xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 979ac5ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kstrtox.h>
19 #include <linux/memremap.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/once.h>
24 #include <linux/pci.h>
25 #include <linux/suspend.h>
26 #include <linux/t10-pi.h>
27 #include <linux/types.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 #include <linux/sed-opal.h>
31 #include <linux/pci-p2pdma.h>
32 
33 #include "trace.h"
34 #include "nvme.h"
35 
36 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
37 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
38 
39 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ	4096
46 #define NVME_MAX_SEGS	127
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 
114 /*
115  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
116  */
117 struct nvme_dev {
118 	struct nvme_queue *queues;
119 	struct blk_mq_tag_set tagset;
120 	struct blk_mq_tag_set admin_tagset;
121 	u32 __iomem *dbs;
122 	struct device *dev;
123 	struct dma_pool *prp_page_pool;
124 	struct dma_pool *prp_small_pool;
125 	unsigned online_queues;
126 	unsigned max_qid;
127 	unsigned io_queues[HCTX_MAX_TYPES];
128 	unsigned int num_vecs;
129 	u32 q_depth;
130 	int io_sqes;
131 	u32 db_stride;
132 	void __iomem *bar;
133 	unsigned long bar_mapped_size;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 };
162 
163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164 {
165 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166 			NVME_PCI_MAX_QUEUE_SIZE);
167 }
168 
169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 	return qid * 2 * stride;
172 }
173 
174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 	return (qid * 2 + 1) * stride;
177 }
178 
179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183 
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189 	struct nvme_dev *dev;
190 	spinlock_t sq_lock;
191 	void *sq_cmds;
192 	 /* only used for poll queues: */
193 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 	struct nvme_completion *cqes;
195 	dma_addr_t sq_dma_addr;
196 	dma_addr_t cq_dma_addr;
197 	u32 __iomem *q_db;
198 	u32 q_depth;
199 	u16 cq_vector;
200 	u16 sq_tail;
201 	u16 last_sq_tail;
202 	u16 cq_head;
203 	u16 qid;
204 	u8 cq_phase;
205 	u8 sqes;
206 	unsigned long flags;
207 #define NVMEQ_ENABLED		0
208 #define NVMEQ_SQ_CMB		1
209 #define NVMEQ_DELETE_ERROR	2
210 #define NVMEQ_POLLED		3
211 	u32 *dbbuf_sq_db;
212 	u32 *dbbuf_cq_db;
213 	u32 *dbbuf_sq_ei;
214 	u32 *dbbuf_cq_ei;
215 	struct completion delete_done;
216 };
217 
218 /*
219  * The nvme_iod describes the data in an I/O.
220  *
221  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222  * to the actual struct scatterlist.
223  */
224 struct nvme_iod {
225 	struct nvme_request req;
226 	struct nvme_command cmd;
227 	bool use_sgl;
228 	bool aborted;
229 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
230 				   pool in use */
231 	unsigned int dma_len;	/* length of single DMA segment mapping */
232 	dma_addr_t first_dma;
233 	dma_addr_t meta_dma;
234 	struct sg_table sgt;
235 };
236 
237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
238 {
239 	return dev->nr_allocated_queues * 8 * dev->db_stride;
240 }
241 
242 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243 {
244 	unsigned int mem_size = nvme_dbbuf_size(dev);
245 
246 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
247 		return;
248 
249 	if (dev->dbbuf_dbs) {
250 		/*
251 		 * Clear the dbbuf memory so the driver doesn't observe stale
252 		 * values from the previous instantiation.
253 		 */
254 		memset(dev->dbbuf_dbs, 0, mem_size);
255 		memset(dev->dbbuf_eis, 0, mem_size);
256 		return;
257 	}
258 
259 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 					    &dev->dbbuf_dbs_dma_addr,
261 					    GFP_KERNEL);
262 	if (!dev->dbbuf_dbs)
263 		goto fail;
264 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 					    &dev->dbbuf_eis_dma_addr,
266 					    GFP_KERNEL);
267 	if (!dev->dbbuf_eis)
268 		goto fail_free_dbbuf_dbs;
269 	return;
270 
271 fail_free_dbbuf_dbs:
272 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
273 			  dev->dbbuf_dbs_dma_addr);
274 	dev->dbbuf_dbs = NULL;
275 fail:
276 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
277 }
278 
279 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
280 {
281 	unsigned int mem_size = nvme_dbbuf_size(dev);
282 
283 	if (dev->dbbuf_dbs) {
284 		dma_free_coherent(dev->dev, mem_size,
285 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
286 		dev->dbbuf_dbs = NULL;
287 	}
288 	if (dev->dbbuf_eis) {
289 		dma_free_coherent(dev->dev, mem_size,
290 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
291 		dev->dbbuf_eis = NULL;
292 	}
293 }
294 
295 static void nvme_dbbuf_init(struct nvme_dev *dev,
296 			    struct nvme_queue *nvmeq, int qid)
297 {
298 	if (!dev->dbbuf_dbs || !qid)
299 		return;
300 
301 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
302 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
303 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
304 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
305 }
306 
307 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
308 {
309 	if (!nvmeq->qid)
310 		return;
311 
312 	nvmeq->dbbuf_sq_db = NULL;
313 	nvmeq->dbbuf_cq_db = NULL;
314 	nvmeq->dbbuf_sq_ei = NULL;
315 	nvmeq->dbbuf_cq_ei = NULL;
316 }
317 
318 static void nvme_dbbuf_set(struct nvme_dev *dev)
319 {
320 	struct nvme_command c = { };
321 	unsigned int i;
322 
323 	if (!dev->dbbuf_dbs)
324 		return;
325 
326 	c.dbbuf.opcode = nvme_admin_dbbuf;
327 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
328 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
329 
330 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
331 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
332 		/* Free memory and continue on */
333 		nvme_dbbuf_dma_free(dev);
334 
335 		for (i = 1; i <= dev->online_queues; i++)
336 			nvme_dbbuf_free(&dev->queues[i]);
337 	}
338 }
339 
340 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
341 {
342 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
343 }
344 
345 /* Update dbbuf and return true if an MMIO is required */
346 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
347 					      volatile u32 *dbbuf_ei)
348 {
349 	if (dbbuf_db) {
350 		u16 old_value;
351 
352 		/*
353 		 * Ensure that the queue is written before updating
354 		 * the doorbell in memory
355 		 */
356 		wmb();
357 
358 		old_value = *dbbuf_db;
359 		*dbbuf_db = value;
360 
361 		/*
362 		 * Ensure that the doorbell is updated before reading the event
363 		 * index from memory.  The controller needs to provide similar
364 		 * ordering to ensure the envent index is updated before reading
365 		 * the doorbell.
366 		 */
367 		mb();
368 
369 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
370 			return false;
371 	}
372 
373 	return true;
374 }
375 
376 /*
377  * Will slightly overestimate the number of pages needed.  This is OK
378  * as it only leads to a small amount of wasted memory for the lifetime of
379  * the I/O.
380  */
381 static int nvme_pci_npages_prp(void)
382 {
383 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
384 				      NVME_CTRL_PAGE_SIZE);
385 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
386 }
387 
388 /*
389  * Calculates the number of pages needed for the SGL segments. For example a 4k
390  * page can accommodate 256 SGL descriptors.
391  */
392 static int nvme_pci_npages_sgl(void)
393 {
394 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
395 			PAGE_SIZE);
396 }
397 
398 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
399 				unsigned int hctx_idx)
400 {
401 	struct nvme_dev *dev = to_nvme_dev(data);
402 	struct nvme_queue *nvmeq = &dev->queues[0];
403 
404 	WARN_ON(hctx_idx != 0);
405 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
406 
407 	hctx->driver_data = nvmeq;
408 	return 0;
409 }
410 
411 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
412 			  unsigned int hctx_idx)
413 {
414 	struct nvme_dev *dev = to_nvme_dev(data);
415 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
416 
417 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
418 	hctx->driver_data = nvmeq;
419 	return 0;
420 }
421 
422 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
423 		struct request *req, unsigned int hctx_idx,
424 		unsigned int numa_node)
425 {
426 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
427 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428 
429 	nvme_req(req)->ctrl = &dev->ctrl;
430 	nvme_req(req)->cmd = &iod->cmd;
431 	return 0;
432 }
433 
434 static int queue_irq_offset(struct nvme_dev *dev)
435 {
436 	/* if we have more than 1 vec, admin queue offsets us by 1 */
437 	if (dev->num_vecs > 1)
438 		return 1;
439 
440 	return 0;
441 }
442 
443 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
444 {
445 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
446 	int i, qoff, offset;
447 
448 	offset = queue_irq_offset(dev);
449 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
450 		struct blk_mq_queue_map *map = &set->map[i];
451 
452 		map->nr_queues = dev->io_queues[i];
453 		if (!map->nr_queues) {
454 			BUG_ON(i == HCTX_TYPE_DEFAULT);
455 			continue;
456 		}
457 
458 		/*
459 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
460 		 * affinity), so use the regular blk-mq cpu mapping
461 		 */
462 		map->queue_offset = qoff;
463 		if (i != HCTX_TYPE_POLL && offset)
464 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
465 		else
466 			blk_mq_map_queues(map);
467 		qoff += map->nr_queues;
468 		offset += map->nr_queues;
469 	}
470 }
471 
472 /*
473  * Write sq tail if we are asked to, or if the next command would wrap.
474  */
475 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
476 {
477 	if (!write_sq) {
478 		u16 next_tail = nvmeq->sq_tail + 1;
479 
480 		if (next_tail == nvmeq->q_depth)
481 			next_tail = 0;
482 		if (next_tail != nvmeq->last_sq_tail)
483 			return;
484 	}
485 
486 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
487 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
488 		writel(nvmeq->sq_tail, nvmeq->q_db);
489 	nvmeq->last_sq_tail = nvmeq->sq_tail;
490 }
491 
492 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
493 				    struct nvme_command *cmd)
494 {
495 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
496 		absolute_pointer(cmd), sizeof(*cmd));
497 	if (++nvmeq->sq_tail == nvmeq->q_depth)
498 		nvmeq->sq_tail = 0;
499 }
500 
501 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
502 {
503 	struct nvme_queue *nvmeq = hctx->driver_data;
504 
505 	spin_lock(&nvmeq->sq_lock);
506 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
507 		nvme_write_sq_db(nvmeq, true);
508 	spin_unlock(&nvmeq->sq_lock);
509 }
510 
511 static void **nvme_pci_iod_list(struct request *req)
512 {
513 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
514 	return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
515 }
516 
517 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
518 {
519 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
520 	int nseg = blk_rq_nr_phys_segments(req);
521 	unsigned int avg_seg_size;
522 
523 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
524 
525 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
526 		return false;
527 	if (!nvmeq->qid)
528 		return false;
529 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
530 		return false;
531 	return true;
532 }
533 
534 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
535 {
536 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
537 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
538 	dma_addr_t dma_addr = iod->first_dma;
539 	int i;
540 
541 	for (i = 0; i < iod->nr_allocations; i++) {
542 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
543 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
544 
545 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
546 		dma_addr = next_dma_addr;
547 	}
548 }
549 
550 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
551 {
552 	const int last_sg = SGES_PER_PAGE - 1;
553 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
554 	dma_addr_t dma_addr = iod->first_dma;
555 	int i;
556 
557 	for (i = 0; i < iod->nr_allocations; i++) {
558 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
559 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
560 
561 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
562 		dma_addr = next_dma_addr;
563 	}
564 }
565 
566 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
567 {
568 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569 
570 	if (iod->dma_len) {
571 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
572 			       rq_dma_dir(req));
573 		return;
574 	}
575 
576 	WARN_ON_ONCE(!iod->sgt.nents);
577 
578 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
579 
580 	if (iod->nr_allocations == 0)
581 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
582 			      iod->first_dma);
583 	else if (iod->use_sgl)
584 		nvme_free_sgls(dev, req);
585 	else
586 		nvme_free_prps(dev, req);
587 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
588 }
589 
590 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
591 {
592 	int i;
593 	struct scatterlist *sg;
594 
595 	for_each_sg(sgl, sg, nents, i) {
596 		dma_addr_t phys = sg_phys(sg);
597 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
598 			"dma_address:%pad dma_length:%d\n",
599 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
600 			sg_dma_len(sg));
601 	}
602 }
603 
604 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
605 		struct request *req, struct nvme_rw_command *cmnd)
606 {
607 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
608 	struct dma_pool *pool;
609 	int length = blk_rq_payload_bytes(req);
610 	struct scatterlist *sg = iod->sgt.sgl;
611 	int dma_len = sg_dma_len(sg);
612 	u64 dma_addr = sg_dma_address(sg);
613 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
614 	__le64 *prp_list;
615 	void **list = nvme_pci_iod_list(req);
616 	dma_addr_t prp_dma;
617 	int nprps, i;
618 
619 	length -= (NVME_CTRL_PAGE_SIZE - offset);
620 	if (length <= 0) {
621 		iod->first_dma = 0;
622 		goto done;
623 	}
624 
625 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
626 	if (dma_len) {
627 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
628 	} else {
629 		sg = sg_next(sg);
630 		dma_addr = sg_dma_address(sg);
631 		dma_len = sg_dma_len(sg);
632 	}
633 
634 	if (length <= NVME_CTRL_PAGE_SIZE) {
635 		iod->first_dma = dma_addr;
636 		goto done;
637 	}
638 
639 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
640 	if (nprps <= (256 / 8)) {
641 		pool = dev->prp_small_pool;
642 		iod->nr_allocations = 0;
643 	} else {
644 		pool = dev->prp_page_pool;
645 		iod->nr_allocations = 1;
646 	}
647 
648 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
649 	if (!prp_list) {
650 		iod->nr_allocations = -1;
651 		return BLK_STS_RESOURCE;
652 	}
653 	list[0] = prp_list;
654 	iod->first_dma = prp_dma;
655 	i = 0;
656 	for (;;) {
657 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
658 			__le64 *old_prp_list = prp_list;
659 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
660 			if (!prp_list)
661 				goto free_prps;
662 			list[iod->nr_allocations++] = prp_list;
663 			prp_list[0] = old_prp_list[i - 1];
664 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
665 			i = 1;
666 		}
667 		prp_list[i++] = cpu_to_le64(dma_addr);
668 		dma_len -= NVME_CTRL_PAGE_SIZE;
669 		dma_addr += NVME_CTRL_PAGE_SIZE;
670 		length -= NVME_CTRL_PAGE_SIZE;
671 		if (length <= 0)
672 			break;
673 		if (dma_len > 0)
674 			continue;
675 		if (unlikely(dma_len < 0))
676 			goto bad_sgl;
677 		sg = sg_next(sg);
678 		dma_addr = sg_dma_address(sg);
679 		dma_len = sg_dma_len(sg);
680 	}
681 done:
682 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
683 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
684 	return BLK_STS_OK;
685 free_prps:
686 	nvme_free_prps(dev, req);
687 	return BLK_STS_RESOURCE;
688 bad_sgl:
689 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
690 			"Invalid SGL for payload:%d nents:%d\n",
691 			blk_rq_payload_bytes(req), iod->sgt.nents);
692 	return BLK_STS_IOERR;
693 }
694 
695 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
696 		struct scatterlist *sg)
697 {
698 	sge->addr = cpu_to_le64(sg_dma_address(sg));
699 	sge->length = cpu_to_le32(sg_dma_len(sg));
700 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
701 }
702 
703 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
704 		dma_addr_t dma_addr, int entries)
705 {
706 	sge->addr = cpu_to_le64(dma_addr);
707 	if (entries < SGES_PER_PAGE) {
708 		sge->length = cpu_to_le32(entries * sizeof(*sge));
709 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
710 	} else {
711 		sge->length = cpu_to_le32(PAGE_SIZE);
712 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
713 	}
714 }
715 
716 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
717 		struct request *req, struct nvme_rw_command *cmd)
718 {
719 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
720 	struct dma_pool *pool;
721 	struct nvme_sgl_desc *sg_list;
722 	struct scatterlist *sg = iod->sgt.sgl;
723 	unsigned int entries = iod->sgt.nents;
724 	dma_addr_t sgl_dma;
725 	int i = 0;
726 
727 	/* setting the transfer type as SGL */
728 	cmd->flags = NVME_CMD_SGL_METABUF;
729 
730 	if (entries == 1) {
731 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
732 		return BLK_STS_OK;
733 	}
734 
735 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
736 		pool = dev->prp_small_pool;
737 		iod->nr_allocations = 0;
738 	} else {
739 		pool = dev->prp_page_pool;
740 		iod->nr_allocations = 1;
741 	}
742 
743 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
744 	if (!sg_list) {
745 		iod->nr_allocations = -1;
746 		return BLK_STS_RESOURCE;
747 	}
748 
749 	nvme_pci_iod_list(req)[0] = sg_list;
750 	iod->first_dma = sgl_dma;
751 
752 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
753 
754 	do {
755 		if (i == SGES_PER_PAGE) {
756 			struct nvme_sgl_desc *old_sg_desc = sg_list;
757 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
758 
759 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
760 			if (!sg_list)
761 				goto free_sgls;
762 
763 			i = 0;
764 			nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
765 			sg_list[i++] = *link;
766 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
767 		}
768 
769 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
770 		sg = sg_next(sg);
771 	} while (--entries > 0);
772 
773 	return BLK_STS_OK;
774 free_sgls:
775 	nvme_free_sgls(dev, req);
776 	return BLK_STS_RESOURCE;
777 }
778 
779 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
780 		struct request *req, struct nvme_rw_command *cmnd,
781 		struct bio_vec *bv)
782 {
783 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
784 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
785 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
786 
787 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
788 	if (dma_mapping_error(dev->dev, iod->first_dma))
789 		return BLK_STS_RESOURCE;
790 	iod->dma_len = bv->bv_len;
791 
792 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
793 	if (bv->bv_len > first_prp_len)
794 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
795 	else
796 		cmnd->dptr.prp2 = 0;
797 	return BLK_STS_OK;
798 }
799 
800 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
801 		struct request *req, struct nvme_rw_command *cmnd,
802 		struct bio_vec *bv)
803 {
804 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
805 
806 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
807 	if (dma_mapping_error(dev->dev, iod->first_dma))
808 		return BLK_STS_RESOURCE;
809 	iod->dma_len = bv->bv_len;
810 
811 	cmnd->flags = NVME_CMD_SGL_METABUF;
812 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
813 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
814 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
815 	return BLK_STS_OK;
816 }
817 
818 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
819 		struct nvme_command *cmnd)
820 {
821 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
822 	blk_status_t ret = BLK_STS_RESOURCE;
823 	int rc;
824 
825 	if (blk_rq_nr_phys_segments(req) == 1) {
826 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
827 		struct bio_vec bv = req_bvec(req);
828 
829 		if (!is_pci_p2pdma_page(bv.bv_page)) {
830 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
831 				return nvme_setup_prp_simple(dev, req,
832 							     &cmnd->rw, &bv);
833 
834 			if (nvmeq->qid && sgl_threshold &&
835 			    nvme_ctrl_sgl_supported(&dev->ctrl))
836 				return nvme_setup_sgl_simple(dev, req,
837 							     &cmnd->rw, &bv);
838 		}
839 	}
840 
841 	iod->dma_len = 0;
842 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
843 	if (!iod->sgt.sgl)
844 		return BLK_STS_RESOURCE;
845 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
846 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
847 	if (!iod->sgt.orig_nents)
848 		goto out_free_sg;
849 
850 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
851 			     DMA_ATTR_NO_WARN);
852 	if (rc) {
853 		if (rc == -EREMOTEIO)
854 			ret = BLK_STS_TARGET;
855 		goto out_free_sg;
856 	}
857 
858 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
859 	if (iod->use_sgl)
860 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
861 	else
862 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
863 	if (ret != BLK_STS_OK)
864 		goto out_unmap_sg;
865 	return BLK_STS_OK;
866 
867 out_unmap_sg:
868 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
869 out_free_sg:
870 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
871 	return ret;
872 }
873 
874 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
875 		struct nvme_command *cmnd)
876 {
877 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
878 
879 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
880 			rq_dma_dir(req), 0);
881 	if (dma_mapping_error(dev->dev, iod->meta_dma))
882 		return BLK_STS_IOERR;
883 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
884 	return BLK_STS_OK;
885 }
886 
887 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
888 {
889 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
890 	blk_status_t ret;
891 
892 	iod->aborted = false;
893 	iod->nr_allocations = -1;
894 	iod->sgt.nents = 0;
895 
896 	ret = nvme_setup_cmd(req->q->queuedata, req);
897 	if (ret)
898 		return ret;
899 
900 	if (blk_rq_nr_phys_segments(req)) {
901 		ret = nvme_map_data(dev, req, &iod->cmd);
902 		if (ret)
903 			goto out_free_cmd;
904 	}
905 
906 	if (blk_integrity_rq(req)) {
907 		ret = nvme_map_metadata(dev, req, &iod->cmd);
908 		if (ret)
909 			goto out_unmap_data;
910 	}
911 
912 	nvme_start_request(req);
913 	return BLK_STS_OK;
914 out_unmap_data:
915 	nvme_unmap_data(dev, req);
916 out_free_cmd:
917 	nvme_cleanup_cmd(req);
918 	return ret;
919 }
920 
921 /*
922  * NOTE: ns is NULL when called on the admin queue.
923  */
924 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
925 			 const struct blk_mq_queue_data *bd)
926 {
927 	struct nvme_queue *nvmeq = hctx->driver_data;
928 	struct nvme_dev *dev = nvmeq->dev;
929 	struct request *req = bd->rq;
930 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
931 	blk_status_t ret;
932 
933 	/*
934 	 * We should not need to do this, but we're still using this to
935 	 * ensure we can drain requests on a dying queue.
936 	 */
937 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
938 		return BLK_STS_IOERR;
939 
940 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
941 		return nvme_fail_nonready_command(&dev->ctrl, req);
942 
943 	ret = nvme_prep_rq(dev, req);
944 	if (unlikely(ret))
945 		return ret;
946 	spin_lock(&nvmeq->sq_lock);
947 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
948 	nvme_write_sq_db(nvmeq, bd->last);
949 	spin_unlock(&nvmeq->sq_lock);
950 	return BLK_STS_OK;
951 }
952 
953 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
954 {
955 	spin_lock(&nvmeq->sq_lock);
956 	while (!rq_list_empty(*rqlist)) {
957 		struct request *req = rq_list_pop(rqlist);
958 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
959 
960 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
961 	}
962 	nvme_write_sq_db(nvmeq, true);
963 	spin_unlock(&nvmeq->sq_lock);
964 }
965 
966 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
967 {
968 	/*
969 	 * We should not need to do this, but we're still using this to
970 	 * ensure we can drain requests on a dying queue.
971 	 */
972 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
973 		return false;
974 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
975 		return false;
976 
977 	req->mq_hctx->tags->rqs[req->tag] = req;
978 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
979 }
980 
981 static void nvme_queue_rqs(struct request **rqlist)
982 {
983 	struct request *req, *next, *prev = NULL;
984 	struct request *requeue_list = NULL;
985 
986 	rq_list_for_each_safe(rqlist, req, next) {
987 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
988 
989 		if (!nvme_prep_rq_batch(nvmeq, req)) {
990 			/* detach 'req' and add to remainder list */
991 			rq_list_move(rqlist, &requeue_list, req, prev);
992 
993 			req = prev;
994 			if (!req)
995 				continue;
996 		}
997 
998 		if (!next || req->mq_hctx != next->mq_hctx) {
999 			/* detach rest of list, and submit */
1000 			req->rq_next = NULL;
1001 			nvme_submit_cmds(nvmeq, rqlist);
1002 			*rqlist = next;
1003 			prev = NULL;
1004 		} else
1005 			prev = req;
1006 	}
1007 
1008 	*rqlist = requeue_list;
1009 }
1010 
1011 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1012 {
1013 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1014 	struct nvme_dev *dev = nvmeq->dev;
1015 
1016 	if (blk_integrity_rq(req)) {
1017 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1018 
1019 		dma_unmap_page(dev->dev, iod->meta_dma,
1020 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1021 	}
1022 
1023 	if (blk_rq_nr_phys_segments(req))
1024 		nvme_unmap_data(dev, req);
1025 }
1026 
1027 static void nvme_pci_complete_rq(struct request *req)
1028 {
1029 	nvme_pci_unmap_rq(req);
1030 	nvme_complete_rq(req);
1031 }
1032 
1033 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1034 {
1035 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1036 }
1037 
1038 /* We read the CQE phase first to check if the rest of the entry is valid */
1039 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1040 {
1041 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1042 
1043 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1044 }
1045 
1046 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1047 {
1048 	u16 head = nvmeq->cq_head;
1049 
1050 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1051 					      nvmeq->dbbuf_cq_ei))
1052 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1053 }
1054 
1055 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1056 {
1057 	if (!nvmeq->qid)
1058 		return nvmeq->dev->admin_tagset.tags[0];
1059 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1060 }
1061 
1062 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1063 				   struct io_comp_batch *iob, u16 idx)
1064 {
1065 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1066 	__u16 command_id = READ_ONCE(cqe->command_id);
1067 	struct request *req;
1068 
1069 	/*
1070 	 * AEN requests are special as they don't time out and can
1071 	 * survive any kind of queue freeze and often don't respond to
1072 	 * aborts.  We don't even bother to allocate a struct request
1073 	 * for them but rather special case them here.
1074 	 */
1075 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1076 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1077 				cqe->status, &cqe->result);
1078 		return;
1079 	}
1080 
1081 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1082 	if (unlikely(!req)) {
1083 		dev_warn(nvmeq->dev->ctrl.device,
1084 			"invalid id %d completed on queue %d\n",
1085 			command_id, le16_to_cpu(cqe->sq_id));
1086 		return;
1087 	}
1088 
1089 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1090 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1091 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1092 					nvme_pci_complete_batch))
1093 		nvme_pci_complete_rq(req);
1094 }
1095 
1096 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1097 {
1098 	u32 tmp = nvmeq->cq_head + 1;
1099 
1100 	if (tmp == nvmeq->q_depth) {
1101 		nvmeq->cq_head = 0;
1102 		nvmeq->cq_phase ^= 1;
1103 	} else {
1104 		nvmeq->cq_head = tmp;
1105 	}
1106 }
1107 
1108 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1109 			       struct io_comp_batch *iob)
1110 {
1111 	int found = 0;
1112 
1113 	while (nvme_cqe_pending(nvmeq)) {
1114 		found++;
1115 		/*
1116 		 * load-load control dependency between phase and the rest of
1117 		 * the cqe requires a full read memory barrier
1118 		 */
1119 		dma_rmb();
1120 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1121 		nvme_update_cq_head(nvmeq);
1122 	}
1123 
1124 	if (found)
1125 		nvme_ring_cq_doorbell(nvmeq);
1126 	return found;
1127 }
1128 
1129 static irqreturn_t nvme_irq(int irq, void *data)
1130 {
1131 	struct nvme_queue *nvmeq = data;
1132 	DEFINE_IO_COMP_BATCH(iob);
1133 
1134 	if (nvme_poll_cq(nvmeq, &iob)) {
1135 		if (!rq_list_empty(iob.req_list))
1136 			nvme_pci_complete_batch(&iob);
1137 		return IRQ_HANDLED;
1138 	}
1139 	return IRQ_NONE;
1140 }
1141 
1142 static irqreturn_t nvme_irq_check(int irq, void *data)
1143 {
1144 	struct nvme_queue *nvmeq = data;
1145 
1146 	if (nvme_cqe_pending(nvmeq))
1147 		return IRQ_WAKE_THREAD;
1148 	return IRQ_NONE;
1149 }
1150 
1151 /*
1152  * Poll for completions for any interrupt driven queue
1153  * Can be called from any context.
1154  */
1155 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1156 {
1157 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1158 
1159 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1160 
1161 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1162 	nvme_poll_cq(nvmeq, NULL);
1163 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1164 }
1165 
1166 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1167 {
1168 	struct nvme_queue *nvmeq = hctx->driver_data;
1169 	bool found;
1170 
1171 	if (!nvme_cqe_pending(nvmeq))
1172 		return 0;
1173 
1174 	spin_lock(&nvmeq->cq_poll_lock);
1175 	found = nvme_poll_cq(nvmeq, iob);
1176 	spin_unlock(&nvmeq->cq_poll_lock);
1177 
1178 	return found;
1179 }
1180 
1181 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1182 {
1183 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1184 	struct nvme_queue *nvmeq = &dev->queues[0];
1185 	struct nvme_command c = { };
1186 
1187 	c.common.opcode = nvme_admin_async_event;
1188 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1189 
1190 	spin_lock(&nvmeq->sq_lock);
1191 	nvme_sq_copy_cmd(nvmeq, &c);
1192 	nvme_write_sq_db(nvmeq, true);
1193 	spin_unlock(&nvmeq->sq_lock);
1194 }
1195 
1196 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1197 {
1198 	struct nvme_command c = { };
1199 
1200 	c.delete_queue.opcode = opcode;
1201 	c.delete_queue.qid = cpu_to_le16(id);
1202 
1203 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1204 }
1205 
1206 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1207 		struct nvme_queue *nvmeq, s16 vector)
1208 {
1209 	struct nvme_command c = { };
1210 	int flags = NVME_QUEUE_PHYS_CONTIG;
1211 
1212 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1213 		flags |= NVME_CQ_IRQ_ENABLED;
1214 
1215 	/*
1216 	 * Note: we (ab)use the fact that the prp fields survive if no data
1217 	 * is attached to the request.
1218 	 */
1219 	c.create_cq.opcode = nvme_admin_create_cq;
1220 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1221 	c.create_cq.cqid = cpu_to_le16(qid);
1222 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1223 	c.create_cq.cq_flags = cpu_to_le16(flags);
1224 	c.create_cq.irq_vector = cpu_to_le16(vector);
1225 
1226 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1227 }
1228 
1229 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1230 						struct nvme_queue *nvmeq)
1231 {
1232 	struct nvme_ctrl *ctrl = &dev->ctrl;
1233 	struct nvme_command c = { };
1234 	int flags = NVME_QUEUE_PHYS_CONTIG;
1235 
1236 	/*
1237 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1238 	 * set. Since URGENT priority is zeroes, it makes all queues
1239 	 * URGENT.
1240 	 */
1241 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1242 		flags |= NVME_SQ_PRIO_MEDIUM;
1243 
1244 	/*
1245 	 * Note: we (ab)use the fact that the prp fields survive if no data
1246 	 * is attached to the request.
1247 	 */
1248 	c.create_sq.opcode = nvme_admin_create_sq;
1249 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1250 	c.create_sq.sqid = cpu_to_le16(qid);
1251 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1252 	c.create_sq.sq_flags = cpu_to_le16(flags);
1253 	c.create_sq.cqid = cpu_to_le16(qid);
1254 
1255 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1256 }
1257 
1258 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1259 {
1260 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1261 }
1262 
1263 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1264 {
1265 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1266 }
1267 
1268 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1269 {
1270 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1271 
1272 	dev_warn(nvmeq->dev->ctrl.device,
1273 		 "Abort status: 0x%x", nvme_req(req)->status);
1274 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1275 	blk_mq_free_request(req);
1276 	return RQ_END_IO_NONE;
1277 }
1278 
1279 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1280 {
1281 	/* If true, indicates loss of adapter communication, possibly by a
1282 	 * NVMe Subsystem reset.
1283 	 */
1284 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1285 
1286 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1287 	switch (dev->ctrl.state) {
1288 	case NVME_CTRL_RESETTING:
1289 	case NVME_CTRL_CONNECTING:
1290 		return false;
1291 	default:
1292 		break;
1293 	}
1294 
1295 	/* We shouldn't reset unless the controller is on fatal error state
1296 	 * _or_ if we lost the communication with it.
1297 	 */
1298 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1299 		return false;
1300 
1301 	return true;
1302 }
1303 
1304 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1305 {
1306 	/* Read a config register to help see what died. */
1307 	u16 pci_status;
1308 	int result;
1309 
1310 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1311 				      &pci_status);
1312 	if (result == PCIBIOS_SUCCESSFUL)
1313 		dev_warn(dev->ctrl.device,
1314 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1315 			 csts, pci_status);
1316 	else
1317 		dev_warn(dev->ctrl.device,
1318 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1319 			 csts, result);
1320 
1321 	if (csts != ~0)
1322 		return;
1323 
1324 	dev_warn(dev->ctrl.device,
1325 		 "Does your device have a faulty power saving mode enabled?\n");
1326 	dev_warn(dev->ctrl.device,
1327 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1328 }
1329 
1330 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1331 {
1332 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1333 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1334 	struct nvme_dev *dev = nvmeq->dev;
1335 	struct request *abort_req;
1336 	struct nvme_command cmd = { };
1337 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1338 
1339 	/* If PCI error recovery process is happening, we cannot reset or
1340 	 * the recovery mechanism will surely fail.
1341 	 */
1342 	mb();
1343 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1344 		return BLK_EH_RESET_TIMER;
1345 
1346 	/*
1347 	 * Reset immediately if the controller is failed
1348 	 */
1349 	if (nvme_should_reset(dev, csts)) {
1350 		nvme_warn_reset(dev, csts);
1351 		nvme_dev_disable(dev, false);
1352 		nvme_reset_ctrl(&dev->ctrl);
1353 		return BLK_EH_DONE;
1354 	}
1355 
1356 	/*
1357 	 * Did we miss an interrupt?
1358 	 */
1359 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1360 		nvme_poll(req->mq_hctx, NULL);
1361 	else
1362 		nvme_poll_irqdisable(nvmeq);
1363 
1364 	if (blk_mq_request_completed(req)) {
1365 		dev_warn(dev->ctrl.device,
1366 			 "I/O %d QID %d timeout, completion polled\n",
1367 			 req->tag, nvmeq->qid);
1368 		return BLK_EH_DONE;
1369 	}
1370 
1371 	/*
1372 	 * Shutdown immediately if controller times out while starting. The
1373 	 * reset work will see the pci device disabled when it gets the forced
1374 	 * cancellation error. All outstanding requests are completed on
1375 	 * shutdown, so we return BLK_EH_DONE.
1376 	 */
1377 	switch (dev->ctrl.state) {
1378 	case NVME_CTRL_CONNECTING:
1379 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1380 		fallthrough;
1381 	case NVME_CTRL_DELETING:
1382 		dev_warn_ratelimited(dev->ctrl.device,
1383 			 "I/O %d QID %d timeout, disable controller\n",
1384 			 req->tag, nvmeq->qid);
1385 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1386 		nvme_dev_disable(dev, true);
1387 		return BLK_EH_DONE;
1388 	case NVME_CTRL_RESETTING:
1389 		return BLK_EH_RESET_TIMER;
1390 	default:
1391 		break;
1392 	}
1393 
1394 	/*
1395 	 * Shutdown the controller immediately and schedule a reset if the
1396 	 * command was already aborted once before and still hasn't been
1397 	 * returned to the driver, or if this is the admin queue.
1398 	 */
1399 	if (!nvmeq->qid || iod->aborted) {
1400 		dev_warn(dev->ctrl.device,
1401 			 "I/O %d QID %d timeout, reset controller\n",
1402 			 req->tag, nvmeq->qid);
1403 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1404 		nvme_dev_disable(dev, false);
1405 		nvme_reset_ctrl(&dev->ctrl);
1406 
1407 		return BLK_EH_DONE;
1408 	}
1409 
1410 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1411 		atomic_inc(&dev->ctrl.abort_limit);
1412 		return BLK_EH_RESET_TIMER;
1413 	}
1414 	iod->aborted = true;
1415 
1416 	cmd.abort.opcode = nvme_admin_abort_cmd;
1417 	cmd.abort.cid = nvme_cid(req);
1418 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1419 
1420 	dev_warn(nvmeq->dev->ctrl.device,
1421 		"I/O %d (%s) QID %d timeout, aborting\n",
1422 		 req->tag,
1423 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1424 		 nvmeq->qid);
1425 
1426 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1427 					 BLK_MQ_REQ_NOWAIT);
1428 	if (IS_ERR(abort_req)) {
1429 		atomic_inc(&dev->ctrl.abort_limit);
1430 		return BLK_EH_RESET_TIMER;
1431 	}
1432 	nvme_init_request(abort_req, &cmd);
1433 
1434 	abort_req->end_io = abort_endio;
1435 	abort_req->end_io_data = NULL;
1436 	blk_execute_rq_nowait(abort_req, false);
1437 
1438 	/*
1439 	 * The aborted req will be completed on receiving the abort req.
1440 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1441 	 * as the device then is in a faulty state.
1442 	 */
1443 	return BLK_EH_RESET_TIMER;
1444 }
1445 
1446 static void nvme_free_queue(struct nvme_queue *nvmeq)
1447 {
1448 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1449 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1450 	if (!nvmeq->sq_cmds)
1451 		return;
1452 
1453 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1454 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1455 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1456 	} else {
1457 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1458 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1459 	}
1460 }
1461 
1462 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1463 {
1464 	int i;
1465 
1466 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1467 		dev->ctrl.queue_count--;
1468 		nvme_free_queue(&dev->queues[i]);
1469 	}
1470 }
1471 
1472 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1473 {
1474 	struct nvme_queue *nvmeq = &dev->queues[qid];
1475 
1476 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1477 		return;
1478 
1479 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1480 	mb();
1481 
1482 	nvmeq->dev->online_queues--;
1483 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1484 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1485 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1486 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1487 }
1488 
1489 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1490 {
1491 	int i;
1492 
1493 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1494 		nvme_suspend_queue(dev, i);
1495 }
1496 
1497 /*
1498  * Called only on a device that has been disabled and after all other threads
1499  * that can check this device's completion queues have synced, except
1500  * nvme_poll(). This is the last chance for the driver to see a natural
1501  * completion before nvme_cancel_request() terminates all incomplete requests.
1502  */
1503 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1504 {
1505 	int i;
1506 
1507 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1508 		spin_lock(&dev->queues[i].cq_poll_lock);
1509 		nvme_poll_cq(&dev->queues[i], NULL);
1510 		spin_unlock(&dev->queues[i].cq_poll_lock);
1511 	}
1512 }
1513 
1514 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1515 				int entry_size)
1516 {
1517 	int q_depth = dev->q_depth;
1518 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1519 					  NVME_CTRL_PAGE_SIZE);
1520 
1521 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1522 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1523 
1524 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1525 		q_depth = div_u64(mem_per_q, entry_size);
1526 
1527 		/*
1528 		 * Ensure the reduced q_depth is above some threshold where it
1529 		 * would be better to map queues in system memory with the
1530 		 * original depth
1531 		 */
1532 		if (q_depth < 64)
1533 			return -ENOMEM;
1534 	}
1535 
1536 	return q_depth;
1537 }
1538 
1539 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1540 				int qid)
1541 {
1542 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1543 
1544 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1545 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1546 		if (nvmeq->sq_cmds) {
1547 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1548 							nvmeq->sq_cmds);
1549 			if (nvmeq->sq_dma_addr) {
1550 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1551 				return 0;
1552 			}
1553 
1554 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1555 		}
1556 	}
1557 
1558 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1559 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1560 	if (!nvmeq->sq_cmds)
1561 		return -ENOMEM;
1562 	return 0;
1563 }
1564 
1565 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1566 {
1567 	struct nvme_queue *nvmeq = &dev->queues[qid];
1568 
1569 	if (dev->ctrl.queue_count > qid)
1570 		return 0;
1571 
1572 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1573 	nvmeq->q_depth = depth;
1574 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1575 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1576 	if (!nvmeq->cqes)
1577 		goto free_nvmeq;
1578 
1579 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1580 		goto free_cqdma;
1581 
1582 	nvmeq->dev = dev;
1583 	spin_lock_init(&nvmeq->sq_lock);
1584 	spin_lock_init(&nvmeq->cq_poll_lock);
1585 	nvmeq->cq_head = 0;
1586 	nvmeq->cq_phase = 1;
1587 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1588 	nvmeq->qid = qid;
1589 	dev->ctrl.queue_count++;
1590 
1591 	return 0;
1592 
1593  free_cqdma:
1594 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1595 			  nvmeq->cq_dma_addr);
1596  free_nvmeq:
1597 	return -ENOMEM;
1598 }
1599 
1600 static int queue_request_irq(struct nvme_queue *nvmeq)
1601 {
1602 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1603 	int nr = nvmeq->dev->ctrl.instance;
1604 
1605 	if (use_threaded_interrupts) {
1606 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1607 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1608 	} else {
1609 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1610 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1611 	}
1612 }
1613 
1614 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1615 {
1616 	struct nvme_dev *dev = nvmeq->dev;
1617 
1618 	nvmeq->sq_tail = 0;
1619 	nvmeq->last_sq_tail = 0;
1620 	nvmeq->cq_head = 0;
1621 	nvmeq->cq_phase = 1;
1622 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1623 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1624 	nvme_dbbuf_init(dev, nvmeq, qid);
1625 	dev->online_queues++;
1626 	wmb(); /* ensure the first interrupt sees the initialization */
1627 }
1628 
1629 /*
1630  * Try getting shutdown_lock while setting up IO queues.
1631  */
1632 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1633 {
1634 	/*
1635 	 * Give up if the lock is being held by nvme_dev_disable.
1636 	 */
1637 	if (!mutex_trylock(&dev->shutdown_lock))
1638 		return -ENODEV;
1639 
1640 	/*
1641 	 * Controller is in wrong state, fail early.
1642 	 */
1643 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1644 		mutex_unlock(&dev->shutdown_lock);
1645 		return -ENODEV;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1652 {
1653 	struct nvme_dev *dev = nvmeq->dev;
1654 	int result;
1655 	u16 vector = 0;
1656 
1657 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1658 
1659 	/*
1660 	 * A queue's vector matches the queue identifier unless the controller
1661 	 * has only one vector available.
1662 	 */
1663 	if (!polled)
1664 		vector = dev->num_vecs == 1 ? 0 : qid;
1665 	else
1666 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1667 
1668 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1669 	if (result)
1670 		return result;
1671 
1672 	result = adapter_alloc_sq(dev, qid, nvmeq);
1673 	if (result < 0)
1674 		return result;
1675 	if (result)
1676 		goto release_cq;
1677 
1678 	nvmeq->cq_vector = vector;
1679 
1680 	result = nvme_setup_io_queues_trylock(dev);
1681 	if (result)
1682 		return result;
1683 	nvme_init_queue(nvmeq, qid);
1684 	if (!polled) {
1685 		result = queue_request_irq(nvmeq);
1686 		if (result < 0)
1687 			goto release_sq;
1688 	}
1689 
1690 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1691 	mutex_unlock(&dev->shutdown_lock);
1692 	return result;
1693 
1694 release_sq:
1695 	dev->online_queues--;
1696 	mutex_unlock(&dev->shutdown_lock);
1697 	adapter_delete_sq(dev, qid);
1698 release_cq:
1699 	adapter_delete_cq(dev, qid);
1700 	return result;
1701 }
1702 
1703 static const struct blk_mq_ops nvme_mq_admin_ops = {
1704 	.queue_rq	= nvme_queue_rq,
1705 	.complete	= nvme_pci_complete_rq,
1706 	.init_hctx	= nvme_admin_init_hctx,
1707 	.init_request	= nvme_pci_init_request,
1708 	.timeout	= nvme_timeout,
1709 };
1710 
1711 static const struct blk_mq_ops nvme_mq_ops = {
1712 	.queue_rq	= nvme_queue_rq,
1713 	.queue_rqs	= nvme_queue_rqs,
1714 	.complete	= nvme_pci_complete_rq,
1715 	.commit_rqs	= nvme_commit_rqs,
1716 	.init_hctx	= nvme_init_hctx,
1717 	.init_request	= nvme_pci_init_request,
1718 	.map_queues	= nvme_pci_map_queues,
1719 	.timeout	= nvme_timeout,
1720 	.poll		= nvme_poll,
1721 };
1722 
1723 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1724 {
1725 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1726 		/*
1727 		 * If the controller was reset during removal, it's possible
1728 		 * user requests may be waiting on a stopped queue. Start the
1729 		 * queue to flush these to completion.
1730 		 */
1731 		nvme_unquiesce_admin_queue(&dev->ctrl);
1732 		nvme_remove_admin_tag_set(&dev->ctrl);
1733 	}
1734 }
1735 
1736 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1737 {
1738 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1739 }
1740 
1741 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1742 {
1743 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1744 
1745 	if (size <= dev->bar_mapped_size)
1746 		return 0;
1747 	if (size > pci_resource_len(pdev, 0))
1748 		return -ENOMEM;
1749 	if (dev->bar)
1750 		iounmap(dev->bar);
1751 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1752 	if (!dev->bar) {
1753 		dev->bar_mapped_size = 0;
1754 		return -ENOMEM;
1755 	}
1756 	dev->bar_mapped_size = size;
1757 	dev->dbs = dev->bar + NVME_REG_DBS;
1758 
1759 	return 0;
1760 }
1761 
1762 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1763 {
1764 	int result;
1765 	u32 aqa;
1766 	struct nvme_queue *nvmeq;
1767 
1768 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1769 	if (result < 0)
1770 		return result;
1771 
1772 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1773 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1774 
1775 	if (dev->subsystem &&
1776 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1777 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1778 
1779 	/*
1780 	 * If the device has been passed off to us in an enabled state, just
1781 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1782 	 * notification bits', but doing so may cause the device to complete
1783 	 * commands to the admin queue ... and we don't know what memory that
1784 	 * might be pointing at!
1785 	 */
1786 	result = nvme_disable_ctrl(&dev->ctrl, false);
1787 	if (result < 0)
1788 		return result;
1789 
1790 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1791 	if (result)
1792 		return result;
1793 
1794 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1795 
1796 	nvmeq = &dev->queues[0];
1797 	aqa = nvmeq->q_depth - 1;
1798 	aqa |= aqa << 16;
1799 
1800 	writel(aqa, dev->bar + NVME_REG_AQA);
1801 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1802 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1803 
1804 	result = nvme_enable_ctrl(&dev->ctrl);
1805 	if (result)
1806 		return result;
1807 
1808 	nvmeq->cq_vector = 0;
1809 	nvme_init_queue(nvmeq, 0);
1810 	result = queue_request_irq(nvmeq);
1811 	if (result) {
1812 		dev->online_queues--;
1813 		return result;
1814 	}
1815 
1816 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1817 	return result;
1818 }
1819 
1820 static int nvme_create_io_queues(struct nvme_dev *dev)
1821 {
1822 	unsigned i, max, rw_queues;
1823 	int ret = 0;
1824 
1825 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1826 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1827 			ret = -ENOMEM;
1828 			break;
1829 		}
1830 	}
1831 
1832 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1833 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1834 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1835 				dev->io_queues[HCTX_TYPE_READ];
1836 	} else {
1837 		rw_queues = max;
1838 	}
1839 
1840 	for (i = dev->online_queues; i <= max; i++) {
1841 		bool polled = i > rw_queues;
1842 
1843 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1844 		if (ret)
1845 			break;
1846 	}
1847 
1848 	/*
1849 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1850 	 * than the desired amount of queues, and even a controller without
1851 	 * I/O queues can still be used to issue admin commands.  This might
1852 	 * be useful to upgrade a buggy firmware for example.
1853 	 */
1854 	return ret >= 0 ? 0 : ret;
1855 }
1856 
1857 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1858 {
1859 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1860 
1861 	return 1ULL << (12 + 4 * szu);
1862 }
1863 
1864 static u32 nvme_cmb_size(struct nvme_dev *dev)
1865 {
1866 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1867 }
1868 
1869 static void nvme_map_cmb(struct nvme_dev *dev)
1870 {
1871 	u64 size, offset;
1872 	resource_size_t bar_size;
1873 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1874 	int bar;
1875 
1876 	if (dev->cmb_size)
1877 		return;
1878 
1879 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1880 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1881 
1882 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1883 	if (!dev->cmbsz)
1884 		return;
1885 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1886 
1887 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1888 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1889 	bar = NVME_CMB_BIR(dev->cmbloc);
1890 	bar_size = pci_resource_len(pdev, bar);
1891 
1892 	if (offset > bar_size)
1893 		return;
1894 
1895 	/*
1896 	 * Tell the controller about the host side address mapping the CMB,
1897 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1898 	 */
1899 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1900 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1901 			     (pci_bus_address(pdev, bar) + offset),
1902 			     dev->bar + NVME_REG_CMBMSC);
1903 	}
1904 
1905 	/*
1906 	 * Controllers may support a CMB size larger than their BAR,
1907 	 * for example, due to being behind a bridge. Reduce the CMB to
1908 	 * the reported size of the BAR
1909 	 */
1910 	if (size > bar_size - offset)
1911 		size = bar_size - offset;
1912 
1913 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1914 		dev_warn(dev->ctrl.device,
1915 			 "failed to register the CMB\n");
1916 		return;
1917 	}
1918 
1919 	dev->cmb_size = size;
1920 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1921 
1922 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1923 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1924 		pci_p2pmem_publish(pdev, true);
1925 }
1926 
1927 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1928 {
1929 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1930 	u64 dma_addr = dev->host_mem_descs_dma;
1931 	struct nvme_command c = { };
1932 	int ret;
1933 
1934 	c.features.opcode	= nvme_admin_set_features;
1935 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1936 	c.features.dword11	= cpu_to_le32(bits);
1937 	c.features.dword12	= cpu_to_le32(host_mem_size);
1938 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1939 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1940 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1941 
1942 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1943 	if (ret) {
1944 		dev_warn(dev->ctrl.device,
1945 			 "failed to set host mem (err %d, flags %#x).\n",
1946 			 ret, bits);
1947 	} else
1948 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1949 
1950 	return ret;
1951 }
1952 
1953 static void nvme_free_host_mem(struct nvme_dev *dev)
1954 {
1955 	int i;
1956 
1957 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1958 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1959 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1960 
1961 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1962 			       le64_to_cpu(desc->addr),
1963 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1964 	}
1965 
1966 	kfree(dev->host_mem_desc_bufs);
1967 	dev->host_mem_desc_bufs = NULL;
1968 	dma_free_coherent(dev->dev,
1969 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1970 			dev->host_mem_descs, dev->host_mem_descs_dma);
1971 	dev->host_mem_descs = NULL;
1972 	dev->nr_host_mem_descs = 0;
1973 }
1974 
1975 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1976 		u32 chunk_size)
1977 {
1978 	struct nvme_host_mem_buf_desc *descs;
1979 	u32 max_entries, len;
1980 	dma_addr_t descs_dma;
1981 	int i = 0;
1982 	void **bufs;
1983 	u64 size, tmp;
1984 
1985 	tmp = (preferred + chunk_size - 1);
1986 	do_div(tmp, chunk_size);
1987 	max_entries = tmp;
1988 
1989 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1990 		max_entries = dev->ctrl.hmmaxd;
1991 
1992 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1993 				   &descs_dma, GFP_KERNEL);
1994 	if (!descs)
1995 		goto out;
1996 
1997 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1998 	if (!bufs)
1999 		goto out_free_descs;
2000 
2001 	for (size = 0; size < preferred && i < max_entries; size += len) {
2002 		dma_addr_t dma_addr;
2003 
2004 		len = min_t(u64, chunk_size, preferred - size);
2005 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2006 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2007 		if (!bufs[i])
2008 			break;
2009 
2010 		descs[i].addr = cpu_to_le64(dma_addr);
2011 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2012 		i++;
2013 	}
2014 
2015 	if (!size)
2016 		goto out_free_bufs;
2017 
2018 	dev->nr_host_mem_descs = i;
2019 	dev->host_mem_size = size;
2020 	dev->host_mem_descs = descs;
2021 	dev->host_mem_descs_dma = descs_dma;
2022 	dev->host_mem_desc_bufs = bufs;
2023 	return 0;
2024 
2025 out_free_bufs:
2026 	while (--i >= 0) {
2027 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2028 
2029 		dma_free_attrs(dev->dev, size, bufs[i],
2030 			       le64_to_cpu(descs[i].addr),
2031 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2032 	}
2033 
2034 	kfree(bufs);
2035 out_free_descs:
2036 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2037 			descs_dma);
2038 out:
2039 	dev->host_mem_descs = NULL;
2040 	return -ENOMEM;
2041 }
2042 
2043 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2044 {
2045 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2046 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2047 	u64 chunk_size;
2048 
2049 	/* start big and work our way down */
2050 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2051 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2052 			if (!min || dev->host_mem_size >= min)
2053 				return 0;
2054 			nvme_free_host_mem(dev);
2055 		}
2056 	}
2057 
2058 	return -ENOMEM;
2059 }
2060 
2061 static int nvme_setup_host_mem(struct nvme_dev *dev)
2062 {
2063 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2064 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2065 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2066 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2067 	int ret;
2068 
2069 	if (!dev->ctrl.hmpre)
2070 		return 0;
2071 
2072 	preferred = min(preferred, max);
2073 	if (min > max) {
2074 		dev_warn(dev->ctrl.device,
2075 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2076 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2077 		nvme_free_host_mem(dev);
2078 		return 0;
2079 	}
2080 
2081 	/*
2082 	 * If we already have a buffer allocated check if we can reuse it.
2083 	 */
2084 	if (dev->host_mem_descs) {
2085 		if (dev->host_mem_size >= min)
2086 			enable_bits |= NVME_HOST_MEM_RETURN;
2087 		else
2088 			nvme_free_host_mem(dev);
2089 	}
2090 
2091 	if (!dev->host_mem_descs) {
2092 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2093 			dev_warn(dev->ctrl.device,
2094 				"failed to allocate host memory buffer.\n");
2095 			return 0; /* controller must work without HMB */
2096 		}
2097 
2098 		dev_info(dev->ctrl.device,
2099 			"allocated %lld MiB host memory buffer.\n",
2100 			dev->host_mem_size >> ilog2(SZ_1M));
2101 	}
2102 
2103 	ret = nvme_set_host_mem(dev, enable_bits);
2104 	if (ret)
2105 		nvme_free_host_mem(dev);
2106 	return ret;
2107 }
2108 
2109 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2110 		char *buf)
2111 {
2112 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2113 
2114 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2115 		       ndev->cmbloc, ndev->cmbsz);
2116 }
2117 static DEVICE_ATTR_RO(cmb);
2118 
2119 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2120 		char *buf)
2121 {
2122 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2123 
2124 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2125 }
2126 static DEVICE_ATTR_RO(cmbloc);
2127 
2128 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2129 		char *buf)
2130 {
2131 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2132 
2133 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2134 }
2135 static DEVICE_ATTR_RO(cmbsz);
2136 
2137 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2138 			char *buf)
2139 {
2140 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2141 
2142 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2143 }
2144 
2145 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2146 			 const char *buf, size_t count)
2147 {
2148 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2149 	bool new;
2150 	int ret;
2151 
2152 	if (kstrtobool(buf, &new) < 0)
2153 		return -EINVAL;
2154 
2155 	if (new == ndev->hmb)
2156 		return count;
2157 
2158 	if (new) {
2159 		ret = nvme_setup_host_mem(ndev);
2160 	} else {
2161 		ret = nvme_set_host_mem(ndev, 0);
2162 		if (!ret)
2163 			nvme_free_host_mem(ndev);
2164 	}
2165 
2166 	if (ret < 0)
2167 		return ret;
2168 
2169 	return count;
2170 }
2171 static DEVICE_ATTR_RW(hmb);
2172 
2173 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2174 		struct attribute *a, int n)
2175 {
2176 	struct nvme_ctrl *ctrl =
2177 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2178 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2179 
2180 	if (a == &dev_attr_cmb.attr ||
2181 	    a == &dev_attr_cmbloc.attr ||
2182 	    a == &dev_attr_cmbsz.attr) {
2183 	    	if (!dev->cmbsz)
2184 			return 0;
2185 	}
2186 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2187 		return 0;
2188 
2189 	return a->mode;
2190 }
2191 
2192 static struct attribute *nvme_pci_attrs[] = {
2193 	&dev_attr_cmb.attr,
2194 	&dev_attr_cmbloc.attr,
2195 	&dev_attr_cmbsz.attr,
2196 	&dev_attr_hmb.attr,
2197 	NULL,
2198 };
2199 
2200 static const struct attribute_group nvme_pci_dev_attrs_group = {
2201 	.attrs		= nvme_pci_attrs,
2202 	.is_visible	= nvme_pci_attrs_are_visible,
2203 };
2204 
2205 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2206 	&nvme_dev_attrs_group,
2207 	&nvme_pci_dev_attrs_group,
2208 	NULL,
2209 };
2210 
2211 /*
2212  * nirqs is the number of interrupts available for write and read
2213  * queues. The core already reserved an interrupt for the admin queue.
2214  */
2215 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2216 {
2217 	struct nvme_dev *dev = affd->priv;
2218 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2219 
2220 	/*
2221 	 * If there is no interrupt available for queues, ensure that
2222 	 * the default queue is set to 1. The affinity set size is
2223 	 * also set to one, but the irq core ignores it for this case.
2224 	 *
2225 	 * If only one interrupt is available or 'write_queue' == 0, combine
2226 	 * write and read queues.
2227 	 *
2228 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2229 	 * queue.
2230 	 */
2231 	if (!nrirqs) {
2232 		nrirqs = 1;
2233 		nr_read_queues = 0;
2234 	} else if (nrirqs == 1 || !nr_write_queues) {
2235 		nr_read_queues = 0;
2236 	} else if (nr_write_queues >= nrirqs) {
2237 		nr_read_queues = 1;
2238 	} else {
2239 		nr_read_queues = nrirqs - nr_write_queues;
2240 	}
2241 
2242 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2243 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2244 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2245 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2246 	affd->nr_sets = nr_read_queues ? 2 : 1;
2247 }
2248 
2249 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2250 {
2251 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2252 	struct irq_affinity affd = {
2253 		.pre_vectors	= 1,
2254 		.calc_sets	= nvme_calc_irq_sets,
2255 		.priv		= dev,
2256 	};
2257 	unsigned int irq_queues, poll_queues;
2258 
2259 	/*
2260 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2261 	 * left over for non-polled I/O.
2262 	 */
2263 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2264 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2265 
2266 	/*
2267 	 * Initialize for the single interrupt case, will be updated in
2268 	 * nvme_calc_irq_sets().
2269 	 */
2270 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2271 	dev->io_queues[HCTX_TYPE_READ] = 0;
2272 
2273 	/*
2274 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2275 	 * but some Apple controllers require all queues to use the first
2276 	 * vector.
2277 	 */
2278 	irq_queues = 1;
2279 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2280 		irq_queues += (nr_io_queues - poll_queues);
2281 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2282 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2283 }
2284 
2285 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2286 {
2287 	/*
2288 	 * If tags are shared with admin queue (Apple bug), then
2289 	 * make sure we only use one IO queue.
2290 	 */
2291 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2292 		return 1;
2293 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2294 }
2295 
2296 static int nvme_setup_io_queues(struct nvme_dev *dev)
2297 {
2298 	struct nvme_queue *adminq = &dev->queues[0];
2299 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2300 	unsigned int nr_io_queues;
2301 	unsigned long size;
2302 	int result;
2303 
2304 	/*
2305 	 * Sample the module parameters once at reset time so that we have
2306 	 * stable values to work with.
2307 	 */
2308 	dev->nr_write_queues = write_queues;
2309 	dev->nr_poll_queues = poll_queues;
2310 
2311 	nr_io_queues = dev->nr_allocated_queues - 1;
2312 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2313 	if (result < 0)
2314 		return result;
2315 
2316 	if (nr_io_queues == 0)
2317 		return 0;
2318 
2319 	/*
2320 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2321 	 * from set to unset. If there is a window to it is truely freed,
2322 	 * pci_free_irq_vectors() jumping into this window will crash.
2323 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2324 	 * nvme_dev_disable() path.
2325 	 */
2326 	result = nvme_setup_io_queues_trylock(dev);
2327 	if (result)
2328 		return result;
2329 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2330 		pci_free_irq(pdev, 0, adminq);
2331 
2332 	if (dev->cmb_use_sqes) {
2333 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2334 				sizeof(struct nvme_command));
2335 		if (result > 0)
2336 			dev->q_depth = result;
2337 		else
2338 			dev->cmb_use_sqes = false;
2339 	}
2340 
2341 	do {
2342 		size = db_bar_size(dev, nr_io_queues);
2343 		result = nvme_remap_bar(dev, size);
2344 		if (!result)
2345 			break;
2346 		if (!--nr_io_queues) {
2347 			result = -ENOMEM;
2348 			goto out_unlock;
2349 		}
2350 	} while (1);
2351 	adminq->q_db = dev->dbs;
2352 
2353  retry:
2354 	/* Deregister the admin queue's interrupt */
2355 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2356 		pci_free_irq(pdev, 0, adminq);
2357 
2358 	/*
2359 	 * If we enable msix early due to not intx, disable it again before
2360 	 * setting up the full range we need.
2361 	 */
2362 	pci_free_irq_vectors(pdev);
2363 
2364 	result = nvme_setup_irqs(dev, nr_io_queues);
2365 	if (result <= 0) {
2366 		result = -EIO;
2367 		goto out_unlock;
2368 	}
2369 
2370 	dev->num_vecs = result;
2371 	result = max(result - 1, 1);
2372 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2373 
2374 	/*
2375 	 * Should investigate if there's a performance win from allocating
2376 	 * more queues than interrupt vectors; it might allow the submission
2377 	 * path to scale better, even if the receive path is limited by the
2378 	 * number of interrupts.
2379 	 */
2380 	result = queue_request_irq(adminq);
2381 	if (result)
2382 		goto out_unlock;
2383 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2384 	mutex_unlock(&dev->shutdown_lock);
2385 
2386 	result = nvme_create_io_queues(dev);
2387 	if (result || dev->online_queues < 2)
2388 		return result;
2389 
2390 	if (dev->online_queues - 1 < dev->max_qid) {
2391 		nr_io_queues = dev->online_queues - 1;
2392 		nvme_delete_io_queues(dev);
2393 		result = nvme_setup_io_queues_trylock(dev);
2394 		if (result)
2395 			return result;
2396 		nvme_suspend_io_queues(dev);
2397 		goto retry;
2398 	}
2399 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2400 					dev->io_queues[HCTX_TYPE_DEFAULT],
2401 					dev->io_queues[HCTX_TYPE_READ],
2402 					dev->io_queues[HCTX_TYPE_POLL]);
2403 	return 0;
2404 out_unlock:
2405 	mutex_unlock(&dev->shutdown_lock);
2406 	return result;
2407 }
2408 
2409 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2410 					     blk_status_t error)
2411 {
2412 	struct nvme_queue *nvmeq = req->end_io_data;
2413 
2414 	blk_mq_free_request(req);
2415 	complete(&nvmeq->delete_done);
2416 	return RQ_END_IO_NONE;
2417 }
2418 
2419 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2420 					  blk_status_t error)
2421 {
2422 	struct nvme_queue *nvmeq = req->end_io_data;
2423 
2424 	if (error)
2425 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2426 
2427 	return nvme_del_queue_end(req, error);
2428 }
2429 
2430 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2431 {
2432 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2433 	struct request *req;
2434 	struct nvme_command cmd = { };
2435 
2436 	cmd.delete_queue.opcode = opcode;
2437 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2438 
2439 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2440 	if (IS_ERR(req))
2441 		return PTR_ERR(req);
2442 	nvme_init_request(req, &cmd);
2443 
2444 	if (opcode == nvme_admin_delete_cq)
2445 		req->end_io = nvme_del_cq_end;
2446 	else
2447 		req->end_io = nvme_del_queue_end;
2448 	req->end_io_data = nvmeq;
2449 
2450 	init_completion(&nvmeq->delete_done);
2451 	blk_execute_rq_nowait(req, false);
2452 	return 0;
2453 }
2454 
2455 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2456 {
2457 	int nr_queues = dev->online_queues - 1, sent = 0;
2458 	unsigned long timeout;
2459 
2460  retry:
2461 	timeout = NVME_ADMIN_TIMEOUT;
2462 	while (nr_queues > 0) {
2463 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2464 			break;
2465 		nr_queues--;
2466 		sent++;
2467 	}
2468 	while (sent) {
2469 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2470 
2471 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2472 				timeout);
2473 		if (timeout == 0)
2474 			return false;
2475 
2476 		sent--;
2477 		if (nr_queues)
2478 			goto retry;
2479 	}
2480 	return true;
2481 }
2482 
2483 static void nvme_delete_io_queues(struct nvme_dev *dev)
2484 {
2485 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2486 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2487 }
2488 
2489 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2490 {
2491 	if (dev->io_queues[HCTX_TYPE_POLL])
2492 		return 3;
2493 	if (dev->io_queues[HCTX_TYPE_READ])
2494 		return 2;
2495 	return 1;
2496 }
2497 
2498 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2499 {
2500 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2501 	/* free previously allocated queues that are no longer usable */
2502 	nvme_free_queues(dev, dev->online_queues);
2503 }
2504 
2505 static int nvme_pci_enable(struct nvme_dev *dev)
2506 {
2507 	int result = -ENOMEM;
2508 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2509 	int dma_address_bits = 64;
2510 
2511 	if (pci_enable_device_mem(pdev))
2512 		return result;
2513 
2514 	pci_set_master(pdev);
2515 
2516 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2517 		dma_address_bits = 48;
2518 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2519 		goto disable;
2520 
2521 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2522 		result = -ENODEV;
2523 		goto disable;
2524 	}
2525 
2526 	/*
2527 	 * Some devices and/or platforms don't advertise or work with INTx
2528 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2529 	 * adjust this later.
2530 	 */
2531 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2532 	if (result < 0)
2533 		return result;
2534 
2535 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2536 
2537 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2538 				io_queue_depth);
2539 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2540 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2541 	dev->dbs = dev->bar + 4096;
2542 
2543 	/*
2544 	 * Some Apple controllers require a non-standard SQE size.
2545 	 * Interestingly they also seem to ignore the CC:IOSQES register
2546 	 * so we don't bother updating it here.
2547 	 */
2548 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2549 		dev->io_sqes = 7;
2550 	else
2551 		dev->io_sqes = NVME_NVM_IOSQES;
2552 
2553 	/*
2554 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2555 	 * some MacBook7,1 to avoid controller resets and data loss.
2556 	 */
2557 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2558 		dev->q_depth = 2;
2559 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2560 			"set queue depth=%u to work around controller resets\n",
2561 			dev->q_depth);
2562 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2563 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2564 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2565 		dev->q_depth = 64;
2566 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2567                         "set queue depth=%u\n", dev->q_depth);
2568 	}
2569 
2570 	/*
2571 	 * Controllers with the shared tags quirk need the IO queue to be
2572 	 * big enough so that we get 32 tags for the admin queue
2573 	 */
2574 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2575 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2576 		dev->q_depth = NVME_AQ_DEPTH + 2;
2577 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2578 			 dev->q_depth);
2579 	}
2580 
2581 
2582 	nvme_map_cmb(dev);
2583 
2584 	pci_enable_pcie_error_reporting(pdev);
2585 	pci_save_state(pdev);
2586 
2587 	return nvme_pci_configure_admin_queue(dev);
2588 
2589  disable:
2590 	pci_disable_device(pdev);
2591 	return result;
2592 }
2593 
2594 static void nvme_dev_unmap(struct nvme_dev *dev)
2595 {
2596 	if (dev->bar)
2597 		iounmap(dev->bar);
2598 	pci_release_mem_regions(to_pci_dev(dev->dev));
2599 }
2600 
2601 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2602 {
2603 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2604 	u32 csts;
2605 
2606 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2607 		return true;
2608 	if (pdev->error_state != pci_channel_io_normal)
2609 		return true;
2610 
2611 	csts = readl(dev->bar + NVME_REG_CSTS);
2612 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2613 }
2614 
2615 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2616 {
2617 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2618 	bool dead;
2619 
2620 	mutex_lock(&dev->shutdown_lock);
2621 	dead = nvme_pci_ctrl_is_dead(dev);
2622 	if (dev->ctrl.state == NVME_CTRL_LIVE ||
2623 	    dev->ctrl.state == NVME_CTRL_RESETTING) {
2624 		if (pci_is_enabled(pdev))
2625 			nvme_start_freeze(&dev->ctrl);
2626 		/*
2627 		 * Give the controller a chance to complete all entered requests
2628 		 * if doing a safe shutdown.
2629 		 */
2630 		if (!dead && shutdown)
2631 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2632 	}
2633 
2634 	nvme_quiesce_io_queues(&dev->ctrl);
2635 
2636 	if (!dead && dev->ctrl.queue_count > 0) {
2637 		nvme_delete_io_queues(dev);
2638 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2639 		nvme_poll_irqdisable(&dev->queues[0]);
2640 	}
2641 	nvme_suspend_io_queues(dev);
2642 	nvme_suspend_queue(dev, 0);
2643 	pci_free_irq_vectors(pdev);
2644 	if (pci_is_enabled(pdev)) {
2645 		pci_disable_pcie_error_reporting(pdev);
2646 		pci_disable_device(pdev);
2647 	}
2648 	nvme_reap_pending_cqes(dev);
2649 
2650 	nvme_cancel_tagset(&dev->ctrl);
2651 	nvme_cancel_admin_tagset(&dev->ctrl);
2652 
2653 	/*
2654 	 * The driver will not be starting up queues again if shutting down so
2655 	 * must flush all entered requests to their failed completion to avoid
2656 	 * deadlocking blk-mq hot-cpu notifier.
2657 	 */
2658 	if (shutdown) {
2659 		nvme_unquiesce_io_queues(&dev->ctrl);
2660 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2661 			nvme_unquiesce_admin_queue(&dev->ctrl);
2662 	}
2663 	mutex_unlock(&dev->shutdown_lock);
2664 }
2665 
2666 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2667 {
2668 	if (!nvme_wait_reset(&dev->ctrl))
2669 		return -EBUSY;
2670 	nvme_dev_disable(dev, shutdown);
2671 	return 0;
2672 }
2673 
2674 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2675 {
2676 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2677 						NVME_CTRL_PAGE_SIZE,
2678 						NVME_CTRL_PAGE_SIZE, 0);
2679 	if (!dev->prp_page_pool)
2680 		return -ENOMEM;
2681 
2682 	/* Optimisation for I/Os between 4k and 128k */
2683 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2684 						256, 256, 0);
2685 	if (!dev->prp_small_pool) {
2686 		dma_pool_destroy(dev->prp_page_pool);
2687 		return -ENOMEM;
2688 	}
2689 	return 0;
2690 }
2691 
2692 static void nvme_release_prp_pools(struct nvme_dev *dev)
2693 {
2694 	dma_pool_destroy(dev->prp_page_pool);
2695 	dma_pool_destroy(dev->prp_small_pool);
2696 }
2697 
2698 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2699 {
2700 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2701 	size_t alloc_size = sizeof(__le64 *) * npages +
2702 			    sizeof(struct scatterlist) * NVME_MAX_SEGS;
2703 
2704 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2705 	dev->iod_mempool = mempool_create_node(1,
2706 			mempool_kmalloc, mempool_kfree,
2707 			(void *)alloc_size, GFP_KERNEL,
2708 			dev_to_node(dev->dev));
2709 	if (!dev->iod_mempool)
2710 		return -ENOMEM;
2711 	return 0;
2712 }
2713 
2714 static void nvme_free_tagset(struct nvme_dev *dev)
2715 {
2716 	if (dev->tagset.tags)
2717 		nvme_remove_io_tag_set(&dev->ctrl);
2718 	dev->ctrl.tagset = NULL;
2719 }
2720 
2721 /* pairs with nvme_pci_alloc_dev */
2722 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2723 {
2724 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2725 
2726 	nvme_free_tagset(dev);
2727 	put_device(dev->dev);
2728 	kfree(dev->queues);
2729 	kfree(dev);
2730 }
2731 
2732 static void nvme_reset_work(struct work_struct *work)
2733 {
2734 	struct nvme_dev *dev =
2735 		container_of(work, struct nvme_dev, ctrl.reset_work);
2736 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2737 	int result;
2738 
2739 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2740 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2741 			 dev->ctrl.state);
2742 		return;
2743 	}
2744 
2745 	/*
2746 	 * If we're called to reset a live controller first shut it down before
2747 	 * moving on.
2748 	 */
2749 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2750 		nvme_dev_disable(dev, false);
2751 	nvme_sync_queues(&dev->ctrl);
2752 
2753 	mutex_lock(&dev->shutdown_lock);
2754 	result = nvme_pci_enable(dev);
2755 	if (result)
2756 		goto out_unlock;
2757 	nvme_unquiesce_admin_queue(&dev->ctrl);
2758 	mutex_unlock(&dev->shutdown_lock);
2759 
2760 	/*
2761 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2762 	 * initializing procedure here.
2763 	 */
2764 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2765 		dev_warn(dev->ctrl.device,
2766 			"failed to mark controller CONNECTING\n");
2767 		result = -EBUSY;
2768 		goto out;
2769 	}
2770 
2771 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2772 	if (result)
2773 		goto out;
2774 
2775 	nvme_dbbuf_dma_alloc(dev);
2776 
2777 	result = nvme_setup_host_mem(dev);
2778 	if (result < 0)
2779 		goto out;
2780 
2781 	result = nvme_setup_io_queues(dev);
2782 	if (result)
2783 		goto out;
2784 
2785 	/*
2786 	 * Freeze and update the number of I/O queues as thos might have
2787 	 * changed.  If there are no I/O queues left after this reset, keep the
2788 	 * controller around but remove all namespaces.
2789 	 */
2790 	if (dev->online_queues > 1) {
2791 		nvme_unquiesce_io_queues(&dev->ctrl);
2792 		nvme_wait_freeze(&dev->ctrl);
2793 		nvme_pci_update_nr_queues(dev);
2794 		nvme_dbbuf_set(dev);
2795 		nvme_unfreeze(&dev->ctrl);
2796 	} else {
2797 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2798 		nvme_mark_namespaces_dead(&dev->ctrl);
2799 		nvme_unquiesce_io_queues(&dev->ctrl);
2800 		nvme_remove_namespaces(&dev->ctrl);
2801 		nvme_free_tagset(dev);
2802 	}
2803 
2804 	/*
2805 	 * If only admin queue live, keep it to do further investigation or
2806 	 * recovery.
2807 	 */
2808 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2809 		dev_warn(dev->ctrl.device,
2810 			"failed to mark controller live state\n");
2811 		result = -ENODEV;
2812 		goto out;
2813 	}
2814 
2815 	nvme_start_ctrl(&dev->ctrl);
2816 	return;
2817 
2818  out_unlock:
2819 	mutex_unlock(&dev->shutdown_lock);
2820  out:
2821 	/*
2822 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2823 	 * may be holding this pci_dev's device lock.
2824 	 */
2825 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2826 		 result);
2827 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2828 	nvme_dev_disable(dev, true);
2829 	nvme_mark_namespaces_dead(&dev->ctrl);
2830 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2831 }
2832 
2833 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2834 {
2835 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2836 	return 0;
2837 }
2838 
2839 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2840 {
2841 	writel(val, to_nvme_dev(ctrl)->bar + off);
2842 	return 0;
2843 }
2844 
2845 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2846 {
2847 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2848 	return 0;
2849 }
2850 
2851 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2852 {
2853 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2854 
2855 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2856 }
2857 
2858 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2859 {
2860 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2861 	struct nvme_subsystem *subsys = ctrl->subsys;
2862 
2863 	dev_err(ctrl->device,
2864 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2865 		pdev->vendor, pdev->device,
2866 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2867 		subsys->model, nvme_strlen(subsys->firmware_rev,
2868 					   sizeof(subsys->firmware_rev)),
2869 		subsys->firmware_rev);
2870 }
2871 
2872 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2873 {
2874 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2875 
2876 	return dma_pci_p2pdma_supported(dev->dev);
2877 }
2878 
2879 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2880 	.name			= "pcie",
2881 	.module			= THIS_MODULE,
2882 	.flags			= NVME_F_METADATA_SUPPORTED,
2883 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2884 	.reg_read32		= nvme_pci_reg_read32,
2885 	.reg_write32		= nvme_pci_reg_write32,
2886 	.reg_read64		= nvme_pci_reg_read64,
2887 	.free_ctrl		= nvme_pci_free_ctrl,
2888 	.submit_async_event	= nvme_pci_submit_async_event,
2889 	.get_address		= nvme_pci_get_address,
2890 	.print_device_info	= nvme_pci_print_device_info,
2891 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2892 };
2893 
2894 static int nvme_dev_map(struct nvme_dev *dev)
2895 {
2896 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2897 
2898 	if (pci_request_mem_regions(pdev, "nvme"))
2899 		return -ENODEV;
2900 
2901 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2902 		goto release;
2903 
2904 	return 0;
2905   release:
2906 	pci_release_mem_regions(pdev);
2907 	return -ENODEV;
2908 }
2909 
2910 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2911 {
2912 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2913 		/*
2914 		 * Several Samsung devices seem to drop off the PCIe bus
2915 		 * randomly when APST is on and uses the deepest sleep state.
2916 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2917 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2918 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2919 		 * laptops.
2920 		 */
2921 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2922 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2923 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2924 			return NVME_QUIRK_NO_DEEPEST_PS;
2925 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2926 		/*
2927 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2928 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2929 		 * within few minutes after bootup on a Coffee Lake board -
2930 		 * ASUS PRIME Z370-A
2931 		 */
2932 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2933 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2934 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2935 			return NVME_QUIRK_NO_APST;
2936 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2937 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2938 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2939 		/*
2940 		 * Forcing to use host managed nvme power settings for
2941 		 * lowest idle power with quick resume latency on
2942 		 * Samsung and Toshiba SSDs based on suspend behavior
2943 		 * on Coffee Lake board for LENOVO C640
2944 		 */
2945 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2946 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2947 			return NVME_QUIRK_SIMPLE_SUSPEND;
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2954 		const struct pci_device_id *id)
2955 {
2956 	unsigned long quirks = id->driver_data;
2957 	int node = dev_to_node(&pdev->dev);
2958 	struct nvme_dev *dev;
2959 	int ret = -ENOMEM;
2960 
2961 	if (node == NUMA_NO_NODE)
2962 		set_dev_node(&pdev->dev, first_memory_node);
2963 
2964 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2965 	if (!dev)
2966 		return NULL;
2967 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2968 	mutex_init(&dev->shutdown_lock);
2969 
2970 	dev->nr_write_queues = write_queues;
2971 	dev->nr_poll_queues = poll_queues;
2972 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2973 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2974 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2975 	if (!dev->queues)
2976 		goto out_free_dev;
2977 
2978 	dev->dev = get_device(&pdev->dev);
2979 
2980 	quirks |= check_vendor_combination_bug(pdev);
2981 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2982 		/*
2983 		 * Some systems use a bios work around to ask for D3 on
2984 		 * platforms that support kernel managed suspend.
2985 		 */
2986 		dev_info(&pdev->dev,
2987 			 "platform quirk: setting simple suspend\n");
2988 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2989 	}
2990 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2991 			     quirks);
2992 	if (ret)
2993 		goto out_put_device;
2994 
2995 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2996 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2997 
2998 	/*
2999 	 * Limit the max command size to prevent iod->sg allocations going
3000 	 * over a single page.
3001 	 */
3002 	dev->ctrl.max_hw_sectors = min_t(u32,
3003 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
3004 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3005 
3006 	/*
3007 	 * There is no support for SGLs for metadata (yet), so we are limited to
3008 	 * a single integrity segment for the separate metadata pointer.
3009 	 */
3010 	dev->ctrl.max_integrity_segments = 1;
3011 	return dev;
3012 
3013 out_put_device:
3014 	put_device(dev->dev);
3015 	kfree(dev->queues);
3016 out_free_dev:
3017 	kfree(dev);
3018 	return ERR_PTR(ret);
3019 }
3020 
3021 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3022 {
3023 	struct nvme_dev *dev;
3024 	int result = -ENOMEM;
3025 
3026 	dev = nvme_pci_alloc_dev(pdev, id);
3027 	if (!dev)
3028 		return -ENOMEM;
3029 
3030 	result = nvme_dev_map(dev);
3031 	if (result)
3032 		goto out_uninit_ctrl;
3033 
3034 	result = nvme_setup_prp_pools(dev);
3035 	if (result)
3036 		goto out_dev_unmap;
3037 
3038 	result = nvme_pci_alloc_iod_mempool(dev);
3039 	if (result)
3040 		goto out_release_prp_pools;
3041 
3042 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3043 
3044 	result = nvme_pci_enable(dev);
3045 	if (result)
3046 		goto out_release_iod_mempool;
3047 
3048 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3049 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3050 	if (result)
3051 		goto out_disable;
3052 
3053 	/*
3054 	 * Mark the controller as connecting before sending admin commands to
3055 	 * allow the timeout handler to do the right thing.
3056 	 */
3057 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3058 		dev_warn(dev->ctrl.device,
3059 			"failed to mark controller CONNECTING\n");
3060 		result = -EBUSY;
3061 		goto out_disable;
3062 	}
3063 
3064 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3065 	if (result)
3066 		goto out_disable;
3067 
3068 	nvme_dbbuf_dma_alloc(dev);
3069 
3070 	result = nvme_setup_host_mem(dev);
3071 	if (result < 0)
3072 		goto out_disable;
3073 
3074 	result = nvme_setup_io_queues(dev);
3075 	if (result)
3076 		goto out_disable;
3077 
3078 	if (dev->online_queues > 1) {
3079 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3080 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3081 		nvme_dbbuf_set(dev);
3082 	}
3083 
3084 	if (!dev->ctrl.tagset)
3085 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3086 
3087 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3088 		dev_warn(dev->ctrl.device,
3089 			"failed to mark controller live state\n");
3090 		result = -ENODEV;
3091 		goto out_disable;
3092 	}
3093 
3094 	pci_set_drvdata(pdev, dev);
3095 
3096 	nvme_start_ctrl(&dev->ctrl);
3097 	nvme_put_ctrl(&dev->ctrl);
3098 	return 0;
3099 
3100 out_disable:
3101 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3102 	nvme_dev_disable(dev, true);
3103 	nvme_free_host_mem(dev);
3104 	nvme_dev_remove_admin(dev);
3105 	nvme_dbbuf_dma_free(dev);
3106 	nvme_free_queues(dev, 0);
3107 out_release_iod_mempool:
3108 	mempool_destroy(dev->iod_mempool);
3109 out_release_prp_pools:
3110 	nvme_release_prp_pools(dev);
3111 out_dev_unmap:
3112 	nvme_dev_unmap(dev);
3113 out_uninit_ctrl:
3114 	nvme_uninit_ctrl(&dev->ctrl);
3115 	return result;
3116 }
3117 
3118 static void nvme_reset_prepare(struct pci_dev *pdev)
3119 {
3120 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3121 
3122 	/*
3123 	 * We don't need to check the return value from waiting for the reset
3124 	 * state as pci_dev device lock is held, making it impossible to race
3125 	 * with ->remove().
3126 	 */
3127 	nvme_disable_prepare_reset(dev, false);
3128 	nvme_sync_queues(&dev->ctrl);
3129 }
3130 
3131 static void nvme_reset_done(struct pci_dev *pdev)
3132 {
3133 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3134 
3135 	if (!nvme_try_sched_reset(&dev->ctrl))
3136 		flush_work(&dev->ctrl.reset_work);
3137 }
3138 
3139 static void nvme_shutdown(struct pci_dev *pdev)
3140 {
3141 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3142 
3143 	nvme_disable_prepare_reset(dev, true);
3144 }
3145 
3146 /*
3147  * The driver's remove may be called on a device in a partially initialized
3148  * state. This function must not have any dependencies on the device state in
3149  * order to proceed.
3150  */
3151 static void nvme_remove(struct pci_dev *pdev)
3152 {
3153 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3154 
3155 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3156 	pci_set_drvdata(pdev, NULL);
3157 
3158 	if (!pci_device_is_present(pdev)) {
3159 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3160 		nvme_dev_disable(dev, true);
3161 	}
3162 
3163 	flush_work(&dev->ctrl.reset_work);
3164 	nvme_stop_ctrl(&dev->ctrl);
3165 	nvme_remove_namespaces(&dev->ctrl);
3166 	nvme_dev_disable(dev, true);
3167 	nvme_free_host_mem(dev);
3168 	nvme_dev_remove_admin(dev);
3169 	nvme_dbbuf_dma_free(dev);
3170 	nvme_free_queues(dev, 0);
3171 	mempool_destroy(dev->iod_mempool);
3172 	nvme_release_prp_pools(dev);
3173 	nvme_dev_unmap(dev);
3174 	nvme_uninit_ctrl(&dev->ctrl);
3175 }
3176 
3177 #ifdef CONFIG_PM_SLEEP
3178 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3179 {
3180 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3181 }
3182 
3183 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3184 {
3185 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3186 }
3187 
3188 static int nvme_resume(struct device *dev)
3189 {
3190 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3191 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3192 
3193 	if (ndev->last_ps == U32_MAX ||
3194 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3195 		goto reset;
3196 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3197 		goto reset;
3198 
3199 	return 0;
3200 reset:
3201 	return nvme_try_sched_reset(ctrl);
3202 }
3203 
3204 static int nvme_suspend(struct device *dev)
3205 {
3206 	struct pci_dev *pdev = to_pci_dev(dev);
3207 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3208 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3209 	int ret = -EBUSY;
3210 
3211 	ndev->last_ps = U32_MAX;
3212 
3213 	/*
3214 	 * The platform does not remove power for a kernel managed suspend so
3215 	 * use host managed nvme power settings for lowest idle power if
3216 	 * possible. This should have quicker resume latency than a full device
3217 	 * shutdown.  But if the firmware is involved after the suspend or the
3218 	 * device does not support any non-default power states, shut down the
3219 	 * device fully.
3220 	 *
3221 	 * If ASPM is not enabled for the device, shut down the device and allow
3222 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3223 	 * down, so as to allow the platform to achieve its minimum low-power
3224 	 * state (which may not be possible if the link is up).
3225 	 */
3226 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3227 	    !pcie_aspm_enabled(pdev) ||
3228 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3229 		return nvme_disable_prepare_reset(ndev, true);
3230 
3231 	nvme_start_freeze(ctrl);
3232 	nvme_wait_freeze(ctrl);
3233 	nvme_sync_queues(ctrl);
3234 
3235 	if (ctrl->state != NVME_CTRL_LIVE)
3236 		goto unfreeze;
3237 
3238 	/*
3239 	 * Host memory access may not be successful in a system suspend state,
3240 	 * but the specification allows the controller to access memory in a
3241 	 * non-operational power state.
3242 	 */
3243 	if (ndev->hmb) {
3244 		ret = nvme_set_host_mem(ndev, 0);
3245 		if (ret < 0)
3246 			goto unfreeze;
3247 	}
3248 
3249 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3250 	if (ret < 0)
3251 		goto unfreeze;
3252 
3253 	/*
3254 	 * A saved state prevents pci pm from generically controlling the
3255 	 * device's power. If we're using protocol specific settings, we don't
3256 	 * want pci interfering.
3257 	 */
3258 	pci_save_state(pdev);
3259 
3260 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3261 	if (ret < 0)
3262 		goto unfreeze;
3263 
3264 	if (ret) {
3265 		/* discard the saved state */
3266 		pci_load_saved_state(pdev, NULL);
3267 
3268 		/*
3269 		 * Clearing npss forces a controller reset on resume. The
3270 		 * correct value will be rediscovered then.
3271 		 */
3272 		ret = nvme_disable_prepare_reset(ndev, true);
3273 		ctrl->npss = 0;
3274 	}
3275 unfreeze:
3276 	nvme_unfreeze(ctrl);
3277 	return ret;
3278 }
3279 
3280 static int nvme_simple_suspend(struct device *dev)
3281 {
3282 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3283 
3284 	return nvme_disable_prepare_reset(ndev, true);
3285 }
3286 
3287 static int nvme_simple_resume(struct device *dev)
3288 {
3289 	struct pci_dev *pdev = to_pci_dev(dev);
3290 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3291 
3292 	return nvme_try_sched_reset(&ndev->ctrl);
3293 }
3294 
3295 static const struct dev_pm_ops nvme_dev_pm_ops = {
3296 	.suspend	= nvme_suspend,
3297 	.resume		= nvme_resume,
3298 	.freeze		= nvme_simple_suspend,
3299 	.thaw		= nvme_simple_resume,
3300 	.poweroff	= nvme_simple_suspend,
3301 	.restore	= nvme_simple_resume,
3302 };
3303 #endif /* CONFIG_PM_SLEEP */
3304 
3305 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3306 						pci_channel_state_t state)
3307 {
3308 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3309 
3310 	/*
3311 	 * A frozen channel requires a reset. When detected, this method will
3312 	 * shutdown the controller to quiesce. The controller will be restarted
3313 	 * after the slot reset through driver's slot_reset callback.
3314 	 */
3315 	switch (state) {
3316 	case pci_channel_io_normal:
3317 		return PCI_ERS_RESULT_CAN_RECOVER;
3318 	case pci_channel_io_frozen:
3319 		dev_warn(dev->ctrl.device,
3320 			"frozen state error detected, reset controller\n");
3321 		nvme_dev_disable(dev, false);
3322 		return PCI_ERS_RESULT_NEED_RESET;
3323 	case pci_channel_io_perm_failure:
3324 		dev_warn(dev->ctrl.device,
3325 			"failure state error detected, request disconnect\n");
3326 		return PCI_ERS_RESULT_DISCONNECT;
3327 	}
3328 	return PCI_ERS_RESULT_NEED_RESET;
3329 }
3330 
3331 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3332 {
3333 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3334 
3335 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3336 	pci_restore_state(pdev);
3337 	nvme_reset_ctrl(&dev->ctrl);
3338 	return PCI_ERS_RESULT_RECOVERED;
3339 }
3340 
3341 static void nvme_error_resume(struct pci_dev *pdev)
3342 {
3343 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3344 
3345 	flush_work(&dev->ctrl.reset_work);
3346 }
3347 
3348 static const struct pci_error_handlers nvme_err_handler = {
3349 	.error_detected	= nvme_error_detected,
3350 	.slot_reset	= nvme_slot_reset,
3351 	.resume		= nvme_error_resume,
3352 	.reset_prepare	= nvme_reset_prepare,
3353 	.reset_done	= nvme_reset_done,
3354 };
3355 
3356 static const struct pci_device_id nvme_id_table[] = {
3357 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3358 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3359 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3360 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3361 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3362 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3363 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3364 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3365 				NVME_QUIRK_DEALLOCATE_ZEROES |
3366 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3367 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3368 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3369 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3370 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3371 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3372 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3373 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3374 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3375 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3376 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3377 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3378 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3379 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3380 				NVME_QUIRK_BOGUS_NID, },
3381 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3382 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3383 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3384 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3385 				NVME_QUIRK_BOGUS_NID, },
3386 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3387 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3388 				NVME_QUIRK_NO_NS_DESC_LIST, },
3389 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3390 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3391 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3392 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3393 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3394 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3395 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3396 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3397 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3398 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3399 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3400 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3401 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3402 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3403 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3404 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3405 				NVME_QUIRK_BOGUS_NID, },
3406 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3407 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3408 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3409 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3410 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3411 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3412 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3413 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3414 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3415 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3416 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3417 				NVME_QUIRK_BOGUS_NID, },
3418 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3419 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3420 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3421 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3422 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3423 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3424 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3425 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3426 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3427 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3428 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3429 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3430 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3431 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3432 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3433 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3434 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3435 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3436 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3437 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3438 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3439 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3440 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3441 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3442 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3443 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3444 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3445 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3446 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3447 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3448 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3449 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3450 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3451 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3452 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3453 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3454 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3455 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3456 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3457 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3458 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3459 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3460 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3461 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3462 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3463 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3464 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3465 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3466 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3467 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3468 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3469 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3470 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3471 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3472 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3473 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3474 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3475 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3476 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3477 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3478 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3479 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3480 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3481 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3482 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3483 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3484 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3485 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3486 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3487 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3488 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3489 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3490 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3491 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3492 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3493 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3494 				NVME_QUIRK_128_BYTES_SQES |
3495 				NVME_QUIRK_SHARED_TAGS |
3496 				NVME_QUIRK_SKIP_CID_GEN },
3497 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3498 	{ 0, }
3499 };
3500 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3501 
3502 static struct pci_driver nvme_driver = {
3503 	.name		= "nvme",
3504 	.id_table	= nvme_id_table,
3505 	.probe		= nvme_probe,
3506 	.remove		= nvme_remove,
3507 	.shutdown	= nvme_shutdown,
3508 	.driver		= {
3509 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3510 #ifdef CONFIG_PM_SLEEP
3511 		.pm		= &nvme_dev_pm_ops,
3512 #endif
3513 	},
3514 	.sriov_configure = pci_sriov_configure_simple,
3515 	.err_handler	= &nvme_err_handler,
3516 };
3517 
3518 static int __init nvme_init(void)
3519 {
3520 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3521 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3522 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3523 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3524 	BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3525 		     S8_MAX);
3526 
3527 	return pci_register_driver(&nvme_driver);
3528 }
3529 
3530 static void __exit nvme_exit(void)
3531 {
3532 	pci_unregister_driver(&nvme_driver);
3533 	flush_workqueue(nvme_wq);
3534 }
3535 
3536 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3537 MODULE_LICENSE("GPL");
3538 MODULE_VERSION("1.0");
3539 module_init(nvme_init);
3540 module_exit(nvme_exit);
3541