1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/once.h> 21 #include <linux/pci.h> 22 #include <linux/suspend.h> 23 #include <linux/t10-pi.h> 24 #include <linux/types.h> 25 #include <linux/io-64-nonatomic-lo-hi.h> 26 #include <linux/io-64-nonatomic-hi-lo.h> 27 #include <linux/sed-opal.h> 28 #include <linux/pci-p2pdma.h> 29 30 #include "trace.h" 31 #include "nvme.h" 32 33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 35 36 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 37 38 /* 39 * These can be higher, but we need to ensure that any command doesn't 40 * require an sg allocation that needs more than a page of data. 41 */ 42 #define NVME_MAX_KB_SZ 4096 43 #define NVME_MAX_SEGS 127 44 45 static int use_threaded_interrupts; 46 module_param(use_threaded_interrupts, int, 0); 47 48 static bool use_cmb_sqes = true; 49 module_param(use_cmb_sqes, bool, 0444); 50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 51 52 static unsigned int max_host_mem_size_mb = 128; 53 module_param(max_host_mem_size_mb, uint, 0444); 54 MODULE_PARM_DESC(max_host_mem_size_mb, 55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 56 57 static unsigned int sgl_threshold = SZ_32K; 58 module_param(sgl_threshold, uint, 0644); 59 MODULE_PARM_DESC(sgl_threshold, 60 "Use SGLs when average request segment size is larger or equal to " 61 "this size. Use 0 to disable SGLs."); 62 63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 64 static const struct kernel_param_ops io_queue_depth_ops = { 65 .set = io_queue_depth_set, 66 .get = param_get_uint, 67 }; 68 69 static unsigned int io_queue_depth = 1024; 70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 72 73 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 74 { 75 unsigned int n; 76 int ret; 77 78 ret = kstrtouint(val, 10, &n); 79 if (ret != 0 || n > num_possible_cpus()) 80 return -EINVAL; 81 return param_set_uint(val, kp); 82 } 83 84 static const struct kernel_param_ops io_queue_count_ops = { 85 .set = io_queue_count_set, 86 .get = param_get_uint, 87 }; 88 89 static unsigned int write_queues; 90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 91 MODULE_PARM_DESC(write_queues, 92 "Number of queues to use for writes. If not set, reads and writes " 93 "will share a queue set."); 94 95 static unsigned int poll_queues; 96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 98 99 static bool noacpi; 100 module_param(noacpi, bool, 0444); 101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 102 103 struct nvme_dev; 104 struct nvme_queue; 105 106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 108 109 /* 110 * Represents an NVM Express device. Each nvme_dev is a PCI function. 111 */ 112 struct nvme_dev { 113 struct nvme_queue *queues; 114 struct blk_mq_tag_set tagset; 115 struct blk_mq_tag_set admin_tagset; 116 u32 __iomem *dbs; 117 struct device *dev; 118 struct dma_pool *prp_page_pool; 119 struct dma_pool *prp_small_pool; 120 unsigned online_queues; 121 unsigned max_qid; 122 unsigned io_queues[HCTX_MAX_TYPES]; 123 unsigned int num_vecs; 124 u32 q_depth; 125 int io_sqes; 126 u32 db_stride; 127 void __iomem *bar; 128 unsigned long bar_mapped_size; 129 struct work_struct remove_work; 130 struct mutex shutdown_lock; 131 bool subsystem; 132 u64 cmb_size; 133 bool cmb_use_sqes; 134 u32 cmbsz; 135 u32 cmbloc; 136 struct nvme_ctrl ctrl; 137 u32 last_ps; 138 139 mempool_t *iod_mempool; 140 141 /* shadow doorbell buffer support: */ 142 u32 *dbbuf_dbs; 143 dma_addr_t dbbuf_dbs_dma_addr; 144 u32 *dbbuf_eis; 145 dma_addr_t dbbuf_eis_dma_addr; 146 147 /* host memory buffer support: */ 148 u64 host_mem_size; 149 u32 nr_host_mem_descs; 150 dma_addr_t host_mem_descs_dma; 151 struct nvme_host_mem_buf_desc *host_mem_descs; 152 void **host_mem_desc_bufs; 153 unsigned int nr_allocated_queues; 154 unsigned int nr_write_queues; 155 unsigned int nr_poll_queues; 156 }; 157 158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 159 { 160 int ret; 161 u32 n; 162 163 ret = kstrtou32(val, 10, &n); 164 if (ret != 0 || n < 2) 165 return -EINVAL; 166 167 return param_set_uint(val, kp); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 u32 *dbbuf_sq_db; 213 u32 *dbbuf_cq_db; 214 u32 *dbbuf_sq_ei; 215 u32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 /* 220 * The nvme_iod describes the data in an I/O. 221 * 222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 223 * to the actual struct scatterlist. 224 */ 225 struct nvme_iod { 226 struct nvme_request req; 227 struct nvme_command cmd; 228 struct nvme_queue *nvmeq; 229 bool use_sgl; 230 int aborted; 231 int npages; /* In the PRP list. 0 means small pool in use */ 232 int nents; /* Used in scatterlist */ 233 dma_addr_t first_dma; 234 unsigned int dma_len; /* length of single DMA segment mapping */ 235 dma_addr_t meta_dma; 236 struct scatterlist *sg; 237 }; 238 239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 240 { 241 return dev->nr_allocated_queues * 8 * dev->db_stride; 242 } 243 244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 245 { 246 unsigned int mem_size = nvme_dbbuf_size(dev); 247 248 if (dev->dbbuf_dbs) 249 return 0; 250 251 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 252 &dev->dbbuf_dbs_dma_addr, 253 GFP_KERNEL); 254 if (!dev->dbbuf_dbs) 255 return -ENOMEM; 256 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 257 &dev->dbbuf_eis_dma_addr, 258 GFP_KERNEL); 259 if (!dev->dbbuf_eis) { 260 dma_free_coherent(dev->dev, mem_size, 261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 262 dev->dbbuf_dbs = NULL; 263 return -ENOMEM; 264 } 265 266 return 0; 267 } 268 269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 270 { 271 unsigned int mem_size = nvme_dbbuf_size(dev); 272 273 if (dev->dbbuf_dbs) { 274 dma_free_coherent(dev->dev, mem_size, 275 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 276 dev->dbbuf_dbs = NULL; 277 } 278 if (dev->dbbuf_eis) { 279 dma_free_coherent(dev->dev, mem_size, 280 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 281 dev->dbbuf_eis = NULL; 282 } 283 } 284 285 static void nvme_dbbuf_init(struct nvme_dev *dev, 286 struct nvme_queue *nvmeq, int qid) 287 { 288 if (!dev->dbbuf_dbs || !qid) 289 return; 290 291 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 292 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 293 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 294 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 295 } 296 297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 298 { 299 if (!nvmeq->qid) 300 return; 301 302 nvmeq->dbbuf_sq_db = NULL; 303 nvmeq->dbbuf_cq_db = NULL; 304 nvmeq->dbbuf_sq_ei = NULL; 305 nvmeq->dbbuf_cq_ei = NULL; 306 } 307 308 static void nvme_dbbuf_set(struct nvme_dev *dev) 309 { 310 struct nvme_command c; 311 unsigned int i; 312 313 if (!dev->dbbuf_dbs) 314 return; 315 316 memset(&c, 0, sizeof(c)); 317 c.dbbuf.opcode = nvme_admin_dbbuf; 318 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 319 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 320 321 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 322 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 323 /* Free memory and continue on */ 324 nvme_dbbuf_dma_free(dev); 325 326 for (i = 1; i <= dev->online_queues; i++) 327 nvme_dbbuf_free(&dev->queues[i]); 328 } 329 } 330 331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 332 { 333 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 334 } 335 336 /* Update dbbuf and return true if an MMIO is required */ 337 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 338 volatile u32 *dbbuf_ei) 339 { 340 if (dbbuf_db) { 341 u16 old_value; 342 343 /* 344 * Ensure that the queue is written before updating 345 * the doorbell in memory 346 */ 347 wmb(); 348 349 old_value = *dbbuf_db; 350 *dbbuf_db = value; 351 352 /* 353 * Ensure that the doorbell is updated before reading the event 354 * index from memory. The controller needs to provide similar 355 * ordering to ensure the envent index is updated before reading 356 * the doorbell. 357 */ 358 mb(); 359 360 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 361 return false; 362 } 363 364 return true; 365 } 366 367 /* 368 * Will slightly overestimate the number of pages needed. This is OK 369 * as it only leads to a small amount of wasted memory for the lifetime of 370 * the I/O. 371 */ 372 static int nvme_pci_npages_prp(void) 373 { 374 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 375 NVME_CTRL_PAGE_SIZE); 376 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 377 } 378 379 /* 380 * Calculates the number of pages needed for the SGL segments. For example a 4k 381 * page can accommodate 256 SGL descriptors. 382 */ 383 static int nvme_pci_npages_sgl(void) 384 { 385 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 386 PAGE_SIZE); 387 } 388 389 static size_t nvme_pci_iod_alloc_size(void) 390 { 391 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 392 393 return sizeof(__le64 *) * npages + 394 sizeof(struct scatterlist) * NVME_MAX_SEGS; 395 } 396 397 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 398 unsigned int hctx_idx) 399 { 400 struct nvme_dev *dev = data; 401 struct nvme_queue *nvmeq = &dev->queues[0]; 402 403 WARN_ON(hctx_idx != 0); 404 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 405 406 hctx->driver_data = nvmeq; 407 return 0; 408 } 409 410 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 411 unsigned int hctx_idx) 412 { 413 struct nvme_dev *dev = data; 414 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 415 416 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 417 hctx->driver_data = nvmeq; 418 return 0; 419 } 420 421 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 422 unsigned int hctx_idx, unsigned int numa_node) 423 { 424 struct nvme_dev *dev = set->driver_data; 425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 426 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 427 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 428 429 BUG_ON(!nvmeq); 430 iod->nvmeq = nvmeq; 431 432 nvme_req(req)->ctrl = &dev->ctrl; 433 nvme_req(req)->cmd = &iod->cmd; 434 return 0; 435 } 436 437 static int queue_irq_offset(struct nvme_dev *dev) 438 { 439 /* if we have more than 1 vec, admin queue offsets us by 1 */ 440 if (dev->num_vecs > 1) 441 return 1; 442 443 return 0; 444 } 445 446 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 447 { 448 struct nvme_dev *dev = set->driver_data; 449 int i, qoff, offset; 450 451 offset = queue_irq_offset(dev); 452 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 453 struct blk_mq_queue_map *map = &set->map[i]; 454 455 map->nr_queues = dev->io_queues[i]; 456 if (!map->nr_queues) { 457 BUG_ON(i == HCTX_TYPE_DEFAULT); 458 continue; 459 } 460 461 /* 462 * The poll queue(s) doesn't have an IRQ (and hence IRQ 463 * affinity), so use the regular blk-mq cpu mapping 464 */ 465 map->queue_offset = qoff; 466 if (i != HCTX_TYPE_POLL && offset) 467 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 468 else 469 blk_mq_map_queues(map); 470 qoff += map->nr_queues; 471 offset += map->nr_queues; 472 } 473 474 return 0; 475 } 476 477 /* 478 * Write sq tail if we are asked to, or if the next command would wrap. 479 */ 480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 481 { 482 if (!write_sq) { 483 u16 next_tail = nvmeq->sq_tail + 1; 484 485 if (next_tail == nvmeq->q_depth) 486 next_tail = 0; 487 if (next_tail != nvmeq->last_sq_tail) 488 return; 489 } 490 491 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 492 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 493 writel(nvmeq->sq_tail, nvmeq->q_db); 494 nvmeq->last_sq_tail = nvmeq->sq_tail; 495 } 496 497 /** 498 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 499 * @nvmeq: The queue to use 500 * @cmd: The command to send 501 * @write_sq: whether to write to the SQ doorbell 502 */ 503 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 504 bool write_sq) 505 { 506 spin_lock(&nvmeq->sq_lock); 507 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 508 cmd, sizeof(*cmd)); 509 if (++nvmeq->sq_tail == nvmeq->q_depth) 510 nvmeq->sq_tail = 0; 511 nvme_write_sq_db(nvmeq, write_sq); 512 spin_unlock(&nvmeq->sq_lock); 513 } 514 515 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 516 { 517 struct nvme_queue *nvmeq = hctx->driver_data; 518 519 spin_lock(&nvmeq->sq_lock); 520 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 521 nvme_write_sq_db(nvmeq, true); 522 spin_unlock(&nvmeq->sq_lock); 523 } 524 525 static void **nvme_pci_iod_list(struct request *req) 526 { 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 529 } 530 531 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 532 { 533 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 534 int nseg = blk_rq_nr_phys_segments(req); 535 unsigned int avg_seg_size; 536 537 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 538 539 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 540 return false; 541 if (!iod->nvmeq->qid) 542 return false; 543 if (!sgl_threshold || avg_seg_size < sgl_threshold) 544 return false; 545 return true; 546 } 547 548 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 549 { 550 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 551 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 552 dma_addr_t dma_addr = iod->first_dma; 553 int i; 554 555 for (i = 0; i < iod->npages; i++) { 556 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 557 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 558 559 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 560 dma_addr = next_dma_addr; 561 } 562 563 } 564 565 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 566 { 567 const int last_sg = SGES_PER_PAGE - 1; 568 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 569 dma_addr_t dma_addr = iod->first_dma; 570 int i; 571 572 for (i = 0; i < iod->npages; i++) { 573 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 574 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 575 576 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 577 dma_addr = next_dma_addr; 578 } 579 580 } 581 582 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) 583 { 584 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 585 586 if (is_pci_p2pdma_page(sg_page(iod->sg))) 587 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 588 rq_dma_dir(req)); 589 else 590 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 591 } 592 593 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 594 { 595 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 596 597 if (iod->dma_len) { 598 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 599 rq_dma_dir(req)); 600 return; 601 } 602 603 WARN_ON_ONCE(!iod->nents); 604 605 nvme_unmap_sg(dev, req); 606 if (iod->npages == 0) 607 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 608 iod->first_dma); 609 else if (iod->use_sgl) 610 nvme_free_sgls(dev, req); 611 else 612 nvme_free_prps(dev, req); 613 mempool_free(iod->sg, dev->iod_mempool); 614 } 615 616 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 617 { 618 int i; 619 struct scatterlist *sg; 620 621 for_each_sg(sgl, sg, nents, i) { 622 dma_addr_t phys = sg_phys(sg); 623 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 624 "dma_address:%pad dma_length:%d\n", 625 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 626 sg_dma_len(sg)); 627 } 628 } 629 630 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 631 struct request *req, struct nvme_rw_command *cmnd) 632 { 633 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 634 struct dma_pool *pool; 635 int length = blk_rq_payload_bytes(req); 636 struct scatterlist *sg = iod->sg; 637 int dma_len = sg_dma_len(sg); 638 u64 dma_addr = sg_dma_address(sg); 639 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 640 __le64 *prp_list; 641 void **list = nvme_pci_iod_list(req); 642 dma_addr_t prp_dma; 643 int nprps, i; 644 645 length -= (NVME_CTRL_PAGE_SIZE - offset); 646 if (length <= 0) { 647 iod->first_dma = 0; 648 goto done; 649 } 650 651 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 652 if (dma_len) { 653 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 654 } else { 655 sg = sg_next(sg); 656 dma_addr = sg_dma_address(sg); 657 dma_len = sg_dma_len(sg); 658 } 659 660 if (length <= NVME_CTRL_PAGE_SIZE) { 661 iod->first_dma = dma_addr; 662 goto done; 663 } 664 665 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 666 if (nprps <= (256 / 8)) { 667 pool = dev->prp_small_pool; 668 iod->npages = 0; 669 } else { 670 pool = dev->prp_page_pool; 671 iod->npages = 1; 672 } 673 674 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 675 if (!prp_list) { 676 iod->first_dma = dma_addr; 677 iod->npages = -1; 678 return BLK_STS_RESOURCE; 679 } 680 list[0] = prp_list; 681 iod->first_dma = prp_dma; 682 i = 0; 683 for (;;) { 684 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 685 __le64 *old_prp_list = prp_list; 686 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 687 if (!prp_list) 688 goto free_prps; 689 list[iod->npages++] = prp_list; 690 prp_list[0] = old_prp_list[i - 1]; 691 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 692 i = 1; 693 } 694 prp_list[i++] = cpu_to_le64(dma_addr); 695 dma_len -= NVME_CTRL_PAGE_SIZE; 696 dma_addr += NVME_CTRL_PAGE_SIZE; 697 length -= NVME_CTRL_PAGE_SIZE; 698 if (length <= 0) 699 break; 700 if (dma_len > 0) 701 continue; 702 if (unlikely(dma_len < 0)) 703 goto bad_sgl; 704 sg = sg_next(sg); 705 dma_addr = sg_dma_address(sg); 706 dma_len = sg_dma_len(sg); 707 } 708 done: 709 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 710 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 711 return BLK_STS_OK; 712 free_prps: 713 nvme_free_prps(dev, req); 714 return BLK_STS_RESOURCE; 715 bad_sgl: 716 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 717 "Invalid SGL for payload:%d nents:%d\n", 718 blk_rq_payload_bytes(req), iod->nents); 719 return BLK_STS_IOERR; 720 } 721 722 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 723 struct scatterlist *sg) 724 { 725 sge->addr = cpu_to_le64(sg_dma_address(sg)); 726 sge->length = cpu_to_le32(sg_dma_len(sg)); 727 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 728 } 729 730 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 731 dma_addr_t dma_addr, int entries) 732 { 733 sge->addr = cpu_to_le64(dma_addr); 734 if (entries < SGES_PER_PAGE) { 735 sge->length = cpu_to_le32(entries * sizeof(*sge)); 736 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 737 } else { 738 sge->length = cpu_to_le32(PAGE_SIZE); 739 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 740 } 741 } 742 743 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 744 struct request *req, struct nvme_rw_command *cmd, int entries) 745 { 746 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 747 struct dma_pool *pool; 748 struct nvme_sgl_desc *sg_list; 749 struct scatterlist *sg = iod->sg; 750 dma_addr_t sgl_dma; 751 int i = 0; 752 753 /* setting the transfer type as SGL */ 754 cmd->flags = NVME_CMD_SGL_METABUF; 755 756 if (entries == 1) { 757 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 758 return BLK_STS_OK; 759 } 760 761 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 762 pool = dev->prp_small_pool; 763 iod->npages = 0; 764 } else { 765 pool = dev->prp_page_pool; 766 iod->npages = 1; 767 } 768 769 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 770 if (!sg_list) { 771 iod->npages = -1; 772 return BLK_STS_RESOURCE; 773 } 774 775 nvme_pci_iod_list(req)[0] = sg_list; 776 iod->first_dma = sgl_dma; 777 778 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 779 780 do { 781 if (i == SGES_PER_PAGE) { 782 struct nvme_sgl_desc *old_sg_desc = sg_list; 783 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 784 785 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 786 if (!sg_list) 787 goto free_sgls; 788 789 i = 0; 790 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 791 sg_list[i++] = *link; 792 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 793 } 794 795 nvme_pci_sgl_set_data(&sg_list[i++], sg); 796 sg = sg_next(sg); 797 } while (--entries > 0); 798 799 return BLK_STS_OK; 800 free_sgls: 801 nvme_free_sgls(dev, req); 802 return BLK_STS_RESOURCE; 803 } 804 805 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 806 struct request *req, struct nvme_rw_command *cmnd, 807 struct bio_vec *bv) 808 { 809 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 810 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 811 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 812 813 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 814 if (dma_mapping_error(dev->dev, iod->first_dma)) 815 return BLK_STS_RESOURCE; 816 iod->dma_len = bv->bv_len; 817 818 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 819 if (bv->bv_len > first_prp_len) 820 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 821 return BLK_STS_OK; 822 } 823 824 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 825 struct request *req, struct nvme_rw_command *cmnd, 826 struct bio_vec *bv) 827 { 828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 829 830 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 831 if (dma_mapping_error(dev->dev, iod->first_dma)) 832 return BLK_STS_RESOURCE; 833 iod->dma_len = bv->bv_len; 834 835 cmnd->flags = NVME_CMD_SGL_METABUF; 836 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 837 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 838 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 839 return BLK_STS_OK; 840 } 841 842 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 843 struct nvme_command *cmnd) 844 { 845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 846 blk_status_t ret = BLK_STS_RESOURCE; 847 int nr_mapped; 848 849 if (blk_rq_nr_phys_segments(req) == 1) { 850 struct bio_vec bv = req_bvec(req); 851 852 if (!is_pci_p2pdma_page(bv.bv_page)) { 853 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 854 return nvme_setup_prp_simple(dev, req, 855 &cmnd->rw, &bv); 856 857 if (iod->nvmeq->qid && sgl_threshold && 858 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 859 return nvme_setup_sgl_simple(dev, req, 860 &cmnd->rw, &bv); 861 } 862 } 863 864 iod->dma_len = 0; 865 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 866 if (!iod->sg) 867 return BLK_STS_RESOURCE; 868 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 869 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 870 if (!iod->nents) 871 goto out_free_sg; 872 873 if (is_pci_p2pdma_page(sg_page(iod->sg))) 874 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 875 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 876 else 877 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 878 rq_dma_dir(req), DMA_ATTR_NO_WARN); 879 if (!nr_mapped) 880 goto out_free_sg; 881 882 iod->use_sgl = nvme_pci_use_sgls(dev, req); 883 if (iod->use_sgl) 884 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 885 else 886 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 887 if (ret != BLK_STS_OK) 888 goto out_unmap_sg; 889 return BLK_STS_OK; 890 891 out_unmap_sg: 892 nvme_unmap_sg(dev, req); 893 out_free_sg: 894 mempool_free(iod->sg, dev->iod_mempool); 895 return ret; 896 } 897 898 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 899 struct nvme_command *cmnd) 900 { 901 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 902 903 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 904 rq_dma_dir(req), 0); 905 if (dma_mapping_error(dev->dev, iod->meta_dma)) 906 return BLK_STS_IOERR; 907 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 908 return BLK_STS_OK; 909 } 910 911 /* 912 * NOTE: ns is NULL when called on the admin queue. 913 */ 914 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 915 const struct blk_mq_queue_data *bd) 916 { 917 struct nvme_ns *ns = hctx->queue->queuedata; 918 struct nvme_queue *nvmeq = hctx->driver_data; 919 struct nvme_dev *dev = nvmeq->dev; 920 struct request *req = bd->rq; 921 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 922 struct nvme_command *cmnd = &iod->cmd; 923 blk_status_t ret; 924 925 iod->aborted = 0; 926 iod->npages = -1; 927 iod->nents = 0; 928 929 /* 930 * We should not need to do this, but we're still using this to 931 * ensure we can drain requests on a dying queue. 932 */ 933 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 934 return BLK_STS_IOERR; 935 936 if (!nvme_check_ready(&dev->ctrl, req, true)) 937 return nvme_fail_nonready_command(&dev->ctrl, req); 938 939 ret = nvme_setup_cmd(ns, req); 940 if (ret) 941 return ret; 942 943 if (blk_rq_nr_phys_segments(req)) { 944 ret = nvme_map_data(dev, req, cmnd); 945 if (ret) 946 goto out_free_cmd; 947 } 948 949 if (blk_integrity_rq(req)) { 950 ret = nvme_map_metadata(dev, req, cmnd); 951 if (ret) 952 goto out_unmap_data; 953 } 954 955 blk_mq_start_request(req); 956 nvme_submit_cmd(nvmeq, cmnd, bd->last); 957 return BLK_STS_OK; 958 out_unmap_data: 959 nvme_unmap_data(dev, req); 960 out_free_cmd: 961 nvme_cleanup_cmd(req); 962 return ret; 963 } 964 965 static void nvme_pci_complete_rq(struct request *req) 966 { 967 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 968 struct nvme_dev *dev = iod->nvmeq->dev; 969 970 if (blk_integrity_rq(req)) 971 dma_unmap_page(dev->dev, iod->meta_dma, 972 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 973 if (blk_rq_nr_phys_segments(req)) 974 nvme_unmap_data(dev, req); 975 nvme_complete_rq(req); 976 } 977 978 /* We read the CQE phase first to check if the rest of the entry is valid */ 979 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 980 { 981 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 982 983 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 984 } 985 986 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 987 { 988 u16 head = nvmeq->cq_head; 989 990 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 991 nvmeq->dbbuf_cq_ei)) 992 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 993 } 994 995 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 996 { 997 if (!nvmeq->qid) 998 return nvmeq->dev->admin_tagset.tags[0]; 999 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1000 } 1001 1002 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 1003 { 1004 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1005 __u16 command_id = READ_ONCE(cqe->command_id); 1006 struct request *req; 1007 1008 /* 1009 * AEN requests are special as they don't time out and can 1010 * survive any kind of queue freeze and often don't respond to 1011 * aborts. We don't even bother to allocate a struct request 1012 * for them but rather special case them here. 1013 */ 1014 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1015 nvme_complete_async_event(&nvmeq->dev->ctrl, 1016 cqe->status, &cqe->result); 1017 return; 1018 } 1019 1020 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id); 1021 if (unlikely(!req)) { 1022 dev_warn(nvmeq->dev->ctrl.device, 1023 "invalid id %d completed on queue %d\n", 1024 command_id, le16_to_cpu(cqe->sq_id)); 1025 return; 1026 } 1027 1028 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1029 if (!nvme_try_complete_req(req, cqe->status, cqe->result)) 1030 nvme_pci_complete_rq(req); 1031 } 1032 1033 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1034 { 1035 u16 tmp = nvmeq->cq_head + 1; 1036 1037 if (tmp == nvmeq->q_depth) { 1038 nvmeq->cq_head = 0; 1039 nvmeq->cq_phase ^= 1; 1040 } else { 1041 nvmeq->cq_head = tmp; 1042 } 1043 } 1044 1045 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 1046 { 1047 int found = 0; 1048 1049 while (nvme_cqe_pending(nvmeq)) { 1050 found++; 1051 /* 1052 * load-load control dependency between phase and the rest of 1053 * the cqe requires a full read memory barrier 1054 */ 1055 dma_rmb(); 1056 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 1057 nvme_update_cq_head(nvmeq); 1058 } 1059 1060 if (found) 1061 nvme_ring_cq_doorbell(nvmeq); 1062 return found; 1063 } 1064 1065 static irqreturn_t nvme_irq(int irq, void *data) 1066 { 1067 struct nvme_queue *nvmeq = data; 1068 1069 if (nvme_process_cq(nvmeq)) 1070 return IRQ_HANDLED; 1071 return IRQ_NONE; 1072 } 1073 1074 static irqreturn_t nvme_irq_check(int irq, void *data) 1075 { 1076 struct nvme_queue *nvmeq = data; 1077 1078 if (nvme_cqe_pending(nvmeq)) 1079 return IRQ_WAKE_THREAD; 1080 return IRQ_NONE; 1081 } 1082 1083 /* 1084 * Poll for completions for any interrupt driven queue 1085 * Can be called from any context. 1086 */ 1087 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1088 { 1089 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1090 1091 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1092 1093 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1094 nvme_process_cq(nvmeq); 1095 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1096 } 1097 1098 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1099 { 1100 struct nvme_queue *nvmeq = hctx->driver_data; 1101 bool found; 1102 1103 if (!nvme_cqe_pending(nvmeq)) 1104 return 0; 1105 1106 spin_lock(&nvmeq->cq_poll_lock); 1107 found = nvme_process_cq(nvmeq); 1108 spin_unlock(&nvmeq->cq_poll_lock); 1109 1110 return found; 1111 } 1112 1113 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1114 { 1115 struct nvme_dev *dev = to_nvme_dev(ctrl); 1116 struct nvme_queue *nvmeq = &dev->queues[0]; 1117 struct nvme_command c; 1118 1119 memset(&c, 0, sizeof(c)); 1120 c.common.opcode = nvme_admin_async_event; 1121 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1122 nvme_submit_cmd(nvmeq, &c, true); 1123 } 1124 1125 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1126 { 1127 struct nvme_command c; 1128 1129 memset(&c, 0, sizeof(c)); 1130 c.delete_queue.opcode = opcode; 1131 c.delete_queue.qid = cpu_to_le16(id); 1132 1133 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1134 } 1135 1136 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1137 struct nvme_queue *nvmeq, s16 vector) 1138 { 1139 struct nvme_command c; 1140 int flags = NVME_QUEUE_PHYS_CONTIG; 1141 1142 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1143 flags |= NVME_CQ_IRQ_ENABLED; 1144 1145 /* 1146 * Note: we (ab)use the fact that the prp fields survive if no data 1147 * is attached to the request. 1148 */ 1149 memset(&c, 0, sizeof(c)); 1150 c.create_cq.opcode = nvme_admin_create_cq; 1151 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1152 c.create_cq.cqid = cpu_to_le16(qid); 1153 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1154 c.create_cq.cq_flags = cpu_to_le16(flags); 1155 c.create_cq.irq_vector = cpu_to_le16(vector); 1156 1157 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1158 } 1159 1160 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1161 struct nvme_queue *nvmeq) 1162 { 1163 struct nvme_ctrl *ctrl = &dev->ctrl; 1164 struct nvme_command c; 1165 int flags = NVME_QUEUE_PHYS_CONTIG; 1166 1167 /* 1168 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1169 * set. Since URGENT priority is zeroes, it makes all queues 1170 * URGENT. 1171 */ 1172 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1173 flags |= NVME_SQ_PRIO_MEDIUM; 1174 1175 /* 1176 * Note: we (ab)use the fact that the prp fields survive if no data 1177 * is attached to the request. 1178 */ 1179 memset(&c, 0, sizeof(c)); 1180 c.create_sq.opcode = nvme_admin_create_sq; 1181 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1182 c.create_sq.sqid = cpu_to_le16(qid); 1183 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1184 c.create_sq.sq_flags = cpu_to_le16(flags); 1185 c.create_sq.cqid = cpu_to_le16(qid); 1186 1187 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1188 } 1189 1190 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1191 { 1192 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1193 } 1194 1195 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1196 { 1197 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1198 } 1199 1200 static void abort_endio(struct request *req, blk_status_t error) 1201 { 1202 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1203 struct nvme_queue *nvmeq = iod->nvmeq; 1204 1205 dev_warn(nvmeq->dev->ctrl.device, 1206 "Abort status: 0x%x", nvme_req(req)->status); 1207 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1208 blk_mq_free_request(req); 1209 } 1210 1211 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1212 { 1213 /* If true, indicates loss of adapter communication, possibly by a 1214 * NVMe Subsystem reset. 1215 */ 1216 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1217 1218 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1219 switch (dev->ctrl.state) { 1220 case NVME_CTRL_RESETTING: 1221 case NVME_CTRL_CONNECTING: 1222 return false; 1223 default: 1224 break; 1225 } 1226 1227 /* We shouldn't reset unless the controller is on fatal error state 1228 * _or_ if we lost the communication with it. 1229 */ 1230 if (!(csts & NVME_CSTS_CFS) && !nssro) 1231 return false; 1232 1233 return true; 1234 } 1235 1236 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1237 { 1238 /* Read a config register to help see what died. */ 1239 u16 pci_status; 1240 int result; 1241 1242 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1243 &pci_status); 1244 if (result == PCIBIOS_SUCCESSFUL) 1245 dev_warn(dev->ctrl.device, 1246 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1247 csts, pci_status); 1248 else 1249 dev_warn(dev->ctrl.device, 1250 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1251 csts, result); 1252 } 1253 1254 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1255 { 1256 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1257 struct nvme_queue *nvmeq = iod->nvmeq; 1258 struct nvme_dev *dev = nvmeq->dev; 1259 struct request *abort_req; 1260 struct nvme_command cmd; 1261 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1262 1263 /* If PCI error recovery process is happening, we cannot reset or 1264 * the recovery mechanism will surely fail. 1265 */ 1266 mb(); 1267 if (pci_channel_offline(to_pci_dev(dev->dev))) 1268 return BLK_EH_RESET_TIMER; 1269 1270 /* 1271 * Reset immediately if the controller is failed 1272 */ 1273 if (nvme_should_reset(dev, csts)) { 1274 nvme_warn_reset(dev, csts); 1275 nvme_dev_disable(dev, false); 1276 nvme_reset_ctrl(&dev->ctrl); 1277 return BLK_EH_DONE; 1278 } 1279 1280 /* 1281 * Did we miss an interrupt? 1282 */ 1283 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1284 nvme_poll(req->mq_hctx); 1285 else 1286 nvme_poll_irqdisable(nvmeq); 1287 1288 if (blk_mq_request_completed(req)) { 1289 dev_warn(dev->ctrl.device, 1290 "I/O %d QID %d timeout, completion polled\n", 1291 req->tag, nvmeq->qid); 1292 return BLK_EH_DONE; 1293 } 1294 1295 /* 1296 * Shutdown immediately if controller times out while starting. The 1297 * reset work will see the pci device disabled when it gets the forced 1298 * cancellation error. All outstanding requests are completed on 1299 * shutdown, so we return BLK_EH_DONE. 1300 */ 1301 switch (dev->ctrl.state) { 1302 case NVME_CTRL_CONNECTING: 1303 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1304 fallthrough; 1305 case NVME_CTRL_DELETING: 1306 dev_warn_ratelimited(dev->ctrl.device, 1307 "I/O %d QID %d timeout, disable controller\n", 1308 req->tag, nvmeq->qid); 1309 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1310 nvme_dev_disable(dev, true); 1311 return BLK_EH_DONE; 1312 case NVME_CTRL_RESETTING: 1313 return BLK_EH_RESET_TIMER; 1314 default: 1315 break; 1316 } 1317 1318 /* 1319 * Shutdown the controller immediately and schedule a reset if the 1320 * command was already aborted once before and still hasn't been 1321 * returned to the driver, or if this is the admin queue. 1322 */ 1323 if (!nvmeq->qid || iod->aborted) { 1324 dev_warn(dev->ctrl.device, 1325 "I/O %d QID %d timeout, reset controller\n", 1326 req->tag, nvmeq->qid); 1327 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1328 nvme_dev_disable(dev, false); 1329 nvme_reset_ctrl(&dev->ctrl); 1330 1331 return BLK_EH_DONE; 1332 } 1333 1334 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1335 atomic_inc(&dev->ctrl.abort_limit); 1336 return BLK_EH_RESET_TIMER; 1337 } 1338 iod->aborted = 1; 1339 1340 memset(&cmd, 0, sizeof(cmd)); 1341 cmd.abort.opcode = nvme_admin_abort_cmd; 1342 cmd.abort.cid = req->tag; 1343 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1344 1345 dev_warn(nvmeq->dev->ctrl.device, 1346 "I/O %d QID %d timeout, aborting\n", 1347 req->tag, nvmeq->qid); 1348 1349 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1350 BLK_MQ_REQ_NOWAIT); 1351 if (IS_ERR(abort_req)) { 1352 atomic_inc(&dev->ctrl.abort_limit); 1353 return BLK_EH_RESET_TIMER; 1354 } 1355 1356 abort_req->end_io_data = NULL; 1357 blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio); 1358 1359 /* 1360 * The aborted req will be completed on receiving the abort req. 1361 * We enable the timer again. If hit twice, it'll cause a device reset, 1362 * as the device then is in a faulty state. 1363 */ 1364 return BLK_EH_RESET_TIMER; 1365 } 1366 1367 static void nvme_free_queue(struct nvme_queue *nvmeq) 1368 { 1369 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1370 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1371 if (!nvmeq->sq_cmds) 1372 return; 1373 1374 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1375 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1376 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1377 } else { 1378 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1379 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1380 } 1381 } 1382 1383 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1384 { 1385 int i; 1386 1387 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1388 dev->ctrl.queue_count--; 1389 nvme_free_queue(&dev->queues[i]); 1390 } 1391 } 1392 1393 /** 1394 * nvme_suspend_queue - put queue into suspended state 1395 * @nvmeq: queue to suspend 1396 */ 1397 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1398 { 1399 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1400 return 1; 1401 1402 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1403 mb(); 1404 1405 nvmeq->dev->online_queues--; 1406 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1407 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1408 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1409 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1410 return 0; 1411 } 1412 1413 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1414 { 1415 int i; 1416 1417 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1418 nvme_suspend_queue(&dev->queues[i]); 1419 } 1420 1421 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1422 { 1423 struct nvme_queue *nvmeq = &dev->queues[0]; 1424 1425 if (shutdown) 1426 nvme_shutdown_ctrl(&dev->ctrl); 1427 else 1428 nvme_disable_ctrl(&dev->ctrl); 1429 1430 nvme_poll_irqdisable(nvmeq); 1431 } 1432 1433 /* 1434 * Called only on a device that has been disabled and after all other threads 1435 * that can check this device's completion queues have synced, except 1436 * nvme_poll(). This is the last chance for the driver to see a natural 1437 * completion before nvme_cancel_request() terminates all incomplete requests. 1438 */ 1439 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1440 { 1441 int i; 1442 1443 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1444 spin_lock(&dev->queues[i].cq_poll_lock); 1445 nvme_process_cq(&dev->queues[i]); 1446 spin_unlock(&dev->queues[i].cq_poll_lock); 1447 } 1448 } 1449 1450 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1451 int entry_size) 1452 { 1453 int q_depth = dev->q_depth; 1454 unsigned q_size_aligned = roundup(q_depth * entry_size, 1455 NVME_CTRL_PAGE_SIZE); 1456 1457 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1458 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1459 1460 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1461 q_depth = div_u64(mem_per_q, entry_size); 1462 1463 /* 1464 * Ensure the reduced q_depth is above some threshold where it 1465 * would be better to map queues in system memory with the 1466 * original depth 1467 */ 1468 if (q_depth < 64) 1469 return -ENOMEM; 1470 } 1471 1472 return q_depth; 1473 } 1474 1475 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1476 int qid) 1477 { 1478 struct pci_dev *pdev = to_pci_dev(dev->dev); 1479 1480 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1481 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1482 if (nvmeq->sq_cmds) { 1483 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1484 nvmeq->sq_cmds); 1485 if (nvmeq->sq_dma_addr) { 1486 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1487 return 0; 1488 } 1489 1490 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1491 } 1492 } 1493 1494 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1495 &nvmeq->sq_dma_addr, GFP_KERNEL); 1496 if (!nvmeq->sq_cmds) 1497 return -ENOMEM; 1498 return 0; 1499 } 1500 1501 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1502 { 1503 struct nvme_queue *nvmeq = &dev->queues[qid]; 1504 1505 if (dev->ctrl.queue_count > qid) 1506 return 0; 1507 1508 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1509 nvmeq->q_depth = depth; 1510 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1511 &nvmeq->cq_dma_addr, GFP_KERNEL); 1512 if (!nvmeq->cqes) 1513 goto free_nvmeq; 1514 1515 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1516 goto free_cqdma; 1517 1518 nvmeq->dev = dev; 1519 spin_lock_init(&nvmeq->sq_lock); 1520 spin_lock_init(&nvmeq->cq_poll_lock); 1521 nvmeq->cq_head = 0; 1522 nvmeq->cq_phase = 1; 1523 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1524 nvmeq->qid = qid; 1525 dev->ctrl.queue_count++; 1526 1527 return 0; 1528 1529 free_cqdma: 1530 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1531 nvmeq->cq_dma_addr); 1532 free_nvmeq: 1533 return -ENOMEM; 1534 } 1535 1536 static int queue_request_irq(struct nvme_queue *nvmeq) 1537 { 1538 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1539 int nr = nvmeq->dev->ctrl.instance; 1540 1541 if (use_threaded_interrupts) { 1542 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1543 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1544 } else { 1545 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1546 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1547 } 1548 } 1549 1550 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1551 { 1552 struct nvme_dev *dev = nvmeq->dev; 1553 1554 nvmeq->sq_tail = 0; 1555 nvmeq->last_sq_tail = 0; 1556 nvmeq->cq_head = 0; 1557 nvmeq->cq_phase = 1; 1558 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1559 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1560 nvme_dbbuf_init(dev, nvmeq, qid); 1561 dev->online_queues++; 1562 wmb(); /* ensure the first interrupt sees the initialization */ 1563 } 1564 1565 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1566 { 1567 struct nvme_dev *dev = nvmeq->dev; 1568 int result; 1569 u16 vector = 0; 1570 1571 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1572 1573 /* 1574 * A queue's vector matches the queue identifier unless the controller 1575 * has only one vector available. 1576 */ 1577 if (!polled) 1578 vector = dev->num_vecs == 1 ? 0 : qid; 1579 else 1580 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1581 1582 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1583 if (result) 1584 return result; 1585 1586 result = adapter_alloc_sq(dev, qid, nvmeq); 1587 if (result < 0) 1588 return result; 1589 if (result) 1590 goto release_cq; 1591 1592 nvmeq->cq_vector = vector; 1593 nvme_init_queue(nvmeq, qid); 1594 1595 if (!polled) { 1596 result = queue_request_irq(nvmeq); 1597 if (result < 0) 1598 goto release_sq; 1599 } 1600 1601 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1602 return result; 1603 1604 release_sq: 1605 dev->online_queues--; 1606 adapter_delete_sq(dev, qid); 1607 release_cq: 1608 adapter_delete_cq(dev, qid); 1609 return result; 1610 } 1611 1612 static const struct blk_mq_ops nvme_mq_admin_ops = { 1613 .queue_rq = nvme_queue_rq, 1614 .complete = nvme_pci_complete_rq, 1615 .init_hctx = nvme_admin_init_hctx, 1616 .init_request = nvme_init_request, 1617 .timeout = nvme_timeout, 1618 }; 1619 1620 static const struct blk_mq_ops nvme_mq_ops = { 1621 .queue_rq = nvme_queue_rq, 1622 .complete = nvme_pci_complete_rq, 1623 .commit_rqs = nvme_commit_rqs, 1624 .init_hctx = nvme_init_hctx, 1625 .init_request = nvme_init_request, 1626 .map_queues = nvme_pci_map_queues, 1627 .timeout = nvme_timeout, 1628 .poll = nvme_poll, 1629 }; 1630 1631 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1632 { 1633 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1634 /* 1635 * If the controller was reset during removal, it's possible 1636 * user requests may be waiting on a stopped queue. Start the 1637 * queue to flush these to completion. 1638 */ 1639 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1640 blk_cleanup_queue(dev->ctrl.admin_q); 1641 blk_mq_free_tag_set(&dev->admin_tagset); 1642 } 1643 } 1644 1645 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1646 { 1647 if (!dev->ctrl.admin_q) { 1648 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1649 dev->admin_tagset.nr_hw_queues = 1; 1650 1651 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1652 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1653 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1654 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1655 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1656 dev->admin_tagset.driver_data = dev; 1657 1658 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1659 return -ENOMEM; 1660 dev->ctrl.admin_tagset = &dev->admin_tagset; 1661 1662 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1663 if (IS_ERR(dev->ctrl.admin_q)) { 1664 blk_mq_free_tag_set(&dev->admin_tagset); 1665 return -ENOMEM; 1666 } 1667 if (!blk_get_queue(dev->ctrl.admin_q)) { 1668 nvme_dev_remove_admin(dev); 1669 dev->ctrl.admin_q = NULL; 1670 return -ENODEV; 1671 } 1672 } else 1673 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1674 1675 return 0; 1676 } 1677 1678 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1679 { 1680 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1681 } 1682 1683 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1684 { 1685 struct pci_dev *pdev = to_pci_dev(dev->dev); 1686 1687 if (size <= dev->bar_mapped_size) 1688 return 0; 1689 if (size > pci_resource_len(pdev, 0)) 1690 return -ENOMEM; 1691 if (dev->bar) 1692 iounmap(dev->bar); 1693 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1694 if (!dev->bar) { 1695 dev->bar_mapped_size = 0; 1696 return -ENOMEM; 1697 } 1698 dev->bar_mapped_size = size; 1699 dev->dbs = dev->bar + NVME_REG_DBS; 1700 1701 return 0; 1702 } 1703 1704 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1705 { 1706 int result; 1707 u32 aqa; 1708 struct nvme_queue *nvmeq; 1709 1710 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1711 if (result < 0) 1712 return result; 1713 1714 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1715 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1716 1717 if (dev->subsystem && 1718 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1719 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1720 1721 result = nvme_disable_ctrl(&dev->ctrl); 1722 if (result < 0) 1723 return result; 1724 1725 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1726 if (result) 1727 return result; 1728 1729 dev->ctrl.numa_node = dev_to_node(dev->dev); 1730 1731 nvmeq = &dev->queues[0]; 1732 aqa = nvmeq->q_depth - 1; 1733 aqa |= aqa << 16; 1734 1735 writel(aqa, dev->bar + NVME_REG_AQA); 1736 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1737 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1738 1739 result = nvme_enable_ctrl(&dev->ctrl); 1740 if (result) 1741 return result; 1742 1743 nvmeq->cq_vector = 0; 1744 nvme_init_queue(nvmeq, 0); 1745 result = queue_request_irq(nvmeq); 1746 if (result) { 1747 dev->online_queues--; 1748 return result; 1749 } 1750 1751 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1752 return result; 1753 } 1754 1755 static int nvme_create_io_queues(struct nvme_dev *dev) 1756 { 1757 unsigned i, max, rw_queues; 1758 int ret = 0; 1759 1760 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1761 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1762 ret = -ENOMEM; 1763 break; 1764 } 1765 } 1766 1767 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1768 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1769 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1770 dev->io_queues[HCTX_TYPE_READ]; 1771 } else { 1772 rw_queues = max; 1773 } 1774 1775 for (i = dev->online_queues; i <= max; i++) { 1776 bool polled = i > rw_queues; 1777 1778 ret = nvme_create_queue(&dev->queues[i], i, polled); 1779 if (ret) 1780 break; 1781 } 1782 1783 /* 1784 * Ignore failing Create SQ/CQ commands, we can continue with less 1785 * than the desired amount of queues, and even a controller without 1786 * I/O queues can still be used to issue admin commands. This might 1787 * be useful to upgrade a buggy firmware for example. 1788 */ 1789 return ret >= 0 ? 0 : ret; 1790 } 1791 1792 static ssize_t nvme_cmb_show(struct device *dev, 1793 struct device_attribute *attr, 1794 char *buf) 1795 { 1796 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1797 1798 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1799 ndev->cmbloc, ndev->cmbsz); 1800 } 1801 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1802 1803 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1804 { 1805 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1806 1807 return 1ULL << (12 + 4 * szu); 1808 } 1809 1810 static u32 nvme_cmb_size(struct nvme_dev *dev) 1811 { 1812 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1813 } 1814 1815 static void nvme_map_cmb(struct nvme_dev *dev) 1816 { 1817 u64 size, offset; 1818 resource_size_t bar_size; 1819 struct pci_dev *pdev = to_pci_dev(dev->dev); 1820 int bar; 1821 1822 if (dev->cmb_size) 1823 return; 1824 1825 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1826 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1827 1828 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1829 if (!dev->cmbsz) 1830 return; 1831 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1832 1833 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1834 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1835 bar = NVME_CMB_BIR(dev->cmbloc); 1836 bar_size = pci_resource_len(pdev, bar); 1837 1838 if (offset > bar_size) 1839 return; 1840 1841 /* 1842 * Tell the controller about the host side address mapping the CMB, 1843 * and enable CMB decoding for the NVMe 1.4+ scheme: 1844 */ 1845 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1846 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1847 (pci_bus_address(pdev, bar) + offset), 1848 dev->bar + NVME_REG_CMBMSC); 1849 } 1850 1851 /* 1852 * Controllers may support a CMB size larger than their BAR, 1853 * for example, due to being behind a bridge. Reduce the CMB to 1854 * the reported size of the BAR 1855 */ 1856 if (size > bar_size - offset) 1857 size = bar_size - offset; 1858 1859 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1860 dev_warn(dev->ctrl.device, 1861 "failed to register the CMB\n"); 1862 return; 1863 } 1864 1865 dev->cmb_size = size; 1866 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1867 1868 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1869 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1870 pci_p2pmem_publish(pdev, true); 1871 1872 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1873 &dev_attr_cmb.attr, NULL)) 1874 dev_warn(dev->ctrl.device, 1875 "failed to add sysfs attribute for CMB\n"); 1876 } 1877 1878 static inline void nvme_release_cmb(struct nvme_dev *dev) 1879 { 1880 if (dev->cmb_size) { 1881 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1882 &dev_attr_cmb.attr, NULL); 1883 dev->cmb_size = 0; 1884 } 1885 } 1886 1887 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1888 { 1889 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1890 u64 dma_addr = dev->host_mem_descs_dma; 1891 struct nvme_command c; 1892 int ret; 1893 1894 memset(&c, 0, sizeof(c)); 1895 c.features.opcode = nvme_admin_set_features; 1896 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1897 c.features.dword11 = cpu_to_le32(bits); 1898 c.features.dword12 = cpu_to_le32(host_mem_size); 1899 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1900 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1901 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1902 1903 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1904 if (ret) { 1905 dev_warn(dev->ctrl.device, 1906 "failed to set host mem (err %d, flags %#x).\n", 1907 ret, bits); 1908 } 1909 return ret; 1910 } 1911 1912 static void nvme_free_host_mem(struct nvme_dev *dev) 1913 { 1914 int i; 1915 1916 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1917 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1918 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1919 1920 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1921 le64_to_cpu(desc->addr), 1922 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1923 } 1924 1925 kfree(dev->host_mem_desc_bufs); 1926 dev->host_mem_desc_bufs = NULL; 1927 dma_free_coherent(dev->dev, 1928 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1929 dev->host_mem_descs, dev->host_mem_descs_dma); 1930 dev->host_mem_descs = NULL; 1931 dev->nr_host_mem_descs = 0; 1932 } 1933 1934 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1935 u32 chunk_size) 1936 { 1937 struct nvme_host_mem_buf_desc *descs; 1938 u32 max_entries, len; 1939 dma_addr_t descs_dma; 1940 int i = 0; 1941 void **bufs; 1942 u64 size, tmp; 1943 1944 tmp = (preferred + chunk_size - 1); 1945 do_div(tmp, chunk_size); 1946 max_entries = tmp; 1947 1948 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1949 max_entries = dev->ctrl.hmmaxd; 1950 1951 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1952 &descs_dma, GFP_KERNEL); 1953 if (!descs) 1954 goto out; 1955 1956 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1957 if (!bufs) 1958 goto out_free_descs; 1959 1960 for (size = 0; size < preferred && i < max_entries; size += len) { 1961 dma_addr_t dma_addr; 1962 1963 len = min_t(u64, chunk_size, preferred - size); 1964 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1965 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1966 if (!bufs[i]) 1967 break; 1968 1969 descs[i].addr = cpu_to_le64(dma_addr); 1970 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1971 i++; 1972 } 1973 1974 if (!size) 1975 goto out_free_bufs; 1976 1977 dev->nr_host_mem_descs = i; 1978 dev->host_mem_size = size; 1979 dev->host_mem_descs = descs; 1980 dev->host_mem_descs_dma = descs_dma; 1981 dev->host_mem_desc_bufs = bufs; 1982 return 0; 1983 1984 out_free_bufs: 1985 while (--i >= 0) { 1986 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1987 1988 dma_free_attrs(dev->dev, size, bufs[i], 1989 le64_to_cpu(descs[i].addr), 1990 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1991 } 1992 1993 kfree(bufs); 1994 out_free_descs: 1995 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1996 descs_dma); 1997 out: 1998 dev->host_mem_descs = NULL; 1999 return -ENOMEM; 2000 } 2001 2002 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2003 { 2004 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2005 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2006 u64 chunk_size; 2007 2008 /* start big and work our way down */ 2009 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2010 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2011 if (!min || dev->host_mem_size >= min) 2012 return 0; 2013 nvme_free_host_mem(dev); 2014 } 2015 } 2016 2017 return -ENOMEM; 2018 } 2019 2020 static int nvme_setup_host_mem(struct nvme_dev *dev) 2021 { 2022 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2023 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2024 u64 min = (u64)dev->ctrl.hmmin * 4096; 2025 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2026 int ret; 2027 2028 preferred = min(preferred, max); 2029 if (min > max) { 2030 dev_warn(dev->ctrl.device, 2031 "min host memory (%lld MiB) above limit (%d MiB).\n", 2032 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2033 nvme_free_host_mem(dev); 2034 return 0; 2035 } 2036 2037 /* 2038 * If we already have a buffer allocated check if we can reuse it. 2039 */ 2040 if (dev->host_mem_descs) { 2041 if (dev->host_mem_size >= min) 2042 enable_bits |= NVME_HOST_MEM_RETURN; 2043 else 2044 nvme_free_host_mem(dev); 2045 } 2046 2047 if (!dev->host_mem_descs) { 2048 if (nvme_alloc_host_mem(dev, min, preferred)) { 2049 dev_warn(dev->ctrl.device, 2050 "failed to allocate host memory buffer.\n"); 2051 return 0; /* controller must work without HMB */ 2052 } 2053 2054 dev_info(dev->ctrl.device, 2055 "allocated %lld MiB host memory buffer.\n", 2056 dev->host_mem_size >> ilog2(SZ_1M)); 2057 } 2058 2059 ret = nvme_set_host_mem(dev, enable_bits); 2060 if (ret) 2061 nvme_free_host_mem(dev); 2062 return ret; 2063 } 2064 2065 /* 2066 * nirqs is the number of interrupts available for write and read 2067 * queues. The core already reserved an interrupt for the admin queue. 2068 */ 2069 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2070 { 2071 struct nvme_dev *dev = affd->priv; 2072 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2073 2074 /* 2075 * If there is no interrupt available for queues, ensure that 2076 * the default queue is set to 1. The affinity set size is 2077 * also set to one, but the irq core ignores it for this case. 2078 * 2079 * If only one interrupt is available or 'write_queue' == 0, combine 2080 * write and read queues. 2081 * 2082 * If 'write_queues' > 0, ensure it leaves room for at least one read 2083 * queue. 2084 */ 2085 if (!nrirqs) { 2086 nrirqs = 1; 2087 nr_read_queues = 0; 2088 } else if (nrirqs == 1 || !nr_write_queues) { 2089 nr_read_queues = 0; 2090 } else if (nr_write_queues >= nrirqs) { 2091 nr_read_queues = 1; 2092 } else { 2093 nr_read_queues = nrirqs - nr_write_queues; 2094 } 2095 2096 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2097 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2098 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2099 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2100 affd->nr_sets = nr_read_queues ? 2 : 1; 2101 } 2102 2103 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2104 { 2105 struct pci_dev *pdev = to_pci_dev(dev->dev); 2106 struct irq_affinity affd = { 2107 .pre_vectors = 1, 2108 .calc_sets = nvme_calc_irq_sets, 2109 .priv = dev, 2110 }; 2111 unsigned int irq_queues, poll_queues; 2112 2113 /* 2114 * Poll queues don't need interrupts, but we need at least one I/O queue 2115 * left over for non-polled I/O. 2116 */ 2117 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2118 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2119 2120 /* 2121 * Initialize for the single interrupt case, will be updated in 2122 * nvme_calc_irq_sets(). 2123 */ 2124 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2125 dev->io_queues[HCTX_TYPE_READ] = 0; 2126 2127 /* 2128 * We need interrupts for the admin queue and each non-polled I/O queue, 2129 * but some Apple controllers require all queues to use the first 2130 * vector. 2131 */ 2132 irq_queues = 1; 2133 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2134 irq_queues += (nr_io_queues - poll_queues); 2135 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2136 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2137 } 2138 2139 static void nvme_disable_io_queues(struct nvme_dev *dev) 2140 { 2141 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2142 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2143 } 2144 2145 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2146 { 2147 /* 2148 * If tags are shared with admin queue (Apple bug), then 2149 * make sure we only use one IO queue. 2150 */ 2151 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2152 return 1; 2153 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2154 } 2155 2156 static int nvme_setup_io_queues(struct nvme_dev *dev) 2157 { 2158 struct nvme_queue *adminq = &dev->queues[0]; 2159 struct pci_dev *pdev = to_pci_dev(dev->dev); 2160 unsigned int nr_io_queues; 2161 unsigned long size; 2162 int result; 2163 2164 /* 2165 * Sample the module parameters once at reset time so that we have 2166 * stable values to work with. 2167 */ 2168 dev->nr_write_queues = write_queues; 2169 dev->nr_poll_queues = poll_queues; 2170 2171 nr_io_queues = dev->nr_allocated_queues - 1; 2172 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2173 if (result < 0) 2174 return result; 2175 2176 if (nr_io_queues == 0) 2177 return 0; 2178 2179 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2180 2181 if (dev->cmb_use_sqes) { 2182 result = nvme_cmb_qdepth(dev, nr_io_queues, 2183 sizeof(struct nvme_command)); 2184 if (result > 0) 2185 dev->q_depth = result; 2186 else 2187 dev->cmb_use_sqes = false; 2188 } 2189 2190 do { 2191 size = db_bar_size(dev, nr_io_queues); 2192 result = nvme_remap_bar(dev, size); 2193 if (!result) 2194 break; 2195 if (!--nr_io_queues) 2196 return -ENOMEM; 2197 } while (1); 2198 adminq->q_db = dev->dbs; 2199 2200 retry: 2201 /* Deregister the admin queue's interrupt */ 2202 pci_free_irq(pdev, 0, adminq); 2203 2204 /* 2205 * If we enable msix early due to not intx, disable it again before 2206 * setting up the full range we need. 2207 */ 2208 pci_free_irq_vectors(pdev); 2209 2210 result = nvme_setup_irqs(dev, nr_io_queues); 2211 if (result <= 0) 2212 return -EIO; 2213 2214 dev->num_vecs = result; 2215 result = max(result - 1, 1); 2216 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2217 2218 /* 2219 * Should investigate if there's a performance win from allocating 2220 * more queues than interrupt vectors; it might allow the submission 2221 * path to scale better, even if the receive path is limited by the 2222 * number of interrupts. 2223 */ 2224 result = queue_request_irq(adminq); 2225 if (result) 2226 return result; 2227 set_bit(NVMEQ_ENABLED, &adminq->flags); 2228 2229 result = nvme_create_io_queues(dev); 2230 if (result || dev->online_queues < 2) 2231 return result; 2232 2233 if (dev->online_queues - 1 < dev->max_qid) { 2234 nr_io_queues = dev->online_queues - 1; 2235 nvme_disable_io_queues(dev); 2236 nvme_suspend_io_queues(dev); 2237 goto retry; 2238 } 2239 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2240 dev->io_queues[HCTX_TYPE_DEFAULT], 2241 dev->io_queues[HCTX_TYPE_READ], 2242 dev->io_queues[HCTX_TYPE_POLL]); 2243 return 0; 2244 } 2245 2246 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2247 { 2248 struct nvme_queue *nvmeq = req->end_io_data; 2249 2250 blk_mq_free_request(req); 2251 complete(&nvmeq->delete_done); 2252 } 2253 2254 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2255 { 2256 struct nvme_queue *nvmeq = req->end_io_data; 2257 2258 if (error) 2259 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2260 2261 nvme_del_queue_end(req, error); 2262 } 2263 2264 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2265 { 2266 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2267 struct request *req; 2268 struct nvme_command cmd; 2269 2270 memset(&cmd, 0, sizeof(cmd)); 2271 cmd.delete_queue.opcode = opcode; 2272 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2273 2274 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 2275 if (IS_ERR(req)) 2276 return PTR_ERR(req); 2277 2278 req->end_io_data = nvmeq; 2279 2280 init_completion(&nvmeq->delete_done); 2281 blk_execute_rq_nowait(NULL, req, false, 2282 opcode == nvme_admin_delete_cq ? 2283 nvme_del_cq_end : nvme_del_queue_end); 2284 return 0; 2285 } 2286 2287 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2288 { 2289 int nr_queues = dev->online_queues - 1, sent = 0; 2290 unsigned long timeout; 2291 2292 retry: 2293 timeout = NVME_ADMIN_TIMEOUT; 2294 while (nr_queues > 0) { 2295 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2296 break; 2297 nr_queues--; 2298 sent++; 2299 } 2300 while (sent) { 2301 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2302 2303 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2304 timeout); 2305 if (timeout == 0) 2306 return false; 2307 2308 sent--; 2309 if (nr_queues) 2310 goto retry; 2311 } 2312 return true; 2313 } 2314 2315 static void nvme_dev_add(struct nvme_dev *dev) 2316 { 2317 int ret; 2318 2319 if (!dev->ctrl.tagset) { 2320 dev->tagset.ops = &nvme_mq_ops; 2321 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2322 dev->tagset.nr_maps = 2; /* default + read */ 2323 if (dev->io_queues[HCTX_TYPE_POLL]) 2324 dev->tagset.nr_maps++; 2325 dev->tagset.timeout = NVME_IO_TIMEOUT; 2326 dev->tagset.numa_node = dev->ctrl.numa_node; 2327 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2328 BLK_MQ_MAX_DEPTH) - 1; 2329 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2330 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2331 dev->tagset.driver_data = dev; 2332 2333 /* 2334 * Some Apple controllers requires tags to be unique 2335 * across admin and IO queue, so reserve the first 32 2336 * tags of the IO queue. 2337 */ 2338 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2339 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2340 2341 ret = blk_mq_alloc_tag_set(&dev->tagset); 2342 if (ret) { 2343 dev_warn(dev->ctrl.device, 2344 "IO queues tagset allocation failed %d\n", ret); 2345 return; 2346 } 2347 dev->ctrl.tagset = &dev->tagset; 2348 } else { 2349 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2350 2351 /* Free previously allocated queues that are no longer usable */ 2352 nvme_free_queues(dev, dev->online_queues); 2353 } 2354 2355 nvme_dbbuf_set(dev); 2356 } 2357 2358 static int nvme_pci_enable(struct nvme_dev *dev) 2359 { 2360 int result = -ENOMEM; 2361 struct pci_dev *pdev = to_pci_dev(dev->dev); 2362 int dma_address_bits = 64; 2363 2364 if (pci_enable_device_mem(pdev)) 2365 return result; 2366 2367 pci_set_master(pdev); 2368 2369 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2370 dma_address_bits = 48; 2371 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2372 goto disable; 2373 2374 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2375 result = -ENODEV; 2376 goto disable; 2377 } 2378 2379 /* 2380 * Some devices and/or platforms don't advertise or work with INTx 2381 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2382 * adjust this later. 2383 */ 2384 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2385 if (result < 0) 2386 return result; 2387 2388 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2389 2390 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2391 io_queue_depth); 2392 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2393 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2394 dev->dbs = dev->bar + 4096; 2395 2396 /* 2397 * Some Apple controllers require a non-standard SQE size. 2398 * Interestingly they also seem to ignore the CC:IOSQES register 2399 * so we don't bother updating it here. 2400 */ 2401 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2402 dev->io_sqes = 7; 2403 else 2404 dev->io_sqes = NVME_NVM_IOSQES; 2405 2406 /* 2407 * Temporary fix for the Apple controller found in the MacBook8,1 and 2408 * some MacBook7,1 to avoid controller resets and data loss. 2409 */ 2410 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2411 dev->q_depth = 2; 2412 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2413 "set queue depth=%u to work around controller resets\n", 2414 dev->q_depth); 2415 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2416 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2417 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2418 dev->q_depth = 64; 2419 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2420 "set queue depth=%u\n", dev->q_depth); 2421 } 2422 2423 /* 2424 * Controllers with the shared tags quirk need the IO queue to be 2425 * big enough so that we get 32 tags for the admin queue 2426 */ 2427 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2428 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2429 dev->q_depth = NVME_AQ_DEPTH + 2; 2430 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2431 dev->q_depth); 2432 } 2433 2434 2435 nvme_map_cmb(dev); 2436 2437 pci_enable_pcie_error_reporting(pdev); 2438 pci_save_state(pdev); 2439 return 0; 2440 2441 disable: 2442 pci_disable_device(pdev); 2443 return result; 2444 } 2445 2446 static void nvme_dev_unmap(struct nvme_dev *dev) 2447 { 2448 if (dev->bar) 2449 iounmap(dev->bar); 2450 pci_release_mem_regions(to_pci_dev(dev->dev)); 2451 } 2452 2453 static void nvme_pci_disable(struct nvme_dev *dev) 2454 { 2455 struct pci_dev *pdev = to_pci_dev(dev->dev); 2456 2457 pci_free_irq_vectors(pdev); 2458 2459 if (pci_is_enabled(pdev)) { 2460 pci_disable_pcie_error_reporting(pdev); 2461 pci_disable_device(pdev); 2462 } 2463 } 2464 2465 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2466 { 2467 bool dead = true, freeze = false; 2468 struct pci_dev *pdev = to_pci_dev(dev->dev); 2469 2470 mutex_lock(&dev->shutdown_lock); 2471 if (pci_is_enabled(pdev)) { 2472 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2473 2474 if (dev->ctrl.state == NVME_CTRL_LIVE || 2475 dev->ctrl.state == NVME_CTRL_RESETTING) { 2476 freeze = true; 2477 nvme_start_freeze(&dev->ctrl); 2478 } 2479 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2480 pdev->error_state != pci_channel_io_normal); 2481 } 2482 2483 /* 2484 * Give the controller a chance to complete all entered requests if 2485 * doing a safe shutdown. 2486 */ 2487 if (!dead && shutdown && freeze) 2488 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2489 2490 nvme_stop_queues(&dev->ctrl); 2491 2492 if (!dead && dev->ctrl.queue_count > 0) { 2493 nvme_disable_io_queues(dev); 2494 nvme_disable_admin_queue(dev, shutdown); 2495 } 2496 nvme_suspend_io_queues(dev); 2497 nvme_suspend_queue(&dev->queues[0]); 2498 nvme_pci_disable(dev); 2499 nvme_reap_pending_cqes(dev); 2500 2501 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2502 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2503 blk_mq_tagset_wait_completed_request(&dev->tagset); 2504 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2505 2506 /* 2507 * The driver will not be starting up queues again if shutting down so 2508 * must flush all entered requests to their failed completion to avoid 2509 * deadlocking blk-mq hot-cpu notifier. 2510 */ 2511 if (shutdown) { 2512 nvme_start_queues(&dev->ctrl); 2513 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2514 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2515 } 2516 mutex_unlock(&dev->shutdown_lock); 2517 } 2518 2519 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2520 { 2521 if (!nvme_wait_reset(&dev->ctrl)) 2522 return -EBUSY; 2523 nvme_dev_disable(dev, shutdown); 2524 return 0; 2525 } 2526 2527 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2528 { 2529 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2530 NVME_CTRL_PAGE_SIZE, 2531 NVME_CTRL_PAGE_SIZE, 0); 2532 if (!dev->prp_page_pool) 2533 return -ENOMEM; 2534 2535 /* Optimisation for I/Os between 4k and 128k */ 2536 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2537 256, 256, 0); 2538 if (!dev->prp_small_pool) { 2539 dma_pool_destroy(dev->prp_page_pool); 2540 return -ENOMEM; 2541 } 2542 return 0; 2543 } 2544 2545 static void nvme_release_prp_pools(struct nvme_dev *dev) 2546 { 2547 dma_pool_destroy(dev->prp_page_pool); 2548 dma_pool_destroy(dev->prp_small_pool); 2549 } 2550 2551 static void nvme_free_tagset(struct nvme_dev *dev) 2552 { 2553 if (dev->tagset.tags) 2554 blk_mq_free_tag_set(&dev->tagset); 2555 dev->ctrl.tagset = NULL; 2556 } 2557 2558 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2559 { 2560 struct nvme_dev *dev = to_nvme_dev(ctrl); 2561 2562 nvme_dbbuf_dma_free(dev); 2563 nvme_free_tagset(dev); 2564 if (dev->ctrl.admin_q) 2565 blk_put_queue(dev->ctrl.admin_q); 2566 free_opal_dev(dev->ctrl.opal_dev); 2567 mempool_destroy(dev->iod_mempool); 2568 put_device(dev->dev); 2569 kfree(dev->queues); 2570 kfree(dev); 2571 } 2572 2573 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2574 { 2575 /* 2576 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2577 * may be holding this pci_dev's device lock. 2578 */ 2579 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2580 nvme_get_ctrl(&dev->ctrl); 2581 nvme_dev_disable(dev, false); 2582 nvme_kill_queues(&dev->ctrl); 2583 if (!queue_work(nvme_wq, &dev->remove_work)) 2584 nvme_put_ctrl(&dev->ctrl); 2585 } 2586 2587 static void nvme_reset_work(struct work_struct *work) 2588 { 2589 struct nvme_dev *dev = 2590 container_of(work, struct nvme_dev, ctrl.reset_work); 2591 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2592 int result; 2593 2594 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2595 result = -ENODEV; 2596 goto out; 2597 } 2598 2599 /* 2600 * If we're called to reset a live controller first shut it down before 2601 * moving on. 2602 */ 2603 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2604 nvme_dev_disable(dev, false); 2605 nvme_sync_queues(&dev->ctrl); 2606 2607 mutex_lock(&dev->shutdown_lock); 2608 result = nvme_pci_enable(dev); 2609 if (result) 2610 goto out_unlock; 2611 2612 result = nvme_pci_configure_admin_queue(dev); 2613 if (result) 2614 goto out_unlock; 2615 2616 result = nvme_alloc_admin_tags(dev); 2617 if (result) 2618 goto out_unlock; 2619 2620 /* 2621 * Limit the max command size to prevent iod->sg allocations going 2622 * over a single page. 2623 */ 2624 dev->ctrl.max_hw_sectors = min_t(u32, 2625 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2626 dev->ctrl.max_segments = NVME_MAX_SEGS; 2627 2628 /* 2629 * Don't limit the IOMMU merged segment size. 2630 */ 2631 dma_set_max_seg_size(dev->dev, 0xffffffff); 2632 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2633 2634 mutex_unlock(&dev->shutdown_lock); 2635 2636 /* 2637 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2638 * initializing procedure here. 2639 */ 2640 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2641 dev_warn(dev->ctrl.device, 2642 "failed to mark controller CONNECTING\n"); 2643 result = -EBUSY; 2644 goto out; 2645 } 2646 2647 /* 2648 * We do not support an SGL for metadata (yet), so we are limited to a 2649 * single integrity segment for the separate metadata pointer. 2650 */ 2651 dev->ctrl.max_integrity_segments = 1; 2652 2653 result = nvme_init_ctrl_finish(&dev->ctrl); 2654 if (result) 2655 goto out; 2656 2657 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2658 if (!dev->ctrl.opal_dev) 2659 dev->ctrl.opal_dev = 2660 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2661 else if (was_suspend) 2662 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2663 } else { 2664 free_opal_dev(dev->ctrl.opal_dev); 2665 dev->ctrl.opal_dev = NULL; 2666 } 2667 2668 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2669 result = nvme_dbbuf_dma_alloc(dev); 2670 if (result) 2671 dev_warn(dev->dev, 2672 "unable to allocate dma for dbbuf\n"); 2673 } 2674 2675 if (dev->ctrl.hmpre) { 2676 result = nvme_setup_host_mem(dev); 2677 if (result < 0) 2678 goto out; 2679 } 2680 2681 result = nvme_setup_io_queues(dev); 2682 if (result) 2683 goto out; 2684 2685 /* 2686 * Keep the controller around but remove all namespaces if we don't have 2687 * any working I/O queue. 2688 */ 2689 if (dev->online_queues < 2) { 2690 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2691 nvme_kill_queues(&dev->ctrl); 2692 nvme_remove_namespaces(&dev->ctrl); 2693 nvme_free_tagset(dev); 2694 } else { 2695 nvme_start_queues(&dev->ctrl); 2696 nvme_wait_freeze(&dev->ctrl); 2697 nvme_dev_add(dev); 2698 nvme_unfreeze(&dev->ctrl); 2699 } 2700 2701 /* 2702 * If only admin queue live, keep it to do further investigation or 2703 * recovery. 2704 */ 2705 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2706 dev_warn(dev->ctrl.device, 2707 "failed to mark controller live state\n"); 2708 result = -ENODEV; 2709 goto out; 2710 } 2711 2712 nvme_start_ctrl(&dev->ctrl); 2713 return; 2714 2715 out_unlock: 2716 mutex_unlock(&dev->shutdown_lock); 2717 out: 2718 if (result) 2719 dev_warn(dev->ctrl.device, 2720 "Removing after probe failure status: %d\n", result); 2721 nvme_remove_dead_ctrl(dev); 2722 } 2723 2724 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2725 { 2726 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2727 struct pci_dev *pdev = to_pci_dev(dev->dev); 2728 2729 if (pci_get_drvdata(pdev)) 2730 device_release_driver(&pdev->dev); 2731 nvme_put_ctrl(&dev->ctrl); 2732 } 2733 2734 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2735 { 2736 *val = readl(to_nvme_dev(ctrl)->bar + off); 2737 return 0; 2738 } 2739 2740 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2741 { 2742 writel(val, to_nvme_dev(ctrl)->bar + off); 2743 return 0; 2744 } 2745 2746 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2747 { 2748 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2749 return 0; 2750 } 2751 2752 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2753 { 2754 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2755 2756 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2757 } 2758 2759 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2760 .name = "pcie", 2761 .module = THIS_MODULE, 2762 .flags = NVME_F_METADATA_SUPPORTED | 2763 NVME_F_PCI_P2PDMA, 2764 .reg_read32 = nvme_pci_reg_read32, 2765 .reg_write32 = nvme_pci_reg_write32, 2766 .reg_read64 = nvme_pci_reg_read64, 2767 .free_ctrl = nvme_pci_free_ctrl, 2768 .submit_async_event = nvme_pci_submit_async_event, 2769 .get_address = nvme_pci_get_address, 2770 }; 2771 2772 static int nvme_dev_map(struct nvme_dev *dev) 2773 { 2774 struct pci_dev *pdev = to_pci_dev(dev->dev); 2775 2776 if (pci_request_mem_regions(pdev, "nvme")) 2777 return -ENODEV; 2778 2779 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2780 goto release; 2781 2782 return 0; 2783 release: 2784 pci_release_mem_regions(pdev); 2785 return -ENODEV; 2786 } 2787 2788 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2789 { 2790 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2791 /* 2792 * Several Samsung devices seem to drop off the PCIe bus 2793 * randomly when APST is on and uses the deepest sleep state. 2794 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2795 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2796 * 950 PRO 256GB", but it seems to be restricted to two Dell 2797 * laptops. 2798 */ 2799 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2800 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2801 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2802 return NVME_QUIRK_NO_DEEPEST_PS; 2803 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2804 /* 2805 * Samsung SSD 960 EVO drops off the PCIe bus after system 2806 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2807 * within few minutes after bootup on a Coffee Lake board - 2808 * ASUS PRIME Z370-A 2809 */ 2810 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2811 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2812 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2813 return NVME_QUIRK_NO_APST; 2814 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2815 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2816 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2817 /* 2818 * Forcing to use host managed nvme power settings for 2819 * lowest idle power with quick resume latency on 2820 * Samsung and Toshiba SSDs based on suspend behavior 2821 * on Coffee Lake board for LENOVO C640 2822 */ 2823 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2824 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2825 return NVME_QUIRK_SIMPLE_SUSPEND; 2826 } 2827 2828 return 0; 2829 } 2830 2831 #ifdef CONFIG_ACPI 2832 static bool nvme_acpi_storage_d3(struct pci_dev *dev) 2833 { 2834 struct acpi_device *adev; 2835 struct pci_dev *root; 2836 acpi_handle handle; 2837 acpi_status status; 2838 u8 val; 2839 2840 /* 2841 * Look for _DSD property specifying that the storage device on the port 2842 * must use D3 to support deep platform power savings during 2843 * suspend-to-idle. 2844 */ 2845 root = pcie_find_root_port(dev); 2846 if (!root) 2847 return false; 2848 2849 adev = ACPI_COMPANION(&root->dev); 2850 if (!adev) 2851 return false; 2852 2853 /* 2854 * The property is defined in the PXSX device for South complex ports 2855 * and in the PEGP device for North complex ports. 2856 */ 2857 status = acpi_get_handle(adev->handle, "PXSX", &handle); 2858 if (ACPI_FAILURE(status)) { 2859 status = acpi_get_handle(adev->handle, "PEGP", &handle); 2860 if (ACPI_FAILURE(status)) 2861 return false; 2862 } 2863 2864 if (acpi_bus_get_device(handle, &adev)) 2865 return false; 2866 2867 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 2868 &val)) 2869 return false; 2870 return val == 1; 2871 } 2872 #else 2873 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev) 2874 { 2875 return false; 2876 } 2877 #endif /* CONFIG_ACPI */ 2878 2879 static void nvme_async_probe(void *data, async_cookie_t cookie) 2880 { 2881 struct nvme_dev *dev = data; 2882 2883 flush_work(&dev->ctrl.reset_work); 2884 flush_work(&dev->ctrl.scan_work); 2885 nvme_put_ctrl(&dev->ctrl); 2886 } 2887 2888 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2889 { 2890 int node, result = -ENOMEM; 2891 struct nvme_dev *dev; 2892 unsigned long quirks = id->driver_data; 2893 size_t alloc_size; 2894 2895 node = dev_to_node(&pdev->dev); 2896 if (node == NUMA_NO_NODE) 2897 set_dev_node(&pdev->dev, first_memory_node); 2898 2899 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2900 if (!dev) 2901 return -ENOMEM; 2902 2903 dev->nr_write_queues = write_queues; 2904 dev->nr_poll_queues = poll_queues; 2905 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2906 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2907 sizeof(struct nvme_queue), GFP_KERNEL, node); 2908 if (!dev->queues) 2909 goto free; 2910 2911 dev->dev = get_device(&pdev->dev); 2912 pci_set_drvdata(pdev, dev); 2913 2914 result = nvme_dev_map(dev); 2915 if (result) 2916 goto put_pci; 2917 2918 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2919 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2920 mutex_init(&dev->shutdown_lock); 2921 2922 result = nvme_setup_prp_pools(dev); 2923 if (result) 2924 goto unmap; 2925 2926 quirks |= check_vendor_combination_bug(pdev); 2927 2928 if (!noacpi && nvme_acpi_storage_d3(pdev)) { 2929 /* 2930 * Some systems use a bios work around to ask for D3 on 2931 * platforms that support kernel managed suspend. 2932 */ 2933 dev_info(&pdev->dev, 2934 "platform quirk: setting simple suspend\n"); 2935 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2936 } 2937 2938 /* 2939 * Double check that our mempool alloc size will cover the biggest 2940 * command we support. 2941 */ 2942 alloc_size = nvme_pci_iod_alloc_size(); 2943 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2944 2945 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2946 mempool_kfree, 2947 (void *) alloc_size, 2948 GFP_KERNEL, node); 2949 if (!dev->iod_mempool) { 2950 result = -ENOMEM; 2951 goto release_pools; 2952 } 2953 2954 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2955 quirks); 2956 if (result) 2957 goto release_mempool; 2958 2959 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2960 2961 nvme_reset_ctrl(&dev->ctrl); 2962 async_schedule(nvme_async_probe, dev); 2963 2964 return 0; 2965 2966 release_mempool: 2967 mempool_destroy(dev->iod_mempool); 2968 release_pools: 2969 nvme_release_prp_pools(dev); 2970 unmap: 2971 nvme_dev_unmap(dev); 2972 put_pci: 2973 put_device(dev->dev); 2974 free: 2975 kfree(dev->queues); 2976 kfree(dev); 2977 return result; 2978 } 2979 2980 static void nvme_reset_prepare(struct pci_dev *pdev) 2981 { 2982 struct nvme_dev *dev = pci_get_drvdata(pdev); 2983 2984 /* 2985 * We don't need to check the return value from waiting for the reset 2986 * state as pci_dev device lock is held, making it impossible to race 2987 * with ->remove(). 2988 */ 2989 nvme_disable_prepare_reset(dev, false); 2990 nvme_sync_queues(&dev->ctrl); 2991 } 2992 2993 static void nvme_reset_done(struct pci_dev *pdev) 2994 { 2995 struct nvme_dev *dev = pci_get_drvdata(pdev); 2996 2997 if (!nvme_try_sched_reset(&dev->ctrl)) 2998 flush_work(&dev->ctrl.reset_work); 2999 } 3000 3001 static void nvme_shutdown(struct pci_dev *pdev) 3002 { 3003 struct nvme_dev *dev = pci_get_drvdata(pdev); 3004 3005 nvme_disable_prepare_reset(dev, true); 3006 } 3007 3008 /* 3009 * The driver's remove may be called on a device in a partially initialized 3010 * state. This function must not have any dependencies on the device state in 3011 * order to proceed. 3012 */ 3013 static void nvme_remove(struct pci_dev *pdev) 3014 { 3015 struct nvme_dev *dev = pci_get_drvdata(pdev); 3016 3017 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3018 pci_set_drvdata(pdev, NULL); 3019 3020 if (!pci_device_is_present(pdev)) { 3021 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3022 nvme_dev_disable(dev, true); 3023 nvme_dev_remove_admin(dev); 3024 } 3025 3026 flush_work(&dev->ctrl.reset_work); 3027 nvme_stop_ctrl(&dev->ctrl); 3028 nvme_remove_namespaces(&dev->ctrl); 3029 nvme_dev_disable(dev, true); 3030 nvme_release_cmb(dev); 3031 nvme_free_host_mem(dev); 3032 nvme_dev_remove_admin(dev); 3033 nvme_free_queues(dev, 0); 3034 nvme_release_prp_pools(dev); 3035 nvme_dev_unmap(dev); 3036 nvme_uninit_ctrl(&dev->ctrl); 3037 } 3038 3039 #ifdef CONFIG_PM_SLEEP 3040 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3041 { 3042 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3043 } 3044 3045 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3046 { 3047 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3048 } 3049 3050 static int nvme_resume(struct device *dev) 3051 { 3052 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3053 struct nvme_ctrl *ctrl = &ndev->ctrl; 3054 3055 if (ndev->last_ps == U32_MAX || 3056 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3057 return nvme_try_sched_reset(&ndev->ctrl); 3058 return 0; 3059 } 3060 3061 static int nvme_suspend(struct device *dev) 3062 { 3063 struct pci_dev *pdev = to_pci_dev(dev); 3064 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3065 struct nvme_ctrl *ctrl = &ndev->ctrl; 3066 int ret = -EBUSY; 3067 3068 ndev->last_ps = U32_MAX; 3069 3070 /* 3071 * The platform does not remove power for a kernel managed suspend so 3072 * use host managed nvme power settings for lowest idle power if 3073 * possible. This should have quicker resume latency than a full device 3074 * shutdown. But if the firmware is involved after the suspend or the 3075 * device does not support any non-default power states, shut down the 3076 * device fully. 3077 * 3078 * If ASPM is not enabled for the device, shut down the device and allow 3079 * the PCI bus layer to put it into D3 in order to take the PCIe link 3080 * down, so as to allow the platform to achieve its minimum low-power 3081 * state (which may not be possible if the link is up). 3082 * 3083 * If a host memory buffer is enabled, shut down the device as the NVMe 3084 * specification allows the device to access the host memory buffer in 3085 * host DRAM from all power states, but hosts will fail access to DRAM 3086 * during S3. 3087 */ 3088 if (pm_suspend_via_firmware() || !ctrl->npss || 3089 !pcie_aspm_enabled(pdev) || 3090 ndev->nr_host_mem_descs || 3091 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3092 return nvme_disable_prepare_reset(ndev, true); 3093 3094 nvme_start_freeze(ctrl); 3095 nvme_wait_freeze(ctrl); 3096 nvme_sync_queues(ctrl); 3097 3098 if (ctrl->state != NVME_CTRL_LIVE) 3099 goto unfreeze; 3100 3101 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3102 if (ret < 0) 3103 goto unfreeze; 3104 3105 /* 3106 * A saved state prevents pci pm from generically controlling the 3107 * device's power. If we're using protocol specific settings, we don't 3108 * want pci interfering. 3109 */ 3110 pci_save_state(pdev); 3111 3112 ret = nvme_set_power_state(ctrl, ctrl->npss); 3113 if (ret < 0) 3114 goto unfreeze; 3115 3116 if (ret) { 3117 /* discard the saved state */ 3118 pci_load_saved_state(pdev, NULL); 3119 3120 /* 3121 * Clearing npss forces a controller reset on resume. The 3122 * correct value will be rediscovered then. 3123 */ 3124 ret = nvme_disable_prepare_reset(ndev, true); 3125 ctrl->npss = 0; 3126 } 3127 unfreeze: 3128 nvme_unfreeze(ctrl); 3129 return ret; 3130 } 3131 3132 static int nvme_simple_suspend(struct device *dev) 3133 { 3134 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3135 3136 return nvme_disable_prepare_reset(ndev, true); 3137 } 3138 3139 static int nvme_simple_resume(struct device *dev) 3140 { 3141 struct pci_dev *pdev = to_pci_dev(dev); 3142 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3143 3144 return nvme_try_sched_reset(&ndev->ctrl); 3145 } 3146 3147 static const struct dev_pm_ops nvme_dev_pm_ops = { 3148 .suspend = nvme_suspend, 3149 .resume = nvme_resume, 3150 .freeze = nvme_simple_suspend, 3151 .thaw = nvme_simple_resume, 3152 .poweroff = nvme_simple_suspend, 3153 .restore = nvme_simple_resume, 3154 }; 3155 #endif /* CONFIG_PM_SLEEP */ 3156 3157 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3158 pci_channel_state_t state) 3159 { 3160 struct nvme_dev *dev = pci_get_drvdata(pdev); 3161 3162 /* 3163 * A frozen channel requires a reset. When detected, this method will 3164 * shutdown the controller to quiesce. The controller will be restarted 3165 * after the slot reset through driver's slot_reset callback. 3166 */ 3167 switch (state) { 3168 case pci_channel_io_normal: 3169 return PCI_ERS_RESULT_CAN_RECOVER; 3170 case pci_channel_io_frozen: 3171 dev_warn(dev->ctrl.device, 3172 "frozen state error detected, reset controller\n"); 3173 nvme_dev_disable(dev, false); 3174 return PCI_ERS_RESULT_NEED_RESET; 3175 case pci_channel_io_perm_failure: 3176 dev_warn(dev->ctrl.device, 3177 "failure state error detected, request disconnect\n"); 3178 return PCI_ERS_RESULT_DISCONNECT; 3179 } 3180 return PCI_ERS_RESULT_NEED_RESET; 3181 } 3182 3183 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3184 { 3185 struct nvme_dev *dev = pci_get_drvdata(pdev); 3186 3187 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3188 pci_restore_state(pdev); 3189 nvme_reset_ctrl(&dev->ctrl); 3190 return PCI_ERS_RESULT_RECOVERED; 3191 } 3192 3193 static void nvme_error_resume(struct pci_dev *pdev) 3194 { 3195 struct nvme_dev *dev = pci_get_drvdata(pdev); 3196 3197 flush_work(&dev->ctrl.reset_work); 3198 } 3199 3200 static const struct pci_error_handlers nvme_err_handler = { 3201 .error_detected = nvme_error_detected, 3202 .slot_reset = nvme_slot_reset, 3203 .resume = nvme_error_resume, 3204 .reset_prepare = nvme_reset_prepare, 3205 .reset_done = nvme_reset_done, 3206 }; 3207 3208 static const struct pci_device_id nvme_id_table[] = { 3209 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3210 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3211 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3212 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3213 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3214 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3215 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3216 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3217 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3218 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3219 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3220 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3221 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3222 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3223 NVME_QUIRK_MEDIUM_PRIO_SQ | 3224 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3225 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3226 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3227 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3228 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3229 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3230 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3231 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3232 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3233 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3234 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3235 NVME_QUIRK_NO_NS_DESC_LIST, }, 3236 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3237 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3238 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3239 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3240 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3241 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3242 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3243 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3244 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3245 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3246 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3247 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3248 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3249 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3250 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3251 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3252 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3253 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3254 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3255 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3256 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3257 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3258 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3259 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3260 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3261 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3262 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3263 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3264 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3265 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3266 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3267 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3268 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3269 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3270 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3271 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3272 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3273 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3274 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3275 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3276 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3277 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3278 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3279 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3280 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3281 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3282 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3283 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3284 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3285 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3286 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3287 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3288 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3289 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3290 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3291 NVME_QUIRK_128_BYTES_SQES | 3292 NVME_QUIRK_SHARED_TAGS }, 3293 3294 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3295 { 0, } 3296 }; 3297 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3298 3299 static struct pci_driver nvme_driver = { 3300 .name = "nvme", 3301 .id_table = nvme_id_table, 3302 .probe = nvme_probe, 3303 .remove = nvme_remove, 3304 .shutdown = nvme_shutdown, 3305 #ifdef CONFIG_PM_SLEEP 3306 .driver = { 3307 .pm = &nvme_dev_pm_ops, 3308 }, 3309 #endif 3310 .sriov_configure = pci_sriov_configure_simple, 3311 .err_handler = &nvme_err_handler, 3312 }; 3313 3314 static int __init nvme_init(void) 3315 { 3316 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3317 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3318 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3319 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3320 3321 return pci_register_driver(&nvme_driver); 3322 } 3323 3324 static void __exit nvme_exit(void) 3325 { 3326 pci_unregister_driver(&nvme_driver); 3327 flush_workqueue(nvme_wq); 3328 } 3329 3330 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3331 MODULE_LICENSE("GPL"); 3332 MODULE_VERSION("1.0"); 3333 module_init(nvme_init); 3334 module_exit(nvme_exit); 3335