sg); 763 764 length -= sg_dma_len(sg); 765 sg = sg_next(sg); 766 entries--; 767 } while (length > 0); 768 769 WARN_ON(entries > 0); 770 return BLK_STS_OK; 771 } 772 773 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 774 { 775 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 776 unsigned int avg_seg_size; 777 778 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), 779 blk_rq_nr_phys_segments(req)); 780 781 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 782 return false; 783 if (!iod->nvmeq->qid) 784 return false; 785 if (!sgl_threshold || avg_seg_size < sgl_threshold) 786 return false; 787 return true; 788 } 789 790 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 791 struct nvme_command *cmnd) 792 { 793 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 794 struct request_queue *q = req->q; 795 enum dma_data_direction dma_dir = rq_data_dir(req) ? 796 DMA_TO_DEVICE : DMA_FROM_DEVICE; 797 blk_status_t ret = BLK_STS_IOERR; 798 799 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 800 iod->nents = blk_rq_map_sg(q, req, iod->sg); 801 if (!iod->nents) 802 goto out; 803 804 ret = BLK_STS_RESOURCE; 805 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 806 DMA_ATTR_NO_WARN)) 807 goto out; 808 809 if (nvme_pci_use_sgls(dev, req)) 810 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 811 else 812 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 813 814 if (ret != BLK_STS_OK) 815 goto out_unmap; 816 817 ret = BLK_STS_IOERR; 818 if (blk_integrity_rq(req)) { 819 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 820 goto out_unmap; 821 822 sg_init_table(&iod->meta_sg, 1); 823 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 824 goto out_unmap; 825 826 if (req_op(req) == REQ_OP_WRITE) 827 nvme_dif_remap(req, nvme_dif_prep); 828 829 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 830 goto out_unmap; 831 } 832 833 if (blk_integrity_rq(req)) 834 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 835 return BLK_STS_OK; 836 837 out_unmap: 838 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 839 out: 840 return ret; 841 } 842 843 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 844 { 845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 846 enum dma_data_direction dma_dir = rq_data_dir(req) ? 847 DMA_TO_DEVICE : DMA_FROM_DEVICE; 848 849 if (iod->nents) { 850 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 851 if (blk_integrity_rq(req)) { 852 if (req_op(req) == REQ_OP_READ) 853 nvme_dif_remap(req, nvme_dif_complete); 854 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 855 } 856 } 857 858 nvme_cleanup_cmd(req); 859 nvme_free_iod(dev, req); 860 } 861 862 /* 863 * NOTE: ns is NULL when called on the admin queue. 864 */ 865 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 866 const struct blk_mq_queue_data *bd) 867 { 868 struct nvme_ns *ns = hctx->queue->queuedata; 869 struct nvme_queue *nvmeq = hctx->driver_data; 870 struct nvme_dev *dev = nvmeq->dev; 871 struct request *req = bd->rq; 872 struct nvme_command cmnd; 873 blk_status_t ret; 874 875 ret = nvme_setup_cmd(ns, req, &cmnd); 876 if (ret) 877 return ret; 878 879 ret = nvme_init_iod(req, dev); 880 if (ret) 881 goto out_free_cmd; 882 883 if (blk_rq_nr_phys_segments(req)) { 884 ret = nvme_map_data(dev, req, &cmnd); 885 if (ret) 886 goto out_cleanup_iod; 887 } 888 889 blk_mq_start_request(req); 890 891 spin_lock_irq(&nvmeq->q_lock); 892 if (unlikely(nvmeq->cq_vector < 0)) { 893 ret = BLK_STS_IOERR; 894 spin_unlock_irq(&nvmeq->q_lock); 895 goto out_cleanup_iod; 896 } 897 __nvme_submit_cmd(nvmeq, &cmnd); 898 nvme_process_cq(nvmeq); 899 spin_unlock_irq(&nvmeq->q_lock); 900 return BLK_STS_OK; 901 out_cleanup_iod: 902 nvme_free_iod(dev, req); 903 out_free_cmd: 904 nvme_cleanup_cmd(req); 905 return ret; 906 } 907 908 static void nvme_pci_complete_rq(struct request *req) 909 { 910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 911 912 nvme_unmap_data(iod->nvmeq->dev, req); 913 nvme_complete_rq(req); 914 } 915 916 /* We read the CQE phase first to check if the rest of the entry is valid */ 917 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 918 u16 phase) 919 { 920 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 921 } 922 923 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 924 { 925 u16 head = nvmeq->cq_head; 926 927 if (likely(nvmeq->cq_vector >= 0)) { 928 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 929 nvmeq->dbbuf_cq_ei)) 930 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 931 } 932 } 933 934 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 935 struct nvme_completion *cqe) 936 { 937 struct request *req; 938 939 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 940 dev_warn(nvmeq->dev->ctrl.device, 941 "invalid id %d completed on queue %d\n", 942 cqe->command_id, le16_to_cpu(cqe->sq_id)); 943 return; 944 } 945 946 /* 947 * AEN requests are special as they don't time out and can 948 * survive any kind of queue freeze and often don't respond to 949 * aborts. We don't even bother to allocate a struct request 950 * for them but rather special case them here. 951 */ 952 if (unlikely(nvmeq->qid == 0 && 953 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) { 954 nvme_complete_async_event(&nvmeq->dev->ctrl, 955 cqe->status, &cqe->result); 956 return; 957 } 958 959 nvmeq->cqe_seen = 1; 960 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); 961 nvme_end_request(req, cqe->status, cqe->result); 962 } 963 964 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq, 965 struct nvme_completion *cqe) 966 { 967 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 968 *cqe = nvmeq->cqes[nvmeq->cq_head]; 969 970 if (++nvmeq->cq_head == nvmeq->q_depth) { 971 nvmeq->cq_head = 0; 972 nvmeq->cq_phase = !nvmeq->cq_phase; 973 } 974 return true; 975 } 976 return false; 977 } 978 979 static void nvme_process_cq(struct nvme_queue *nvmeq) 980 { 981 struct nvme_completion cqe; 982 int consumed = 0; 983 984 while (nvme_read_cqe(nvmeq, &cqe)) { 985 nvme_handle_cqe(nvmeq, &cqe); 986 consumed++; 987 } 988 989 if (consumed) 990 nvme_ring_cq_doorbell(nvmeq); 991 } 992 993 static irqreturn_t nvme_irq(int irq, void *data) 994 { 995 irqreturn_t result; 996 struct nvme_queue *nvmeq = data; 997 spin_lock(&nvmeq->q_lock); 998 nvme_process_cq(nvmeq); 999 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 1000 nvmeq->cqe_seen = 0; 1001 spin_unlock(&nvmeq->q_lock); 1002 return result; 1003 } 1004 1005 static irqreturn_t nvme_irq_check(int irq, void *data) 1006 { 1007 struct nvme_queue *nvmeq = data; 1008 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 1009 return IRQ_WAKE_THREAD; 1010 return IRQ_NONE; 1011 } 1012 1013 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag) 1014 { 1015 struct nvme_completion cqe; 1016 int found = 0, consumed = 0; 1017 1018 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 1019 return 0; 1020 1021 spin_lock_irq(&nvmeq->q_lock); 1022 while (nvme_read_cqe(nvmeq, &cqe)) { 1023 nvme_handle_cqe(nvmeq, &cqe); 1024 consumed++; 1025 1026 if (tag == cqe.command_id) { 1027 found = 1; 1028 break; 1029 } 1030 } 1031 1032 if (consumed) 1033 nvme_ring_cq_doorbell(nvmeq); 1034 spin_unlock_irq(&nvmeq->q_lock); 1035 1036 return found; 1037 } 1038 1039 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1040 { 1041 struct nvme_queue *nvmeq = hctx->driver_data; 1042 1043 return __nvme_poll(nvmeq, tag); 1044 } 1045 1046 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1047 { 1048 struct nvme_dev *dev = to_nvme_dev(ctrl); 1049 struct nvme_queue *nvmeq = dev->queues[0]; 1050 struct nvme_command c; 1051 1052 memset(&c, 0, sizeof(c)); 1053 c.common.opcode = nvme_admin_async_event; 1054 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1055 1056 spin_lock_irq(&nvmeq->q_lock); 1057 __nvme_submit_cmd(nvmeq, &c); 1058 spin_unlock_irq(&nvmeq->q_lock); 1059 } 1060 1061 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1062 { 1063 struct nvme_command c; 1064 1065 memset(&c, 0, sizeof(c)); 1066 c.delete_queue.opcode = opcode; 1067 c.delete_queue.qid = cpu_to_le16(id); 1068 1069 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1070 } 1071 1072 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1073 struct nvme_queue *nvmeq) 1074 { 1075 struct nvme_command c; 1076 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 1077 1078 /* 1079 * Note: we (ab)use the fact that the prp fields survive if no data 1080 * is attached to the request. 1081 */ 1082 memset(&c, 0, sizeof(c)); 1083 c.create_cq.opcode = nvme_admin_create_cq; 1084 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1085 c.create_cq.cqid = cpu_to_le16(qid); 1086 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1087 c.create_cq.cq_flags = cpu_to_le16(flags); 1088 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 1089 1090 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1091 } 1092 1093 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1094 struct nvme_queue *nvmeq) 1095 { 1096 struct nvme_command c; 1097 int flags = NVME_QUEUE_PHYS_CONTIG; 1098 1099 /* 1100 * Note: we (ab)use the fact that the prp fields survive if no data 1101 * is attached to the request. 1102 */ 1103 memset(&c, 0, sizeof(c)); 1104 c.create_sq.opcode = nvme_admin_create_sq; 1105 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1106 c.create_sq.sqid = cpu_to_le16(qid); 1107 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1108 c.create_sq.sq_flags = cpu_to_le16(flags); 1109 c.create_sq.cqid = cpu_to_le16(qid); 1110 1111 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1112 } 1113 1114 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1115 { 1116 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1117 } 1118 1119 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1120 { 1121 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1122 } 1123 1124 static void abort_endio(struct request *req, blk_status_t error) 1125 { 1126 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1127 struct nvme_queue *nvmeq = iod->nvmeq; 1128 1129 dev_warn(nvmeq->dev->ctrl.device, 1130 "Abort status: 0x%x", nvme_req(req)->status); 1131 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1132 blk_mq_free_request(req); 1133 } 1134 1135 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1136 { 1137 1138 /* If true, indicates loss of adapter communication, possibly by a 1139 * NVMe Subsystem reset. 1140 */ 1141 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1142 1143 /* If there is a reset ongoing, we shouldn't reset again. */ 1144 if (dev->ctrl.state == NVME_CTRL_RESETTING) 1145 return false; 1146 1147 /* We shouldn't reset unless the controller is on fatal error state 1148 * _or_ if we lost the communication with it. 1149 */ 1150 if (!(csts & NVME_CSTS_CFS) && !nssro) 1151 return false; 1152 1153 /* If PCI error recovery process is happening, we cannot reset or 1154 * the recovery mechanism will surely fail. 1155 */ 1156 if (pci_channel_offline(to_pci_dev(dev->dev))) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1163 { 1164 /* Read a config register to help see what died. */ 1165 u16 pci_status; 1166 int result; 1167 1168 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1169 &pci_status); 1170 if (result == PCIBIOS_SUCCESSFUL) 1171 dev_warn(dev->ctrl.device, 1172 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1173 csts, pci_status); 1174 else 1175 dev_warn(dev->ctrl.device, 1176 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1177 csts, result); 1178 } 1179 1180 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1181 { 1182 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1183 struct nvme_queue *nvmeq = iod->nvmeq; 1184 struct nvme_dev *dev = nvmeq->dev; 1185 struct request *abort_req; 1186 struct nvme_command cmd; 1187 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1188 1189 /* 1190 * Reset immediately if the controller is failed 1191 */ 1192 if (nvme_should_reset(dev, csts)) { 1193 nvme_warn_reset(dev, csts); 1194 nvme_dev_disable(dev, false); 1195 nvme_reset_ctrl(&dev->ctrl); 1196 return BLK_EH_HANDLED; 1197 } 1198 1199 /* 1200 * Did we miss an interrupt? 1201 */ 1202 if (__nvme_poll(nvmeq, req->tag)) { 1203 dev_warn(dev->ctrl.device, 1204 "I/O %d QID %d timeout, completion polled\n", 1205 req->tag, nvmeq->qid); 1206 return BLK_EH_HANDLED; 1207 } 1208 1209 /* 1210 * Shutdown immediately if controller times out while starting. The 1211 * reset work will see the pci device disabled when it gets the forced 1212 * cancellation error. All outstanding requests are completed on 1213 * shutdown, so we return BLK_EH_HANDLED. 1214 */ 1215 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 1216 dev_warn(dev->ctrl.device, 1217 "I/O %d QID %d timeout, disable controller\n", 1218 req->tag, nvmeq->qid); 1219 nvme_dev_disable(dev, false); 1220 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1221 return BLK_EH_HANDLED; 1222 } 1223 1224 /* 1225 * Shutdown the controller immediately and schedule a reset if the 1226 * command was already aborted once before and still hasn't been 1227 * returned to the driver, or if this is the admin queue. 1228 */ 1229 if (!nvmeq->qid || iod->aborted) { 1230 dev_warn(dev->ctrl.device, 1231 "I/O %d QID %d timeout, reset controller\n", 1232 req->tag, nvmeq->qid); 1233 nvme_dev_disable(dev, false); 1234 nvme_reset_ctrl(&dev->ctrl); 1235 1236 /* 1237 * Mark the request as handled, since the inline shutdown 1238 * forces all outstanding requests to complete. 1239 */ 1240 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1241 return BLK_EH_HANDLED; 1242 } 1243 1244 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1245 atomic_inc(&dev->ctrl.abort_limit); 1246 return BLK_EH_RESET_TIMER; 1247 } 1248 iod->aborted = 1; 1249 1250 memset(&cmd, 0, sizeof(cmd)); 1251 cmd.abort.opcode = nvme_admin_abort_cmd; 1252 cmd.abort.cid = req->tag; 1253 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1254 1255 dev_warn(nvmeq->dev->ctrl.device, 1256 "I/O %d QID %d timeout, aborting\n", 1257 req->tag, nvmeq->qid); 1258 1259 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1260 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1261 if (IS_ERR(abort_req)) { 1262 atomic_inc(&dev->ctrl.abort_limit); 1263 return BLK_EH_RESET_TIMER; 1264 } 1265 1266 abort_req->timeout = ADMIN_TIMEOUT; 1267 abort_req->end_io_data = NULL; 1268 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1269 1270 /* 1271 * The aborted req will be completed on receiving the abort req. 1272 * We enable the timer again. If hit twice, it'll cause a device reset, 1273 * as the device then is in a faulty state. 1274 */ 1275 return BLK_EH_RESET_TIMER; 1276 } 1277 1278 static void nvme_free_queue(struct nvme_queue *nvmeq) 1279 { 1280 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1281 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1282 if (nvmeq->sq_cmds) 1283 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1284 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1285 kfree(nvmeq); 1286 } 1287 1288 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1289 { 1290 int i; 1291 1292 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1293 struct nvme_queue *nvmeq = dev->queues[i]; 1294 dev->ctrl.queue_count--; 1295 dev->queues[i] = NULL; 1296 nvme_free_queue(nvmeq); 1297 } 1298 } 1299 1300 /** 1301 * nvme_suspend_queue - put queue into suspended state 1302 * @nvmeq - queue to suspend 1303 */ 1304 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1305 { 1306 int vector; 1307 1308 spin_lock_irq(&nvmeq->q_lock); 1309 if (nvmeq->cq_vector == -1) { 1310 spin_unlock_irq(&nvmeq->q_lock); 1311 return 1; 1312 } 1313 vector = nvmeq->cq_vector; 1314 nvmeq->dev->online_queues--; 1315 nvmeq->cq_vector = -1; 1316 spin_unlock_irq(&nvmeq->q_lock); 1317 1318 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1319 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1320 1321 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq); 1322 1323 return 0; 1324 } 1325 1326 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1327 { 1328 struct nvme_queue *nvmeq = dev->queues[0]; 1329 1330 if (!nvmeq) 1331 return; 1332 if (nvme_suspend_queue(nvmeq)) 1333 return; 1334 1335 if (shutdown) 1336 nvme_shutdown_ctrl(&dev->ctrl); 1337 else 1338 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1339 1340 spin_lock_irq(&nvmeq->q_lock); 1341 nvme_process_cq(nvmeq); 1342 spin_unlock_irq(&nvmeq->q_lock); 1343 } 1344 1345 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1346 int entry_size) 1347 { 1348 int q_depth = dev->q_depth; 1349 unsigned q_size_aligned = roundup(q_depth * entry_size, 1350 dev->ctrl.page_size); 1351 1352 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1353 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1354 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1355 q_depth = div_u64(mem_per_q, entry_size); 1356 1357 /* 1358 * Ensure the reduced q_depth is above some threshold where it 1359 * would be better to map queues in system memory with the 1360 * original depth 1361 */ 1362 if (q_depth < 64) 1363 return -ENOMEM; 1364 } 1365 1366 return q_depth; 1367 } 1368 1369 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1370 int qid, int depth) 1371 { 1372 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1373 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1374 dev->ctrl.page_size); 1375 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset; 1376 nvmeq->sq_cmds_io = dev->cmb + offset; 1377 } else { 1378 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1379 &nvmeq->sq_dma_addr, GFP_KERNEL); 1380 if (!nvmeq->sq_cmds) 1381 return -ENOMEM; 1382 } 1383 1384 return 0; 1385 } 1386 1387 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1388 int depth, int node) 1389 { 1390 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL, 1391 node); 1392 if (!nvmeq) 1393 return NULL; 1394 1395 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1396 &nvmeq->cq_dma_addr, GFP_KERNEL); 1397 if (!nvmeq->cqes) 1398 goto free_nvmeq; 1399 1400 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1401 goto free_cqdma; 1402 1403 nvmeq->q_dmadev = dev->dev; 1404 nvmeq->dev = dev; 1405 spin_lock_init(&nvmeq->q_lock); 1406 nvmeq->cq_head = 0; 1407 nvmeq->cq_phase = 1; 1408 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1409 nvmeq->q_depth = depth; 1410 nvmeq->qid = qid; 1411 nvmeq->cq_vector = -1; 1412 dev->queues[qid] = nvmeq; 1413 dev->ctrl.queue_count++; 1414 1415 return nvmeq; 1416 1417 free_cqdma: 1418 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1419 nvmeq->cq_dma_addr); 1420 free_nvmeq: 1421 kfree(nvmeq); 1422 return NULL; 1423 } 1424 1425 static int queue_request_irq(struct nvme_queue *nvmeq) 1426 { 1427 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1428 int nr = nvmeq->dev->ctrl.instance; 1429 1430 if (use_threaded_interrupts) { 1431 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1432 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1433 } else { 1434 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1435 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1436 } 1437 } 1438 1439 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1440 { 1441 struct nvme_dev *dev = nvmeq->dev; 1442 1443 spin_lock_irq(&nvmeq->q_lock); 1444 nvmeq->sq_tail = 0; 1445 nvmeq->cq_head = 0; 1446 nvmeq->cq_phase = 1; 1447 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1448 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1449 nvme_dbbuf_init(dev, nvmeq, qid); 1450 dev->online_queues++; 1451 spin_unlock_irq(&nvmeq->q_lock); 1452 } 1453 1454 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1455 { 1456 struct nvme_dev *dev = nvmeq->dev; 1457 int result; 1458 1459 nvmeq->cq_vector = qid - 1; 1460 result = adapter_alloc_cq(dev, qid, nvmeq); 1461 if (result < 0) 1462 return result; 1463 1464 result = adapter_alloc_sq(dev, qid, nvmeq); 1465 if (result < 0) 1466 goto release_cq; 1467 1468 nvme_init_queue(nvmeq, qid); 1469 result = queue_request_irq(nvmeq); 1470 if (result < 0) 1471 goto release_sq; 1472 1473 return result; 1474 1475 release_sq: 1476 adapter_delete_sq(dev, qid); 1477 release_cq: 1478 adapter_delete_cq(dev, qid); 1479 return result; 1480 } 1481 1482 static const struct blk_mq_ops nvme_mq_admin_ops = { 1483 .queue_rq = nvme_queue_rq, 1484 .complete = nvme_pci_complete_rq, 1485 .init_hctx = nvme_admin_init_hctx, 1486 .exit_hctx = nvme_admin_exit_hctx, 1487 .init_request = nvme_init_request, 1488 .timeout = nvme_timeout, 1489 }; 1490 1491 static const struct blk_mq_ops nvme_mq_ops = { 1492 .queue_rq = nvme_queue_rq, 1493 .complete = nvme_pci_complete_rq, 1494 .init_hctx = nvme_init_hctx, 1495 .init_request = nvme_init_request, 1496 .map_queues = nvme_pci_map_queues, 1497 .timeout = nvme_timeout, 1498 .poll = nvme_poll, 1499 }; 1500 1501 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1502 { 1503 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1504 /* 1505 * If the controller was reset during removal, it's possible 1506 * user requests may be waiting on a stopped queue. Start the 1507 * queue to flush these to completion. 1508 */ 1509 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1510 blk_cleanup_queue(dev->ctrl.admin_q); 1511 blk_mq_free_tag_set(&dev->admin_tagset); 1512 } 1513 } 1514 1515 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1516 { 1517 if (!dev->ctrl.admin_q) { 1518 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1519 dev->admin_tagset.nr_hw_queues = 1; 1520 1521 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1522 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1523 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1524 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false); 1525 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1526 dev->admin_tagset.driver_data = dev; 1527 1528 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1529 return -ENOMEM; 1530 dev->ctrl.admin_tagset = &dev->admin_tagset; 1531 1532 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1533 if (IS_ERR(dev->ctrl.admin_q)) { 1534 blk_mq_free_tag_set(&dev->admin_tagset); 1535 return -ENOMEM; 1536 } 1537 if (!blk_get_queue(dev->ctrl.admin_q)) { 1538 nvme_dev_remove_admin(dev); 1539 dev->ctrl.admin_q = NULL; 1540 return -ENODEV; 1541 } 1542 } else 1543 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1544 1545 return 0; 1546 } 1547 1548 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1549 { 1550 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1551 } 1552 1553 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1554 { 1555 struct pci_dev *pdev = to_pci_dev(dev->dev); 1556 1557 if (size <= dev->bar_mapped_size) 1558 return 0; 1559 if (size > pci_resource_len(pdev, 0)) 1560 return -ENOMEM; 1561 if (dev->bar) 1562 iounmap(dev->bar); 1563 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1564 if (!dev->bar) { 1565 dev->bar_mapped_size = 0; 1566 return -ENOMEM; 1567 } 1568 dev->bar_mapped_size = size; 1569 dev->dbs = dev->bar + NVME_REG_DBS; 1570 1571 return 0; 1572 } 1573 1574 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1575 { 1576 int result; 1577 u32 aqa; 1578 struct nvme_queue *nvmeq; 1579 1580 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1581 if (result < 0) 1582 return result; 1583 1584 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1585 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1586 1587 if (dev->subsystem && 1588 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1589 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1590 1591 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1592 if (result < 0) 1593 return result; 1594 1595 nvmeq = dev->queues[0]; 1596 if (!nvmeq) { 1597 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH, 1598 dev_to_node(dev->dev)); 1599 if (!nvmeq) 1600 return -ENOMEM; 1601 } 1602 1603 aqa = nvmeq->q_depth - 1; 1604 aqa |= aqa << 16; 1605 1606 writel(aqa, dev->bar + NVME_REG_AQA); 1607 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1608 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1609 1610 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); 1611 if (result) 1612 return result; 1613 1614 nvmeq->cq_vector = 0; 1615 nvme_init_queue(nvmeq, 0); 1616 result = queue_request_irq(nvmeq); 1617 if (result) { 1618 nvmeq->cq_vector = -1; 1619 return result; 1620 } 1621 1622 return result; 1623 } 1624 1625 static int nvme_create_io_queues(struct nvme_dev *dev) 1626 { 1627 unsigned i, max; 1628 int ret = 0; 1629 1630 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1631 /* vector == qid - 1, match nvme_create_queue */ 1632 if (!nvme_alloc_queue(dev, i, dev->q_depth, 1633 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) { 1634 ret = -ENOMEM; 1635 break; 1636 } 1637 } 1638 1639 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1640 for (i = dev->online_queues; i <= max; i++) { 1641 ret = nvme_create_queue(dev->queues[i], i); 1642 if (ret) 1643 break; 1644 } 1645 1646 /* 1647 * Ignore failing Create SQ/CQ commands, we can continue with less 1648 * than the desired aount of queues, and even a controller without 1649 * I/O queues an still be used to issue admin commands. This might 1650 * be useful to upgrade a buggy firmware for example. 1651 */ 1652 return ret >= 0 ? 0 : ret; 1653 } 1654 1655 static ssize_t nvme_cmb_show(struct device *dev, 1656 struct device_attribute *attr, 1657 char *buf) 1658 { 1659 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1660 1661 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1662 ndev->cmbloc, ndev->cmbsz); 1663 } 1664 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1665 1666 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1667 { 1668 u64 szu, size, offset; 1669 resource_size_t bar_size; 1670 struct pci_dev *pdev = to_pci_dev(dev->dev); 1671 void __iomem *cmb; 1672 int bar; 1673 1674 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1675 if (!(NVME_CMB_SZ(dev->cmbsz))) 1676 return NULL; 1677 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1678 1679 if (!use_cmb_sqes) 1680 return NULL; 1681 1682 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1683 size = szu * NVME_CMB_SZ(dev->cmbsz); 1684 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1685 bar = NVME_CMB_BIR(dev->cmbloc); 1686 bar_size = pci_resource_len(pdev, bar); 1687 1688 if (offset > bar_size) 1689 return NULL; 1690 1691 /* 1692 * Controllers may support a CMB size larger than their BAR, 1693 * for example, due to being behind a bridge. Reduce the CMB to 1694 * the reported size of the BAR 1695 */ 1696 if (size > bar_size - offset) 1697 size = bar_size - offset; 1698 1699 cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size); 1700 if (!cmb) 1701 return NULL; 1702 1703 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset; 1704 dev->cmb_size = size; 1705 return cmb; 1706 } 1707 1708 static inline void nvme_release_cmb(struct nvme_dev *dev) 1709 { 1710 if (dev->cmb) { 1711 iounmap(dev->cmb); 1712 dev->cmb = NULL; 1713 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1714 &dev_attr_cmb.attr, NULL); 1715 dev->cmbsz = 0; 1716 } 1717 } 1718 1719 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1720 { 1721 u64 dma_addr = dev->host_mem_descs_dma; 1722 struct nvme_command c; 1723 int ret; 1724 1725 memset(&c, 0, sizeof(c)); 1726 c.features.opcode = nvme_admin_set_features; 1727 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1728 c.features.dword11 = cpu_to_le32(bits); 1729 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1730 ilog2(dev->ctrl.page_size)); 1731 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1732 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1733 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1734 1735 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1736 if (ret) { 1737 dev_warn(dev->ctrl.device, 1738 "failed to set host mem (err %d, flags %#x).\n", 1739 ret, bits); 1740 } 1741 return ret; 1742 } 1743 1744 static void nvme_free_host_mem(struct nvme_dev *dev) 1745 { 1746 int i; 1747 1748 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1749 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1750 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1751 1752 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i], 1753 le64_to_cpu(desc->addr)); 1754 } 1755 1756 kfree(dev->host_mem_desc_bufs); 1757 dev->host_mem_desc_bufs = NULL; 1758 dma_free_coherent(dev->dev, 1759 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1760 dev->host_mem_descs, dev->host_mem_descs_dma); 1761 dev->host_mem_descs = NULL; 1762 dev->nr_host_mem_descs = 0; 1763 } 1764 1765 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1766 u32 chunk_size) 1767 { 1768 struct nvme_host_mem_buf_desc *descs; 1769 u32 max_entries, len; 1770 dma_addr_t descs_dma; 1771 int i = 0; 1772 void **bufs; 1773 u64 size = 0, tmp; 1774 1775 tmp = (preferred + chunk_size - 1); 1776 do_div(tmp, chunk_size); 1777 max_entries = tmp; 1778 1779 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1780 max_entries = dev->ctrl.hmmaxd; 1781 1782 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs), 1783 &descs_dma, GFP_KERNEL); 1784 if (!descs) 1785 goto out; 1786 1787 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1788 if (!bufs) 1789 goto out_free_descs; 1790 1791 for (size = 0; size < preferred && i < max_entries; size += len) { 1792 dma_addr_t dma_addr; 1793 1794 len = min_t(u64, chunk_size, preferred - size); 1795 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1796 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1797 if (!bufs[i]) 1798 break; 1799 1800 descs[i].addr = cpu_to_le64(dma_addr); 1801 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1802 i++; 1803 } 1804 1805 if (!size) 1806 goto out_free_bufs; 1807 1808 dev->nr_host_mem_descs = i; 1809 dev->host_mem_size = size; 1810 dev->host_mem_descs = descs; 1811 dev->host_mem_descs_dma = descs_dma; 1812 dev->host_mem_desc_bufs = bufs; 1813 return 0; 1814 1815 out_free_bufs: 1816 while (--i >= 0) { 1817 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1818 1819 dma_free_coherent(dev->dev, size, bufs[i], 1820 le64_to_cpu(descs[i].addr)); 1821 } 1822 1823 kfree(bufs); 1824 out_free_descs: 1825 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1826 descs_dma); 1827 out: 1828 dev->host_mem_descs = NULL; 1829 return -ENOMEM; 1830 } 1831 1832 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1833 { 1834 u32 chunk_size; 1835 1836 /* start big and work our way down */ 1837 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1838 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1839 chunk_size /= 2) { 1840 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1841 if (!min || dev->host_mem_size >= min) 1842 return 0; 1843 nvme_free_host_mem(dev); 1844 } 1845 } 1846 1847 return -ENOMEM; 1848 } 1849 1850 static int nvme_setup_host_mem(struct nvme_dev *dev) 1851 { 1852 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1853 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1854 u64 min = (u64)dev->ctrl.hmmin * 4096; 1855 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1856 int ret = 0; 1857 1858 preferred = min(preferred, max); 1859 if (min > max) { 1860 dev_warn(dev->ctrl.device, 1861 "min host memory (%lld MiB) above limit (%d MiB).\n", 1862 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1863 nvme_free_host_mem(dev); 1864 return 0; 1865 } 1866 1867 /* 1868 * If we already have a buffer allocated check if we can reuse it. 1869 */ 1870 if (dev->host_mem_descs) { 1871 if (dev->host_mem_size >= min) 1872 enable_bits |= NVME_HOST_MEM_RETURN; 1873 else 1874 nvme_free_host_mem(dev); 1875 } 1876 1877 if (!dev->host_mem_descs) { 1878 if (nvme_alloc_host_mem(dev, min, preferred)) { 1879 dev_warn(dev->ctrl.device, 1880 "failed to allocate host memory buffer.\n"); 1881 return 0; /* controller must work without HMB */ 1882 } 1883 1884 dev_info(dev->ctrl.device, 1885 "allocated %lld MiB host memory buffer.\n", 1886 dev->host_mem_size >> ilog2(SZ_1M)); 1887 } 1888 1889 ret = nvme_set_host_mem(dev, enable_bits); 1890 if (ret) 1891 nvme_free_host_mem(dev); 1892 return ret; 1893 } 1894 1895 static int nvme_setup_io_queues(struct nvme_dev *dev) 1896 { 1897 struct nvme_queue *adminq = dev->queues[0]; 1898 struct pci_dev *pdev = to_pci_dev(dev->dev); 1899 int result, nr_io_queues; 1900 unsigned long size; 1901 1902 nr_io_queues = num_present_cpus(); 1903 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1904 if (result < 0) 1905 return result; 1906 1907 if (nr_io_queues == 0) 1908 return 0; 1909 1910 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1911 result = nvme_cmb_qdepth(dev, nr_io_queues, 1912 sizeof(struct nvme_command)); 1913 if (result > 0) 1914 dev->q_depth = result; 1915 else 1916 nvme_release_cmb(dev); 1917 } 1918 1919 do { 1920 size = db_bar_size(dev, nr_io_queues); 1921 result = nvme_remap_bar(dev, size); 1922 if (!result) 1923 break; 1924 if (!--nr_io_queues) 1925 return -ENOMEM; 1926 } while (1); 1927 adminq->q_db = dev->dbs; 1928 1929 /* Deregister the admin queue's interrupt */ 1930 pci_free_irq(pdev, 0, adminq); 1931 1932 /* 1933 * If we enable msix early due to not intx, disable it again before 1934 * setting up the full range we need. 1935 */ 1936 pci_free_irq_vectors(pdev); 1937 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1938 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1939 if (nr_io_queues <= 0) 1940 return -EIO; 1941 dev->max_qid = nr_io_queues; 1942 1943 /* 1944 * Should investigate if there's a performance win from allocating 1945 * more queues than interrupt vectors; it might allow the submission 1946 * path to scale better, even if the receive path is limited by the 1947 * number of interrupts. 1948 */ 1949 1950 result = queue_request_irq(adminq); 1951 if (result) { 1952 adminq->cq_vector = -1; 1953 return result; 1954 } 1955 return nvme_create_io_queues(dev); 1956 } 1957 1958 static void nvme_del_queue_end(struct request *req, blk_status_t error) 1959 { 1960 struct nvme_queue *nvmeq = req->end_io_data; 1961 1962 blk_mq_free_request(req); 1963 complete(&nvmeq->dev->ioq_wait); 1964 } 1965 1966 static void nvme_del_cq_end(struct request *req, blk_status_t error) 1967 { 1968 struct nvme_queue *nvmeq = req->end_io_data; 1969 1970 if (!error) { 1971 unsigned long flags; 1972 1973 /* 1974 * We might be called with the AQ q_lock held 1975 * and the I/O queue q_lock should always 1976 * nest inside the AQ one. 1977 */ 1978 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1979 SINGLE_DEPTH_NESTING); 1980 nvme_process_cq(nvmeq); 1981 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1982 } 1983 1984 nvme_del_queue_end(req, error); 1985 } 1986 1987 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1988 { 1989 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1990 struct request *req; 1991 struct nvme_command cmd; 1992 1993 memset(&cmd, 0, sizeof(cmd)); 1994 cmd.delete_queue.opcode = opcode; 1995 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1996 1997 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1998 if (IS_ERR(req)) 1999 return PTR_ERR(req); 2000 2001 req->timeout = ADMIN_TIMEOUT; 2002 req->end_io_data = nvmeq; 2003 2004 blk_execute_rq_nowait(q, NULL, req, false, 2005 opcode == nvme_admin_delete_cq ? 2006 nvme_del_cq_end : nvme_del_queue_end); 2007 return 0; 2008 } 2009 2010 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 2011 { 2012 int pass; 2013 unsigned long timeout; 2014 u8 opcode = nvme_admin_delete_sq; 2015 2016 for (pass = 0; pass < 2; pass++) { 2017 int sent = 0, i = queues; 2018 2019 reinit_completion(&dev->ioq_wait); 2020 retry: 2021 timeout = ADMIN_TIMEOUT; 2022 for (; i > 0; i--, sent++) 2023 if (nvme_delete_queue(dev->queues[i], opcode)) 2024 break; 2025 2026 while (sent--) { 2027 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 2028 if (timeout == 0) 2029 return; 2030 if (i) 2031 goto retry; 2032 } 2033 opcode = nvme_admin_delete_cq; 2034 } 2035 } 2036 2037 /* 2038 * Return: error value if an error occurred setting up the queues or calling 2039 * Identify Device. 0 if these succeeded, even if adding some of the 2040 * namespaces failed. At the moment, these failures are silent. TBD which 2041 * failures should be reported. 2042 */ 2043 static int nvme_dev_add(struct nvme_dev *dev) 2044 { 2045 if (!dev->ctrl.tagset) { 2046 dev->tagset.ops = &nvme_mq_ops; 2047 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2048 dev->tagset.timeout = NVME_IO_TIMEOUT; 2049 dev->tagset.numa_node = dev_to_node(dev->dev); 2050 dev->tagset.queue_depth = 2051 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2052 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false); 2053 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) { 2054 dev->tagset.cmd_size = max(dev->tagset.cmd_size, 2055 nvme_pci_cmd_size(dev, true)); 2056 } 2057 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2058 dev->tagset.driver_data = dev; 2059 2060 if (blk_mq_alloc_tag_set(&dev->tagset)) 2061 return 0; 2062 dev->ctrl.tagset = &dev->tagset; 2063 2064 nvme_dbbuf_set(dev); 2065 } else { 2066 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2067 2068 /* Free previously allocated queues that are no longer usable */ 2069 nvme_free_queues(dev, dev->online_queues); 2070 } 2071 2072 return 0; 2073 } 2074 2075 static int nvme_pci_enable(struct nvme_dev *dev) 2076 { 2077 int result = -ENOMEM; 2078 struct pci_dev *pdev = to_pci_dev(dev->dev); 2079 2080 if (pci_enable_device_mem(pdev)) 2081 return result; 2082 2083 pci_set_master(pdev); 2084 2085 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 2086 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 2087 goto disable; 2088 2089 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2090 result = -ENODEV; 2091 goto disable; 2092 } 2093 2094 /* 2095 * Some devices and/or platforms don't advertise or work with INTx 2096 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2097 * adjust this later. 2098 */ 2099 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2100 if (result < 0) 2101 return result; 2102 2103 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2104 2105 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2106 io_queue_depth); 2107 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2108 dev->dbs = dev->bar + 4096; 2109 2110 /* 2111 * Temporary fix for the Apple controller found in the MacBook8,1 and 2112 * some MacBook7,1 to avoid controller resets and data loss. 2113 */ 2114 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2115 dev->q_depth = 2; 2116 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2117 "set queue depth=%u to work around controller resets\n", 2118 dev->q_depth); 2119 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2120 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2121 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2122 dev->q_depth = 64; 2123 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2124 "set queue depth=%u\n", dev->q_depth); 2125 } 2126 2127 /* 2128 * CMBs can currently only exist on >=1.2 PCIe devices. We only 2129 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group 2130 * has no name we can pass NULL as final argument to 2131 * sysfs_add_file_to_group. 2132 */ 2133 2134 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 2135 dev->cmb = nvme_map_cmb(dev); 2136 if (dev->cmb) { 2137 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 2138 &dev_attr_cmb.attr, NULL)) 2139 dev_warn(dev->ctrl.device, 2140 "failed to add sysfs attribute for CMB\n"); 2141 } 2142 } 2143 2144 pci_enable_pcie_error_reporting(pdev); 2145 pci_save_state(pdev); 2146 return 0; 2147 2148 disable: 2149 pci_disable_device(pdev); 2150 return result; 2151 } 2152 2153 static void nvme_dev_unmap(struct nvme_dev *dev) 2154 { 2155 if (dev->bar) 2156 iounmap(dev->bar); 2157 pci_release_mem_regions(to_pci_dev(dev->dev)); 2158 } 2159 2160 static void nvme_pci_disable(struct nvme_dev *dev) 2161 { 2162 struct pci_dev *pdev = to_pci_dev(dev->dev); 2163 2164 nvme_release_cmb(dev); 2165 pci_free_irq_vectors(pdev); 2166 2167 if (pci_is_enabled(pdev)) { 2168 pci_disable_pcie_error_reporting(pdev); 2169 pci_disable_device(pdev); 2170 } 2171 } 2172 2173 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2174 { 2175 int i, queues; 2176 bool dead = true; 2177 struct pci_dev *pdev = to_pci_dev(dev->dev); 2178 2179 mutex_lock(&dev->shutdown_lock); 2180 if (pci_is_enabled(pdev)) { 2181 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2182 2183 if (dev->ctrl.state == NVME_CTRL_LIVE || 2184 dev->ctrl.state == NVME_CTRL_RESETTING) 2185 nvme_start_freeze(&dev->ctrl); 2186 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2187 pdev->error_state != pci_channel_io_normal); 2188 } 2189 2190 /* 2191 * Give the controller a chance to complete all entered requests if 2192 * doing a safe shutdown. 2193 */ 2194 if (!dead) { 2195 if (shutdown) 2196 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2197 2198 /* 2199 * If the controller is still alive tell it to stop using the 2200 * host memory buffer. In theory the shutdown / reset should 2201 * make sure that it doesn't access the host memoery anymore, 2202 * but I'd rather be safe than sorry.. 2203 */ 2204 if (dev->host_mem_descs) 2205 nvme_set_host_mem(dev, 0); 2206 2207 } 2208 nvme_stop_queues(&dev->ctrl); 2209 2210 queues = dev->online_queues - 1; 2211 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 2212 nvme_suspend_queue(dev->queues[i]); 2213 2214 if (dead) { 2215 /* A device might become IO incapable very soon during 2216 * probe, before the admin queue is configured. Thus, 2217 * queue_count can be 0 here. 2218 */ 2219 if (dev->ctrl.queue_count) 2220 nvme_suspend_queue(dev->queues[0]); 2221 } else { 2222 nvme_disable_io_queues(dev, queues); 2223 nvme_disable_admin_queue(dev, shutdown); 2224 } 2225 nvme_pci_disable(dev); 2226 2227 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2228 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2229 2230 /* 2231 * The driver will not be starting up queues again if shutting down so 2232 * must flush all entered requests to their failed completion to avoid 2233 * deadlocking blk-mq hot-cpu notifier. 2234 */ 2235 if (shutdown) 2236 nvme_start_queues(&dev->ctrl); 2237 mutex_unlock(&dev->shutdown_lock); 2238 } 2239 2240 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2241 { 2242 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2243 PAGE_SIZE, PAGE_SIZE, 0); 2244 if (!dev->prp_page_pool) 2245 return -ENOMEM; 2246 2247 /* Optimisation for I/Os between 4k and 128k */ 2248 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2249 256, 256, 0); 2250 if (!dev->prp_small_pool) { 2251 dma_pool_destroy(dev->prp_page_pool); 2252 return -ENOMEM; 2253 } 2254 return 0; 2255 } 2256 2257 static void nvme_release_prp_pools(struct nvme_dev *dev) 2258 { 2259 dma_pool_destroy(dev->prp_page_pool); 2260 dma_pool_destroy(dev->prp_small_pool); 2261 } 2262 2263 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2264 { 2265 struct nvme_dev *dev = to_nvme_dev(ctrl); 2266 2267 nvme_dbbuf_dma_free(dev); 2268 put_device(dev->dev); 2269 if (dev->tagset.tags) 2270 blk_mq_free_tag_set(&dev->tagset); 2271 if (dev->ctrl.admin_q) 2272 blk_put_queue(dev->ctrl.admin_q); 2273 kfree(dev->queues); 2274 free_opal_dev(dev->ctrl.opal_dev); 2275 kfree(dev); 2276 } 2277 2278 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 2279 { 2280 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 2281 2282 nvme_get_ctrl(&dev->ctrl); 2283 nvme_dev_disable(dev, false); 2284 if (!queue_work(nvme_wq, &dev->remove_work)) 2285 nvme_put_ctrl(&dev->ctrl); 2286 } 2287 2288 static void nvme_reset_work(struct work_struct *work) 2289 { 2290 struct nvme_dev *dev = 2291 container_of(work, struct nvme_dev, ctrl.reset_work); 2292 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2293 int result = -ENODEV; 2294 2295 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) 2296 goto out; 2297 2298 /* 2299 * If we're called to reset a live controller first shut it down before 2300 * moving on. 2301 */ 2302 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2303 nvme_dev_disable(dev, false); 2304 2305 result = nvme_pci_enable(dev); 2306 if (result) 2307 goto out; 2308 2309 result = nvme_pci_configure_admin_queue(dev); 2310 if (result) 2311 goto out; 2312 2313 result = nvme_alloc_admin_tags(dev); 2314 if (result) 2315 goto out; 2316 2317 result = nvme_init_identify(&dev->ctrl); 2318 if (result) 2319 goto out; 2320 2321 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2322 if (!dev->ctrl.opal_dev) 2323 dev->ctrl.opal_dev = 2324 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2325 else if (was_suspend) 2326 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2327 } else { 2328 free_opal_dev(dev->ctrl.opal_dev); 2329 dev->ctrl.opal_dev = NULL; 2330 } 2331 2332 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2333 result = nvme_dbbuf_dma_alloc(dev); 2334 if (result) 2335 dev_warn(dev->dev, 2336 "unable to allocate dma for dbbuf\n"); 2337 } 2338 2339 if (dev->ctrl.hmpre) { 2340 result = nvme_setup_host_mem(dev); 2341 if (result < 0) 2342 goto out; 2343 } 2344 2345 result = nvme_setup_io_queues(dev); 2346 if (result) 2347 goto out; 2348 2349 /* 2350 * Keep the controller around but remove all namespaces if we don't have 2351 * any working I/O queue. 2352 */ 2353 if (dev->online_queues < 2) { 2354 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2355 nvme_kill_queues(&dev->ctrl); 2356 nvme_remove_namespaces(&dev->ctrl); 2357 } else { 2358 nvme_start_queues(&dev->ctrl); 2359 nvme_wait_freeze(&dev->ctrl); 2360 nvme_dev_add(dev); 2361 nvme_unfreeze(&dev->ctrl); 2362 } 2363 2364 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2365 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 2366 goto out; 2367 } 2368 2369 nvme_start_ctrl(&dev->ctrl); 2370 return; 2371 2372 out: 2373 nvme_remove_dead_ctrl(dev, result); 2374 } 2375 2376 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2377 { 2378 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2379 struct pci_dev *pdev = to_pci_dev(dev->dev); 2380 2381 nvme_kill_queues(&dev->ctrl); 2382 if (pci_get_drvdata(pdev)) 2383 device_release_driver(&pdev->dev); 2384 nvme_put_ctrl(&dev->ctrl); 2385 } 2386 2387 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2388 { 2389 *val = readl(to_nvme_dev(ctrl)->bar + off); 2390 return 0; 2391 } 2392 2393 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2394 { 2395 writel(val, to_nvme_dev(ctrl)->bar + off); 2396 return 0; 2397 } 2398 2399 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2400 { 2401 *val = readq(to_nvme_dev(ctrl)->bar + off); 2402 return 0; 2403 } 2404 2405 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2406 .name = "pcie", 2407 .module = THIS_MODULE, 2408 .flags = NVME_F_METADATA_SUPPORTED, 2409 .reg_read32 = nvme_pci_reg_read32, 2410 .reg_write32 = nvme_pci_reg_write32, 2411 .reg_read64 = nvme_pci_reg_read64, 2412 .free_ctrl = nvme_pci_free_ctrl, 2413 .submit_async_event = nvme_pci_submit_async_event, 2414 }; 2415 2416 static int nvme_dev_map(struct nvme_dev *dev) 2417 { 2418 struct pci_dev *pdev = to_pci_dev(dev->dev); 2419 2420 if (pci_request_mem_regions(pdev, "nvme")) 2421 return -ENODEV; 2422 2423 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2424 goto release; 2425 2426 return 0; 2427 release: 2428 pci_release_mem_regions(pdev); 2429 return -ENODEV; 2430 } 2431 2432 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2433 { 2434 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2435 /* 2436 * Several Samsung devices seem to drop off the PCIe bus 2437 * randomly when APST is on and uses the deepest sleep state. 2438 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2439 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2440 * 950 PRO 256GB", but it seems to be restricted to two Dell 2441 * laptops. 2442 */ 2443 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2444 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2445 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2446 return NVME_QUIRK_NO_DEEPEST_PS; 2447 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2448 /* 2449 * Samsung SSD 960 EVO drops off the PCIe bus after system 2450 * suspend on a Ryzen board, ASUS PRIME B350M-A. 2451 */ 2452 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2453 dmi_match(DMI_BOARD_NAME, "PRIME B350M-A")) 2454 return NVME_QUIRK_NO_APST; 2455 } 2456 2457 return 0; 2458 } 2459 2460 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2461 { 2462 int node, result = -ENOMEM; 2463 struct nvme_dev *dev; 2464 unsigned long quirks = id->driver_data; 2465 2466 node = dev_to_node(&pdev->dev); 2467 if (node == NUMA_NO_NODE) 2468 set_dev_node(&pdev->dev, first_memory_node); 2469 2470 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2471 if (!dev) 2472 return -ENOMEM; 2473 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 2474 GFP_KERNEL, node); 2475 if (!dev->queues) 2476 goto free; 2477 2478 dev->dev = get_device(&pdev->dev); 2479 pci_set_drvdata(pdev, dev); 2480 2481 result = nvme_dev_map(dev); 2482 if (result) 2483 goto put_pci; 2484 2485 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2486 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2487 mutex_init(&dev->shutdown_lock); 2488 init_completion(&dev->ioq_wait); 2489 2490 result = nvme_setup_prp_pools(dev); 2491 if (result) 2492 goto unmap; 2493 2494 quirks |= check_vendor_combination_bug(pdev); 2495 2496 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2497 quirks); 2498 if (result) 2499 goto release_pools; 2500 2501 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING); 2502 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2503 2504 queue_work(nvme_wq, &dev->ctrl.reset_work); 2505 return 0; 2506 2507 release_pools: 2508 nvme_release_prp_pools(dev); 2509 unmap: 2510 nvme_dev_unmap(dev); 2511 put_pci: 2512 put_device(dev->dev); 2513 free: 2514 kfree(dev->queues); 2515 kfree(dev); 2516 return result; 2517 } 2518 2519 static void nvme_reset_prepare(struct pci_dev *pdev) 2520 { 2521 struct nvme_dev *dev = pci_get_drvdata(pdev); 2522 nvme_dev_disable(dev, false); 2523 } 2524 2525 static void nvme_reset_done(struct pci_dev *pdev) 2526 { 2527 struct nvme_dev *dev = pci_get_drvdata(pdev); 2528 nvme_reset_ctrl(&dev->ctrl); 2529 } 2530 2531 static void nvme_shutdown(struct pci_dev *pdev) 2532 { 2533 struct nvme_dev *dev = pci_get_drvdata(pdev); 2534 nvme_dev_disable(dev, true); 2535 } 2536 2537 /* 2538 * The driver's remove may be called on a device in a partially initialized 2539 * state. This function must not have any dependencies on the device state in 2540 * order to proceed. 2541 */ 2542 static void nvme_remove(struct pci_dev *pdev) 2543 { 2544 struct nvme_dev *dev = pci_get_drvdata(pdev); 2545 2546 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2547 2548 cancel_work_sync(&dev->ctrl.reset_work); 2549 pci_set_drvdata(pdev, NULL); 2550 2551 if (!pci_device_is_present(pdev)) { 2552 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2553 nvme_dev_disable(dev, false); 2554 } 2555 2556 flush_work(&dev->ctrl.reset_work); 2557 nvme_stop_ctrl(&dev->ctrl); 2558 nvme_remove_namespaces(&dev->ctrl); 2559 nvme_dev_disable(dev, true); 2560 nvme_free_host_mem(dev); 2561 nvme_dev_remove_admin(dev); 2562 nvme_free_queues(dev, 0); 2563 nvme_uninit_ctrl(&dev->ctrl); 2564 nvme_release_prp_pools(dev); 2565 nvme_dev_unmap(dev); 2566 nvme_put_ctrl(&dev->ctrl); 2567 } 2568 2569 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2570 { 2571 int ret = 0; 2572 2573 if (numvfs == 0) { 2574 if (pci_vfs_assigned(pdev)) { 2575 dev_warn(&pdev->dev, 2576 "Cannot disable SR-IOV VFs while assigned\n"); 2577 return -EPERM; 2578 } 2579 pci_disable_sriov(pdev); 2580 return 0; 2581 } 2582 2583 ret = pci_enable_sriov(pdev, numvfs); 2584 return ret ? ret : numvfs; 2585 } 2586 2587 #ifdef CONFIG_PM_SLEEP 2588 static int nvme_suspend(struct device *dev) 2589 { 2590 struct pci_dev *pdev = to_pci_dev(dev); 2591 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2592 2593 nvme_dev_disable(ndev, true); 2594 return 0; 2595 } 2596 2597 static int nvme_resume(struct device *dev) 2598 { 2599 struct pci_dev *pdev = to_pci_dev(dev); 2600 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2601 2602 nvme_reset_ctrl(&ndev->ctrl); 2603 return 0; 2604 } 2605 #endif 2606 2607 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2608 2609 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2610 pci_channel_state_t state) 2611 { 2612 struct nvme_dev *dev = pci_get_drvdata(pdev); 2613 2614 /* 2615 * A frozen channel requires a reset. When detected, this method will 2616 * shutdown the controller to quiesce. The controller will be restarted 2617 * after the slot reset through driver's slot_reset callback. 2618 */ 2619 switch (state) { 2620 case pci_channel_io_normal: 2621 return PCI_ERS_RESULT_CAN_RECOVER; 2622 case pci_channel_io_frozen: 2623 dev_warn(dev->ctrl.device, 2624 "frozen state error detected, reset controller\n"); 2625 nvme_dev_disable(dev, false); 2626 return PCI_ERS_RESULT_NEED_RESET; 2627 case pci_channel_io_perm_failure: 2628 dev_warn(dev->ctrl.device, 2629 "failure state error detected, request disconnect\n"); 2630 return PCI_ERS_RESULT_DISCONNECT; 2631 } 2632 return PCI_ERS_RESULT_NEED_RESET; 2633 } 2634 2635 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2636 { 2637 struct nvme_dev *dev = pci_get_drvdata(pdev); 2638 2639 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2640 pci_restore_state(pdev); 2641 nvme_reset_ctrl(&dev->ctrl); 2642 return PCI_ERS_RESULT_RECOVERED; 2643 } 2644 2645 static void nvme_error_resume(struct pci_dev *pdev) 2646 { 2647 pci_cleanup_aer_uncorrect_error_status(pdev); 2648 } 2649 2650 static const struct pci_error_handlers nvme_err_handler = { 2651 .error_detected = nvme_error_detected, 2652 .slot_reset = nvme_slot_reset, 2653 .resume = nvme_error_resume, 2654 .reset_prepare = nvme_reset_prepare, 2655 .reset_done = nvme_reset_done, 2656 }; 2657 2658 static const struct pci_device_id nvme_id_table[] = { 2659 { PCI_VDEVICE(INTEL, 0x0953), 2660 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2661 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2662 { PCI_VDEVICE(INTEL, 0x0a53), 2663 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2664 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2665 { PCI_VDEVICE(INTEL, 0x0a54), 2666 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2667 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2668 { PCI_VDEVICE(INTEL, 0x0a55), 2669 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2670 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2671 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 2672 .driver_data = NVME_QUIRK_NO_DEEPEST_PS }, 2673 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2674 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2675 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2676 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2677 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 2678 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2679 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2680 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2681 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 2682 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2683 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 2684 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2685 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 2686 .driver_data = NVME_QUIRK_LIGHTNVM, }, 2687 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 2688 .driver_data = NVME_QUIRK_LIGHTNVM, }, 2689 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2690 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2691 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 2692 { 0, } 2693 }; 2694 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2695 2696 static struct pci_driver nvme_driver = { 2697 .name = "nvme", 2698 .id_table = nvme_id_table, 2699 .probe = nvme_probe, 2700 .remove = nvme_remove, 2701 .shutdown = nvme_shutdown, 2702 .driver = { 2703 .pm = &nvme_dev_pm_ops, 2704 }, 2705 .sriov_configure = nvme_pci_sriov_configure, 2706 .err_handler = &nvme_err_handler, 2707 }; 2708 2709 static int __init nvme_init(void) 2710 { 2711 return pci_register_driver(&nvme_driver); 2712 } 2713 2714 static void __exit nvme_exit(void) 2715 { 2716 pci_unregister_driver(&nvme_driver); 2717 flush_workqueue(nvme_wq); 2718 _nvme_check_size(); 2719 } 2720 2721 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2722 MODULE_LICENSE("GPL"); 2723 MODULE_VERSION("1.0"); 2724 module_init(nvme_init); 2725 module_exit(nvme_exit); 2726