1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 4096 45 #define NVME_MAX_SEGS 127 46 47 static int use_threaded_interrupts; 48 module_param(use_threaded_interrupts, int, 0444); 49 50 static bool use_cmb_sqes = true; 51 module_param(use_cmb_sqes, bool, 0444); 52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 53 54 static unsigned int max_host_mem_size_mb = 128; 55 module_param(max_host_mem_size_mb, uint, 0444); 56 MODULE_PARM_DESC(max_host_mem_size_mb, 57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 58 59 static unsigned int sgl_threshold = SZ_32K; 60 module_param(sgl_threshold, uint, 0644); 61 MODULE_PARM_DESC(sgl_threshold, 62 "Use SGLs when average request segment size is larger or equal to " 63 "this size. Use 0 to disable SGLs."); 64 65 #define NVME_PCI_MIN_QUEUE_SIZE 2 66 #define NVME_PCI_MAX_QUEUE_SIZE 4095 67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 68 static const struct kernel_param_ops io_queue_depth_ops = { 69 .set = io_queue_depth_set, 70 .get = param_get_uint, 71 }; 72 73 static unsigned int io_queue_depth = 1024; 74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 76 77 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 78 { 79 unsigned int n; 80 int ret; 81 82 ret = kstrtouint(val, 10, &n); 83 if (ret != 0 || n > num_possible_cpus()) 84 return -EINVAL; 85 return param_set_uint(val, kp); 86 } 87 88 static const struct kernel_param_ops io_queue_count_ops = { 89 .set = io_queue_count_set, 90 .get = param_get_uint, 91 }; 92 93 static unsigned int write_queues; 94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 95 MODULE_PARM_DESC(write_queues, 96 "Number of queues to use for writes. If not set, reads and writes " 97 "will share a queue set."); 98 99 static unsigned int poll_queues; 100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 102 103 static bool noacpi; 104 module_param(noacpi, bool, 0444); 105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 106 107 struct nvme_dev; 108 struct nvme_queue; 109 110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 112 113 /* 114 * Represents an NVM Express device. Each nvme_dev is a PCI function. 115 */ 116 struct nvme_dev { 117 struct nvme_queue *queues; 118 struct blk_mq_tag_set tagset; 119 struct blk_mq_tag_set admin_tagset; 120 u32 __iomem *dbs; 121 struct device *dev; 122 struct dma_pool *prp_page_pool; 123 struct dma_pool *prp_small_pool; 124 unsigned online_queues; 125 unsigned max_qid; 126 unsigned io_queues[HCTX_MAX_TYPES]; 127 unsigned int num_vecs; 128 u32 q_depth; 129 int io_sqes; 130 u32 db_stride; 131 void __iomem *bar; 132 unsigned long bar_mapped_size; 133 struct work_struct remove_work; 134 struct mutex shutdown_lock; 135 bool subsystem; 136 u64 cmb_size; 137 bool cmb_use_sqes; 138 u32 cmbsz; 139 u32 cmbloc; 140 struct nvme_ctrl ctrl; 141 u32 last_ps; 142 bool hmb; 143 144 mempool_t *iod_mempool; 145 146 /* shadow doorbell buffer support: */ 147 u32 *dbbuf_dbs; 148 dma_addr_t dbbuf_dbs_dma_addr; 149 u32 *dbbuf_eis; 150 dma_addr_t dbbuf_eis_dma_addr; 151 152 /* host memory buffer support: */ 153 u64 host_mem_size; 154 u32 nr_host_mem_descs; 155 dma_addr_t host_mem_descs_dma; 156 struct nvme_host_mem_buf_desc *host_mem_descs; 157 void **host_mem_desc_bufs; 158 unsigned int nr_allocated_queues; 159 unsigned int nr_write_queues; 160 unsigned int nr_poll_queues; 161 162 bool attrs_added; 163 }; 164 165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 166 { 167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 168 NVME_PCI_MAX_QUEUE_SIZE); 169 } 170 171 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 172 { 173 return qid * 2 * stride; 174 } 175 176 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 177 { 178 return (qid * 2 + 1) * stride; 179 } 180 181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 182 { 183 return container_of(ctrl, struct nvme_dev, ctrl); 184 } 185 186 /* 187 * An NVM Express queue. Each device has at least two (one for admin 188 * commands and one for I/O commands). 189 */ 190 struct nvme_queue { 191 struct nvme_dev *dev; 192 spinlock_t sq_lock; 193 void *sq_cmds; 194 /* only used for poll queues: */ 195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 196 struct nvme_completion *cqes; 197 dma_addr_t sq_dma_addr; 198 dma_addr_t cq_dma_addr; 199 u32 __iomem *q_db; 200 u32 q_depth; 201 u16 cq_vector; 202 u16 sq_tail; 203 u16 last_sq_tail; 204 u16 cq_head; 205 u16 qid; 206 u8 cq_phase; 207 u8 sqes; 208 unsigned long flags; 209 #define NVMEQ_ENABLED 0 210 #define NVMEQ_SQ_CMB 1 211 #define NVMEQ_DELETE_ERROR 2 212 #define NVMEQ_POLLED 3 213 u32 *dbbuf_sq_db; 214 u32 *dbbuf_cq_db; 215 u32 *dbbuf_sq_ei; 216 u32 *dbbuf_cq_ei; 217 struct completion delete_done; 218 }; 219 220 /* 221 * The nvme_iod describes the data in an I/O. 222 * 223 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 224 * to the actual struct scatterlist. 225 */ 226 struct nvme_iod { 227 struct nvme_request req; 228 struct nvme_command cmd; 229 struct nvme_queue *nvmeq; 230 bool use_sgl; 231 int aborted; 232 int npages; /* In the PRP list. 0 means small pool in use */ 233 dma_addr_t first_dma; 234 unsigned int dma_len; /* length of single DMA segment mapping */ 235 dma_addr_t meta_dma; 236 struct sg_table sgt; 237 }; 238 239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 240 { 241 return dev->nr_allocated_queues * 8 * dev->db_stride; 242 } 243 244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 245 { 246 unsigned int mem_size = nvme_dbbuf_size(dev); 247 248 if (dev->dbbuf_dbs) { 249 /* 250 * Clear the dbbuf memory so the driver doesn't observe stale 251 * values from the previous instantiation. 252 */ 253 memset(dev->dbbuf_dbs, 0, mem_size); 254 memset(dev->dbbuf_eis, 0, mem_size); 255 return 0; 256 } 257 258 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 259 &dev->dbbuf_dbs_dma_addr, 260 GFP_KERNEL); 261 if (!dev->dbbuf_dbs) 262 return -ENOMEM; 263 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 264 &dev->dbbuf_eis_dma_addr, 265 GFP_KERNEL); 266 if (!dev->dbbuf_eis) { 267 dma_free_coherent(dev->dev, mem_size, 268 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 269 dev->dbbuf_dbs = NULL; 270 return -ENOMEM; 271 } 272 273 return 0; 274 } 275 276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 277 { 278 unsigned int mem_size = nvme_dbbuf_size(dev); 279 280 if (dev->dbbuf_dbs) { 281 dma_free_coherent(dev->dev, mem_size, 282 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 283 dev->dbbuf_dbs = NULL; 284 } 285 if (dev->dbbuf_eis) { 286 dma_free_coherent(dev->dev, mem_size, 287 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 288 dev->dbbuf_eis = NULL; 289 } 290 } 291 292 static void nvme_dbbuf_init(struct nvme_dev *dev, 293 struct nvme_queue *nvmeq, int qid) 294 { 295 if (!dev->dbbuf_dbs || !qid) 296 return; 297 298 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 299 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 300 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 301 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 302 } 303 304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 305 { 306 if (!nvmeq->qid) 307 return; 308 309 nvmeq->dbbuf_sq_db = NULL; 310 nvmeq->dbbuf_cq_db = NULL; 311 nvmeq->dbbuf_sq_ei = NULL; 312 nvmeq->dbbuf_cq_ei = NULL; 313 } 314 315 static void nvme_dbbuf_set(struct nvme_dev *dev) 316 { 317 struct nvme_command c = { }; 318 unsigned int i; 319 320 if (!dev->dbbuf_dbs) 321 return; 322 323 c.dbbuf.opcode = nvme_admin_dbbuf; 324 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 325 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 326 327 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 328 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 329 /* Free memory and continue on */ 330 nvme_dbbuf_dma_free(dev); 331 332 for (i = 1; i <= dev->online_queues; i++) 333 nvme_dbbuf_free(&dev->queues[i]); 334 } 335 } 336 337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 338 { 339 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 340 } 341 342 /* Update dbbuf and return true if an MMIO is required */ 343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 344 volatile u32 *dbbuf_ei) 345 { 346 if (dbbuf_db) { 347 u16 old_value; 348 349 /* 350 * Ensure that the queue is written before updating 351 * the doorbell in memory 352 */ 353 wmb(); 354 355 old_value = *dbbuf_db; 356 *dbbuf_db = value; 357 358 /* 359 * Ensure that the doorbell is updated before reading the event 360 * index from memory. The controller needs to provide similar 361 * ordering to ensure the envent index is updated before reading 362 * the doorbell. 363 */ 364 mb(); 365 366 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 367 return false; 368 } 369 370 return true; 371 } 372 373 /* 374 * Will slightly overestimate the number of pages needed. This is OK 375 * as it only leads to a small amount of wasted memory for the lifetime of 376 * the I/O. 377 */ 378 static int nvme_pci_npages_prp(void) 379 { 380 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 381 NVME_CTRL_PAGE_SIZE); 382 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 383 } 384 385 /* 386 * Calculates the number of pages needed for the SGL segments. For example a 4k 387 * page can accommodate 256 SGL descriptors. 388 */ 389 static int nvme_pci_npages_sgl(void) 390 { 391 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 392 PAGE_SIZE); 393 } 394 395 static size_t nvme_pci_iod_alloc_size(void) 396 { 397 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 398 399 return sizeof(__le64 *) * npages + 400 sizeof(struct scatterlist) * NVME_MAX_SEGS; 401 } 402 403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 404 unsigned int hctx_idx) 405 { 406 struct nvme_dev *dev = data; 407 struct nvme_queue *nvmeq = &dev->queues[0]; 408 409 WARN_ON(hctx_idx != 0); 410 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 411 412 hctx->driver_data = nvmeq; 413 return 0; 414 } 415 416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 417 unsigned int hctx_idx) 418 { 419 struct nvme_dev *dev = data; 420 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 421 422 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 423 hctx->driver_data = nvmeq; 424 return 0; 425 } 426 427 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 428 struct request *req, unsigned int hctx_idx, 429 unsigned int numa_node) 430 { 431 struct nvme_dev *dev = set->driver_data; 432 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 433 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 434 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 435 436 BUG_ON(!nvmeq); 437 iod->nvmeq = nvmeq; 438 439 nvme_req(req)->ctrl = &dev->ctrl; 440 nvme_req(req)->cmd = &iod->cmd; 441 return 0; 442 } 443 444 static int queue_irq_offset(struct nvme_dev *dev) 445 { 446 /* if we have more than 1 vec, admin queue offsets us by 1 */ 447 if (dev->num_vecs > 1) 448 return 1; 449 450 return 0; 451 } 452 453 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 454 { 455 struct nvme_dev *dev = set->driver_data; 456 int i, qoff, offset; 457 458 offset = queue_irq_offset(dev); 459 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 460 struct blk_mq_queue_map *map = &set->map[i]; 461 462 map->nr_queues = dev->io_queues[i]; 463 if (!map->nr_queues) { 464 BUG_ON(i == HCTX_TYPE_DEFAULT); 465 continue; 466 } 467 468 /* 469 * The poll queue(s) doesn't have an IRQ (and hence IRQ 470 * affinity), so use the regular blk-mq cpu mapping 471 */ 472 map->queue_offset = qoff; 473 if (i != HCTX_TYPE_POLL && offset) 474 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 475 else 476 blk_mq_map_queues(map); 477 qoff += map->nr_queues; 478 offset += map->nr_queues; 479 } 480 481 return 0; 482 } 483 484 /* 485 * Write sq tail if we are asked to, or if the next command would wrap. 486 */ 487 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 488 { 489 if (!write_sq) { 490 u16 next_tail = nvmeq->sq_tail + 1; 491 492 if (next_tail == nvmeq->q_depth) 493 next_tail = 0; 494 if (next_tail != nvmeq->last_sq_tail) 495 return; 496 } 497 498 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 499 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 500 writel(nvmeq->sq_tail, nvmeq->q_db); 501 nvmeq->last_sq_tail = nvmeq->sq_tail; 502 } 503 504 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 505 struct nvme_command *cmd) 506 { 507 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 508 absolute_pointer(cmd), sizeof(*cmd)); 509 if (++nvmeq->sq_tail == nvmeq->q_depth) 510 nvmeq->sq_tail = 0; 511 } 512 513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 514 { 515 struct nvme_queue *nvmeq = hctx->driver_data; 516 517 spin_lock(&nvmeq->sq_lock); 518 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 519 nvme_write_sq_db(nvmeq, true); 520 spin_unlock(&nvmeq->sq_lock); 521 } 522 523 static void **nvme_pci_iod_list(struct request *req) 524 { 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 526 return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req)); 527 } 528 529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 530 { 531 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 532 int nseg = blk_rq_nr_phys_segments(req); 533 unsigned int avg_seg_size; 534 535 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 536 537 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 538 return false; 539 if (!iod->nvmeq->qid) 540 return false; 541 if (!sgl_threshold || avg_seg_size < sgl_threshold) 542 return false; 543 return true; 544 } 545 546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 547 { 548 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 549 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 550 dma_addr_t dma_addr = iod->first_dma; 551 int i; 552 553 for (i = 0; i < iod->npages; i++) { 554 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 555 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 556 557 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 558 dma_addr = next_dma_addr; 559 } 560 } 561 562 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 563 { 564 const int last_sg = SGES_PER_PAGE - 1; 565 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 566 dma_addr_t dma_addr = iod->first_dma; 567 int i; 568 569 for (i = 0; i < iod->npages; i++) { 570 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 571 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 572 573 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 574 dma_addr = next_dma_addr; 575 } 576 } 577 578 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 579 { 580 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 581 582 if (iod->dma_len) { 583 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 584 rq_dma_dir(req)); 585 return; 586 } 587 588 WARN_ON_ONCE(!iod->sgt.nents); 589 590 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 591 592 if (iod->npages == 0) 593 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 594 iod->first_dma); 595 else if (iod->use_sgl) 596 nvme_free_sgls(dev, req); 597 else 598 nvme_free_prps(dev, req); 599 mempool_free(iod->sgt.sgl, dev->iod_mempool); 600 } 601 602 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 603 { 604 int i; 605 struct scatterlist *sg; 606 607 for_each_sg(sgl, sg, nents, i) { 608 dma_addr_t phys = sg_phys(sg); 609 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 610 "dma_address:%pad dma_length:%d\n", 611 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 612 sg_dma_len(sg)); 613 } 614 } 615 616 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 617 struct request *req, struct nvme_rw_command *cmnd) 618 { 619 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 620 struct dma_pool *pool; 621 int length = blk_rq_payload_bytes(req); 622 struct scatterlist *sg = iod->sgt.sgl; 623 int dma_len = sg_dma_len(sg); 624 u64 dma_addr = sg_dma_address(sg); 625 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 626 __le64 *prp_list; 627 void **list = nvme_pci_iod_list(req); 628 dma_addr_t prp_dma; 629 int nprps, i; 630 631 length -= (NVME_CTRL_PAGE_SIZE - offset); 632 if (length <= 0) { 633 iod->first_dma = 0; 634 goto done; 635 } 636 637 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 638 if (dma_len) { 639 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 640 } else { 641 sg = sg_next(sg); 642 dma_addr = sg_dma_address(sg); 643 dma_len = sg_dma_len(sg); 644 } 645 646 if (length <= NVME_CTRL_PAGE_SIZE) { 647 iod->first_dma = dma_addr; 648 goto done; 649 } 650 651 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 652 if (nprps <= (256 / 8)) { 653 pool = dev->prp_small_pool; 654 iod->npages = 0; 655 } else { 656 pool = dev->prp_page_pool; 657 iod->npages = 1; 658 } 659 660 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 661 if (!prp_list) { 662 iod->npages = -1; 663 return BLK_STS_RESOURCE; 664 } 665 list[0] = prp_list; 666 iod->first_dma = prp_dma; 667 i = 0; 668 for (;;) { 669 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 670 __le64 *old_prp_list = prp_list; 671 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 672 if (!prp_list) 673 goto free_prps; 674 list[iod->npages++] = prp_list; 675 prp_list[0] = old_prp_list[i - 1]; 676 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 677 i = 1; 678 } 679 prp_list[i++] = cpu_to_le64(dma_addr); 680 dma_len -= NVME_CTRL_PAGE_SIZE; 681 dma_addr += NVME_CTRL_PAGE_SIZE; 682 length -= NVME_CTRL_PAGE_SIZE; 683 if (length <= 0) 684 break; 685 if (dma_len > 0) 686 continue; 687 if (unlikely(dma_len < 0)) 688 goto bad_sgl; 689 sg = sg_next(sg); 690 dma_addr = sg_dma_address(sg); 691 dma_len = sg_dma_len(sg); 692 } 693 done: 694 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 695 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 696 return BLK_STS_OK; 697 free_prps: 698 nvme_free_prps(dev, req); 699 return BLK_STS_RESOURCE; 700 bad_sgl: 701 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 702 "Invalid SGL for payload:%d nents:%d\n", 703 blk_rq_payload_bytes(req), iod->sgt.nents); 704 return BLK_STS_IOERR; 705 } 706 707 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 708 struct scatterlist *sg) 709 { 710 sge->addr = cpu_to_le64(sg_dma_address(sg)); 711 sge->length = cpu_to_le32(sg_dma_len(sg)); 712 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 713 } 714 715 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 716 dma_addr_t dma_addr, int entries) 717 { 718 sge->addr = cpu_to_le64(dma_addr); 719 if (entries < SGES_PER_PAGE) { 720 sge->length = cpu_to_le32(entries * sizeof(*sge)); 721 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 722 } else { 723 sge->length = cpu_to_le32(PAGE_SIZE); 724 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 725 } 726 } 727 728 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 729 struct request *req, struct nvme_rw_command *cmd) 730 { 731 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 732 struct dma_pool *pool; 733 struct nvme_sgl_desc *sg_list; 734 struct scatterlist *sg = iod->sgt.sgl; 735 unsigned int entries = iod->sgt.nents; 736 dma_addr_t sgl_dma; 737 int i = 0; 738 739 /* setting the transfer type as SGL */ 740 cmd->flags = NVME_CMD_SGL_METABUF; 741 742 if (entries == 1) { 743 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 744 return BLK_STS_OK; 745 } 746 747 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 748 pool = dev->prp_small_pool; 749 iod->npages = 0; 750 } else { 751 pool = dev->prp_page_pool; 752 iod->npages = 1; 753 } 754 755 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 756 if (!sg_list) { 757 iod->npages = -1; 758 return BLK_STS_RESOURCE; 759 } 760 761 nvme_pci_iod_list(req)[0] = sg_list; 762 iod->first_dma = sgl_dma; 763 764 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 765 766 do { 767 if (i == SGES_PER_PAGE) { 768 struct nvme_sgl_desc *old_sg_desc = sg_list; 769 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 770 771 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 772 if (!sg_list) 773 goto free_sgls; 774 775 i = 0; 776 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 777 sg_list[i++] = *link; 778 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 779 } 780 781 nvme_pci_sgl_set_data(&sg_list[i++], sg); 782 sg = sg_next(sg); 783 } while (--entries > 0); 784 785 return BLK_STS_OK; 786 free_sgls: 787 nvme_free_sgls(dev, req); 788 return BLK_STS_RESOURCE; 789 } 790 791 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 792 struct request *req, struct nvme_rw_command *cmnd, 793 struct bio_vec *bv) 794 { 795 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 796 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 797 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 798 799 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 800 if (dma_mapping_error(dev->dev, iod->first_dma)) 801 return BLK_STS_RESOURCE; 802 iod->dma_len = bv->bv_len; 803 804 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 805 if (bv->bv_len > first_prp_len) 806 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 807 return BLK_STS_OK; 808 } 809 810 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 811 struct request *req, struct nvme_rw_command *cmnd, 812 struct bio_vec *bv) 813 { 814 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 815 816 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 817 if (dma_mapping_error(dev->dev, iod->first_dma)) 818 return BLK_STS_RESOURCE; 819 iod->dma_len = bv->bv_len; 820 821 cmnd->flags = NVME_CMD_SGL_METABUF; 822 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 823 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 824 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 825 return BLK_STS_OK; 826 } 827 828 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 829 struct nvme_command *cmnd) 830 { 831 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 832 blk_status_t ret = BLK_STS_RESOURCE; 833 int rc; 834 835 if (blk_rq_nr_phys_segments(req) == 1) { 836 struct bio_vec bv = req_bvec(req); 837 838 if (!is_pci_p2pdma_page(bv.bv_page)) { 839 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 840 return nvme_setup_prp_simple(dev, req, 841 &cmnd->rw, &bv); 842 843 if (iod->nvmeq->qid && sgl_threshold && 844 nvme_ctrl_sgl_supported(&dev->ctrl)) 845 return nvme_setup_sgl_simple(dev, req, 846 &cmnd->rw, &bv); 847 } 848 } 849 850 iod->dma_len = 0; 851 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 852 if (!iod->sgt.sgl) 853 return BLK_STS_RESOURCE; 854 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 855 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 856 if (!iod->sgt.orig_nents) 857 goto out_free_sg; 858 859 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 860 DMA_ATTR_NO_WARN); 861 if (rc) { 862 if (rc == -EREMOTEIO) 863 ret = BLK_STS_TARGET; 864 goto out_free_sg; 865 } 866 867 iod->use_sgl = nvme_pci_use_sgls(dev, req); 868 if (iod->use_sgl) 869 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 870 else 871 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 872 if (ret != BLK_STS_OK) 873 goto out_unmap_sg; 874 return BLK_STS_OK; 875 876 out_unmap_sg: 877 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 878 out_free_sg: 879 mempool_free(iod->sgt.sgl, dev->iod_mempool); 880 return ret; 881 } 882 883 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 884 struct nvme_command *cmnd) 885 { 886 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 887 888 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 889 rq_dma_dir(req), 0); 890 if (dma_mapping_error(dev->dev, iod->meta_dma)) 891 return BLK_STS_IOERR; 892 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 893 return BLK_STS_OK; 894 } 895 896 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 897 { 898 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 899 blk_status_t ret; 900 901 iod->aborted = 0; 902 iod->npages = -1; 903 iod->sgt.nents = 0; 904 905 ret = nvme_setup_cmd(req->q->queuedata, req); 906 if (ret) 907 return ret; 908 909 if (blk_rq_nr_phys_segments(req)) { 910 ret = nvme_map_data(dev, req, &iod->cmd); 911 if (ret) 912 goto out_free_cmd; 913 } 914 915 if (blk_integrity_rq(req)) { 916 ret = nvme_map_metadata(dev, req, &iod->cmd); 917 if (ret) 918 goto out_unmap_data; 919 } 920 921 blk_mq_start_request(req); 922 return BLK_STS_OK; 923 out_unmap_data: 924 nvme_unmap_data(dev, req); 925 out_free_cmd: 926 nvme_cleanup_cmd(req); 927 return ret; 928 } 929 930 /* 931 * NOTE: ns is NULL when called on the admin queue. 932 */ 933 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 934 const struct blk_mq_queue_data *bd) 935 { 936 struct nvme_queue *nvmeq = hctx->driver_data; 937 struct nvme_dev *dev = nvmeq->dev; 938 struct request *req = bd->rq; 939 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 940 blk_status_t ret; 941 942 /* 943 * We should not need to do this, but we're still using this to 944 * ensure we can drain requests on a dying queue. 945 */ 946 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 947 return BLK_STS_IOERR; 948 949 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 950 return nvme_fail_nonready_command(&dev->ctrl, req); 951 952 ret = nvme_prep_rq(dev, req); 953 if (unlikely(ret)) 954 return ret; 955 spin_lock(&nvmeq->sq_lock); 956 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 957 nvme_write_sq_db(nvmeq, bd->last); 958 spin_unlock(&nvmeq->sq_lock); 959 return BLK_STS_OK; 960 } 961 962 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 963 { 964 spin_lock(&nvmeq->sq_lock); 965 while (!rq_list_empty(*rqlist)) { 966 struct request *req = rq_list_pop(rqlist); 967 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 968 969 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 970 } 971 nvme_write_sq_db(nvmeq, true); 972 spin_unlock(&nvmeq->sq_lock); 973 } 974 975 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 976 { 977 /* 978 * We should not need to do this, but we're still using this to 979 * ensure we can drain requests on a dying queue. 980 */ 981 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 982 return false; 983 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 984 return false; 985 986 req->mq_hctx->tags->rqs[req->tag] = req; 987 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 988 } 989 990 static void nvme_queue_rqs(struct request **rqlist) 991 { 992 struct request *req, *next, *prev = NULL; 993 struct request *requeue_list = NULL; 994 995 rq_list_for_each_safe(rqlist, req, next) { 996 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 997 998 if (!nvme_prep_rq_batch(nvmeq, req)) { 999 /* detach 'req' and add to remainder list */ 1000 rq_list_move(rqlist, &requeue_list, req, prev); 1001 1002 req = prev; 1003 if (!req) 1004 continue; 1005 } 1006 1007 if (!next || req->mq_hctx != next->mq_hctx) { 1008 /* detach rest of list, and submit */ 1009 req->rq_next = NULL; 1010 nvme_submit_cmds(nvmeq, rqlist); 1011 *rqlist = next; 1012 prev = NULL; 1013 } else 1014 prev = req; 1015 } 1016 1017 *rqlist = requeue_list; 1018 } 1019 1020 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1021 { 1022 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1023 struct nvme_dev *dev = iod->nvmeq->dev; 1024 1025 if (blk_integrity_rq(req)) 1026 dma_unmap_page(dev->dev, iod->meta_dma, 1027 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 1028 if (blk_rq_nr_phys_segments(req)) 1029 nvme_unmap_data(dev, req); 1030 } 1031 1032 static void nvme_pci_complete_rq(struct request *req) 1033 { 1034 nvme_pci_unmap_rq(req); 1035 nvme_complete_rq(req); 1036 } 1037 1038 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1039 { 1040 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1041 } 1042 1043 /* We read the CQE phase first to check if the rest of the entry is valid */ 1044 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1045 { 1046 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1047 1048 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1049 } 1050 1051 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1052 { 1053 u16 head = nvmeq->cq_head; 1054 1055 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1056 nvmeq->dbbuf_cq_ei)) 1057 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1058 } 1059 1060 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1061 { 1062 if (!nvmeq->qid) 1063 return nvmeq->dev->admin_tagset.tags[0]; 1064 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1065 } 1066 1067 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1068 struct io_comp_batch *iob, u16 idx) 1069 { 1070 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1071 __u16 command_id = READ_ONCE(cqe->command_id); 1072 struct request *req; 1073 1074 /* 1075 * AEN requests are special as they don't time out and can 1076 * survive any kind of queue freeze and often don't respond to 1077 * aborts. We don't even bother to allocate a struct request 1078 * for them but rather special case them here. 1079 */ 1080 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1081 nvme_complete_async_event(&nvmeq->dev->ctrl, 1082 cqe->status, &cqe->result); 1083 return; 1084 } 1085 1086 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1087 if (unlikely(!req)) { 1088 dev_warn(nvmeq->dev->ctrl.device, 1089 "invalid id %d completed on queue %d\n", 1090 command_id, le16_to_cpu(cqe->sq_id)); 1091 return; 1092 } 1093 1094 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1095 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1096 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1097 nvme_pci_complete_batch)) 1098 nvme_pci_complete_rq(req); 1099 } 1100 1101 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1102 { 1103 u32 tmp = nvmeq->cq_head + 1; 1104 1105 if (tmp == nvmeq->q_depth) { 1106 nvmeq->cq_head = 0; 1107 nvmeq->cq_phase ^= 1; 1108 } else { 1109 nvmeq->cq_head = tmp; 1110 } 1111 } 1112 1113 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1114 struct io_comp_batch *iob) 1115 { 1116 int found = 0; 1117 1118 while (nvme_cqe_pending(nvmeq)) { 1119 found++; 1120 /* 1121 * load-load control dependency between phase and the rest of 1122 * the cqe requires a full read memory barrier 1123 */ 1124 dma_rmb(); 1125 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1126 nvme_update_cq_head(nvmeq); 1127 } 1128 1129 if (found) 1130 nvme_ring_cq_doorbell(nvmeq); 1131 return found; 1132 } 1133 1134 static irqreturn_t nvme_irq(int irq, void *data) 1135 { 1136 struct nvme_queue *nvmeq = data; 1137 DEFINE_IO_COMP_BATCH(iob); 1138 1139 if (nvme_poll_cq(nvmeq, &iob)) { 1140 if (!rq_list_empty(iob.req_list)) 1141 nvme_pci_complete_batch(&iob); 1142 return IRQ_HANDLED; 1143 } 1144 return IRQ_NONE; 1145 } 1146 1147 static irqreturn_t nvme_irq_check(int irq, void *data) 1148 { 1149 struct nvme_queue *nvmeq = data; 1150 1151 if (nvme_cqe_pending(nvmeq)) 1152 return IRQ_WAKE_THREAD; 1153 return IRQ_NONE; 1154 } 1155 1156 /* 1157 * Poll for completions for any interrupt driven queue 1158 * Can be called from any context. 1159 */ 1160 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1161 { 1162 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1163 1164 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1165 1166 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1167 nvme_poll_cq(nvmeq, NULL); 1168 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1169 } 1170 1171 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1172 { 1173 struct nvme_queue *nvmeq = hctx->driver_data; 1174 bool found; 1175 1176 if (!nvme_cqe_pending(nvmeq)) 1177 return 0; 1178 1179 spin_lock(&nvmeq->cq_poll_lock); 1180 found = nvme_poll_cq(nvmeq, iob); 1181 spin_unlock(&nvmeq->cq_poll_lock); 1182 1183 return found; 1184 } 1185 1186 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1187 { 1188 struct nvme_dev *dev = to_nvme_dev(ctrl); 1189 struct nvme_queue *nvmeq = &dev->queues[0]; 1190 struct nvme_command c = { }; 1191 1192 c.common.opcode = nvme_admin_async_event; 1193 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1194 1195 spin_lock(&nvmeq->sq_lock); 1196 nvme_sq_copy_cmd(nvmeq, &c); 1197 nvme_write_sq_db(nvmeq, true); 1198 spin_unlock(&nvmeq->sq_lock); 1199 } 1200 1201 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1202 { 1203 struct nvme_command c = { }; 1204 1205 c.delete_queue.opcode = opcode; 1206 c.delete_queue.qid = cpu_to_le16(id); 1207 1208 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1209 } 1210 1211 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1212 struct nvme_queue *nvmeq, s16 vector) 1213 { 1214 struct nvme_command c = { }; 1215 int flags = NVME_QUEUE_PHYS_CONTIG; 1216 1217 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1218 flags |= NVME_CQ_IRQ_ENABLED; 1219 1220 /* 1221 * Note: we (ab)use the fact that the prp fields survive if no data 1222 * is attached to the request. 1223 */ 1224 c.create_cq.opcode = nvme_admin_create_cq; 1225 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1226 c.create_cq.cqid = cpu_to_le16(qid); 1227 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1228 c.create_cq.cq_flags = cpu_to_le16(flags); 1229 c.create_cq.irq_vector = cpu_to_le16(vector); 1230 1231 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1232 } 1233 1234 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1235 struct nvme_queue *nvmeq) 1236 { 1237 struct nvme_ctrl *ctrl = &dev->ctrl; 1238 struct nvme_command c = { }; 1239 int flags = NVME_QUEUE_PHYS_CONTIG; 1240 1241 /* 1242 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1243 * set. Since URGENT priority is zeroes, it makes all queues 1244 * URGENT. 1245 */ 1246 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1247 flags |= NVME_SQ_PRIO_MEDIUM; 1248 1249 /* 1250 * Note: we (ab)use the fact that the prp fields survive if no data 1251 * is attached to the request. 1252 */ 1253 c.create_sq.opcode = nvme_admin_create_sq; 1254 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1255 c.create_sq.sqid = cpu_to_le16(qid); 1256 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1257 c.create_sq.sq_flags = cpu_to_le16(flags); 1258 c.create_sq.cqid = cpu_to_le16(qid); 1259 1260 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1261 } 1262 1263 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1264 { 1265 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1266 } 1267 1268 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1269 { 1270 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1271 } 1272 1273 static void abort_endio(struct request *req, blk_status_t error) 1274 { 1275 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1276 struct nvme_queue *nvmeq = iod->nvmeq; 1277 1278 dev_warn(nvmeq->dev->ctrl.device, 1279 "Abort status: 0x%x", nvme_req(req)->status); 1280 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1281 blk_mq_free_request(req); 1282 } 1283 1284 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1285 { 1286 /* If true, indicates loss of adapter communication, possibly by a 1287 * NVMe Subsystem reset. 1288 */ 1289 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1290 1291 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1292 switch (dev->ctrl.state) { 1293 case NVME_CTRL_RESETTING: 1294 case NVME_CTRL_CONNECTING: 1295 return false; 1296 default: 1297 break; 1298 } 1299 1300 /* We shouldn't reset unless the controller is on fatal error state 1301 * _or_ if we lost the communication with it. 1302 */ 1303 if (!(csts & NVME_CSTS_CFS) && !nssro) 1304 return false; 1305 1306 return true; 1307 } 1308 1309 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1310 { 1311 /* Read a config register to help see what died. */ 1312 u16 pci_status; 1313 int result; 1314 1315 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1316 &pci_status); 1317 if (result == PCIBIOS_SUCCESSFUL) 1318 dev_warn(dev->ctrl.device, 1319 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1320 csts, pci_status); 1321 else 1322 dev_warn(dev->ctrl.device, 1323 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1324 csts, result); 1325 1326 if (csts != ~0) 1327 return; 1328 1329 dev_warn(dev->ctrl.device, 1330 "Does your device have a faulty power saving mode enabled?\n"); 1331 dev_warn(dev->ctrl.device, 1332 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1333 } 1334 1335 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1336 { 1337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1338 struct nvme_queue *nvmeq = iod->nvmeq; 1339 struct nvme_dev *dev = nvmeq->dev; 1340 struct request *abort_req; 1341 struct nvme_command cmd = { }; 1342 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1343 1344 /* If PCI error recovery process is happening, we cannot reset or 1345 * the recovery mechanism will surely fail. 1346 */ 1347 mb(); 1348 if (pci_channel_offline(to_pci_dev(dev->dev))) 1349 return BLK_EH_RESET_TIMER; 1350 1351 /* 1352 * Reset immediately if the controller is failed 1353 */ 1354 if (nvme_should_reset(dev, csts)) { 1355 nvme_warn_reset(dev, csts); 1356 nvme_dev_disable(dev, false); 1357 nvme_reset_ctrl(&dev->ctrl); 1358 return BLK_EH_DONE; 1359 } 1360 1361 /* 1362 * Did we miss an interrupt? 1363 */ 1364 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1365 nvme_poll(req->mq_hctx, NULL); 1366 else 1367 nvme_poll_irqdisable(nvmeq); 1368 1369 if (blk_mq_request_completed(req)) { 1370 dev_warn(dev->ctrl.device, 1371 "I/O %d QID %d timeout, completion polled\n", 1372 req->tag, nvmeq->qid); 1373 return BLK_EH_DONE; 1374 } 1375 1376 /* 1377 * Shutdown immediately if controller times out while starting. The 1378 * reset work will see the pci device disabled when it gets the forced 1379 * cancellation error. All outstanding requests are completed on 1380 * shutdown, so we return BLK_EH_DONE. 1381 */ 1382 switch (dev->ctrl.state) { 1383 case NVME_CTRL_CONNECTING: 1384 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1385 fallthrough; 1386 case NVME_CTRL_DELETING: 1387 dev_warn_ratelimited(dev->ctrl.device, 1388 "I/O %d QID %d timeout, disable controller\n", 1389 req->tag, nvmeq->qid); 1390 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1391 nvme_dev_disable(dev, true); 1392 return BLK_EH_DONE; 1393 case NVME_CTRL_RESETTING: 1394 return BLK_EH_RESET_TIMER; 1395 default: 1396 break; 1397 } 1398 1399 /* 1400 * Shutdown the controller immediately and schedule a reset if the 1401 * command was already aborted once before and still hasn't been 1402 * returned to the driver, or if this is the admin queue. 1403 */ 1404 if (!nvmeq->qid || iod->aborted) { 1405 dev_warn(dev->ctrl.device, 1406 "I/O %d QID %d timeout, reset controller\n", 1407 req->tag, nvmeq->qid); 1408 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1409 nvme_dev_disable(dev, false); 1410 nvme_reset_ctrl(&dev->ctrl); 1411 1412 return BLK_EH_DONE; 1413 } 1414 1415 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1416 atomic_inc(&dev->ctrl.abort_limit); 1417 return BLK_EH_RESET_TIMER; 1418 } 1419 iod->aborted = 1; 1420 1421 cmd.abort.opcode = nvme_admin_abort_cmd; 1422 cmd.abort.cid = nvme_cid(req); 1423 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1424 1425 dev_warn(nvmeq->dev->ctrl.device, 1426 "I/O %d (%s) QID %d timeout, aborting\n", 1427 req->tag, 1428 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1429 nvmeq->qid); 1430 1431 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1432 BLK_MQ_REQ_NOWAIT); 1433 if (IS_ERR(abort_req)) { 1434 atomic_inc(&dev->ctrl.abort_limit); 1435 return BLK_EH_RESET_TIMER; 1436 } 1437 nvme_init_request(abort_req, &cmd); 1438 1439 abort_req->end_io = abort_endio; 1440 abort_req->end_io_data = NULL; 1441 abort_req->rq_flags |= RQF_QUIET; 1442 blk_execute_rq_nowait(abort_req, false); 1443 1444 /* 1445 * The aborted req will be completed on receiving the abort req. 1446 * We enable the timer again. If hit twice, it'll cause a device reset, 1447 * as the device then is in a faulty state. 1448 */ 1449 return BLK_EH_RESET_TIMER; 1450 } 1451 1452 static void nvme_free_queue(struct nvme_queue *nvmeq) 1453 { 1454 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1455 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1456 if (!nvmeq->sq_cmds) 1457 return; 1458 1459 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1460 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1461 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1462 } else { 1463 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1464 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1465 } 1466 } 1467 1468 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1469 { 1470 int i; 1471 1472 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1473 dev->ctrl.queue_count--; 1474 nvme_free_queue(&dev->queues[i]); 1475 } 1476 } 1477 1478 /** 1479 * nvme_suspend_queue - put queue into suspended state 1480 * @nvmeq: queue to suspend 1481 */ 1482 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1483 { 1484 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1485 return 1; 1486 1487 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1488 mb(); 1489 1490 nvmeq->dev->online_queues--; 1491 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1492 nvme_stop_admin_queue(&nvmeq->dev->ctrl); 1493 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1494 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1495 return 0; 1496 } 1497 1498 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1499 { 1500 int i; 1501 1502 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1503 nvme_suspend_queue(&dev->queues[i]); 1504 } 1505 1506 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1507 { 1508 struct nvme_queue *nvmeq = &dev->queues[0]; 1509 1510 if (shutdown) 1511 nvme_shutdown_ctrl(&dev->ctrl); 1512 else 1513 nvme_disable_ctrl(&dev->ctrl); 1514 1515 nvme_poll_irqdisable(nvmeq); 1516 } 1517 1518 /* 1519 * Called only on a device that has been disabled and after all other threads 1520 * that can check this device's completion queues have synced, except 1521 * nvme_poll(). This is the last chance for the driver to see a natural 1522 * completion before nvme_cancel_request() terminates all incomplete requests. 1523 */ 1524 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1525 { 1526 int i; 1527 1528 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1529 spin_lock(&dev->queues[i].cq_poll_lock); 1530 nvme_poll_cq(&dev->queues[i], NULL); 1531 spin_unlock(&dev->queues[i].cq_poll_lock); 1532 } 1533 } 1534 1535 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1536 int entry_size) 1537 { 1538 int q_depth = dev->q_depth; 1539 unsigned q_size_aligned = roundup(q_depth * entry_size, 1540 NVME_CTRL_PAGE_SIZE); 1541 1542 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1543 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1544 1545 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1546 q_depth = div_u64(mem_per_q, entry_size); 1547 1548 /* 1549 * Ensure the reduced q_depth is above some threshold where it 1550 * would be better to map queues in system memory with the 1551 * original depth 1552 */ 1553 if (q_depth < 64) 1554 return -ENOMEM; 1555 } 1556 1557 return q_depth; 1558 } 1559 1560 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1561 int qid) 1562 { 1563 struct pci_dev *pdev = to_pci_dev(dev->dev); 1564 1565 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1566 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1567 if (nvmeq->sq_cmds) { 1568 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1569 nvmeq->sq_cmds); 1570 if (nvmeq->sq_dma_addr) { 1571 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1572 return 0; 1573 } 1574 1575 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1576 } 1577 } 1578 1579 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1580 &nvmeq->sq_dma_addr, GFP_KERNEL); 1581 if (!nvmeq->sq_cmds) 1582 return -ENOMEM; 1583 return 0; 1584 } 1585 1586 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1587 { 1588 struct nvme_queue *nvmeq = &dev->queues[qid]; 1589 1590 if (dev->ctrl.queue_count > qid) 1591 return 0; 1592 1593 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1594 nvmeq->q_depth = depth; 1595 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1596 &nvmeq->cq_dma_addr, GFP_KERNEL); 1597 if (!nvmeq->cqes) 1598 goto free_nvmeq; 1599 1600 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1601 goto free_cqdma; 1602 1603 nvmeq->dev = dev; 1604 spin_lock_init(&nvmeq->sq_lock); 1605 spin_lock_init(&nvmeq->cq_poll_lock); 1606 nvmeq->cq_head = 0; 1607 nvmeq->cq_phase = 1; 1608 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1609 nvmeq->qid = qid; 1610 dev->ctrl.queue_count++; 1611 1612 return 0; 1613 1614 free_cqdma: 1615 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1616 nvmeq->cq_dma_addr); 1617 free_nvmeq: 1618 return -ENOMEM; 1619 } 1620 1621 static int queue_request_irq(struct nvme_queue *nvmeq) 1622 { 1623 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1624 int nr = nvmeq->dev->ctrl.instance; 1625 1626 if (use_threaded_interrupts) { 1627 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1628 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1629 } else { 1630 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1631 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1632 } 1633 } 1634 1635 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1636 { 1637 struct nvme_dev *dev = nvmeq->dev; 1638 1639 nvmeq->sq_tail = 0; 1640 nvmeq->last_sq_tail = 0; 1641 nvmeq->cq_head = 0; 1642 nvmeq->cq_phase = 1; 1643 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1644 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1645 nvme_dbbuf_init(dev, nvmeq, qid); 1646 dev->online_queues++; 1647 wmb(); /* ensure the first interrupt sees the initialization */ 1648 } 1649 1650 /* 1651 * Try getting shutdown_lock while setting up IO queues. 1652 */ 1653 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1654 { 1655 /* 1656 * Give up if the lock is being held by nvme_dev_disable. 1657 */ 1658 if (!mutex_trylock(&dev->shutdown_lock)) 1659 return -ENODEV; 1660 1661 /* 1662 * Controller is in wrong state, fail early. 1663 */ 1664 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1665 mutex_unlock(&dev->shutdown_lock); 1666 return -ENODEV; 1667 } 1668 1669 return 0; 1670 } 1671 1672 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1673 { 1674 struct nvme_dev *dev = nvmeq->dev; 1675 int result; 1676 u16 vector = 0; 1677 1678 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1679 1680 /* 1681 * A queue's vector matches the queue identifier unless the controller 1682 * has only one vector available. 1683 */ 1684 if (!polled) 1685 vector = dev->num_vecs == 1 ? 0 : qid; 1686 else 1687 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1688 1689 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1690 if (result) 1691 return result; 1692 1693 result = adapter_alloc_sq(dev, qid, nvmeq); 1694 if (result < 0) 1695 return result; 1696 if (result) 1697 goto release_cq; 1698 1699 nvmeq->cq_vector = vector; 1700 1701 result = nvme_setup_io_queues_trylock(dev); 1702 if (result) 1703 return result; 1704 nvme_init_queue(nvmeq, qid); 1705 if (!polled) { 1706 result = queue_request_irq(nvmeq); 1707 if (result < 0) 1708 goto release_sq; 1709 } 1710 1711 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1712 mutex_unlock(&dev->shutdown_lock); 1713 return result; 1714 1715 release_sq: 1716 dev->online_queues--; 1717 mutex_unlock(&dev->shutdown_lock); 1718 adapter_delete_sq(dev, qid); 1719 release_cq: 1720 adapter_delete_cq(dev, qid); 1721 return result; 1722 } 1723 1724 static const struct blk_mq_ops nvme_mq_admin_ops = { 1725 .queue_rq = nvme_queue_rq, 1726 .complete = nvme_pci_complete_rq, 1727 .init_hctx = nvme_admin_init_hctx, 1728 .init_request = nvme_pci_init_request, 1729 .timeout = nvme_timeout, 1730 }; 1731 1732 static const struct blk_mq_ops nvme_mq_ops = { 1733 .queue_rq = nvme_queue_rq, 1734 .queue_rqs = nvme_queue_rqs, 1735 .complete = nvme_pci_complete_rq, 1736 .commit_rqs = nvme_commit_rqs, 1737 .init_hctx = nvme_init_hctx, 1738 .init_request = nvme_pci_init_request, 1739 .map_queues = nvme_pci_map_queues, 1740 .timeout = nvme_timeout, 1741 .poll = nvme_poll, 1742 }; 1743 1744 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1745 { 1746 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1747 /* 1748 * If the controller was reset during removal, it's possible 1749 * user requests may be waiting on a stopped queue. Start the 1750 * queue to flush these to completion. 1751 */ 1752 nvme_start_admin_queue(&dev->ctrl); 1753 blk_mq_destroy_queue(dev->ctrl.admin_q); 1754 blk_mq_free_tag_set(&dev->admin_tagset); 1755 } 1756 } 1757 1758 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev) 1759 { 1760 struct blk_mq_tag_set *set = &dev->admin_tagset; 1761 1762 set->ops = &nvme_mq_admin_ops; 1763 set->nr_hw_queues = 1; 1764 1765 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1766 set->timeout = NVME_ADMIN_TIMEOUT; 1767 set->numa_node = dev->ctrl.numa_node; 1768 set->cmd_size = sizeof(struct nvme_iod); 1769 set->flags = BLK_MQ_F_NO_SCHED; 1770 set->driver_data = dev; 1771 1772 if (blk_mq_alloc_tag_set(set)) 1773 return -ENOMEM; 1774 dev->ctrl.admin_tagset = set; 1775 1776 dev->ctrl.admin_q = blk_mq_init_queue(set); 1777 if (IS_ERR(dev->ctrl.admin_q)) { 1778 blk_mq_free_tag_set(set); 1779 dev->ctrl.admin_q = NULL; 1780 return -ENOMEM; 1781 } 1782 if (!blk_get_queue(dev->ctrl.admin_q)) { 1783 nvme_dev_remove_admin(dev); 1784 dev->ctrl.admin_q = NULL; 1785 return -ENODEV; 1786 } 1787 return 0; 1788 } 1789 1790 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1791 { 1792 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1793 } 1794 1795 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1796 { 1797 struct pci_dev *pdev = to_pci_dev(dev->dev); 1798 1799 if (size <= dev->bar_mapped_size) 1800 return 0; 1801 if (size > pci_resource_len(pdev, 0)) 1802 return -ENOMEM; 1803 if (dev->bar) 1804 iounmap(dev->bar); 1805 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1806 if (!dev->bar) { 1807 dev->bar_mapped_size = 0; 1808 return -ENOMEM; 1809 } 1810 dev->bar_mapped_size = size; 1811 dev->dbs = dev->bar + NVME_REG_DBS; 1812 1813 return 0; 1814 } 1815 1816 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1817 { 1818 int result; 1819 u32 aqa; 1820 struct nvme_queue *nvmeq; 1821 1822 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1823 if (result < 0) 1824 return result; 1825 1826 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1827 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1828 1829 if (dev->subsystem && 1830 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1831 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1832 1833 result = nvme_disable_ctrl(&dev->ctrl); 1834 if (result < 0) 1835 return result; 1836 1837 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1838 if (result) 1839 return result; 1840 1841 dev->ctrl.numa_node = dev_to_node(dev->dev); 1842 1843 nvmeq = &dev->queues[0]; 1844 aqa = nvmeq->q_depth - 1; 1845 aqa |= aqa << 16; 1846 1847 writel(aqa, dev->bar + NVME_REG_AQA); 1848 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1849 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1850 1851 result = nvme_enable_ctrl(&dev->ctrl); 1852 if (result) 1853 return result; 1854 1855 nvmeq->cq_vector = 0; 1856 nvme_init_queue(nvmeq, 0); 1857 result = queue_request_irq(nvmeq); 1858 if (result) { 1859 dev->online_queues--; 1860 return result; 1861 } 1862 1863 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1864 return result; 1865 } 1866 1867 static int nvme_create_io_queues(struct nvme_dev *dev) 1868 { 1869 unsigned i, max, rw_queues; 1870 int ret = 0; 1871 1872 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1873 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1874 ret = -ENOMEM; 1875 break; 1876 } 1877 } 1878 1879 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1880 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1881 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1882 dev->io_queues[HCTX_TYPE_READ]; 1883 } else { 1884 rw_queues = max; 1885 } 1886 1887 for (i = dev->online_queues; i <= max; i++) { 1888 bool polled = i > rw_queues; 1889 1890 ret = nvme_create_queue(&dev->queues[i], i, polled); 1891 if (ret) 1892 break; 1893 } 1894 1895 /* 1896 * Ignore failing Create SQ/CQ commands, we can continue with less 1897 * than the desired amount of queues, and even a controller without 1898 * I/O queues can still be used to issue admin commands. This might 1899 * be useful to upgrade a buggy firmware for example. 1900 */ 1901 return ret >= 0 ? 0 : ret; 1902 } 1903 1904 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1905 { 1906 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1907 1908 return 1ULL << (12 + 4 * szu); 1909 } 1910 1911 static u32 nvme_cmb_size(struct nvme_dev *dev) 1912 { 1913 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1914 } 1915 1916 static void nvme_map_cmb(struct nvme_dev *dev) 1917 { 1918 u64 size, offset; 1919 resource_size_t bar_size; 1920 struct pci_dev *pdev = to_pci_dev(dev->dev); 1921 int bar; 1922 1923 if (dev->cmb_size) 1924 return; 1925 1926 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1927 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1928 1929 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1930 if (!dev->cmbsz) 1931 return; 1932 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1933 1934 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1935 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1936 bar = NVME_CMB_BIR(dev->cmbloc); 1937 bar_size = pci_resource_len(pdev, bar); 1938 1939 if (offset > bar_size) 1940 return; 1941 1942 /* 1943 * Tell the controller about the host side address mapping the CMB, 1944 * and enable CMB decoding for the NVMe 1.4+ scheme: 1945 */ 1946 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1947 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1948 (pci_bus_address(pdev, bar) + offset), 1949 dev->bar + NVME_REG_CMBMSC); 1950 } 1951 1952 /* 1953 * Controllers may support a CMB size larger than their BAR, 1954 * for example, due to being behind a bridge. Reduce the CMB to 1955 * the reported size of the BAR 1956 */ 1957 if (size > bar_size - offset) 1958 size = bar_size - offset; 1959 1960 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1961 dev_warn(dev->ctrl.device, 1962 "failed to register the CMB\n"); 1963 return; 1964 } 1965 1966 dev->cmb_size = size; 1967 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1968 1969 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1970 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1971 pci_p2pmem_publish(pdev, true); 1972 } 1973 1974 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1975 { 1976 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1977 u64 dma_addr = dev->host_mem_descs_dma; 1978 struct nvme_command c = { }; 1979 int ret; 1980 1981 c.features.opcode = nvme_admin_set_features; 1982 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1983 c.features.dword11 = cpu_to_le32(bits); 1984 c.features.dword12 = cpu_to_le32(host_mem_size); 1985 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1986 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1987 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1988 1989 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1990 if (ret) { 1991 dev_warn(dev->ctrl.device, 1992 "failed to set host mem (err %d, flags %#x).\n", 1993 ret, bits); 1994 } else 1995 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1996 1997 return ret; 1998 } 1999 2000 static void nvme_free_host_mem(struct nvme_dev *dev) 2001 { 2002 int i; 2003 2004 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2005 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2006 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2007 2008 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2009 le64_to_cpu(desc->addr), 2010 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2011 } 2012 2013 kfree(dev->host_mem_desc_bufs); 2014 dev->host_mem_desc_bufs = NULL; 2015 dma_free_coherent(dev->dev, 2016 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 2017 dev->host_mem_descs, dev->host_mem_descs_dma); 2018 dev->host_mem_descs = NULL; 2019 dev->nr_host_mem_descs = 0; 2020 } 2021 2022 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 2023 u32 chunk_size) 2024 { 2025 struct nvme_host_mem_buf_desc *descs; 2026 u32 max_entries, len; 2027 dma_addr_t descs_dma; 2028 int i = 0; 2029 void **bufs; 2030 u64 size, tmp; 2031 2032 tmp = (preferred + chunk_size - 1); 2033 do_div(tmp, chunk_size); 2034 max_entries = tmp; 2035 2036 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2037 max_entries = dev->ctrl.hmmaxd; 2038 2039 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 2040 &descs_dma, GFP_KERNEL); 2041 if (!descs) 2042 goto out; 2043 2044 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2045 if (!bufs) 2046 goto out_free_descs; 2047 2048 for (size = 0; size < preferred && i < max_entries; size += len) { 2049 dma_addr_t dma_addr; 2050 2051 len = min_t(u64, chunk_size, preferred - size); 2052 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2053 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2054 if (!bufs[i]) 2055 break; 2056 2057 descs[i].addr = cpu_to_le64(dma_addr); 2058 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2059 i++; 2060 } 2061 2062 if (!size) 2063 goto out_free_bufs; 2064 2065 dev->nr_host_mem_descs = i; 2066 dev->host_mem_size = size; 2067 dev->host_mem_descs = descs; 2068 dev->host_mem_descs_dma = descs_dma; 2069 dev->host_mem_desc_bufs = bufs; 2070 return 0; 2071 2072 out_free_bufs: 2073 while (--i >= 0) { 2074 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 2075 2076 dma_free_attrs(dev->dev, size, bufs[i], 2077 le64_to_cpu(descs[i].addr), 2078 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2079 } 2080 2081 kfree(bufs); 2082 out_free_descs: 2083 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2084 descs_dma); 2085 out: 2086 dev->host_mem_descs = NULL; 2087 return -ENOMEM; 2088 } 2089 2090 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2091 { 2092 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2093 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2094 u64 chunk_size; 2095 2096 /* start big and work our way down */ 2097 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2098 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2099 if (!min || dev->host_mem_size >= min) 2100 return 0; 2101 nvme_free_host_mem(dev); 2102 } 2103 } 2104 2105 return -ENOMEM; 2106 } 2107 2108 static int nvme_setup_host_mem(struct nvme_dev *dev) 2109 { 2110 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2111 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2112 u64 min = (u64)dev->ctrl.hmmin * 4096; 2113 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2114 int ret; 2115 2116 preferred = min(preferred, max); 2117 if (min > max) { 2118 dev_warn(dev->ctrl.device, 2119 "min host memory (%lld MiB) above limit (%d MiB).\n", 2120 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2121 nvme_free_host_mem(dev); 2122 return 0; 2123 } 2124 2125 /* 2126 * If we already have a buffer allocated check if we can reuse it. 2127 */ 2128 if (dev->host_mem_descs) { 2129 if (dev->host_mem_size >= min) 2130 enable_bits |= NVME_HOST_MEM_RETURN; 2131 else 2132 nvme_free_host_mem(dev); 2133 } 2134 2135 if (!dev->host_mem_descs) { 2136 if (nvme_alloc_host_mem(dev, min, preferred)) { 2137 dev_warn(dev->ctrl.device, 2138 "failed to allocate host memory buffer.\n"); 2139 return 0; /* controller must work without HMB */ 2140 } 2141 2142 dev_info(dev->ctrl.device, 2143 "allocated %lld MiB host memory buffer.\n", 2144 dev->host_mem_size >> ilog2(SZ_1M)); 2145 } 2146 2147 ret = nvme_set_host_mem(dev, enable_bits); 2148 if (ret) 2149 nvme_free_host_mem(dev); 2150 return ret; 2151 } 2152 2153 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2154 char *buf) 2155 { 2156 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2157 2158 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2159 ndev->cmbloc, ndev->cmbsz); 2160 } 2161 static DEVICE_ATTR_RO(cmb); 2162 2163 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2164 char *buf) 2165 { 2166 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2167 2168 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2169 } 2170 static DEVICE_ATTR_RO(cmbloc); 2171 2172 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2173 char *buf) 2174 { 2175 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2176 2177 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2178 } 2179 static DEVICE_ATTR_RO(cmbsz); 2180 2181 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2182 char *buf) 2183 { 2184 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2185 2186 return sysfs_emit(buf, "%d\n", ndev->hmb); 2187 } 2188 2189 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2190 const char *buf, size_t count) 2191 { 2192 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2193 bool new; 2194 int ret; 2195 2196 if (strtobool(buf, &new) < 0) 2197 return -EINVAL; 2198 2199 if (new == ndev->hmb) 2200 return count; 2201 2202 if (new) { 2203 ret = nvme_setup_host_mem(ndev); 2204 } else { 2205 ret = nvme_set_host_mem(ndev, 0); 2206 if (!ret) 2207 nvme_free_host_mem(ndev); 2208 } 2209 2210 if (ret < 0) 2211 return ret; 2212 2213 return count; 2214 } 2215 static DEVICE_ATTR_RW(hmb); 2216 2217 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2218 struct attribute *a, int n) 2219 { 2220 struct nvme_ctrl *ctrl = 2221 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2222 struct nvme_dev *dev = to_nvme_dev(ctrl); 2223 2224 if (a == &dev_attr_cmb.attr || 2225 a == &dev_attr_cmbloc.attr || 2226 a == &dev_attr_cmbsz.attr) { 2227 if (!dev->cmbsz) 2228 return 0; 2229 } 2230 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2231 return 0; 2232 2233 return a->mode; 2234 } 2235 2236 static struct attribute *nvme_pci_attrs[] = { 2237 &dev_attr_cmb.attr, 2238 &dev_attr_cmbloc.attr, 2239 &dev_attr_cmbsz.attr, 2240 &dev_attr_hmb.attr, 2241 NULL, 2242 }; 2243 2244 static const struct attribute_group nvme_pci_attr_group = { 2245 .attrs = nvme_pci_attrs, 2246 .is_visible = nvme_pci_attrs_are_visible, 2247 }; 2248 2249 /* 2250 * nirqs is the number of interrupts available for write and read 2251 * queues. The core already reserved an interrupt for the admin queue. 2252 */ 2253 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2254 { 2255 struct nvme_dev *dev = affd->priv; 2256 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2257 2258 /* 2259 * If there is no interrupt available for queues, ensure that 2260 * the default queue is set to 1. The affinity set size is 2261 * also set to one, but the irq core ignores it for this case. 2262 * 2263 * If only one interrupt is available or 'write_queue' == 0, combine 2264 * write and read queues. 2265 * 2266 * If 'write_queues' > 0, ensure it leaves room for at least one read 2267 * queue. 2268 */ 2269 if (!nrirqs) { 2270 nrirqs = 1; 2271 nr_read_queues = 0; 2272 } else if (nrirqs == 1 || !nr_write_queues) { 2273 nr_read_queues = 0; 2274 } else if (nr_write_queues >= nrirqs) { 2275 nr_read_queues = 1; 2276 } else { 2277 nr_read_queues = nrirqs - nr_write_queues; 2278 } 2279 2280 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2281 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2282 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2283 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2284 affd->nr_sets = nr_read_queues ? 2 : 1; 2285 } 2286 2287 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2288 { 2289 struct pci_dev *pdev = to_pci_dev(dev->dev); 2290 struct irq_affinity affd = { 2291 .pre_vectors = 1, 2292 .calc_sets = nvme_calc_irq_sets, 2293 .priv = dev, 2294 }; 2295 unsigned int irq_queues, poll_queues; 2296 2297 /* 2298 * Poll queues don't need interrupts, but we need at least one I/O queue 2299 * left over for non-polled I/O. 2300 */ 2301 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2302 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2303 2304 /* 2305 * Initialize for the single interrupt case, will be updated in 2306 * nvme_calc_irq_sets(). 2307 */ 2308 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2309 dev->io_queues[HCTX_TYPE_READ] = 0; 2310 2311 /* 2312 * We need interrupts for the admin queue and each non-polled I/O queue, 2313 * but some Apple controllers require all queues to use the first 2314 * vector. 2315 */ 2316 irq_queues = 1; 2317 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2318 irq_queues += (nr_io_queues - poll_queues); 2319 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2320 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2321 } 2322 2323 static void nvme_disable_io_queues(struct nvme_dev *dev) 2324 { 2325 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2326 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2327 } 2328 2329 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2330 { 2331 /* 2332 * If tags are shared with admin queue (Apple bug), then 2333 * make sure we only use one IO queue. 2334 */ 2335 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2336 return 1; 2337 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2338 } 2339 2340 static int nvme_setup_io_queues(struct nvme_dev *dev) 2341 { 2342 struct nvme_queue *adminq = &dev->queues[0]; 2343 struct pci_dev *pdev = to_pci_dev(dev->dev); 2344 unsigned int nr_io_queues; 2345 unsigned long size; 2346 int result; 2347 2348 /* 2349 * Sample the module parameters once at reset time so that we have 2350 * stable values to work with. 2351 */ 2352 dev->nr_write_queues = write_queues; 2353 dev->nr_poll_queues = poll_queues; 2354 2355 nr_io_queues = dev->nr_allocated_queues - 1; 2356 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2357 if (result < 0) 2358 return result; 2359 2360 if (nr_io_queues == 0) 2361 return 0; 2362 2363 /* 2364 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2365 * from set to unset. If there is a window to it is truely freed, 2366 * pci_free_irq_vectors() jumping into this window will crash. 2367 * And take lock to avoid racing with pci_free_irq_vectors() in 2368 * nvme_dev_disable() path. 2369 */ 2370 result = nvme_setup_io_queues_trylock(dev); 2371 if (result) 2372 return result; 2373 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2374 pci_free_irq(pdev, 0, adminq); 2375 2376 if (dev->cmb_use_sqes) { 2377 result = nvme_cmb_qdepth(dev, nr_io_queues, 2378 sizeof(struct nvme_command)); 2379 if (result > 0) 2380 dev->q_depth = result; 2381 else 2382 dev->cmb_use_sqes = false; 2383 } 2384 2385 do { 2386 size = db_bar_size(dev, nr_io_queues); 2387 result = nvme_remap_bar(dev, size); 2388 if (!result) 2389 break; 2390 if (!--nr_io_queues) { 2391 result = -ENOMEM; 2392 goto out_unlock; 2393 } 2394 } while (1); 2395 adminq->q_db = dev->dbs; 2396 2397 retry: 2398 /* Deregister the admin queue's interrupt */ 2399 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2400 pci_free_irq(pdev, 0, adminq); 2401 2402 /* 2403 * If we enable msix early due to not intx, disable it again before 2404 * setting up the full range we need. 2405 */ 2406 pci_free_irq_vectors(pdev); 2407 2408 result = nvme_setup_irqs(dev, nr_io_queues); 2409 if (result <= 0) { 2410 result = -EIO; 2411 goto out_unlock; 2412 } 2413 2414 dev->num_vecs = result; 2415 result = max(result - 1, 1); 2416 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2417 2418 /* 2419 * Should investigate if there's a performance win from allocating 2420 * more queues than interrupt vectors; it might allow the submission 2421 * path to scale better, even if the receive path is limited by the 2422 * number of interrupts. 2423 */ 2424 result = queue_request_irq(adminq); 2425 if (result) 2426 goto out_unlock; 2427 set_bit(NVMEQ_ENABLED, &adminq->flags); 2428 mutex_unlock(&dev->shutdown_lock); 2429 2430 result = nvme_create_io_queues(dev); 2431 if (result || dev->online_queues < 2) 2432 return result; 2433 2434 if (dev->online_queues - 1 < dev->max_qid) { 2435 nr_io_queues = dev->online_queues - 1; 2436 nvme_disable_io_queues(dev); 2437 result = nvme_setup_io_queues_trylock(dev); 2438 if (result) 2439 return result; 2440 nvme_suspend_io_queues(dev); 2441 goto retry; 2442 } 2443 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2444 dev->io_queues[HCTX_TYPE_DEFAULT], 2445 dev->io_queues[HCTX_TYPE_READ], 2446 dev->io_queues[HCTX_TYPE_POLL]); 2447 return 0; 2448 out_unlock: 2449 mutex_unlock(&dev->shutdown_lock); 2450 return result; 2451 } 2452 2453 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2454 { 2455 struct nvme_queue *nvmeq = req->end_io_data; 2456 2457 blk_mq_free_request(req); 2458 complete(&nvmeq->delete_done); 2459 } 2460 2461 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2462 { 2463 struct nvme_queue *nvmeq = req->end_io_data; 2464 2465 if (error) 2466 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2467 2468 nvme_del_queue_end(req, error); 2469 } 2470 2471 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2472 { 2473 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2474 struct request *req; 2475 struct nvme_command cmd = { }; 2476 2477 cmd.delete_queue.opcode = opcode; 2478 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2479 2480 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2481 if (IS_ERR(req)) 2482 return PTR_ERR(req); 2483 nvme_init_request(req, &cmd); 2484 2485 if (opcode == nvme_admin_delete_cq) 2486 req->end_io = nvme_del_cq_end; 2487 else 2488 req->end_io = nvme_del_queue_end; 2489 req->end_io_data = nvmeq; 2490 2491 init_completion(&nvmeq->delete_done); 2492 req->rq_flags |= RQF_QUIET; 2493 blk_execute_rq_nowait(req, false); 2494 return 0; 2495 } 2496 2497 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2498 { 2499 int nr_queues = dev->online_queues - 1, sent = 0; 2500 unsigned long timeout; 2501 2502 retry: 2503 timeout = NVME_ADMIN_TIMEOUT; 2504 while (nr_queues > 0) { 2505 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2506 break; 2507 nr_queues--; 2508 sent++; 2509 } 2510 while (sent) { 2511 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2512 2513 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2514 timeout); 2515 if (timeout == 0) 2516 return false; 2517 2518 sent--; 2519 if (nr_queues) 2520 goto retry; 2521 } 2522 return true; 2523 } 2524 2525 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev) 2526 { 2527 struct blk_mq_tag_set * set = &dev->tagset; 2528 int ret; 2529 2530 set->ops = &nvme_mq_ops; 2531 set->nr_hw_queues = dev->online_queues - 1; 2532 set->nr_maps = 2; /* default + read */ 2533 if (dev->io_queues[HCTX_TYPE_POLL]) 2534 set->nr_maps++; 2535 set->timeout = NVME_IO_TIMEOUT; 2536 set->numa_node = dev->ctrl.numa_node; 2537 set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2538 set->cmd_size = sizeof(struct nvme_iod); 2539 set->flags = BLK_MQ_F_SHOULD_MERGE; 2540 set->driver_data = dev; 2541 2542 /* 2543 * Some Apple controllers requires tags to be unique 2544 * across admin and IO queue, so reserve the first 32 2545 * tags of the IO queue. 2546 */ 2547 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2548 set->reserved_tags = NVME_AQ_DEPTH; 2549 2550 ret = blk_mq_alloc_tag_set(set); 2551 if (ret) { 2552 dev_warn(dev->ctrl.device, 2553 "IO queues tagset allocation failed %d\n", ret); 2554 return; 2555 } 2556 dev->ctrl.tagset = set; 2557 } 2558 2559 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2560 { 2561 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2562 /* free previously allocated queues that are no longer usable */ 2563 nvme_free_queues(dev, dev->online_queues); 2564 } 2565 2566 static int nvme_pci_enable(struct nvme_dev *dev) 2567 { 2568 int result = -ENOMEM; 2569 struct pci_dev *pdev = to_pci_dev(dev->dev); 2570 int dma_address_bits = 64; 2571 2572 if (pci_enable_device_mem(pdev)) 2573 return result; 2574 2575 pci_set_master(pdev); 2576 2577 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2578 dma_address_bits = 48; 2579 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2580 goto disable; 2581 2582 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2583 result = -ENODEV; 2584 goto disable; 2585 } 2586 2587 /* 2588 * Some devices and/or platforms don't advertise or work with INTx 2589 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2590 * adjust this later. 2591 */ 2592 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2593 if (result < 0) 2594 return result; 2595 2596 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2597 2598 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2599 io_queue_depth); 2600 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2601 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2602 dev->dbs = dev->bar + 4096; 2603 2604 /* 2605 * Some Apple controllers require a non-standard SQE size. 2606 * Interestingly they also seem to ignore the CC:IOSQES register 2607 * so we don't bother updating it here. 2608 */ 2609 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2610 dev->io_sqes = 7; 2611 else 2612 dev->io_sqes = NVME_NVM_IOSQES; 2613 2614 /* 2615 * Temporary fix for the Apple controller found in the MacBook8,1 and 2616 * some MacBook7,1 to avoid controller resets and data loss. 2617 */ 2618 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2619 dev->q_depth = 2; 2620 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2621 "set queue depth=%u to work around controller resets\n", 2622 dev->q_depth); 2623 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2624 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2625 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2626 dev->q_depth = 64; 2627 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2628 "set queue depth=%u\n", dev->q_depth); 2629 } 2630 2631 /* 2632 * Controllers with the shared tags quirk need the IO queue to be 2633 * big enough so that we get 32 tags for the admin queue 2634 */ 2635 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2636 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2637 dev->q_depth = NVME_AQ_DEPTH + 2; 2638 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2639 dev->q_depth); 2640 } 2641 2642 2643 nvme_map_cmb(dev); 2644 2645 pci_enable_pcie_error_reporting(pdev); 2646 pci_save_state(pdev); 2647 return 0; 2648 2649 disable: 2650 pci_disable_device(pdev); 2651 return result; 2652 } 2653 2654 static void nvme_dev_unmap(struct nvme_dev *dev) 2655 { 2656 if (dev->bar) 2657 iounmap(dev->bar); 2658 pci_release_mem_regions(to_pci_dev(dev->dev)); 2659 } 2660 2661 static void nvme_pci_disable(struct nvme_dev *dev) 2662 { 2663 struct pci_dev *pdev = to_pci_dev(dev->dev); 2664 2665 pci_free_irq_vectors(pdev); 2666 2667 if (pci_is_enabled(pdev)) { 2668 pci_disable_pcie_error_reporting(pdev); 2669 pci_disable_device(pdev); 2670 } 2671 } 2672 2673 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2674 { 2675 bool dead = true, freeze = false; 2676 struct pci_dev *pdev = to_pci_dev(dev->dev); 2677 2678 mutex_lock(&dev->shutdown_lock); 2679 if (pci_is_enabled(pdev)) { 2680 u32 csts; 2681 2682 if (pci_device_is_present(pdev)) 2683 csts = readl(dev->bar + NVME_REG_CSTS); 2684 else 2685 csts = ~0; 2686 2687 if (dev->ctrl.state == NVME_CTRL_LIVE || 2688 dev->ctrl.state == NVME_CTRL_RESETTING) { 2689 freeze = true; 2690 nvme_start_freeze(&dev->ctrl); 2691 } 2692 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2693 pdev->error_state != pci_channel_io_normal); 2694 } 2695 2696 /* 2697 * Give the controller a chance to complete all entered requests if 2698 * doing a safe shutdown. 2699 */ 2700 if (!dead && shutdown && freeze) 2701 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2702 2703 nvme_stop_queues(&dev->ctrl); 2704 2705 if (!dead && dev->ctrl.queue_count > 0) { 2706 nvme_disable_io_queues(dev); 2707 nvme_disable_admin_queue(dev, shutdown); 2708 } 2709 nvme_suspend_io_queues(dev); 2710 nvme_suspend_queue(&dev->queues[0]); 2711 nvme_pci_disable(dev); 2712 nvme_reap_pending_cqes(dev); 2713 2714 nvme_cancel_tagset(&dev->ctrl); 2715 nvme_cancel_admin_tagset(&dev->ctrl); 2716 2717 /* 2718 * The driver will not be starting up queues again if shutting down so 2719 * must flush all entered requests to their failed completion to avoid 2720 * deadlocking blk-mq hot-cpu notifier. 2721 */ 2722 if (shutdown) { 2723 nvme_start_queues(&dev->ctrl); 2724 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2725 nvme_start_admin_queue(&dev->ctrl); 2726 } 2727 mutex_unlock(&dev->shutdown_lock); 2728 } 2729 2730 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2731 { 2732 if (!nvme_wait_reset(&dev->ctrl)) 2733 return -EBUSY; 2734 nvme_dev_disable(dev, shutdown); 2735 return 0; 2736 } 2737 2738 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2739 { 2740 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2741 NVME_CTRL_PAGE_SIZE, 2742 NVME_CTRL_PAGE_SIZE, 0); 2743 if (!dev->prp_page_pool) 2744 return -ENOMEM; 2745 2746 /* Optimisation for I/Os between 4k and 128k */ 2747 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2748 256, 256, 0); 2749 if (!dev->prp_small_pool) { 2750 dma_pool_destroy(dev->prp_page_pool); 2751 return -ENOMEM; 2752 } 2753 return 0; 2754 } 2755 2756 static void nvme_release_prp_pools(struct nvme_dev *dev) 2757 { 2758 dma_pool_destroy(dev->prp_page_pool); 2759 dma_pool_destroy(dev->prp_small_pool); 2760 } 2761 2762 static void nvme_free_tagset(struct nvme_dev *dev) 2763 { 2764 if (dev->tagset.tags) 2765 blk_mq_free_tag_set(&dev->tagset); 2766 dev->ctrl.tagset = NULL; 2767 } 2768 2769 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2770 { 2771 struct nvme_dev *dev = to_nvme_dev(ctrl); 2772 2773 nvme_dbbuf_dma_free(dev); 2774 nvme_free_tagset(dev); 2775 if (dev->ctrl.admin_q) 2776 blk_put_queue(dev->ctrl.admin_q); 2777 free_opal_dev(dev->ctrl.opal_dev); 2778 mempool_destroy(dev->iod_mempool); 2779 put_device(dev->dev); 2780 kfree(dev->queues); 2781 kfree(dev); 2782 } 2783 2784 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2785 { 2786 /* 2787 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2788 * may be holding this pci_dev's device lock. 2789 */ 2790 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2791 nvme_get_ctrl(&dev->ctrl); 2792 nvme_dev_disable(dev, false); 2793 nvme_kill_queues(&dev->ctrl); 2794 if (!queue_work(nvme_wq, &dev->remove_work)) 2795 nvme_put_ctrl(&dev->ctrl); 2796 } 2797 2798 static void nvme_reset_work(struct work_struct *work) 2799 { 2800 struct nvme_dev *dev = 2801 container_of(work, struct nvme_dev, ctrl.reset_work); 2802 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2803 int result; 2804 2805 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2806 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2807 dev->ctrl.state); 2808 result = -ENODEV; 2809 goto out; 2810 } 2811 2812 /* 2813 * If we're called to reset a live controller first shut it down before 2814 * moving on. 2815 */ 2816 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2817 nvme_dev_disable(dev, false); 2818 nvme_sync_queues(&dev->ctrl); 2819 2820 mutex_lock(&dev->shutdown_lock); 2821 result = nvme_pci_enable(dev); 2822 if (result) 2823 goto out_unlock; 2824 2825 result = nvme_pci_configure_admin_queue(dev); 2826 if (result) 2827 goto out_unlock; 2828 2829 if (!dev->ctrl.admin_q) { 2830 result = nvme_pci_alloc_admin_tag_set(dev); 2831 if (result) 2832 goto out_unlock; 2833 } else { 2834 nvme_start_admin_queue(&dev->ctrl); 2835 } 2836 2837 /* 2838 * Limit the max command size to prevent iod->sg allocations going 2839 * over a single page. 2840 */ 2841 dev->ctrl.max_hw_sectors = min_t(u32, 2842 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2843 dev->ctrl.max_segments = NVME_MAX_SEGS; 2844 2845 /* 2846 * Don't limit the IOMMU merged segment size. 2847 */ 2848 dma_set_max_seg_size(dev->dev, 0xffffffff); 2849 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2850 2851 mutex_unlock(&dev->shutdown_lock); 2852 2853 /* 2854 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2855 * initializing procedure here. 2856 */ 2857 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2858 dev_warn(dev->ctrl.device, 2859 "failed to mark controller CONNECTING\n"); 2860 result = -EBUSY; 2861 goto out; 2862 } 2863 2864 /* 2865 * We do not support an SGL for metadata (yet), so we are limited to a 2866 * single integrity segment for the separate metadata pointer. 2867 */ 2868 dev->ctrl.max_integrity_segments = 1; 2869 2870 result = nvme_init_ctrl_finish(&dev->ctrl); 2871 if (result) 2872 goto out; 2873 2874 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2875 if (!dev->ctrl.opal_dev) 2876 dev->ctrl.opal_dev = 2877 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2878 else if (was_suspend) 2879 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2880 } else { 2881 free_opal_dev(dev->ctrl.opal_dev); 2882 dev->ctrl.opal_dev = NULL; 2883 } 2884 2885 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2886 result = nvme_dbbuf_dma_alloc(dev); 2887 if (result) 2888 dev_warn(dev->dev, 2889 "unable to allocate dma for dbbuf\n"); 2890 } 2891 2892 if (dev->ctrl.hmpre) { 2893 result = nvme_setup_host_mem(dev); 2894 if (result < 0) 2895 goto out; 2896 } 2897 2898 result = nvme_setup_io_queues(dev); 2899 if (result) 2900 goto out; 2901 2902 /* 2903 * Keep the controller around but remove all namespaces if we don't have 2904 * any working I/O queue. 2905 */ 2906 if (dev->online_queues < 2) { 2907 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2908 nvme_kill_queues(&dev->ctrl); 2909 nvme_remove_namespaces(&dev->ctrl); 2910 nvme_free_tagset(dev); 2911 } else { 2912 nvme_start_queues(&dev->ctrl); 2913 nvme_wait_freeze(&dev->ctrl); 2914 if (!dev->ctrl.tagset) 2915 nvme_pci_alloc_tag_set(dev); 2916 else 2917 nvme_pci_update_nr_queues(dev); 2918 nvme_dbbuf_set(dev); 2919 nvme_unfreeze(&dev->ctrl); 2920 } 2921 2922 /* 2923 * If only admin queue live, keep it to do further investigation or 2924 * recovery. 2925 */ 2926 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2927 dev_warn(dev->ctrl.device, 2928 "failed to mark controller live state\n"); 2929 result = -ENODEV; 2930 goto out; 2931 } 2932 2933 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj, 2934 &nvme_pci_attr_group)) 2935 dev->attrs_added = true; 2936 2937 nvme_start_ctrl(&dev->ctrl); 2938 return; 2939 2940 out_unlock: 2941 mutex_unlock(&dev->shutdown_lock); 2942 out: 2943 if (result) 2944 dev_warn(dev->ctrl.device, 2945 "Removing after probe failure status: %d\n", result); 2946 nvme_remove_dead_ctrl(dev); 2947 } 2948 2949 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2950 { 2951 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2952 struct pci_dev *pdev = to_pci_dev(dev->dev); 2953 2954 if (pci_get_drvdata(pdev)) 2955 device_release_driver(&pdev->dev); 2956 nvme_put_ctrl(&dev->ctrl); 2957 } 2958 2959 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2960 { 2961 *val = readl(to_nvme_dev(ctrl)->bar + off); 2962 return 0; 2963 } 2964 2965 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2966 { 2967 writel(val, to_nvme_dev(ctrl)->bar + off); 2968 return 0; 2969 } 2970 2971 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2972 { 2973 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2974 return 0; 2975 } 2976 2977 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2978 { 2979 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2980 2981 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2982 } 2983 2984 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2985 { 2986 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2987 struct nvme_subsystem *subsys = ctrl->subsys; 2988 2989 dev_err(ctrl->device, 2990 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2991 pdev->vendor, pdev->device, 2992 nvme_strlen(subsys->model, sizeof(subsys->model)), 2993 subsys->model, nvme_strlen(subsys->firmware_rev, 2994 sizeof(subsys->firmware_rev)), 2995 subsys->firmware_rev); 2996 } 2997 2998 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2999 { 3000 struct nvme_dev *dev = to_nvme_dev(ctrl); 3001 3002 return dma_pci_p2pdma_supported(dev->dev); 3003 } 3004 3005 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 3006 .name = "pcie", 3007 .module = THIS_MODULE, 3008 .flags = NVME_F_METADATA_SUPPORTED, 3009 .reg_read32 = nvme_pci_reg_read32, 3010 .reg_write32 = nvme_pci_reg_write32, 3011 .reg_read64 = nvme_pci_reg_read64, 3012 .free_ctrl = nvme_pci_free_ctrl, 3013 .submit_async_event = nvme_pci_submit_async_event, 3014 .get_address = nvme_pci_get_address, 3015 .print_device_info = nvme_pci_print_device_info, 3016 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 3017 }; 3018 3019 static int nvme_dev_map(struct nvme_dev *dev) 3020 { 3021 struct pci_dev *pdev = to_pci_dev(dev->dev); 3022 3023 if (pci_request_mem_regions(pdev, "nvme")) 3024 return -ENODEV; 3025 3026 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 3027 goto release; 3028 3029 return 0; 3030 release: 3031 pci_release_mem_regions(pdev); 3032 return -ENODEV; 3033 } 3034 3035 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 3036 { 3037 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3038 /* 3039 * Several Samsung devices seem to drop off the PCIe bus 3040 * randomly when APST is on and uses the deepest sleep state. 3041 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3042 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3043 * 950 PRO 256GB", but it seems to be restricted to two Dell 3044 * laptops. 3045 */ 3046 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3047 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3048 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3049 return NVME_QUIRK_NO_DEEPEST_PS; 3050 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3051 /* 3052 * Samsung SSD 960 EVO drops off the PCIe bus after system 3053 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3054 * within few minutes after bootup on a Coffee Lake board - 3055 * ASUS PRIME Z370-A 3056 */ 3057 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3058 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3059 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3060 return NVME_QUIRK_NO_APST; 3061 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3062 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3063 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3064 /* 3065 * Forcing to use host managed nvme power settings for 3066 * lowest idle power with quick resume latency on 3067 * Samsung and Toshiba SSDs based on suspend behavior 3068 * on Coffee Lake board for LENOVO C640 3069 */ 3070 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3071 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3072 return NVME_QUIRK_SIMPLE_SUSPEND; 3073 } 3074 3075 return 0; 3076 } 3077 3078 static void nvme_async_probe(void *data, async_cookie_t cookie) 3079 { 3080 struct nvme_dev *dev = data; 3081 3082 flush_work(&dev->ctrl.reset_work); 3083 flush_work(&dev->ctrl.scan_work); 3084 nvme_put_ctrl(&dev->ctrl); 3085 } 3086 3087 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3088 { 3089 int node, result = -ENOMEM; 3090 struct nvme_dev *dev; 3091 unsigned long quirks = id->driver_data; 3092 size_t alloc_size; 3093 3094 node = dev_to_node(&pdev->dev); 3095 if (node == NUMA_NO_NODE) 3096 set_dev_node(&pdev->dev, first_memory_node); 3097 3098 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3099 if (!dev) 3100 return -ENOMEM; 3101 3102 dev->nr_write_queues = write_queues; 3103 dev->nr_poll_queues = poll_queues; 3104 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3105 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3106 sizeof(struct nvme_queue), GFP_KERNEL, node); 3107 if (!dev->queues) 3108 goto free; 3109 3110 dev->dev = get_device(&pdev->dev); 3111 pci_set_drvdata(pdev, dev); 3112 3113 result = nvme_dev_map(dev); 3114 if (result) 3115 goto put_pci; 3116 3117 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3118 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 3119 mutex_init(&dev->shutdown_lock); 3120 3121 result = nvme_setup_prp_pools(dev); 3122 if (result) 3123 goto unmap; 3124 3125 quirks |= check_vendor_combination_bug(pdev); 3126 3127 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 3128 /* 3129 * Some systems use a bios work around to ask for D3 on 3130 * platforms that support kernel managed suspend. 3131 */ 3132 dev_info(&pdev->dev, 3133 "platform quirk: setting simple suspend\n"); 3134 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3135 } 3136 3137 /* 3138 * Double check that our mempool alloc size will cover the biggest 3139 * command we support. 3140 */ 3141 alloc_size = nvme_pci_iod_alloc_size(); 3142 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 3143 3144 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 3145 mempool_kfree, 3146 (void *) alloc_size, 3147 GFP_KERNEL, node); 3148 if (!dev->iod_mempool) { 3149 result = -ENOMEM; 3150 goto release_pools; 3151 } 3152 3153 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3154 quirks); 3155 if (result) 3156 goto release_mempool; 3157 3158 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3159 3160 nvme_reset_ctrl(&dev->ctrl); 3161 async_schedule(nvme_async_probe, dev); 3162 3163 return 0; 3164 3165 release_mempool: 3166 mempool_destroy(dev->iod_mempool); 3167 release_pools: 3168 nvme_release_prp_pools(dev); 3169 unmap: 3170 nvme_dev_unmap(dev); 3171 put_pci: 3172 put_device(dev->dev); 3173 free: 3174 kfree(dev->queues); 3175 kfree(dev); 3176 return result; 3177 } 3178 3179 static void nvme_reset_prepare(struct pci_dev *pdev) 3180 { 3181 struct nvme_dev *dev = pci_get_drvdata(pdev); 3182 3183 /* 3184 * We don't need to check the return value from waiting for the reset 3185 * state as pci_dev device lock is held, making it impossible to race 3186 * with ->remove(). 3187 */ 3188 nvme_disable_prepare_reset(dev, false); 3189 nvme_sync_queues(&dev->ctrl); 3190 } 3191 3192 static void nvme_reset_done(struct pci_dev *pdev) 3193 { 3194 struct nvme_dev *dev = pci_get_drvdata(pdev); 3195 3196 if (!nvme_try_sched_reset(&dev->ctrl)) 3197 flush_work(&dev->ctrl.reset_work); 3198 } 3199 3200 static void nvme_shutdown(struct pci_dev *pdev) 3201 { 3202 struct nvme_dev *dev = pci_get_drvdata(pdev); 3203 3204 nvme_disable_prepare_reset(dev, true); 3205 } 3206 3207 static void nvme_remove_attrs(struct nvme_dev *dev) 3208 { 3209 if (dev->attrs_added) 3210 sysfs_remove_group(&dev->ctrl.device->kobj, 3211 &nvme_pci_attr_group); 3212 } 3213 3214 /* 3215 * The driver's remove may be called on a device in a partially initialized 3216 * state. This function must not have any dependencies on the device state in 3217 * order to proceed. 3218 */ 3219 static void nvme_remove(struct pci_dev *pdev) 3220 { 3221 struct nvme_dev *dev = pci_get_drvdata(pdev); 3222 3223 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3224 pci_set_drvdata(pdev, NULL); 3225 3226 if (!pci_device_is_present(pdev)) { 3227 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3228 nvme_dev_disable(dev, true); 3229 } 3230 3231 flush_work(&dev->ctrl.reset_work); 3232 nvme_stop_ctrl(&dev->ctrl); 3233 nvme_remove_namespaces(&dev->ctrl); 3234 nvme_dev_disable(dev, true); 3235 nvme_remove_attrs(dev); 3236 nvme_free_host_mem(dev); 3237 nvme_dev_remove_admin(dev); 3238 nvme_free_queues(dev, 0); 3239 nvme_release_prp_pools(dev); 3240 nvme_dev_unmap(dev); 3241 nvme_uninit_ctrl(&dev->ctrl); 3242 } 3243 3244 #ifdef CONFIG_PM_SLEEP 3245 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3246 { 3247 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3248 } 3249 3250 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3251 { 3252 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3253 } 3254 3255 static int nvme_resume(struct device *dev) 3256 { 3257 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3258 struct nvme_ctrl *ctrl = &ndev->ctrl; 3259 3260 if (ndev->last_ps == U32_MAX || 3261 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3262 goto reset; 3263 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3264 goto reset; 3265 3266 return 0; 3267 reset: 3268 return nvme_try_sched_reset(ctrl); 3269 } 3270 3271 static int nvme_suspend(struct device *dev) 3272 { 3273 struct pci_dev *pdev = to_pci_dev(dev); 3274 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3275 struct nvme_ctrl *ctrl = &ndev->ctrl; 3276 int ret = -EBUSY; 3277 3278 ndev->last_ps = U32_MAX; 3279 3280 /* 3281 * The platform does not remove power for a kernel managed suspend so 3282 * use host managed nvme power settings for lowest idle power if 3283 * possible. This should have quicker resume latency than a full device 3284 * shutdown. But if the firmware is involved after the suspend or the 3285 * device does not support any non-default power states, shut down the 3286 * device fully. 3287 * 3288 * If ASPM is not enabled for the device, shut down the device and allow 3289 * the PCI bus layer to put it into D3 in order to take the PCIe link 3290 * down, so as to allow the platform to achieve its minimum low-power 3291 * state (which may not be possible if the link is up). 3292 */ 3293 if (pm_suspend_via_firmware() || !ctrl->npss || 3294 !pcie_aspm_enabled(pdev) || 3295 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3296 return nvme_disable_prepare_reset(ndev, true); 3297 3298 nvme_start_freeze(ctrl); 3299 nvme_wait_freeze(ctrl); 3300 nvme_sync_queues(ctrl); 3301 3302 if (ctrl->state != NVME_CTRL_LIVE) 3303 goto unfreeze; 3304 3305 /* 3306 * Host memory access may not be successful in a system suspend state, 3307 * but the specification allows the controller to access memory in a 3308 * non-operational power state. 3309 */ 3310 if (ndev->hmb) { 3311 ret = nvme_set_host_mem(ndev, 0); 3312 if (ret < 0) 3313 goto unfreeze; 3314 } 3315 3316 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3317 if (ret < 0) 3318 goto unfreeze; 3319 3320 /* 3321 * A saved state prevents pci pm from generically controlling the 3322 * device's power. If we're using protocol specific settings, we don't 3323 * want pci interfering. 3324 */ 3325 pci_save_state(pdev); 3326 3327 ret = nvme_set_power_state(ctrl, ctrl->npss); 3328 if (ret < 0) 3329 goto unfreeze; 3330 3331 if (ret) { 3332 /* discard the saved state */ 3333 pci_load_saved_state(pdev, NULL); 3334 3335 /* 3336 * Clearing npss forces a controller reset on resume. The 3337 * correct value will be rediscovered then. 3338 */ 3339 ret = nvme_disable_prepare_reset(ndev, true); 3340 ctrl->npss = 0; 3341 } 3342 unfreeze: 3343 nvme_unfreeze(ctrl); 3344 return ret; 3345 } 3346 3347 static int nvme_simple_suspend(struct device *dev) 3348 { 3349 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3350 3351 return nvme_disable_prepare_reset(ndev, true); 3352 } 3353 3354 static int nvme_simple_resume(struct device *dev) 3355 { 3356 struct pci_dev *pdev = to_pci_dev(dev); 3357 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3358 3359 return nvme_try_sched_reset(&ndev->ctrl); 3360 } 3361 3362 static const struct dev_pm_ops nvme_dev_pm_ops = { 3363 .suspend = nvme_suspend, 3364 .resume = nvme_resume, 3365 .freeze = nvme_simple_suspend, 3366 .thaw = nvme_simple_resume, 3367 .poweroff = nvme_simple_suspend, 3368 .restore = nvme_simple_resume, 3369 }; 3370 #endif /* CONFIG_PM_SLEEP */ 3371 3372 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3373 pci_channel_state_t state) 3374 { 3375 struct nvme_dev *dev = pci_get_drvdata(pdev); 3376 3377 /* 3378 * A frozen channel requires a reset. When detected, this method will 3379 * shutdown the controller to quiesce. The controller will be restarted 3380 * after the slot reset through driver's slot_reset callback. 3381 */ 3382 switch (state) { 3383 case pci_channel_io_normal: 3384 return PCI_ERS_RESULT_CAN_RECOVER; 3385 case pci_channel_io_frozen: 3386 dev_warn(dev->ctrl.device, 3387 "frozen state error detected, reset controller\n"); 3388 nvme_dev_disable(dev, false); 3389 return PCI_ERS_RESULT_NEED_RESET; 3390 case pci_channel_io_perm_failure: 3391 dev_warn(dev->ctrl.device, 3392 "failure state error detected, request disconnect\n"); 3393 return PCI_ERS_RESULT_DISCONNECT; 3394 } 3395 return PCI_ERS_RESULT_NEED_RESET; 3396 } 3397 3398 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3399 { 3400 struct nvme_dev *dev = pci_get_drvdata(pdev); 3401 3402 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3403 pci_restore_state(pdev); 3404 nvme_reset_ctrl(&dev->ctrl); 3405 return PCI_ERS_RESULT_RECOVERED; 3406 } 3407 3408 static void nvme_error_resume(struct pci_dev *pdev) 3409 { 3410 struct nvme_dev *dev = pci_get_drvdata(pdev); 3411 3412 flush_work(&dev->ctrl.reset_work); 3413 } 3414 3415 static const struct pci_error_handlers nvme_err_handler = { 3416 .error_detected = nvme_error_detected, 3417 .slot_reset = nvme_slot_reset, 3418 .resume = nvme_error_resume, 3419 .reset_prepare = nvme_reset_prepare, 3420 .reset_done = nvme_reset_done, 3421 }; 3422 3423 static const struct pci_device_id nvme_id_table[] = { 3424 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3425 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3426 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3427 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3428 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3429 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3430 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3431 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3432 NVME_QUIRK_DEALLOCATE_ZEROES | 3433 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3434 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3435 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3436 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3437 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3438 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3439 NVME_QUIRK_MEDIUM_PRIO_SQ | 3440 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3441 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3442 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3443 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3444 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3445 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3446 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3447 NVME_QUIRK_BOGUS_NID, }, 3448 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3449 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3450 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3451 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3452 NVME_QUIRK_BOGUS_NID, }, 3453 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3454 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3455 NVME_QUIRK_NO_NS_DESC_LIST, }, 3456 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3457 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3458 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3459 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3460 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3461 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3462 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3463 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3464 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3465 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3466 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3467 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3468 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3469 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3470 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3471 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3472 NVME_QUIRK_BOGUS_NID, }, 3473 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3474 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3475 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3476 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3477 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3478 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3479 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3480 NVME_QUIRK_BOGUS_NID, }, 3481 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3482 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3483 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3484 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3485 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3486 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3487 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3488 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3489 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3490 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3491 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3492 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3493 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3494 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3495 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3496 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3497 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3498 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3499 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3500 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3501 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3502 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3503 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3504 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3505 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3506 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3507 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3508 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3509 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3510 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3511 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3512 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3513 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3514 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3515 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3516 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3517 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3518 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3519 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3520 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3521 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3522 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3523 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3524 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3525 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3526 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3527 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3528 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3529 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3530 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3531 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3532 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3533 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3534 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3535 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3536 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3537 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3538 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3539 NVME_QUIRK_128_BYTES_SQES | 3540 NVME_QUIRK_SHARED_TAGS | 3541 NVME_QUIRK_SKIP_CID_GEN }, 3542 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3543 { 0, } 3544 }; 3545 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3546 3547 static struct pci_driver nvme_driver = { 3548 .name = "nvme", 3549 .id_table = nvme_id_table, 3550 .probe = nvme_probe, 3551 .remove = nvme_remove, 3552 .shutdown = nvme_shutdown, 3553 #ifdef CONFIG_PM_SLEEP 3554 .driver = { 3555 .pm = &nvme_dev_pm_ops, 3556 }, 3557 #endif 3558 .sriov_configure = pci_sriov_configure_simple, 3559 .err_handler = &nvme_err_handler, 3560 }; 3561 3562 static int __init nvme_init(void) 3563 { 3564 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3565 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3566 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3567 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3568 3569 return pci_register_driver(&nvme_driver); 3570 } 3571 3572 static void __exit nvme_exit(void) 3573 { 3574 pci_unregister_driver(&nvme_driver); 3575 flush_workqueue(nvme_wq); 3576 } 3577 3578 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3579 MODULE_LICENSE("GPL"); 3580 MODULE_VERSION("1.0"); 3581 module_init(nvme_init); 3582 module_exit(nvme_exit); 3583