xref: /openbmc/linux/drivers/nvme/host/pci.c (revision a4e1d0b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	4096
45 #define NVME_MAX_SEGS	127
46 
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49 
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53 
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58 
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 		"Use SGLs when average request segment size is larger or equal to "
63 		"this size. Use 0 to disable SGLs.");
64 
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 	.set = io_queue_depth_set,
70 	.get = param_get_uint,
71 };
72 
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76 
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79 	unsigned int n;
80 	int ret;
81 
82 	ret = kstrtouint(val, 10, &n);
83 	if (ret != 0 || n > num_possible_cpus())
84 		return -EINVAL;
85 	return param_set_uint(val, kp);
86 }
87 
88 static const struct kernel_param_ops io_queue_count_ops = {
89 	.set = io_queue_count_set,
90 	.get = param_get_uint,
91 };
92 
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 	"Number of queues to use for writes. If not set, reads and writes "
97 	"will share a queue set.");
98 
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102 
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106 
107 struct nvme_dev;
108 struct nvme_queue;
109 
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112 
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117 	struct nvme_queue *queues;
118 	struct blk_mq_tag_set tagset;
119 	struct blk_mq_tag_set admin_tagset;
120 	u32 __iomem *dbs;
121 	struct device *dev;
122 	struct dma_pool *prp_page_pool;
123 	struct dma_pool *prp_small_pool;
124 	unsigned online_queues;
125 	unsigned max_qid;
126 	unsigned io_queues[HCTX_MAX_TYPES];
127 	unsigned int num_vecs;
128 	u32 q_depth;
129 	int io_sqes;
130 	u32 db_stride;
131 	void __iomem *bar;
132 	unsigned long bar_mapped_size;
133 	struct work_struct remove_work;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 
162 	bool attrs_added;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	u32 *dbbuf_sq_db;
214 	u32 *dbbuf_cq_db;
215 	u32 *dbbuf_sq_ei;
216 	u32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227 	struct nvme_request req;
228 	struct nvme_command cmd;
229 	struct nvme_queue *nvmeq;
230 	bool use_sgl;
231 	int aborted;
232 	int npages;		/* In the PRP list. 0 means small pool in use */
233 	dma_addr_t first_dma;
234 	unsigned int dma_len;	/* length of single DMA segment mapping */
235 	dma_addr_t meta_dma;
236 	struct sg_table sgt;
237 };
238 
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs) {
249 		/*
250 		 * Clear the dbbuf memory so the driver doesn't observe stale
251 		 * values from the previous instantiation.
252 		 */
253 		memset(dev->dbbuf_dbs, 0, mem_size);
254 		memset(dev->dbbuf_eis, 0, mem_size);
255 		return 0;
256 	}
257 
258 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259 					    &dev->dbbuf_dbs_dma_addr,
260 					    GFP_KERNEL);
261 	if (!dev->dbbuf_dbs)
262 		return -ENOMEM;
263 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264 					    &dev->dbbuf_eis_dma_addr,
265 					    GFP_KERNEL);
266 	if (!dev->dbbuf_eis) {
267 		dma_free_coherent(dev->dev, mem_size,
268 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269 		dev->dbbuf_dbs = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 
276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278 	unsigned int mem_size = nvme_dbbuf_size(dev);
279 
280 	if (dev->dbbuf_dbs) {
281 		dma_free_coherent(dev->dev, mem_size,
282 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283 		dev->dbbuf_dbs = NULL;
284 	}
285 	if (dev->dbbuf_eis) {
286 		dma_free_coherent(dev->dev, mem_size,
287 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288 		dev->dbbuf_eis = NULL;
289 	}
290 }
291 
292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293 			    struct nvme_queue *nvmeq, int qid)
294 {
295 	if (!dev->dbbuf_dbs || !qid)
296 		return;
297 
298 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303 
304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306 	if (!nvmeq->qid)
307 		return;
308 
309 	nvmeq->dbbuf_sq_db = NULL;
310 	nvmeq->dbbuf_cq_db = NULL;
311 	nvmeq->dbbuf_sq_ei = NULL;
312 	nvmeq->dbbuf_cq_ei = NULL;
313 }
314 
315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317 	struct nvme_command c = { };
318 	unsigned int i;
319 
320 	if (!dev->dbbuf_dbs)
321 		return;
322 
323 	c.dbbuf.opcode = nvme_admin_dbbuf;
324 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326 
327 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329 		/* Free memory and continue on */
330 		nvme_dbbuf_dma_free(dev);
331 
332 		for (i = 1; i <= dev->online_queues; i++)
333 			nvme_dbbuf_free(&dev->queues[i]);
334 	}
335 }
336 
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341 
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344 					      volatile u32 *dbbuf_ei)
345 {
346 	if (dbbuf_db) {
347 		u16 old_value;
348 
349 		/*
350 		 * Ensure that the queue is written before updating
351 		 * the doorbell in memory
352 		 */
353 		wmb();
354 
355 		old_value = *dbbuf_db;
356 		*dbbuf_db = value;
357 
358 		/*
359 		 * Ensure that the doorbell is updated before reading the event
360 		 * index from memory.  The controller needs to provide similar
361 		 * ordering to ensure the envent index is updated before reading
362 		 * the doorbell.
363 		 */
364 		mb();
365 
366 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 			return false;
368 	}
369 
370 	return true;
371 }
372 
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_pci_npages_prp(void)
379 {
380 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381 				      NVME_CTRL_PAGE_SIZE);
382 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384 
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(void)
390 {
391 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392 			PAGE_SIZE);
393 }
394 
395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398 
399 	return sizeof(__le64 *) * npages +
400 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402 
403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 				unsigned int hctx_idx)
405 {
406 	struct nvme_dev *dev = data;
407 	struct nvme_queue *nvmeq = &dev->queues[0];
408 
409 	WARN_ON(hctx_idx != 0);
410 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411 
412 	hctx->driver_data = nvmeq;
413 	return 0;
414 }
415 
416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417 			  unsigned int hctx_idx)
418 {
419 	struct nvme_dev *dev = data;
420 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421 
422 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423 	hctx->driver_data = nvmeq;
424 	return 0;
425 }
426 
427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
428 		struct request *req, unsigned int hctx_idx,
429 		unsigned int numa_node)
430 {
431 	struct nvme_dev *dev = set->driver_data;
432 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
434 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
435 
436 	BUG_ON(!nvmeq);
437 	iod->nvmeq = nvmeq;
438 
439 	nvme_req(req)->ctrl = &dev->ctrl;
440 	nvme_req(req)->cmd = &iod->cmd;
441 	return 0;
442 }
443 
444 static int queue_irq_offset(struct nvme_dev *dev)
445 {
446 	/* if we have more than 1 vec, admin queue offsets us by 1 */
447 	if (dev->num_vecs > 1)
448 		return 1;
449 
450 	return 0;
451 }
452 
453 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
454 {
455 	struct nvme_dev *dev = set->driver_data;
456 	int i, qoff, offset;
457 
458 	offset = queue_irq_offset(dev);
459 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
460 		struct blk_mq_queue_map *map = &set->map[i];
461 
462 		map->nr_queues = dev->io_queues[i];
463 		if (!map->nr_queues) {
464 			BUG_ON(i == HCTX_TYPE_DEFAULT);
465 			continue;
466 		}
467 
468 		/*
469 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
470 		 * affinity), so use the regular blk-mq cpu mapping
471 		 */
472 		map->queue_offset = qoff;
473 		if (i != HCTX_TYPE_POLL && offset)
474 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
475 		else
476 			blk_mq_map_queues(map);
477 		qoff += map->nr_queues;
478 		offset += map->nr_queues;
479 	}
480 }
481 
482 /*
483  * Write sq tail if we are asked to, or if the next command would wrap.
484  */
485 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
486 {
487 	if (!write_sq) {
488 		u16 next_tail = nvmeq->sq_tail + 1;
489 
490 		if (next_tail == nvmeq->q_depth)
491 			next_tail = 0;
492 		if (next_tail != nvmeq->last_sq_tail)
493 			return;
494 	}
495 
496 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
497 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
498 		writel(nvmeq->sq_tail, nvmeq->q_db);
499 	nvmeq->last_sq_tail = nvmeq->sq_tail;
500 }
501 
502 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
503 				    struct nvme_command *cmd)
504 {
505 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
506 		absolute_pointer(cmd), sizeof(*cmd));
507 	if (++nvmeq->sq_tail == nvmeq->q_depth)
508 		nvmeq->sq_tail = 0;
509 }
510 
511 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
512 {
513 	struct nvme_queue *nvmeq = hctx->driver_data;
514 
515 	spin_lock(&nvmeq->sq_lock);
516 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
517 		nvme_write_sq_db(nvmeq, true);
518 	spin_unlock(&nvmeq->sq_lock);
519 }
520 
521 static void **nvme_pci_iod_list(struct request *req)
522 {
523 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
524 	return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
525 }
526 
527 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
528 {
529 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
530 	int nseg = blk_rq_nr_phys_segments(req);
531 	unsigned int avg_seg_size;
532 
533 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
534 
535 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
536 		return false;
537 	if (!iod->nvmeq->qid)
538 		return false;
539 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
540 		return false;
541 	return true;
542 }
543 
544 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
545 {
546 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
547 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
548 	dma_addr_t dma_addr = iod->first_dma;
549 	int i;
550 
551 	for (i = 0; i < iod->npages; i++) {
552 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
553 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
554 
555 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
556 		dma_addr = next_dma_addr;
557 	}
558 }
559 
560 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
561 {
562 	const int last_sg = SGES_PER_PAGE - 1;
563 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
564 	dma_addr_t dma_addr = iod->first_dma;
565 	int i;
566 
567 	for (i = 0; i < iod->npages; i++) {
568 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
569 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
570 
571 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
572 		dma_addr = next_dma_addr;
573 	}
574 }
575 
576 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
577 {
578 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
579 
580 	if (iod->dma_len) {
581 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
582 			       rq_dma_dir(req));
583 		return;
584 	}
585 
586 	WARN_ON_ONCE(!iod->sgt.nents);
587 
588 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
589 
590 	if (iod->npages == 0)
591 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
592 			      iod->first_dma);
593 	else if (iod->use_sgl)
594 		nvme_free_sgls(dev, req);
595 	else
596 		nvme_free_prps(dev, req);
597 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
598 }
599 
600 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
601 {
602 	int i;
603 	struct scatterlist *sg;
604 
605 	for_each_sg(sgl, sg, nents, i) {
606 		dma_addr_t phys = sg_phys(sg);
607 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
608 			"dma_address:%pad dma_length:%d\n",
609 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
610 			sg_dma_len(sg));
611 	}
612 }
613 
614 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
615 		struct request *req, struct nvme_rw_command *cmnd)
616 {
617 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
618 	struct dma_pool *pool;
619 	int length = blk_rq_payload_bytes(req);
620 	struct scatterlist *sg = iod->sgt.sgl;
621 	int dma_len = sg_dma_len(sg);
622 	u64 dma_addr = sg_dma_address(sg);
623 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
624 	__le64 *prp_list;
625 	void **list = nvme_pci_iod_list(req);
626 	dma_addr_t prp_dma;
627 	int nprps, i;
628 
629 	length -= (NVME_CTRL_PAGE_SIZE - offset);
630 	if (length <= 0) {
631 		iod->first_dma = 0;
632 		goto done;
633 	}
634 
635 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
636 	if (dma_len) {
637 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
638 	} else {
639 		sg = sg_next(sg);
640 		dma_addr = sg_dma_address(sg);
641 		dma_len = sg_dma_len(sg);
642 	}
643 
644 	if (length <= NVME_CTRL_PAGE_SIZE) {
645 		iod->first_dma = dma_addr;
646 		goto done;
647 	}
648 
649 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
650 	if (nprps <= (256 / 8)) {
651 		pool = dev->prp_small_pool;
652 		iod->npages = 0;
653 	} else {
654 		pool = dev->prp_page_pool;
655 		iod->npages = 1;
656 	}
657 
658 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
659 	if (!prp_list) {
660 		iod->npages = -1;
661 		return BLK_STS_RESOURCE;
662 	}
663 	list[0] = prp_list;
664 	iod->first_dma = prp_dma;
665 	i = 0;
666 	for (;;) {
667 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
668 			__le64 *old_prp_list = prp_list;
669 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
670 			if (!prp_list)
671 				goto free_prps;
672 			list[iod->npages++] = prp_list;
673 			prp_list[0] = old_prp_list[i - 1];
674 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
675 			i = 1;
676 		}
677 		prp_list[i++] = cpu_to_le64(dma_addr);
678 		dma_len -= NVME_CTRL_PAGE_SIZE;
679 		dma_addr += NVME_CTRL_PAGE_SIZE;
680 		length -= NVME_CTRL_PAGE_SIZE;
681 		if (length <= 0)
682 			break;
683 		if (dma_len > 0)
684 			continue;
685 		if (unlikely(dma_len < 0))
686 			goto bad_sgl;
687 		sg = sg_next(sg);
688 		dma_addr = sg_dma_address(sg);
689 		dma_len = sg_dma_len(sg);
690 	}
691 done:
692 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
693 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
694 	return BLK_STS_OK;
695 free_prps:
696 	nvme_free_prps(dev, req);
697 	return BLK_STS_RESOURCE;
698 bad_sgl:
699 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
700 			"Invalid SGL for payload:%d nents:%d\n",
701 			blk_rq_payload_bytes(req), iod->sgt.nents);
702 	return BLK_STS_IOERR;
703 }
704 
705 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
706 		struct scatterlist *sg)
707 {
708 	sge->addr = cpu_to_le64(sg_dma_address(sg));
709 	sge->length = cpu_to_le32(sg_dma_len(sg));
710 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
711 }
712 
713 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
714 		dma_addr_t dma_addr, int entries)
715 {
716 	sge->addr = cpu_to_le64(dma_addr);
717 	if (entries < SGES_PER_PAGE) {
718 		sge->length = cpu_to_le32(entries * sizeof(*sge));
719 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
720 	} else {
721 		sge->length = cpu_to_le32(PAGE_SIZE);
722 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
723 	}
724 }
725 
726 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
727 		struct request *req, struct nvme_rw_command *cmd)
728 {
729 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
730 	struct dma_pool *pool;
731 	struct nvme_sgl_desc *sg_list;
732 	struct scatterlist *sg = iod->sgt.sgl;
733 	unsigned int entries = iod->sgt.nents;
734 	dma_addr_t sgl_dma;
735 	int i = 0;
736 
737 	/* setting the transfer type as SGL */
738 	cmd->flags = NVME_CMD_SGL_METABUF;
739 
740 	if (entries == 1) {
741 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
742 		return BLK_STS_OK;
743 	}
744 
745 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
746 		pool = dev->prp_small_pool;
747 		iod->npages = 0;
748 	} else {
749 		pool = dev->prp_page_pool;
750 		iod->npages = 1;
751 	}
752 
753 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
754 	if (!sg_list) {
755 		iod->npages = -1;
756 		return BLK_STS_RESOURCE;
757 	}
758 
759 	nvme_pci_iod_list(req)[0] = sg_list;
760 	iod->first_dma = sgl_dma;
761 
762 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
763 
764 	do {
765 		if (i == SGES_PER_PAGE) {
766 			struct nvme_sgl_desc *old_sg_desc = sg_list;
767 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
768 
769 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770 			if (!sg_list)
771 				goto free_sgls;
772 
773 			i = 0;
774 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
775 			sg_list[i++] = *link;
776 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
777 		}
778 
779 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
780 		sg = sg_next(sg);
781 	} while (--entries > 0);
782 
783 	return BLK_STS_OK;
784 free_sgls:
785 	nvme_free_sgls(dev, req);
786 	return BLK_STS_RESOURCE;
787 }
788 
789 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
790 		struct request *req, struct nvme_rw_command *cmnd,
791 		struct bio_vec *bv)
792 {
793 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
794 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
795 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
796 
797 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
798 	if (dma_mapping_error(dev->dev, iod->first_dma))
799 		return BLK_STS_RESOURCE;
800 	iod->dma_len = bv->bv_len;
801 
802 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
803 	if (bv->bv_len > first_prp_len)
804 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
805 	return BLK_STS_OK;
806 }
807 
808 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
809 		struct request *req, struct nvme_rw_command *cmnd,
810 		struct bio_vec *bv)
811 {
812 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
813 
814 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
815 	if (dma_mapping_error(dev->dev, iod->first_dma))
816 		return BLK_STS_RESOURCE;
817 	iod->dma_len = bv->bv_len;
818 
819 	cmnd->flags = NVME_CMD_SGL_METABUF;
820 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
821 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
822 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
823 	return BLK_STS_OK;
824 }
825 
826 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
827 		struct nvme_command *cmnd)
828 {
829 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 	blk_status_t ret = BLK_STS_RESOURCE;
831 	int rc;
832 
833 	if (blk_rq_nr_phys_segments(req) == 1) {
834 		struct bio_vec bv = req_bvec(req);
835 
836 		if (!is_pci_p2pdma_page(bv.bv_page)) {
837 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
838 				return nvme_setup_prp_simple(dev, req,
839 							     &cmnd->rw, &bv);
840 
841 			if (iod->nvmeq->qid && sgl_threshold &&
842 			    nvme_ctrl_sgl_supported(&dev->ctrl))
843 				return nvme_setup_sgl_simple(dev, req,
844 							     &cmnd->rw, &bv);
845 		}
846 	}
847 
848 	iod->dma_len = 0;
849 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
850 	if (!iod->sgt.sgl)
851 		return BLK_STS_RESOURCE;
852 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
853 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
854 	if (!iod->sgt.orig_nents)
855 		goto out_free_sg;
856 
857 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
858 			     DMA_ATTR_NO_WARN);
859 	if (rc) {
860 		if (rc == -EREMOTEIO)
861 			ret = BLK_STS_TARGET;
862 		goto out_free_sg;
863 	}
864 
865 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
866 	if (iod->use_sgl)
867 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
868 	else
869 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
870 	if (ret != BLK_STS_OK)
871 		goto out_unmap_sg;
872 	return BLK_STS_OK;
873 
874 out_unmap_sg:
875 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
876 out_free_sg:
877 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
878 	return ret;
879 }
880 
881 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
882 		struct nvme_command *cmnd)
883 {
884 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
885 
886 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
887 			rq_dma_dir(req), 0);
888 	if (dma_mapping_error(dev->dev, iod->meta_dma))
889 		return BLK_STS_IOERR;
890 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
891 	return BLK_STS_OK;
892 }
893 
894 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
895 {
896 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
897 	blk_status_t ret;
898 
899 	iod->aborted = 0;
900 	iod->npages = -1;
901 	iod->sgt.nents = 0;
902 
903 	ret = nvme_setup_cmd(req->q->queuedata, req);
904 	if (ret)
905 		return ret;
906 
907 	if (blk_rq_nr_phys_segments(req)) {
908 		ret = nvme_map_data(dev, req, &iod->cmd);
909 		if (ret)
910 			goto out_free_cmd;
911 	}
912 
913 	if (blk_integrity_rq(req)) {
914 		ret = nvme_map_metadata(dev, req, &iod->cmd);
915 		if (ret)
916 			goto out_unmap_data;
917 	}
918 
919 	blk_mq_start_request(req);
920 	return BLK_STS_OK;
921 out_unmap_data:
922 	nvme_unmap_data(dev, req);
923 out_free_cmd:
924 	nvme_cleanup_cmd(req);
925 	return ret;
926 }
927 
928 /*
929  * NOTE: ns is NULL when called on the admin queue.
930  */
931 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
932 			 const struct blk_mq_queue_data *bd)
933 {
934 	struct nvme_queue *nvmeq = hctx->driver_data;
935 	struct nvme_dev *dev = nvmeq->dev;
936 	struct request *req = bd->rq;
937 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
938 	blk_status_t ret;
939 
940 	/*
941 	 * We should not need to do this, but we're still using this to
942 	 * ensure we can drain requests on a dying queue.
943 	 */
944 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
945 		return BLK_STS_IOERR;
946 
947 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
948 		return nvme_fail_nonready_command(&dev->ctrl, req);
949 
950 	ret = nvme_prep_rq(dev, req);
951 	if (unlikely(ret))
952 		return ret;
953 	spin_lock(&nvmeq->sq_lock);
954 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
955 	nvme_write_sq_db(nvmeq, bd->last);
956 	spin_unlock(&nvmeq->sq_lock);
957 	return BLK_STS_OK;
958 }
959 
960 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
961 {
962 	spin_lock(&nvmeq->sq_lock);
963 	while (!rq_list_empty(*rqlist)) {
964 		struct request *req = rq_list_pop(rqlist);
965 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 
967 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
968 	}
969 	nvme_write_sq_db(nvmeq, true);
970 	spin_unlock(&nvmeq->sq_lock);
971 }
972 
973 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
974 {
975 	/*
976 	 * We should not need to do this, but we're still using this to
977 	 * ensure we can drain requests on a dying queue.
978 	 */
979 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
980 		return false;
981 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
982 		return false;
983 
984 	req->mq_hctx->tags->rqs[req->tag] = req;
985 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
986 }
987 
988 static void nvme_queue_rqs(struct request **rqlist)
989 {
990 	struct request *req, *next, *prev = NULL;
991 	struct request *requeue_list = NULL;
992 
993 	rq_list_for_each_safe(rqlist, req, next) {
994 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
995 
996 		if (!nvme_prep_rq_batch(nvmeq, req)) {
997 			/* detach 'req' and add to remainder list */
998 			rq_list_move(rqlist, &requeue_list, req, prev);
999 
1000 			req = prev;
1001 			if (!req)
1002 				continue;
1003 		}
1004 
1005 		if (!next || req->mq_hctx != next->mq_hctx) {
1006 			/* detach rest of list, and submit */
1007 			req->rq_next = NULL;
1008 			nvme_submit_cmds(nvmeq, rqlist);
1009 			*rqlist = next;
1010 			prev = NULL;
1011 		} else
1012 			prev = req;
1013 	}
1014 
1015 	*rqlist = requeue_list;
1016 }
1017 
1018 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1019 {
1020 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1021 	struct nvme_dev *dev = iod->nvmeq->dev;
1022 
1023 	if (blk_integrity_rq(req))
1024 		dma_unmap_page(dev->dev, iod->meta_dma,
1025 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1026 	if (blk_rq_nr_phys_segments(req))
1027 		nvme_unmap_data(dev, req);
1028 }
1029 
1030 static void nvme_pci_complete_rq(struct request *req)
1031 {
1032 	nvme_pci_unmap_rq(req);
1033 	nvme_complete_rq(req);
1034 }
1035 
1036 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1037 {
1038 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1039 }
1040 
1041 /* We read the CQE phase first to check if the rest of the entry is valid */
1042 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1043 {
1044 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1045 
1046 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1047 }
1048 
1049 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1050 {
1051 	u16 head = nvmeq->cq_head;
1052 
1053 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1054 					      nvmeq->dbbuf_cq_ei))
1055 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1056 }
1057 
1058 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1059 {
1060 	if (!nvmeq->qid)
1061 		return nvmeq->dev->admin_tagset.tags[0];
1062 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1063 }
1064 
1065 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1066 				   struct io_comp_batch *iob, u16 idx)
1067 {
1068 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1069 	__u16 command_id = READ_ONCE(cqe->command_id);
1070 	struct request *req;
1071 
1072 	/*
1073 	 * AEN requests are special as they don't time out and can
1074 	 * survive any kind of queue freeze and often don't respond to
1075 	 * aborts.  We don't even bother to allocate a struct request
1076 	 * for them but rather special case them here.
1077 	 */
1078 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1079 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1080 				cqe->status, &cqe->result);
1081 		return;
1082 	}
1083 
1084 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1085 	if (unlikely(!req)) {
1086 		dev_warn(nvmeq->dev->ctrl.device,
1087 			"invalid id %d completed on queue %d\n",
1088 			command_id, le16_to_cpu(cqe->sq_id));
1089 		return;
1090 	}
1091 
1092 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1093 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1094 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1095 					nvme_pci_complete_batch))
1096 		nvme_pci_complete_rq(req);
1097 }
1098 
1099 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1100 {
1101 	u32 tmp = nvmeq->cq_head + 1;
1102 
1103 	if (tmp == nvmeq->q_depth) {
1104 		nvmeq->cq_head = 0;
1105 		nvmeq->cq_phase ^= 1;
1106 	} else {
1107 		nvmeq->cq_head = tmp;
1108 	}
1109 }
1110 
1111 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1112 			       struct io_comp_batch *iob)
1113 {
1114 	int found = 0;
1115 
1116 	while (nvme_cqe_pending(nvmeq)) {
1117 		found++;
1118 		/*
1119 		 * load-load control dependency between phase and the rest of
1120 		 * the cqe requires a full read memory barrier
1121 		 */
1122 		dma_rmb();
1123 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1124 		nvme_update_cq_head(nvmeq);
1125 	}
1126 
1127 	if (found)
1128 		nvme_ring_cq_doorbell(nvmeq);
1129 	return found;
1130 }
1131 
1132 static irqreturn_t nvme_irq(int irq, void *data)
1133 {
1134 	struct nvme_queue *nvmeq = data;
1135 	DEFINE_IO_COMP_BATCH(iob);
1136 
1137 	if (nvme_poll_cq(nvmeq, &iob)) {
1138 		if (!rq_list_empty(iob.req_list))
1139 			nvme_pci_complete_batch(&iob);
1140 		return IRQ_HANDLED;
1141 	}
1142 	return IRQ_NONE;
1143 }
1144 
1145 static irqreturn_t nvme_irq_check(int irq, void *data)
1146 {
1147 	struct nvme_queue *nvmeq = data;
1148 
1149 	if (nvme_cqe_pending(nvmeq))
1150 		return IRQ_WAKE_THREAD;
1151 	return IRQ_NONE;
1152 }
1153 
1154 /*
1155  * Poll for completions for any interrupt driven queue
1156  * Can be called from any context.
1157  */
1158 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1159 {
1160 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1161 
1162 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1163 
1164 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1165 	nvme_poll_cq(nvmeq, NULL);
1166 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167 }
1168 
1169 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1170 {
1171 	struct nvme_queue *nvmeq = hctx->driver_data;
1172 	bool found;
1173 
1174 	if (!nvme_cqe_pending(nvmeq))
1175 		return 0;
1176 
1177 	spin_lock(&nvmeq->cq_poll_lock);
1178 	found = nvme_poll_cq(nvmeq, iob);
1179 	spin_unlock(&nvmeq->cq_poll_lock);
1180 
1181 	return found;
1182 }
1183 
1184 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1185 {
1186 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1187 	struct nvme_queue *nvmeq = &dev->queues[0];
1188 	struct nvme_command c = { };
1189 
1190 	c.common.opcode = nvme_admin_async_event;
1191 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1192 
1193 	spin_lock(&nvmeq->sq_lock);
1194 	nvme_sq_copy_cmd(nvmeq, &c);
1195 	nvme_write_sq_db(nvmeq, true);
1196 	spin_unlock(&nvmeq->sq_lock);
1197 }
1198 
1199 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1200 {
1201 	struct nvme_command c = { };
1202 
1203 	c.delete_queue.opcode = opcode;
1204 	c.delete_queue.qid = cpu_to_le16(id);
1205 
1206 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1207 }
1208 
1209 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1210 		struct nvme_queue *nvmeq, s16 vector)
1211 {
1212 	struct nvme_command c = { };
1213 	int flags = NVME_QUEUE_PHYS_CONTIG;
1214 
1215 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1216 		flags |= NVME_CQ_IRQ_ENABLED;
1217 
1218 	/*
1219 	 * Note: we (ab)use the fact that the prp fields survive if no data
1220 	 * is attached to the request.
1221 	 */
1222 	c.create_cq.opcode = nvme_admin_create_cq;
1223 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1224 	c.create_cq.cqid = cpu_to_le16(qid);
1225 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1226 	c.create_cq.cq_flags = cpu_to_le16(flags);
1227 	c.create_cq.irq_vector = cpu_to_le16(vector);
1228 
1229 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1230 }
1231 
1232 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1233 						struct nvme_queue *nvmeq)
1234 {
1235 	struct nvme_ctrl *ctrl = &dev->ctrl;
1236 	struct nvme_command c = { };
1237 	int flags = NVME_QUEUE_PHYS_CONTIG;
1238 
1239 	/*
1240 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1241 	 * set. Since URGENT priority is zeroes, it makes all queues
1242 	 * URGENT.
1243 	 */
1244 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1245 		flags |= NVME_SQ_PRIO_MEDIUM;
1246 
1247 	/*
1248 	 * Note: we (ab)use the fact that the prp fields survive if no data
1249 	 * is attached to the request.
1250 	 */
1251 	c.create_sq.opcode = nvme_admin_create_sq;
1252 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1253 	c.create_sq.sqid = cpu_to_le16(qid);
1254 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1255 	c.create_sq.sq_flags = cpu_to_le16(flags);
1256 	c.create_sq.cqid = cpu_to_le16(qid);
1257 
1258 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1259 }
1260 
1261 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1262 {
1263 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1264 }
1265 
1266 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1267 {
1268 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1269 }
1270 
1271 static void abort_endio(struct request *req, blk_status_t error)
1272 {
1273 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1274 	struct nvme_queue *nvmeq = iod->nvmeq;
1275 
1276 	dev_warn(nvmeq->dev->ctrl.device,
1277 		 "Abort status: 0x%x", nvme_req(req)->status);
1278 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1279 	blk_mq_free_request(req);
1280 }
1281 
1282 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1283 {
1284 	/* If true, indicates loss of adapter communication, possibly by a
1285 	 * NVMe Subsystem reset.
1286 	 */
1287 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1288 
1289 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1290 	switch (dev->ctrl.state) {
1291 	case NVME_CTRL_RESETTING:
1292 	case NVME_CTRL_CONNECTING:
1293 		return false;
1294 	default:
1295 		break;
1296 	}
1297 
1298 	/* We shouldn't reset unless the controller is on fatal error state
1299 	 * _or_ if we lost the communication with it.
1300 	 */
1301 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1302 		return false;
1303 
1304 	return true;
1305 }
1306 
1307 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1308 {
1309 	/* Read a config register to help see what died. */
1310 	u16 pci_status;
1311 	int result;
1312 
1313 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1314 				      &pci_status);
1315 	if (result == PCIBIOS_SUCCESSFUL)
1316 		dev_warn(dev->ctrl.device,
1317 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1318 			 csts, pci_status);
1319 	else
1320 		dev_warn(dev->ctrl.device,
1321 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1322 			 csts, result);
1323 
1324 	if (csts != ~0)
1325 		return;
1326 
1327 	dev_warn(dev->ctrl.device,
1328 		 "Does your device have a faulty power saving mode enabled?\n");
1329 	dev_warn(dev->ctrl.device,
1330 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1331 }
1332 
1333 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1334 {
1335 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1336 	struct nvme_queue *nvmeq = iod->nvmeq;
1337 	struct nvme_dev *dev = nvmeq->dev;
1338 	struct request *abort_req;
1339 	struct nvme_command cmd = { };
1340 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1341 
1342 	/* If PCI error recovery process is happening, we cannot reset or
1343 	 * the recovery mechanism will surely fail.
1344 	 */
1345 	mb();
1346 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1347 		return BLK_EH_RESET_TIMER;
1348 
1349 	/*
1350 	 * Reset immediately if the controller is failed
1351 	 */
1352 	if (nvme_should_reset(dev, csts)) {
1353 		nvme_warn_reset(dev, csts);
1354 		nvme_dev_disable(dev, false);
1355 		nvme_reset_ctrl(&dev->ctrl);
1356 		return BLK_EH_DONE;
1357 	}
1358 
1359 	/*
1360 	 * Did we miss an interrupt?
1361 	 */
1362 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1363 		nvme_poll(req->mq_hctx, NULL);
1364 	else
1365 		nvme_poll_irqdisable(nvmeq);
1366 
1367 	if (blk_mq_request_completed(req)) {
1368 		dev_warn(dev->ctrl.device,
1369 			 "I/O %d QID %d timeout, completion polled\n",
1370 			 req->tag, nvmeq->qid);
1371 		return BLK_EH_DONE;
1372 	}
1373 
1374 	/*
1375 	 * Shutdown immediately if controller times out while starting. The
1376 	 * reset work will see the pci device disabled when it gets the forced
1377 	 * cancellation error. All outstanding requests are completed on
1378 	 * shutdown, so we return BLK_EH_DONE.
1379 	 */
1380 	switch (dev->ctrl.state) {
1381 	case NVME_CTRL_CONNECTING:
1382 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1383 		fallthrough;
1384 	case NVME_CTRL_DELETING:
1385 		dev_warn_ratelimited(dev->ctrl.device,
1386 			 "I/O %d QID %d timeout, disable controller\n",
1387 			 req->tag, nvmeq->qid);
1388 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1389 		nvme_dev_disable(dev, true);
1390 		return BLK_EH_DONE;
1391 	case NVME_CTRL_RESETTING:
1392 		return BLK_EH_RESET_TIMER;
1393 	default:
1394 		break;
1395 	}
1396 
1397 	/*
1398 	 * Shutdown the controller immediately and schedule a reset if the
1399 	 * command was already aborted once before and still hasn't been
1400 	 * returned to the driver, or if this is the admin queue.
1401 	 */
1402 	if (!nvmeq->qid || iod->aborted) {
1403 		dev_warn(dev->ctrl.device,
1404 			 "I/O %d QID %d timeout, reset controller\n",
1405 			 req->tag, nvmeq->qid);
1406 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1407 		nvme_dev_disable(dev, false);
1408 		nvme_reset_ctrl(&dev->ctrl);
1409 
1410 		return BLK_EH_DONE;
1411 	}
1412 
1413 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1414 		atomic_inc(&dev->ctrl.abort_limit);
1415 		return BLK_EH_RESET_TIMER;
1416 	}
1417 	iod->aborted = 1;
1418 
1419 	cmd.abort.opcode = nvme_admin_abort_cmd;
1420 	cmd.abort.cid = nvme_cid(req);
1421 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1422 
1423 	dev_warn(nvmeq->dev->ctrl.device,
1424 		"I/O %d (%s) QID %d timeout, aborting\n",
1425 		 req->tag,
1426 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1427 		 nvmeq->qid);
1428 
1429 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1430 					 BLK_MQ_REQ_NOWAIT);
1431 	if (IS_ERR(abort_req)) {
1432 		atomic_inc(&dev->ctrl.abort_limit);
1433 		return BLK_EH_RESET_TIMER;
1434 	}
1435 	nvme_init_request(abort_req, &cmd);
1436 
1437 	abort_req->end_io = abort_endio;
1438 	abort_req->end_io_data = NULL;
1439 	abort_req->rq_flags |= RQF_QUIET;
1440 	blk_execute_rq_nowait(abort_req, false);
1441 
1442 	/*
1443 	 * The aborted req will be completed on receiving the abort req.
1444 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1445 	 * as the device then is in a faulty state.
1446 	 */
1447 	return BLK_EH_RESET_TIMER;
1448 }
1449 
1450 static void nvme_free_queue(struct nvme_queue *nvmeq)
1451 {
1452 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1453 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1454 	if (!nvmeq->sq_cmds)
1455 		return;
1456 
1457 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1458 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1459 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1460 	} else {
1461 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1462 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1463 	}
1464 }
1465 
1466 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1467 {
1468 	int i;
1469 
1470 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1471 		dev->ctrl.queue_count--;
1472 		nvme_free_queue(&dev->queues[i]);
1473 	}
1474 }
1475 
1476 /**
1477  * nvme_suspend_queue - put queue into suspended state
1478  * @nvmeq: queue to suspend
1479  */
1480 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1481 {
1482 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1483 		return 1;
1484 
1485 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1486 	mb();
1487 
1488 	nvmeq->dev->online_queues--;
1489 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1490 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1491 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1492 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1493 	return 0;
1494 }
1495 
1496 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1497 {
1498 	int i;
1499 
1500 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1501 		nvme_suspend_queue(&dev->queues[i]);
1502 }
1503 
1504 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1505 {
1506 	struct nvme_queue *nvmeq = &dev->queues[0];
1507 
1508 	if (shutdown)
1509 		nvme_shutdown_ctrl(&dev->ctrl);
1510 	else
1511 		nvme_disable_ctrl(&dev->ctrl);
1512 
1513 	nvme_poll_irqdisable(nvmeq);
1514 }
1515 
1516 /*
1517  * Called only on a device that has been disabled and after all other threads
1518  * that can check this device's completion queues have synced, except
1519  * nvme_poll(). This is the last chance for the driver to see a natural
1520  * completion before nvme_cancel_request() terminates all incomplete requests.
1521  */
1522 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1523 {
1524 	int i;
1525 
1526 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1527 		spin_lock(&dev->queues[i].cq_poll_lock);
1528 		nvme_poll_cq(&dev->queues[i], NULL);
1529 		spin_unlock(&dev->queues[i].cq_poll_lock);
1530 	}
1531 }
1532 
1533 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1534 				int entry_size)
1535 {
1536 	int q_depth = dev->q_depth;
1537 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1538 					  NVME_CTRL_PAGE_SIZE);
1539 
1540 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1541 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1542 
1543 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1544 		q_depth = div_u64(mem_per_q, entry_size);
1545 
1546 		/*
1547 		 * Ensure the reduced q_depth is above some threshold where it
1548 		 * would be better to map queues in system memory with the
1549 		 * original depth
1550 		 */
1551 		if (q_depth < 64)
1552 			return -ENOMEM;
1553 	}
1554 
1555 	return q_depth;
1556 }
1557 
1558 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1559 				int qid)
1560 {
1561 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1562 
1563 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1564 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1565 		if (nvmeq->sq_cmds) {
1566 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1567 							nvmeq->sq_cmds);
1568 			if (nvmeq->sq_dma_addr) {
1569 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1570 				return 0;
1571 			}
1572 
1573 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1574 		}
1575 	}
1576 
1577 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1578 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1579 	if (!nvmeq->sq_cmds)
1580 		return -ENOMEM;
1581 	return 0;
1582 }
1583 
1584 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1585 {
1586 	struct nvme_queue *nvmeq = &dev->queues[qid];
1587 
1588 	if (dev->ctrl.queue_count > qid)
1589 		return 0;
1590 
1591 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1592 	nvmeq->q_depth = depth;
1593 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1594 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1595 	if (!nvmeq->cqes)
1596 		goto free_nvmeq;
1597 
1598 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1599 		goto free_cqdma;
1600 
1601 	nvmeq->dev = dev;
1602 	spin_lock_init(&nvmeq->sq_lock);
1603 	spin_lock_init(&nvmeq->cq_poll_lock);
1604 	nvmeq->cq_head = 0;
1605 	nvmeq->cq_phase = 1;
1606 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1607 	nvmeq->qid = qid;
1608 	dev->ctrl.queue_count++;
1609 
1610 	return 0;
1611 
1612  free_cqdma:
1613 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1614 			  nvmeq->cq_dma_addr);
1615  free_nvmeq:
1616 	return -ENOMEM;
1617 }
1618 
1619 static int queue_request_irq(struct nvme_queue *nvmeq)
1620 {
1621 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1622 	int nr = nvmeq->dev->ctrl.instance;
1623 
1624 	if (use_threaded_interrupts) {
1625 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1626 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1627 	} else {
1628 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1629 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1630 	}
1631 }
1632 
1633 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1634 {
1635 	struct nvme_dev *dev = nvmeq->dev;
1636 
1637 	nvmeq->sq_tail = 0;
1638 	nvmeq->last_sq_tail = 0;
1639 	nvmeq->cq_head = 0;
1640 	nvmeq->cq_phase = 1;
1641 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1642 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1643 	nvme_dbbuf_init(dev, nvmeq, qid);
1644 	dev->online_queues++;
1645 	wmb(); /* ensure the first interrupt sees the initialization */
1646 }
1647 
1648 /*
1649  * Try getting shutdown_lock while setting up IO queues.
1650  */
1651 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1652 {
1653 	/*
1654 	 * Give up if the lock is being held by nvme_dev_disable.
1655 	 */
1656 	if (!mutex_trylock(&dev->shutdown_lock))
1657 		return -ENODEV;
1658 
1659 	/*
1660 	 * Controller is in wrong state, fail early.
1661 	 */
1662 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1663 		mutex_unlock(&dev->shutdown_lock);
1664 		return -ENODEV;
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1671 {
1672 	struct nvme_dev *dev = nvmeq->dev;
1673 	int result;
1674 	u16 vector = 0;
1675 
1676 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1677 
1678 	/*
1679 	 * A queue's vector matches the queue identifier unless the controller
1680 	 * has only one vector available.
1681 	 */
1682 	if (!polled)
1683 		vector = dev->num_vecs == 1 ? 0 : qid;
1684 	else
1685 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1686 
1687 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1688 	if (result)
1689 		return result;
1690 
1691 	result = adapter_alloc_sq(dev, qid, nvmeq);
1692 	if (result < 0)
1693 		return result;
1694 	if (result)
1695 		goto release_cq;
1696 
1697 	nvmeq->cq_vector = vector;
1698 
1699 	result = nvme_setup_io_queues_trylock(dev);
1700 	if (result)
1701 		return result;
1702 	nvme_init_queue(nvmeq, qid);
1703 	if (!polled) {
1704 		result = queue_request_irq(nvmeq);
1705 		if (result < 0)
1706 			goto release_sq;
1707 	}
1708 
1709 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1710 	mutex_unlock(&dev->shutdown_lock);
1711 	return result;
1712 
1713 release_sq:
1714 	dev->online_queues--;
1715 	mutex_unlock(&dev->shutdown_lock);
1716 	adapter_delete_sq(dev, qid);
1717 release_cq:
1718 	adapter_delete_cq(dev, qid);
1719 	return result;
1720 }
1721 
1722 static const struct blk_mq_ops nvme_mq_admin_ops = {
1723 	.queue_rq	= nvme_queue_rq,
1724 	.complete	= nvme_pci_complete_rq,
1725 	.init_hctx	= nvme_admin_init_hctx,
1726 	.init_request	= nvme_pci_init_request,
1727 	.timeout	= nvme_timeout,
1728 };
1729 
1730 static const struct blk_mq_ops nvme_mq_ops = {
1731 	.queue_rq	= nvme_queue_rq,
1732 	.queue_rqs	= nvme_queue_rqs,
1733 	.complete	= nvme_pci_complete_rq,
1734 	.commit_rqs	= nvme_commit_rqs,
1735 	.init_hctx	= nvme_init_hctx,
1736 	.init_request	= nvme_pci_init_request,
1737 	.map_queues	= nvme_pci_map_queues,
1738 	.timeout	= nvme_timeout,
1739 	.poll		= nvme_poll,
1740 };
1741 
1742 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1743 {
1744 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1745 		/*
1746 		 * If the controller was reset during removal, it's possible
1747 		 * user requests may be waiting on a stopped queue. Start the
1748 		 * queue to flush these to completion.
1749 		 */
1750 		nvme_start_admin_queue(&dev->ctrl);
1751 		blk_mq_destroy_queue(dev->ctrl.admin_q);
1752 		blk_mq_free_tag_set(&dev->admin_tagset);
1753 	}
1754 }
1755 
1756 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1757 {
1758 	struct blk_mq_tag_set *set = &dev->admin_tagset;
1759 
1760 	set->ops = &nvme_mq_admin_ops;
1761 	set->nr_hw_queues = 1;
1762 
1763 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1764 	set->timeout = NVME_ADMIN_TIMEOUT;
1765 	set->numa_node = dev->ctrl.numa_node;
1766 	set->cmd_size = sizeof(struct nvme_iod);
1767 	set->flags = BLK_MQ_F_NO_SCHED;
1768 	set->driver_data = dev;
1769 
1770 	if (blk_mq_alloc_tag_set(set))
1771 		return -ENOMEM;
1772 	dev->ctrl.admin_tagset = set;
1773 
1774 	dev->ctrl.admin_q = blk_mq_init_queue(set);
1775 	if (IS_ERR(dev->ctrl.admin_q)) {
1776 		blk_mq_free_tag_set(set);
1777 		dev->ctrl.admin_q = NULL;
1778 		return -ENOMEM;
1779 	}
1780 	if (!blk_get_queue(dev->ctrl.admin_q)) {
1781 		nvme_dev_remove_admin(dev);
1782 		dev->ctrl.admin_q = NULL;
1783 		return -ENODEV;
1784 	}
1785 	return 0;
1786 }
1787 
1788 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1789 {
1790 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1791 }
1792 
1793 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1794 {
1795 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1796 
1797 	if (size <= dev->bar_mapped_size)
1798 		return 0;
1799 	if (size > pci_resource_len(pdev, 0))
1800 		return -ENOMEM;
1801 	if (dev->bar)
1802 		iounmap(dev->bar);
1803 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1804 	if (!dev->bar) {
1805 		dev->bar_mapped_size = 0;
1806 		return -ENOMEM;
1807 	}
1808 	dev->bar_mapped_size = size;
1809 	dev->dbs = dev->bar + NVME_REG_DBS;
1810 
1811 	return 0;
1812 }
1813 
1814 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1815 {
1816 	int result;
1817 	u32 aqa;
1818 	struct nvme_queue *nvmeq;
1819 
1820 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1821 	if (result < 0)
1822 		return result;
1823 
1824 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1825 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1826 
1827 	if (dev->subsystem &&
1828 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1829 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1830 
1831 	result = nvme_disable_ctrl(&dev->ctrl);
1832 	if (result < 0)
1833 		return result;
1834 
1835 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1836 	if (result)
1837 		return result;
1838 
1839 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1840 
1841 	nvmeq = &dev->queues[0];
1842 	aqa = nvmeq->q_depth - 1;
1843 	aqa |= aqa << 16;
1844 
1845 	writel(aqa, dev->bar + NVME_REG_AQA);
1846 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1847 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1848 
1849 	result = nvme_enable_ctrl(&dev->ctrl);
1850 	if (result)
1851 		return result;
1852 
1853 	nvmeq->cq_vector = 0;
1854 	nvme_init_queue(nvmeq, 0);
1855 	result = queue_request_irq(nvmeq);
1856 	if (result) {
1857 		dev->online_queues--;
1858 		return result;
1859 	}
1860 
1861 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1862 	return result;
1863 }
1864 
1865 static int nvme_create_io_queues(struct nvme_dev *dev)
1866 {
1867 	unsigned i, max, rw_queues;
1868 	int ret = 0;
1869 
1870 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1871 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1872 			ret = -ENOMEM;
1873 			break;
1874 		}
1875 	}
1876 
1877 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1878 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1879 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1880 				dev->io_queues[HCTX_TYPE_READ];
1881 	} else {
1882 		rw_queues = max;
1883 	}
1884 
1885 	for (i = dev->online_queues; i <= max; i++) {
1886 		bool polled = i > rw_queues;
1887 
1888 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1889 		if (ret)
1890 			break;
1891 	}
1892 
1893 	/*
1894 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1895 	 * than the desired amount of queues, and even a controller without
1896 	 * I/O queues can still be used to issue admin commands.  This might
1897 	 * be useful to upgrade a buggy firmware for example.
1898 	 */
1899 	return ret >= 0 ? 0 : ret;
1900 }
1901 
1902 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1903 {
1904 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1905 
1906 	return 1ULL << (12 + 4 * szu);
1907 }
1908 
1909 static u32 nvme_cmb_size(struct nvme_dev *dev)
1910 {
1911 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1912 }
1913 
1914 static void nvme_map_cmb(struct nvme_dev *dev)
1915 {
1916 	u64 size, offset;
1917 	resource_size_t bar_size;
1918 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1919 	int bar;
1920 
1921 	if (dev->cmb_size)
1922 		return;
1923 
1924 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1925 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1926 
1927 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1928 	if (!dev->cmbsz)
1929 		return;
1930 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1931 
1932 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1933 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1934 	bar = NVME_CMB_BIR(dev->cmbloc);
1935 	bar_size = pci_resource_len(pdev, bar);
1936 
1937 	if (offset > bar_size)
1938 		return;
1939 
1940 	/*
1941 	 * Tell the controller about the host side address mapping the CMB,
1942 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1943 	 */
1944 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1945 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1946 			     (pci_bus_address(pdev, bar) + offset),
1947 			     dev->bar + NVME_REG_CMBMSC);
1948 	}
1949 
1950 	/*
1951 	 * Controllers may support a CMB size larger than their BAR,
1952 	 * for example, due to being behind a bridge. Reduce the CMB to
1953 	 * the reported size of the BAR
1954 	 */
1955 	if (size > bar_size - offset)
1956 		size = bar_size - offset;
1957 
1958 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1959 		dev_warn(dev->ctrl.device,
1960 			 "failed to register the CMB\n");
1961 		return;
1962 	}
1963 
1964 	dev->cmb_size = size;
1965 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1966 
1967 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1968 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1969 		pci_p2pmem_publish(pdev, true);
1970 }
1971 
1972 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1973 {
1974 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1975 	u64 dma_addr = dev->host_mem_descs_dma;
1976 	struct nvme_command c = { };
1977 	int ret;
1978 
1979 	c.features.opcode	= nvme_admin_set_features;
1980 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1981 	c.features.dword11	= cpu_to_le32(bits);
1982 	c.features.dword12	= cpu_to_le32(host_mem_size);
1983 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1984 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1985 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1986 
1987 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1988 	if (ret) {
1989 		dev_warn(dev->ctrl.device,
1990 			 "failed to set host mem (err %d, flags %#x).\n",
1991 			 ret, bits);
1992 	} else
1993 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1994 
1995 	return ret;
1996 }
1997 
1998 static void nvme_free_host_mem(struct nvme_dev *dev)
1999 {
2000 	int i;
2001 
2002 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2003 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2004 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2005 
2006 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2007 			       le64_to_cpu(desc->addr),
2008 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2009 	}
2010 
2011 	kfree(dev->host_mem_desc_bufs);
2012 	dev->host_mem_desc_bufs = NULL;
2013 	dma_free_coherent(dev->dev,
2014 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2015 			dev->host_mem_descs, dev->host_mem_descs_dma);
2016 	dev->host_mem_descs = NULL;
2017 	dev->nr_host_mem_descs = 0;
2018 }
2019 
2020 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2021 		u32 chunk_size)
2022 {
2023 	struct nvme_host_mem_buf_desc *descs;
2024 	u32 max_entries, len;
2025 	dma_addr_t descs_dma;
2026 	int i = 0;
2027 	void **bufs;
2028 	u64 size, tmp;
2029 
2030 	tmp = (preferred + chunk_size - 1);
2031 	do_div(tmp, chunk_size);
2032 	max_entries = tmp;
2033 
2034 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2035 		max_entries = dev->ctrl.hmmaxd;
2036 
2037 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2038 				   &descs_dma, GFP_KERNEL);
2039 	if (!descs)
2040 		goto out;
2041 
2042 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2043 	if (!bufs)
2044 		goto out_free_descs;
2045 
2046 	for (size = 0; size < preferred && i < max_entries; size += len) {
2047 		dma_addr_t dma_addr;
2048 
2049 		len = min_t(u64, chunk_size, preferred - size);
2050 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2051 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2052 		if (!bufs[i])
2053 			break;
2054 
2055 		descs[i].addr = cpu_to_le64(dma_addr);
2056 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2057 		i++;
2058 	}
2059 
2060 	if (!size)
2061 		goto out_free_bufs;
2062 
2063 	dev->nr_host_mem_descs = i;
2064 	dev->host_mem_size = size;
2065 	dev->host_mem_descs = descs;
2066 	dev->host_mem_descs_dma = descs_dma;
2067 	dev->host_mem_desc_bufs = bufs;
2068 	return 0;
2069 
2070 out_free_bufs:
2071 	while (--i >= 0) {
2072 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2073 
2074 		dma_free_attrs(dev->dev, size, bufs[i],
2075 			       le64_to_cpu(descs[i].addr),
2076 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2077 	}
2078 
2079 	kfree(bufs);
2080 out_free_descs:
2081 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2082 			descs_dma);
2083 out:
2084 	dev->host_mem_descs = NULL;
2085 	return -ENOMEM;
2086 }
2087 
2088 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2089 {
2090 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2091 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2092 	u64 chunk_size;
2093 
2094 	/* start big and work our way down */
2095 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2096 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2097 			if (!min || dev->host_mem_size >= min)
2098 				return 0;
2099 			nvme_free_host_mem(dev);
2100 		}
2101 	}
2102 
2103 	return -ENOMEM;
2104 }
2105 
2106 static int nvme_setup_host_mem(struct nvme_dev *dev)
2107 {
2108 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2109 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2110 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2111 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2112 	int ret;
2113 
2114 	preferred = min(preferred, max);
2115 	if (min > max) {
2116 		dev_warn(dev->ctrl.device,
2117 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2118 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2119 		nvme_free_host_mem(dev);
2120 		return 0;
2121 	}
2122 
2123 	/*
2124 	 * If we already have a buffer allocated check if we can reuse it.
2125 	 */
2126 	if (dev->host_mem_descs) {
2127 		if (dev->host_mem_size >= min)
2128 			enable_bits |= NVME_HOST_MEM_RETURN;
2129 		else
2130 			nvme_free_host_mem(dev);
2131 	}
2132 
2133 	if (!dev->host_mem_descs) {
2134 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2135 			dev_warn(dev->ctrl.device,
2136 				"failed to allocate host memory buffer.\n");
2137 			return 0; /* controller must work without HMB */
2138 		}
2139 
2140 		dev_info(dev->ctrl.device,
2141 			"allocated %lld MiB host memory buffer.\n",
2142 			dev->host_mem_size >> ilog2(SZ_1M));
2143 	}
2144 
2145 	ret = nvme_set_host_mem(dev, enable_bits);
2146 	if (ret)
2147 		nvme_free_host_mem(dev);
2148 	return ret;
2149 }
2150 
2151 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2152 		char *buf)
2153 {
2154 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2155 
2156 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2157 		       ndev->cmbloc, ndev->cmbsz);
2158 }
2159 static DEVICE_ATTR_RO(cmb);
2160 
2161 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2162 		char *buf)
2163 {
2164 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2165 
2166 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2167 }
2168 static DEVICE_ATTR_RO(cmbloc);
2169 
2170 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2171 		char *buf)
2172 {
2173 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2174 
2175 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2176 }
2177 static DEVICE_ATTR_RO(cmbsz);
2178 
2179 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2180 			char *buf)
2181 {
2182 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2183 
2184 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2185 }
2186 
2187 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2188 			 const char *buf, size_t count)
2189 {
2190 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2191 	bool new;
2192 	int ret;
2193 
2194 	if (strtobool(buf, &new) < 0)
2195 		return -EINVAL;
2196 
2197 	if (new == ndev->hmb)
2198 		return count;
2199 
2200 	if (new) {
2201 		ret = nvme_setup_host_mem(ndev);
2202 	} else {
2203 		ret = nvme_set_host_mem(ndev, 0);
2204 		if (!ret)
2205 			nvme_free_host_mem(ndev);
2206 	}
2207 
2208 	if (ret < 0)
2209 		return ret;
2210 
2211 	return count;
2212 }
2213 static DEVICE_ATTR_RW(hmb);
2214 
2215 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2216 		struct attribute *a, int n)
2217 {
2218 	struct nvme_ctrl *ctrl =
2219 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2220 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2221 
2222 	if (a == &dev_attr_cmb.attr ||
2223 	    a == &dev_attr_cmbloc.attr ||
2224 	    a == &dev_attr_cmbsz.attr) {
2225 	    	if (!dev->cmbsz)
2226 			return 0;
2227 	}
2228 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2229 		return 0;
2230 
2231 	return a->mode;
2232 }
2233 
2234 static struct attribute *nvme_pci_attrs[] = {
2235 	&dev_attr_cmb.attr,
2236 	&dev_attr_cmbloc.attr,
2237 	&dev_attr_cmbsz.attr,
2238 	&dev_attr_hmb.attr,
2239 	NULL,
2240 };
2241 
2242 static const struct attribute_group nvme_pci_attr_group = {
2243 	.attrs		= nvme_pci_attrs,
2244 	.is_visible	= nvme_pci_attrs_are_visible,
2245 };
2246 
2247 /*
2248  * nirqs is the number of interrupts available for write and read
2249  * queues. The core already reserved an interrupt for the admin queue.
2250  */
2251 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2252 {
2253 	struct nvme_dev *dev = affd->priv;
2254 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2255 
2256 	/*
2257 	 * If there is no interrupt available for queues, ensure that
2258 	 * the default queue is set to 1. The affinity set size is
2259 	 * also set to one, but the irq core ignores it for this case.
2260 	 *
2261 	 * If only one interrupt is available or 'write_queue' == 0, combine
2262 	 * write and read queues.
2263 	 *
2264 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2265 	 * queue.
2266 	 */
2267 	if (!nrirqs) {
2268 		nrirqs = 1;
2269 		nr_read_queues = 0;
2270 	} else if (nrirqs == 1 || !nr_write_queues) {
2271 		nr_read_queues = 0;
2272 	} else if (nr_write_queues >= nrirqs) {
2273 		nr_read_queues = 1;
2274 	} else {
2275 		nr_read_queues = nrirqs - nr_write_queues;
2276 	}
2277 
2278 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2279 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2280 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2281 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2282 	affd->nr_sets = nr_read_queues ? 2 : 1;
2283 }
2284 
2285 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2286 {
2287 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2288 	struct irq_affinity affd = {
2289 		.pre_vectors	= 1,
2290 		.calc_sets	= nvme_calc_irq_sets,
2291 		.priv		= dev,
2292 	};
2293 	unsigned int irq_queues, poll_queues;
2294 
2295 	/*
2296 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2297 	 * left over for non-polled I/O.
2298 	 */
2299 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2300 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2301 
2302 	/*
2303 	 * Initialize for the single interrupt case, will be updated in
2304 	 * nvme_calc_irq_sets().
2305 	 */
2306 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2307 	dev->io_queues[HCTX_TYPE_READ] = 0;
2308 
2309 	/*
2310 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2311 	 * but some Apple controllers require all queues to use the first
2312 	 * vector.
2313 	 */
2314 	irq_queues = 1;
2315 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2316 		irq_queues += (nr_io_queues - poll_queues);
2317 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2318 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2319 }
2320 
2321 static void nvme_disable_io_queues(struct nvme_dev *dev)
2322 {
2323 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2324 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2325 }
2326 
2327 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2328 {
2329 	/*
2330 	 * If tags are shared with admin queue (Apple bug), then
2331 	 * make sure we only use one IO queue.
2332 	 */
2333 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2334 		return 1;
2335 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2336 }
2337 
2338 static int nvme_setup_io_queues(struct nvme_dev *dev)
2339 {
2340 	struct nvme_queue *adminq = &dev->queues[0];
2341 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2342 	unsigned int nr_io_queues;
2343 	unsigned long size;
2344 	int result;
2345 
2346 	/*
2347 	 * Sample the module parameters once at reset time so that we have
2348 	 * stable values to work with.
2349 	 */
2350 	dev->nr_write_queues = write_queues;
2351 	dev->nr_poll_queues = poll_queues;
2352 
2353 	nr_io_queues = dev->nr_allocated_queues - 1;
2354 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2355 	if (result < 0)
2356 		return result;
2357 
2358 	if (nr_io_queues == 0)
2359 		return 0;
2360 
2361 	/*
2362 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2363 	 * from set to unset. If there is a window to it is truely freed,
2364 	 * pci_free_irq_vectors() jumping into this window will crash.
2365 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2366 	 * nvme_dev_disable() path.
2367 	 */
2368 	result = nvme_setup_io_queues_trylock(dev);
2369 	if (result)
2370 		return result;
2371 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2372 		pci_free_irq(pdev, 0, adminq);
2373 
2374 	if (dev->cmb_use_sqes) {
2375 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2376 				sizeof(struct nvme_command));
2377 		if (result > 0)
2378 			dev->q_depth = result;
2379 		else
2380 			dev->cmb_use_sqes = false;
2381 	}
2382 
2383 	do {
2384 		size = db_bar_size(dev, nr_io_queues);
2385 		result = nvme_remap_bar(dev, size);
2386 		if (!result)
2387 			break;
2388 		if (!--nr_io_queues) {
2389 			result = -ENOMEM;
2390 			goto out_unlock;
2391 		}
2392 	} while (1);
2393 	adminq->q_db = dev->dbs;
2394 
2395  retry:
2396 	/* Deregister the admin queue's interrupt */
2397 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2398 		pci_free_irq(pdev, 0, adminq);
2399 
2400 	/*
2401 	 * If we enable msix early due to not intx, disable it again before
2402 	 * setting up the full range we need.
2403 	 */
2404 	pci_free_irq_vectors(pdev);
2405 
2406 	result = nvme_setup_irqs(dev, nr_io_queues);
2407 	if (result <= 0) {
2408 		result = -EIO;
2409 		goto out_unlock;
2410 	}
2411 
2412 	dev->num_vecs = result;
2413 	result = max(result - 1, 1);
2414 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2415 
2416 	/*
2417 	 * Should investigate if there's a performance win from allocating
2418 	 * more queues than interrupt vectors; it might allow the submission
2419 	 * path to scale better, even if the receive path is limited by the
2420 	 * number of interrupts.
2421 	 */
2422 	result = queue_request_irq(adminq);
2423 	if (result)
2424 		goto out_unlock;
2425 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2426 	mutex_unlock(&dev->shutdown_lock);
2427 
2428 	result = nvme_create_io_queues(dev);
2429 	if (result || dev->online_queues < 2)
2430 		return result;
2431 
2432 	if (dev->online_queues - 1 < dev->max_qid) {
2433 		nr_io_queues = dev->online_queues - 1;
2434 		nvme_disable_io_queues(dev);
2435 		result = nvme_setup_io_queues_trylock(dev);
2436 		if (result)
2437 			return result;
2438 		nvme_suspend_io_queues(dev);
2439 		goto retry;
2440 	}
2441 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2442 					dev->io_queues[HCTX_TYPE_DEFAULT],
2443 					dev->io_queues[HCTX_TYPE_READ],
2444 					dev->io_queues[HCTX_TYPE_POLL]);
2445 	return 0;
2446 out_unlock:
2447 	mutex_unlock(&dev->shutdown_lock);
2448 	return result;
2449 }
2450 
2451 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2452 {
2453 	struct nvme_queue *nvmeq = req->end_io_data;
2454 
2455 	blk_mq_free_request(req);
2456 	complete(&nvmeq->delete_done);
2457 }
2458 
2459 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2460 {
2461 	struct nvme_queue *nvmeq = req->end_io_data;
2462 
2463 	if (error)
2464 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2465 
2466 	nvme_del_queue_end(req, error);
2467 }
2468 
2469 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2470 {
2471 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2472 	struct request *req;
2473 	struct nvme_command cmd = { };
2474 
2475 	cmd.delete_queue.opcode = opcode;
2476 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2477 
2478 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2479 	if (IS_ERR(req))
2480 		return PTR_ERR(req);
2481 	nvme_init_request(req, &cmd);
2482 
2483 	if (opcode == nvme_admin_delete_cq)
2484 		req->end_io = nvme_del_cq_end;
2485 	else
2486 		req->end_io = nvme_del_queue_end;
2487 	req->end_io_data = nvmeq;
2488 
2489 	init_completion(&nvmeq->delete_done);
2490 	req->rq_flags |= RQF_QUIET;
2491 	blk_execute_rq_nowait(req, false);
2492 	return 0;
2493 }
2494 
2495 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2496 {
2497 	int nr_queues = dev->online_queues - 1, sent = 0;
2498 	unsigned long timeout;
2499 
2500  retry:
2501 	timeout = NVME_ADMIN_TIMEOUT;
2502 	while (nr_queues > 0) {
2503 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2504 			break;
2505 		nr_queues--;
2506 		sent++;
2507 	}
2508 	while (sent) {
2509 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2510 
2511 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2512 				timeout);
2513 		if (timeout == 0)
2514 			return false;
2515 
2516 		sent--;
2517 		if (nr_queues)
2518 			goto retry;
2519 	}
2520 	return true;
2521 }
2522 
2523 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2524 {
2525 	struct blk_mq_tag_set * set = &dev->tagset;
2526 	int ret;
2527 
2528 	set->ops = &nvme_mq_ops;
2529 	set->nr_hw_queues = dev->online_queues - 1;
2530 	set->nr_maps = 2; /* default + read */
2531 	if (dev->io_queues[HCTX_TYPE_POLL])
2532 		set->nr_maps++;
2533 	set->timeout = NVME_IO_TIMEOUT;
2534 	set->numa_node = dev->ctrl.numa_node;
2535 	set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2536 	set->cmd_size = sizeof(struct nvme_iod);
2537 	set->flags = BLK_MQ_F_SHOULD_MERGE;
2538 	set->driver_data = dev;
2539 
2540 	/*
2541 	 * Some Apple controllers requires tags to be unique
2542 	 * across admin and IO queue, so reserve the first 32
2543 	 * tags of the IO queue.
2544 	 */
2545 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2546 		set->reserved_tags = NVME_AQ_DEPTH;
2547 
2548 	ret = blk_mq_alloc_tag_set(set);
2549 	if (ret) {
2550 		dev_warn(dev->ctrl.device,
2551 			"IO queues tagset allocation failed %d\n", ret);
2552 		return;
2553 	}
2554 	dev->ctrl.tagset = set;
2555 }
2556 
2557 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2558 {
2559 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2560 	/* free previously allocated queues that are no longer usable */
2561 	nvme_free_queues(dev, dev->online_queues);
2562 }
2563 
2564 static int nvme_pci_enable(struct nvme_dev *dev)
2565 {
2566 	int result = -ENOMEM;
2567 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2568 	int dma_address_bits = 64;
2569 
2570 	if (pci_enable_device_mem(pdev))
2571 		return result;
2572 
2573 	pci_set_master(pdev);
2574 
2575 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2576 		dma_address_bits = 48;
2577 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2578 		goto disable;
2579 
2580 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2581 		result = -ENODEV;
2582 		goto disable;
2583 	}
2584 
2585 	/*
2586 	 * Some devices and/or platforms don't advertise or work with INTx
2587 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2588 	 * adjust this later.
2589 	 */
2590 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2591 	if (result < 0)
2592 		return result;
2593 
2594 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2595 
2596 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2597 				io_queue_depth);
2598 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2599 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2600 	dev->dbs = dev->bar + 4096;
2601 
2602 	/*
2603 	 * Some Apple controllers require a non-standard SQE size.
2604 	 * Interestingly they also seem to ignore the CC:IOSQES register
2605 	 * so we don't bother updating it here.
2606 	 */
2607 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2608 		dev->io_sqes = 7;
2609 	else
2610 		dev->io_sqes = NVME_NVM_IOSQES;
2611 
2612 	/*
2613 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2614 	 * some MacBook7,1 to avoid controller resets and data loss.
2615 	 */
2616 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2617 		dev->q_depth = 2;
2618 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2619 			"set queue depth=%u to work around controller resets\n",
2620 			dev->q_depth);
2621 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2622 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2623 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2624 		dev->q_depth = 64;
2625 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2626                         "set queue depth=%u\n", dev->q_depth);
2627 	}
2628 
2629 	/*
2630 	 * Controllers with the shared tags quirk need the IO queue to be
2631 	 * big enough so that we get 32 tags for the admin queue
2632 	 */
2633 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2634 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2635 		dev->q_depth = NVME_AQ_DEPTH + 2;
2636 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2637 			 dev->q_depth);
2638 	}
2639 
2640 
2641 	nvme_map_cmb(dev);
2642 
2643 	pci_enable_pcie_error_reporting(pdev);
2644 	pci_save_state(pdev);
2645 	return 0;
2646 
2647  disable:
2648 	pci_disable_device(pdev);
2649 	return result;
2650 }
2651 
2652 static void nvme_dev_unmap(struct nvme_dev *dev)
2653 {
2654 	if (dev->bar)
2655 		iounmap(dev->bar);
2656 	pci_release_mem_regions(to_pci_dev(dev->dev));
2657 }
2658 
2659 static void nvme_pci_disable(struct nvme_dev *dev)
2660 {
2661 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2662 
2663 	pci_free_irq_vectors(pdev);
2664 
2665 	if (pci_is_enabled(pdev)) {
2666 		pci_disable_pcie_error_reporting(pdev);
2667 		pci_disable_device(pdev);
2668 	}
2669 }
2670 
2671 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2672 {
2673 	bool dead = true, freeze = false;
2674 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2675 
2676 	mutex_lock(&dev->shutdown_lock);
2677 	if (pci_is_enabled(pdev)) {
2678 		u32 csts;
2679 
2680 		if (pci_device_is_present(pdev))
2681 			csts = readl(dev->bar + NVME_REG_CSTS);
2682 		else
2683 			csts = ~0;
2684 
2685 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2686 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2687 			freeze = true;
2688 			nvme_start_freeze(&dev->ctrl);
2689 		}
2690 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2691 			pdev->error_state  != pci_channel_io_normal);
2692 	}
2693 
2694 	/*
2695 	 * Give the controller a chance to complete all entered requests if
2696 	 * doing a safe shutdown.
2697 	 */
2698 	if (!dead && shutdown && freeze)
2699 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2700 
2701 	nvme_stop_queues(&dev->ctrl);
2702 
2703 	if (!dead && dev->ctrl.queue_count > 0) {
2704 		nvme_disable_io_queues(dev);
2705 		nvme_disable_admin_queue(dev, shutdown);
2706 	}
2707 	nvme_suspend_io_queues(dev);
2708 	nvme_suspend_queue(&dev->queues[0]);
2709 	nvme_pci_disable(dev);
2710 	nvme_reap_pending_cqes(dev);
2711 
2712 	nvme_cancel_tagset(&dev->ctrl);
2713 	nvme_cancel_admin_tagset(&dev->ctrl);
2714 
2715 	/*
2716 	 * The driver will not be starting up queues again if shutting down so
2717 	 * must flush all entered requests to their failed completion to avoid
2718 	 * deadlocking blk-mq hot-cpu notifier.
2719 	 */
2720 	if (shutdown) {
2721 		nvme_start_queues(&dev->ctrl);
2722 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2723 			nvme_start_admin_queue(&dev->ctrl);
2724 	}
2725 	mutex_unlock(&dev->shutdown_lock);
2726 }
2727 
2728 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2729 {
2730 	if (!nvme_wait_reset(&dev->ctrl))
2731 		return -EBUSY;
2732 	nvme_dev_disable(dev, shutdown);
2733 	return 0;
2734 }
2735 
2736 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2737 {
2738 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2739 						NVME_CTRL_PAGE_SIZE,
2740 						NVME_CTRL_PAGE_SIZE, 0);
2741 	if (!dev->prp_page_pool)
2742 		return -ENOMEM;
2743 
2744 	/* Optimisation for I/Os between 4k and 128k */
2745 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2746 						256, 256, 0);
2747 	if (!dev->prp_small_pool) {
2748 		dma_pool_destroy(dev->prp_page_pool);
2749 		return -ENOMEM;
2750 	}
2751 	return 0;
2752 }
2753 
2754 static void nvme_release_prp_pools(struct nvme_dev *dev)
2755 {
2756 	dma_pool_destroy(dev->prp_page_pool);
2757 	dma_pool_destroy(dev->prp_small_pool);
2758 }
2759 
2760 static void nvme_free_tagset(struct nvme_dev *dev)
2761 {
2762 	if (dev->tagset.tags)
2763 		blk_mq_free_tag_set(&dev->tagset);
2764 	dev->ctrl.tagset = NULL;
2765 }
2766 
2767 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2768 {
2769 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2770 
2771 	nvme_dbbuf_dma_free(dev);
2772 	nvme_free_tagset(dev);
2773 	if (dev->ctrl.admin_q)
2774 		blk_put_queue(dev->ctrl.admin_q);
2775 	free_opal_dev(dev->ctrl.opal_dev);
2776 	mempool_destroy(dev->iod_mempool);
2777 	put_device(dev->dev);
2778 	kfree(dev->queues);
2779 	kfree(dev);
2780 }
2781 
2782 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2783 {
2784 	/*
2785 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2786 	 * may be holding this pci_dev's device lock.
2787 	 */
2788 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2789 	nvme_get_ctrl(&dev->ctrl);
2790 	nvme_dev_disable(dev, false);
2791 	nvme_kill_queues(&dev->ctrl);
2792 	if (!queue_work(nvme_wq, &dev->remove_work))
2793 		nvme_put_ctrl(&dev->ctrl);
2794 }
2795 
2796 static void nvme_reset_work(struct work_struct *work)
2797 {
2798 	struct nvme_dev *dev =
2799 		container_of(work, struct nvme_dev, ctrl.reset_work);
2800 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2801 	int result;
2802 
2803 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2804 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2805 			 dev->ctrl.state);
2806 		result = -ENODEV;
2807 		goto out;
2808 	}
2809 
2810 	/*
2811 	 * If we're called to reset a live controller first shut it down before
2812 	 * moving on.
2813 	 */
2814 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2815 		nvme_dev_disable(dev, false);
2816 	nvme_sync_queues(&dev->ctrl);
2817 
2818 	mutex_lock(&dev->shutdown_lock);
2819 	result = nvme_pci_enable(dev);
2820 	if (result)
2821 		goto out_unlock;
2822 
2823 	result = nvme_pci_configure_admin_queue(dev);
2824 	if (result)
2825 		goto out_unlock;
2826 
2827 	if (!dev->ctrl.admin_q) {
2828 		result = nvme_pci_alloc_admin_tag_set(dev);
2829 		if (result)
2830 			goto out_unlock;
2831 	} else {
2832 		nvme_start_admin_queue(&dev->ctrl);
2833 	}
2834 
2835 	/*
2836 	 * Limit the max command size to prevent iod->sg allocations going
2837 	 * over a single page.
2838 	 */
2839 	dev->ctrl.max_hw_sectors = min_t(u32,
2840 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2841 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2842 
2843 	/*
2844 	 * Don't limit the IOMMU merged segment size.
2845 	 */
2846 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2847 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2848 
2849 	mutex_unlock(&dev->shutdown_lock);
2850 
2851 	/*
2852 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2853 	 * initializing procedure here.
2854 	 */
2855 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2856 		dev_warn(dev->ctrl.device,
2857 			"failed to mark controller CONNECTING\n");
2858 		result = -EBUSY;
2859 		goto out;
2860 	}
2861 
2862 	/*
2863 	 * We do not support an SGL for metadata (yet), so we are limited to a
2864 	 * single integrity segment for the separate metadata pointer.
2865 	 */
2866 	dev->ctrl.max_integrity_segments = 1;
2867 
2868 	result = nvme_init_ctrl_finish(&dev->ctrl);
2869 	if (result)
2870 		goto out;
2871 
2872 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2873 		if (!dev->ctrl.opal_dev)
2874 			dev->ctrl.opal_dev =
2875 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2876 		else if (was_suspend)
2877 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2878 	} else {
2879 		free_opal_dev(dev->ctrl.opal_dev);
2880 		dev->ctrl.opal_dev = NULL;
2881 	}
2882 
2883 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2884 		result = nvme_dbbuf_dma_alloc(dev);
2885 		if (result)
2886 			dev_warn(dev->dev,
2887 				 "unable to allocate dma for dbbuf\n");
2888 	}
2889 
2890 	if (dev->ctrl.hmpre) {
2891 		result = nvme_setup_host_mem(dev);
2892 		if (result < 0)
2893 			goto out;
2894 	}
2895 
2896 	result = nvme_setup_io_queues(dev);
2897 	if (result)
2898 		goto out;
2899 
2900 	/*
2901 	 * Keep the controller around but remove all namespaces if we don't have
2902 	 * any working I/O queue.
2903 	 */
2904 	if (dev->online_queues < 2) {
2905 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2906 		nvme_kill_queues(&dev->ctrl);
2907 		nvme_remove_namespaces(&dev->ctrl);
2908 		nvme_free_tagset(dev);
2909 	} else {
2910 		nvme_start_queues(&dev->ctrl);
2911 		nvme_wait_freeze(&dev->ctrl);
2912 		if (!dev->ctrl.tagset)
2913 			nvme_pci_alloc_tag_set(dev);
2914 		else
2915 			nvme_pci_update_nr_queues(dev);
2916 		nvme_dbbuf_set(dev);
2917 		nvme_unfreeze(&dev->ctrl);
2918 	}
2919 
2920 	/*
2921 	 * If only admin queue live, keep it to do further investigation or
2922 	 * recovery.
2923 	 */
2924 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2925 		dev_warn(dev->ctrl.device,
2926 			"failed to mark controller live state\n");
2927 		result = -ENODEV;
2928 		goto out;
2929 	}
2930 
2931 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2932 			&nvme_pci_attr_group))
2933 		dev->attrs_added = true;
2934 
2935 	nvme_start_ctrl(&dev->ctrl);
2936 	return;
2937 
2938  out_unlock:
2939 	mutex_unlock(&dev->shutdown_lock);
2940  out:
2941 	if (result)
2942 		dev_warn(dev->ctrl.device,
2943 			 "Removing after probe failure status: %d\n", result);
2944 	nvme_remove_dead_ctrl(dev);
2945 }
2946 
2947 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2948 {
2949 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2950 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2951 
2952 	if (pci_get_drvdata(pdev))
2953 		device_release_driver(&pdev->dev);
2954 	nvme_put_ctrl(&dev->ctrl);
2955 }
2956 
2957 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2958 {
2959 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2960 	return 0;
2961 }
2962 
2963 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2964 {
2965 	writel(val, to_nvme_dev(ctrl)->bar + off);
2966 	return 0;
2967 }
2968 
2969 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2970 {
2971 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2972 	return 0;
2973 }
2974 
2975 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2976 {
2977 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2978 
2979 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2980 }
2981 
2982 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2983 {
2984 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2985 	struct nvme_subsystem *subsys = ctrl->subsys;
2986 
2987 	dev_err(ctrl->device,
2988 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2989 		pdev->vendor, pdev->device,
2990 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2991 		subsys->model, nvme_strlen(subsys->firmware_rev,
2992 					   sizeof(subsys->firmware_rev)),
2993 		subsys->firmware_rev);
2994 }
2995 
2996 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2997 {
2998 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2999 
3000 	return dma_pci_p2pdma_supported(dev->dev);
3001 }
3002 
3003 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3004 	.name			= "pcie",
3005 	.module			= THIS_MODULE,
3006 	.flags			= NVME_F_METADATA_SUPPORTED,
3007 	.reg_read32		= nvme_pci_reg_read32,
3008 	.reg_write32		= nvme_pci_reg_write32,
3009 	.reg_read64		= nvme_pci_reg_read64,
3010 	.free_ctrl		= nvme_pci_free_ctrl,
3011 	.submit_async_event	= nvme_pci_submit_async_event,
3012 	.get_address		= nvme_pci_get_address,
3013 	.print_device_info	= nvme_pci_print_device_info,
3014 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3015 };
3016 
3017 static int nvme_dev_map(struct nvme_dev *dev)
3018 {
3019 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3020 
3021 	if (pci_request_mem_regions(pdev, "nvme"))
3022 		return -ENODEV;
3023 
3024 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3025 		goto release;
3026 
3027 	return 0;
3028   release:
3029 	pci_release_mem_regions(pdev);
3030 	return -ENODEV;
3031 }
3032 
3033 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3034 {
3035 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3036 		/*
3037 		 * Several Samsung devices seem to drop off the PCIe bus
3038 		 * randomly when APST is on and uses the deepest sleep state.
3039 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3040 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3041 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3042 		 * laptops.
3043 		 */
3044 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3045 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3046 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3047 			return NVME_QUIRK_NO_DEEPEST_PS;
3048 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3049 		/*
3050 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3051 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3052 		 * within few minutes after bootup on a Coffee Lake board -
3053 		 * ASUS PRIME Z370-A
3054 		 */
3055 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3056 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3057 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3058 			return NVME_QUIRK_NO_APST;
3059 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3060 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3061 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3062 		/*
3063 		 * Forcing to use host managed nvme power settings for
3064 		 * lowest idle power with quick resume latency on
3065 		 * Samsung and Toshiba SSDs based on suspend behavior
3066 		 * on Coffee Lake board for LENOVO C640
3067 		 */
3068 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3069 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3070 			return NVME_QUIRK_SIMPLE_SUSPEND;
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 static void nvme_async_probe(void *data, async_cookie_t cookie)
3077 {
3078 	struct nvme_dev *dev = data;
3079 
3080 	flush_work(&dev->ctrl.reset_work);
3081 	flush_work(&dev->ctrl.scan_work);
3082 	nvme_put_ctrl(&dev->ctrl);
3083 }
3084 
3085 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3086 {
3087 	int node, result = -ENOMEM;
3088 	struct nvme_dev *dev;
3089 	unsigned long quirks = id->driver_data;
3090 	size_t alloc_size;
3091 
3092 	node = dev_to_node(&pdev->dev);
3093 	if (node == NUMA_NO_NODE)
3094 		set_dev_node(&pdev->dev, first_memory_node);
3095 
3096 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3097 	if (!dev)
3098 		return -ENOMEM;
3099 
3100 	dev->nr_write_queues = write_queues;
3101 	dev->nr_poll_queues = poll_queues;
3102 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3103 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3104 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3105 	if (!dev->queues)
3106 		goto free;
3107 
3108 	dev->dev = get_device(&pdev->dev);
3109 	pci_set_drvdata(pdev, dev);
3110 
3111 	result = nvme_dev_map(dev);
3112 	if (result)
3113 		goto put_pci;
3114 
3115 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3116 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3117 	mutex_init(&dev->shutdown_lock);
3118 
3119 	result = nvme_setup_prp_pools(dev);
3120 	if (result)
3121 		goto unmap;
3122 
3123 	quirks |= check_vendor_combination_bug(pdev);
3124 
3125 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3126 		/*
3127 		 * Some systems use a bios work around to ask for D3 on
3128 		 * platforms that support kernel managed suspend.
3129 		 */
3130 		dev_info(&pdev->dev,
3131 			 "platform quirk: setting simple suspend\n");
3132 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3133 	}
3134 
3135 	/*
3136 	 * Double check that our mempool alloc size will cover the biggest
3137 	 * command we support.
3138 	 */
3139 	alloc_size = nvme_pci_iod_alloc_size();
3140 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3141 
3142 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3143 						mempool_kfree,
3144 						(void *) alloc_size,
3145 						GFP_KERNEL, node);
3146 	if (!dev->iod_mempool) {
3147 		result = -ENOMEM;
3148 		goto release_pools;
3149 	}
3150 
3151 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3152 			quirks);
3153 	if (result)
3154 		goto release_mempool;
3155 
3156 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3157 
3158 	nvme_reset_ctrl(&dev->ctrl);
3159 	async_schedule(nvme_async_probe, dev);
3160 
3161 	return 0;
3162 
3163  release_mempool:
3164 	mempool_destroy(dev->iod_mempool);
3165  release_pools:
3166 	nvme_release_prp_pools(dev);
3167  unmap:
3168 	nvme_dev_unmap(dev);
3169  put_pci:
3170 	put_device(dev->dev);
3171  free:
3172 	kfree(dev->queues);
3173 	kfree(dev);
3174 	return result;
3175 }
3176 
3177 static void nvme_reset_prepare(struct pci_dev *pdev)
3178 {
3179 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3180 
3181 	/*
3182 	 * We don't need to check the return value from waiting for the reset
3183 	 * state as pci_dev device lock is held, making it impossible to race
3184 	 * with ->remove().
3185 	 */
3186 	nvme_disable_prepare_reset(dev, false);
3187 	nvme_sync_queues(&dev->ctrl);
3188 }
3189 
3190 static void nvme_reset_done(struct pci_dev *pdev)
3191 {
3192 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3193 
3194 	if (!nvme_try_sched_reset(&dev->ctrl))
3195 		flush_work(&dev->ctrl.reset_work);
3196 }
3197 
3198 static void nvme_shutdown(struct pci_dev *pdev)
3199 {
3200 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3201 
3202 	nvme_disable_prepare_reset(dev, true);
3203 }
3204 
3205 static void nvme_remove_attrs(struct nvme_dev *dev)
3206 {
3207 	if (dev->attrs_added)
3208 		sysfs_remove_group(&dev->ctrl.device->kobj,
3209 				   &nvme_pci_attr_group);
3210 }
3211 
3212 /*
3213  * The driver's remove may be called on a device in a partially initialized
3214  * state. This function must not have any dependencies on the device state in
3215  * order to proceed.
3216  */
3217 static void nvme_remove(struct pci_dev *pdev)
3218 {
3219 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3220 
3221 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3222 	pci_set_drvdata(pdev, NULL);
3223 
3224 	if (!pci_device_is_present(pdev)) {
3225 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3226 		nvme_dev_disable(dev, true);
3227 	}
3228 
3229 	flush_work(&dev->ctrl.reset_work);
3230 	nvme_stop_ctrl(&dev->ctrl);
3231 	nvme_remove_namespaces(&dev->ctrl);
3232 	nvme_dev_disable(dev, true);
3233 	nvme_remove_attrs(dev);
3234 	nvme_free_host_mem(dev);
3235 	nvme_dev_remove_admin(dev);
3236 	nvme_free_queues(dev, 0);
3237 	nvme_release_prp_pools(dev);
3238 	nvme_dev_unmap(dev);
3239 	nvme_uninit_ctrl(&dev->ctrl);
3240 }
3241 
3242 #ifdef CONFIG_PM_SLEEP
3243 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3244 {
3245 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3246 }
3247 
3248 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3249 {
3250 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3251 }
3252 
3253 static int nvme_resume(struct device *dev)
3254 {
3255 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3256 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3257 
3258 	if (ndev->last_ps == U32_MAX ||
3259 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3260 		goto reset;
3261 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3262 		goto reset;
3263 
3264 	return 0;
3265 reset:
3266 	return nvme_try_sched_reset(ctrl);
3267 }
3268 
3269 static int nvme_suspend(struct device *dev)
3270 {
3271 	struct pci_dev *pdev = to_pci_dev(dev);
3272 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3273 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3274 	int ret = -EBUSY;
3275 
3276 	ndev->last_ps = U32_MAX;
3277 
3278 	/*
3279 	 * The platform does not remove power for a kernel managed suspend so
3280 	 * use host managed nvme power settings for lowest idle power if
3281 	 * possible. This should have quicker resume latency than a full device
3282 	 * shutdown.  But if the firmware is involved after the suspend or the
3283 	 * device does not support any non-default power states, shut down the
3284 	 * device fully.
3285 	 *
3286 	 * If ASPM is not enabled for the device, shut down the device and allow
3287 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3288 	 * down, so as to allow the platform to achieve its minimum low-power
3289 	 * state (which may not be possible if the link is up).
3290 	 */
3291 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3292 	    !pcie_aspm_enabled(pdev) ||
3293 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3294 		return nvme_disable_prepare_reset(ndev, true);
3295 
3296 	nvme_start_freeze(ctrl);
3297 	nvme_wait_freeze(ctrl);
3298 	nvme_sync_queues(ctrl);
3299 
3300 	if (ctrl->state != NVME_CTRL_LIVE)
3301 		goto unfreeze;
3302 
3303 	/*
3304 	 * Host memory access may not be successful in a system suspend state,
3305 	 * but the specification allows the controller to access memory in a
3306 	 * non-operational power state.
3307 	 */
3308 	if (ndev->hmb) {
3309 		ret = nvme_set_host_mem(ndev, 0);
3310 		if (ret < 0)
3311 			goto unfreeze;
3312 	}
3313 
3314 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3315 	if (ret < 0)
3316 		goto unfreeze;
3317 
3318 	/*
3319 	 * A saved state prevents pci pm from generically controlling the
3320 	 * device's power. If we're using protocol specific settings, we don't
3321 	 * want pci interfering.
3322 	 */
3323 	pci_save_state(pdev);
3324 
3325 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3326 	if (ret < 0)
3327 		goto unfreeze;
3328 
3329 	if (ret) {
3330 		/* discard the saved state */
3331 		pci_load_saved_state(pdev, NULL);
3332 
3333 		/*
3334 		 * Clearing npss forces a controller reset on resume. The
3335 		 * correct value will be rediscovered then.
3336 		 */
3337 		ret = nvme_disable_prepare_reset(ndev, true);
3338 		ctrl->npss = 0;
3339 	}
3340 unfreeze:
3341 	nvme_unfreeze(ctrl);
3342 	return ret;
3343 }
3344 
3345 static int nvme_simple_suspend(struct device *dev)
3346 {
3347 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3348 
3349 	return nvme_disable_prepare_reset(ndev, true);
3350 }
3351 
3352 static int nvme_simple_resume(struct device *dev)
3353 {
3354 	struct pci_dev *pdev = to_pci_dev(dev);
3355 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3356 
3357 	return nvme_try_sched_reset(&ndev->ctrl);
3358 }
3359 
3360 static const struct dev_pm_ops nvme_dev_pm_ops = {
3361 	.suspend	= nvme_suspend,
3362 	.resume		= nvme_resume,
3363 	.freeze		= nvme_simple_suspend,
3364 	.thaw		= nvme_simple_resume,
3365 	.poweroff	= nvme_simple_suspend,
3366 	.restore	= nvme_simple_resume,
3367 };
3368 #endif /* CONFIG_PM_SLEEP */
3369 
3370 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3371 						pci_channel_state_t state)
3372 {
3373 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3374 
3375 	/*
3376 	 * A frozen channel requires a reset. When detected, this method will
3377 	 * shutdown the controller to quiesce. The controller will be restarted
3378 	 * after the slot reset through driver's slot_reset callback.
3379 	 */
3380 	switch (state) {
3381 	case pci_channel_io_normal:
3382 		return PCI_ERS_RESULT_CAN_RECOVER;
3383 	case pci_channel_io_frozen:
3384 		dev_warn(dev->ctrl.device,
3385 			"frozen state error detected, reset controller\n");
3386 		nvme_dev_disable(dev, false);
3387 		return PCI_ERS_RESULT_NEED_RESET;
3388 	case pci_channel_io_perm_failure:
3389 		dev_warn(dev->ctrl.device,
3390 			"failure state error detected, request disconnect\n");
3391 		return PCI_ERS_RESULT_DISCONNECT;
3392 	}
3393 	return PCI_ERS_RESULT_NEED_RESET;
3394 }
3395 
3396 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3397 {
3398 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3399 
3400 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3401 	pci_restore_state(pdev);
3402 	nvme_reset_ctrl(&dev->ctrl);
3403 	return PCI_ERS_RESULT_RECOVERED;
3404 }
3405 
3406 static void nvme_error_resume(struct pci_dev *pdev)
3407 {
3408 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3409 
3410 	flush_work(&dev->ctrl.reset_work);
3411 }
3412 
3413 static const struct pci_error_handlers nvme_err_handler = {
3414 	.error_detected	= nvme_error_detected,
3415 	.slot_reset	= nvme_slot_reset,
3416 	.resume		= nvme_error_resume,
3417 	.reset_prepare	= nvme_reset_prepare,
3418 	.reset_done	= nvme_reset_done,
3419 };
3420 
3421 static const struct pci_device_id nvme_id_table[] = {
3422 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3423 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3424 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3425 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3426 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3427 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3428 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3429 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3430 				NVME_QUIRK_DEALLOCATE_ZEROES |
3431 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3432 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3433 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3434 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3435 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3436 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3437 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3438 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3439 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3440 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3441 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3442 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3443 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3444 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3445 				NVME_QUIRK_BOGUS_NID, },
3446 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3447 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3448 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3449 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3450 				NVME_QUIRK_BOGUS_NID, },
3451 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3452 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3453 				NVME_QUIRK_NO_NS_DESC_LIST, },
3454 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3455 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3456 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3457 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3458 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3459 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3460 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3461 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3463 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3464 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3465 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3466 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3467 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3468 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3469 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3470 				NVME_QUIRK_BOGUS_NID, },
3471 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3472 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3473 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3474 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3475 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3476 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3477 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3478 				NVME_QUIRK_BOGUS_NID, },
3479 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3480 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3481 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3482 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3483 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3484 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3485 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3486 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3487 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3488 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3489 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3490 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3491 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3493 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3494 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3495 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3497 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3499 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3500 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3501 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3502 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3503 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3504 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3505 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3506 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3507 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3508 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3509 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3510 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3511 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3512 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3513 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3514 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3515 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3516 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3517 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3518 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3519 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3520 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3521 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3522 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3523 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3524 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3525 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3526 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3527 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3528 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3529 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3530 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3531 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3532 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3533 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3534 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3535 				NVME_QUIRK_128_BYTES_SQES |
3536 				NVME_QUIRK_SHARED_TAGS |
3537 				NVME_QUIRK_SKIP_CID_GEN },
3538 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3539 	{ 0, }
3540 };
3541 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3542 
3543 static struct pci_driver nvme_driver = {
3544 	.name		= "nvme",
3545 	.id_table	= nvme_id_table,
3546 	.probe		= nvme_probe,
3547 	.remove		= nvme_remove,
3548 	.shutdown	= nvme_shutdown,
3549 #ifdef CONFIG_PM_SLEEP
3550 	.driver		= {
3551 		.pm	= &nvme_dev_pm_ops,
3552 	},
3553 #endif
3554 	.sriov_configure = pci_sriov_configure_simple,
3555 	.err_handler	= &nvme_err_handler,
3556 };
3557 
3558 static int __init nvme_init(void)
3559 {
3560 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3561 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3562 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3563 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3564 
3565 	return pci_register_driver(&nvme_driver);
3566 }
3567 
3568 static void __exit nvme_exit(void)
3569 {
3570 	pci_unregister_driver(&nvme_driver);
3571 	flush_workqueue(nvme_wq);
3572 }
3573 
3574 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3575 MODULE_LICENSE("GPL");
3576 MODULE_VERSION("1.0");
3577 module_init(nvme_init);
3578 module_exit(nvme_exit);
3579