xref: /openbmc/linux/drivers/nvme/host/pci.c (revision a2cab953)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	4096
45 #define NVME_MAX_SEGS	127
46 
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49 
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53 
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58 
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 		"Use SGLs when average request segment size is larger or equal to "
63 		"this size. Use 0 to disable SGLs.");
64 
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 	.set = io_queue_depth_set,
70 	.get = param_get_uint,
71 };
72 
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76 
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79 	unsigned int n;
80 	int ret;
81 
82 	ret = kstrtouint(val, 10, &n);
83 	if (ret != 0 || n > num_possible_cpus())
84 		return -EINVAL;
85 	return param_set_uint(val, kp);
86 }
87 
88 static const struct kernel_param_ops io_queue_count_ops = {
89 	.set = io_queue_count_set,
90 	.get = param_get_uint,
91 };
92 
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 	"Number of queues to use for writes. If not set, reads and writes "
97 	"will share a queue set.");
98 
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102 
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106 
107 struct nvme_dev;
108 struct nvme_queue;
109 
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112 
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117 	struct nvme_queue *queues;
118 	struct blk_mq_tag_set tagset;
119 	struct blk_mq_tag_set admin_tagset;
120 	u32 __iomem *dbs;
121 	struct device *dev;
122 	struct dma_pool *prp_page_pool;
123 	struct dma_pool *prp_small_pool;
124 	unsigned online_queues;
125 	unsigned max_qid;
126 	unsigned io_queues[HCTX_MAX_TYPES];
127 	unsigned int num_vecs;
128 	u32 q_depth;
129 	int io_sqes;
130 	u32 db_stride;
131 	void __iomem *bar;
132 	unsigned long bar_mapped_size;
133 	struct work_struct remove_work;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 
162 	bool attrs_added;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	u32 *dbbuf_sq_db;
214 	u32 *dbbuf_cq_db;
215 	u32 *dbbuf_sq_ei;
216 	u32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227 	struct nvme_request req;
228 	struct nvme_command cmd;
229 	bool use_sgl;
230 	bool aborted;
231 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
232 				   pool in use */
233 	unsigned int dma_len;	/* length of single DMA segment mapping */
234 	dma_addr_t first_dma;
235 	dma_addr_t meta_dma;
236 	struct sg_table sgt;
237 };
238 
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs) {
249 		/*
250 		 * Clear the dbbuf memory so the driver doesn't observe stale
251 		 * values from the previous instantiation.
252 		 */
253 		memset(dev->dbbuf_dbs, 0, mem_size);
254 		memset(dev->dbbuf_eis, 0, mem_size);
255 		return 0;
256 	}
257 
258 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259 					    &dev->dbbuf_dbs_dma_addr,
260 					    GFP_KERNEL);
261 	if (!dev->dbbuf_dbs)
262 		return -ENOMEM;
263 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264 					    &dev->dbbuf_eis_dma_addr,
265 					    GFP_KERNEL);
266 	if (!dev->dbbuf_eis) {
267 		dma_free_coherent(dev->dev, mem_size,
268 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269 		dev->dbbuf_dbs = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 
276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278 	unsigned int mem_size = nvme_dbbuf_size(dev);
279 
280 	if (dev->dbbuf_dbs) {
281 		dma_free_coherent(dev->dev, mem_size,
282 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283 		dev->dbbuf_dbs = NULL;
284 	}
285 	if (dev->dbbuf_eis) {
286 		dma_free_coherent(dev->dev, mem_size,
287 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288 		dev->dbbuf_eis = NULL;
289 	}
290 }
291 
292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293 			    struct nvme_queue *nvmeq, int qid)
294 {
295 	if (!dev->dbbuf_dbs || !qid)
296 		return;
297 
298 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303 
304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306 	if (!nvmeq->qid)
307 		return;
308 
309 	nvmeq->dbbuf_sq_db = NULL;
310 	nvmeq->dbbuf_cq_db = NULL;
311 	nvmeq->dbbuf_sq_ei = NULL;
312 	nvmeq->dbbuf_cq_ei = NULL;
313 }
314 
315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317 	struct nvme_command c = { };
318 	unsigned int i;
319 
320 	if (!dev->dbbuf_dbs)
321 		return;
322 
323 	c.dbbuf.opcode = nvme_admin_dbbuf;
324 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326 
327 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329 		/* Free memory and continue on */
330 		nvme_dbbuf_dma_free(dev);
331 
332 		for (i = 1; i <= dev->online_queues; i++)
333 			nvme_dbbuf_free(&dev->queues[i]);
334 	}
335 }
336 
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341 
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344 					      volatile u32 *dbbuf_ei)
345 {
346 	if (dbbuf_db) {
347 		u16 old_value;
348 
349 		/*
350 		 * Ensure that the queue is written before updating
351 		 * the doorbell in memory
352 		 */
353 		wmb();
354 
355 		old_value = *dbbuf_db;
356 		*dbbuf_db = value;
357 
358 		/*
359 		 * Ensure that the doorbell is updated before reading the event
360 		 * index from memory.  The controller needs to provide similar
361 		 * ordering to ensure the envent index is updated before reading
362 		 * the doorbell.
363 		 */
364 		mb();
365 
366 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 			return false;
368 	}
369 
370 	return true;
371 }
372 
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_pci_npages_prp(void)
379 {
380 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381 				      NVME_CTRL_PAGE_SIZE);
382 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384 
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(void)
390 {
391 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392 			PAGE_SIZE);
393 }
394 
395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398 
399 	return sizeof(__le64 *) * npages +
400 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402 
403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 				unsigned int hctx_idx)
405 {
406 	struct nvme_dev *dev = data;
407 	struct nvme_queue *nvmeq = &dev->queues[0];
408 
409 	WARN_ON(hctx_idx != 0);
410 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411 
412 	hctx->driver_data = nvmeq;
413 	return 0;
414 }
415 
416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417 			  unsigned int hctx_idx)
418 {
419 	struct nvme_dev *dev = data;
420 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421 
422 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423 	hctx->driver_data = nvmeq;
424 	return 0;
425 }
426 
427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
428 		struct request *req, unsigned int hctx_idx,
429 		unsigned int numa_node)
430 {
431 	struct nvme_dev *dev = set->driver_data;
432 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433 
434 	nvme_req(req)->ctrl = &dev->ctrl;
435 	nvme_req(req)->cmd = &iod->cmd;
436 	return 0;
437 }
438 
439 static int queue_irq_offset(struct nvme_dev *dev)
440 {
441 	/* if we have more than 1 vec, admin queue offsets us by 1 */
442 	if (dev->num_vecs > 1)
443 		return 1;
444 
445 	return 0;
446 }
447 
448 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
449 {
450 	struct nvme_dev *dev = set->driver_data;
451 	int i, qoff, offset;
452 
453 	offset = queue_irq_offset(dev);
454 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
455 		struct blk_mq_queue_map *map = &set->map[i];
456 
457 		map->nr_queues = dev->io_queues[i];
458 		if (!map->nr_queues) {
459 			BUG_ON(i == HCTX_TYPE_DEFAULT);
460 			continue;
461 		}
462 
463 		/*
464 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
465 		 * affinity), so use the regular blk-mq cpu mapping
466 		 */
467 		map->queue_offset = qoff;
468 		if (i != HCTX_TYPE_POLL && offset)
469 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
470 		else
471 			blk_mq_map_queues(map);
472 		qoff += map->nr_queues;
473 		offset += map->nr_queues;
474 	}
475 }
476 
477 /*
478  * Write sq tail if we are asked to, or if the next command would wrap.
479  */
480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
481 {
482 	if (!write_sq) {
483 		u16 next_tail = nvmeq->sq_tail + 1;
484 
485 		if (next_tail == nvmeq->q_depth)
486 			next_tail = 0;
487 		if (next_tail != nvmeq->last_sq_tail)
488 			return;
489 	}
490 
491 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
492 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
493 		writel(nvmeq->sq_tail, nvmeq->q_db);
494 	nvmeq->last_sq_tail = nvmeq->sq_tail;
495 }
496 
497 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
498 				    struct nvme_command *cmd)
499 {
500 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
501 		absolute_pointer(cmd), sizeof(*cmd));
502 	if (++nvmeq->sq_tail == nvmeq->q_depth)
503 		nvmeq->sq_tail = 0;
504 }
505 
506 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
507 {
508 	struct nvme_queue *nvmeq = hctx->driver_data;
509 
510 	spin_lock(&nvmeq->sq_lock);
511 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
512 		nvme_write_sq_db(nvmeq, true);
513 	spin_unlock(&nvmeq->sq_lock);
514 }
515 
516 static void **nvme_pci_iod_list(struct request *req)
517 {
518 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
519 	return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
520 }
521 
522 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
523 {
524 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 	int nseg = blk_rq_nr_phys_segments(req);
526 	unsigned int avg_seg_size;
527 
528 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
529 
530 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
531 		return false;
532 	if (!nvmeq->qid)
533 		return false;
534 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
535 		return false;
536 	return true;
537 }
538 
539 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
540 {
541 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 	dma_addr_t dma_addr = iod->first_dma;
544 	int i;
545 
546 	for (i = 0; i < iod->nr_allocations; i++) {
547 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
548 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
549 
550 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
551 		dma_addr = next_dma_addr;
552 	}
553 }
554 
555 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
556 {
557 	const int last_sg = SGES_PER_PAGE - 1;
558 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559 	dma_addr_t dma_addr = iod->first_dma;
560 	int i;
561 
562 	for (i = 0; i < iod->nr_allocations; i++) {
563 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
564 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
565 
566 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
567 		dma_addr = next_dma_addr;
568 	}
569 }
570 
571 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
572 {
573 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
574 
575 	if (iod->dma_len) {
576 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
577 			       rq_dma_dir(req));
578 		return;
579 	}
580 
581 	WARN_ON_ONCE(!iod->sgt.nents);
582 
583 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
584 
585 	if (iod->nr_allocations == 0)
586 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
587 			      iod->first_dma);
588 	else if (iod->use_sgl)
589 		nvme_free_sgls(dev, req);
590 	else
591 		nvme_free_prps(dev, req);
592 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
593 }
594 
595 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
596 {
597 	int i;
598 	struct scatterlist *sg;
599 
600 	for_each_sg(sgl, sg, nents, i) {
601 		dma_addr_t phys = sg_phys(sg);
602 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
603 			"dma_address:%pad dma_length:%d\n",
604 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
605 			sg_dma_len(sg));
606 	}
607 }
608 
609 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
610 		struct request *req, struct nvme_rw_command *cmnd)
611 {
612 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
613 	struct dma_pool *pool;
614 	int length = blk_rq_payload_bytes(req);
615 	struct scatterlist *sg = iod->sgt.sgl;
616 	int dma_len = sg_dma_len(sg);
617 	u64 dma_addr = sg_dma_address(sg);
618 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
619 	__le64 *prp_list;
620 	void **list = nvme_pci_iod_list(req);
621 	dma_addr_t prp_dma;
622 	int nprps, i;
623 
624 	length -= (NVME_CTRL_PAGE_SIZE - offset);
625 	if (length <= 0) {
626 		iod->first_dma = 0;
627 		goto done;
628 	}
629 
630 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
631 	if (dma_len) {
632 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
633 	} else {
634 		sg = sg_next(sg);
635 		dma_addr = sg_dma_address(sg);
636 		dma_len = sg_dma_len(sg);
637 	}
638 
639 	if (length <= NVME_CTRL_PAGE_SIZE) {
640 		iod->first_dma = dma_addr;
641 		goto done;
642 	}
643 
644 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
645 	if (nprps <= (256 / 8)) {
646 		pool = dev->prp_small_pool;
647 		iod->nr_allocations = 0;
648 	} else {
649 		pool = dev->prp_page_pool;
650 		iod->nr_allocations = 1;
651 	}
652 
653 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
654 	if (!prp_list) {
655 		iod->nr_allocations = -1;
656 		return BLK_STS_RESOURCE;
657 	}
658 	list[0] = prp_list;
659 	iod->first_dma = prp_dma;
660 	i = 0;
661 	for (;;) {
662 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
663 			__le64 *old_prp_list = prp_list;
664 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
665 			if (!prp_list)
666 				goto free_prps;
667 			list[iod->nr_allocations++] = prp_list;
668 			prp_list[0] = old_prp_list[i - 1];
669 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
670 			i = 1;
671 		}
672 		prp_list[i++] = cpu_to_le64(dma_addr);
673 		dma_len -= NVME_CTRL_PAGE_SIZE;
674 		dma_addr += NVME_CTRL_PAGE_SIZE;
675 		length -= NVME_CTRL_PAGE_SIZE;
676 		if (length <= 0)
677 			break;
678 		if (dma_len > 0)
679 			continue;
680 		if (unlikely(dma_len < 0))
681 			goto bad_sgl;
682 		sg = sg_next(sg);
683 		dma_addr = sg_dma_address(sg);
684 		dma_len = sg_dma_len(sg);
685 	}
686 done:
687 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
688 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
689 	return BLK_STS_OK;
690 free_prps:
691 	nvme_free_prps(dev, req);
692 	return BLK_STS_RESOURCE;
693 bad_sgl:
694 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
695 			"Invalid SGL for payload:%d nents:%d\n",
696 			blk_rq_payload_bytes(req), iod->sgt.nents);
697 	return BLK_STS_IOERR;
698 }
699 
700 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
701 		struct scatterlist *sg)
702 {
703 	sge->addr = cpu_to_le64(sg_dma_address(sg));
704 	sge->length = cpu_to_le32(sg_dma_len(sg));
705 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
706 }
707 
708 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
709 		dma_addr_t dma_addr, int entries)
710 {
711 	sge->addr = cpu_to_le64(dma_addr);
712 	if (entries < SGES_PER_PAGE) {
713 		sge->length = cpu_to_le32(entries * sizeof(*sge));
714 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
715 	} else {
716 		sge->length = cpu_to_le32(PAGE_SIZE);
717 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
718 	}
719 }
720 
721 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
722 		struct request *req, struct nvme_rw_command *cmd)
723 {
724 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
725 	struct dma_pool *pool;
726 	struct nvme_sgl_desc *sg_list;
727 	struct scatterlist *sg = iod->sgt.sgl;
728 	unsigned int entries = iod->sgt.nents;
729 	dma_addr_t sgl_dma;
730 	int i = 0;
731 
732 	/* setting the transfer type as SGL */
733 	cmd->flags = NVME_CMD_SGL_METABUF;
734 
735 	if (entries == 1) {
736 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
737 		return BLK_STS_OK;
738 	}
739 
740 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
741 		pool = dev->prp_small_pool;
742 		iod->nr_allocations = 0;
743 	} else {
744 		pool = dev->prp_page_pool;
745 		iod->nr_allocations = 1;
746 	}
747 
748 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
749 	if (!sg_list) {
750 		iod->nr_allocations = -1;
751 		return BLK_STS_RESOURCE;
752 	}
753 
754 	nvme_pci_iod_list(req)[0] = sg_list;
755 	iod->first_dma = sgl_dma;
756 
757 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
758 
759 	do {
760 		if (i == SGES_PER_PAGE) {
761 			struct nvme_sgl_desc *old_sg_desc = sg_list;
762 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
763 
764 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
765 			if (!sg_list)
766 				goto free_sgls;
767 
768 			i = 0;
769 			nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
770 			sg_list[i++] = *link;
771 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
772 		}
773 
774 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
775 		sg = sg_next(sg);
776 	} while (--entries > 0);
777 
778 	return BLK_STS_OK;
779 free_sgls:
780 	nvme_free_sgls(dev, req);
781 	return BLK_STS_RESOURCE;
782 }
783 
784 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
785 		struct request *req, struct nvme_rw_command *cmnd,
786 		struct bio_vec *bv)
787 {
788 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
790 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
791 
792 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
793 	if (dma_mapping_error(dev->dev, iod->first_dma))
794 		return BLK_STS_RESOURCE;
795 	iod->dma_len = bv->bv_len;
796 
797 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
798 	if (bv->bv_len > first_prp_len)
799 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
800 	return BLK_STS_OK;
801 }
802 
803 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
804 		struct request *req, struct nvme_rw_command *cmnd,
805 		struct bio_vec *bv)
806 {
807 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
808 
809 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
810 	if (dma_mapping_error(dev->dev, iod->first_dma))
811 		return BLK_STS_RESOURCE;
812 	iod->dma_len = bv->bv_len;
813 
814 	cmnd->flags = NVME_CMD_SGL_METABUF;
815 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
816 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
817 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
818 	return BLK_STS_OK;
819 }
820 
821 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
822 		struct nvme_command *cmnd)
823 {
824 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
825 	blk_status_t ret = BLK_STS_RESOURCE;
826 	int rc;
827 
828 	if (blk_rq_nr_phys_segments(req) == 1) {
829 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
830 		struct bio_vec bv = req_bvec(req);
831 
832 		if (!is_pci_p2pdma_page(bv.bv_page)) {
833 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
834 				return nvme_setup_prp_simple(dev, req,
835 							     &cmnd->rw, &bv);
836 
837 			if (nvmeq->qid && sgl_threshold &&
838 			    nvme_ctrl_sgl_supported(&dev->ctrl))
839 				return nvme_setup_sgl_simple(dev, req,
840 							     &cmnd->rw, &bv);
841 		}
842 	}
843 
844 	iod->dma_len = 0;
845 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
846 	if (!iod->sgt.sgl)
847 		return BLK_STS_RESOURCE;
848 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
849 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
850 	if (!iod->sgt.orig_nents)
851 		goto out_free_sg;
852 
853 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
854 			     DMA_ATTR_NO_WARN);
855 	if (rc) {
856 		if (rc == -EREMOTEIO)
857 			ret = BLK_STS_TARGET;
858 		goto out_free_sg;
859 	}
860 
861 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
862 	if (iod->use_sgl)
863 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
864 	else
865 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
866 	if (ret != BLK_STS_OK)
867 		goto out_unmap_sg;
868 	return BLK_STS_OK;
869 
870 out_unmap_sg:
871 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
872 out_free_sg:
873 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
874 	return ret;
875 }
876 
877 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
878 		struct nvme_command *cmnd)
879 {
880 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881 
882 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
883 			rq_dma_dir(req), 0);
884 	if (dma_mapping_error(dev->dev, iod->meta_dma))
885 		return BLK_STS_IOERR;
886 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
887 	return BLK_STS_OK;
888 }
889 
890 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
891 {
892 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
893 	blk_status_t ret;
894 
895 	iod->aborted = false;
896 	iod->nr_allocations = -1;
897 	iod->sgt.nents = 0;
898 
899 	ret = nvme_setup_cmd(req->q->queuedata, req);
900 	if (ret)
901 		return ret;
902 
903 	if (blk_rq_nr_phys_segments(req)) {
904 		ret = nvme_map_data(dev, req, &iod->cmd);
905 		if (ret)
906 			goto out_free_cmd;
907 	}
908 
909 	if (blk_integrity_rq(req)) {
910 		ret = nvme_map_metadata(dev, req, &iod->cmd);
911 		if (ret)
912 			goto out_unmap_data;
913 	}
914 
915 	blk_mq_start_request(req);
916 	return BLK_STS_OK;
917 out_unmap_data:
918 	nvme_unmap_data(dev, req);
919 out_free_cmd:
920 	nvme_cleanup_cmd(req);
921 	return ret;
922 }
923 
924 /*
925  * NOTE: ns is NULL when called on the admin queue.
926  */
927 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
928 			 const struct blk_mq_queue_data *bd)
929 {
930 	struct nvme_queue *nvmeq = hctx->driver_data;
931 	struct nvme_dev *dev = nvmeq->dev;
932 	struct request *req = bd->rq;
933 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
934 	blk_status_t ret;
935 
936 	/*
937 	 * We should not need to do this, but we're still using this to
938 	 * ensure we can drain requests on a dying queue.
939 	 */
940 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
941 		return BLK_STS_IOERR;
942 
943 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
944 		return nvme_fail_nonready_command(&dev->ctrl, req);
945 
946 	ret = nvme_prep_rq(dev, req);
947 	if (unlikely(ret))
948 		return ret;
949 	spin_lock(&nvmeq->sq_lock);
950 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
951 	nvme_write_sq_db(nvmeq, bd->last);
952 	spin_unlock(&nvmeq->sq_lock);
953 	return BLK_STS_OK;
954 }
955 
956 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
957 {
958 	spin_lock(&nvmeq->sq_lock);
959 	while (!rq_list_empty(*rqlist)) {
960 		struct request *req = rq_list_pop(rqlist);
961 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
962 
963 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
964 	}
965 	nvme_write_sq_db(nvmeq, true);
966 	spin_unlock(&nvmeq->sq_lock);
967 }
968 
969 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
970 {
971 	/*
972 	 * We should not need to do this, but we're still using this to
973 	 * ensure we can drain requests on a dying queue.
974 	 */
975 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
976 		return false;
977 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
978 		return false;
979 
980 	req->mq_hctx->tags->rqs[req->tag] = req;
981 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
982 }
983 
984 static void nvme_queue_rqs(struct request **rqlist)
985 {
986 	struct request *req, *next, *prev = NULL;
987 	struct request *requeue_list = NULL;
988 
989 	rq_list_for_each_safe(rqlist, req, next) {
990 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
991 
992 		if (!nvme_prep_rq_batch(nvmeq, req)) {
993 			/* detach 'req' and add to remainder list */
994 			rq_list_move(rqlist, &requeue_list, req, prev);
995 
996 			req = prev;
997 			if (!req)
998 				continue;
999 		}
1000 
1001 		if (!next || req->mq_hctx != next->mq_hctx) {
1002 			/* detach rest of list, and submit */
1003 			req->rq_next = NULL;
1004 			nvme_submit_cmds(nvmeq, rqlist);
1005 			*rqlist = next;
1006 			prev = NULL;
1007 		} else
1008 			prev = req;
1009 	}
1010 
1011 	*rqlist = requeue_list;
1012 }
1013 
1014 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1015 {
1016 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1017 	struct nvme_dev *dev = nvmeq->dev;
1018 
1019 	if (blk_integrity_rq(req)) {
1020 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1021 
1022 		dma_unmap_page(dev->dev, iod->meta_dma,
1023 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1024 	}
1025 
1026 	if (blk_rq_nr_phys_segments(req))
1027 		nvme_unmap_data(dev, req);
1028 }
1029 
1030 static void nvme_pci_complete_rq(struct request *req)
1031 {
1032 	nvme_pci_unmap_rq(req);
1033 	nvme_complete_rq(req);
1034 }
1035 
1036 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1037 {
1038 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1039 }
1040 
1041 /* We read the CQE phase first to check if the rest of the entry is valid */
1042 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1043 {
1044 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1045 
1046 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1047 }
1048 
1049 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1050 {
1051 	u16 head = nvmeq->cq_head;
1052 
1053 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1054 					      nvmeq->dbbuf_cq_ei))
1055 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1056 }
1057 
1058 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1059 {
1060 	if (!nvmeq->qid)
1061 		return nvmeq->dev->admin_tagset.tags[0];
1062 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1063 }
1064 
1065 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1066 				   struct io_comp_batch *iob, u16 idx)
1067 {
1068 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1069 	__u16 command_id = READ_ONCE(cqe->command_id);
1070 	struct request *req;
1071 
1072 	/*
1073 	 * AEN requests are special as they don't time out and can
1074 	 * survive any kind of queue freeze and often don't respond to
1075 	 * aborts.  We don't even bother to allocate a struct request
1076 	 * for them but rather special case them here.
1077 	 */
1078 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1079 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1080 				cqe->status, &cqe->result);
1081 		return;
1082 	}
1083 
1084 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1085 	if (unlikely(!req)) {
1086 		dev_warn(nvmeq->dev->ctrl.device,
1087 			"invalid id %d completed on queue %d\n",
1088 			command_id, le16_to_cpu(cqe->sq_id));
1089 		return;
1090 	}
1091 
1092 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1093 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1094 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1095 					nvme_pci_complete_batch))
1096 		nvme_pci_complete_rq(req);
1097 }
1098 
1099 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1100 {
1101 	u32 tmp = nvmeq->cq_head + 1;
1102 
1103 	if (tmp == nvmeq->q_depth) {
1104 		nvmeq->cq_head = 0;
1105 		nvmeq->cq_phase ^= 1;
1106 	} else {
1107 		nvmeq->cq_head = tmp;
1108 	}
1109 }
1110 
1111 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1112 			       struct io_comp_batch *iob)
1113 {
1114 	int found = 0;
1115 
1116 	while (nvme_cqe_pending(nvmeq)) {
1117 		found++;
1118 		/*
1119 		 * load-load control dependency between phase and the rest of
1120 		 * the cqe requires a full read memory barrier
1121 		 */
1122 		dma_rmb();
1123 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1124 		nvme_update_cq_head(nvmeq);
1125 	}
1126 
1127 	if (found)
1128 		nvme_ring_cq_doorbell(nvmeq);
1129 	return found;
1130 }
1131 
1132 static irqreturn_t nvme_irq(int irq, void *data)
1133 {
1134 	struct nvme_queue *nvmeq = data;
1135 	DEFINE_IO_COMP_BATCH(iob);
1136 
1137 	if (nvme_poll_cq(nvmeq, &iob)) {
1138 		if (!rq_list_empty(iob.req_list))
1139 			nvme_pci_complete_batch(&iob);
1140 		return IRQ_HANDLED;
1141 	}
1142 	return IRQ_NONE;
1143 }
1144 
1145 static irqreturn_t nvme_irq_check(int irq, void *data)
1146 {
1147 	struct nvme_queue *nvmeq = data;
1148 
1149 	if (nvme_cqe_pending(nvmeq))
1150 		return IRQ_WAKE_THREAD;
1151 	return IRQ_NONE;
1152 }
1153 
1154 /*
1155  * Poll for completions for any interrupt driven queue
1156  * Can be called from any context.
1157  */
1158 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1159 {
1160 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1161 
1162 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1163 
1164 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1165 	nvme_poll_cq(nvmeq, NULL);
1166 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167 }
1168 
1169 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1170 {
1171 	struct nvme_queue *nvmeq = hctx->driver_data;
1172 	bool found;
1173 
1174 	if (!nvme_cqe_pending(nvmeq))
1175 		return 0;
1176 
1177 	spin_lock(&nvmeq->cq_poll_lock);
1178 	found = nvme_poll_cq(nvmeq, iob);
1179 	spin_unlock(&nvmeq->cq_poll_lock);
1180 
1181 	return found;
1182 }
1183 
1184 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1185 {
1186 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1187 	struct nvme_queue *nvmeq = &dev->queues[0];
1188 	struct nvme_command c = { };
1189 
1190 	c.common.opcode = nvme_admin_async_event;
1191 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1192 
1193 	spin_lock(&nvmeq->sq_lock);
1194 	nvme_sq_copy_cmd(nvmeq, &c);
1195 	nvme_write_sq_db(nvmeq, true);
1196 	spin_unlock(&nvmeq->sq_lock);
1197 }
1198 
1199 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1200 {
1201 	struct nvme_command c = { };
1202 
1203 	c.delete_queue.opcode = opcode;
1204 	c.delete_queue.qid = cpu_to_le16(id);
1205 
1206 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1207 }
1208 
1209 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1210 		struct nvme_queue *nvmeq, s16 vector)
1211 {
1212 	struct nvme_command c = { };
1213 	int flags = NVME_QUEUE_PHYS_CONTIG;
1214 
1215 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1216 		flags |= NVME_CQ_IRQ_ENABLED;
1217 
1218 	/*
1219 	 * Note: we (ab)use the fact that the prp fields survive if no data
1220 	 * is attached to the request.
1221 	 */
1222 	c.create_cq.opcode = nvme_admin_create_cq;
1223 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1224 	c.create_cq.cqid = cpu_to_le16(qid);
1225 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1226 	c.create_cq.cq_flags = cpu_to_le16(flags);
1227 	c.create_cq.irq_vector = cpu_to_le16(vector);
1228 
1229 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1230 }
1231 
1232 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1233 						struct nvme_queue *nvmeq)
1234 {
1235 	struct nvme_ctrl *ctrl = &dev->ctrl;
1236 	struct nvme_command c = { };
1237 	int flags = NVME_QUEUE_PHYS_CONTIG;
1238 
1239 	/*
1240 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1241 	 * set. Since URGENT priority is zeroes, it makes all queues
1242 	 * URGENT.
1243 	 */
1244 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1245 		flags |= NVME_SQ_PRIO_MEDIUM;
1246 
1247 	/*
1248 	 * Note: we (ab)use the fact that the prp fields survive if no data
1249 	 * is attached to the request.
1250 	 */
1251 	c.create_sq.opcode = nvme_admin_create_sq;
1252 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1253 	c.create_sq.sqid = cpu_to_le16(qid);
1254 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1255 	c.create_sq.sq_flags = cpu_to_le16(flags);
1256 	c.create_sq.cqid = cpu_to_le16(qid);
1257 
1258 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1259 }
1260 
1261 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1262 {
1263 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1264 }
1265 
1266 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1267 {
1268 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1269 }
1270 
1271 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1272 {
1273 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1274 
1275 	dev_warn(nvmeq->dev->ctrl.device,
1276 		 "Abort status: 0x%x", nvme_req(req)->status);
1277 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1278 	blk_mq_free_request(req);
1279 	return RQ_END_IO_NONE;
1280 }
1281 
1282 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1283 {
1284 	/* If true, indicates loss of adapter communication, possibly by a
1285 	 * NVMe Subsystem reset.
1286 	 */
1287 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1288 
1289 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1290 	switch (dev->ctrl.state) {
1291 	case NVME_CTRL_RESETTING:
1292 	case NVME_CTRL_CONNECTING:
1293 		return false;
1294 	default:
1295 		break;
1296 	}
1297 
1298 	/* We shouldn't reset unless the controller is on fatal error state
1299 	 * _or_ if we lost the communication with it.
1300 	 */
1301 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1302 		return false;
1303 
1304 	return true;
1305 }
1306 
1307 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1308 {
1309 	/* Read a config register to help see what died. */
1310 	u16 pci_status;
1311 	int result;
1312 
1313 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1314 				      &pci_status);
1315 	if (result == PCIBIOS_SUCCESSFUL)
1316 		dev_warn(dev->ctrl.device,
1317 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1318 			 csts, pci_status);
1319 	else
1320 		dev_warn(dev->ctrl.device,
1321 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1322 			 csts, result);
1323 
1324 	if (csts != ~0)
1325 		return;
1326 
1327 	dev_warn(dev->ctrl.device,
1328 		 "Does your device have a faulty power saving mode enabled?\n");
1329 	dev_warn(dev->ctrl.device,
1330 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1331 }
1332 
1333 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1334 {
1335 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1336 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1337 	struct nvme_dev *dev = nvmeq->dev;
1338 	struct request *abort_req;
1339 	struct nvme_command cmd = { };
1340 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1341 
1342 	/* If PCI error recovery process is happening, we cannot reset or
1343 	 * the recovery mechanism will surely fail.
1344 	 */
1345 	mb();
1346 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1347 		return BLK_EH_RESET_TIMER;
1348 
1349 	/*
1350 	 * Reset immediately if the controller is failed
1351 	 */
1352 	if (nvme_should_reset(dev, csts)) {
1353 		nvme_warn_reset(dev, csts);
1354 		nvme_dev_disable(dev, false);
1355 		nvme_reset_ctrl(&dev->ctrl);
1356 		return BLK_EH_DONE;
1357 	}
1358 
1359 	/*
1360 	 * Did we miss an interrupt?
1361 	 */
1362 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1363 		nvme_poll(req->mq_hctx, NULL);
1364 	else
1365 		nvme_poll_irqdisable(nvmeq);
1366 
1367 	if (blk_mq_request_completed(req)) {
1368 		dev_warn(dev->ctrl.device,
1369 			 "I/O %d QID %d timeout, completion polled\n",
1370 			 req->tag, nvmeq->qid);
1371 		return BLK_EH_DONE;
1372 	}
1373 
1374 	/*
1375 	 * Shutdown immediately if controller times out while starting. The
1376 	 * reset work will see the pci device disabled when it gets the forced
1377 	 * cancellation error. All outstanding requests are completed on
1378 	 * shutdown, so we return BLK_EH_DONE.
1379 	 */
1380 	switch (dev->ctrl.state) {
1381 	case NVME_CTRL_CONNECTING:
1382 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1383 		fallthrough;
1384 	case NVME_CTRL_DELETING:
1385 		dev_warn_ratelimited(dev->ctrl.device,
1386 			 "I/O %d QID %d timeout, disable controller\n",
1387 			 req->tag, nvmeq->qid);
1388 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1389 		nvme_dev_disable(dev, true);
1390 		return BLK_EH_DONE;
1391 	case NVME_CTRL_RESETTING:
1392 		return BLK_EH_RESET_TIMER;
1393 	default:
1394 		break;
1395 	}
1396 
1397 	/*
1398 	 * Shutdown the controller immediately and schedule a reset if the
1399 	 * command was already aborted once before and still hasn't been
1400 	 * returned to the driver, or if this is the admin queue.
1401 	 */
1402 	if (!nvmeq->qid || iod->aborted) {
1403 		dev_warn(dev->ctrl.device,
1404 			 "I/O %d QID %d timeout, reset controller\n",
1405 			 req->tag, nvmeq->qid);
1406 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1407 		nvme_dev_disable(dev, false);
1408 		nvme_reset_ctrl(&dev->ctrl);
1409 
1410 		return BLK_EH_DONE;
1411 	}
1412 
1413 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1414 		atomic_inc(&dev->ctrl.abort_limit);
1415 		return BLK_EH_RESET_TIMER;
1416 	}
1417 	iod->aborted = true;
1418 
1419 	cmd.abort.opcode = nvme_admin_abort_cmd;
1420 	cmd.abort.cid = nvme_cid(req);
1421 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1422 
1423 	dev_warn(nvmeq->dev->ctrl.device,
1424 		"I/O %d (%s) QID %d timeout, aborting\n",
1425 		 req->tag,
1426 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1427 		 nvmeq->qid);
1428 
1429 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1430 					 BLK_MQ_REQ_NOWAIT);
1431 	if (IS_ERR(abort_req)) {
1432 		atomic_inc(&dev->ctrl.abort_limit);
1433 		return BLK_EH_RESET_TIMER;
1434 	}
1435 	nvme_init_request(abort_req, &cmd);
1436 
1437 	abort_req->end_io = abort_endio;
1438 	abort_req->end_io_data = NULL;
1439 	blk_execute_rq_nowait(abort_req, false);
1440 
1441 	/*
1442 	 * The aborted req will be completed on receiving the abort req.
1443 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1444 	 * as the device then is in a faulty state.
1445 	 */
1446 	return BLK_EH_RESET_TIMER;
1447 }
1448 
1449 static void nvme_free_queue(struct nvme_queue *nvmeq)
1450 {
1451 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1452 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1453 	if (!nvmeq->sq_cmds)
1454 		return;
1455 
1456 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1457 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1458 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1459 	} else {
1460 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1461 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1462 	}
1463 }
1464 
1465 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1466 {
1467 	int i;
1468 
1469 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1470 		dev->ctrl.queue_count--;
1471 		nvme_free_queue(&dev->queues[i]);
1472 	}
1473 }
1474 
1475 /**
1476  * nvme_suspend_queue - put queue into suspended state
1477  * @nvmeq: queue to suspend
1478  */
1479 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1480 {
1481 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1482 		return 1;
1483 
1484 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1485 	mb();
1486 
1487 	nvmeq->dev->online_queues--;
1488 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1489 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1490 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1491 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1492 	return 0;
1493 }
1494 
1495 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1496 {
1497 	int i;
1498 
1499 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1500 		nvme_suspend_queue(&dev->queues[i]);
1501 }
1502 
1503 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1504 {
1505 	struct nvme_queue *nvmeq = &dev->queues[0];
1506 
1507 	if (shutdown)
1508 		nvme_shutdown_ctrl(&dev->ctrl);
1509 	else
1510 		nvme_disable_ctrl(&dev->ctrl);
1511 
1512 	nvme_poll_irqdisable(nvmeq);
1513 }
1514 
1515 /*
1516  * Called only on a device that has been disabled and after all other threads
1517  * that can check this device's completion queues have synced, except
1518  * nvme_poll(). This is the last chance for the driver to see a natural
1519  * completion before nvme_cancel_request() terminates all incomplete requests.
1520  */
1521 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1522 {
1523 	int i;
1524 
1525 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1526 		spin_lock(&dev->queues[i].cq_poll_lock);
1527 		nvme_poll_cq(&dev->queues[i], NULL);
1528 		spin_unlock(&dev->queues[i].cq_poll_lock);
1529 	}
1530 }
1531 
1532 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1533 				int entry_size)
1534 {
1535 	int q_depth = dev->q_depth;
1536 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1537 					  NVME_CTRL_PAGE_SIZE);
1538 
1539 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1540 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1541 
1542 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1543 		q_depth = div_u64(mem_per_q, entry_size);
1544 
1545 		/*
1546 		 * Ensure the reduced q_depth is above some threshold where it
1547 		 * would be better to map queues in system memory with the
1548 		 * original depth
1549 		 */
1550 		if (q_depth < 64)
1551 			return -ENOMEM;
1552 	}
1553 
1554 	return q_depth;
1555 }
1556 
1557 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1558 				int qid)
1559 {
1560 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1561 
1562 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1563 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1564 		if (nvmeq->sq_cmds) {
1565 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1566 							nvmeq->sq_cmds);
1567 			if (nvmeq->sq_dma_addr) {
1568 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1569 				return 0;
1570 			}
1571 
1572 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1573 		}
1574 	}
1575 
1576 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1577 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1578 	if (!nvmeq->sq_cmds)
1579 		return -ENOMEM;
1580 	return 0;
1581 }
1582 
1583 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1584 {
1585 	struct nvme_queue *nvmeq = &dev->queues[qid];
1586 
1587 	if (dev->ctrl.queue_count > qid)
1588 		return 0;
1589 
1590 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1591 	nvmeq->q_depth = depth;
1592 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1593 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1594 	if (!nvmeq->cqes)
1595 		goto free_nvmeq;
1596 
1597 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1598 		goto free_cqdma;
1599 
1600 	nvmeq->dev = dev;
1601 	spin_lock_init(&nvmeq->sq_lock);
1602 	spin_lock_init(&nvmeq->cq_poll_lock);
1603 	nvmeq->cq_head = 0;
1604 	nvmeq->cq_phase = 1;
1605 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1606 	nvmeq->qid = qid;
1607 	dev->ctrl.queue_count++;
1608 
1609 	return 0;
1610 
1611  free_cqdma:
1612 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1613 			  nvmeq->cq_dma_addr);
1614  free_nvmeq:
1615 	return -ENOMEM;
1616 }
1617 
1618 static int queue_request_irq(struct nvme_queue *nvmeq)
1619 {
1620 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1621 	int nr = nvmeq->dev->ctrl.instance;
1622 
1623 	if (use_threaded_interrupts) {
1624 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1625 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1626 	} else {
1627 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1628 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1629 	}
1630 }
1631 
1632 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1633 {
1634 	struct nvme_dev *dev = nvmeq->dev;
1635 
1636 	nvmeq->sq_tail = 0;
1637 	nvmeq->last_sq_tail = 0;
1638 	nvmeq->cq_head = 0;
1639 	nvmeq->cq_phase = 1;
1640 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1641 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1642 	nvme_dbbuf_init(dev, nvmeq, qid);
1643 	dev->online_queues++;
1644 	wmb(); /* ensure the first interrupt sees the initialization */
1645 }
1646 
1647 /*
1648  * Try getting shutdown_lock while setting up IO queues.
1649  */
1650 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1651 {
1652 	/*
1653 	 * Give up if the lock is being held by nvme_dev_disable.
1654 	 */
1655 	if (!mutex_trylock(&dev->shutdown_lock))
1656 		return -ENODEV;
1657 
1658 	/*
1659 	 * Controller is in wrong state, fail early.
1660 	 */
1661 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1662 		mutex_unlock(&dev->shutdown_lock);
1663 		return -ENODEV;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1670 {
1671 	struct nvme_dev *dev = nvmeq->dev;
1672 	int result;
1673 	u16 vector = 0;
1674 
1675 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1676 
1677 	/*
1678 	 * A queue's vector matches the queue identifier unless the controller
1679 	 * has only one vector available.
1680 	 */
1681 	if (!polled)
1682 		vector = dev->num_vecs == 1 ? 0 : qid;
1683 	else
1684 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1685 
1686 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1687 	if (result)
1688 		return result;
1689 
1690 	result = adapter_alloc_sq(dev, qid, nvmeq);
1691 	if (result < 0)
1692 		return result;
1693 	if (result)
1694 		goto release_cq;
1695 
1696 	nvmeq->cq_vector = vector;
1697 
1698 	result = nvme_setup_io_queues_trylock(dev);
1699 	if (result)
1700 		return result;
1701 	nvme_init_queue(nvmeq, qid);
1702 	if (!polled) {
1703 		result = queue_request_irq(nvmeq);
1704 		if (result < 0)
1705 			goto release_sq;
1706 	}
1707 
1708 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1709 	mutex_unlock(&dev->shutdown_lock);
1710 	return result;
1711 
1712 release_sq:
1713 	dev->online_queues--;
1714 	mutex_unlock(&dev->shutdown_lock);
1715 	adapter_delete_sq(dev, qid);
1716 release_cq:
1717 	adapter_delete_cq(dev, qid);
1718 	return result;
1719 }
1720 
1721 static const struct blk_mq_ops nvme_mq_admin_ops = {
1722 	.queue_rq	= nvme_queue_rq,
1723 	.complete	= nvme_pci_complete_rq,
1724 	.init_hctx	= nvme_admin_init_hctx,
1725 	.init_request	= nvme_pci_init_request,
1726 	.timeout	= nvme_timeout,
1727 };
1728 
1729 static const struct blk_mq_ops nvme_mq_ops = {
1730 	.queue_rq	= nvme_queue_rq,
1731 	.queue_rqs	= nvme_queue_rqs,
1732 	.complete	= nvme_pci_complete_rq,
1733 	.commit_rqs	= nvme_commit_rqs,
1734 	.init_hctx	= nvme_init_hctx,
1735 	.init_request	= nvme_pci_init_request,
1736 	.map_queues	= nvme_pci_map_queues,
1737 	.timeout	= nvme_timeout,
1738 	.poll		= nvme_poll,
1739 };
1740 
1741 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1742 {
1743 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1744 		/*
1745 		 * If the controller was reset during removal, it's possible
1746 		 * user requests may be waiting on a stopped queue. Start the
1747 		 * queue to flush these to completion.
1748 		 */
1749 		nvme_start_admin_queue(&dev->ctrl);
1750 		blk_mq_destroy_queue(dev->ctrl.admin_q);
1751 		blk_mq_free_tag_set(&dev->admin_tagset);
1752 	}
1753 }
1754 
1755 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1756 {
1757 	struct blk_mq_tag_set *set = &dev->admin_tagset;
1758 
1759 	set->ops = &nvme_mq_admin_ops;
1760 	set->nr_hw_queues = 1;
1761 
1762 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1763 	set->timeout = NVME_ADMIN_TIMEOUT;
1764 	set->numa_node = dev->ctrl.numa_node;
1765 	set->cmd_size = sizeof(struct nvme_iod);
1766 	set->flags = BLK_MQ_F_NO_SCHED;
1767 	set->driver_data = dev;
1768 
1769 	if (blk_mq_alloc_tag_set(set))
1770 		return -ENOMEM;
1771 	dev->ctrl.admin_tagset = set;
1772 
1773 	dev->ctrl.admin_q = blk_mq_init_queue(set);
1774 	if (IS_ERR(dev->ctrl.admin_q)) {
1775 		blk_mq_free_tag_set(set);
1776 		dev->ctrl.admin_q = NULL;
1777 		return -ENOMEM;
1778 	}
1779 	if (!blk_get_queue(dev->ctrl.admin_q)) {
1780 		nvme_dev_remove_admin(dev);
1781 		dev->ctrl.admin_q = NULL;
1782 		return -ENODEV;
1783 	}
1784 	return 0;
1785 }
1786 
1787 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1788 {
1789 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1790 }
1791 
1792 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1793 {
1794 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1795 
1796 	if (size <= dev->bar_mapped_size)
1797 		return 0;
1798 	if (size > pci_resource_len(pdev, 0))
1799 		return -ENOMEM;
1800 	if (dev->bar)
1801 		iounmap(dev->bar);
1802 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1803 	if (!dev->bar) {
1804 		dev->bar_mapped_size = 0;
1805 		return -ENOMEM;
1806 	}
1807 	dev->bar_mapped_size = size;
1808 	dev->dbs = dev->bar + NVME_REG_DBS;
1809 
1810 	return 0;
1811 }
1812 
1813 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1814 {
1815 	int result;
1816 	u32 aqa;
1817 	struct nvme_queue *nvmeq;
1818 
1819 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1820 	if (result < 0)
1821 		return result;
1822 
1823 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1824 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1825 
1826 	if (dev->subsystem &&
1827 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1828 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1829 
1830 	result = nvme_disable_ctrl(&dev->ctrl);
1831 	if (result < 0)
1832 		return result;
1833 
1834 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1835 	if (result)
1836 		return result;
1837 
1838 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1839 
1840 	nvmeq = &dev->queues[0];
1841 	aqa = nvmeq->q_depth - 1;
1842 	aqa |= aqa << 16;
1843 
1844 	writel(aqa, dev->bar + NVME_REG_AQA);
1845 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1846 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1847 
1848 	result = nvme_enable_ctrl(&dev->ctrl);
1849 	if (result)
1850 		return result;
1851 
1852 	nvmeq->cq_vector = 0;
1853 	nvme_init_queue(nvmeq, 0);
1854 	result = queue_request_irq(nvmeq);
1855 	if (result) {
1856 		dev->online_queues--;
1857 		return result;
1858 	}
1859 
1860 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1861 	return result;
1862 }
1863 
1864 static int nvme_create_io_queues(struct nvme_dev *dev)
1865 {
1866 	unsigned i, max, rw_queues;
1867 	int ret = 0;
1868 
1869 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1870 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1871 			ret = -ENOMEM;
1872 			break;
1873 		}
1874 	}
1875 
1876 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1877 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1878 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1879 				dev->io_queues[HCTX_TYPE_READ];
1880 	} else {
1881 		rw_queues = max;
1882 	}
1883 
1884 	for (i = dev->online_queues; i <= max; i++) {
1885 		bool polled = i > rw_queues;
1886 
1887 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1888 		if (ret)
1889 			break;
1890 	}
1891 
1892 	/*
1893 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1894 	 * than the desired amount of queues, and even a controller without
1895 	 * I/O queues can still be used to issue admin commands.  This might
1896 	 * be useful to upgrade a buggy firmware for example.
1897 	 */
1898 	return ret >= 0 ? 0 : ret;
1899 }
1900 
1901 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1902 {
1903 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1904 
1905 	return 1ULL << (12 + 4 * szu);
1906 }
1907 
1908 static u32 nvme_cmb_size(struct nvme_dev *dev)
1909 {
1910 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1911 }
1912 
1913 static void nvme_map_cmb(struct nvme_dev *dev)
1914 {
1915 	u64 size, offset;
1916 	resource_size_t bar_size;
1917 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1918 	int bar;
1919 
1920 	if (dev->cmb_size)
1921 		return;
1922 
1923 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1924 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1925 
1926 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1927 	if (!dev->cmbsz)
1928 		return;
1929 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1930 
1931 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1932 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1933 	bar = NVME_CMB_BIR(dev->cmbloc);
1934 	bar_size = pci_resource_len(pdev, bar);
1935 
1936 	if (offset > bar_size)
1937 		return;
1938 
1939 	/*
1940 	 * Tell the controller about the host side address mapping the CMB,
1941 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1942 	 */
1943 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1944 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1945 			     (pci_bus_address(pdev, bar) + offset),
1946 			     dev->bar + NVME_REG_CMBMSC);
1947 	}
1948 
1949 	/*
1950 	 * Controllers may support a CMB size larger than their BAR,
1951 	 * for example, due to being behind a bridge. Reduce the CMB to
1952 	 * the reported size of the BAR
1953 	 */
1954 	if (size > bar_size - offset)
1955 		size = bar_size - offset;
1956 
1957 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1958 		dev_warn(dev->ctrl.device,
1959 			 "failed to register the CMB\n");
1960 		return;
1961 	}
1962 
1963 	dev->cmb_size = size;
1964 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1965 
1966 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1967 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1968 		pci_p2pmem_publish(pdev, true);
1969 }
1970 
1971 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1972 {
1973 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1974 	u64 dma_addr = dev->host_mem_descs_dma;
1975 	struct nvme_command c = { };
1976 	int ret;
1977 
1978 	c.features.opcode	= nvme_admin_set_features;
1979 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1980 	c.features.dword11	= cpu_to_le32(bits);
1981 	c.features.dword12	= cpu_to_le32(host_mem_size);
1982 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1983 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1984 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1985 
1986 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1987 	if (ret) {
1988 		dev_warn(dev->ctrl.device,
1989 			 "failed to set host mem (err %d, flags %#x).\n",
1990 			 ret, bits);
1991 	} else
1992 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1993 
1994 	return ret;
1995 }
1996 
1997 static void nvme_free_host_mem(struct nvme_dev *dev)
1998 {
1999 	int i;
2000 
2001 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2002 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2003 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2004 
2005 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2006 			       le64_to_cpu(desc->addr),
2007 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2008 	}
2009 
2010 	kfree(dev->host_mem_desc_bufs);
2011 	dev->host_mem_desc_bufs = NULL;
2012 	dma_free_coherent(dev->dev,
2013 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2014 			dev->host_mem_descs, dev->host_mem_descs_dma);
2015 	dev->host_mem_descs = NULL;
2016 	dev->nr_host_mem_descs = 0;
2017 }
2018 
2019 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2020 		u32 chunk_size)
2021 {
2022 	struct nvme_host_mem_buf_desc *descs;
2023 	u32 max_entries, len;
2024 	dma_addr_t descs_dma;
2025 	int i = 0;
2026 	void **bufs;
2027 	u64 size, tmp;
2028 
2029 	tmp = (preferred + chunk_size - 1);
2030 	do_div(tmp, chunk_size);
2031 	max_entries = tmp;
2032 
2033 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2034 		max_entries = dev->ctrl.hmmaxd;
2035 
2036 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2037 				   &descs_dma, GFP_KERNEL);
2038 	if (!descs)
2039 		goto out;
2040 
2041 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2042 	if (!bufs)
2043 		goto out_free_descs;
2044 
2045 	for (size = 0; size < preferred && i < max_entries; size += len) {
2046 		dma_addr_t dma_addr;
2047 
2048 		len = min_t(u64, chunk_size, preferred - size);
2049 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2050 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2051 		if (!bufs[i])
2052 			break;
2053 
2054 		descs[i].addr = cpu_to_le64(dma_addr);
2055 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2056 		i++;
2057 	}
2058 
2059 	if (!size)
2060 		goto out_free_bufs;
2061 
2062 	dev->nr_host_mem_descs = i;
2063 	dev->host_mem_size = size;
2064 	dev->host_mem_descs = descs;
2065 	dev->host_mem_descs_dma = descs_dma;
2066 	dev->host_mem_desc_bufs = bufs;
2067 	return 0;
2068 
2069 out_free_bufs:
2070 	while (--i >= 0) {
2071 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2072 
2073 		dma_free_attrs(dev->dev, size, bufs[i],
2074 			       le64_to_cpu(descs[i].addr),
2075 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2076 	}
2077 
2078 	kfree(bufs);
2079 out_free_descs:
2080 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2081 			descs_dma);
2082 out:
2083 	dev->host_mem_descs = NULL;
2084 	return -ENOMEM;
2085 }
2086 
2087 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2088 {
2089 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2090 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2091 	u64 chunk_size;
2092 
2093 	/* start big and work our way down */
2094 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2095 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2096 			if (!min || dev->host_mem_size >= min)
2097 				return 0;
2098 			nvme_free_host_mem(dev);
2099 		}
2100 	}
2101 
2102 	return -ENOMEM;
2103 }
2104 
2105 static int nvme_setup_host_mem(struct nvme_dev *dev)
2106 {
2107 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2108 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2109 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2110 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2111 	int ret;
2112 
2113 	preferred = min(preferred, max);
2114 	if (min > max) {
2115 		dev_warn(dev->ctrl.device,
2116 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2117 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2118 		nvme_free_host_mem(dev);
2119 		return 0;
2120 	}
2121 
2122 	/*
2123 	 * If we already have a buffer allocated check if we can reuse it.
2124 	 */
2125 	if (dev->host_mem_descs) {
2126 		if (dev->host_mem_size >= min)
2127 			enable_bits |= NVME_HOST_MEM_RETURN;
2128 		else
2129 			nvme_free_host_mem(dev);
2130 	}
2131 
2132 	if (!dev->host_mem_descs) {
2133 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2134 			dev_warn(dev->ctrl.device,
2135 				"failed to allocate host memory buffer.\n");
2136 			return 0; /* controller must work without HMB */
2137 		}
2138 
2139 		dev_info(dev->ctrl.device,
2140 			"allocated %lld MiB host memory buffer.\n",
2141 			dev->host_mem_size >> ilog2(SZ_1M));
2142 	}
2143 
2144 	ret = nvme_set_host_mem(dev, enable_bits);
2145 	if (ret)
2146 		nvme_free_host_mem(dev);
2147 	return ret;
2148 }
2149 
2150 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2151 		char *buf)
2152 {
2153 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2154 
2155 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2156 		       ndev->cmbloc, ndev->cmbsz);
2157 }
2158 static DEVICE_ATTR_RO(cmb);
2159 
2160 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2161 		char *buf)
2162 {
2163 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2164 
2165 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2166 }
2167 static DEVICE_ATTR_RO(cmbloc);
2168 
2169 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2170 		char *buf)
2171 {
2172 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2173 
2174 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2175 }
2176 static DEVICE_ATTR_RO(cmbsz);
2177 
2178 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2179 			char *buf)
2180 {
2181 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2182 
2183 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2184 }
2185 
2186 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2187 			 const char *buf, size_t count)
2188 {
2189 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2190 	bool new;
2191 	int ret;
2192 
2193 	if (strtobool(buf, &new) < 0)
2194 		return -EINVAL;
2195 
2196 	if (new == ndev->hmb)
2197 		return count;
2198 
2199 	if (new) {
2200 		ret = nvme_setup_host_mem(ndev);
2201 	} else {
2202 		ret = nvme_set_host_mem(ndev, 0);
2203 		if (!ret)
2204 			nvme_free_host_mem(ndev);
2205 	}
2206 
2207 	if (ret < 0)
2208 		return ret;
2209 
2210 	return count;
2211 }
2212 static DEVICE_ATTR_RW(hmb);
2213 
2214 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2215 		struct attribute *a, int n)
2216 {
2217 	struct nvme_ctrl *ctrl =
2218 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2219 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2220 
2221 	if (a == &dev_attr_cmb.attr ||
2222 	    a == &dev_attr_cmbloc.attr ||
2223 	    a == &dev_attr_cmbsz.attr) {
2224 	    	if (!dev->cmbsz)
2225 			return 0;
2226 	}
2227 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2228 		return 0;
2229 
2230 	return a->mode;
2231 }
2232 
2233 static struct attribute *nvme_pci_attrs[] = {
2234 	&dev_attr_cmb.attr,
2235 	&dev_attr_cmbloc.attr,
2236 	&dev_attr_cmbsz.attr,
2237 	&dev_attr_hmb.attr,
2238 	NULL,
2239 };
2240 
2241 static const struct attribute_group nvme_pci_attr_group = {
2242 	.attrs		= nvme_pci_attrs,
2243 	.is_visible	= nvme_pci_attrs_are_visible,
2244 };
2245 
2246 /*
2247  * nirqs is the number of interrupts available for write and read
2248  * queues. The core already reserved an interrupt for the admin queue.
2249  */
2250 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2251 {
2252 	struct nvme_dev *dev = affd->priv;
2253 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2254 
2255 	/*
2256 	 * If there is no interrupt available for queues, ensure that
2257 	 * the default queue is set to 1. The affinity set size is
2258 	 * also set to one, but the irq core ignores it for this case.
2259 	 *
2260 	 * If only one interrupt is available or 'write_queue' == 0, combine
2261 	 * write and read queues.
2262 	 *
2263 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2264 	 * queue.
2265 	 */
2266 	if (!nrirqs) {
2267 		nrirqs = 1;
2268 		nr_read_queues = 0;
2269 	} else if (nrirqs == 1 || !nr_write_queues) {
2270 		nr_read_queues = 0;
2271 	} else if (nr_write_queues >= nrirqs) {
2272 		nr_read_queues = 1;
2273 	} else {
2274 		nr_read_queues = nrirqs - nr_write_queues;
2275 	}
2276 
2277 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2278 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2279 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2280 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2281 	affd->nr_sets = nr_read_queues ? 2 : 1;
2282 }
2283 
2284 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2285 {
2286 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2287 	struct irq_affinity affd = {
2288 		.pre_vectors	= 1,
2289 		.calc_sets	= nvme_calc_irq_sets,
2290 		.priv		= dev,
2291 	};
2292 	unsigned int irq_queues, poll_queues;
2293 
2294 	/*
2295 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2296 	 * left over for non-polled I/O.
2297 	 */
2298 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2299 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2300 
2301 	/*
2302 	 * Initialize for the single interrupt case, will be updated in
2303 	 * nvme_calc_irq_sets().
2304 	 */
2305 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2306 	dev->io_queues[HCTX_TYPE_READ] = 0;
2307 
2308 	/*
2309 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2310 	 * but some Apple controllers require all queues to use the first
2311 	 * vector.
2312 	 */
2313 	irq_queues = 1;
2314 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2315 		irq_queues += (nr_io_queues - poll_queues);
2316 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2317 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2318 }
2319 
2320 static void nvme_disable_io_queues(struct nvme_dev *dev)
2321 {
2322 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2323 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2324 }
2325 
2326 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2327 {
2328 	/*
2329 	 * If tags are shared with admin queue (Apple bug), then
2330 	 * make sure we only use one IO queue.
2331 	 */
2332 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2333 		return 1;
2334 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2335 }
2336 
2337 static int nvme_setup_io_queues(struct nvme_dev *dev)
2338 {
2339 	struct nvme_queue *adminq = &dev->queues[0];
2340 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2341 	unsigned int nr_io_queues;
2342 	unsigned long size;
2343 	int result;
2344 
2345 	/*
2346 	 * Sample the module parameters once at reset time so that we have
2347 	 * stable values to work with.
2348 	 */
2349 	dev->nr_write_queues = write_queues;
2350 	dev->nr_poll_queues = poll_queues;
2351 
2352 	nr_io_queues = dev->nr_allocated_queues - 1;
2353 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2354 	if (result < 0)
2355 		return result;
2356 
2357 	if (nr_io_queues == 0)
2358 		return 0;
2359 
2360 	/*
2361 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2362 	 * from set to unset. If there is a window to it is truely freed,
2363 	 * pci_free_irq_vectors() jumping into this window will crash.
2364 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2365 	 * nvme_dev_disable() path.
2366 	 */
2367 	result = nvme_setup_io_queues_trylock(dev);
2368 	if (result)
2369 		return result;
2370 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2371 		pci_free_irq(pdev, 0, adminq);
2372 
2373 	if (dev->cmb_use_sqes) {
2374 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2375 				sizeof(struct nvme_command));
2376 		if (result > 0)
2377 			dev->q_depth = result;
2378 		else
2379 			dev->cmb_use_sqes = false;
2380 	}
2381 
2382 	do {
2383 		size = db_bar_size(dev, nr_io_queues);
2384 		result = nvme_remap_bar(dev, size);
2385 		if (!result)
2386 			break;
2387 		if (!--nr_io_queues) {
2388 			result = -ENOMEM;
2389 			goto out_unlock;
2390 		}
2391 	} while (1);
2392 	adminq->q_db = dev->dbs;
2393 
2394  retry:
2395 	/* Deregister the admin queue's interrupt */
2396 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2397 		pci_free_irq(pdev, 0, adminq);
2398 
2399 	/*
2400 	 * If we enable msix early due to not intx, disable it again before
2401 	 * setting up the full range we need.
2402 	 */
2403 	pci_free_irq_vectors(pdev);
2404 
2405 	result = nvme_setup_irqs(dev, nr_io_queues);
2406 	if (result <= 0) {
2407 		result = -EIO;
2408 		goto out_unlock;
2409 	}
2410 
2411 	dev->num_vecs = result;
2412 	result = max(result - 1, 1);
2413 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2414 
2415 	/*
2416 	 * Should investigate if there's a performance win from allocating
2417 	 * more queues than interrupt vectors; it might allow the submission
2418 	 * path to scale better, even if the receive path is limited by the
2419 	 * number of interrupts.
2420 	 */
2421 	result = queue_request_irq(adminq);
2422 	if (result)
2423 		goto out_unlock;
2424 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2425 	mutex_unlock(&dev->shutdown_lock);
2426 
2427 	result = nvme_create_io_queues(dev);
2428 	if (result || dev->online_queues < 2)
2429 		return result;
2430 
2431 	if (dev->online_queues - 1 < dev->max_qid) {
2432 		nr_io_queues = dev->online_queues - 1;
2433 		nvme_disable_io_queues(dev);
2434 		result = nvme_setup_io_queues_trylock(dev);
2435 		if (result)
2436 			return result;
2437 		nvme_suspend_io_queues(dev);
2438 		goto retry;
2439 	}
2440 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2441 					dev->io_queues[HCTX_TYPE_DEFAULT],
2442 					dev->io_queues[HCTX_TYPE_READ],
2443 					dev->io_queues[HCTX_TYPE_POLL]);
2444 	return 0;
2445 out_unlock:
2446 	mutex_unlock(&dev->shutdown_lock);
2447 	return result;
2448 }
2449 
2450 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2451 					     blk_status_t error)
2452 {
2453 	struct nvme_queue *nvmeq = req->end_io_data;
2454 
2455 	blk_mq_free_request(req);
2456 	complete(&nvmeq->delete_done);
2457 	return RQ_END_IO_NONE;
2458 }
2459 
2460 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2461 					  blk_status_t error)
2462 {
2463 	struct nvme_queue *nvmeq = req->end_io_data;
2464 
2465 	if (error)
2466 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2467 
2468 	return nvme_del_queue_end(req, error);
2469 }
2470 
2471 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2472 {
2473 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2474 	struct request *req;
2475 	struct nvme_command cmd = { };
2476 
2477 	cmd.delete_queue.opcode = opcode;
2478 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2479 
2480 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2481 	if (IS_ERR(req))
2482 		return PTR_ERR(req);
2483 	nvme_init_request(req, &cmd);
2484 
2485 	if (opcode == nvme_admin_delete_cq)
2486 		req->end_io = nvme_del_cq_end;
2487 	else
2488 		req->end_io = nvme_del_queue_end;
2489 	req->end_io_data = nvmeq;
2490 
2491 	init_completion(&nvmeq->delete_done);
2492 	blk_execute_rq_nowait(req, false);
2493 	return 0;
2494 }
2495 
2496 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2497 {
2498 	int nr_queues = dev->online_queues - 1, sent = 0;
2499 	unsigned long timeout;
2500 
2501  retry:
2502 	timeout = NVME_ADMIN_TIMEOUT;
2503 	while (nr_queues > 0) {
2504 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2505 			break;
2506 		nr_queues--;
2507 		sent++;
2508 	}
2509 	while (sent) {
2510 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2511 
2512 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2513 				timeout);
2514 		if (timeout == 0)
2515 			return false;
2516 
2517 		sent--;
2518 		if (nr_queues)
2519 			goto retry;
2520 	}
2521 	return true;
2522 }
2523 
2524 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2525 {
2526 	struct blk_mq_tag_set * set = &dev->tagset;
2527 	int ret;
2528 
2529 	set->ops = &nvme_mq_ops;
2530 	set->nr_hw_queues = dev->online_queues - 1;
2531 	set->nr_maps = 1;
2532 	if (dev->io_queues[HCTX_TYPE_READ])
2533 		set->nr_maps = 2;
2534 	if (dev->io_queues[HCTX_TYPE_POLL])
2535 		set->nr_maps = 3;
2536 	set->timeout = NVME_IO_TIMEOUT;
2537 	set->numa_node = dev->ctrl.numa_node;
2538 	set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2539 	set->cmd_size = sizeof(struct nvme_iod);
2540 	set->flags = BLK_MQ_F_SHOULD_MERGE;
2541 	set->driver_data = dev;
2542 
2543 	/*
2544 	 * Some Apple controllers requires tags to be unique
2545 	 * across admin and IO queue, so reserve the first 32
2546 	 * tags of the IO queue.
2547 	 */
2548 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2549 		set->reserved_tags = NVME_AQ_DEPTH;
2550 
2551 	ret = blk_mq_alloc_tag_set(set);
2552 	if (ret) {
2553 		dev_warn(dev->ctrl.device,
2554 			"IO queues tagset allocation failed %d\n", ret);
2555 		return;
2556 	}
2557 	dev->ctrl.tagset = set;
2558 }
2559 
2560 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2561 {
2562 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2563 	/* free previously allocated queues that are no longer usable */
2564 	nvme_free_queues(dev, dev->online_queues);
2565 }
2566 
2567 static int nvme_pci_enable(struct nvme_dev *dev)
2568 {
2569 	int result = -ENOMEM;
2570 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2571 	int dma_address_bits = 64;
2572 
2573 	if (pci_enable_device_mem(pdev))
2574 		return result;
2575 
2576 	pci_set_master(pdev);
2577 
2578 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2579 		dma_address_bits = 48;
2580 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2581 		goto disable;
2582 
2583 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2584 		result = -ENODEV;
2585 		goto disable;
2586 	}
2587 
2588 	/*
2589 	 * Some devices and/or platforms don't advertise or work with INTx
2590 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2591 	 * adjust this later.
2592 	 */
2593 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2594 	if (result < 0)
2595 		return result;
2596 
2597 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2598 
2599 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2600 				io_queue_depth);
2601 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2602 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2603 	dev->dbs = dev->bar + 4096;
2604 
2605 	/*
2606 	 * Some Apple controllers require a non-standard SQE size.
2607 	 * Interestingly they also seem to ignore the CC:IOSQES register
2608 	 * so we don't bother updating it here.
2609 	 */
2610 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2611 		dev->io_sqes = 7;
2612 	else
2613 		dev->io_sqes = NVME_NVM_IOSQES;
2614 
2615 	/*
2616 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2617 	 * some MacBook7,1 to avoid controller resets and data loss.
2618 	 */
2619 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2620 		dev->q_depth = 2;
2621 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2622 			"set queue depth=%u to work around controller resets\n",
2623 			dev->q_depth);
2624 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2625 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2626 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2627 		dev->q_depth = 64;
2628 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2629                         "set queue depth=%u\n", dev->q_depth);
2630 	}
2631 
2632 	/*
2633 	 * Controllers with the shared tags quirk need the IO queue to be
2634 	 * big enough so that we get 32 tags for the admin queue
2635 	 */
2636 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2637 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2638 		dev->q_depth = NVME_AQ_DEPTH + 2;
2639 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2640 			 dev->q_depth);
2641 	}
2642 
2643 
2644 	nvme_map_cmb(dev);
2645 
2646 	pci_enable_pcie_error_reporting(pdev);
2647 	pci_save_state(pdev);
2648 	return 0;
2649 
2650  disable:
2651 	pci_disable_device(pdev);
2652 	return result;
2653 }
2654 
2655 static void nvme_dev_unmap(struct nvme_dev *dev)
2656 {
2657 	if (dev->bar)
2658 		iounmap(dev->bar);
2659 	pci_release_mem_regions(to_pci_dev(dev->dev));
2660 }
2661 
2662 static void nvme_pci_disable(struct nvme_dev *dev)
2663 {
2664 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2665 
2666 	pci_free_irq_vectors(pdev);
2667 
2668 	if (pci_is_enabled(pdev)) {
2669 		pci_disable_pcie_error_reporting(pdev);
2670 		pci_disable_device(pdev);
2671 	}
2672 }
2673 
2674 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2675 {
2676 	bool dead = true, freeze = false;
2677 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2678 
2679 	mutex_lock(&dev->shutdown_lock);
2680 	if (pci_is_enabled(pdev)) {
2681 		u32 csts;
2682 
2683 		if (pci_device_is_present(pdev))
2684 			csts = readl(dev->bar + NVME_REG_CSTS);
2685 		else
2686 			csts = ~0;
2687 
2688 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2689 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2690 			freeze = true;
2691 			nvme_start_freeze(&dev->ctrl);
2692 		}
2693 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2694 			pdev->error_state  != pci_channel_io_normal);
2695 	}
2696 
2697 	/*
2698 	 * Give the controller a chance to complete all entered requests if
2699 	 * doing a safe shutdown.
2700 	 */
2701 	if (!dead && shutdown && freeze)
2702 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2703 
2704 	nvme_stop_queues(&dev->ctrl);
2705 
2706 	if (!dead && dev->ctrl.queue_count > 0) {
2707 		nvme_disable_io_queues(dev);
2708 		nvme_disable_admin_queue(dev, shutdown);
2709 	}
2710 	nvme_suspend_io_queues(dev);
2711 	nvme_suspend_queue(&dev->queues[0]);
2712 	nvme_pci_disable(dev);
2713 	nvme_reap_pending_cqes(dev);
2714 
2715 	nvme_cancel_tagset(&dev->ctrl);
2716 	nvme_cancel_admin_tagset(&dev->ctrl);
2717 
2718 	/*
2719 	 * The driver will not be starting up queues again if shutting down so
2720 	 * must flush all entered requests to their failed completion to avoid
2721 	 * deadlocking blk-mq hot-cpu notifier.
2722 	 */
2723 	if (shutdown) {
2724 		nvme_start_queues(&dev->ctrl);
2725 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2726 			nvme_start_admin_queue(&dev->ctrl);
2727 	}
2728 	mutex_unlock(&dev->shutdown_lock);
2729 }
2730 
2731 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2732 {
2733 	if (!nvme_wait_reset(&dev->ctrl))
2734 		return -EBUSY;
2735 	nvme_dev_disable(dev, shutdown);
2736 	return 0;
2737 }
2738 
2739 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2740 {
2741 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2742 						NVME_CTRL_PAGE_SIZE,
2743 						NVME_CTRL_PAGE_SIZE, 0);
2744 	if (!dev->prp_page_pool)
2745 		return -ENOMEM;
2746 
2747 	/* Optimisation for I/Os between 4k and 128k */
2748 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2749 						256, 256, 0);
2750 	if (!dev->prp_small_pool) {
2751 		dma_pool_destroy(dev->prp_page_pool);
2752 		return -ENOMEM;
2753 	}
2754 	return 0;
2755 }
2756 
2757 static void nvme_release_prp_pools(struct nvme_dev *dev)
2758 {
2759 	dma_pool_destroy(dev->prp_page_pool);
2760 	dma_pool_destroy(dev->prp_small_pool);
2761 }
2762 
2763 static void nvme_free_tagset(struct nvme_dev *dev)
2764 {
2765 	if (dev->tagset.tags)
2766 		blk_mq_free_tag_set(&dev->tagset);
2767 	dev->ctrl.tagset = NULL;
2768 }
2769 
2770 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2771 {
2772 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2773 
2774 	nvme_dbbuf_dma_free(dev);
2775 	nvme_free_tagset(dev);
2776 	if (dev->ctrl.admin_q)
2777 		blk_put_queue(dev->ctrl.admin_q);
2778 	free_opal_dev(dev->ctrl.opal_dev);
2779 	mempool_destroy(dev->iod_mempool);
2780 	put_device(dev->dev);
2781 	kfree(dev->queues);
2782 	kfree(dev);
2783 }
2784 
2785 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2786 {
2787 	/*
2788 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2789 	 * may be holding this pci_dev's device lock.
2790 	 */
2791 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2792 	nvme_get_ctrl(&dev->ctrl);
2793 	nvme_dev_disable(dev, false);
2794 	nvme_kill_queues(&dev->ctrl);
2795 	if (!queue_work(nvme_wq, &dev->remove_work))
2796 		nvme_put_ctrl(&dev->ctrl);
2797 }
2798 
2799 static void nvme_reset_work(struct work_struct *work)
2800 {
2801 	struct nvme_dev *dev =
2802 		container_of(work, struct nvme_dev, ctrl.reset_work);
2803 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2804 	int result;
2805 
2806 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2807 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2808 			 dev->ctrl.state);
2809 		result = -ENODEV;
2810 		goto out;
2811 	}
2812 
2813 	/*
2814 	 * If we're called to reset a live controller first shut it down before
2815 	 * moving on.
2816 	 */
2817 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2818 		nvme_dev_disable(dev, false);
2819 	nvme_sync_queues(&dev->ctrl);
2820 
2821 	mutex_lock(&dev->shutdown_lock);
2822 	result = nvme_pci_enable(dev);
2823 	if (result)
2824 		goto out_unlock;
2825 
2826 	result = nvme_pci_configure_admin_queue(dev);
2827 	if (result)
2828 		goto out_unlock;
2829 
2830 	if (!dev->ctrl.admin_q) {
2831 		result = nvme_pci_alloc_admin_tag_set(dev);
2832 		if (result)
2833 			goto out_unlock;
2834 	} else {
2835 		nvme_start_admin_queue(&dev->ctrl);
2836 	}
2837 
2838 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2839 
2840 	/*
2841 	 * Limit the max command size to prevent iod->sg allocations going
2842 	 * over a single page.
2843 	 */
2844 	dev->ctrl.max_hw_sectors = min_t(u32,
2845 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2846 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2847 
2848 	/*
2849 	 * Don't limit the IOMMU merged segment size.
2850 	 */
2851 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2852 
2853 	mutex_unlock(&dev->shutdown_lock);
2854 
2855 	/*
2856 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2857 	 * initializing procedure here.
2858 	 */
2859 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2860 		dev_warn(dev->ctrl.device,
2861 			"failed to mark controller CONNECTING\n");
2862 		result = -EBUSY;
2863 		goto out;
2864 	}
2865 
2866 	/*
2867 	 * We do not support an SGL for metadata (yet), so we are limited to a
2868 	 * single integrity segment for the separate metadata pointer.
2869 	 */
2870 	dev->ctrl.max_integrity_segments = 1;
2871 
2872 	result = nvme_init_ctrl_finish(&dev->ctrl);
2873 	if (result)
2874 		goto out;
2875 
2876 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2877 		if (!dev->ctrl.opal_dev)
2878 			dev->ctrl.opal_dev =
2879 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2880 		else if (was_suspend)
2881 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2882 	} else {
2883 		free_opal_dev(dev->ctrl.opal_dev);
2884 		dev->ctrl.opal_dev = NULL;
2885 	}
2886 
2887 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2888 		result = nvme_dbbuf_dma_alloc(dev);
2889 		if (result)
2890 			dev_warn(dev->dev,
2891 				 "unable to allocate dma for dbbuf\n");
2892 	}
2893 
2894 	if (dev->ctrl.hmpre) {
2895 		result = nvme_setup_host_mem(dev);
2896 		if (result < 0)
2897 			goto out;
2898 	}
2899 
2900 	result = nvme_setup_io_queues(dev);
2901 	if (result)
2902 		goto out;
2903 
2904 	/*
2905 	 * Keep the controller around but remove all namespaces if we don't have
2906 	 * any working I/O queue.
2907 	 */
2908 	if (dev->online_queues < 2) {
2909 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2910 		nvme_kill_queues(&dev->ctrl);
2911 		nvme_remove_namespaces(&dev->ctrl);
2912 		nvme_free_tagset(dev);
2913 	} else {
2914 		nvme_start_queues(&dev->ctrl);
2915 		nvme_wait_freeze(&dev->ctrl);
2916 		if (!dev->ctrl.tagset)
2917 			nvme_pci_alloc_tag_set(dev);
2918 		else
2919 			nvme_pci_update_nr_queues(dev);
2920 		nvme_dbbuf_set(dev);
2921 		nvme_unfreeze(&dev->ctrl);
2922 	}
2923 
2924 	/*
2925 	 * If only admin queue live, keep it to do further investigation or
2926 	 * recovery.
2927 	 */
2928 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2929 		dev_warn(dev->ctrl.device,
2930 			"failed to mark controller live state\n");
2931 		result = -ENODEV;
2932 		goto out;
2933 	}
2934 
2935 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2936 			&nvme_pci_attr_group))
2937 		dev->attrs_added = true;
2938 
2939 	nvme_start_ctrl(&dev->ctrl);
2940 	return;
2941 
2942  out_unlock:
2943 	mutex_unlock(&dev->shutdown_lock);
2944  out:
2945 	if (result)
2946 		dev_warn(dev->ctrl.device,
2947 			 "Removing after probe failure status: %d\n", result);
2948 	nvme_remove_dead_ctrl(dev);
2949 }
2950 
2951 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2952 {
2953 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2954 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2955 
2956 	if (pci_get_drvdata(pdev))
2957 		device_release_driver(&pdev->dev);
2958 	nvme_put_ctrl(&dev->ctrl);
2959 }
2960 
2961 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2962 {
2963 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2964 	return 0;
2965 }
2966 
2967 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2968 {
2969 	writel(val, to_nvme_dev(ctrl)->bar + off);
2970 	return 0;
2971 }
2972 
2973 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2974 {
2975 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2976 	return 0;
2977 }
2978 
2979 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2980 {
2981 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2982 
2983 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2984 }
2985 
2986 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2987 {
2988 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2989 	struct nvme_subsystem *subsys = ctrl->subsys;
2990 
2991 	dev_err(ctrl->device,
2992 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2993 		pdev->vendor, pdev->device,
2994 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2995 		subsys->model, nvme_strlen(subsys->firmware_rev,
2996 					   sizeof(subsys->firmware_rev)),
2997 		subsys->firmware_rev);
2998 }
2999 
3000 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3001 {
3002 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3003 
3004 	return dma_pci_p2pdma_supported(dev->dev);
3005 }
3006 
3007 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3008 	.name			= "pcie",
3009 	.module			= THIS_MODULE,
3010 	.flags			= NVME_F_METADATA_SUPPORTED,
3011 	.reg_read32		= nvme_pci_reg_read32,
3012 	.reg_write32		= nvme_pci_reg_write32,
3013 	.reg_read64		= nvme_pci_reg_read64,
3014 	.free_ctrl		= nvme_pci_free_ctrl,
3015 	.submit_async_event	= nvme_pci_submit_async_event,
3016 	.get_address		= nvme_pci_get_address,
3017 	.print_device_info	= nvme_pci_print_device_info,
3018 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3019 };
3020 
3021 static int nvme_dev_map(struct nvme_dev *dev)
3022 {
3023 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3024 
3025 	if (pci_request_mem_regions(pdev, "nvme"))
3026 		return -ENODEV;
3027 
3028 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3029 		goto release;
3030 
3031 	return 0;
3032   release:
3033 	pci_release_mem_regions(pdev);
3034 	return -ENODEV;
3035 }
3036 
3037 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3038 {
3039 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3040 		/*
3041 		 * Several Samsung devices seem to drop off the PCIe bus
3042 		 * randomly when APST is on and uses the deepest sleep state.
3043 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3044 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3045 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3046 		 * laptops.
3047 		 */
3048 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3049 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3050 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3051 			return NVME_QUIRK_NO_DEEPEST_PS;
3052 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3053 		/*
3054 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3055 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3056 		 * within few minutes after bootup on a Coffee Lake board -
3057 		 * ASUS PRIME Z370-A
3058 		 */
3059 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3060 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3061 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3062 			return NVME_QUIRK_NO_APST;
3063 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3064 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3065 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3066 		/*
3067 		 * Forcing to use host managed nvme power settings for
3068 		 * lowest idle power with quick resume latency on
3069 		 * Samsung and Toshiba SSDs based on suspend behavior
3070 		 * on Coffee Lake board for LENOVO C640
3071 		 */
3072 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3073 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3074 			return NVME_QUIRK_SIMPLE_SUSPEND;
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 static void nvme_async_probe(void *data, async_cookie_t cookie)
3081 {
3082 	struct nvme_dev *dev = data;
3083 
3084 	flush_work(&dev->ctrl.reset_work);
3085 	flush_work(&dev->ctrl.scan_work);
3086 	nvme_put_ctrl(&dev->ctrl);
3087 }
3088 
3089 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3090 {
3091 	int node, result = -ENOMEM;
3092 	struct nvme_dev *dev;
3093 	unsigned long quirks = id->driver_data;
3094 	size_t alloc_size;
3095 
3096 	node = dev_to_node(&pdev->dev);
3097 	if (node == NUMA_NO_NODE)
3098 		set_dev_node(&pdev->dev, first_memory_node);
3099 
3100 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3101 	if (!dev)
3102 		return -ENOMEM;
3103 
3104 	dev->nr_write_queues = write_queues;
3105 	dev->nr_poll_queues = poll_queues;
3106 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3107 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3108 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3109 	if (!dev->queues)
3110 		goto free;
3111 
3112 	dev->dev = get_device(&pdev->dev);
3113 	pci_set_drvdata(pdev, dev);
3114 
3115 	result = nvme_dev_map(dev);
3116 	if (result)
3117 		goto put_pci;
3118 
3119 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3120 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3121 	mutex_init(&dev->shutdown_lock);
3122 
3123 	result = nvme_setup_prp_pools(dev);
3124 	if (result)
3125 		goto unmap;
3126 
3127 	quirks |= check_vendor_combination_bug(pdev);
3128 
3129 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3130 		/*
3131 		 * Some systems use a bios work around to ask for D3 on
3132 		 * platforms that support kernel managed suspend.
3133 		 */
3134 		dev_info(&pdev->dev,
3135 			 "platform quirk: setting simple suspend\n");
3136 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3137 	}
3138 
3139 	/*
3140 	 * Double check that our mempool alloc size will cover the biggest
3141 	 * command we support.
3142 	 */
3143 	alloc_size = nvme_pci_iod_alloc_size();
3144 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3145 
3146 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3147 						mempool_kfree,
3148 						(void *) alloc_size,
3149 						GFP_KERNEL, node);
3150 	if (!dev->iod_mempool) {
3151 		result = -ENOMEM;
3152 		goto release_pools;
3153 	}
3154 
3155 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3156 			quirks);
3157 	if (result)
3158 		goto release_mempool;
3159 
3160 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3161 
3162 	nvme_reset_ctrl(&dev->ctrl);
3163 	async_schedule(nvme_async_probe, dev);
3164 
3165 	return 0;
3166 
3167  release_mempool:
3168 	mempool_destroy(dev->iod_mempool);
3169  release_pools:
3170 	nvme_release_prp_pools(dev);
3171  unmap:
3172 	nvme_dev_unmap(dev);
3173  put_pci:
3174 	put_device(dev->dev);
3175  free:
3176 	kfree(dev->queues);
3177 	kfree(dev);
3178 	return result;
3179 }
3180 
3181 static void nvme_reset_prepare(struct pci_dev *pdev)
3182 {
3183 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3184 
3185 	/*
3186 	 * We don't need to check the return value from waiting for the reset
3187 	 * state as pci_dev device lock is held, making it impossible to race
3188 	 * with ->remove().
3189 	 */
3190 	nvme_disable_prepare_reset(dev, false);
3191 	nvme_sync_queues(&dev->ctrl);
3192 }
3193 
3194 static void nvme_reset_done(struct pci_dev *pdev)
3195 {
3196 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3197 
3198 	if (!nvme_try_sched_reset(&dev->ctrl))
3199 		flush_work(&dev->ctrl.reset_work);
3200 }
3201 
3202 static void nvme_shutdown(struct pci_dev *pdev)
3203 {
3204 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3205 
3206 	nvme_disable_prepare_reset(dev, true);
3207 }
3208 
3209 static void nvme_remove_attrs(struct nvme_dev *dev)
3210 {
3211 	if (dev->attrs_added)
3212 		sysfs_remove_group(&dev->ctrl.device->kobj,
3213 				   &nvme_pci_attr_group);
3214 }
3215 
3216 /*
3217  * The driver's remove may be called on a device in a partially initialized
3218  * state. This function must not have any dependencies on the device state in
3219  * order to proceed.
3220  */
3221 static void nvme_remove(struct pci_dev *pdev)
3222 {
3223 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3224 
3225 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3226 	pci_set_drvdata(pdev, NULL);
3227 
3228 	if (!pci_device_is_present(pdev)) {
3229 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3230 		nvme_dev_disable(dev, true);
3231 	}
3232 
3233 	flush_work(&dev->ctrl.reset_work);
3234 	nvme_stop_ctrl(&dev->ctrl);
3235 	nvme_remove_namespaces(&dev->ctrl);
3236 	nvme_dev_disable(dev, true);
3237 	nvme_remove_attrs(dev);
3238 	nvme_free_host_mem(dev);
3239 	nvme_dev_remove_admin(dev);
3240 	nvme_free_queues(dev, 0);
3241 	nvme_release_prp_pools(dev);
3242 	nvme_dev_unmap(dev);
3243 	nvme_uninit_ctrl(&dev->ctrl);
3244 }
3245 
3246 #ifdef CONFIG_PM_SLEEP
3247 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3248 {
3249 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3250 }
3251 
3252 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3253 {
3254 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3255 }
3256 
3257 static int nvme_resume(struct device *dev)
3258 {
3259 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3260 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3261 
3262 	if (ndev->last_ps == U32_MAX ||
3263 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3264 		goto reset;
3265 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3266 		goto reset;
3267 
3268 	return 0;
3269 reset:
3270 	return nvme_try_sched_reset(ctrl);
3271 }
3272 
3273 static int nvme_suspend(struct device *dev)
3274 {
3275 	struct pci_dev *pdev = to_pci_dev(dev);
3276 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3277 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3278 	int ret = -EBUSY;
3279 
3280 	ndev->last_ps = U32_MAX;
3281 
3282 	/*
3283 	 * The platform does not remove power for a kernel managed suspend so
3284 	 * use host managed nvme power settings for lowest idle power if
3285 	 * possible. This should have quicker resume latency than a full device
3286 	 * shutdown.  But if the firmware is involved after the suspend or the
3287 	 * device does not support any non-default power states, shut down the
3288 	 * device fully.
3289 	 *
3290 	 * If ASPM is not enabled for the device, shut down the device and allow
3291 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3292 	 * down, so as to allow the platform to achieve its minimum low-power
3293 	 * state (which may not be possible if the link is up).
3294 	 */
3295 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3296 	    !pcie_aspm_enabled(pdev) ||
3297 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3298 		return nvme_disable_prepare_reset(ndev, true);
3299 
3300 	nvme_start_freeze(ctrl);
3301 	nvme_wait_freeze(ctrl);
3302 	nvme_sync_queues(ctrl);
3303 
3304 	if (ctrl->state != NVME_CTRL_LIVE)
3305 		goto unfreeze;
3306 
3307 	/*
3308 	 * Host memory access may not be successful in a system suspend state,
3309 	 * but the specification allows the controller to access memory in a
3310 	 * non-operational power state.
3311 	 */
3312 	if (ndev->hmb) {
3313 		ret = nvme_set_host_mem(ndev, 0);
3314 		if (ret < 0)
3315 			goto unfreeze;
3316 	}
3317 
3318 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3319 	if (ret < 0)
3320 		goto unfreeze;
3321 
3322 	/*
3323 	 * A saved state prevents pci pm from generically controlling the
3324 	 * device's power. If we're using protocol specific settings, we don't
3325 	 * want pci interfering.
3326 	 */
3327 	pci_save_state(pdev);
3328 
3329 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3330 	if (ret < 0)
3331 		goto unfreeze;
3332 
3333 	if (ret) {
3334 		/* discard the saved state */
3335 		pci_load_saved_state(pdev, NULL);
3336 
3337 		/*
3338 		 * Clearing npss forces a controller reset on resume. The
3339 		 * correct value will be rediscovered then.
3340 		 */
3341 		ret = nvme_disable_prepare_reset(ndev, true);
3342 		ctrl->npss = 0;
3343 	}
3344 unfreeze:
3345 	nvme_unfreeze(ctrl);
3346 	return ret;
3347 }
3348 
3349 static int nvme_simple_suspend(struct device *dev)
3350 {
3351 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3352 
3353 	return nvme_disable_prepare_reset(ndev, true);
3354 }
3355 
3356 static int nvme_simple_resume(struct device *dev)
3357 {
3358 	struct pci_dev *pdev = to_pci_dev(dev);
3359 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3360 
3361 	return nvme_try_sched_reset(&ndev->ctrl);
3362 }
3363 
3364 static const struct dev_pm_ops nvme_dev_pm_ops = {
3365 	.suspend	= nvme_suspend,
3366 	.resume		= nvme_resume,
3367 	.freeze		= nvme_simple_suspend,
3368 	.thaw		= nvme_simple_resume,
3369 	.poweroff	= nvme_simple_suspend,
3370 	.restore	= nvme_simple_resume,
3371 };
3372 #endif /* CONFIG_PM_SLEEP */
3373 
3374 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3375 						pci_channel_state_t state)
3376 {
3377 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3378 
3379 	/*
3380 	 * A frozen channel requires a reset. When detected, this method will
3381 	 * shutdown the controller to quiesce. The controller will be restarted
3382 	 * after the slot reset through driver's slot_reset callback.
3383 	 */
3384 	switch (state) {
3385 	case pci_channel_io_normal:
3386 		return PCI_ERS_RESULT_CAN_RECOVER;
3387 	case pci_channel_io_frozen:
3388 		dev_warn(dev->ctrl.device,
3389 			"frozen state error detected, reset controller\n");
3390 		nvme_dev_disable(dev, false);
3391 		return PCI_ERS_RESULT_NEED_RESET;
3392 	case pci_channel_io_perm_failure:
3393 		dev_warn(dev->ctrl.device,
3394 			"failure state error detected, request disconnect\n");
3395 		return PCI_ERS_RESULT_DISCONNECT;
3396 	}
3397 	return PCI_ERS_RESULT_NEED_RESET;
3398 }
3399 
3400 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3401 {
3402 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3403 
3404 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3405 	pci_restore_state(pdev);
3406 	nvme_reset_ctrl(&dev->ctrl);
3407 	return PCI_ERS_RESULT_RECOVERED;
3408 }
3409 
3410 static void nvme_error_resume(struct pci_dev *pdev)
3411 {
3412 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3413 
3414 	flush_work(&dev->ctrl.reset_work);
3415 }
3416 
3417 static const struct pci_error_handlers nvme_err_handler = {
3418 	.error_detected	= nvme_error_detected,
3419 	.slot_reset	= nvme_slot_reset,
3420 	.resume		= nvme_error_resume,
3421 	.reset_prepare	= nvme_reset_prepare,
3422 	.reset_done	= nvme_reset_done,
3423 };
3424 
3425 static const struct pci_device_id nvme_id_table[] = {
3426 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3427 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3428 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3429 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3430 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3431 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3432 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3433 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3434 				NVME_QUIRK_DEALLOCATE_ZEROES |
3435 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3436 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3437 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3438 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3439 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3440 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3441 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3442 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3443 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3444 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3445 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3446 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3447 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3448 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3449 				NVME_QUIRK_BOGUS_NID, },
3450 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3451 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3452 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3453 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3454 				NVME_QUIRK_BOGUS_NID, },
3455 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3456 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3457 				NVME_QUIRK_NO_NS_DESC_LIST, },
3458 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3459 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3460 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3461 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3463 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3464 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3465 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3466 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3467 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3468 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3469 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3470 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3471 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3472 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3473 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3474 				NVME_QUIRK_BOGUS_NID, },
3475 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3476 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3477 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3478 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3479 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3480 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3481 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3482 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3483 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3484 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3485 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3486 				NVME_QUIRK_BOGUS_NID, },
3487 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3488 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3489 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3490 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3491 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3492 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3493 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3494 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3495 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3496 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3497 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3499 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3500 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3501 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3502 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3503 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3504 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3505 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3507 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3508 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3509 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3510 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3511 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3512 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3513 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3514 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3515 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3516 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3517 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3518 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3519 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3520 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3521 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3522 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3523 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3524 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3525 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3526 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3527 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3528 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3529 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3530 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3531 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3532 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3533 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3534 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3535 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3536 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3537 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3538 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3539 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3540 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3541 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3542 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3543 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3544 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3545 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3546 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3547 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3548 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3549 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3550 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3551 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3552 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3553 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3554 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3555 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3556 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3557 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3558 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3559 				NVME_QUIRK_128_BYTES_SQES |
3560 				NVME_QUIRK_SHARED_TAGS |
3561 				NVME_QUIRK_SKIP_CID_GEN },
3562 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3563 	{ 0, }
3564 };
3565 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3566 
3567 static struct pci_driver nvme_driver = {
3568 	.name		= "nvme",
3569 	.id_table	= nvme_id_table,
3570 	.probe		= nvme_probe,
3571 	.remove		= nvme_remove,
3572 	.shutdown	= nvme_shutdown,
3573 #ifdef CONFIG_PM_SLEEP
3574 	.driver		= {
3575 		.pm	= &nvme_dev_pm_ops,
3576 	},
3577 #endif
3578 	.sriov_configure = pci_sriov_configure_simple,
3579 	.err_handler	= &nvme_err_handler,
3580 };
3581 
3582 static int __init nvme_init(void)
3583 {
3584 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3585 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3586 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3587 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3588 	BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3589 		     S8_MAX);
3590 
3591 	return pci_register_driver(&nvme_driver);
3592 }
3593 
3594 static void __exit nvme_exit(void)
3595 {
3596 	pci_unregister_driver(&nvme_driver);
3597 	flush_workqueue(nvme_wq);
3598 }
3599 
3600 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3601 MODULE_LICENSE("GPL");
3602 MODULE_VERSION("1.0");
3603 module_init(nvme_init);
3604 module_exit(nvme_exit);
3605