1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/aer.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/once.h> 20 #include <linux/pci.h> 21 #include <linux/suspend.h> 22 #include <linux/t10-pi.h> 23 #include <linux/types.h> 24 #include <linux/io-64-nonatomic-lo-hi.h> 25 #include <linux/sed-opal.h> 26 #include <linux/pci-p2pdma.h> 27 28 #include "trace.h" 29 #include "nvme.h" 30 31 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 32 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 33 34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 35 36 /* 37 * These can be higher, but we need to ensure that any command doesn't 38 * require an sg allocation that needs more than a page of data. 39 */ 40 #define NVME_MAX_KB_SZ 4096 41 #define NVME_MAX_SEGS 127 42 43 static int use_threaded_interrupts; 44 module_param(use_threaded_interrupts, int, 0); 45 46 static bool use_cmb_sqes = true; 47 module_param(use_cmb_sqes, bool, 0444); 48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 49 50 static unsigned int max_host_mem_size_mb = 128; 51 module_param(max_host_mem_size_mb, uint, 0444); 52 MODULE_PARM_DESC(max_host_mem_size_mb, 53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 54 55 static unsigned int sgl_threshold = SZ_32K; 56 module_param(sgl_threshold, uint, 0644); 57 MODULE_PARM_DESC(sgl_threshold, 58 "Use SGLs when average request segment size is larger or equal to " 59 "this size. Use 0 to disable SGLs."); 60 61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 62 static const struct kernel_param_ops io_queue_depth_ops = { 63 .set = io_queue_depth_set, 64 .get = param_get_int, 65 }; 66 67 static int io_queue_depth = 1024; 68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 70 71 static int write_queues; 72 module_param(write_queues, int, 0644); 73 MODULE_PARM_DESC(write_queues, 74 "Number of queues to use for writes. If not set, reads and writes " 75 "will share a queue set."); 76 77 static int poll_queues; 78 module_param(poll_queues, int, 0644); 79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 80 81 struct nvme_dev; 82 struct nvme_queue; 83 84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 86 87 /* 88 * Represents an NVM Express device. Each nvme_dev is a PCI function. 89 */ 90 struct nvme_dev { 91 struct nvme_queue *queues; 92 struct blk_mq_tag_set tagset; 93 struct blk_mq_tag_set admin_tagset; 94 u32 __iomem *dbs; 95 struct device *dev; 96 struct dma_pool *prp_page_pool; 97 struct dma_pool *prp_small_pool; 98 unsigned online_queues; 99 unsigned max_qid; 100 unsigned io_queues[HCTX_MAX_TYPES]; 101 unsigned int num_vecs; 102 int q_depth; 103 u32 db_stride; 104 void __iomem *bar; 105 unsigned long bar_mapped_size; 106 struct work_struct remove_work; 107 struct mutex shutdown_lock; 108 bool subsystem; 109 u64 cmb_size; 110 bool cmb_use_sqes; 111 u32 cmbsz; 112 u32 cmbloc; 113 struct nvme_ctrl ctrl; 114 u32 last_ps; 115 116 mempool_t *iod_mempool; 117 118 /* shadow doorbell buffer support: */ 119 u32 *dbbuf_dbs; 120 dma_addr_t dbbuf_dbs_dma_addr; 121 u32 *dbbuf_eis; 122 dma_addr_t dbbuf_eis_dma_addr; 123 124 /* host memory buffer support: */ 125 u64 host_mem_size; 126 u32 nr_host_mem_descs; 127 dma_addr_t host_mem_descs_dma; 128 struct nvme_host_mem_buf_desc *host_mem_descs; 129 void **host_mem_desc_bufs; 130 }; 131 132 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 133 { 134 int n = 0, ret; 135 136 ret = kstrtoint(val, 10, &n); 137 if (ret != 0 || n < 2) 138 return -EINVAL; 139 140 return param_set_int(val, kp); 141 } 142 143 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 144 { 145 return qid * 2 * stride; 146 } 147 148 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 149 { 150 return (qid * 2 + 1) * stride; 151 } 152 153 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 154 { 155 return container_of(ctrl, struct nvme_dev, ctrl); 156 } 157 158 /* 159 * An NVM Express queue. Each device has at least two (one for admin 160 * commands and one for I/O commands). 161 */ 162 struct nvme_queue { 163 struct nvme_dev *dev; 164 spinlock_t sq_lock; 165 struct nvme_command *sq_cmds; 166 /* only used for poll queues: */ 167 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 168 volatile struct nvme_completion *cqes; 169 struct blk_mq_tags **tags; 170 dma_addr_t sq_dma_addr; 171 dma_addr_t cq_dma_addr; 172 u32 __iomem *q_db; 173 u16 q_depth; 174 u16 cq_vector; 175 u16 sq_tail; 176 u16 last_sq_tail; 177 u16 cq_head; 178 u16 last_cq_head; 179 u16 qid; 180 u8 cq_phase; 181 unsigned long flags; 182 #define NVMEQ_ENABLED 0 183 #define NVMEQ_SQ_CMB 1 184 #define NVMEQ_DELETE_ERROR 2 185 #define NVMEQ_POLLED 3 186 u32 *dbbuf_sq_db; 187 u32 *dbbuf_cq_db; 188 u32 *dbbuf_sq_ei; 189 u32 *dbbuf_cq_ei; 190 struct completion delete_done; 191 }; 192 193 /* 194 * The nvme_iod describes the data in an I/O. 195 * 196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 197 * to the actual struct scatterlist. 198 */ 199 struct nvme_iod { 200 struct nvme_request req; 201 struct nvme_queue *nvmeq; 202 bool use_sgl; 203 int aborted; 204 int npages; /* In the PRP list. 0 means small pool in use */ 205 int nents; /* Used in scatterlist */ 206 dma_addr_t first_dma; 207 unsigned int dma_len; /* length of single DMA segment mapping */ 208 dma_addr_t meta_dma; 209 struct scatterlist *sg; 210 }; 211 212 static unsigned int max_io_queues(void) 213 { 214 return num_possible_cpus() + write_queues + poll_queues; 215 } 216 217 static unsigned int max_queue_count(void) 218 { 219 /* IO queues + admin queue */ 220 return 1 + max_io_queues(); 221 } 222 223 static inline unsigned int nvme_dbbuf_size(u32 stride) 224 { 225 return (max_queue_count() * 8 * stride); 226 } 227 228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 229 { 230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 231 232 if (dev->dbbuf_dbs) 233 return 0; 234 235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 236 &dev->dbbuf_dbs_dma_addr, 237 GFP_KERNEL); 238 if (!dev->dbbuf_dbs) 239 return -ENOMEM; 240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 241 &dev->dbbuf_eis_dma_addr, 242 GFP_KERNEL); 243 if (!dev->dbbuf_eis) { 244 dma_free_coherent(dev->dev, mem_size, 245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 246 dev->dbbuf_dbs = NULL; 247 return -ENOMEM; 248 } 249 250 return 0; 251 } 252 253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 254 { 255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 256 257 if (dev->dbbuf_dbs) { 258 dma_free_coherent(dev->dev, mem_size, 259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 260 dev->dbbuf_dbs = NULL; 261 } 262 if (dev->dbbuf_eis) { 263 dma_free_coherent(dev->dev, mem_size, 264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 265 dev->dbbuf_eis = NULL; 266 } 267 } 268 269 static void nvme_dbbuf_init(struct nvme_dev *dev, 270 struct nvme_queue *nvmeq, int qid) 271 { 272 if (!dev->dbbuf_dbs || !qid) 273 return; 274 275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 279 } 280 281 static void nvme_dbbuf_set(struct nvme_dev *dev) 282 { 283 struct nvme_command c; 284 285 if (!dev->dbbuf_dbs) 286 return; 287 288 memset(&c, 0, sizeof(c)); 289 c.dbbuf.opcode = nvme_admin_dbbuf; 290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 292 293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 295 /* Free memory and continue on */ 296 nvme_dbbuf_dma_free(dev); 297 } 298 } 299 300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 301 { 302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 303 } 304 305 /* Update dbbuf and return true if an MMIO is required */ 306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 307 volatile u32 *dbbuf_ei) 308 { 309 if (dbbuf_db) { 310 u16 old_value; 311 312 /* 313 * Ensure that the queue is written before updating 314 * the doorbell in memory 315 */ 316 wmb(); 317 318 old_value = *dbbuf_db; 319 *dbbuf_db = value; 320 321 /* 322 * Ensure that the doorbell is updated before reading the event 323 * index from memory. The controller needs to provide similar 324 * ordering to ensure the envent index is updated before reading 325 * the doorbell. 326 */ 327 mb(); 328 329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 330 return false; 331 } 332 333 return true; 334 } 335 336 /* 337 * Will slightly overestimate the number of pages needed. This is OK 338 * as it only leads to a small amount of wasted memory for the lifetime of 339 * the I/O. 340 */ 341 static int nvme_npages(unsigned size, struct nvme_dev *dev) 342 { 343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 344 dev->ctrl.page_size); 345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 346 } 347 348 /* 349 * Calculates the number of pages needed for the SGL segments. For example a 4k 350 * page can accommodate 256 SGL descriptors. 351 */ 352 static int nvme_pci_npages_sgl(unsigned int num_seg) 353 { 354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); 355 } 356 357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, 358 unsigned int size, unsigned int nseg, bool use_sgl) 359 { 360 size_t alloc_size; 361 362 if (use_sgl) 363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); 364 else 365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); 366 367 return alloc_size + sizeof(struct scatterlist) * nseg; 368 } 369 370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 371 unsigned int hctx_idx) 372 { 373 struct nvme_dev *dev = data; 374 struct nvme_queue *nvmeq = &dev->queues[0]; 375 376 WARN_ON(hctx_idx != 0); 377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 378 WARN_ON(nvmeq->tags); 379 380 hctx->driver_data = nvmeq; 381 nvmeq->tags = &dev->admin_tagset.tags[0]; 382 return 0; 383 } 384 385 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 386 { 387 struct nvme_queue *nvmeq = hctx->driver_data; 388 389 nvmeq->tags = NULL; 390 } 391 392 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 393 unsigned int hctx_idx) 394 { 395 struct nvme_dev *dev = data; 396 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 397 398 if (!nvmeq->tags) 399 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 400 401 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 402 hctx->driver_data = nvmeq; 403 return 0; 404 } 405 406 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 407 unsigned int hctx_idx, unsigned int numa_node) 408 { 409 struct nvme_dev *dev = set->driver_data; 410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 411 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 412 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 413 414 BUG_ON(!nvmeq); 415 iod->nvmeq = nvmeq; 416 417 nvme_req(req)->ctrl = &dev->ctrl; 418 return 0; 419 } 420 421 static int queue_irq_offset(struct nvme_dev *dev) 422 { 423 /* if we have more than 1 vec, admin queue offsets us by 1 */ 424 if (dev->num_vecs > 1) 425 return 1; 426 427 return 0; 428 } 429 430 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 431 { 432 struct nvme_dev *dev = set->driver_data; 433 int i, qoff, offset; 434 435 offset = queue_irq_offset(dev); 436 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 437 struct blk_mq_queue_map *map = &set->map[i]; 438 439 map->nr_queues = dev->io_queues[i]; 440 if (!map->nr_queues) { 441 BUG_ON(i == HCTX_TYPE_DEFAULT); 442 continue; 443 } 444 445 /* 446 * The poll queue(s) doesn't have an IRQ (and hence IRQ 447 * affinity), so use the regular blk-mq cpu mapping 448 */ 449 map->queue_offset = qoff; 450 if (i != HCTX_TYPE_POLL && offset) 451 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 452 else 453 blk_mq_map_queues(map); 454 qoff += map->nr_queues; 455 offset += map->nr_queues; 456 } 457 458 return 0; 459 } 460 461 /* 462 * Write sq tail if we are asked to, or if the next command would wrap. 463 */ 464 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 465 { 466 if (!write_sq) { 467 u16 next_tail = nvmeq->sq_tail + 1; 468 469 if (next_tail == nvmeq->q_depth) 470 next_tail = 0; 471 if (next_tail != nvmeq->last_sq_tail) 472 return; 473 } 474 475 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 476 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 477 writel(nvmeq->sq_tail, nvmeq->q_db); 478 nvmeq->last_sq_tail = nvmeq->sq_tail; 479 } 480 481 /** 482 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 483 * @nvmeq: The queue to use 484 * @cmd: The command to send 485 * @write_sq: whether to write to the SQ doorbell 486 */ 487 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 488 bool write_sq) 489 { 490 spin_lock(&nvmeq->sq_lock); 491 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd)); 492 if (++nvmeq->sq_tail == nvmeq->q_depth) 493 nvmeq->sq_tail = 0; 494 nvme_write_sq_db(nvmeq, write_sq); 495 spin_unlock(&nvmeq->sq_lock); 496 } 497 498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 499 { 500 struct nvme_queue *nvmeq = hctx->driver_data; 501 502 spin_lock(&nvmeq->sq_lock); 503 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 504 nvme_write_sq_db(nvmeq, true); 505 spin_unlock(&nvmeq->sq_lock); 506 } 507 508 static void **nvme_pci_iod_list(struct request *req) 509 { 510 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 511 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 512 } 513 514 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 515 { 516 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 517 int nseg = blk_rq_nr_phys_segments(req); 518 unsigned int avg_seg_size; 519 520 if (nseg == 0) 521 return false; 522 523 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 524 525 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 526 return false; 527 if (!iod->nvmeq->qid) 528 return false; 529 if (!sgl_threshold || avg_seg_size < sgl_threshold) 530 return false; 531 return true; 532 } 533 534 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 535 { 536 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 537 enum dma_data_direction dma_dir = rq_data_dir(req) ? 538 DMA_TO_DEVICE : DMA_FROM_DEVICE; 539 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; 540 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 541 int i; 542 543 if (iod->dma_len) { 544 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, dma_dir); 545 return; 546 } 547 548 WARN_ON_ONCE(!iod->nents); 549 550 /* P2PDMA requests do not need to be unmapped */ 551 if (!is_pci_p2pdma_page(sg_page(iod->sg))) 552 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 553 554 555 if (iod->npages == 0) 556 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 557 dma_addr); 558 559 for (i = 0; i < iod->npages; i++) { 560 void *addr = nvme_pci_iod_list(req)[i]; 561 562 if (iod->use_sgl) { 563 struct nvme_sgl_desc *sg_list = addr; 564 565 next_dma_addr = 566 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 567 } else { 568 __le64 *prp_list = addr; 569 570 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 571 } 572 573 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 574 dma_addr = next_dma_addr; 575 } 576 577 mempool_free(iod->sg, dev->iod_mempool); 578 } 579 580 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 581 { 582 int i; 583 struct scatterlist *sg; 584 585 for_each_sg(sgl, sg, nents, i) { 586 dma_addr_t phys = sg_phys(sg); 587 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 588 "dma_address:%pad dma_length:%d\n", 589 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 590 sg_dma_len(sg)); 591 } 592 } 593 594 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 595 struct request *req, struct nvme_rw_command *cmnd) 596 { 597 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 598 struct dma_pool *pool; 599 int length = blk_rq_payload_bytes(req); 600 struct scatterlist *sg = iod->sg; 601 int dma_len = sg_dma_len(sg); 602 u64 dma_addr = sg_dma_address(sg); 603 u32 page_size = dev->ctrl.page_size; 604 int offset = dma_addr & (page_size - 1); 605 __le64 *prp_list; 606 void **list = nvme_pci_iod_list(req); 607 dma_addr_t prp_dma; 608 int nprps, i; 609 610 length -= (page_size - offset); 611 if (length <= 0) { 612 iod->first_dma = 0; 613 goto done; 614 } 615 616 dma_len -= (page_size - offset); 617 if (dma_len) { 618 dma_addr += (page_size - offset); 619 } else { 620 sg = sg_next(sg); 621 dma_addr = sg_dma_address(sg); 622 dma_len = sg_dma_len(sg); 623 } 624 625 if (length <= page_size) { 626 iod->first_dma = dma_addr; 627 goto done; 628 } 629 630 nprps = DIV_ROUND_UP(length, page_size); 631 if (nprps <= (256 / 8)) { 632 pool = dev->prp_small_pool; 633 iod->npages = 0; 634 } else { 635 pool = dev->prp_page_pool; 636 iod->npages = 1; 637 } 638 639 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 640 if (!prp_list) { 641 iod->first_dma = dma_addr; 642 iod->npages = -1; 643 return BLK_STS_RESOURCE; 644 } 645 list[0] = prp_list; 646 iod->first_dma = prp_dma; 647 i = 0; 648 for (;;) { 649 if (i == page_size >> 3) { 650 __le64 *old_prp_list = prp_list; 651 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 652 if (!prp_list) 653 return BLK_STS_RESOURCE; 654 list[iod->npages++] = prp_list; 655 prp_list[0] = old_prp_list[i - 1]; 656 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 657 i = 1; 658 } 659 prp_list[i++] = cpu_to_le64(dma_addr); 660 dma_len -= page_size; 661 dma_addr += page_size; 662 length -= page_size; 663 if (length <= 0) 664 break; 665 if (dma_len > 0) 666 continue; 667 if (unlikely(dma_len < 0)) 668 goto bad_sgl; 669 sg = sg_next(sg); 670 dma_addr = sg_dma_address(sg); 671 dma_len = sg_dma_len(sg); 672 } 673 674 done: 675 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 676 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 677 678 return BLK_STS_OK; 679 680 bad_sgl: 681 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 682 "Invalid SGL for payload:%d nents:%d\n", 683 blk_rq_payload_bytes(req), iod->nents); 684 return BLK_STS_IOERR; 685 } 686 687 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 688 struct scatterlist *sg) 689 { 690 sge->addr = cpu_to_le64(sg_dma_address(sg)); 691 sge->length = cpu_to_le32(sg_dma_len(sg)); 692 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 693 } 694 695 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 696 dma_addr_t dma_addr, int entries) 697 { 698 sge->addr = cpu_to_le64(dma_addr); 699 if (entries < SGES_PER_PAGE) { 700 sge->length = cpu_to_le32(entries * sizeof(*sge)); 701 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 702 } else { 703 sge->length = cpu_to_le32(PAGE_SIZE); 704 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 705 } 706 } 707 708 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 709 struct request *req, struct nvme_rw_command *cmd, int entries) 710 { 711 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 712 struct dma_pool *pool; 713 struct nvme_sgl_desc *sg_list; 714 struct scatterlist *sg = iod->sg; 715 dma_addr_t sgl_dma; 716 int i = 0; 717 718 /* setting the transfer type as SGL */ 719 cmd->flags = NVME_CMD_SGL_METABUF; 720 721 if (entries == 1) { 722 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 723 return BLK_STS_OK; 724 } 725 726 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 727 pool = dev->prp_small_pool; 728 iod->npages = 0; 729 } else { 730 pool = dev->prp_page_pool; 731 iod->npages = 1; 732 } 733 734 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 735 if (!sg_list) { 736 iod->npages = -1; 737 return BLK_STS_RESOURCE; 738 } 739 740 nvme_pci_iod_list(req)[0] = sg_list; 741 iod->first_dma = sgl_dma; 742 743 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 744 745 do { 746 if (i == SGES_PER_PAGE) { 747 struct nvme_sgl_desc *old_sg_desc = sg_list; 748 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 749 750 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 751 if (!sg_list) 752 return BLK_STS_RESOURCE; 753 754 i = 0; 755 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 756 sg_list[i++] = *link; 757 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 758 } 759 760 nvme_pci_sgl_set_data(&sg_list[i++], sg); 761 sg = sg_next(sg); 762 } while (--entries > 0); 763 764 return BLK_STS_OK; 765 } 766 767 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 768 struct request *req, struct nvme_rw_command *cmnd, 769 struct bio_vec *bv) 770 { 771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 772 unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset; 773 774 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 775 if (dma_mapping_error(dev->dev, iod->first_dma)) 776 return BLK_STS_RESOURCE; 777 iod->dma_len = bv->bv_len; 778 779 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 780 if (bv->bv_len > first_prp_len) 781 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 782 return 0; 783 } 784 785 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 786 struct request *req, struct nvme_rw_command *cmnd, 787 struct bio_vec *bv) 788 { 789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 790 791 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 792 if (dma_mapping_error(dev->dev, iod->first_dma)) 793 return BLK_STS_RESOURCE; 794 iod->dma_len = bv->bv_len; 795 796 cmnd->flags = NVME_CMD_SGL_METABUF; 797 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 798 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 799 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 800 return 0; 801 } 802 803 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 804 struct nvme_command *cmnd) 805 { 806 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 807 blk_status_t ret = BLK_STS_RESOURCE; 808 int nr_mapped; 809 810 if (blk_rq_nr_phys_segments(req) == 1) { 811 struct bio_vec bv = req_bvec(req); 812 813 if (!is_pci_p2pdma_page(bv.bv_page)) { 814 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2) 815 return nvme_setup_prp_simple(dev, req, 816 &cmnd->rw, &bv); 817 818 if (iod->nvmeq->qid && 819 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 820 return nvme_setup_sgl_simple(dev, req, 821 &cmnd->rw, &bv); 822 } 823 } 824 825 iod->dma_len = 0; 826 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 827 if (!iod->sg) 828 return BLK_STS_RESOURCE; 829 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 830 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 831 if (!iod->nents) 832 goto out; 833 834 if (is_pci_p2pdma_page(sg_page(iod->sg))) 835 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents, 836 rq_dma_dir(req)); 837 else 838 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 839 rq_dma_dir(req), DMA_ATTR_NO_WARN); 840 if (!nr_mapped) 841 goto out; 842 843 iod->use_sgl = nvme_pci_use_sgls(dev, req); 844 if (iod->use_sgl) 845 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 846 else 847 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 848 out: 849 if (ret != BLK_STS_OK) 850 nvme_unmap_data(dev, req); 851 return ret; 852 } 853 854 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 855 struct nvme_command *cmnd) 856 { 857 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 858 859 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 860 rq_dma_dir(req), 0); 861 if (dma_mapping_error(dev->dev, iod->meta_dma)) 862 return BLK_STS_IOERR; 863 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 864 return 0; 865 } 866 867 /* 868 * NOTE: ns is NULL when called on the admin queue. 869 */ 870 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 871 const struct blk_mq_queue_data *bd) 872 { 873 struct nvme_ns *ns = hctx->queue->queuedata; 874 struct nvme_queue *nvmeq = hctx->driver_data; 875 struct nvme_dev *dev = nvmeq->dev; 876 struct request *req = bd->rq; 877 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 878 struct nvme_command cmnd; 879 blk_status_t ret; 880 881 iod->aborted = 0; 882 iod->npages = -1; 883 iod->nents = 0; 884 885 /* 886 * We should not need to do this, but we're still using this to 887 * ensure we can drain requests on a dying queue. 888 */ 889 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 890 return BLK_STS_IOERR; 891 892 ret = nvme_setup_cmd(ns, req, &cmnd); 893 if (ret) 894 return ret; 895 896 if (blk_rq_nr_phys_segments(req)) { 897 ret = nvme_map_data(dev, req, &cmnd); 898 if (ret) 899 goto out_free_cmd; 900 } 901 902 if (blk_integrity_rq(req)) { 903 ret = nvme_map_metadata(dev, req, &cmnd); 904 if (ret) 905 goto out_unmap_data; 906 } 907 908 blk_mq_start_request(req); 909 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 910 return BLK_STS_OK; 911 out_unmap_data: 912 nvme_unmap_data(dev, req); 913 out_free_cmd: 914 nvme_cleanup_cmd(req); 915 return ret; 916 } 917 918 static void nvme_pci_complete_rq(struct request *req) 919 { 920 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 921 struct nvme_dev *dev = iod->nvmeq->dev; 922 923 nvme_cleanup_cmd(req); 924 if (blk_integrity_rq(req)) 925 dma_unmap_page(dev->dev, iod->meta_dma, 926 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 927 if (blk_rq_nr_phys_segments(req)) 928 nvme_unmap_data(dev, req); 929 nvme_complete_rq(req); 930 } 931 932 /* We read the CQE phase first to check if the rest of the entry is valid */ 933 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 934 { 935 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == 936 nvmeq->cq_phase; 937 } 938 939 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 940 { 941 u16 head = nvmeq->cq_head; 942 943 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 944 nvmeq->dbbuf_cq_ei)) 945 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 946 } 947 948 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 949 { 950 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; 951 struct request *req; 952 953 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 954 dev_warn(nvmeq->dev->ctrl.device, 955 "invalid id %d completed on queue %d\n", 956 cqe->command_id, le16_to_cpu(cqe->sq_id)); 957 return; 958 } 959 960 /* 961 * AEN requests are special as they don't time out and can 962 * survive any kind of queue freeze and often don't respond to 963 * aborts. We don't even bother to allocate a struct request 964 * for them but rather special case them here. 965 */ 966 if (unlikely(nvmeq->qid == 0 && 967 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) { 968 nvme_complete_async_event(&nvmeq->dev->ctrl, 969 cqe->status, &cqe->result); 970 return; 971 } 972 973 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); 974 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 975 nvme_end_request(req, cqe->status, cqe->result); 976 } 977 978 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end) 979 { 980 while (start != end) { 981 nvme_handle_cqe(nvmeq, start); 982 if (++start == nvmeq->q_depth) 983 start = 0; 984 } 985 } 986 987 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 988 { 989 if (nvmeq->cq_head == nvmeq->q_depth - 1) { 990 nvmeq->cq_head = 0; 991 nvmeq->cq_phase = !nvmeq->cq_phase; 992 } else { 993 nvmeq->cq_head++; 994 } 995 } 996 997 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start, 998 u16 *end, unsigned int tag) 999 { 1000 int found = 0; 1001 1002 *start = nvmeq->cq_head; 1003 while (nvme_cqe_pending(nvmeq)) { 1004 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag) 1005 found++; 1006 nvme_update_cq_head(nvmeq); 1007 } 1008 *end = nvmeq->cq_head; 1009 1010 if (*start != *end) 1011 nvme_ring_cq_doorbell(nvmeq); 1012 return found; 1013 } 1014 1015 static irqreturn_t nvme_irq(int irq, void *data) 1016 { 1017 struct nvme_queue *nvmeq = data; 1018 irqreturn_t ret = IRQ_NONE; 1019 u16 start, end; 1020 1021 /* 1022 * The rmb/wmb pair ensures we see all updates from a previous run of 1023 * the irq handler, even if that was on another CPU. 1024 */ 1025 rmb(); 1026 if (nvmeq->cq_head != nvmeq->last_cq_head) 1027 ret = IRQ_HANDLED; 1028 nvme_process_cq(nvmeq, &start, &end, -1); 1029 nvmeq->last_cq_head = nvmeq->cq_head; 1030 wmb(); 1031 1032 if (start != end) { 1033 nvme_complete_cqes(nvmeq, start, end); 1034 return IRQ_HANDLED; 1035 } 1036 1037 return ret; 1038 } 1039 1040 static irqreturn_t nvme_irq_check(int irq, void *data) 1041 { 1042 struct nvme_queue *nvmeq = data; 1043 if (nvme_cqe_pending(nvmeq)) 1044 return IRQ_WAKE_THREAD; 1045 return IRQ_NONE; 1046 } 1047 1048 /* 1049 * Poll for completions any queue, including those not dedicated to polling. 1050 * Can be called from any context. 1051 */ 1052 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag) 1053 { 1054 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1055 u16 start, end; 1056 int found; 1057 1058 /* 1059 * For a poll queue we need to protect against the polling thread 1060 * using the CQ lock. For normal interrupt driven threads we have 1061 * to disable the interrupt to avoid racing with it. 1062 */ 1063 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) { 1064 spin_lock(&nvmeq->cq_poll_lock); 1065 found = nvme_process_cq(nvmeq, &start, &end, tag); 1066 spin_unlock(&nvmeq->cq_poll_lock); 1067 } else { 1068 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1069 found = nvme_process_cq(nvmeq, &start, &end, tag); 1070 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1071 } 1072 1073 nvme_complete_cqes(nvmeq, start, end); 1074 return found; 1075 } 1076 1077 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1078 { 1079 struct nvme_queue *nvmeq = hctx->driver_data; 1080 u16 start, end; 1081 bool found; 1082 1083 if (!nvme_cqe_pending(nvmeq)) 1084 return 0; 1085 1086 spin_lock(&nvmeq->cq_poll_lock); 1087 found = nvme_process_cq(nvmeq, &start, &end, -1); 1088 spin_unlock(&nvmeq->cq_poll_lock); 1089 1090 nvme_complete_cqes(nvmeq, start, end); 1091 return found; 1092 } 1093 1094 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1095 { 1096 struct nvme_dev *dev = to_nvme_dev(ctrl); 1097 struct nvme_queue *nvmeq = &dev->queues[0]; 1098 struct nvme_command c; 1099 1100 memset(&c, 0, sizeof(c)); 1101 c.common.opcode = nvme_admin_async_event; 1102 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1103 nvme_submit_cmd(nvmeq, &c, true); 1104 } 1105 1106 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1107 { 1108 struct nvme_command c; 1109 1110 memset(&c, 0, sizeof(c)); 1111 c.delete_queue.opcode = opcode; 1112 c.delete_queue.qid = cpu_to_le16(id); 1113 1114 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1115 } 1116 1117 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1118 struct nvme_queue *nvmeq, s16 vector) 1119 { 1120 struct nvme_command c; 1121 int flags = NVME_QUEUE_PHYS_CONTIG; 1122 1123 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1124 flags |= NVME_CQ_IRQ_ENABLED; 1125 1126 /* 1127 * Note: we (ab)use the fact that the prp fields survive if no data 1128 * is attached to the request. 1129 */ 1130 memset(&c, 0, sizeof(c)); 1131 c.create_cq.opcode = nvme_admin_create_cq; 1132 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1133 c.create_cq.cqid = cpu_to_le16(qid); 1134 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1135 c.create_cq.cq_flags = cpu_to_le16(flags); 1136 c.create_cq.irq_vector = cpu_to_le16(vector); 1137 1138 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1139 } 1140 1141 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1142 struct nvme_queue *nvmeq) 1143 { 1144 struct nvme_ctrl *ctrl = &dev->ctrl; 1145 struct nvme_command c; 1146 int flags = NVME_QUEUE_PHYS_CONTIG; 1147 1148 /* 1149 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1150 * set. Since URGENT priority is zeroes, it makes all queues 1151 * URGENT. 1152 */ 1153 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1154 flags |= NVME_SQ_PRIO_MEDIUM; 1155 1156 /* 1157 * Note: we (ab)use the fact that the prp fields survive if no data 1158 * is attached to the request. 1159 */ 1160 memset(&c, 0, sizeof(c)); 1161 c.create_sq.opcode = nvme_admin_create_sq; 1162 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1163 c.create_sq.sqid = cpu_to_le16(qid); 1164 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1165 c.create_sq.sq_flags = cpu_to_le16(flags); 1166 c.create_sq.cqid = cpu_to_le16(qid); 1167 1168 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1169 } 1170 1171 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1172 { 1173 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1174 } 1175 1176 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1177 { 1178 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1179 } 1180 1181 static void abort_endio(struct request *req, blk_status_t error) 1182 { 1183 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1184 struct nvme_queue *nvmeq = iod->nvmeq; 1185 1186 dev_warn(nvmeq->dev->ctrl.device, 1187 "Abort status: 0x%x", nvme_req(req)->status); 1188 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1189 blk_mq_free_request(req); 1190 } 1191 1192 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1193 { 1194 1195 /* If true, indicates loss of adapter communication, possibly by a 1196 * NVMe Subsystem reset. 1197 */ 1198 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1199 1200 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1201 switch (dev->ctrl.state) { 1202 case NVME_CTRL_RESETTING: 1203 case NVME_CTRL_CONNECTING: 1204 return false; 1205 default: 1206 break; 1207 } 1208 1209 /* We shouldn't reset unless the controller is on fatal error state 1210 * _or_ if we lost the communication with it. 1211 */ 1212 if (!(csts & NVME_CSTS_CFS) && !nssro) 1213 return false; 1214 1215 return true; 1216 } 1217 1218 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1219 { 1220 /* Read a config register to help see what died. */ 1221 u16 pci_status; 1222 int result; 1223 1224 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1225 &pci_status); 1226 if (result == PCIBIOS_SUCCESSFUL) 1227 dev_warn(dev->ctrl.device, 1228 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1229 csts, pci_status); 1230 else 1231 dev_warn(dev->ctrl.device, 1232 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1233 csts, result); 1234 } 1235 1236 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1237 { 1238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1239 struct nvme_queue *nvmeq = iod->nvmeq; 1240 struct nvme_dev *dev = nvmeq->dev; 1241 struct request *abort_req; 1242 struct nvme_command cmd; 1243 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1244 1245 /* If PCI error recovery process is happening, we cannot reset or 1246 * the recovery mechanism will surely fail. 1247 */ 1248 mb(); 1249 if (pci_channel_offline(to_pci_dev(dev->dev))) 1250 return BLK_EH_RESET_TIMER; 1251 1252 /* 1253 * Reset immediately if the controller is failed 1254 */ 1255 if (nvme_should_reset(dev, csts)) { 1256 nvme_warn_reset(dev, csts); 1257 nvme_dev_disable(dev, false); 1258 nvme_reset_ctrl(&dev->ctrl); 1259 return BLK_EH_DONE; 1260 } 1261 1262 /* 1263 * Did we miss an interrupt? 1264 */ 1265 if (nvme_poll_irqdisable(nvmeq, req->tag)) { 1266 dev_warn(dev->ctrl.device, 1267 "I/O %d QID %d timeout, completion polled\n", 1268 req->tag, nvmeq->qid); 1269 return BLK_EH_DONE; 1270 } 1271 1272 /* 1273 * Shutdown immediately if controller times out while starting. The 1274 * reset work will see the pci device disabled when it gets the forced 1275 * cancellation error. All outstanding requests are completed on 1276 * shutdown, so we return BLK_EH_DONE. 1277 */ 1278 switch (dev->ctrl.state) { 1279 case NVME_CTRL_CONNECTING: 1280 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1281 /* fall through */ 1282 case NVME_CTRL_DELETING: 1283 dev_warn_ratelimited(dev->ctrl.device, 1284 "I/O %d QID %d timeout, disable controller\n", 1285 req->tag, nvmeq->qid); 1286 nvme_dev_disable(dev, true); 1287 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1288 return BLK_EH_DONE; 1289 case NVME_CTRL_RESETTING: 1290 return BLK_EH_RESET_TIMER; 1291 default: 1292 break; 1293 } 1294 1295 /* 1296 * Shutdown the controller immediately and schedule a reset if the 1297 * command was already aborted once before and still hasn't been 1298 * returned to the driver, or if this is the admin queue. 1299 */ 1300 if (!nvmeq->qid || iod->aborted) { 1301 dev_warn(dev->ctrl.device, 1302 "I/O %d QID %d timeout, reset controller\n", 1303 req->tag, nvmeq->qid); 1304 nvme_dev_disable(dev, false); 1305 nvme_reset_ctrl(&dev->ctrl); 1306 1307 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1308 return BLK_EH_DONE; 1309 } 1310 1311 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1312 atomic_inc(&dev->ctrl.abort_limit); 1313 return BLK_EH_RESET_TIMER; 1314 } 1315 iod->aborted = 1; 1316 1317 memset(&cmd, 0, sizeof(cmd)); 1318 cmd.abort.opcode = nvme_admin_abort_cmd; 1319 cmd.abort.cid = req->tag; 1320 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1321 1322 dev_warn(nvmeq->dev->ctrl.device, 1323 "I/O %d QID %d timeout, aborting\n", 1324 req->tag, nvmeq->qid); 1325 1326 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1327 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1328 if (IS_ERR(abort_req)) { 1329 atomic_inc(&dev->ctrl.abort_limit); 1330 return BLK_EH_RESET_TIMER; 1331 } 1332 1333 abort_req->timeout = ADMIN_TIMEOUT; 1334 abort_req->end_io_data = NULL; 1335 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1336 1337 /* 1338 * The aborted req will be completed on receiving the abort req. 1339 * We enable the timer again. If hit twice, it'll cause a device reset, 1340 * as the device then is in a faulty state. 1341 */ 1342 return BLK_EH_RESET_TIMER; 1343 } 1344 1345 static void nvme_free_queue(struct nvme_queue *nvmeq) 1346 { 1347 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth), 1348 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1349 if (!nvmeq->sq_cmds) 1350 return; 1351 1352 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1353 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1354 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth)); 1355 } else { 1356 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth), 1357 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1358 } 1359 } 1360 1361 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1362 { 1363 int i; 1364 1365 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1366 dev->ctrl.queue_count--; 1367 nvme_free_queue(&dev->queues[i]); 1368 } 1369 } 1370 1371 /** 1372 * nvme_suspend_queue - put queue into suspended state 1373 * @nvmeq: queue to suspend 1374 */ 1375 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1376 { 1377 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1378 return 1; 1379 1380 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1381 mb(); 1382 1383 nvmeq->dev->online_queues--; 1384 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1385 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1386 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1387 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1388 return 0; 1389 } 1390 1391 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1392 { 1393 int i; 1394 1395 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1396 nvme_suspend_queue(&dev->queues[i]); 1397 } 1398 1399 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1400 { 1401 struct nvme_queue *nvmeq = &dev->queues[0]; 1402 1403 if (shutdown) 1404 nvme_shutdown_ctrl(&dev->ctrl); 1405 else 1406 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1407 1408 nvme_poll_irqdisable(nvmeq, -1); 1409 } 1410 1411 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1412 int entry_size) 1413 { 1414 int q_depth = dev->q_depth; 1415 unsigned q_size_aligned = roundup(q_depth * entry_size, 1416 dev->ctrl.page_size); 1417 1418 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1419 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1420 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1421 q_depth = div_u64(mem_per_q, entry_size); 1422 1423 /* 1424 * Ensure the reduced q_depth is above some threshold where it 1425 * would be better to map queues in system memory with the 1426 * original depth 1427 */ 1428 if (q_depth < 64) 1429 return -ENOMEM; 1430 } 1431 1432 return q_depth; 1433 } 1434 1435 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1436 int qid, int depth) 1437 { 1438 struct pci_dev *pdev = to_pci_dev(dev->dev); 1439 1440 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1441 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth)); 1442 if (nvmeq->sq_cmds) { 1443 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1444 nvmeq->sq_cmds); 1445 if (nvmeq->sq_dma_addr) { 1446 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1447 return 0; 1448 } 1449 1450 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(depth)); 1451 } 1452 } 1453 1454 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1455 &nvmeq->sq_dma_addr, GFP_KERNEL); 1456 if (!nvmeq->sq_cmds) 1457 return -ENOMEM; 1458 return 0; 1459 } 1460 1461 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1462 { 1463 struct nvme_queue *nvmeq = &dev->queues[qid]; 1464 1465 if (dev->ctrl.queue_count > qid) 1466 return 0; 1467 1468 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth), 1469 &nvmeq->cq_dma_addr, GFP_KERNEL); 1470 if (!nvmeq->cqes) 1471 goto free_nvmeq; 1472 1473 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1474 goto free_cqdma; 1475 1476 nvmeq->dev = dev; 1477 spin_lock_init(&nvmeq->sq_lock); 1478 spin_lock_init(&nvmeq->cq_poll_lock); 1479 nvmeq->cq_head = 0; 1480 nvmeq->cq_phase = 1; 1481 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1482 nvmeq->q_depth = depth; 1483 nvmeq->qid = qid; 1484 dev->ctrl.queue_count++; 1485 1486 return 0; 1487 1488 free_cqdma: 1489 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1490 nvmeq->cq_dma_addr); 1491 free_nvmeq: 1492 return -ENOMEM; 1493 } 1494 1495 static int queue_request_irq(struct nvme_queue *nvmeq) 1496 { 1497 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1498 int nr = nvmeq->dev->ctrl.instance; 1499 1500 if (use_threaded_interrupts) { 1501 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1502 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1503 } else { 1504 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1505 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1506 } 1507 } 1508 1509 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1510 { 1511 struct nvme_dev *dev = nvmeq->dev; 1512 1513 nvmeq->sq_tail = 0; 1514 nvmeq->last_sq_tail = 0; 1515 nvmeq->cq_head = 0; 1516 nvmeq->cq_phase = 1; 1517 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1518 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1519 nvme_dbbuf_init(dev, nvmeq, qid); 1520 dev->online_queues++; 1521 wmb(); /* ensure the first interrupt sees the initialization */ 1522 } 1523 1524 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1525 { 1526 struct nvme_dev *dev = nvmeq->dev; 1527 int result; 1528 u16 vector = 0; 1529 1530 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1531 1532 /* 1533 * A queue's vector matches the queue identifier unless the controller 1534 * has only one vector available. 1535 */ 1536 if (!polled) 1537 vector = dev->num_vecs == 1 ? 0 : qid; 1538 else 1539 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1540 1541 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1542 if (result) 1543 return result; 1544 1545 result = adapter_alloc_sq(dev, qid, nvmeq); 1546 if (result < 0) 1547 return result; 1548 else if (result) 1549 goto release_cq; 1550 1551 nvmeq->cq_vector = vector; 1552 nvme_init_queue(nvmeq, qid); 1553 1554 if (!polled) { 1555 nvmeq->cq_vector = vector; 1556 result = queue_request_irq(nvmeq); 1557 if (result < 0) 1558 goto release_sq; 1559 } 1560 1561 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1562 return result; 1563 1564 release_sq: 1565 dev->online_queues--; 1566 adapter_delete_sq(dev, qid); 1567 release_cq: 1568 adapter_delete_cq(dev, qid); 1569 return result; 1570 } 1571 1572 static const struct blk_mq_ops nvme_mq_admin_ops = { 1573 .queue_rq = nvme_queue_rq, 1574 .complete = nvme_pci_complete_rq, 1575 .init_hctx = nvme_admin_init_hctx, 1576 .exit_hctx = nvme_admin_exit_hctx, 1577 .init_request = nvme_init_request, 1578 .timeout = nvme_timeout, 1579 }; 1580 1581 static const struct blk_mq_ops nvme_mq_ops = { 1582 .queue_rq = nvme_queue_rq, 1583 .complete = nvme_pci_complete_rq, 1584 .commit_rqs = nvme_commit_rqs, 1585 .init_hctx = nvme_init_hctx, 1586 .init_request = nvme_init_request, 1587 .map_queues = nvme_pci_map_queues, 1588 .timeout = nvme_timeout, 1589 .poll = nvme_poll, 1590 }; 1591 1592 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1593 { 1594 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1595 /* 1596 * If the controller was reset during removal, it's possible 1597 * user requests may be waiting on a stopped queue. Start the 1598 * queue to flush these to completion. 1599 */ 1600 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1601 blk_cleanup_queue(dev->ctrl.admin_q); 1602 blk_mq_free_tag_set(&dev->admin_tagset); 1603 } 1604 } 1605 1606 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1607 { 1608 if (!dev->ctrl.admin_q) { 1609 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1610 dev->admin_tagset.nr_hw_queues = 1; 1611 1612 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1613 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1614 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1615 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1616 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1617 dev->admin_tagset.driver_data = dev; 1618 1619 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1620 return -ENOMEM; 1621 dev->ctrl.admin_tagset = &dev->admin_tagset; 1622 1623 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1624 if (IS_ERR(dev->ctrl.admin_q)) { 1625 blk_mq_free_tag_set(&dev->admin_tagset); 1626 return -ENOMEM; 1627 } 1628 if (!blk_get_queue(dev->ctrl.admin_q)) { 1629 nvme_dev_remove_admin(dev); 1630 dev->ctrl.admin_q = NULL; 1631 return -ENODEV; 1632 } 1633 } else 1634 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1635 1636 return 0; 1637 } 1638 1639 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1640 { 1641 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1642 } 1643 1644 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1645 { 1646 struct pci_dev *pdev = to_pci_dev(dev->dev); 1647 1648 if (size <= dev->bar_mapped_size) 1649 return 0; 1650 if (size > pci_resource_len(pdev, 0)) 1651 return -ENOMEM; 1652 if (dev->bar) 1653 iounmap(dev->bar); 1654 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1655 if (!dev->bar) { 1656 dev->bar_mapped_size = 0; 1657 return -ENOMEM; 1658 } 1659 dev->bar_mapped_size = size; 1660 dev->dbs = dev->bar + NVME_REG_DBS; 1661 1662 return 0; 1663 } 1664 1665 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1666 { 1667 int result; 1668 u32 aqa; 1669 struct nvme_queue *nvmeq; 1670 1671 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1672 if (result < 0) 1673 return result; 1674 1675 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1676 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1677 1678 if (dev->subsystem && 1679 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1680 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1681 1682 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1683 if (result < 0) 1684 return result; 1685 1686 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1687 if (result) 1688 return result; 1689 1690 nvmeq = &dev->queues[0]; 1691 aqa = nvmeq->q_depth - 1; 1692 aqa |= aqa << 16; 1693 1694 writel(aqa, dev->bar + NVME_REG_AQA); 1695 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1696 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1697 1698 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); 1699 if (result) 1700 return result; 1701 1702 nvmeq->cq_vector = 0; 1703 nvme_init_queue(nvmeq, 0); 1704 result = queue_request_irq(nvmeq); 1705 if (result) { 1706 dev->online_queues--; 1707 return result; 1708 } 1709 1710 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1711 return result; 1712 } 1713 1714 static int nvme_create_io_queues(struct nvme_dev *dev) 1715 { 1716 unsigned i, max, rw_queues; 1717 int ret = 0; 1718 1719 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1720 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1721 ret = -ENOMEM; 1722 break; 1723 } 1724 } 1725 1726 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1727 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1728 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1729 dev->io_queues[HCTX_TYPE_READ]; 1730 } else { 1731 rw_queues = max; 1732 } 1733 1734 for (i = dev->online_queues; i <= max; i++) { 1735 bool polled = i > rw_queues; 1736 1737 ret = nvme_create_queue(&dev->queues[i], i, polled); 1738 if (ret) 1739 break; 1740 } 1741 1742 /* 1743 * Ignore failing Create SQ/CQ commands, we can continue with less 1744 * than the desired amount of queues, and even a controller without 1745 * I/O queues can still be used to issue admin commands. This might 1746 * be useful to upgrade a buggy firmware for example. 1747 */ 1748 return ret >= 0 ? 0 : ret; 1749 } 1750 1751 static ssize_t nvme_cmb_show(struct device *dev, 1752 struct device_attribute *attr, 1753 char *buf) 1754 { 1755 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1756 1757 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1758 ndev->cmbloc, ndev->cmbsz); 1759 } 1760 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1761 1762 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1763 { 1764 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1765 1766 return 1ULL << (12 + 4 * szu); 1767 } 1768 1769 static u32 nvme_cmb_size(struct nvme_dev *dev) 1770 { 1771 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1772 } 1773 1774 static void nvme_map_cmb(struct nvme_dev *dev) 1775 { 1776 u64 size, offset; 1777 resource_size_t bar_size; 1778 struct pci_dev *pdev = to_pci_dev(dev->dev); 1779 int bar; 1780 1781 if (dev->cmb_size) 1782 return; 1783 1784 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1785 if (!dev->cmbsz) 1786 return; 1787 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1788 1789 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1790 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1791 bar = NVME_CMB_BIR(dev->cmbloc); 1792 bar_size = pci_resource_len(pdev, bar); 1793 1794 if (offset > bar_size) 1795 return; 1796 1797 /* 1798 * Controllers may support a CMB size larger than their BAR, 1799 * for example, due to being behind a bridge. Reduce the CMB to 1800 * the reported size of the BAR 1801 */ 1802 if (size > bar_size - offset) 1803 size = bar_size - offset; 1804 1805 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1806 dev_warn(dev->ctrl.device, 1807 "failed to register the CMB\n"); 1808 return; 1809 } 1810 1811 dev->cmb_size = size; 1812 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1813 1814 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1815 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1816 pci_p2pmem_publish(pdev, true); 1817 1818 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1819 &dev_attr_cmb.attr, NULL)) 1820 dev_warn(dev->ctrl.device, 1821 "failed to add sysfs attribute for CMB\n"); 1822 } 1823 1824 static inline void nvme_release_cmb(struct nvme_dev *dev) 1825 { 1826 if (dev->cmb_size) { 1827 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1828 &dev_attr_cmb.attr, NULL); 1829 dev->cmb_size = 0; 1830 } 1831 } 1832 1833 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1834 { 1835 u64 dma_addr = dev->host_mem_descs_dma; 1836 struct nvme_command c; 1837 int ret; 1838 1839 memset(&c, 0, sizeof(c)); 1840 c.features.opcode = nvme_admin_set_features; 1841 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1842 c.features.dword11 = cpu_to_le32(bits); 1843 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1844 ilog2(dev->ctrl.page_size)); 1845 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1846 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1847 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1848 1849 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1850 if (ret) { 1851 dev_warn(dev->ctrl.device, 1852 "failed to set host mem (err %d, flags %#x).\n", 1853 ret, bits); 1854 } 1855 return ret; 1856 } 1857 1858 static void nvme_free_host_mem(struct nvme_dev *dev) 1859 { 1860 int i; 1861 1862 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1863 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1864 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1865 1866 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1867 le64_to_cpu(desc->addr), 1868 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1869 } 1870 1871 kfree(dev->host_mem_desc_bufs); 1872 dev->host_mem_desc_bufs = NULL; 1873 dma_free_coherent(dev->dev, 1874 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1875 dev->host_mem_descs, dev->host_mem_descs_dma); 1876 dev->host_mem_descs = NULL; 1877 dev->nr_host_mem_descs = 0; 1878 } 1879 1880 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1881 u32 chunk_size) 1882 { 1883 struct nvme_host_mem_buf_desc *descs; 1884 u32 max_entries, len; 1885 dma_addr_t descs_dma; 1886 int i = 0; 1887 void **bufs; 1888 u64 size, tmp; 1889 1890 tmp = (preferred + chunk_size - 1); 1891 do_div(tmp, chunk_size); 1892 max_entries = tmp; 1893 1894 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1895 max_entries = dev->ctrl.hmmaxd; 1896 1897 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1898 &descs_dma, GFP_KERNEL); 1899 if (!descs) 1900 goto out; 1901 1902 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1903 if (!bufs) 1904 goto out_free_descs; 1905 1906 for (size = 0; size < preferred && i < max_entries; size += len) { 1907 dma_addr_t dma_addr; 1908 1909 len = min_t(u64, chunk_size, preferred - size); 1910 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1911 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1912 if (!bufs[i]) 1913 break; 1914 1915 descs[i].addr = cpu_to_le64(dma_addr); 1916 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1917 i++; 1918 } 1919 1920 if (!size) 1921 goto out_free_bufs; 1922 1923 dev->nr_host_mem_descs = i; 1924 dev->host_mem_size = size; 1925 dev->host_mem_descs = descs; 1926 dev->host_mem_descs_dma = descs_dma; 1927 dev->host_mem_desc_bufs = bufs; 1928 return 0; 1929 1930 out_free_bufs: 1931 while (--i >= 0) { 1932 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1933 1934 dma_free_attrs(dev->dev, size, bufs[i], 1935 le64_to_cpu(descs[i].addr), 1936 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1937 } 1938 1939 kfree(bufs); 1940 out_free_descs: 1941 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1942 descs_dma); 1943 out: 1944 dev->host_mem_descs = NULL; 1945 return -ENOMEM; 1946 } 1947 1948 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1949 { 1950 u32 chunk_size; 1951 1952 /* start big and work our way down */ 1953 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1954 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1955 chunk_size /= 2) { 1956 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1957 if (!min || dev->host_mem_size >= min) 1958 return 0; 1959 nvme_free_host_mem(dev); 1960 } 1961 } 1962 1963 return -ENOMEM; 1964 } 1965 1966 static int nvme_setup_host_mem(struct nvme_dev *dev) 1967 { 1968 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1969 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1970 u64 min = (u64)dev->ctrl.hmmin * 4096; 1971 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1972 int ret; 1973 1974 preferred = min(preferred, max); 1975 if (min > max) { 1976 dev_warn(dev->ctrl.device, 1977 "min host memory (%lld MiB) above limit (%d MiB).\n", 1978 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1979 nvme_free_host_mem(dev); 1980 return 0; 1981 } 1982 1983 /* 1984 * If we already have a buffer allocated check if we can reuse it. 1985 */ 1986 if (dev->host_mem_descs) { 1987 if (dev->host_mem_size >= min) 1988 enable_bits |= NVME_HOST_MEM_RETURN; 1989 else 1990 nvme_free_host_mem(dev); 1991 } 1992 1993 if (!dev->host_mem_descs) { 1994 if (nvme_alloc_host_mem(dev, min, preferred)) { 1995 dev_warn(dev->ctrl.device, 1996 "failed to allocate host memory buffer.\n"); 1997 return 0; /* controller must work without HMB */ 1998 } 1999 2000 dev_info(dev->ctrl.device, 2001 "allocated %lld MiB host memory buffer.\n", 2002 dev->host_mem_size >> ilog2(SZ_1M)); 2003 } 2004 2005 ret = nvme_set_host_mem(dev, enable_bits); 2006 if (ret) 2007 nvme_free_host_mem(dev); 2008 return ret; 2009 } 2010 2011 /* 2012 * nirqs is the number of interrupts available for write and read 2013 * queues. The core already reserved an interrupt for the admin queue. 2014 */ 2015 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2016 { 2017 struct nvme_dev *dev = affd->priv; 2018 unsigned int nr_read_queues; 2019 2020 /* 2021 * If there is no interupt available for queues, ensure that 2022 * the default queue is set to 1. The affinity set size is 2023 * also set to one, but the irq core ignores it for this case. 2024 * 2025 * If only one interrupt is available or 'write_queue' == 0, combine 2026 * write and read queues. 2027 * 2028 * If 'write_queues' > 0, ensure it leaves room for at least one read 2029 * queue. 2030 */ 2031 if (!nrirqs) { 2032 nrirqs = 1; 2033 nr_read_queues = 0; 2034 } else if (nrirqs == 1 || !write_queues) { 2035 nr_read_queues = 0; 2036 } else if (write_queues >= nrirqs) { 2037 nr_read_queues = 1; 2038 } else { 2039 nr_read_queues = nrirqs - write_queues; 2040 } 2041 2042 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2043 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2044 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2045 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2046 affd->nr_sets = nr_read_queues ? 2 : 1; 2047 } 2048 2049 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2050 { 2051 struct pci_dev *pdev = to_pci_dev(dev->dev); 2052 struct irq_affinity affd = { 2053 .pre_vectors = 1, 2054 .calc_sets = nvme_calc_irq_sets, 2055 .priv = dev, 2056 }; 2057 unsigned int irq_queues, this_p_queues; 2058 unsigned int nr_cpus = num_possible_cpus(); 2059 2060 /* 2061 * Poll queues don't need interrupts, but we need at least one IO 2062 * queue left over for non-polled IO. 2063 */ 2064 this_p_queues = poll_queues; 2065 if (this_p_queues >= nr_io_queues) { 2066 this_p_queues = nr_io_queues - 1; 2067 irq_queues = 1; 2068 } else { 2069 if (nr_cpus < nr_io_queues - this_p_queues) 2070 irq_queues = nr_cpus + 1; 2071 else 2072 irq_queues = nr_io_queues - this_p_queues + 1; 2073 } 2074 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; 2075 2076 /* Initialize for the single interrupt case */ 2077 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2078 dev->io_queues[HCTX_TYPE_READ] = 0; 2079 2080 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2081 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2082 } 2083 2084 static void nvme_disable_io_queues(struct nvme_dev *dev) 2085 { 2086 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2087 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2088 } 2089 2090 static int nvme_setup_io_queues(struct nvme_dev *dev) 2091 { 2092 struct nvme_queue *adminq = &dev->queues[0]; 2093 struct pci_dev *pdev = to_pci_dev(dev->dev); 2094 int result, nr_io_queues; 2095 unsigned long size; 2096 2097 nr_io_queues = max_io_queues(); 2098 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2099 if (result < 0) 2100 return result; 2101 2102 if (nr_io_queues == 0) 2103 return 0; 2104 2105 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2106 2107 if (dev->cmb_use_sqes) { 2108 result = nvme_cmb_qdepth(dev, nr_io_queues, 2109 sizeof(struct nvme_command)); 2110 if (result > 0) 2111 dev->q_depth = result; 2112 else 2113 dev->cmb_use_sqes = false; 2114 } 2115 2116 do { 2117 size = db_bar_size(dev, nr_io_queues); 2118 result = nvme_remap_bar(dev, size); 2119 if (!result) 2120 break; 2121 if (!--nr_io_queues) 2122 return -ENOMEM; 2123 } while (1); 2124 adminq->q_db = dev->dbs; 2125 2126 retry: 2127 /* Deregister the admin queue's interrupt */ 2128 pci_free_irq(pdev, 0, adminq); 2129 2130 /* 2131 * If we enable msix early due to not intx, disable it again before 2132 * setting up the full range we need. 2133 */ 2134 pci_free_irq_vectors(pdev); 2135 2136 result = nvme_setup_irqs(dev, nr_io_queues); 2137 if (result <= 0) 2138 return -EIO; 2139 2140 dev->num_vecs = result; 2141 result = max(result - 1, 1); 2142 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2143 2144 /* 2145 * Should investigate if there's a performance win from allocating 2146 * more queues than interrupt vectors; it might allow the submission 2147 * path to scale better, even if the receive path is limited by the 2148 * number of interrupts. 2149 */ 2150 result = queue_request_irq(adminq); 2151 if (result) 2152 return result; 2153 set_bit(NVMEQ_ENABLED, &adminq->flags); 2154 2155 result = nvme_create_io_queues(dev); 2156 if (result || dev->online_queues < 2) 2157 return result; 2158 2159 if (dev->online_queues - 1 < dev->max_qid) { 2160 nr_io_queues = dev->online_queues - 1; 2161 nvme_disable_io_queues(dev); 2162 nvme_suspend_io_queues(dev); 2163 goto retry; 2164 } 2165 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2166 dev->io_queues[HCTX_TYPE_DEFAULT], 2167 dev->io_queues[HCTX_TYPE_READ], 2168 dev->io_queues[HCTX_TYPE_POLL]); 2169 return 0; 2170 } 2171 2172 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2173 { 2174 struct nvme_queue *nvmeq = req->end_io_data; 2175 2176 blk_mq_free_request(req); 2177 complete(&nvmeq->delete_done); 2178 } 2179 2180 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2181 { 2182 struct nvme_queue *nvmeq = req->end_io_data; 2183 2184 if (error) 2185 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2186 2187 nvme_del_queue_end(req, error); 2188 } 2189 2190 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2191 { 2192 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2193 struct request *req; 2194 struct nvme_command cmd; 2195 2196 memset(&cmd, 0, sizeof(cmd)); 2197 cmd.delete_queue.opcode = opcode; 2198 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2199 2200 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2201 if (IS_ERR(req)) 2202 return PTR_ERR(req); 2203 2204 req->timeout = ADMIN_TIMEOUT; 2205 req->end_io_data = nvmeq; 2206 2207 init_completion(&nvmeq->delete_done); 2208 blk_execute_rq_nowait(q, NULL, req, false, 2209 opcode == nvme_admin_delete_cq ? 2210 nvme_del_cq_end : nvme_del_queue_end); 2211 return 0; 2212 } 2213 2214 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2215 { 2216 int nr_queues = dev->online_queues - 1, sent = 0; 2217 unsigned long timeout; 2218 2219 retry: 2220 timeout = ADMIN_TIMEOUT; 2221 while (nr_queues > 0) { 2222 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2223 break; 2224 nr_queues--; 2225 sent++; 2226 } 2227 while (sent) { 2228 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2229 2230 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2231 timeout); 2232 if (timeout == 0) 2233 return false; 2234 2235 /* handle any remaining CQEs */ 2236 if (opcode == nvme_admin_delete_cq && 2237 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags)) 2238 nvme_poll_irqdisable(nvmeq, -1); 2239 2240 sent--; 2241 if (nr_queues) 2242 goto retry; 2243 } 2244 return true; 2245 } 2246 2247 /* 2248 * return error value only when tagset allocation failed 2249 */ 2250 static int nvme_dev_add(struct nvme_dev *dev) 2251 { 2252 int ret; 2253 2254 if (!dev->ctrl.tagset) { 2255 dev->tagset.ops = &nvme_mq_ops; 2256 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2257 dev->tagset.nr_maps = 2; /* default + read */ 2258 if (dev->io_queues[HCTX_TYPE_POLL]) 2259 dev->tagset.nr_maps++; 2260 dev->tagset.timeout = NVME_IO_TIMEOUT; 2261 dev->tagset.numa_node = dev_to_node(dev->dev); 2262 dev->tagset.queue_depth = 2263 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2264 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2265 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2266 dev->tagset.driver_data = dev; 2267 2268 ret = blk_mq_alloc_tag_set(&dev->tagset); 2269 if (ret) { 2270 dev_warn(dev->ctrl.device, 2271 "IO queues tagset allocation failed %d\n", ret); 2272 return ret; 2273 } 2274 dev->ctrl.tagset = &dev->tagset; 2275 } else { 2276 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2277 2278 /* Free previously allocated queues that are no longer usable */ 2279 nvme_free_queues(dev, dev->online_queues); 2280 } 2281 2282 nvme_dbbuf_set(dev); 2283 return 0; 2284 } 2285 2286 static int nvme_pci_enable(struct nvme_dev *dev) 2287 { 2288 int result = -ENOMEM; 2289 struct pci_dev *pdev = to_pci_dev(dev->dev); 2290 2291 if (pci_enable_device_mem(pdev)) 2292 return result; 2293 2294 pci_set_master(pdev); 2295 2296 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2297 goto disable; 2298 2299 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2300 result = -ENODEV; 2301 goto disable; 2302 } 2303 2304 /* 2305 * Some devices and/or platforms don't advertise or work with INTx 2306 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2307 * adjust this later. 2308 */ 2309 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2310 if (result < 0) 2311 return result; 2312 2313 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2314 2315 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2316 io_queue_depth); 2317 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2318 dev->dbs = dev->bar + 4096; 2319 2320 /* 2321 * Temporary fix for the Apple controller found in the MacBook8,1 and 2322 * some MacBook7,1 to avoid controller resets and data loss. 2323 */ 2324 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2325 dev->q_depth = 2; 2326 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2327 "set queue depth=%u to work around controller resets\n", 2328 dev->q_depth); 2329 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2330 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2331 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2332 dev->q_depth = 64; 2333 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2334 "set queue depth=%u\n", dev->q_depth); 2335 } 2336 2337 nvme_map_cmb(dev); 2338 2339 pci_enable_pcie_error_reporting(pdev); 2340 pci_save_state(pdev); 2341 return 0; 2342 2343 disable: 2344 pci_disable_device(pdev); 2345 return result; 2346 } 2347 2348 static void nvme_dev_unmap(struct nvme_dev *dev) 2349 { 2350 if (dev->bar) 2351 iounmap(dev->bar); 2352 pci_release_mem_regions(to_pci_dev(dev->dev)); 2353 } 2354 2355 static void nvme_pci_disable(struct nvme_dev *dev) 2356 { 2357 struct pci_dev *pdev = to_pci_dev(dev->dev); 2358 2359 pci_free_irq_vectors(pdev); 2360 2361 if (pci_is_enabled(pdev)) { 2362 pci_disable_pcie_error_reporting(pdev); 2363 pci_disable_device(pdev); 2364 } 2365 } 2366 2367 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2368 { 2369 bool dead = true, freeze = false; 2370 struct pci_dev *pdev = to_pci_dev(dev->dev); 2371 2372 mutex_lock(&dev->shutdown_lock); 2373 if (pci_is_enabled(pdev)) { 2374 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2375 2376 if (dev->ctrl.state == NVME_CTRL_LIVE || 2377 dev->ctrl.state == NVME_CTRL_RESETTING) { 2378 freeze = true; 2379 nvme_start_freeze(&dev->ctrl); 2380 } 2381 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2382 pdev->error_state != pci_channel_io_normal); 2383 } 2384 2385 /* 2386 * Give the controller a chance to complete all entered requests if 2387 * doing a safe shutdown. 2388 */ 2389 if (!dead && shutdown && freeze) 2390 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2391 2392 nvme_stop_queues(&dev->ctrl); 2393 2394 if (!dead && dev->ctrl.queue_count > 0) { 2395 nvme_disable_io_queues(dev); 2396 nvme_disable_admin_queue(dev, shutdown); 2397 } 2398 nvme_suspend_io_queues(dev); 2399 nvme_suspend_queue(&dev->queues[0]); 2400 nvme_pci_disable(dev); 2401 2402 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2403 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2404 2405 /* 2406 * The driver will not be starting up queues again if shutting down so 2407 * must flush all entered requests to their failed completion to avoid 2408 * deadlocking blk-mq hot-cpu notifier. 2409 */ 2410 if (shutdown) { 2411 nvme_start_queues(&dev->ctrl); 2412 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2413 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2414 } 2415 mutex_unlock(&dev->shutdown_lock); 2416 } 2417 2418 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2419 { 2420 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2421 PAGE_SIZE, PAGE_SIZE, 0); 2422 if (!dev->prp_page_pool) 2423 return -ENOMEM; 2424 2425 /* Optimisation for I/Os between 4k and 128k */ 2426 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2427 256, 256, 0); 2428 if (!dev->prp_small_pool) { 2429 dma_pool_destroy(dev->prp_page_pool); 2430 return -ENOMEM; 2431 } 2432 return 0; 2433 } 2434 2435 static void nvme_release_prp_pools(struct nvme_dev *dev) 2436 { 2437 dma_pool_destroy(dev->prp_page_pool); 2438 dma_pool_destroy(dev->prp_small_pool); 2439 } 2440 2441 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2442 { 2443 struct nvme_dev *dev = to_nvme_dev(ctrl); 2444 2445 nvme_dbbuf_dma_free(dev); 2446 put_device(dev->dev); 2447 if (dev->tagset.tags) 2448 blk_mq_free_tag_set(&dev->tagset); 2449 if (dev->ctrl.admin_q) 2450 blk_put_queue(dev->ctrl.admin_q); 2451 kfree(dev->queues); 2452 free_opal_dev(dev->ctrl.opal_dev); 2453 mempool_destroy(dev->iod_mempool); 2454 kfree(dev); 2455 } 2456 2457 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2458 { 2459 nvme_get_ctrl(&dev->ctrl); 2460 nvme_dev_disable(dev, false); 2461 nvme_kill_queues(&dev->ctrl); 2462 if (!queue_work(nvme_wq, &dev->remove_work)) 2463 nvme_put_ctrl(&dev->ctrl); 2464 } 2465 2466 static void nvme_reset_work(struct work_struct *work) 2467 { 2468 struct nvme_dev *dev = 2469 container_of(work, struct nvme_dev, ctrl.reset_work); 2470 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2471 int result; 2472 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE; 2473 2474 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2475 result = -ENODEV; 2476 goto out; 2477 } 2478 2479 /* 2480 * If we're called to reset a live controller first shut it down before 2481 * moving on. 2482 */ 2483 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2484 nvme_dev_disable(dev, false); 2485 nvme_sync_queues(&dev->ctrl); 2486 2487 mutex_lock(&dev->shutdown_lock); 2488 result = nvme_pci_enable(dev); 2489 if (result) 2490 goto out_unlock; 2491 2492 result = nvme_pci_configure_admin_queue(dev); 2493 if (result) 2494 goto out_unlock; 2495 2496 result = nvme_alloc_admin_tags(dev); 2497 if (result) 2498 goto out_unlock; 2499 2500 /* 2501 * Limit the max command size to prevent iod->sg allocations going 2502 * over a single page. 2503 */ 2504 dev->ctrl.max_hw_sectors = min_t(u32, 2505 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2506 dev->ctrl.max_segments = NVME_MAX_SEGS; 2507 2508 /* 2509 * Don't limit the IOMMU merged segment size. 2510 */ 2511 dma_set_max_seg_size(dev->dev, 0xffffffff); 2512 2513 mutex_unlock(&dev->shutdown_lock); 2514 2515 /* 2516 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2517 * initializing procedure here. 2518 */ 2519 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2520 dev_warn(dev->ctrl.device, 2521 "failed to mark controller CONNECTING\n"); 2522 result = -EBUSY; 2523 goto out; 2524 } 2525 2526 result = nvme_init_identify(&dev->ctrl); 2527 if (result) 2528 goto out; 2529 2530 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2531 if (!dev->ctrl.opal_dev) 2532 dev->ctrl.opal_dev = 2533 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2534 else if (was_suspend) 2535 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2536 } else { 2537 free_opal_dev(dev->ctrl.opal_dev); 2538 dev->ctrl.opal_dev = NULL; 2539 } 2540 2541 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2542 result = nvme_dbbuf_dma_alloc(dev); 2543 if (result) 2544 dev_warn(dev->dev, 2545 "unable to allocate dma for dbbuf\n"); 2546 } 2547 2548 if (dev->ctrl.hmpre) { 2549 result = nvme_setup_host_mem(dev); 2550 if (result < 0) 2551 goto out; 2552 } 2553 2554 result = nvme_setup_io_queues(dev); 2555 if (result) 2556 goto out; 2557 2558 /* 2559 * Keep the controller around but remove all namespaces if we don't have 2560 * any working I/O queue. 2561 */ 2562 if (dev->online_queues < 2) { 2563 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2564 nvme_kill_queues(&dev->ctrl); 2565 nvme_remove_namespaces(&dev->ctrl); 2566 new_state = NVME_CTRL_ADMIN_ONLY; 2567 } else { 2568 nvme_start_queues(&dev->ctrl); 2569 nvme_wait_freeze(&dev->ctrl); 2570 /* hit this only when allocate tagset fails */ 2571 if (nvme_dev_add(dev)) 2572 new_state = NVME_CTRL_ADMIN_ONLY; 2573 nvme_unfreeze(&dev->ctrl); 2574 } 2575 2576 /* 2577 * If only admin queue live, keep it to do further investigation or 2578 * recovery. 2579 */ 2580 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) { 2581 dev_warn(dev->ctrl.device, 2582 "failed to mark controller state %d\n", new_state); 2583 result = -ENODEV; 2584 goto out; 2585 } 2586 2587 nvme_start_ctrl(&dev->ctrl); 2588 return; 2589 2590 out_unlock: 2591 mutex_unlock(&dev->shutdown_lock); 2592 out: 2593 if (result) 2594 dev_warn(dev->ctrl.device, 2595 "Removing after probe failure status: %d\n", result); 2596 nvme_remove_dead_ctrl(dev); 2597 } 2598 2599 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2600 { 2601 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2602 struct pci_dev *pdev = to_pci_dev(dev->dev); 2603 2604 if (pci_get_drvdata(pdev)) 2605 device_release_driver(&pdev->dev); 2606 nvme_put_ctrl(&dev->ctrl); 2607 } 2608 2609 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2610 { 2611 *val = readl(to_nvme_dev(ctrl)->bar + off); 2612 return 0; 2613 } 2614 2615 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2616 { 2617 writel(val, to_nvme_dev(ctrl)->bar + off); 2618 return 0; 2619 } 2620 2621 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2622 { 2623 *val = readq(to_nvme_dev(ctrl)->bar + off); 2624 return 0; 2625 } 2626 2627 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2628 { 2629 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2630 2631 return snprintf(buf, size, "%s", dev_name(&pdev->dev)); 2632 } 2633 2634 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2635 .name = "pcie", 2636 .module = THIS_MODULE, 2637 .flags = NVME_F_METADATA_SUPPORTED | 2638 NVME_F_PCI_P2PDMA, 2639 .reg_read32 = nvme_pci_reg_read32, 2640 .reg_write32 = nvme_pci_reg_write32, 2641 .reg_read64 = nvme_pci_reg_read64, 2642 .free_ctrl = nvme_pci_free_ctrl, 2643 .submit_async_event = nvme_pci_submit_async_event, 2644 .get_address = nvme_pci_get_address, 2645 }; 2646 2647 static int nvme_dev_map(struct nvme_dev *dev) 2648 { 2649 struct pci_dev *pdev = to_pci_dev(dev->dev); 2650 2651 if (pci_request_mem_regions(pdev, "nvme")) 2652 return -ENODEV; 2653 2654 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2655 goto release; 2656 2657 return 0; 2658 release: 2659 pci_release_mem_regions(pdev); 2660 return -ENODEV; 2661 } 2662 2663 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2664 { 2665 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2666 /* 2667 * Several Samsung devices seem to drop off the PCIe bus 2668 * randomly when APST is on and uses the deepest sleep state. 2669 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2670 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2671 * 950 PRO 256GB", but it seems to be restricted to two Dell 2672 * laptops. 2673 */ 2674 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2675 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2676 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2677 return NVME_QUIRK_NO_DEEPEST_PS; 2678 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2679 /* 2680 * Samsung SSD 960 EVO drops off the PCIe bus after system 2681 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2682 * within few minutes after bootup on a Coffee Lake board - 2683 * ASUS PRIME Z370-A 2684 */ 2685 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2686 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2687 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2688 return NVME_QUIRK_NO_APST; 2689 } 2690 2691 return 0; 2692 } 2693 2694 static void nvme_async_probe(void *data, async_cookie_t cookie) 2695 { 2696 struct nvme_dev *dev = data; 2697 2698 nvme_reset_ctrl_sync(&dev->ctrl); 2699 flush_work(&dev->ctrl.scan_work); 2700 nvme_put_ctrl(&dev->ctrl); 2701 } 2702 2703 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2704 { 2705 int node, result = -ENOMEM; 2706 struct nvme_dev *dev; 2707 unsigned long quirks = id->driver_data; 2708 size_t alloc_size; 2709 2710 node = dev_to_node(&pdev->dev); 2711 if (node == NUMA_NO_NODE) 2712 set_dev_node(&pdev->dev, first_memory_node); 2713 2714 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2715 if (!dev) 2716 return -ENOMEM; 2717 2718 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue), 2719 GFP_KERNEL, node); 2720 if (!dev->queues) 2721 goto free; 2722 2723 dev->dev = get_device(&pdev->dev); 2724 pci_set_drvdata(pdev, dev); 2725 2726 result = nvme_dev_map(dev); 2727 if (result) 2728 goto put_pci; 2729 2730 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2731 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2732 mutex_init(&dev->shutdown_lock); 2733 2734 result = nvme_setup_prp_pools(dev); 2735 if (result) 2736 goto unmap; 2737 2738 quirks |= check_vendor_combination_bug(pdev); 2739 2740 /* 2741 * Double check that our mempool alloc size will cover the biggest 2742 * command we support. 2743 */ 2744 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, 2745 NVME_MAX_SEGS, true); 2746 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2747 2748 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2749 mempool_kfree, 2750 (void *) alloc_size, 2751 GFP_KERNEL, node); 2752 if (!dev->iod_mempool) { 2753 result = -ENOMEM; 2754 goto release_pools; 2755 } 2756 2757 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2758 quirks); 2759 if (result) 2760 goto release_mempool; 2761 2762 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2763 2764 nvme_get_ctrl(&dev->ctrl); 2765 async_schedule(nvme_async_probe, dev); 2766 2767 return 0; 2768 2769 release_mempool: 2770 mempool_destroy(dev->iod_mempool); 2771 release_pools: 2772 nvme_release_prp_pools(dev); 2773 unmap: 2774 nvme_dev_unmap(dev); 2775 put_pci: 2776 put_device(dev->dev); 2777 free: 2778 kfree(dev->queues); 2779 kfree(dev); 2780 return result; 2781 } 2782 2783 static void nvme_reset_prepare(struct pci_dev *pdev) 2784 { 2785 struct nvme_dev *dev = pci_get_drvdata(pdev); 2786 nvme_dev_disable(dev, false); 2787 } 2788 2789 static void nvme_reset_done(struct pci_dev *pdev) 2790 { 2791 struct nvme_dev *dev = pci_get_drvdata(pdev); 2792 nvme_reset_ctrl_sync(&dev->ctrl); 2793 } 2794 2795 static void nvme_shutdown(struct pci_dev *pdev) 2796 { 2797 struct nvme_dev *dev = pci_get_drvdata(pdev); 2798 nvme_dev_disable(dev, true); 2799 } 2800 2801 /* 2802 * The driver's remove may be called on a device in a partially initialized 2803 * state. This function must not have any dependencies on the device state in 2804 * order to proceed. 2805 */ 2806 static void nvme_remove(struct pci_dev *pdev) 2807 { 2808 struct nvme_dev *dev = pci_get_drvdata(pdev); 2809 2810 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2811 pci_set_drvdata(pdev, NULL); 2812 2813 if (!pci_device_is_present(pdev)) { 2814 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2815 nvme_dev_disable(dev, true); 2816 nvme_dev_remove_admin(dev); 2817 } 2818 2819 flush_work(&dev->ctrl.reset_work); 2820 nvme_stop_ctrl(&dev->ctrl); 2821 nvme_remove_namespaces(&dev->ctrl); 2822 nvme_dev_disable(dev, true); 2823 nvme_release_cmb(dev); 2824 nvme_free_host_mem(dev); 2825 nvme_dev_remove_admin(dev); 2826 nvme_free_queues(dev, 0); 2827 nvme_uninit_ctrl(&dev->ctrl); 2828 nvme_release_prp_pools(dev); 2829 nvme_dev_unmap(dev); 2830 nvme_put_ctrl(&dev->ctrl); 2831 } 2832 2833 #ifdef CONFIG_PM_SLEEP 2834 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2835 { 2836 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2837 } 2838 2839 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 2840 { 2841 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 2842 } 2843 2844 static int nvme_resume(struct device *dev) 2845 { 2846 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2847 struct nvme_ctrl *ctrl = &ndev->ctrl; 2848 2849 if (pm_resume_via_firmware() || !ctrl->npss || 2850 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 2851 nvme_reset_ctrl(ctrl); 2852 return 0; 2853 } 2854 2855 static int nvme_suspend(struct device *dev) 2856 { 2857 struct pci_dev *pdev = to_pci_dev(dev); 2858 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2859 struct nvme_ctrl *ctrl = &ndev->ctrl; 2860 int ret = -EBUSY; 2861 2862 /* 2863 * The platform does not remove power for a kernel managed suspend so 2864 * use host managed nvme power settings for lowest idle power if 2865 * possible. This should have quicker resume latency than a full device 2866 * shutdown. But if the firmware is involved after the suspend or the 2867 * device does not support any non-default power states, shut down the 2868 * device fully. 2869 */ 2870 if (pm_suspend_via_firmware() || !ctrl->npss) { 2871 nvme_dev_disable(ndev, true); 2872 return 0; 2873 } 2874 2875 nvme_start_freeze(ctrl); 2876 nvme_wait_freeze(ctrl); 2877 nvme_sync_queues(ctrl); 2878 2879 if (ctrl->state != NVME_CTRL_LIVE && 2880 ctrl->state != NVME_CTRL_ADMIN_ONLY) 2881 goto unfreeze; 2882 2883 ndev->last_ps = 0; 2884 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 2885 if (ret < 0) 2886 goto unfreeze; 2887 2888 ret = nvme_set_power_state(ctrl, ctrl->npss); 2889 if (ret < 0) 2890 goto unfreeze; 2891 2892 if (ret) { 2893 /* 2894 * Clearing npss forces a controller reset on resume. The 2895 * correct value will be resdicovered then. 2896 */ 2897 nvme_dev_disable(ndev, true); 2898 ctrl->npss = 0; 2899 ret = 0; 2900 goto unfreeze; 2901 } 2902 /* 2903 * A saved state prevents pci pm from generically controlling the 2904 * device's power. If we're using protocol specific settings, we don't 2905 * want pci interfering. 2906 */ 2907 pci_save_state(pdev); 2908 unfreeze: 2909 nvme_unfreeze(ctrl); 2910 return ret; 2911 } 2912 2913 static int nvme_simple_suspend(struct device *dev) 2914 { 2915 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2916 2917 nvme_dev_disable(ndev, true); 2918 return 0; 2919 } 2920 2921 static int nvme_simple_resume(struct device *dev) 2922 { 2923 struct pci_dev *pdev = to_pci_dev(dev); 2924 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2925 2926 nvme_reset_ctrl(&ndev->ctrl); 2927 return 0; 2928 } 2929 2930 static const struct dev_pm_ops nvme_dev_pm_ops = { 2931 .suspend = nvme_suspend, 2932 .resume = nvme_resume, 2933 .freeze = nvme_simple_suspend, 2934 .thaw = nvme_simple_resume, 2935 .poweroff = nvme_simple_suspend, 2936 .restore = nvme_simple_resume, 2937 }; 2938 #endif /* CONFIG_PM_SLEEP */ 2939 2940 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2941 pci_channel_state_t state) 2942 { 2943 struct nvme_dev *dev = pci_get_drvdata(pdev); 2944 2945 /* 2946 * A frozen channel requires a reset. When detected, this method will 2947 * shutdown the controller to quiesce. The controller will be restarted 2948 * after the slot reset through driver's slot_reset callback. 2949 */ 2950 switch (state) { 2951 case pci_channel_io_normal: 2952 return PCI_ERS_RESULT_CAN_RECOVER; 2953 case pci_channel_io_frozen: 2954 dev_warn(dev->ctrl.device, 2955 "frozen state error detected, reset controller\n"); 2956 nvme_dev_disable(dev, false); 2957 return PCI_ERS_RESULT_NEED_RESET; 2958 case pci_channel_io_perm_failure: 2959 dev_warn(dev->ctrl.device, 2960 "failure state error detected, request disconnect\n"); 2961 return PCI_ERS_RESULT_DISCONNECT; 2962 } 2963 return PCI_ERS_RESULT_NEED_RESET; 2964 } 2965 2966 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2967 { 2968 struct nvme_dev *dev = pci_get_drvdata(pdev); 2969 2970 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2971 pci_restore_state(pdev); 2972 nvme_reset_ctrl(&dev->ctrl); 2973 return PCI_ERS_RESULT_RECOVERED; 2974 } 2975 2976 static void nvme_error_resume(struct pci_dev *pdev) 2977 { 2978 struct nvme_dev *dev = pci_get_drvdata(pdev); 2979 2980 flush_work(&dev->ctrl.reset_work); 2981 } 2982 2983 static const struct pci_error_handlers nvme_err_handler = { 2984 .error_detected = nvme_error_detected, 2985 .slot_reset = nvme_slot_reset, 2986 .resume = nvme_error_resume, 2987 .reset_prepare = nvme_reset_prepare, 2988 .reset_done = nvme_reset_done, 2989 }; 2990 2991 static const struct pci_device_id nvme_id_table[] = { 2992 { PCI_VDEVICE(INTEL, 0x0953), 2993 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2994 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2995 { PCI_VDEVICE(INTEL, 0x0a53), 2996 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2997 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2998 { PCI_VDEVICE(INTEL, 0x0a54), 2999 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3000 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3001 { PCI_VDEVICE(INTEL, 0x0a55), 3002 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3003 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3004 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3005 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3006 NVME_QUIRK_MEDIUM_PRIO_SQ }, 3007 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3008 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3009 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3010 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3011 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3012 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3013 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3014 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3015 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3016 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3017 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3018 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3019 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3020 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3021 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3022 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3023 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3024 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3025 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3026 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3027 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3028 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3029 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3030 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3031 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3032 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3033 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 3034 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3035 { 0, } 3036 }; 3037 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3038 3039 static struct pci_driver nvme_driver = { 3040 .name = "nvme", 3041 .id_table = nvme_id_table, 3042 .probe = nvme_probe, 3043 .remove = nvme_remove, 3044 .shutdown = nvme_shutdown, 3045 #ifdef CONFIG_PM_SLEEP 3046 .driver = { 3047 .pm = &nvme_dev_pm_ops, 3048 }, 3049 #endif 3050 .sriov_configure = pci_sriov_configure_simple, 3051 .err_handler = &nvme_err_handler, 3052 }; 3053 3054 static int __init nvme_init(void) 3055 { 3056 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3057 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3058 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3059 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3060 return pci_register_driver(&nvme_driver); 3061 } 3062 3063 static void __exit nvme_exit(void) 3064 { 3065 pci_unregister_driver(&nvme_driver); 3066 flush_workqueue(nvme_wq); 3067 } 3068 3069 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3070 MODULE_LICENSE("GPL"); 3071 MODULE_VERSION("1.0"); 3072 module_init(nvme_init); 3073 module_exit(nvme_exit); 3074