xref: /openbmc/linux/drivers/nvme/host/pci.c (revision b955b479)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	dma_addr_t host_mem_descs_dma;
157 	struct nvme_host_mem_buf_desc *host_mem_descs;
158 	void **host_mem_desc_bufs;
159 	unsigned int nr_allocated_queues;
160 	unsigned int nr_write_queues;
161 	unsigned int nr_poll_queues;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 union nvme_descriptor {
220 	struct nvme_sgl_desc	*sg_list;
221 	__le64			*prp_list;
222 };
223 
224 /*
225  * The nvme_iod describes the data in an I/O.
226  *
227  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228  * to the actual struct scatterlist.
229  */
230 struct nvme_iod {
231 	struct nvme_request req;
232 	struct nvme_command cmd;
233 	bool aborted;
234 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235 				   pool in use */
236 	unsigned int dma_len;	/* length of single DMA segment mapping */
237 	dma_addr_t first_dma;
238 	dma_addr_t meta_dma;
239 	struct sg_table sgt;
240 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242 
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245 	return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247 
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250 	unsigned int mem_size = nvme_dbbuf_size(dev);
251 
252 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 		return;
254 
255 	if (dev->dbbuf_dbs) {
256 		/*
257 		 * Clear the dbbuf memory so the driver doesn't observe stale
258 		 * values from the previous instantiation.
259 		 */
260 		memset(dev->dbbuf_dbs, 0, mem_size);
261 		memset(dev->dbbuf_eis, 0, mem_size);
262 		return;
263 	}
264 
265 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 					    &dev->dbbuf_dbs_dma_addr,
267 					    GFP_KERNEL);
268 	if (!dev->dbbuf_dbs)
269 		goto fail;
270 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_eis_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_eis)
274 		goto fail_free_dbbuf_dbs;
275 	return;
276 
277 fail_free_dbbuf_dbs:
278 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 			  dev->dbbuf_dbs_dma_addr);
280 	dev->dbbuf_dbs = NULL;
281 fail:
282 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284 
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287 	unsigned int mem_size = nvme_dbbuf_size(dev);
288 
289 	if (dev->dbbuf_dbs) {
290 		dma_free_coherent(dev->dev, mem_size,
291 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 		dev->dbbuf_dbs = NULL;
293 	}
294 	if (dev->dbbuf_eis) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 		dev->dbbuf_eis = NULL;
298 	}
299 }
300 
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 			    struct nvme_queue *nvmeq, int qid)
303 {
304 	if (!dev->dbbuf_dbs || !qid)
305 		return;
306 
307 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312 
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315 	if (!nvmeq->qid)
316 		return;
317 
318 	nvmeq->dbbuf_sq_db = NULL;
319 	nvmeq->dbbuf_cq_db = NULL;
320 	nvmeq->dbbuf_sq_ei = NULL;
321 	nvmeq->dbbuf_cq_ei = NULL;
322 }
323 
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 	struct nvme_command c = { };
327 	unsigned int i;
328 
329 	if (!dev->dbbuf_dbs)
330 		return;
331 
332 	c.dbbuf.opcode = nvme_admin_dbbuf;
333 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335 
336 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 		/* Free memory and continue on */
339 		nvme_dbbuf_dma_free(dev);
340 
341 		for (i = 1; i <= dev->online_queues; i++)
342 			nvme_dbbuf_free(&dev->queues[i]);
343 	}
344 }
345 
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350 
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 					      volatile __le32 *dbbuf_ei)
354 {
355 	if (dbbuf_db) {
356 		u16 old_value, event_idx;
357 
358 		/*
359 		 * Ensure that the queue is written before updating
360 		 * the doorbell in memory
361 		 */
362 		wmb();
363 
364 		old_value = le32_to_cpu(*dbbuf_db);
365 		*dbbuf_db = cpu_to_le32(value);
366 
367 		/*
368 		 * Ensure that the doorbell is updated before reading the event
369 		 * index from memory.  The controller needs to provide similar
370 		 * ordering to ensure the envent index is updated before reading
371 		 * the doorbell.
372 		 */
373 		mb();
374 
375 		event_idx = le32_to_cpu(*dbbuf_ei);
376 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377 			return false;
378 	}
379 
380 	return true;
381 }
382 
383 /*
384  * Will slightly overestimate the number of pages needed.  This is OK
385  * as it only leads to a small amount of wasted memory for the lifetime of
386  * the I/O.
387  */
388 static int nvme_pci_npages_prp(void)
389 {
390 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = to_nvme_dev(data);
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = to_nvme_dev(data);
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 		struct request *req, unsigned int hctx_idx,
421 		unsigned int numa_node)
422 {
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 
425 	nvme_req(req)->ctrl = set->driver_data;
426 	nvme_req(req)->cmd = &iod->cmd;
427 	return 0;
428 }
429 
430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 	/* if we have more than 1 vec, admin queue offsets us by 1 */
433 	if (dev->num_vecs > 1)
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442 	int i, qoff, offset;
443 
444 	offset = queue_irq_offset(dev);
445 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 		struct blk_mq_queue_map *map = &set->map[i];
447 
448 		map->nr_queues = dev->io_queues[i];
449 		if (!map->nr_queues) {
450 			BUG_ON(i == HCTX_TYPE_DEFAULT);
451 			continue;
452 		}
453 
454 		/*
455 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 		 * affinity), so use the regular blk-mq cpu mapping
457 		 */
458 		map->queue_offset = qoff;
459 		if (i != HCTX_TYPE_POLL && offset)
460 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 		else
462 			blk_mq_map_queues(map);
463 		qoff += map->nr_queues;
464 		offset += map->nr_queues;
465 	}
466 }
467 
468 /*
469  * Write sq tail if we are asked to, or if the next command would wrap.
470  */
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472 {
473 	if (!write_sq) {
474 		u16 next_tail = nvmeq->sq_tail + 1;
475 
476 		if (next_tail == nvmeq->q_depth)
477 			next_tail = 0;
478 		if (next_tail != nvmeq->last_sq_tail)
479 			return;
480 	}
481 
482 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484 		writel(nvmeq->sq_tail, nvmeq->q_db);
485 	nvmeq->last_sq_tail = nvmeq->sq_tail;
486 }
487 
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 				    struct nvme_command *cmd)
490 {
491 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 		absolute_pointer(cmd), sizeof(*cmd));
493 	if (++nvmeq->sq_tail == nvmeq->q_depth)
494 		nvmeq->sq_tail = 0;
495 }
496 
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498 {
499 	struct nvme_queue *nvmeq = hctx->driver_data;
500 
501 	spin_lock(&nvmeq->sq_lock);
502 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 		nvme_write_sq_db(nvmeq, true);
504 	spin_unlock(&nvmeq->sq_lock);
505 }
506 
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 				     int nseg)
509 {
510 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 	unsigned int avg_seg_size;
512 
513 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514 
515 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516 		return false;
517 	if (!nvmeq->qid)
518 		return false;
519 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 		return false;
521 	return true;
522 }
523 
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525 {
526 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 	dma_addr_t dma_addr = iod->first_dma;
529 	int i;
530 
531 	for (i = 0; i < iod->nr_allocations; i++) {
532 		__le64 *prp_list = iod->list[i].prp_list;
533 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534 
535 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536 		dma_addr = next_dma_addr;
537 	}
538 }
539 
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 
544 	if (iod->dma_len) {
545 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 			       rq_dma_dir(req));
547 		return;
548 	}
549 
550 	WARN_ON_ONCE(!iod->sgt.nents);
551 
552 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553 
554 	if (iod->nr_allocations == 0)
555 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556 			      iod->first_dma);
557 	else if (iod->nr_allocations == 1)
558 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559 			      iod->first_dma);
560 	else
561 		nvme_free_prps(dev, req);
562 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
563 }
564 
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566 {
567 	int i;
568 	struct scatterlist *sg;
569 
570 	for_each_sg(sgl, sg, nents, i) {
571 		dma_addr_t phys = sg_phys(sg);
572 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 			"dma_address:%pad dma_length:%d\n",
574 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 			sg_dma_len(sg));
576 	}
577 }
578 
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 		struct request *req, struct nvme_rw_command *cmnd)
581 {
582 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 	struct dma_pool *pool;
584 	int length = blk_rq_payload_bytes(req);
585 	struct scatterlist *sg = iod->sgt.sgl;
586 	int dma_len = sg_dma_len(sg);
587 	u64 dma_addr = sg_dma_address(sg);
588 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 	__le64 *prp_list;
590 	dma_addr_t prp_dma;
591 	int nprps, i;
592 
593 	length -= (NVME_CTRL_PAGE_SIZE - offset);
594 	if (length <= 0) {
595 		iod->first_dma = 0;
596 		goto done;
597 	}
598 
599 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 	if (dma_len) {
601 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 	} else {
603 		sg = sg_next(sg);
604 		dma_addr = sg_dma_address(sg);
605 		dma_len = sg_dma_len(sg);
606 	}
607 
608 	if (length <= NVME_CTRL_PAGE_SIZE) {
609 		iod->first_dma = dma_addr;
610 		goto done;
611 	}
612 
613 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 	if (nprps <= (256 / 8)) {
615 		pool = dev->prp_small_pool;
616 		iod->nr_allocations = 0;
617 	} else {
618 		pool = dev->prp_page_pool;
619 		iod->nr_allocations = 1;
620 	}
621 
622 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623 	if (!prp_list) {
624 		iod->nr_allocations = -1;
625 		return BLK_STS_RESOURCE;
626 	}
627 	iod->list[0].prp_list = prp_list;
628 	iod->first_dma = prp_dma;
629 	i = 0;
630 	for (;;) {
631 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 			__le64 *old_prp_list = prp_list;
633 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634 			if (!prp_list)
635 				goto free_prps;
636 			iod->list[iod->nr_allocations++].prp_list = prp_list;
637 			prp_list[0] = old_prp_list[i - 1];
638 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 			i = 1;
640 		}
641 		prp_list[i++] = cpu_to_le64(dma_addr);
642 		dma_len -= NVME_CTRL_PAGE_SIZE;
643 		dma_addr += NVME_CTRL_PAGE_SIZE;
644 		length -= NVME_CTRL_PAGE_SIZE;
645 		if (length <= 0)
646 			break;
647 		if (dma_len > 0)
648 			continue;
649 		if (unlikely(dma_len < 0))
650 			goto bad_sgl;
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 done:
656 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 	return BLK_STS_OK;
659 free_prps:
660 	nvme_free_prps(dev, req);
661 	return BLK_STS_RESOURCE;
662 bad_sgl:
663 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 			"Invalid SGL for payload:%d nents:%d\n",
665 			blk_rq_payload_bytes(req), iod->sgt.nents);
666 	return BLK_STS_IOERR;
667 }
668 
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 		struct scatterlist *sg)
671 {
672 	sge->addr = cpu_to_le64(sg_dma_address(sg));
673 	sge->length = cpu_to_le32(sg_dma_len(sg));
674 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676 
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 		dma_addr_t dma_addr, int entries)
679 {
680 	sge->addr = cpu_to_le64(dma_addr);
681 	sge->length = cpu_to_le32(entries * sizeof(*sge));
682 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683 }
684 
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 		struct request *req, struct nvme_rw_command *cmd)
687 {
688 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689 	struct dma_pool *pool;
690 	struct nvme_sgl_desc *sg_list;
691 	struct scatterlist *sg = iod->sgt.sgl;
692 	unsigned int entries = iod->sgt.nents;
693 	dma_addr_t sgl_dma;
694 	int i = 0;
695 
696 	/* setting the transfer type as SGL */
697 	cmd->flags = NVME_CMD_SGL_METABUF;
698 
699 	if (entries == 1) {
700 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701 		return BLK_STS_OK;
702 	}
703 
704 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 		pool = dev->prp_small_pool;
706 		iod->nr_allocations = 0;
707 	} else {
708 		pool = dev->prp_page_pool;
709 		iod->nr_allocations = 1;
710 	}
711 
712 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713 	if (!sg_list) {
714 		iod->nr_allocations = -1;
715 		return BLK_STS_RESOURCE;
716 	}
717 
718 	iod->list[0].sg_list = sg_list;
719 	iod->first_dma = sgl_dma;
720 
721 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722 	do {
723 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
724 		sg = sg_next(sg);
725 	} while (--entries > 0);
726 
727 	return BLK_STS_OK;
728 }
729 
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 		struct request *req, struct nvme_rw_command *cmnd,
732 		struct bio_vec *bv)
733 {
734 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737 
738 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 	if (dma_mapping_error(dev->dev, iod->first_dma))
740 		return BLK_STS_RESOURCE;
741 	iod->dma_len = bv->bv_len;
742 
743 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 	if (bv->bv_len > first_prp_len)
745 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 	else
747 		cmnd->dptr.prp2 = 0;
748 	return BLK_STS_OK;
749 }
750 
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 		struct request *req, struct nvme_rw_command *cmnd,
753 		struct bio_vec *bv)
754 {
755 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756 
757 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 	if (dma_mapping_error(dev->dev, iod->first_dma))
759 		return BLK_STS_RESOURCE;
760 	iod->dma_len = bv->bv_len;
761 
762 	cmnd->flags = NVME_CMD_SGL_METABUF;
763 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 	return BLK_STS_OK;
767 }
768 
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 		struct nvme_command *cmnd)
771 {
772 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 	blk_status_t ret = BLK_STS_RESOURCE;
774 	int rc;
775 
776 	if (blk_rq_nr_phys_segments(req) == 1) {
777 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 		struct bio_vec bv = req_bvec(req);
779 
780 		if (!is_pci_p2pdma_page(bv.bv_page)) {
781 			if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
782 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
783 				return nvme_setup_prp_simple(dev, req,
784 							     &cmnd->rw, &bv);
785 
786 			if (nvmeq->qid && sgl_threshold &&
787 			    nvme_ctrl_sgl_supported(&dev->ctrl))
788 				return nvme_setup_sgl_simple(dev, req,
789 							     &cmnd->rw, &bv);
790 		}
791 	}
792 
793 	iod->dma_len = 0;
794 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
795 	if (!iod->sgt.sgl)
796 		return BLK_STS_RESOURCE;
797 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
798 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
799 	if (!iod->sgt.orig_nents)
800 		goto out_free_sg;
801 
802 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
803 			     DMA_ATTR_NO_WARN);
804 	if (rc) {
805 		if (rc == -EREMOTEIO)
806 			ret = BLK_STS_TARGET;
807 		goto out_free_sg;
808 	}
809 
810 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
811 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
812 	else
813 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
814 	if (ret != BLK_STS_OK)
815 		goto out_unmap_sg;
816 	return BLK_STS_OK;
817 
818 out_unmap_sg:
819 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
820 out_free_sg:
821 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
822 	return ret;
823 }
824 
825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
826 		struct nvme_command *cmnd)
827 {
828 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
829 
830 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
831 			rq_dma_dir(req), 0);
832 	if (dma_mapping_error(dev->dev, iod->meta_dma))
833 		return BLK_STS_IOERR;
834 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
835 	return BLK_STS_OK;
836 }
837 
838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
839 {
840 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 	blk_status_t ret;
842 
843 	iod->aborted = false;
844 	iod->nr_allocations = -1;
845 	iod->sgt.nents = 0;
846 
847 	ret = nvme_setup_cmd(req->q->queuedata, req);
848 	if (ret)
849 		return ret;
850 
851 	if (blk_rq_nr_phys_segments(req)) {
852 		ret = nvme_map_data(dev, req, &iod->cmd);
853 		if (ret)
854 			goto out_free_cmd;
855 	}
856 
857 	if (blk_integrity_rq(req)) {
858 		ret = nvme_map_metadata(dev, req, &iod->cmd);
859 		if (ret)
860 			goto out_unmap_data;
861 	}
862 
863 	nvme_start_request(req);
864 	return BLK_STS_OK;
865 out_unmap_data:
866 	nvme_unmap_data(dev, req);
867 out_free_cmd:
868 	nvme_cleanup_cmd(req);
869 	return ret;
870 }
871 
872 /*
873  * NOTE: ns is NULL when called on the admin queue.
874  */
875 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
876 			 const struct blk_mq_queue_data *bd)
877 {
878 	struct nvme_queue *nvmeq = hctx->driver_data;
879 	struct nvme_dev *dev = nvmeq->dev;
880 	struct request *req = bd->rq;
881 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
882 	blk_status_t ret;
883 
884 	/*
885 	 * We should not need to do this, but we're still using this to
886 	 * ensure we can drain requests on a dying queue.
887 	 */
888 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
889 		return BLK_STS_IOERR;
890 
891 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
892 		return nvme_fail_nonready_command(&dev->ctrl, req);
893 
894 	ret = nvme_prep_rq(dev, req);
895 	if (unlikely(ret))
896 		return ret;
897 	spin_lock(&nvmeq->sq_lock);
898 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
899 	nvme_write_sq_db(nvmeq, bd->last);
900 	spin_unlock(&nvmeq->sq_lock);
901 	return BLK_STS_OK;
902 }
903 
904 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
905 {
906 	spin_lock(&nvmeq->sq_lock);
907 	while (!rq_list_empty(*rqlist)) {
908 		struct request *req = rq_list_pop(rqlist);
909 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
910 
911 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
912 	}
913 	nvme_write_sq_db(nvmeq, true);
914 	spin_unlock(&nvmeq->sq_lock);
915 }
916 
917 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
918 {
919 	/*
920 	 * We should not need to do this, but we're still using this to
921 	 * ensure we can drain requests on a dying queue.
922 	 */
923 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
924 		return false;
925 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
926 		return false;
927 
928 	req->mq_hctx->tags->rqs[req->tag] = req;
929 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
930 }
931 
932 static void nvme_queue_rqs(struct request **rqlist)
933 {
934 	struct request *req, *next, *prev = NULL;
935 	struct request *requeue_list = NULL;
936 
937 	rq_list_for_each_safe(rqlist, req, next) {
938 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
939 
940 		if (!nvme_prep_rq_batch(nvmeq, req)) {
941 			/* detach 'req' and add to remainder list */
942 			rq_list_move(rqlist, &requeue_list, req, prev);
943 
944 			req = prev;
945 			if (!req)
946 				continue;
947 		}
948 
949 		if (!next || req->mq_hctx != next->mq_hctx) {
950 			/* detach rest of list, and submit */
951 			req->rq_next = NULL;
952 			nvme_submit_cmds(nvmeq, rqlist);
953 			*rqlist = next;
954 			prev = NULL;
955 		} else
956 			prev = req;
957 	}
958 
959 	*rqlist = requeue_list;
960 }
961 
962 static __always_inline void nvme_pci_unmap_rq(struct request *req)
963 {
964 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
965 	struct nvme_dev *dev = nvmeq->dev;
966 
967 	if (blk_integrity_rq(req)) {
968 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
969 
970 		dma_unmap_page(dev->dev, iod->meta_dma,
971 			       rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
972 	}
973 
974 	if (blk_rq_nr_phys_segments(req))
975 		nvme_unmap_data(dev, req);
976 }
977 
978 static void nvme_pci_complete_rq(struct request *req)
979 {
980 	nvme_pci_unmap_rq(req);
981 	nvme_complete_rq(req);
982 }
983 
984 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
985 {
986 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
987 }
988 
989 /* We read the CQE phase first to check if the rest of the entry is valid */
990 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
991 {
992 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
993 
994 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
995 }
996 
997 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
998 {
999 	u16 head = nvmeq->cq_head;
1000 
1001 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1002 					      nvmeq->dbbuf_cq_ei))
1003 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1004 }
1005 
1006 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1007 {
1008 	if (!nvmeq->qid)
1009 		return nvmeq->dev->admin_tagset.tags[0];
1010 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1011 }
1012 
1013 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1014 				   struct io_comp_batch *iob, u16 idx)
1015 {
1016 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1017 	__u16 command_id = READ_ONCE(cqe->command_id);
1018 	struct request *req;
1019 
1020 	/*
1021 	 * AEN requests are special as they don't time out and can
1022 	 * survive any kind of queue freeze and often don't respond to
1023 	 * aborts.  We don't even bother to allocate a struct request
1024 	 * for them but rather special case them here.
1025 	 */
1026 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1027 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1028 				cqe->status, &cqe->result);
1029 		return;
1030 	}
1031 
1032 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1033 	if (unlikely(!req)) {
1034 		dev_warn(nvmeq->dev->ctrl.device,
1035 			"invalid id %d completed on queue %d\n",
1036 			command_id, le16_to_cpu(cqe->sq_id));
1037 		return;
1038 	}
1039 
1040 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1041 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1042 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1043 					nvme_pci_complete_batch))
1044 		nvme_pci_complete_rq(req);
1045 }
1046 
1047 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1048 {
1049 	u32 tmp = nvmeq->cq_head + 1;
1050 
1051 	if (tmp == nvmeq->q_depth) {
1052 		nvmeq->cq_head = 0;
1053 		nvmeq->cq_phase ^= 1;
1054 	} else {
1055 		nvmeq->cq_head = tmp;
1056 	}
1057 }
1058 
1059 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1060 			       struct io_comp_batch *iob)
1061 {
1062 	int found = 0;
1063 
1064 	while (nvme_cqe_pending(nvmeq)) {
1065 		found++;
1066 		/*
1067 		 * load-load control dependency between phase and the rest of
1068 		 * the cqe requires a full read memory barrier
1069 		 */
1070 		dma_rmb();
1071 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1072 		nvme_update_cq_head(nvmeq);
1073 	}
1074 
1075 	if (found)
1076 		nvme_ring_cq_doorbell(nvmeq);
1077 	return found;
1078 }
1079 
1080 static irqreturn_t nvme_irq(int irq, void *data)
1081 {
1082 	struct nvme_queue *nvmeq = data;
1083 	DEFINE_IO_COMP_BATCH(iob);
1084 
1085 	if (nvme_poll_cq(nvmeq, &iob)) {
1086 		if (!rq_list_empty(iob.req_list))
1087 			nvme_pci_complete_batch(&iob);
1088 		return IRQ_HANDLED;
1089 	}
1090 	return IRQ_NONE;
1091 }
1092 
1093 static irqreturn_t nvme_irq_check(int irq, void *data)
1094 {
1095 	struct nvme_queue *nvmeq = data;
1096 
1097 	if (nvme_cqe_pending(nvmeq))
1098 		return IRQ_WAKE_THREAD;
1099 	return IRQ_NONE;
1100 }
1101 
1102 /*
1103  * Poll for completions for any interrupt driven queue
1104  * Can be called from any context.
1105  */
1106 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1107 {
1108 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1109 
1110 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1111 
1112 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1113 	nvme_poll_cq(nvmeq, NULL);
1114 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1115 }
1116 
1117 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1118 {
1119 	struct nvme_queue *nvmeq = hctx->driver_data;
1120 	bool found;
1121 
1122 	if (!nvme_cqe_pending(nvmeq))
1123 		return 0;
1124 
1125 	spin_lock(&nvmeq->cq_poll_lock);
1126 	found = nvme_poll_cq(nvmeq, iob);
1127 	spin_unlock(&nvmeq->cq_poll_lock);
1128 
1129 	return found;
1130 }
1131 
1132 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1133 {
1134 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1135 	struct nvme_queue *nvmeq = &dev->queues[0];
1136 	struct nvme_command c = { };
1137 
1138 	c.common.opcode = nvme_admin_async_event;
1139 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1140 
1141 	spin_lock(&nvmeq->sq_lock);
1142 	nvme_sq_copy_cmd(nvmeq, &c);
1143 	nvme_write_sq_db(nvmeq, true);
1144 	spin_unlock(&nvmeq->sq_lock);
1145 }
1146 
1147 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1148 {
1149 	struct nvme_command c = { };
1150 
1151 	c.delete_queue.opcode = opcode;
1152 	c.delete_queue.qid = cpu_to_le16(id);
1153 
1154 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1155 }
1156 
1157 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1158 		struct nvme_queue *nvmeq, s16 vector)
1159 {
1160 	struct nvme_command c = { };
1161 	int flags = NVME_QUEUE_PHYS_CONTIG;
1162 
1163 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1164 		flags |= NVME_CQ_IRQ_ENABLED;
1165 
1166 	/*
1167 	 * Note: we (ab)use the fact that the prp fields survive if no data
1168 	 * is attached to the request.
1169 	 */
1170 	c.create_cq.opcode = nvme_admin_create_cq;
1171 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1172 	c.create_cq.cqid = cpu_to_le16(qid);
1173 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1174 	c.create_cq.cq_flags = cpu_to_le16(flags);
1175 	c.create_cq.irq_vector = cpu_to_le16(vector);
1176 
1177 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1178 }
1179 
1180 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1181 						struct nvme_queue *nvmeq)
1182 {
1183 	struct nvme_ctrl *ctrl = &dev->ctrl;
1184 	struct nvme_command c = { };
1185 	int flags = NVME_QUEUE_PHYS_CONTIG;
1186 
1187 	/*
1188 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1189 	 * set. Since URGENT priority is zeroes, it makes all queues
1190 	 * URGENT.
1191 	 */
1192 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1193 		flags |= NVME_SQ_PRIO_MEDIUM;
1194 
1195 	/*
1196 	 * Note: we (ab)use the fact that the prp fields survive if no data
1197 	 * is attached to the request.
1198 	 */
1199 	c.create_sq.opcode = nvme_admin_create_sq;
1200 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1201 	c.create_sq.sqid = cpu_to_le16(qid);
1202 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1203 	c.create_sq.sq_flags = cpu_to_le16(flags);
1204 	c.create_sq.cqid = cpu_to_le16(qid);
1205 
1206 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1207 }
1208 
1209 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1210 {
1211 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1212 }
1213 
1214 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1215 {
1216 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1217 }
1218 
1219 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1220 {
1221 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1222 
1223 	dev_warn(nvmeq->dev->ctrl.device,
1224 		 "Abort status: 0x%x", nvme_req(req)->status);
1225 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1226 	blk_mq_free_request(req);
1227 	return RQ_END_IO_NONE;
1228 }
1229 
1230 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1231 {
1232 	/* If true, indicates loss of adapter communication, possibly by a
1233 	 * NVMe Subsystem reset.
1234 	 */
1235 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1236 
1237 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1238 	switch (nvme_ctrl_state(&dev->ctrl)) {
1239 	case NVME_CTRL_RESETTING:
1240 	case NVME_CTRL_CONNECTING:
1241 		return false;
1242 	default:
1243 		break;
1244 	}
1245 
1246 	/* We shouldn't reset unless the controller is on fatal error state
1247 	 * _or_ if we lost the communication with it.
1248 	 */
1249 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1256 {
1257 	/* Read a config register to help see what died. */
1258 	u16 pci_status;
1259 	int result;
1260 
1261 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1262 				      &pci_status);
1263 	if (result == PCIBIOS_SUCCESSFUL)
1264 		dev_warn(dev->ctrl.device,
1265 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1266 			 csts, pci_status);
1267 	else
1268 		dev_warn(dev->ctrl.device,
1269 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1270 			 csts, result);
1271 
1272 	if (csts != ~0)
1273 		return;
1274 
1275 	dev_warn(dev->ctrl.device,
1276 		 "Does your device have a faulty power saving mode enabled?\n");
1277 	dev_warn(dev->ctrl.device,
1278 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1279 }
1280 
1281 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1282 {
1283 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1284 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1285 	struct nvme_dev *dev = nvmeq->dev;
1286 	struct request *abort_req;
1287 	struct nvme_command cmd = { };
1288 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1289 
1290 	if (nvme_state_terminal(&dev->ctrl))
1291 		goto disable;
1292 
1293 	/* If PCI error recovery process is happening, we cannot reset or
1294 	 * the recovery mechanism will surely fail.
1295 	 */
1296 	mb();
1297 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1298 		return BLK_EH_RESET_TIMER;
1299 
1300 	/*
1301 	 * Reset immediately if the controller is failed
1302 	 */
1303 	if (nvme_should_reset(dev, csts)) {
1304 		nvme_warn_reset(dev, csts);
1305 		goto disable;
1306 	}
1307 
1308 	/*
1309 	 * Did we miss an interrupt?
1310 	 */
1311 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1312 		nvme_poll(req->mq_hctx, NULL);
1313 	else
1314 		nvme_poll_irqdisable(nvmeq);
1315 
1316 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1317 		dev_warn(dev->ctrl.device,
1318 			 "I/O %d QID %d timeout, completion polled\n",
1319 			 req->tag, nvmeq->qid);
1320 		return BLK_EH_DONE;
1321 	}
1322 
1323 	/*
1324 	 * Shutdown immediately if controller times out while starting. The
1325 	 * reset work will see the pci device disabled when it gets the forced
1326 	 * cancellation error. All outstanding requests are completed on
1327 	 * shutdown, so we return BLK_EH_DONE.
1328 	 */
1329 	switch (nvme_ctrl_state(&dev->ctrl)) {
1330 	case NVME_CTRL_CONNECTING:
1331 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1332 		fallthrough;
1333 	case NVME_CTRL_DELETING:
1334 		dev_warn_ratelimited(dev->ctrl.device,
1335 			 "I/O %d QID %d timeout, disable controller\n",
1336 			 req->tag, nvmeq->qid);
1337 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1338 		nvme_dev_disable(dev, true);
1339 		return BLK_EH_DONE;
1340 	case NVME_CTRL_RESETTING:
1341 		return BLK_EH_RESET_TIMER;
1342 	default:
1343 		break;
1344 	}
1345 
1346 	/*
1347 	 * Shutdown the controller immediately and schedule a reset if the
1348 	 * command was already aborted once before and still hasn't been
1349 	 * returned to the driver, or if this is the admin queue.
1350 	 */
1351 	if (!nvmeq->qid || iod->aborted) {
1352 		dev_warn(dev->ctrl.device,
1353 			 "I/O %d QID %d timeout, reset controller\n",
1354 			 req->tag, nvmeq->qid);
1355 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1356 		goto disable;
1357 	}
1358 
1359 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1360 		atomic_inc(&dev->ctrl.abort_limit);
1361 		return BLK_EH_RESET_TIMER;
1362 	}
1363 	iod->aborted = true;
1364 
1365 	cmd.abort.opcode = nvme_admin_abort_cmd;
1366 	cmd.abort.cid = nvme_cid(req);
1367 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1368 
1369 	dev_warn(nvmeq->dev->ctrl.device,
1370 		"I/O %d (%s) QID %d timeout, aborting\n",
1371 		 req->tag,
1372 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1373 		 nvmeq->qid);
1374 
1375 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1376 					 BLK_MQ_REQ_NOWAIT);
1377 	if (IS_ERR(abort_req)) {
1378 		atomic_inc(&dev->ctrl.abort_limit);
1379 		return BLK_EH_RESET_TIMER;
1380 	}
1381 	nvme_init_request(abort_req, &cmd);
1382 
1383 	abort_req->end_io = abort_endio;
1384 	abort_req->end_io_data = NULL;
1385 	blk_execute_rq_nowait(abort_req, false);
1386 
1387 	/*
1388 	 * The aborted req will be completed on receiving the abort req.
1389 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1390 	 * as the device then is in a faulty state.
1391 	 */
1392 	return BLK_EH_RESET_TIMER;
1393 
1394 disable:
1395 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1396 		if (nvme_state_terminal(&dev->ctrl))
1397 			nvme_dev_disable(dev, true);
1398 		return BLK_EH_DONE;
1399 	}
1400 
1401 	nvme_dev_disable(dev, false);
1402 	if (nvme_try_sched_reset(&dev->ctrl))
1403 		nvme_unquiesce_io_queues(&dev->ctrl);
1404 	return BLK_EH_DONE;
1405 }
1406 
1407 static void nvme_free_queue(struct nvme_queue *nvmeq)
1408 {
1409 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1410 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1411 	if (!nvmeq->sq_cmds)
1412 		return;
1413 
1414 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1415 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1416 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1417 	} else {
1418 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1419 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1420 	}
1421 }
1422 
1423 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1424 {
1425 	int i;
1426 
1427 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1428 		dev->ctrl.queue_count--;
1429 		nvme_free_queue(&dev->queues[i]);
1430 	}
1431 }
1432 
1433 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1434 {
1435 	struct nvme_queue *nvmeq = &dev->queues[qid];
1436 
1437 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1438 		return;
1439 
1440 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1441 	mb();
1442 
1443 	nvmeq->dev->online_queues--;
1444 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1445 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1446 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1447 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1448 }
1449 
1450 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1451 {
1452 	int i;
1453 
1454 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1455 		nvme_suspend_queue(dev, i);
1456 }
1457 
1458 /*
1459  * Called only on a device that has been disabled and after all other threads
1460  * that can check this device's completion queues have synced, except
1461  * nvme_poll(). This is the last chance for the driver to see a natural
1462  * completion before nvme_cancel_request() terminates all incomplete requests.
1463  */
1464 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1465 {
1466 	int i;
1467 
1468 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1469 		spin_lock(&dev->queues[i].cq_poll_lock);
1470 		nvme_poll_cq(&dev->queues[i], NULL);
1471 		spin_unlock(&dev->queues[i].cq_poll_lock);
1472 	}
1473 }
1474 
1475 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1476 				int entry_size)
1477 {
1478 	int q_depth = dev->q_depth;
1479 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1480 					  NVME_CTRL_PAGE_SIZE);
1481 
1482 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1483 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1484 
1485 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1486 		q_depth = div_u64(mem_per_q, entry_size);
1487 
1488 		/*
1489 		 * Ensure the reduced q_depth is above some threshold where it
1490 		 * would be better to map queues in system memory with the
1491 		 * original depth
1492 		 */
1493 		if (q_depth < 64)
1494 			return -ENOMEM;
1495 	}
1496 
1497 	return q_depth;
1498 }
1499 
1500 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1501 				int qid)
1502 {
1503 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1504 
1505 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1506 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1507 		if (nvmeq->sq_cmds) {
1508 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1509 							nvmeq->sq_cmds);
1510 			if (nvmeq->sq_dma_addr) {
1511 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1512 				return 0;
1513 			}
1514 
1515 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1516 		}
1517 	}
1518 
1519 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1520 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1521 	if (!nvmeq->sq_cmds)
1522 		return -ENOMEM;
1523 	return 0;
1524 }
1525 
1526 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1527 {
1528 	struct nvme_queue *nvmeq = &dev->queues[qid];
1529 
1530 	if (dev->ctrl.queue_count > qid)
1531 		return 0;
1532 
1533 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1534 	nvmeq->q_depth = depth;
1535 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1536 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1537 	if (!nvmeq->cqes)
1538 		goto free_nvmeq;
1539 
1540 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1541 		goto free_cqdma;
1542 
1543 	nvmeq->dev = dev;
1544 	spin_lock_init(&nvmeq->sq_lock);
1545 	spin_lock_init(&nvmeq->cq_poll_lock);
1546 	nvmeq->cq_head = 0;
1547 	nvmeq->cq_phase = 1;
1548 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1549 	nvmeq->qid = qid;
1550 	dev->ctrl.queue_count++;
1551 
1552 	return 0;
1553 
1554  free_cqdma:
1555 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1556 			  nvmeq->cq_dma_addr);
1557  free_nvmeq:
1558 	return -ENOMEM;
1559 }
1560 
1561 static int queue_request_irq(struct nvme_queue *nvmeq)
1562 {
1563 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1564 	int nr = nvmeq->dev->ctrl.instance;
1565 
1566 	if (use_threaded_interrupts) {
1567 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1568 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1569 	} else {
1570 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1571 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1572 	}
1573 }
1574 
1575 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1576 {
1577 	struct nvme_dev *dev = nvmeq->dev;
1578 
1579 	nvmeq->sq_tail = 0;
1580 	nvmeq->last_sq_tail = 0;
1581 	nvmeq->cq_head = 0;
1582 	nvmeq->cq_phase = 1;
1583 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1584 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1585 	nvme_dbbuf_init(dev, nvmeq, qid);
1586 	dev->online_queues++;
1587 	wmb(); /* ensure the first interrupt sees the initialization */
1588 }
1589 
1590 /*
1591  * Try getting shutdown_lock while setting up IO queues.
1592  */
1593 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1594 {
1595 	/*
1596 	 * Give up if the lock is being held by nvme_dev_disable.
1597 	 */
1598 	if (!mutex_trylock(&dev->shutdown_lock))
1599 		return -ENODEV;
1600 
1601 	/*
1602 	 * Controller is in wrong state, fail early.
1603 	 */
1604 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1605 		mutex_unlock(&dev->shutdown_lock);
1606 		return -ENODEV;
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1613 {
1614 	struct nvme_dev *dev = nvmeq->dev;
1615 	int result;
1616 	u16 vector = 0;
1617 
1618 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1619 
1620 	/*
1621 	 * A queue's vector matches the queue identifier unless the controller
1622 	 * has only one vector available.
1623 	 */
1624 	if (!polled)
1625 		vector = dev->num_vecs == 1 ? 0 : qid;
1626 	else
1627 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1628 
1629 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1630 	if (result)
1631 		return result;
1632 
1633 	result = adapter_alloc_sq(dev, qid, nvmeq);
1634 	if (result < 0)
1635 		return result;
1636 	if (result)
1637 		goto release_cq;
1638 
1639 	nvmeq->cq_vector = vector;
1640 
1641 	result = nvme_setup_io_queues_trylock(dev);
1642 	if (result)
1643 		return result;
1644 	nvme_init_queue(nvmeq, qid);
1645 	if (!polled) {
1646 		result = queue_request_irq(nvmeq);
1647 		if (result < 0)
1648 			goto release_sq;
1649 	}
1650 
1651 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1652 	mutex_unlock(&dev->shutdown_lock);
1653 	return result;
1654 
1655 release_sq:
1656 	dev->online_queues--;
1657 	mutex_unlock(&dev->shutdown_lock);
1658 	adapter_delete_sq(dev, qid);
1659 release_cq:
1660 	adapter_delete_cq(dev, qid);
1661 	return result;
1662 }
1663 
1664 static const struct blk_mq_ops nvme_mq_admin_ops = {
1665 	.queue_rq	= nvme_queue_rq,
1666 	.complete	= nvme_pci_complete_rq,
1667 	.init_hctx	= nvme_admin_init_hctx,
1668 	.init_request	= nvme_pci_init_request,
1669 	.timeout	= nvme_timeout,
1670 };
1671 
1672 static const struct blk_mq_ops nvme_mq_ops = {
1673 	.queue_rq	= nvme_queue_rq,
1674 	.queue_rqs	= nvme_queue_rqs,
1675 	.complete	= nvme_pci_complete_rq,
1676 	.commit_rqs	= nvme_commit_rqs,
1677 	.init_hctx	= nvme_init_hctx,
1678 	.init_request	= nvme_pci_init_request,
1679 	.map_queues	= nvme_pci_map_queues,
1680 	.timeout	= nvme_timeout,
1681 	.poll		= nvme_poll,
1682 };
1683 
1684 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1685 {
1686 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1687 		/*
1688 		 * If the controller was reset during removal, it's possible
1689 		 * user requests may be waiting on a stopped queue. Start the
1690 		 * queue to flush these to completion.
1691 		 */
1692 		nvme_unquiesce_admin_queue(&dev->ctrl);
1693 		nvme_remove_admin_tag_set(&dev->ctrl);
1694 	}
1695 }
1696 
1697 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1698 {
1699 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1700 }
1701 
1702 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1703 {
1704 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1705 
1706 	if (size <= dev->bar_mapped_size)
1707 		return 0;
1708 	if (size > pci_resource_len(pdev, 0))
1709 		return -ENOMEM;
1710 	if (dev->bar)
1711 		iounmap(dev->bar);
1712 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1713 	if (!dev->bar) {
1714 		dev->bar_mapped_size = 0;
1715 		return -ENOMEM;
1716 	}
1717 	dev->bar_mapped_size = size;
1718 	dev->dbs = dev->bar + NVME_REG_DBS;
1719 
1720 	return 0;
1721 }
1722 
1723 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1724 {
1725 	int result;
1726 	u32 aqa;
1727 	struct nvme_queue *nvmeq;
1728 
1729 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1730 	if (result < 0)
1731 		return result;
1732 
1733 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1734 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1735 
1736 	if (dev->subsystem &&
1737 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1738 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1739 
1740 	/*
1741 	 * If the device has been passed off to us in an enabled state, just
1742 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1743 	 * notification bits', but doing so may cause the device to complete
1744 	 * commands to the admin queue ... and we don't know what memory that
1745 	 * might be pointing at!
1746 	 */
1747 	result = nvme_disable_ctrl(&dev->ctrl, false);
1748 	if (result < 0)
1749 		return result;
1750 
1751 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1752 	if (result)
1753 		return result;
1754 
1755 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1756 
1757 	nvmeq = &dev->queues[0];
1758 	aqa = nvmeq->q_depth - 1;
1759 	aqa |= aqa << 16;
1760 
1761 	writel(aqa, dev->bar + NVME_REG_AQA);
1762 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1763 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1764 
1765 	result = nvme_enable_ctrl(&dev->ctrl);
1766 	if (result)
1767 		return result;
1768 
1769 	nvmeq->cq_vector = 0;
1770 	nvme_init_queue(nvmeq, 0);
1771 	result = queue_request_irq(nvmeq);
1772 	if (result) {
1773 		dev->online_queues--;
1774 		return result;
1775 	}
1776 
1777 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1778 	return result;
1779 }
1780 
1781 static int nvme_create_io_queues(struct nvme_dev *dev)
1782 {
1783 	unsigned i, max, rw_queues;
1784 	int ret = 0;
1785 
1786 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1787 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1788 			ret = -ENOMEM;
1789 			break;
1790 		}
1791 	}
1792 
1793 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1794 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1795 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1796 				dev->io_queues[HCTX_TYPE_READ];
1797 	} else {
1798 		rw_queues = max;
1799 	}
1800 
1801 	for (i = dev->online_queues; i <= max; i++) {
1802 		bool polled = i > rw_queues;
1803 
1804 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1805 		if (ret)
1806 			break;
1807 	}
1808 
1809 	/*
1810 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1811 	 * than the desired amount of queues, and even a controller without
1812 	 * I/O queues can still be used to issue admin commands.  This might
1813 	 * be useful to upgrade a buggy firmware for example.
1814 	 */
1815 	return ret >= 0 ? 0 : ret;
1816 }
1817 
1818 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1819 {
1820 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1821 
1822 	return 1ULL << (12 + 4 * szu);
1823 }
1824 
1825 static u32 nvme_cmb_size(struct nvme_dev *dev)
1826 {
1827 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1828 }
1829 
1830 static void nvme_map_cmb(struct nvme_dev *dev)
1831 {
1832 	u64 size, offset;
1833 	resource_size_t bar_size;
1834 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1835 	int bar;
1836 
1837 	if (dev->cmb_size)
1838 		return;
1839 
1840 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1841 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1842 
1843 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1844 	if (!dev->cmbsz)
1845 		return;
1846 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1847 
1848 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1849 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1850 	bar = NVME_CMB_BIR(dev->cmbloc);
1851 	bar_size = pci_resource_len(pdev, bar);
1852 
1853 	if (offset > bar_size)
1854 		return;
1855 
1856 	/*
1857 	 * Tell the controller about the host side address mapping the CMB,
1858 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1859 	 */
1860 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1861 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1862 			     (pci_bus_address(pdev, bar) + offset),
1863 			     dev->bar + NVME_REG_CMBMSC);
1864 	}
1865 
1866 	/*
1867 	 * Controllers may support a CMB size larger than their BAR,
1868 	 * for example, due to being behind a bridge. Reduce the CMB to
1869 	 * the reported size of the BAR
1870 	 */
1871 	if (size > bar_size - offset)
1872 		size = bar_size - offset;
1873 
1874 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1875 		dev_warn(dev->ctrl.device,
1876 			 "failed to register the CMB\n");
1877 		return;
1878 	}
1879 
1880 	dev->cmb_size = size;
1881 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1882 
1883 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1884 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1885 		pci_p2pmem_publish(pdev, true);
1886 
1887 	nvme_update_attrs(dev);
1888 }
1889 
1890 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1891 {
1892 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1893 	u64 dma_addr = dev->host_mem_descs_dma;
1894 	struct nvme_command c = { };
1895 	int ret;
1896 
1897 	c.features.opcode	= nvme_admin_set_features;
1898 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1899 	c.features.dword11	= cpu_to_le32(bits);
1900 	c.features.dword12	= cpu_to_le32(host_mem_size);
1901 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1902 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1903 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1904 
1905 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1906 	if (ret) {
1907 		dev_warn(dev->ctrl.device,
1908 			 "failed to set host mem (err %d, flags %#x).\n",
1909 			 ret, bits);
1910 	} else
1911 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1912 
1913 	return ret;
1914 }
1915 
1916 static void nvme_free_host_mem(struct nvme_dev *dev)
1917 {
1918 	int i;
1919 
1920 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1921 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1922 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1923 
1924 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1925 			       le64_to_cpu(desc->addr),
1926 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1927 	}
1928 
1929 	kfree(dev->host_mem_desc_bufs);
1930 	dev->host_mem_desc_bufs = NULL;
1931 	dma_free_coherent(dev->dev,
1932 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1933 			dev->host_mem_descs, dev->host_mem_descs_dma);
1934 	dev->host_mem_descs = NULL;
1935 	dev->nr_host_mem_descs = 0;
1936 }
1937 
1938 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1939 		u32 chunk_size)
1940 {
1941 	struct nvme_host_mem_buf_desc *descs;
1942 	u32 max_entries, len;
1943 	dma_addr_t descs_dma;
1944 	int i = 0;
1945 	void **bufs;
1946 	u64 size, tmp;
1947 
1948 	tmp = (preferred + chunk_size - 1);
1949 	do_div(tmp, chunk_size);
1950 	max_entries = tmp;
1951 
1952 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1953 		max_entries = dev->ctrl.hmmaxd;
1954 
1955 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1956 				   &descs_dma, GFP_KERNEL);
1957 	if (!descs)
1958 		goto out;
1959 
1960 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1961 	if (!bufs)
1962 		goto out_free_descs;
1963 
1964 	for (size = 0; size < preferred && i < max_entries; size += len) {
1965 		dma_addr_t dma_addr;
1966 
1967 		len = min_t(u64, chunk_size, preferred - size);
1968 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1969 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1970 		if (!bufs[i])
1971 			break;
1972 
1973 		descs[i].addr = cpu_to_le64(dma_addr);
1974 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1975 		i++;
1976 	}
1977 
1978 	if (!size)
1979 		goto out_free_bufs;
1980 
1981 	dev->nr_host_mem_descs = i;
1982 	dev->host_mem_size = size;
1983 	dev->host_mem_descs = descs;
1984 	dev->host_mem_descs_dma = descs_dma;
1985 	dev->host_mem_desc_bufs = bufs;
1986 	return 0;
1987 
1988 out_free_bufs:
1989 	while (--i >= 0) {
1990 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1991 
1992 		dma_free_attrs(dev->dev, size, bufs[i],
1993 			       le64_to_cpu(descs[i].addr),
1994 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1995 	}
1996 
1997 	kfree(bufs);
1998 out_free_descs:
1999 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2000 			descs_dma);
2001 out:
2002 	dev->host_mem_descs = NULL;
2003 	return -ENOMEM;
2004 }
2005 
2006 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2007 {
2008 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2009 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2010 	u64 chunk_size;
2011 
2012 	/* start big and work our way down */
2013 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2014 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2015 			if (!min || dev->host_mem_size >= min)
2016 				return 0;
2017 			nvme_free_host_mem(dev);
2018 		}
2019 	}
2020 
2021 	return -ENOMEM;
2022 }
2023 
2024 static int nvme_setup_host_mem(struct nvme_dev *dev)
2025 {
2026 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2027 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2028 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2029 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2030 	int ret;
2031 
2032 	if (!dev->ctrl.hmpre)
2033 		return 0;
2034 
2035 	preferred = min(preferred, max);
2036 	if (min > max) {
2037 		dev_warn(dev->ctrl.device,
2038 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2039 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2040 		nvme_free_host_mem(dev);
2041 		return 0;
2042 	}
2043 
2044 	/*
2045 	 * If we already have a buffer allocated check if we can reuse it.
2046 	 */
2047 	if (dev->host_mem_descs) {
2048 		if (dev->host_mem_size >= min)
2049 			enable_bits |= NVME_HOST_MEM_RETURN;
2050 		else
2051 			nvme_free_host_mem(dev);
2052 	}
2053 
2054 	if (!dev->host_mem_descs) {
2055 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2056 			dev_warn(dev->ctrl.device,
2057 				"failed to allocate host memory buffer.\n");
2058 			return 0; /* controller must work without HMB */
2059 		}
2060 
2061 		dev_info(dev->ctrl.device,
2062 			"allocated %lld MiB host memory buffer.\n",
2063 			dev->host_mem_size >> ilog2(SZ_1M));
2064 	}
2065 
2066 	ret = nvme_set_host_mem(dev, enable_bits);
2067 	if (ret)
2068 		nvme_free_host_mem(dev);
2069 	return ret;
2070 }
2071 
2072 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2073 		char *buf)
2074 {
2075 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2076 
2077 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2078 		       ndev->cmbloc, ndev->cmbsz);
2079 }
2080 static DEVICE_ATTR_RO(cmb);
2081 
2082 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2083 		char *buf)
2084 {
2085 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2086 
2087 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2088 }
2089 static DEVICE_ATTR_RO(cmbloc);
2090 
2091 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2092 		char *buf)
2093 {
2094 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2095 
2096 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2097 }
2098 static DEVICE_ATTR_RO(cmbsz);
2099 
2100 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2101 			char *buf)
2102 {
2103 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2104 
2105 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2106 }
2107 
2108 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2109 			 const char *buf, size_t count)
2110 {
2111 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2112 	bool new;
2113 	int ret;
2114 
2115 	if (kstrtobool(buf, &new) < 0)
2116 		return -EINVAL;
2117 
2118 	if (new == ndev->hmb)
2119 		return count;
2120 
2121 	if (new) {
2122 		ret = nvme_setup_host_mem(ndev);
2123 	} else {
2124 		ret = nvme_set_host_mem(ndev, 0);
2125 		if (!ret)
2126 			nvme_free_host_mem(ndev);
2127 	}
2128 
2129 	if (ret < 0)
2130 		return ret;
2131 
2132 	return count;
2133 }
2134 static DEVICE_ATTR_RW(hmb);
2135 
2136 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2137 		struct attribute *a, int n)
2138 {
2139 	struct nvme_ctrl *ctrl =
2140 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2141 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2142 
2143 	if (a == &dev_attr_cmb.attr ||
2144 	    a == &dev_attr_cmbloc.attr ||
2145 	    a == &dev_attr_cmbsz.attr) {
2146 	    	if (!dev->cmbsz)
2147 			return 0;
2148 	}
2149 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2150 		return 0;
2151 
2152 	return a->mode;
2153 }
2154 
2155 static struct attribute *nvme_pci_attrs[] = {
2156 	&dev_attr_cmb.attr,
2157 	&dev_attr_cmbloc.attr,
2158 	&dev_attr_cmbsz.attr,
2159 	&dev_attr_hmb.attr,
2160 	NULL,
2161 };
2162 
2163 static const struct attribute_group nvme_pci_dev_attrs_group = {
2164 	.attrs		= nvme_pci_attrs,
2165 	.is_visible	= nvme_pci_attrs_are_visible,
2166 };
2167 
2168 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2169 	&nvme_dev_attrs_group,
2170 	&nvme_pci_dev_attrs_group,
2171 	NULL,
2172 };
2173 
2174 static void nvme_update_attrs(struct nvme_dev *dev)
2175 {
2176 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2177 }
2178 
2179 /*
2180  * nirqs is the number of interrupts available for write and read
2181  * queues. The core already reserved an interrupt for the admin queue.
2182  */
2183 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2184 {
2185 	struct nvme_dev *dev = affd->priv;
2186 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2187 
2188 	/*
2189 	 * If there is no interrupt available for queues, ensure that
2190 	 * the default queue is set to 1. The affinity set size is
2191 	 * also set to one, but the irq core ignores it for this case.
2192 	 *
2193 	 * If only one interrupt is available or 'write_queue' == 0, combine
2194 	 * write and read queues.
2195 	 *
2196 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2197 	 * queue.
2198 	 */
2199 	if (!nrirqs) {
2200 		nrirqs = 1;
2201 		nr_read_queues = 0;
2202 	} else if (nrirqs == 1 || !nr_write_queues) {
2203 		nr_read_queues = 0;
2204 	} else if (nr_write_queues >= nrirqs) {
2205 		nr_read_queues = 1;
2206 	} else {
2207 		nr_read_queues = nrirqs - nr_write_queues;
2208 	}
2209 
2210 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2211 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2212 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2213 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2214 	affd->nr_sets = nr_read_queues ? 2 : 1;
2215 }
2216 
2217 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2218 {
2219 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2220 	struct irq_affinity affd = {
2221 		.pre_vectors	= 1,
2222 		.calc_sets	= nvme_calc_irq_sets,
2223 		.priv		= dev,
2224 	};
2225 	unsigned int irq_queues, poll_queues;
2226 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2227 
2228 	/*
2229 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2230 	 * left over for non-polled I/O.
2231 	 */
2232 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2233 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2234 
2235 	/*
2236 	 * Initialize for the single interrupt case, will be updated in
2237 	 * nvme_calc_irq_sets().
2238 	 */
2239 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2240 	dev->io_queues[HCTX_TYPE_READ] = 0;
2241 
2242 	/*
2243 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2244 	 * but some Apple controllers require all queues to use the first
2245 	 * vector.
2246 	 */
2247 	irq_queues = 1;
2248 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2249 		irq_queues += (nr_io_queues - poll_queues);
2250 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2251 		flags &= ~PCI_IRQ_MSI;
2252 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2253 					      &affd);
2254 }
2255 
2256 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2257 {
2258 	/*
2259 	 * If tags are shared with admin queue (Apple bug), then
2260 	 * make sure we only use one IO queue.
2261 	 */
2262 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2263 		return 1;
2264 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2265 }
2266 
2267 static int nvme_setup_io_queues(struct nvme_dev *dev)
2268 {
2269 	struct nvme_queue *adminq = &dev->queues[0];
2270 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2271 	unsigned int nr_io_queues;
2272 	unsigned long size;
2273 	int result;
2274 
2275 	/*
2276 	 * Sample the module parameters once at reset time so that we have
2277 	 * stable values to work with.
2278 	 */
2279 	dev->nr_write_queues = write_queues;
2280 	dev->nr_poll_queues = poll_queues;
2281 
2282 	nr_io_queues = dev->nr_allocated_queues - 1;
2283 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2284 	if (result < 0)
2285 		return result;
2286 
2287 	if (nr_io_queues == 0)
2288 		return 0;
2289 
2290 	/*
2291 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2292 	 * from set to unset. If there is a window to it is truely freed,
2293 	 * pci_free_irq_vectors() jumping into this window will crash.
2294 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2295 	 * nvme_dev_disable() path.
2296 	 */
2297 	result = nvme_setup_io_queues_trylock(dev);
2298 	if (result)
2299 		return result;
2300 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2301 		pci_free_irq(pdev, 0, adminq);
2302 
2303 	if (dev->cmb_use_sqes) {
2304 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2305 				sizeof(struct nvme_command));
2306 		if (result > 0) {
2307 			dev->q_depth = result;
2308 			dev->ctrl.sqsize = result - 1;
2309 		} else {
2310 			dev->cmb_use_sqes = false;
2311 		}
2312 	}
2313 
2314 	do {
2315 		size = db_bar_size(dev, nr_io_queues);
2316 		result = nvme_remap_bar(dev, size);
2317 		if (!result)
2318 			break;
2319 		if (!--nr_io_queues) {
2320 			result = -ENOMEM;
2321 			goto out_unlock;
2322 		}
2323 	} while (1);
2324 	adminq->q_db = dev->dbs;
2325 
2326  retry:
2327 	/* Deregister the admin queue's interrupt */
2328 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2329 		pci_free_irq(pdev, 0, adminq);
2330 
2331 	/*
2332 	 * If we enable msix early due to not intx, disable it again before
2333 	 * setting up the full range we need.
2334 	 */
2335 	pci_free_irq_vectors(pdev);
2336 
2337 	result = nvme_setup_irqs(dev, nr_io_queues);
2338 	if (result <= 0) {
2339 		result = -EIO;
2340 		goto out_unlock;
2341 	}
2342 
2343 	dev->num_vecs = result;
2344 	result = max(result - 1, 1);
2345 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2346 
2347 	/*
2348 	 * Should investigate if there's a performance win from allocating
2349 	 * more queues than interrupt vectors; it might allow the submission
2350 	 * path to scale better, even if the receive path is limited by the
2351 	 * number of interrupts.
2352 	 */
2353 	result = queue_request_irq(adminq);
2354 	if (result)
2355 		goto out_unlock;
2356 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2357 	mutex_unlock(&dev->shutdown_lock);
2358 
2359 	result = nvme_create_io_queues(dev);
2360 	if (result || dev->online_queues < 2)
2361 		return result;
2362 
2363 	if (dev->online_queues - 1 < dev->max_qid) {
2364 		nr_io_queues = dev->online_queues - 1;
2365 		nvme_delete_io_queues(dev);
2366 		result = nvme_setup_io_queues_trylock(dev);
2367 		if (result)
2368 			return result;
2369 		nvme_suspend_io_queues(dev);
2370 		goto retry;
2371 	}
2372 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2373 					dev->io_queues[HCTX_TYPE_DEFAULT],
2374 					dev->io_queues[HCTX_TYPE_READ],
2375 					dev->io_queues[HCTX_TYPE_POLL]);
2376 	return 0;
2377 out_unlock:
2378 	mutex_unlock(&dev->shutdown_lock);
2379 	return result;
2380 }
2381 
2382 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2383 					     blk_status_t error)
2384 {
2385 	struct nvme_queue *nvmeq = req->end_io_data;
2386 
2387 	blk_mq_free_request(req);
2388 	complete(&nvmeq->delete_done);
2389 	return RQ_END_IO_NONE;
2390 }
2391 
2392 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2393 					  blk_status_t error)
2394 {
2395 	struct nvme_queue *nvmeq = req->end_io_data;
2396 
2397 	if (error)
2398 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2399 
2400 	return nvme_del_queue_end(req, error);
2401 }
2402 
2403 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2404 {
2405 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2406 	struct request *req;
2407 	struct nvme_command cmd = { };
2408 
2409 	cmd.delete_queue.opcode = opcode;
2410 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2411 
2412 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2413 	if (IS_ERR(req))
2414 		return PTR_ERR(req);
2415 	nvme_init_request(req, &cmd);
2416 
2417 	if (opcode == nvme_admin_delete_cq)
2418 		req->end_io = nvme_del_cq_end;
2419 	else
2420 		req->end_io = nvme_del_queue_end;
2421 	req->end_io_data = nvmeq;
2422 
2423 	init_completion(&nvmeq->delete_done);
2424 	blk_execute_rq_nowait(req, false);
2425 	return 0;
2426 }
2427 
2428 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2429 {
2430 	int nr_queues = dev->online_queues - 1, sent = 0;
2431 	unsigned long timeout;
2432 
2433  retry:
2434 	timeout = NVME_ADMIN_TIMEOUT;
2435 	while (nr_queues > 0) {
2436 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2437 			break;
2438 		nr_queues--;
2439 		sent++;
2440 	}
2441 	while (sent) {
2442 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2443 
2444 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2445 				timeout);
2446 		if (timeout == 0)
2447 			return false;
2448 
2449 		sent--;
2450 		if (nr_queues)
2451 			goto retry;
2452 	}
2453 	return true;
2454 }
2455 
2456 static void nvme_delete_io_queues(struct nvme_dev *dev)
2457 {
2458 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2459 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2460 }
2461 
2462 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2463 {
2464 	if (dev->io_queues[HCTX_TYPE_POLL])
2465 		return 3;
2466 	if (dev->io_queues[HCTX_TYPE_READ])
2467 		return 2;
2468 	return 1;
2469 }
2470 
2471 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2472 {
2473 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2474 	/* free previously allocated queues that are no longer usable */
2475 	nvme_free_queues(dev, dev->online_queues);
2476 }
2477 
2478 static int nvme_pci_enable(struct nvme_dev *dev)
2479 {
2480 	int result = -ENOMEM;
2481 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2482 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2483 
2484 	if (pci_enable_device_mem(pdev))
2485 		return result;
2486 
2487 	pci_set_master(pdev);
2488 
2489 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2490 		result = -ENODEV;
2491 		goto disable;
2492 	}
2493 
2494 	/*
2495 	 * Some devices and/or platforms don't advertise or work with INTx
2496 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2497 	 * adjust this later.
2498 	 */
2499 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2500 		flags &= ~PCI_IRQ_MSI;
2501 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2502 	if (result < 0)
2503 		goto disable;
2504 
2505 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2506 
2507 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2508 				io_queue_depth);
2509 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2510 	dev->dbs = dev->bar + 4096;
2511 
2512 	/*
2513 	 * Some Apple controllers require a non-standard SQE size.
2514 	 * Interestingly they also seem to ignore the CC:IOSQES register
2515 	 * so we don't bother updating it here.
2516 	 */
2517 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2518 		dev->io_sqes = 7;
2519 	else
2520 		dev->io_sqes = NVME_NVM_IOSQES;
2521 
2522 	/*
2523 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2524 	 * some MacBook7,1 to avoid controller resets and data loss.
2525 	 */
2526 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2527 		dev->q_depth = 2;
2528 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2529 			"set queue depth=%u to work around controller resets\n",
2530 			dev->q_depth);
2531 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2532 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2533 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2534 		dev->q_depth = 64;
2535 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2536                         "set queue depth=%u\n", dev->q_depth);
2537 	}
2538 
2539 	/*
2540 	 * Controllers with the shared tags quirk need the IO queue to be
2541 	 * big enough so that we get 32 tags for the admin queue
2542 	 */
2543 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2544 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2545 		dev->q_depth = NVME_AQ_DEPTH + 2;
2546 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2547 			 dev->q_depth);
2548 	}
2549 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2550 
2551 	nvme_map_cmb(dev);
2552 
2553 	pci_save_state(pdev);
2554 
2555 	result = nvme_pci_configure_admin_queue(dev);
2556 	if (result)
2557 		goto free_irq;
2558 	return result;
2559 
2560  free_irq:
2561 	pci_free_irq_vectors(pdev);
2562  disable:
2563 	pci_disable_device(pdev);
2564 	return result;
2565 }
2566 
2567 static void nvme_dev_unmap(struct nvme_dev *dev)
2568 {
2569 	if (dev->bar)
2570 		iounmap(dev->bar);
2571 	pci_release_mem_regions(to_pci_dev(dev->dev));
2572 }
2573 
2574 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2575 {
2576 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2577 	u32 csts;
2578 
2579 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2580 		return true;
2581 	if (pdev->error_state != pci_channel_io_normal)
2582 		return true;
2583 
2584 	csts = readl(dev->bar + NVME_REG_CSTS);
2585 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2586 }
2587 
2588 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2589 {
2590 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2591 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2592 	bool dead;
2593 
2594 	mutex_lock(&dev->shutdown_lock);
2595 	dead = nvme_pci_ctrl_is_dead(dev);
2596 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2597 		if (pci_is_enabled(pdev))
2598 			nvme_start_freeze(&dev->ctrl);
2599 		/*
2600 		 * Give the controller a chance to complete all entered requests
2601 		 * if doing a safe shutdown.
2602 		 */
2603 		if (!dead && shutdown)
2604 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2605 	}
2606 
2607 	nvme_quiesce_io_queues(&dev->ctrl);
2608 
2609 	if (!dead && dev->ctrl.queue_count > 0) {
2610 		nvme_delete_io_queues(dev);
2611 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2612 		nvme_poll_irqdisable(&dev->queues[0]);
2613 	}
2614 	nvme_suspend_io_queues(dev);
2615 	nvme_suspend_queue(dev, 0);
2616 	pci_free_irq_vectors(pdev);
2617 	if (pci_is_enabled(pdev))
2618 		pci_disable_device(pdev);
2619 	nvme_reap_pending_cqes(dev);
2620 
2621 	nvme_cancel_tagset(&dev->ctrl);
2622 	nvme_cancel_admin_tagset(&dev->ctrl);
2623 
2624 	/*
2625 	 * The driver will not be starting up queues again if shutting down so
2626 	 * must flush all entered requests to their failed completion to avoid
2627 	 * deadlocking blk-mq hot-cpu notifier.
2628 	 */
2629 	if (shutdown) {
2630 		nvme_unquiesce_io_queues(&dev->ctrl);
2631 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2632 			nvme_unquiesce_admin_queue(&dev->ctrl);
2633 	}
2634 	mutex_unlock(&dev->shutdown_lock);
2635 }
2636 
2637 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2638 {
2639 	if (!nvme_wait_reset(&dev->ctrl))
2640 		return -EBUSY;
2641 	nvme_dev_disable(dev, shutdown);
2642 	return 0;
2643 }
2644 
2645 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2646 {
2647 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2648 						NVME_CTRL_PAGE_SIZE,
2649 						NVME_CTRL_PAGE_SIZE, 0);
2650 	if (!dev->prp_page_pool)
2651 		return -ENOMEM;
2652 
2653 	/* Optimisation for I/Os between 4k and 128k */
2654 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2655 						256, 256, 0);
2656 	if (!dev->prp_small_pool) {
2657 		dma_pool_destroy(dev->prp_page_pool);
2658 		return -ENOMEM;
2659 	}
2660 	return 0;
2661 }
2662 
2663 static void nvme_release_prp_pools(struct nvme_dev *dev)
2664 {
2665 	dma_pool_destroy(dev->prp_page_pool);
2666 	dma_pool_destroy(dev->prp_small_pool);
2667 }
2668 
2669 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2670 {
2671 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2672 
2673 	dev->iod_mempool = mempool_create_node(1,
2674 			mempool_kmalloc, mempool_kfree,
2675 			(void *)alloc_size, GFP_KERNEL,
2676 			dev_to_node(dev->dev));
2677 	if (!dev->iod_mempool)
2678 		return -ENOMEM;
2679 	return 0;
2680 }
2681 
2682 static void nvme_free_tagset(struct nvme_dev *dev)
2683 {
2684 	if (dev->tagset.tags)
2685 		nvme_remove_io_tag_set(&dev->ctrl);
2686 	dev->ctrl.tagset = NULL;
2687 }
2688 
2689 /* pairs with nvme_pci_alloc_dev */
2690 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2691 {
2692 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2693 
2694 	nvme_free_tagset(dev);
2695 	put_device(dev->dev);
2696 	kfree(dev->queues);
2697 	kfree(dev);
2698 }
2699 
2700 static void nvme_reset_work(struct work_struct *work)
2701 {
2702 	struct nvme_dev *dev =
2703 		container_of(work, struct nvme_dev, ctrl.reset_work);
2704 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2705 	int result;
2706 
2707 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2708 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2709 			 dev->ctrl.state);
2710 		result = -ENODEV;
2711 		goto out;
2712 	}
2713 
2714 	/*
2715 	 * If we're called to reset a live controller first shut it down before
2716 	 * moving on.
2717 	 */
2718 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2719 		nvme_dev_disable(dev, false);
2720 	nvme_sync_queues(&dev->ctrl);
2721 
2722 	mutex_lock(&dev->shutdown_lock);
2723 	result = nvme_pci_enable(dev);
2724 	if (result)
2725 		goto out_unlock;
2726 	nvme_unquiesce_admin_queue(&dev->ctrl);
2727 	mutex_unlock(&dev->shutdown_lock);
2728 
2729 	/*
2730 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2731 	 * initializing procedure here.
2732 	 */
2733 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2734 		dev_warn(dev->ctrl.device,
2735 			"failed to mark controller CONNECTING\n");
2736 		result = -EBUSY;
2737 		goto out;
2738 	}
2739 
2740 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2741 	if (result)
2742 		goto out;
2743 
2744 	nvme_dbbuf_dma_alloc(dev);
2745 
2746 	result = nvme_setup_host_mem(dev);
2747 	if (result < 0)
2748 		goto out;
2749 
2750 	result = nvme_setup_io_queues(dev);
2751 	if (result)
2752 		goto out;
2753 
2754 	/*
2755 	 * Freeze and update the number of I/O queues as thos might have
2756 	 * changed.  If there are no I/O queues left after this reset, keep the
2757 	 * controller around but remove all namespaces.
2758 	 */
2759 	if (dev->online_queues > 1) {
2760 		nvme_unquiesce_io_queues(&dev->ctrl);
2761 		nvme_wait_freeze(&dev->ctrl);
2762 		nvme_pci_update_nr_queues(dev);
2763 		nvme_dbbuf_set(dev);
2764 		nvme_unfreeze(&dev->ctrl);
2765 	} else {
2766 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2767 		nvme_mark_namespaces_dead(&dev->ctrl);
2768 		nvme_unquiesce_io_queues(&dev->ctrl);
2769 		nvme_remove_namespaces(&dev->ctrl);
2770 		nvme_free_tagset(dev);
2771 	}
2772 
2773 	/*
2774 	 * If only admin queue live, keep it to do further investigation or
2775 	 * recovery.
2776 	 */
2777 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2778 		dev_warn(dev->ctrl.device,
2779 			"failed to mark controller live state\n");
2780 		result = -ENODEV;
2781 		goto out;
2782 	}
2783 
2784 	nvme_start_ctrl(&dev->ctrl);
2785 	return;
2786 
2787  out_unlock:
2788 	mutex_unlock(&dev->shutdown_lock);
2789  out:
2790 	/*
2791 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2792 	 * may be holding this pci_dev's device lock.
2793 	 */
2794 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2795 		 result);
2796 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2797 	nvme_dev_disable(dev, true);
2798 	nvme_sync_queues(&dev->ctrl);
2799 	nvme_mark_namespaces_dead(&dev->ctrl);
2800 	nvme_unquiesce_io_queues(&dev->ctrl);
2801 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2802 }
2803 
2804 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2805 {
2806 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2807 	return 0;
2808 }
2809 
2810 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2811 {
2812 	writel(val, to_nvme_dev(ctrl)->bar + off);
2813 	return 0;
2814 }
2815 
2816 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2817 {
2818 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2819 	return 0;
2820 }
2821 
2822 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2823 {
2824 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2825 
2826 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2827 }
2828 
2829 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2830 {
2831 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2832 	struct nvme_subsystem *subsys = ctrl->subsys;
2833 
2834 	dev_err(ctrl->device,
2835 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2836 		pdev->vendor, pdev->device,
2837 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2838 		subsys->model, nvme_strlen(subsys->firmware_rev,
2839 					   sizeof(subsys->firmware_rev)),
2840 		subsys->firmware_rev);
2841 }
2842 
2843 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2844 {
2845 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2846 
2847 	return dma_pci_p2pdma_supported(dev->dev);
2848 }
2849 
2850 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2851 	.name			= "pcie",
2852 	.module			= THIS_MODULE,
2853 	.flags			= NVME_F_METADATA_SUPPORTED,
2854 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2855 	.reg_read32		= nvme_pci_reg_read32,
2856 	.reg_write32		= nvme_pci_reg_write32,
2857 	.reg_read64		= nvme_pci_reg_read64,
2858 	.free_ctrl		= nvme_pci_free_ctrl,
2859 	.submit_async_event	= nvme_pci_submit_async_event,
2860 	.get_address		= nvme_pci_get_address,
2861 	.print_device_info	= nvme_pci_print_device_info,
2862 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2863 };
2864 
2865 static int nvme_dev_map(struct nvme_dev *dev)
2866 {
2867 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2868 
2869 	if (pci_request_mem_regions(pdev, "nvme"))
2870 		return -ENODEV;
2871 
2872 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2873 		goto release;
2874 
2875 	return 0;
2876   release:
2877 	pci_release_mem_regions(pdev);
2878 	return -ENODEV;
2879 }
2880 
2881 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2882 {
2883 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2884 		/*
2885 		 * Several Samsung devices seem to drop off the PCIe bus
2886 		 * randomly when APST is on and uses the deepest sleep state.
2887 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2888 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2889 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2890 		 * laptops.
2891 		 */
2892 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2893 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2894 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2895 			return NVME_QUIRK_NO_DEEPEST_PS;
2896 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2897 		/*
2898 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2899 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2900 		 * within few minutes after bootup on a Coffee Lake board -
2901 		 * ASUS PRIME Z370-A
2902 		 */
2903 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2904 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2905 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2906 			return NVME_QUIRK_NO_APST;
2907 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2908 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2909 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2910 		/*
2911 		 * Forcing to use host managed nvme power settings for
2912 		 * lowest idle power with quick resume latency on
2913 		 * Samsung and Toshiba SSDs based on suspend behavior
2914 		 * on Coffee Lake board for LENOVO C640
2915 		 */
2916 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2917 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2918 			return NVME_QUIRK_SIMPLE_SUSPEND;
2919 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2920 		   pdev->device == 0x500f)) {
2921 		/*
2922 		 * Exclude some Kingston NV1 and A2000 devices from
2923 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2924 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2925 		 */
2926 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2927 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2928 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2929 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2930 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2931 	}
2932 
2933 	return 0;
2934 }
2935 
2936 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2937 		const struct pci_device_id *id)
2938 {
2939 	unsigned long quirks = id->driver_data;
2940 	int node = dev_to_node(&pdev->dev);
2941 	struct nvme_dev *dev;
2942 	int ret = -ENOMEM;
2943 
2944 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2945 	if (!dev)
2946 		return ERR_PTR(-ENOMEM);
2947 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2948 	mutex_init(&dev->shutdown_lock);
2949 
2950 	dev->nr_write_queues = write_queues;
2951 	dev->nr_poll_queues = poll_queues;
2952 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2953 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2954 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2955 	if (!dev->queues)
2956 		goto out_free_dev;
2957 
2958 	dev->dev = get_device(&pdev->dev);
2959 
2960 	quirks |= check_vendor_combination_bug(pdev);
2961 	if (!noacpi &&
2962 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2963 	    acpi_storage_d3(&pdev->dev)) {
2964 		/*
2965 		 * Some systems use a bios work around to ask for D3 on
2966 		 * platforms that support kernel managed suspend.
2967 		 */
2968 		dev_info(&pdev->dev,
2969 			 "platform quirk: setting simple suspend\n");
2970 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2971 	}
2972 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2973 			     quirks);
2974 	if (ret)
2975 		goto out_put_device;
2976 
2977 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2978 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2979 	else
2980 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2981 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2982 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2983 
2984 	/*
2985 	 * Limit the max command size to prevent iod->sg allocations going
2986 	 * over a single page.
2987 	 */
2988 	dev->ctrl.max_hw_sectors = min_t(u32,
2989 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2990 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2991 
2992 	/*
2993 	 * There is no support for SGLs for metadata (yet), so we are limited to
2994 	 * a single integrity segment for the separate metadata pointer.
2995 	 */
2996 	dev->ctrl.max_integrity_segments = 1;
2997 	return dev;
2998 
2999 out_put_device:
3000 	put_device(dev->dev);
3001 	kfree(dev->queues);
3002 out_free_dev:
3003 	kfree(dev);
3004 	return ERR_PTR(ret);
3005 }
3006 
3007 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3008 {
3009 	struct nvme_dev *dev;
3010 	int result = -ENOMEM;
3011 
3012 	dev = nvme_pci_alloc_dev(pdev, id);
3013 	if (IS_ERR(dev))
3014 		return PTR_ERR(dev);
3015 
3016 	result = nvme_dev_map(dev);
3017 	if (result)
3018 		goto out_uninit_ctrl;
3019 
3020 	result = nvme_setup_prp_pools(dev);
3021 	if (result)
3022 		goto out_dev_unmap;
3023 
3024 	result = nvme_pci_alloc_iod_mempool(dev);
3025 	if (result)
3026 		goto out_release_prp_pools;
3027 
3028 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3029 
3030 	result = nvme_pci_enable(dev);
3031 	if (result)
3032 		goto out_release_iod_mempool;
3033 
3034 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3035 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3036 	if (result)
3037 		goto out_disable;
3038 
3039 	/*
3040 	 * Mark the controller as connecting before sending admin commands to
3041 	 * allow the timeout handler to do the right thing.
3042 	 */
3043 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3044 		dev_warn(dev->ctrl.device,
3045 			"failed to mark controller CONNECTING\n");
3046 		result = -EBUSY;
3047 		goto out_disable;
3048 	}
3049 
3050 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3051 	if (result)
3052 		goto out_disable;
3053 
3054 	nvme_dbbuf_dma_alloc(dev);
3055 
3056 	result = nvme_setup_host_mem(dev);
3057 	if (result < 0)
3058 		goto out_disable;
3059 
3060 	result = nvme_setup_io_queues(dev);
3061 	if (result)
3062 		goto out_disable;
3063 
3064 	if (dev->online_queues > 1) {
3065 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3066 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3067 		nvme_dbbuf_set(dev);
3068 	}
3069 
3070 	if (!dev->ctrl.tagset)
3071 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3072 
3073 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3074 		dev_warn(dev->ctrl.device,
3075 			"failed to mark controller live state\n");
3076 		result = -ENODEV;
3077 		goto out_disable;
3078 	}
3079 
3080 	pci_set_drvdata(pdev, dev);
3081 
3082 	nvme_start_ctrl(&dev->ctrl);
3083 	nvme_put_ctrl(&dev->ctrl);
3084 	flush_work(&dev->ctrl.scan_work);
3085 	return 0;
3086 
3087 out_disable:
3088 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3089 	nvme_dev_disable(dev, true);
3090 	nvme_free_host_mem(dev);
3091 	nvme_dev_remove_admin(dev);
3092 	nvme_dbbuf_dma_free(dev);
3093 	nvme_free_queues(dev, 0);
3094 out_release_iod_mempool:
3095 	mempool_destroy(dev->iod_mempool);
3096 out_release_prp_pools:
3097 	nvme_release_prp_pools(dev);
3098 out_dev_unmap:
3099 	nvme_dev_unmap(dev);
3100 out_uninit_ctrl:
3101 	nvme_uninit_ctrl(&dev->ctrl);
3102 	nvme_put_ctrl(&dev->ctrl);
3103 	return result;
3104 }
3105 
3106 static void nvme_reset_prepare(struct pci_dev *pdev)
3107 {
3108 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3109 
3110 	/*
3111 	 * We don't need to check the return value from waiting for the reset
3112 	 * state as pci_dev device lock is held, making it impossible to race
3113 	 * with ->remove().
3114 	 */
3115 	nvme_disable_prepare_reset(dev, false);
3116 	nvme_sync_queues(&dev->ctrl);
3117 }
3118 
3119 static void nvme_reset_done(struct pci_dev *pdev)
3120 {
3121 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3122 
3123 	if (!nvme_try_sched_reset(&dev->ctrl))
3124 		flush_work(&dev->ctrl.reset_work);
3125 }
3126 
3127 static void nvme_shutdown(struct pci_dev *pdev)
3128 {
3129 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3130 
3131 	nvme_disable_prepare_reset(dev, true);
3132 }
3133 
3134 /*
3135  * The driver's remove may be called on a device in a partially initialized
3136  * state. This function must not have any dependencies on the device state in
3137  * order to proceed.
3138  */
3139 static void nvme_remove(struct pci_dev *pdev)
3140 {
3141 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3142 
3143 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3144 	pci_set_drvdata(pdev, NULL);
3145 
3146 	if (!pci_device_is_present(pdev)) {
3147 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3148 		nvme_dev_disable(dev, true);
3149 	}
3150 
3151 	flush_work(&dev->ctrl.reset_work);
3152 	nvme_stop_ctrl(&dev->ctrl);
3153 	nvme_remove_namespaces(&dev->ctrl);
3154 	nvme_dev_disable(dev, true);
3155 	nvme_free_host_mem(dev);
3156 	nvme_dev_remove_admin(dev);
3157 	nvme_dbbuf_dma_free(dev);
3158 	nvme_free_queues(dev, 0);
3159 	mempool_destroy(dev->iod_mempool);
3160 	nvme_release_prp_pools(dev);
3161 	nvme_dev_unmap(dev);
3162 	nvme_uninit_ctrl(&dev->ctrl);
3163 }
3164 
3165 #ifdef CONFIG_PM_SLEEP
3166 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3167 {
3168 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3169 }
3170 
3171 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3172 {
3173 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3174 }
3175 
3176 static int nvme_resume(struct device *dev)
3177 {
3178 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3179 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3180 
3181 	if (ndev->last_ps == U32_MAX ||
3182 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3183 		goto reset;
3184 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3185 		goto reset;
3186 
3187 	return 0;
3188 reset:
3189 	return nvme_try_sched_reset(ctrl);
3190 }
3191 
3192 static int nvme_suspend(struct device *dev)
3193 {
3194 	struct pci_dev *pdev = to_pci_dev(dev);
3195 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3196 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3197 	int ret = -EBUSY;
3198 
3199 	ndev->last_ps = U32_MAX;
3200 
3201 	/*
3202 	 * The platform does not remove power for a kernel managed suspend so
3203 	 * use host managed nvme power settings for lowest idle power if
3204 	 * possible. This should have quicker resume latency than a full device
3205 	 * shutdown.  But if the firmware is involved after the suspend or the
3206 	 * device does not support any non-default power states, shut down the
3207 	 * device fully.
3208 	 *
3209 	 * If ASPM is not enabled for the device, shut down the device and allow
3210 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3211 	 * down, so as to allow the platform to achieve its minimum low-power
3212 	 * state (which may not be possible if the link is up).
3213 	 */
3214 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3215 	    !pcie_aspm_enabled(pdev) ||
3216 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3217 		return nvme_disable_prepare_reset(ndev, true);
3218 
3219 	nvme_start_freeze(ctrl);
3220 	nvme_wait_freeze(ctrl);
3221 	nvme_sync_queues(ctrl);
3222 
3223 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3224 		goto unfreeze;
3225 
3226 	/*
3227 	 * Host memory access may not be successful in a system suspend state,
3228 	 * but the specification allows the controller to access memory in a
3229 	 * non-operational power state.
3230 	 */
3231 	if (ndev->hmb) {
3232 		ret = nvme_set_host_mem(ndev, 0);
3233 		if (ret < 0)
3234 			goto unfreeze;
3235 	}
3236 
3237 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3238 	if (ret < 0)
3239 		goto unfreeze;
3240 
3241 	/*
3242 	 * A saved state prevents pci pm from generically controlling the
3243 	 * device's power. If we're using protocol specific settings, we don't
3244 	 * want pci interfering.
3245 	 */
3246 	pci_save_state(pdev);
3247 
3248 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3249 	if (ret < 0)
3250 		goto unfreeze;
3251 
3252 	if (ret) {
3253 		/* discard the saved state */
3254 		pci_load_saved_state(pdev, NULL);
3255 
3256 		/*
3257 		 * Clearing npss forces a controller reset on resume. The
3258 		 * correct value will be rediscovered then.
3259 		 */
3260 		ret = nvme_disable_prepare_reset(ndev, true);
3261 		ctrl->npss = 0;
3262 	}
3263 unfreeze:
3264 	nvme_unfreeze(ctrl);
3265 	return ret;
3266 }
3267 
3268 static int nvme_simple_suspend(struct device *dev)
3269 {
3270 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3271 
3272 	return nvme_disable_prepare_reset(ndev, true);
3273 }
3274 
3275 static int nvme_simple_resume(struct device *dev)
3276 {
3277 	struct pci_dev *pdev = to_pci_dev(dev);
3278 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3279 
3280 	return nvme_try_sched_reset(&ndev->ctrl);
3281 }
3282 
3283 static const struct dev_pm_ops nvme_dev_pm_ops = {
3284 	.suspend	= nvme_suspend,
3285 	.resume		= nvme_resume,
3286 	.freeze		= nvme_simple_suspend,
3287 	.thaw		= nvme_simple_resume,
3288 	.poweroff	= nvme_simple_suspend,
3289 	.restore	= nvme_simple_resume,
3290 };
3291 #endif /* CONFIG_PM_SLEEP */
3292 
3293 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3294 						pci_channel_state_t state)
3295 {
3296 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3297 
3298 	/*
3299 	 * A frozen channel requires a reset. When detected, this method will
3300 	 * shutdown the controller to quiesce. The controller will be restarted
3301 	 * after the slot reset through driver's slot_reset callback.
3302 	 */
3303 	switch (state) {
3304 	case pci_channel_io_normal:
3305 		return PCI_ERS_RESULT_CAN_RECOVER;
3306 	case pci_channel_io_frozen:
3307 		dev_warn(dev->ctrl.device,
3308 			"frozen state error detected, reset controller\n");
3309 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3310 			nvme_dev_disable(dev, true);
3311 			return PCI_ERS_RESULT_DISCONNECT;
3312 		}
3313 		nvme_dev_disable(dev, false);
3314 		return PCI_ERS_RESULT_NEED_RESET;
3315 	case pci_channel_io_perm_failure:
3316 		dev_warn(dev->ctrl.device,
3317 			"failure state error detected, request disconnect\n");
3318 		return PCI_ERS_RESULT_DISCONNECT;
3319 	}
3320 	return PCI_ERS_RESULT_NEED_RESET;
3321 }
3322 
3323 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3324 {
3325 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3326 
3327 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3328 	pci_restore_state(pdev);
3329 	if (!nvme_try_sched_reset(&dev->ctrl))
3330 		nvme_unquiesce_io_queues(&dev->ctrl);
3331 	return PCI_ERS_RESULT_RECOVERED;
3332 }
3333 
3334 static void nvme_error_resume(struct pci_dev *pdev)
3335 {
3336 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3337 
3338 	flush_work(&dev->ctrl.reset_work);
3339 }
3340 
3341 static const struct pci_error_handlers nvme_err_handler = {
3342 	.error_detected	= nvme_error_detected,
3343 	.slot_reset	= nvme_slot_reset,
3344 	.resume		= nvme_error_resume,
3345 	.reset_prepare	= nvme_reset_prepare,
3346 	.reset_done	= nvme_reset_done,
3347 };
3348 
3349 static const struct pci_device_id nvme_id_table[] = {
3350 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3351 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3352 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3353 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3354 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3355 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3356 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3357 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3358 				NVME_QUIRK_DEALLOCATE_ZEROES |
3359 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3360 				NVME_QUIRK_BOGUS_NID, },
3361 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3362 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3363 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3364 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3365 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3366 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3367 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3368 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3369 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3370 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3371 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3372 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3373 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3374 				NVME_QUIRK_BOGUS_NID, },
3375 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3376 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3377 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3378 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3379 				NVME_QUIRK_BOGUS_NID, },
3380 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3381 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3382 				NVME_QUIRK_BOGUS_NID, },
3383 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3384 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3385 				NVME_QUIRK_NO_NS_DESC_LIST, },
3386 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3387 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3388 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3389 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3390 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3391 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3392 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3393 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3394 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3395 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3396 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3397 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3398 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3399 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3400 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3401 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3402 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3403 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3404 				NVME_QUIRK_BOGUS_NID, },
3405 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3406 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3407 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3408 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3409 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3410 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3411 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3412 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3413 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3414 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3415 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3416 				NVME_QUIRK_BOGUS_NID, },
3417 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3418 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3419 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3420 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3421 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3422 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3423 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3424 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3425 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3426 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3427 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3428 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3429 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3430 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3431 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3432 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3433 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3434 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3435 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3436 				NVME_QUIRK_BOGUS_NID, },
3437 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3438 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3439 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3440 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3441 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3442 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3443 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3444 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3445 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3446 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3447 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3448 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3449 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3450 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3451 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3452 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3453 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3454 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3455 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3456 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3457 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3458 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3459 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3460 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3461 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3462 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3463 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3464 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3465 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3466 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3467 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3468 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3469 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3470 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3471 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3472 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3473 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3474 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3475 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3476 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3477 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3478 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3479 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3480 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3481 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3482 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3483 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3484 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3485 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3486 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3487 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3488 		.driver_data = NVME_QUIRK_BOGUS_NID |
3489 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3490 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3491 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3492 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3493 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3494 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3495 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3496 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3497 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3498 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3499 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3500 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3501 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3502 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3503 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3504 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3505 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3506 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3507 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3508 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3509 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3510 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3511 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3512 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3513 				NVME_QUIRK_128_BYTES_SQES |
3514 				NVME_QUIRK_SHARED_TAGS |
3515 				NVME_QUIRK_SKIP_CID_GEN |
3516 				NVME_QUIRK_IDENTIFY_CNS },
3517 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3518 	{ 0, }
3519 };
3520 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3521 
3522 static struct pci_driver nvme_driver = {
3523 	.name		= "nvme",
3524 	.id_table	= nvme_id_table,
3525 	.probe		= nvme_probe,
3526 	.remove		= nvme_remove,
3527 	.shutdown	= nvme_shutdown,
3528 	.driver		= {
3529 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3530 #ifdef CONFIG_PM_SLEEP
3531 		.pm		= &nvme_dev_pm_ops,
3532 #endif
3533 	},
3534 	.sriov_configure = pci_sriov_configure_simple,
3535 	.err_handler	= &nvme_err_handler,
3536 };
3537 
3538 static int __init nvme_init(void)
3539 {
3540 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3541 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3542 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3543 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3544 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3545 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3546 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3547 
3548 	return pci_register_driver(&nvme_driver);
3549 }
3550 
3551 static void __exit nvme_exit(void)
3552 {
3553 	pci_unregister_driver(&nvme_driver);
3554 	flush_workqueue(nvme_wq);
3555 }
3556 
3557 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3558 MODULE_LICENSE("GPL");
3559 MODULE_VERSION("1.0");
3560 module_init(nvme_init);
3561 module_exit(nvme_exit);
3562