1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/kstrtox.h> 19 #include <linux/memremap.h> 20 #include <linux/mm.h> 21 #include <linux/module.h> 22 #include <linux/mutex.h> 23 #include <linux/once.h> 24 #include <linux/pci.h> 25 #include <linux/suspend.h> 26 #include <linux/t10-pi.h> 27 #include <linux/types.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/io-64-nonatomic-hi-lo.h> 30 #include <linux/sed-opal.h> 31 #include <linux/pci-p2pdma.h> 32 33 #include "trace.h" 34 #include "nvme.h" 35 36 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 37 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 38 39 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 40 41 /* 42 * These can be higher, but we need to ensure that any command doesn't 43 * require an sg allocation that needs more than a page of data. 44 */ 45 #define NVME_MAX_KB_SZ 4096 46 #define NVME_MAX_SEGS 127 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 114 /* 115 * Represents an NVM Express device. Each nvme_dev is a PCI function. 116 */ 117 struct nvme_dev { 118 struct nvme_queue *queues; 119 struct blk_mq_tag_set tagset; 120 struct blk_mq_tag_set admin_tagset; 121 u32 __iomem *dbs; 122 struct device *dev; 123 struct dma_pool *prp_page_pool; 124 struct dma_pool *prp_small_pool; 125 unsigned online_queues; 126 unsigned max_qid; 127 unsigned io_queues[HCTX_MAX_TYPES]; 128 unsigned int num_vecs; 129 u32 q_depth; 130 int io_sqes; 131 u32 db_stride; 132 void __iomem *bar; 133 unsigned long bar_mapped_size; 134 struct mutex shutdown_lock; 135 bool subsystem; 136 u64 cmb_size; 137 bool cmb_use_sqes; 138 u32 cmbsz; 139 u32 cmbloc; 140 struct nvme_ctrl ctrl; 141 u32 last_ps; 142 bool hmb; 143 144 mempool_t *iod_mempool; 145 146 /* shadow doorbell buffer support: */ 147 u32 *dbbuf_dbs; 148 dma_addr_t dbbuf_dbs_dma_addr; 149 u32 *dbbuf_eis; 150 dma_addr_t dbbuf_eis_dma_addr; 151 152 /* host memory buffer support: */ 153 u64 host_mem_size; 154 u32 nr_host_mem_descs; 155 dma_addr_t host_mem_descs_dma; 156 struct nvme_host_mem_buf_desc *host_mem_descs; 157 void **host_mem_desc_bufs; 158 unsigned int nr_allocated_queues; 159 unsigned int nr_write_queues; 160 unsigned int nr_poll_queues; 161 }; 162 163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 164 { 165 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 166 NVME_PCI_MAX_QUEUE_SIZE); 167 } 168 169 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 170 { 171 return qid * 2 * stride; 172 } 173 174 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 175 { 176 return (qid * 2 + 1) * stride; 177 } 178 179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 180 { 181 return container_of(ctrl, struct nvme_dev, ctrl); 182 } 183 184 /* 185 * An NVM Express queue. Each device has at least two (one for admin 186 * commands and one for I/O commands). 187 */ 188 struct nvme_queue { 189 struct nvme_dev *dev; 190 spinlock_t sq_lock; 191 void *sq_cmds; 192 /* only used for poll queues: */ 193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 194 struct nvme_completion *cqes; 195 dma_addr_t sq_dma_addr; 196 dma_addr_t cq_dma_addr; 197 u32 __iomem *q_db; 198 u32 q_depth; 199 u16 cq_vector; 200 u16 sq_tail; 201 u16 last_sq_tail; 202 u16 cq_head; 203 u16 qid; 204 u8 cq_phase; 205 u8 sqes; 206 unsigned long flags; 207 #define NVMEQ_ENABLED 0 208 #define NVMEQ_SQ_CMB 1 209 #define NVMEQ_DELETE_ERROR 2 210 #define NVMEQ_POLLED 3 211 u32 *dbbuf_sq_db; 212 u32 *dbbuf_cq_db; 213 u32 *dbbuf_sq_ei; 214 u32 *dbbuf_cq_ei; 215 struct completion delete_done; 216 }; 217 218 /* 219 * The nvme_iod describes the data in an I/O. 220 * 221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 222 * to the actual struct scatterlist. 223 */ 224 struct nvme_iod { 225 struct nvme_request req; 226 struct nvme_command cmd; 227 bool use_sgl; 228 bool aborted; 229 s8 nr_allocations; /* PRP list pool allocations. 0 means small 230 pool in use */ 231 unsigned int dma_len; /* length of single DMA segment mapping */ 232 dma_addr_t first_dma; 233 dma_addr_t meta_dma; 234 struct sg_table sgt; 235 }; 236 237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 238 { 239 return dev->nr_allocated_queues * 8 * dev->db_stride; 240 } 241 242 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 243 { 244 unsigned int mem_size = nvme_dbbuf_size(dev); 245 246 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 247 return; 248 249 if (dev->dbbuf_dbs) { 250 /* 251 * Clear the dbbuf memory so the driver doesn't observe stale 252 * values from the previous instantiation. 253 */ 254 memset(dev->dbbuf_dbs, 0, mem_size); 255 memset(dev->dbbuf_eis, 0, mem_size); 256 return; 257 } 258 259 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 260 &dev->dbbuf_dbs_dma_addr, 261 GFP_KERNEL); 262 if (!dev->dbbuf_dbs) 263 goto fail; 264 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 265 &dev->dbbuf_eis_dma_addr, 266 GFP_KERNEL); 267 if (!dev->dbbuf_eis) 268 goto fail_free_dbbuf_dbs; 269 return; 270 271 fail_free_dbbuf_dbs: 272 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 273 dev->dbbuf_dbs_dma_addr); 274 dev->dbbuf_dbs = NULL; 275 fail: 276 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 277 } 278 279 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 280 { 281 unsigned int mem_size = nvme_dbbuf_size(dev); 282 283 if (dev->dbbuf_dbs) { 284 dma_free_coherent(dev->dev, mem_size, 285 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 286 dev->dbbuf_dbs = NULL; 287 } 288 if (dev->dbbuf_eis) { 289 dma_free_coherent(dev->dev, mem_size, 290 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 291 dev->dbbuf_eis = NULL; 292 } 293 } 294 295 static void nvme_dbbuf_init(struct nvme_dev *dev, 296 struct nvme_queue *nvmeq, int qid) 297 { 298 if (!dev->dbbuf_dbs || !qid) 299 return; 300 301 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 302 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 303 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 304 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 305 } 306 307 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 308 { 309 if (!nvmeq->qid) 310 return; 311 312 nvmeq->dbbuf_sq_db = NULL; 313 nvmeq->dbbuf_cq_db = NULL; 314 nvmeq->dbbuf_sq_ei = NULL; 315 nvmeq->dbbuf_cq_ei = NULL; 316 } 317 318 static void nvme_dbbuf_set(struct nvme_dev *dev) 319 { 320 struct nvme_command c = { }; 321 unsigned int i; 322 323 if (!dev->dbbuf_dbs) 324 return; 325 326 c.dbbuf.opcode = nvme_admin_dbbuf; 327 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 328 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 329 330 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 331 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 332 /* Free memory and continue on */ 333 nvme_dbbuf_dma_free(dev); 334 335 for (i = 1; i <= dev->online_queues; i++) 336 nvme_dbbuf_free(&dev->queues[i]); 337 } 338 } 339 340 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 341 { 342 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 343 } 344 345 /* Update dbbuf and return true if an MMIO is required */ 346 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 347 volatile u32 *dbbuf_ei) 348 { 349 if (dbbuf_db) { 350 u16 old_value; 351 352 /* 353 * Ensure that the queue is written before updating 354 * the doorbell in memory 355 */ 356 wmb(); 357 358 old_value = *dbbuf_db; 359 *dbbuf_db = value; 360 361 /* 362 * Ensure that the doorbell is updated before reading the event 363 * index from memory. The controller needs to provide similar 364 * ordering to ensure the envent index is updated before reading 365 * the doorbell. 366 */ 367 mb(); 368 369 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 370 return false; 371 } 372 373 return true; 374 } 375 376 /* 377 * Will slightly overestimate the number of pages needed. This is OK 378 * as it only leads to a small amount of wasted memory for the lifetime of 379 * the I/O. 380 */ 381 static int nvme_pci_npages_prp(void) 382 { 383 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 384 NVME_CTRL_PAGE_SIZE); 385 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 386 } 387 388 /* 389 * Calculates the number of pages needed for the SGL segments. For example a 4k 390 * page can accommodate 256 SGL descriptors. 391 */ 392 static int nvme_pci_npages_sgl(void) 393 { 394 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 395 PAGE_SIZE); 396 } 397 398 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 399 unsigned int hctx_idx) 400 { 401 struct nvme_dev *dev = to_nvme_dev(data); 402 struct nvme_queue *nvmeq = &dev->queues[0]; 403 404 WARN_ON(hctx_idx != 0); 405 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 406 407 hctx->driver_data = nvmeq; 408 return 0; 409 } 410 411 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 412 unsigned int hctx_idx) 413 { 414 struct nvme_dev *dev = to_nvme_dev(data); 415 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 416 417 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 418 hctx->driver_data = nvmeq; 419 return 0; 420 } 421 422 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 423 struct request *req, unsigned int hctx_idx, 424 unsigned int numa_node) 425 { 426 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 428 429 nvme_req(req)->ctrl = &dev->ctrl; 430 nvme_req(req)->cmd = &iod->cmd; 431 return 0; 432 } 433 434 static int queue_irq_offset(struct nvme_dev *dev) 435 { 436 /* if we have more than 1 vec, admin queue offsets us by 1 */ 437 if (dev->num_vecs > 1) 438 return 1; 439 440 return 0; 441 } 442 443 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 444 { 445 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 446 int i, qoff, offset; 447 448 offset = queue_irq_offset(dev); 449 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 450 struct blk_mq_queue_map *map = &set->map[i]; 451 452 map->nr_queues = dev->io_queues[i]; 453 if (!map->nr_queues) { 454 BUG_ON(i == HCTX_TYPE_DEFAULT); 455 continue; 456 } 457 458 /* 459 * The poll queue(s) doesn't have an IRQ (and hence IRQ 460 * affinity), so use the regular blk-mq cpu mapping 461 */ 462 map->queue_offset = qoff; 463 if (i != HCTX_TYPE_POLL && offset) 464 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 465 else 466 blk_mq_map_queues(map); 467 qoff += map->nr_queues; 468 offset += map->nr_queues; 469 } 470 } 471 472 /* 473 * Write sq tail if we are asked to, or if the next command would wrap. 474 */ 475 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 476 { 477 if (!write_sq) { 478 u16 next_tail = nvmeq->sq_tail + 1; 479 480 if (next_tail == nvmeq->q_depth) 481 next_tail = 0; 482 if (next_tail != nvmeq->last_sq_tail) 483 return; 484 } 485 486 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 487 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 488 writel(nvmeq->sq_tail, nvmeq->q_db); 489 nvmeq->last_sq_tail = nvmeq->sq_tail; 490 } 491 492 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 493 struct nvme_command *cmd) 494 { 495 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 496 absolute_pointer(cmd), sizeof(*cmd)); 497 if (++nvmeq->sq_tail == nvmeq->q_depth) 498 nvmeq->sq_tail = 0; 499 } 500 501 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 502 { 503 struct nvme_queue *nvmeq = hctx->driver_data; 504 505 spin_lock(&nvmeq->sq_lock); 506 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 507 nvme_write_sq_db(nvmeq, true); 508 spin_unlock(&nvmeq->sq_lock); 509 } 510 511 static void **nvme_pci_iod_list(struct request *req) 512 { 513 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 514 return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req)); 515 } 516 517 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 518 { 519 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 520 int nseg = blk_rq_nr_phys_segments(req); 521 unsigned int avg_seg_size; 522 523 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 524 525 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 526 return false; 527 if (!nvmeq->qid) 528 return false; 529 if (!sgl_threshold || avg_seg_size < sgl_threshold) 530 return false; 531 return true; 532 } 533 534 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 535 { 536 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 537 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 538 dma_addr_t dma_addr = iod->first_dma; 539 int i; 540 541 for (i = 0; i < iod->nr_allocations; i++) { 542 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 543 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 544 545 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 546 dma_addr = next_dma_addr; 547 } 548 } 549 550 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 551 { 552 const int last_sg = SGES_PER_PAGE - 1; 553 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 554 dma_addr_t dma_addr = iod->first_dma; 555 int i; 556 557 for (i = 0; i < iod->nr_allocations; i++) { 558 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 559 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 560 561 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 562 dma_addr = next_dma_addr; 563 } 564 } 565 566 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 567 { 568 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 569 570 if (iod->dma_len) { 571 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 572 rq_dma_dir(req)); 573 return; 574 } 575 576 WARN_ON_ONCE(!iod->sgt.nents); 577 578 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 579 580 if (iod->nr_allocations == 0) 581 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 582 iod->first_dma); 583 else if (iod->use_sgl) 584 nvme_free_sgls(dev, req); 585 else 586 nvme_free_prps(dev, req); 587 mempool_free(iod->sgt.sgl, dev->iod_mempool); 588 } 589 590 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 591 { 592 int i; 593 struct scatterlist *sg; 594 595 for_each_sg(sgl, sg, nents, i) { 596 dma_addr_t phys = sg_phys(sg); 597 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 598 "dma_address:%pad dma_length:%d\n", 599 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 600 sg_dma_len(sg)); 601 } 602 } 603 604 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 605 struct request *req, struct nvme_rw_command *cmnd) 606 { 607 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 608 struct dma_pool *pool; 609 int length = blk_rq_payload_bytes(req); 610 struct scatterlist *sg = iod->sgt.sgl; 611 int dma_len = sg_dma_len(sg); 612 u64 dma_addr = sg_dma_address(sg); 613 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 614 __le64 *prp_list; 615 void **list = nvme_pci_iod_list(req); 616 dma_addr_t prp_dma; 617 int nprps, i; 618 619 length -= (NVME_CTRL_PAGE_SIZE - offset); 620 if (length <= 0) { 621 iod->first_dma = 0; 622 goto done; 623 } 624 625 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 626 if (dma_len) { 627 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 628 } else { 629 sg = sg_next(sg); 630 dma_addr = sg_dma_address(sg); 631 dma_len = sg_dma_len(sg); 632 } 633 634 if (length <= NVME_CTRL_PAGE_SIZE) { 635 iod->first_dma = dma_addr; 636 goto done; 637 } 638 639 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 640 if (nprps <= (256 / 8)) { 641 pool = dev->prp_small_pool; 642 iod->nr_allocations = 0; 643 } else { 644 pool = dev->prp_page_pool; 645 iod->nr_allocations = 1; 646 } 647 648 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 649 if (!prp_list) { 650 iod->nr_allocations = -1; 651 return BLK_STS_RESOURCE; 652 } 653 list[0] = prp_list; 654 iod->first_dma = prp_dma; 655 i = 0; 656 for (;;) { 657 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 658 __le64 *old_prp_list = prp_list; 659 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 660 if (!prp_list) 661 goto free_prps; 662 list[iod->nr_allocations++] = prp_list; 663 prp_list[0] = old_prp_list[i - 1]; 664 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 665 i = 1; 666 } 667 prp_list[i++] = cpu_to_le64(dma_addr); 668 dma_len -= NVME_CTRL_PAGE_SIZE; 669 dma_addr += NVME_CTRL_PAGE_SIZE; 670 length -= NVME_CTRL_PAGE_SIZE; 671 if (length <= 0) 672 break; 673 if (dma_len > 0) 674 continue; 675 if (unlikely(dma_len < 0)) 676 goto bad_sgl; 677 sg = sg_next(sg); 678 dma_addr = sg_dma_address(sg); 679 dma_len = sg_dma_len(sg); 680 } 681 done: 682 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 683 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 684 return BLK_STS_OK; 685 free_prps: 686 nvme_free_prps(dev, req); 687 return BLK_STS_RESOURCE; 688 bad_sgl: 689 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 690 "Invalid SGL for payload:%d nents:%d\n", 691 blk_rq_payload_bytes(req), iod->sgt.nents); 692 return BLK_STS_IOERR; 693 } 694 695 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 696 struct scatterlist *sg) 697 { 698 sge->addr = cpu_to_le64(sg_dma_address(sg)); 699 sge->length = cpu_to_le32(sg_dma_len(sg)); 700 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 701 } 702 703 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 704 dma_addr_t dma_addr, int entries) 705 { 706 sge->addr = cpu_to_le64(dma_addr); 707 if (entries < SGES_PER_PAGE) { 708 sge->length = cpu_to_le32(entries * sizeof(*sge)); 709 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 710 } else { 711 sge->length = cpu_to_le32(PAGE_SIZE); 712 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 713 } 714 } 715 716 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 717 struct request *req, struct nvme_rw_command *cmd) 718 { 719 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 720 struct dma_pool *pool; 721 struct nvme_sgl_desc *sg_list; 722 struct scatterlist *sg = iod->sgt.sgl; 723 unsigned int entries = iod->sgt.nents; 724 dma_addr_t sgl_dma; 725 int i = 0; 726 727 /* setting the transfer type as SGL */ 728 cmd->flags = NVME_CMD_SGL_METABUF; 729 730 if (entries == 1) { 731 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 732 return BLK_STS_OK; 733 } 734 735 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 736 pool = dev->prp_small_pool; 737 iod->nr_allocations = 0; 738 } else { 739 pool = dev->prp_page_pool; 740 iod->nr_allocations = 1; 741 } 742 743 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 744 if (!sg_list) { 745 iod->nr_allocations = -1; 746 return BLK_STS_RESOURCE; 747 } 748 749 nvme_pci_iod_list(req)[0] = sg_list; 750 iod->first_dma = sgl_dma; 751 752 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 753 754 do { 755 if (i == SGES_PER_PAGE) { 756 struct nvme_sgl_desc *old_sg_desc = sg_list; 757 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 758 759 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 760 if (!sg_list) 761 goto free_sgls; 762 763 i = 0; 764 nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list; 765 sg_list[i++] = *link; 766 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 767 } 768 769 nvme_pci_sgl_set_data(&sg_list[i++], sg); 770 sg = sg_next(sg); 771 } while (--entries > 0); 772 773 return BLK_STS_OK; 774 free_sgls: 775 nvme_free_sgls(dev, req); 776 return BLK_STS_RESOURCE; 777 } 778 779 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 780 struct request *req, struct nvme_rw_command *cmnd, 781 struct bio_vec *bv) 782 { 783 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 784 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 785 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 786 787 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 788 if (dma_mapping_error(dev->dev, iod->first_dma)) 789 return BLK_STS_RESOURCE; 790 iod->dma_len = bv->bv_len; 791 792 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 793 if (bv->bv_len > first_prp_len) 794 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 795 else 796 cmnd->dptr.prp2 = 0; 797 return BLK_STS_OK; 798 } 799 800 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 801 struct request *req, struct nvme_rw_command *cmnd, 802 struct bio_vec *bv) 803 { 804 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 805 806 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 807 if (dma_mapping_error(dev->dev, iod->first_dma)) 808 return BLK_STS_RESOURCE; 809 iod->dma_len = bv->bv_len; 810 811 cmnd->flags = NVME_CMD_SGL_METABUF; 812 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 813 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 814 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 815 return BLK_STS_OK; 816 } 817 818 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 819 struct nvme_command *cmnd) 820 { 821 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 822 blk_status_t ret = BLK_STS_RESOURCE; 823 int rc; 824 825 if (blk_rq_nr_phys_segments(req) == 1) { 826 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 827 struct bio_vec bv = req_bvec(req); 828 829 if (!is_pci_p2pdma_page(bv.bv_page)) { 830 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 831 return nvme_setup_prp_simple(dev, req, 832 &cmnd->rw, &bv); 833 834 if (nvmeq->qid && sgl_threshold && 835 nvme_ctrl_sgl_supported(&dev->ctrl)) 836 return nvme_setup_sgl_simple(dev, req, 837 &cmnd->rw, &bv); 838 } 839 } 840 841 iod->dma_len = 0; 842 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 843 if (!iod->sgt.sgl) 844 return BLK_STS_RESOURCE; 845 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 846 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 847 if (!iod->sgt.orig_nents) 848 goto out_free_sg; 849 850 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 851 DMA_ATTR_NO_WARN); 852 if (rc) { 853 if (rc == -EREMOTEIO) 854 ret = BLK_STS_TARGET; 855 goto out_free_sg; 856 } 857 858 iod->use_sgl = nvme_pci_use_sgls(dev, req); 859 if (iod->use_sgl) 860 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 861 else 862 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 863 if (ret != BLK_STS_OK) 864 goto out_unmap_sg; 865 return BLK_STS_OK; 866 867 out_unmap_sg: 868 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 869 out_free_sg: 870 mempool_free(iod->sgt.sgl, dev->iod_mempool); 871 return ret; 872 } 873 874 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 875 struct nvme_command *cmnd) 876 { 877 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 878 879 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 880 rq_dma_dir(req), 0); 881 if (dma_mapping_error(dev->dev, iod->meta_dma)) 882 return BLK_STS_IOERR; 883 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 884 return BLK_STS_OK; 885 } 886 887 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 888 { 889 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 890 blk_status_t ret; 891 892 iod->aborted = false; 893 iod->nr_allocations = -1; 894 iod->sgt.nents = 0; 895 896 ret = nvme_setup_cmd(req->q->queuedata, req); 897 if (ret) 898 return ret; 899 900 if (blk_rq_nr_phys_segments(req)) { 901 ret = nvme_map_data(dev, req, &iod->cmd); 902 if (ret) 903 goto out_free_cmd; 904 } 905 906 if (blk_integrity_rq(req)) { 907 ret = nvme_map_metadata(dev, req, &iod->cmd); 908 if (ret) 909 goto out_unmap_data; 910 } 911 912 nvme_start_request(req); 913 return BLK_STS_OK; 914 out_unmap_data: 915 nvme_unmap_data(dev, req); 916 out_free_cmd: 917 nvme_cleanup_cmd(req); 918 return ret; 919 } 920 921 /* 922 * NOTE: ns is NULL when called on the admin queue. 923 */ 924 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 925 const struct blk_mq_queue_data *bd) 926 { 927 struct nvme_queue *nvmeq = hctx->driver_data; 928 struct nvme_dev *dev = nvmeq->dev; 929 struct request *req = bd->rq; 930 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 931 blk_status_t ret; 932 933 /* 934 * We should not need to do this, but we're still using this to 935 * ensure we can drain requests on a dying queue. 936 */ 937 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 938 return BLK_STS_IOERR; 939 940 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 941 return nvme_fail_nonready_command(&dev->ctrl, req); 942 943 ret = nvme_prep_rq(dev, req); 944 if (unlikely(ret)) 945 return ret; 946 spin_lock(&nvmeq->sq_lock); 947 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 948 nvme_write_sq_db(nvmeq, bd->last); 949 spin_unlock(&nvmeq->sq_lock); 950 return BLK_STS_OK; 951 } 952 953 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 954 { 955 spin_lock(&nvmeq->sq_lock); 956 while (!rq_list_empty(*rqlist)) { 957 struct request *req = rq_list_pop(rqlist); 958 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 959 960 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 961 } 962 nvme_write_sq_db(nvmeq, true); 963 spin_unlock(&nvmeq->sq_lock); 964 } 965 966 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 967 { 968 /* 969 * We should not need to do this, but we're still using this to 970 * ensure we can drain requests on a dying queue. 971 */ 972 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 973 return false; 974 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 975 return false; 976 977 req->mq_hctx->tags->rqs[req->tag] = req; 978 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 979 } 980 981 static void nvme_queue_rqs(struct request **rqlist) 982 { 983 struct request *req, *next, *prev = NULL; 984 struct request *requeue_list = NULL; 985 986 rq_list_for_each_safe(rqlist, req, next) { 987 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 988 989 if (!nvme_prep_rq_batch(nvmeq, req)) { 990 /* detach 'req' and add to remainder list */ 991 rq_list_move(rqlist, &requeue_list, req, prev); 992 993 req = prev; 994 if (!req) 995 continue; 996 } 997 998 if (!next || req->mq_hctx != next->mq_hctx) { 999 /* detach rest of list, and submit */ 1000 req->rq_next = NULL; 1001 nvme_submit_cmds(nvmeq, rqlist); 1002 *rqlist = next; 1003 prev = NULL; 1004 } else 1005 prev = req; 1006 } 1007 1008 *rqlist = requeue_list; 1009 } 1010 1011 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1012 { 1013 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1014 struct nvme_dev *dev = nvmeq->dev; 1015 1016 if (blk_integrity_rq(req)) { 1017 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1018 1019 dma_unmap_page(dev->dev, iod->meta_dma, 1020 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 1021 } 1022 1023 if (blk_rq_nr_phys_segments(req)) 1024 nvme_unmap_data(dev, req); 1025 } 1026 1027 static void nvme_pci_complete_rq(struct request *req) 1028 { 1029 nvme_pci_unmap_rq(req); 1030 nvme_complete_rq(req); 1031 } 1032 1033 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1034 { 1035 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1036 } 1037 1038 /* We read the CQE phase first to check if the rest of the entry is valid */ 1039 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1040 { 1041 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1042 1043 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1044 } 1045 1046 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1047 { 1048 u16 head = nvmeq->cq_head; 1049 1050 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1051 nvmeq->dbbuf_cq_ei)) 1052 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1053 } 1054 1055 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1056 { 1057 if (!nvmeq->qid) 1058 return nvmeq->dev->admin_tagset.tags[0]; 1059 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1060 } 1061 1062 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1063 struct io_comp_batch *iob, u16 idx) 1064 { 1065 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1066 __u16 command_id = READ_ONCE(cqe->command_id); 1067 struct request *req; 1068 1069 /* 1070 * AEN requests are special as they don't time out and can 1071 * survive any kind of queue freeze and often don't respond to 1072 * aborts. We don't even bother to allocate a struct request 1073 * for them but rather special case them here. 1074 */ 1075 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1076 nvme_complete_async_event(&nvmeq->dev->ctrl, 1077 cqe->status, &cqe->result); 1078 return; 1079 } 1080 1081 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1082 if (unlikely(!req)) { 1083 dev_warn(nvmeq->dev->ctrl.device, 1084 "invalid id %d completed on queue %d\n", 1085 command_id, le16_to_cpu(cqe->sq_id)); 1086 return; 1087 } 1088 1089 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1090 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1091 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1092 nvme_pci_complete_batch)) 1093 nvme_pci_complete_rq(req); 1094 } 1095 1096 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1097 { 1098 u32 tmp = nvmeq->cq_head + 1; 1099 1100 if (tmp == nvmeq->q_depth) { 1101 nvmeq->cq_head = 0; 1102 nvmeq->cq_phase ^= 1; 1103 } else { 1104 nvmeq->cq_head = tmp; 1105 } 1106 } 1107 1108 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1109 struct io_comp_batch *iob) 1110 { 1111 int found = 0; 1112 1113 while (nvme_cqe_pending(nvmeq)) { 1114 found++; 1115 /* 1116 * load-load control dependency between phase and the rest of 1117 * the cqe requires a full read memory barrier 1118 */ 1119 dma_rmb(); 1120 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1121 nvme_update_cq_head(nvmeq); 1122 } 1123 1124 if (found) 1125 nvme_ring_cq_doorbell(nvmeq); 1126 return found; 1127 } 1128 1129 static irqreturn_t nvme_irq(int irq, void *data) 1130 { 1131 struct nvme_queue *nvmeq = data; 1132 DEFINE_IO_COMP_BATCH(iob); 1133 1134 if (nvme_poll_cq(nvmeq, &iob)) { 1135 if (!rq_list_empty(iob.req_list)) 1136 nvme_pci_complete_batch(&iob); 1137 return IRQ_HANDLED; 1138 } 1139 return IRQ_NONE; 1140 } 1141 1142 static irqreturn_t nvme_irq_check(int irq, void *data) 1143 { 1144 struct nvme_queue *nvmeq = data; 1145 1146 if (nvme_cqe_pending(nvmeq)) 1147 return IRQ_WAKE_THREAD; 1148 return IRQ_NONE; 1149 } 1150 1151 /* 1152 * Poll for completions for any interrupt driven queue 1153 * Can be called from any context. 1154 */ 1155 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1156 { 1157 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1158 1159 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1160 1161 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1162 nvme_poll_cq(nvmeq, NULL); 1163 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1164 } 1165 1166 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1167 { 1168 struct nvme_queue *nvmeq = hctx->driver_data; 1169 bool found; 1170 1171 if (!nvme_cqe_pending(nvmeq)) 1172 return 0; 1173 1174 spin_lock(&nvmeq->cq_poll_lock); 1175 found = nvme_poll_cq(nvmeq, iob); 1176 spin_unlock(&nvmeq->cq_poll_lock); 1177 1178 return found; 1179 } 1180 1181 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1182 { 1183 struct nvme_dev *dev = to_nvme_dev(ctrl); 1184 struct nvme_queue *nvmeq = &dev->queues[0]; 1185 struct nvme_command c = { }; 1186 1187 c.common.opcode = nvme_admin_async_event; 1188 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1189 1190 spin_lock(&nvmeq->sq_lock); 1191 nvme_sq_copy_cmd(nvmeq, &c); 1192 nvme_write_sq_db(nvmeq, true); 1193 spin_unlock(&nvmeq->sq_lock); 1194 } 1195 1196 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1197 { 1198 struct nvme_command c = { }; 1199 1200 c.delete_queue.opcode = opcode; 1201 c.delete_queue.qid = cpu_to_le16(id); 1202 1203 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1204 } 1205 1206 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1207 struct nvme_queue *nvmeq, s16 vector) 1208 { 1209 struct nvme_command c = { }; 1210 int flags = NVME_QUEUE_PHYS_CONTIG; 1211 1212 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1213 flags |= NVME_CQ_IRQ_ENABLED; 1214 1215 /* 1216 * Note: we (ab)use the fact that the prp fields survive if no data 1217 * is attached to the request. 1218 */ 1219 c.create_cq.opcode = nvme_admin_create_cq; 1220 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1221 c.create_cq.cqid = cpu_to_le16(qid); 1222 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1223 c.create_cq.cq_flags = cpu_to_le16(flags); 1224 c.create_cq.irq_vector = cpu_to_le16(vector); 1225 1226 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1227 } 1228 1229 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1230 struct nvme_queue *nvmeq) 1231 { 1232 struct nvme_ctrl *ctrl = &dev->ctrl; 1233 struct nvme_command c = { }; 1234 int flags = NVME_QUEUE_PHYS_CONTIG; 1235 1236 /* 1237 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1238 * set. Since URGENT priority is zeroes, it makes all queues 1239 * URGENT. 1240 */ 1241 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1242 flags |= NVME_SQ_PRIO_MEDIUM; 1243 1244 /* 1245 * Note: we (ab)use the fact that the prp fields survive if no data 1246 * is attached to the request. 1247 */ 1248 c.create_sq.opcode = nvme_admin_create_sq; 1249 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1250 c.create_sq.sqid = cpu_to_le16(qid); 1251 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1252 c.create_sq.sq_flags = cpu_to_le16(flags); 1253 c.create_sq.cqid = cpu_to_le16(qid); 1254 1255 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1256 } 1257 1258 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1259 { 1260 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1261 } 1262 1263 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1264 { 1265 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1266 } 1267 1268 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1269 { 1270 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1271 1272 dev_warn(nvmeq->dev->ctrl.device, 1273 "Abort status: 0x%x", nvme_req(req)->status); 1274 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1275 blk_mq_free_request(req); 1276 return RQ_END_IO_NONE; 1277 } 1278 1279 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1280 { 1281 /* If true, indicates loss of adapter communication, possibly by a 1282 * NVMe Subsystem reset. 1283 */ 1284 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1285 1286 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1287 switch (dev->ctrl.state) { 1288 case NVME_CTRL_RESETTING: 1289 case NVME_CTRL_CONNECTING: 1290 return false; 1291 default: 1292 break; 1293 } 1294 1295 /* We shouldn't reset unless the controller is on fatal error state 1296 * _or_ if we lost the communication with it. 1297 */ 1298 if (!(csts & NVME_CSTS_CFS) && !nssro) 1299 return false; 1300 1301 return true; 1302 } 1303 1304 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1305 { 1306 /* Read a config register to help see what died. */ 1307 u16 pci_status; 1308 int result; 1309 1310 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1311 &pci_status); 1312 if (result == PCIBIOS_SUCCESSFUL) 1313 dev_warn(dev->ctrl.device, 1314 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1315 csts, pci_status); 1316 else 1317 dev_warn(dev->ctrl.device, 1318 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1319 csts, result); 1320 1321 if (csts != ~0) 1322 return; 1323 1324 dev_warn(dev->ctrl.device, 1325 "Does your device have a faulty power saving mode enabled?\n"); 1326 dev_warn(dev->ctrl.device, 1327 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1328 } 1329 1330 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1331 { 1332 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1333 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1334 struct nvme_dev *dev = nvmeq->dev; 1335 struct request *abort_req; 1336 struct nvme_command cmd = { }; 1337 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1338 1339 /* If PCI error recovery process is happening, we cannot reset or 1340 * the recovery mechanism will surely fail. 1341 */ 1342 mb(); 1343 if (pci_channel_offline(to_pci_dev(dev->dev))) 1344 return BLK_EH_RESET_TIMER; 1345 1346 /* 1347 * Reset immediately if the controller is failed 1348 */ 1349 if (nvme_should_reset(dev, csts)) { 1350 nvme_warn_reset(dev, csts); 1351 nvme_dev_disable(dev, false); 1352 nvme_reset_ctrl(&dev->ctrl); 1353 return BLK_EH_DONE; 1354 } 1355 1356 /* 1357 * Did we miss an interrupt? 1358 */ 1359 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1360 nvme_poll(req->mq_hctx, NULL); 1361 else 1362 nvme_poll_irqdisable(nvmeq); 1363 1364 if (blk_mq_request_completed(req)) { 1365 dev_warn(dev->ctrl.device, 1366 "I/O %d QID %d timeout, completion polled\n", 1367 req->tag, nvmeq->qid); 1368 return BLK_EH_DONE; 1369 } 1370 1371 /* 1372 * Shutdown immediately if controller times out while starting. The 1373 * reset work will see the pci device disabled when it gets the forced 1374 * cancellation error. All outstanding requests are completed on 1375 * shutdown, so we return BLK_EH_DONE. 1376 */ 1377 switch (dev->ctrl.state) { 1378 case NVME_CTRL_CONNECTING: 1379 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1380 fallthrough; 1381 case NVME_CTRL_DELETING: 1382 dev_warn_ratelimited(dev->ctrl.device, 1383 "I/O %d QID %d timeout, disable controller\n", 1384 req->tag, nvmeq->qid); 1385 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1386 nvme_dev_disable(dev, true); 1387 return BLK_EH_DONE; 1388 case NVME_CTRL_RESETTING: 1389 return BLK_EH_RESET_TIMER; 1390 default: 1391 break; 1392 } 1393 1394 /* 1395 * Shutdown the controller immediately and schedule a reset if the 1396 * command was already aborted once before and still hasn't been 1397 * returned to the driver, or if this is the admin queue. 1398 */ 1399 if (!nvmeq->qid || iod->aborted) { 1400 dev_warn(dev->ctrl.device, 1401 "I/O %d QID %d timeout, reset controller\n", 1402 req->tag, nvmeq->qid); 1403 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1404 nvme_dev_disable(dev, false); 1405 nvme_reset_ctrl(&dev->ctrl); 1406 1407 return BLK_EH_DONE; 1408 } 1409 1410 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1411 atomic_inc(&dev->ctrl.abort_limit); 1412 return BLK_EH_RESET_TIMER; 1413 } 1414 iod->aborted = true; 1415 1416 cmd.abort.opcode = nvme_admin_abort_cmd; 1417 cmd.abort.cid = nvme_cid(req); 1418 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1419 1420 dev_warn(nvmeq->dev->ctrl.device, 1421 "I/O %d (%s) QID %d timeout, aborting\n", 1422 req->tag, 1423 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1424 nvmeq->qid); 1425 1426 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1427 BLK_MQ_REQ_NOWAIT); 1428 if (IS_ERR(abort_req)) { 1429 atomic_inc(&dev->ctrl.abort_limit); 1430 return BLK_EH_RESET_TIMER; 1431 } 1432 nvme_init_request(abort_req, &cmd); 1433 1434 abort_req->end_io = abort_endio; 1435 abort_req->end_io_data = NULL; 1436 blk_execute_rq_nowait(abort_req, false); 1437 1438 /* 1439 * The aborted req will be completed on receiving the abort req. 1440 * We enable the timer again. If hit twice, it'll cause a device reset, 1441 * as the device then is in a faulty state. 1442 */ 1443 return BLK_EH_RESET_TIMER; 1444 } 1445 1446 static void nvme_free_queue(struct nvme_queue *nvmeq) 1447 { 1448 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1449 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1450 if (!nvmeq->sq_cmds) 1451 return; 1452 1453 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1454 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1455 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1456 } else { 1457 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1458 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1459 } 1460 } 1461 1462 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1463 { 1464 int i; 1465 1466 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1467 dev->ctrl.queue_count--; 1468 nvme_free_queue(&dev->queues[i]); 1469 } 1470 } 1471 1472 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1473 { 1474 struct nvme_queue *nvmeq = &dev->queues[qid]; 1475 1476 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1477 return; 1478 1479 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1480 mb(); 1481 1482 nvmeq->dev->online_queues--; 1483 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1484 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1485 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1486 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1487 } 1488 1489 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1490 { 1491 int i; 1492 1493 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1494 nvme_suspend_queue(dev, i); 1495 } 1496 1497 /* 1498 * Called only on a device that has been disabled and after all other threads 1499 * that can check this device's completion queues have synced, except 1500 * nvme_poll(). This is the last chance for the driver to see a natural 1501 * completion before nvme_cancel_request() terminates all incomplete requests. 1502 */ 1503 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1504 { 1505 int i; 1506 1507 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1508 spin_lock(&dev->queues[i].cq_poll_lock); 1509 nvme_poll_cq(&dev->queues[i], NULL); 1510 spin_unlock(&dev->queues[i].cq_poll_lock); 1511 } 1512 } 1513 1514 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1515 int entry_size) 1516 { 1517 int q_depth = dev->q_depth; 1518 unsigned q_size_aligned = roundup(q_depth * entry_size, 1519 NVME_CTRL_PAGE_SIZE); 1520 1521 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1522 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1523 1524 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1525 q_depth = div_u64(mem_per_q, entry_size); 1526 1527 /* 1528 * Ensure the reduced q_depth is above some threshold where it 1529 * would be better to map queues in system memory with the 1530 * original depth 1531 */ 1532 if (q_depth < 64) 1533 return -ENOMEM; 1534 } 1535 1536 return q_depth; 1537 } 1538 1539 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1540 int qid) 1541 { 1542 struct pci_dev *pdev = to_pci_dev(dev->dev); 1543 1544 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1545 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1546 if (nvmeq->sq_cmds) { 1547 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1548 nvmeq->sq_cmds); 1549 if (nvmeq->sq_dma_addr) { 1550 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1551 return 0; 1552 } 1553 1554 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1555 } 1556 } 1557 1558 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1559 &nvmeq->sq_dma_addr, GFP_KERNEL); 1560 if (!nvmeq->sq_cmds) 1561 return -ENOMEM; 1562 return 0; 1563 } 1564 1565 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1566 { 1567 struct nvme_queue *nvmeq = &dev->queues[qid]; 1568 1569 if (dev->ctrl.queue_count > qid) 1570 return 0; 1571 1572 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1573 nvmeq->q_depth = depth; 1574 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1575 &nvmeq->cq_dma_addr, GFP_KERNEL); 1576 if (!nvmeq->cqes) 1577 goto free_nvmeq; 1578 1579 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1580 goto free_cqdma; 1581 1582 nvmeq->dev = dev; 1583 spin_lock_init(&nvmeq->sq_lock); 1584 spin_lock_init(&nvmeq->cq_poll_lock); 1585 nvmeq->cq_head = 0; 1586 nvmeq->cq_phase = 1; 1587 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1588 nvmeq->qid = qid; 1589 dev->ctrl.queue_count++; 1590 1591 return 0; 1592 1593 free_cqdma: 1594 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1595 nvmeq->cq_dma_addr); 1596 free_nvmeq: 1597 return -ENOMEM; 1598 } 1599 1600 static int queue_request_irq(struct nvme_queue *nvmeq) 1601 { 1602 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1603 int nr = nvmeq->dev->ctrl.instance; 1604 1605 if (use_threaded_interrupts) { 1606 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1607 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1608 } else { 1609 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1610 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1611 } 1612 } 1613 1614 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1615 { 1616 struct nvme_dev *dev = nvmeq->dev; 1617 1618 nvmeq->sq_tail = 0; 1619 nvmeq->last_sq_tail = 0; 1620 nvmeq->cq_head = 0; 1621 nvmeq->cq_phase = 1; 1622 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1623 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1624 nvme_dbbuf_init(dev, nvmeq, qid); 1625 dev->online_queues++; 1626 wmb(); /* ensure the first interrupt sees the initialization */ 1627 } 1628 1629 /* 1630 * Try getting shutdown_lock while setting up IO queues. 1631 */ 1632 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1633 { 1634 /* 1635 * Give up if the lock is being held by nvme_dev_disable. 1636 */ 1637 if (!mutex_trylock(&dev->shutdown_lock)) 1638 return -ENODEV; 1639 1640 /* 1641 * Controller is in wrong state, fail early. 1642 */ 1643 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1644 mutex_unlock(&dev->shutdown_lock); 1645 return -ENODEV; 1646 } 1647 1648 return 0; 1649 } 1650 1651 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1652 { 1653 struct nvme_dev *dev = nvmeq->dev; 1654 int result; 1655 u16 vector = 0; 1656 1657 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1658 1659 /* 1660 * A queue's vector matches the queue identifier unless the controller 1661 * has only one vector available. 1662 */ 1663 if (!polled) 1664 vector = dev->num_vecs == 1 ? 0 : qid; 1665 else 1666 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1667 1668 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1669 if (result) 1670 return result; 1671 1672 result = adapter_alloc_sq(dev, qid, nvmeq); 1673 if (result < 0) 1674 return result; 1675 if (result) 1676 goto release_cq; 1677 1678 nvmeq->cq_vector = vector; 1679 1680 result = nvme_setup_io_queues_trylock(dev); 1681 if (result) 1682 return result; 1683 nvme_init_queue(nvmeq, qid); 1684 if (!polled) { 1685 result = queue_request_irq(nvmeq); 1686 if (result < 0) 1687 goto release_sq; 1688 } 1689 1690 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1691 mutex_unlock(&dev->shutdown_lock); 1692 return result; 1693 1694 release_sq: 1695 dev->online_queues--; 1696 mutex_unlock(&dev->shutdown_lock); 1697 adapter_delete_sq(dev, qid); 1698 release_cq: 1699 adapter_delete_cq(dev, qid); 1700 return result; 1701 } 1702 1703 static const struct blk_mq_ops nvme_mq_admin_ops = { 1704 .queue_rq = nvme_queue_rq, 1705 .complete = nvme_pci_complete_rq, 1706 .init_hctx = nvme_admin_init_hctx, 1707 .init_request = nvme_pci_init_request, 1708 .timeout = nvme_timeout, 1709 }; 1710 1711 static const struct blk_mq_ops nvme_mq_ops = { 1712 .queue_rq = nvme_queue_rq, 1713 .queue_rqs = nvme_queue_rqs, 1714 .complete = nvme_pci_complete_rq, 1715 .commit_rqs = nvme_commit_rqs, 1716 .init_hctx = nvme_init_hctx, 1717 .init_request = nvme_pci_init_request, 1718 .map_queues = nvme_pci_map_queues, 1719 .timeout = nvme_timeout, 1720 .poll = nvme_poll, 1721 }; 1722 1723 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1724 { 1725 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1726 /* 1727 * If the controller was reset during removal, it's possible 1728 * user requests may be waiting on a stopped queue. Start the 1729 * queue to flush these to completion. 1730 */ 1731 nvme_unquiesce_admin_queue(&dev->ctrl); 1732 nvme_remove_admin_tag_set(&dev->ctrl); 1733 } 1734 } 1735 1736 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1737 { 1738 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1739 } 1740 1741 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1742 { 1743 struct pci_dev *pdev = to_pci_dev(dev->dev); 1744 1745 if (size <= dev->bar_mapped_size) 1746 return 0; 1747 if (size > pci_resource_len(pdev, 0)) 1748 return -ENOMEM; 1749 if (dev->bar) 1750 iounmap(dev->bar); 1751 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1752 if (!dev->bar) { 1753 dev->bar_mapped_size = 0; 1754 return -ENOMEM; 1755 } 1756 dev->bar_mapped_size = size; 1757 dev->dbs = dev->bar + NVME_REG_DBS; 1758 1759 return 0; 1760 } 1761 1762 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1763 { 1764 int result; 1765 u32 aqa; 1766 struct nvme_queue *nvmeq; 1767 1768 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1769 if (result < 0) 1770 return result; 1771 1772 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1773 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1774 1775 if (dev->subsystem && 1776 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1777 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1778 1779 /* 1780 * If the device has been passed off to us in an enabled state, just 1781 * clear the enabled bit. The spec says we should set the 'shutdown 1782 * notification bits', but doing so may cause the device to complete 1783 * commands to the admin queue ... and we don't know what memory that 1784 * might be pointing at! 1785 */ 1786 result = nvme_disable_ctrl(&dev->ctrl, false); 1787 if (result < 0) 1788 return result; 1789 1790 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1791 if (result) 1792 return result; 1793 1794 dev->ctrl.numa_node = dev_to_node(dev->dev); 1795 1796 nvmeq = &dev->queues[0]; 1797 aqa = nvmeq->q_depth - 1; 1798 aqa |= aqa << 16; 1799 1800 writel(aqa, dev->bar + NVME_REG_AQA); 1801 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1802 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1803 1804 result = nvme_enable_ctrl(&dev->ctrl); 1805 if (result) 1806 return result; 1807 1808 nvmeq->cq_vector = 0; 1809 nvme_init_queue(nvmeq, 0); 1810 result = queue_request_irq(nvmeq); 1811 if (result) { 1812 dev->online_queues--; 1813 return result; 1814 } 1815 1816 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1817 return result; 1818 } 1819 1820 static int nvme_create_io_queues(struct nvme_dev *dev) 1821 { 1822 unsigned i, max, rw_queues; 1823 int ret = 0; 1824 1825 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1826 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1827 ret = -ENOMEM; 1828 break; 1829 } 1830 } 1831 1832 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1833 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1834 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1835 dev->io_queues[HCTX_TYPE_READ]; 1836 } else { 1837 rw_queues = max; 1838 } 1839 1840 for (i = dev->online_queues; i <= max; i++) { 1841 bool polled = i > rw_queues; 1842 1843 ret = nvme_create_queue(&dev->queues[i], i, polled); 1844 if (ret) 1845 break; 1846 } 1847 1848 /* 1849 * Ignore failing Create SQ/CQ commands, we can continue with less 1850 * than the desired amount of queues, and even a controller without 1851 * I/O queues can still be used to issue admin commands. This might 1852 * be useful to upgrade a buggy firmware for example. 1853 */ 1854 return ret >= 0 ? 0 : ret; 1855 } 1856 1857 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1858 { 1859 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1860 1861 return 1ULL << (12 + 4 * szu); 1862 } 1863 1864 static u32 nvme_cmb_size(struct nvme_dev *dev) 1865 { 1866 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1867 } 1868 1869 static void nvme_map_cmb(struct nvme_dev *dev) 1870 { 1871 u64 size, offset; 1872 resource_size_t bar_size; 1873 struct pci_dev *pdev = to_pci_dev(dev->dev); 1874 int bar; 1875 1876 if (dev->cmb_size) 1877 return; 1878 1879 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1880 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1881 1882 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1883 if (!dev->cmbsz) 1884 return; 1885 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1886 1887 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1888 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1889 bar = NVME_CMB_BIR(dev->cmbloc); 1890 bar_size = pci_resource_len(pdev, bar); 1891 1892 if (offset > bar_size) 1893 return; 1894 1895 /* 1896 * Tell the controller about the host side address mapping the CMB, 1897 * and enable CMB decoding for the NVMe 1.4+ scheme: 1898 */ 1899 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1900 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1901 (pci_bus_address(pdev, bar) + offset), 1902 dev->bar + NVME_REG_CMBMSC); 1903 } 1904 1905 /* 1906 * Controllers may support a CMB size larger than their BAR, 1907 * for example, due to being behind a bridge. Reduce the CMB to 1908 * the reported size of the BAR 1909 */ 1910 if (size > bar_size - offset) 1911 size = bar_size - offset; 1912 1913 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1914 dev_warn(dev->ctrl.device, 1915 "failed to register the CMB\n"); 1916 return; 1917 } 1918 1919 dev->cmb_size = size; 1920 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1921 1922 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1923 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1924 pci_p2pmem_publish(pdev, true); 1925 } 1926 1927 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1928 { 1929 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1930 u64 dma_addr = dev->host_mem_descs_dma; 1931 struct nvme_command c = { }; 1932 int ret; 1933 1934 c.features.opcode = nvme_admin_set_features; 1935 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1936 c.features.dword11 = cpu_to_le32(bits); 1937 c.features.dword12 = cpu_to_le32(host_mem_size); 1938 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1939 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1940 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1941 1942 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1943 if (ret) { 1944 dev_warn(dev->ctrl.device, 1945 "failed to set host mem (err %d, flags %#x).\n", 1946 ret, bits); 1947 } else 1948 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1949 1950 return ret; 1951 } 1952 1953 static void nvme_free_host_mem(struct nvme_dev *dev) 1954 { 1955 int i; 1956 1957 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1958 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1959 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1960 1961 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1962 le64_to_cpu(desc->addr), 1963 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1964 } 1965 1966 kfree(dev->host_mem_desc_bufs); 1967 dev->host_mem_desc_bufs = NULL; 1968 dma_free_coherent(dev->dev, 1969 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1970 dev->host_mem_descs, dev->host_mem_descs_dma); 1971 dev->host_mem_descs = NULL; 1972 dev->nr_host_mem_descs = 0; 1973 } 1974 1975 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1976 u32 chunk_size) 1977 { 1978 struct nvme_host_mem_buf_desc *descs; 1979 u32 max_entries, len; 1980 dma_addr_t descs_dma; 1981 int i = 0; 1982 void **bufs; 1983 u64 size, tmp; 1984 1985 tmp = (preferred + chunk_size - 1); 1986 do_div(tmp, chunk_size); 1987 max_entries = tmp; 1988 1989 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1990 max_entries = dev->ctrl.hmmaxd; 1991 1992 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1993 &descs_dma, GFP_KERNEL); 1994 if (!descs) 1995 goto out; 1996 1997 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1998 if (!bufs) 1999 goto out_free_descs; 2000 2001 for (size = 0; size < preferred && i < max_entries; size += len) { 2002 dma_addr_t dma_addr; 2003 2004 len = min_t(u64, chunk_size, preferred - size); 2005 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2006 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2007 if (!bufs[i]) 2008 break; 2009 2010 descs[i].addr = cpu_to_le64(dma_addr); 2011 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2012 i++; 2013 } 2014 2015 if (!size) 2016 goto out_free_bufs; 2017 2018 dev->nr_host_mem_descs = i; 2019 dev->host_mem_size = size; 2020 dev->host_mem_descs = descs; 2021 dev->host_mem_descs_dma = descs_dma; 2022 dev->host_mem_desc_bufs = bufs; 2023 return 0; 2024 2025 out_free_bufs: 2026 while (--i >= 0) { 2027 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 2028 2029 dma_free_attrs(dev->dev, size, bufs[i], 2030 le64_to_cpu(descs[i].addr), 2031 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2032 } 2033 2034 kfree(bufs); 2035 out_free_descs: 2036 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2037 descs_dma); 2038 out: 2039 dev->host_mem_descs = NULL; 2040 return -ENOMEM; 2041 } 2042 2043 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2044 { 2045 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2046 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2047 u64 chunk_size; 2048 2049 /* start big and work our way down */ 2050 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2051 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2052 if (!min || dev->host_mem_size >= min) 2053 return 0; 2054 nvme_free_host_mem(dev); 2055 } 2056 } 2057 2058 return -ENOMEM; 2059 } 2060 2061 static int nvme_setup_host_mem(struct nvme_dev *dev) 2062 { 2063 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2064 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2065 u64 min = (u64)dev->ctrl.hmmin * 4096; 2066 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2067 int ret; 2068 2069 if (!dev->ctrl.hmpre) 2070 return 0; 2071 2072 preferred = min(preferred, max); 2073 if (min > max) { 2074 dev_warn(dev->ctrl.device, 2075 "min host memory (%lld MiB) above limit (%d MiB).\n", 2076 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2077 nvme_free_host_mem(dev); 2078 return 0; 2079 } 2080 2081 /* 2082 * If we already have a buffer allocated check if we can reuse it. 2083 */ 2084 if (dev->host_mem_descs) { 2085 if (dev->host_mem_size >= min) 2086 enable_bits |= NVME_HOST_MEM_RETURN; 2087 else 2088 nvme_free_host_mem(dev); 2089 } 2090 2091 if (!dev->host_mem_descs) { 2092 if (nvme_alloc_host_mem(dev, min, preferred)) { 2093 dev_warn(dev->ctrl.device, 2094 "failed to allocate host memory buffer.\n"); 2095 return 0; /* controller must work without HMB */ 2096 } 2097 2098 dev_info(dev->ctrl.device, 2099 "allocated %lld MiB host memory buffer.\n", 2100 dev->host_mem_size >> ilog2(SZ_1M)); 2101 } 2102 2103 ret = nvme_set_host_mem(dev, enable_bits); 2104 if (ret) 2105 nvme_free_host_mem(dev); 2106 return ret; 2107 } 2108 2109 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2110 char *buf) 2111 { 2112 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2113 2114 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2115 ndev->cmbloc, ndev->cmbsz); 2116 } 2117 static DEVICE_ATTR_RO(cmb); 2118 2119 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2120 char *buf) 2121 { 2122 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2123 2124 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2125 } 2126 static DEVICE_ATTR_RO(cmbloc); 2127 2128 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2129 char *buf) 2130 { 2131 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2132 2133 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2134 } 2135 static DEVICE_ATTR_RO(cmbsz); 2136 2137 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2138 char *buf) 2139 { 2140 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2141 2142 return sysfs_emit(buf, "%d\n", ndev->hmb); 2143 } 2144 2145 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2146 const char *buf, size_t count) 2147 { 2148 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2149 bool new; 2150 int ret; 2151 2152 if (kstrtobool(buf, &new) < 0) 2153 return -EINVAL; 2154 2155 if (new == ndev->hmb) 2156 return count; 2157 2158 if (new) { 2159 ret = nvme_setup_host_mem(ndev); 2160 } else { 2161 ret = nvme_set_host_mem(ndev, 0); 2162 if (!ret) 2163 nvme_free_host_mem(ndev); 2164 } 2165 2166 if (ret < 0) 2167 return ret; 2168 2169 return count; 2170 } 2171 static DEVICE_ATTR_RW(hmb); 2172 2173 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2174 struct attribute *a, int n) 2175 { 2176 struct nvme_ctrl *ctrl = 2177 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2178 struct nvme_dev *dev = to_nvme_dev(ctrl); 2179 2180 if (a == &dev_attr_cmb.attr || 2181 a == &dev_attr_cmbloc.attr || 2182 a == &dev_attr_cmbsz.attr) { 2183 if (!dev->cmbsz) 2184 return 0; 2185 } 2186 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2187 return 0; 2188 2189 return a->mode; 2190 } 2191 2192 static struct attribute *nvme_pci_attrs[] = { 2193 &dev_attr_cmb.attr, 2194 &dev_attr_cmbloc.attr, 2195 &dev_attr_cmbsz.attr, 2196 &dev_attr_hmb.attr, 2197 NULL, 2198 }; 2199 2200 static const struct attribute_group nvme_pci_dev_attrs_group = { 2201 .attrs = nvme_pci_attrs, 2202 .is_visible = nvme_pci_attrs_are_visible, 2203 }; 2204 2205 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2206 &nvme_dev_attrs_group, 2207 &nvme_pci_dev_attrs_group, 2208 NULL, 2209 }; 2210 2211 /* 2212 * nirqs is the number of interrupts available for write and read 2213 * queues. The core already reserved an interrupt for the admin queue. 2214 */ 2215 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2216 { 2217 struct nvme_dev *dev = affd->priv; 2218 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2219 2220 /* 2221 * If there is no interrupt available for queues, ensure that 2222 * the default queue is set to 1. The affinity set size is 2223 * also set to one, but the irq core ignores it for this case. 2224 * 2225 * If only one interrupt is available or 'write_queue' == 0, combine 2226 * write and read queues. 2227 * 2228 * If 'write_queues' > 0, ensure it leaves room for at least one read 2229 * queue. 2230 */ 2231 if (!nrirqs) { 2232 nrirqs = 1; 2233 nr_read_queues = 0; 2234 } else if (nrirqs == 1 || !nr_write_queues) { 2235 nr_read_queues = 0; 2236 } else if (nr_write_queues >= nrirqs) { 2237 nr_read_queues = 1; 2238 } else { 2239 nr_read_queues = nrirqs - nr_write_queues; 2240 } 2241 2242 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2243 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2244 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2245 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2246 affd->nr_sets = nr_read_queues ? 2 : 1; 2247 } 2248 2249 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2250 { 2251 struct pci_dev *pdev = to_pci_dev(dev->dev); 2252 struct irq_affinity affd = { 2253 .pre_vectors = 1, 2254 .calc_sets = nvme_calc_irq_sets, 2255 .priv = dev, 2256 }; 2257 unsigned int irq_queues, poll_queues; 2258 2259 /* 2260 * Poll queues don't need interrupts, but we need at least one I/O queue 2261 * left over for non-polled I/O. 2262 */ 2263 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2264 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2265 2266 /* 2267 * Initialize for the single interrupt case, will be updated in 2268 * nvme_calc_irq_sets(). 2269 */ 2270 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2271 dev->io_queues[HCTX_TYPE_READ] = 0; 2272 2273 /* 2274 * We need interrupts for the admin queue and each non-polled I/O queue, 2275 * but some Apple controllers require all queues to use the first 2276 * vector. 2277 */ 2278 irq_queues = 1; 2279 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2280 irq_queues += (nr_io_queues - poll_queues); 2281 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2282 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2283 } 2284 2285 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2286 { 2287 /* 2288 * If tags are shared with admin queue (Apple bug), then 2289 * make sure we only use one IO queue. 2290 */ 2291 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2292 return 1; 2293 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2294 } 2295 2296 static int nvme_setup_io_queues(struct nvme_dev *dev) 2297 { 2298 struct nvme_queue *adminq = &dev->queues[0]; 2299 struct pci_dev *pdev = to_pci_dev(dev->dev); 2300 unsigned int nr_io_queues; 2301 unsigned long size; 2302 int result; 2303 2304 /* 2305 * Sample the module parameters once at reset time so that we have 2306 * stable values to work with. 2307 */ 2308 dev->nr_write_queues = write_queues; 2309 dev->nr_poll_queues = poll_queues; 2310 2311 nr_io_queues = dev->nr_allocated_queues - 1; 2312 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2313 if (result < 0) 2314 return result; 2315 2316 if (nr_io_queues == 0) 2317 return 0; 2318 2319 /* 2320 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2321 * from set to unset. If there is a window to it is truely freed, 2322 * pci_free_irq_vectors() jumping into this window will crash. 2323 * And take lock to avoid racing with pci_free_irq_vectors() in 2324 * nvme_dev_disable() path. 2325 */ 2326 result = nvme_setup_io_queues_trylock(dev); 2327 if (result) 2328 return result; 2329 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2330 pci_free_irq(pdev, 0, adminq); 2331 2332 if (dev->cmb_use_sqes) { 2333 result = nvme_cmb_qdepth(dev, nr_io_queues, 2334 sizeof(struct nvme_command)); 2335 if (result > 0) 2336 dev->q_depth = result; 2337 else 2338 dev->cmb_use_sqes = false; 2339 } 2340 2341 do { 2342 size = db_bar_size(dev, nr_io_queues); 2343 result = nvme_remap_bar(dev, size); 2344 if (!result) 2345 break; 2346 if (!--nr_io_queues) { 2347 result = -ENOMEM; 2348 goto out_unlock; 2349 } 2350 } while (1); 2351 adminq->q_db = dev->dbs; 2352 2353 retry: 2354 /* Deregister the admin queue's interrupt */ 2355 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2356 pci_free_irq(pdev, 0, adminq); 2357 2358 /* 2359 * If we enable msix early due to not intx, disable it again before 2360 * setting up the full range we need. 2361 */ 2362 pci_free_irq_vectors(pdev); 2363 2364 result = nvme_setup_irqs(dev, nr_io_queues); 2365 if (result <= 0) { 2366 result = -EIO; 2367 goto out_unlock; 2368 } 2369 2370 dev->num_vecs = result; 2371 result = max(result - 1, 1); 2372 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2373 2374 /* 2375 * Should investigate if there's a performance win from allocating 2376 * more queues than interrupt vectors; it might allow the submission 2377 * path to scale better, even if the receive path is limited by the 2378 * number of interrupts. 2379 */ 2380 result = queue_request_irq(adminq); 2381 if (result) 2382 goto out_unlock; 2383 set_bit(NVMEQ_ENABLED, &adminq->flags); 2384 mutex_unlock(&dev->shutdown_lock); 2385 2386 result = nvme_create_io_queues(dev); 2387 if (result || dev->online_queues < 2) 2388 return result; 2389 2390 if (dev->online_queues - 1 < dev->max_qid) { 2391 nr_io_queues = dev->online_queues - 1; 2392 nvme_delete_io_queues(dev); 2393 result = nvme_setup_io_queues_trylock(dev); 2394 if (result) 2395 return result; 2396 nvme_suspend_io_queues(dev); 2397 goto retry; 2398 } 2399 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2400 dev->io_queues[HCTX_TYPE_DEFAULT], 2401 dev->io_queues[HCTX_TYPE_READ], 2402 dev->io_queues[HCTX_TYPE_POLL]); 2403 return 0; 2404 out_unlock: 2405 mutex_unlock(&dev->shutdown_lock); 2406 return result; 2407 } 2408 2409 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2410 blk_status_t error) 2411 { 2412 struct nvme_queue *nvmeq = req->end_io_data; 2413 2414 blk_mq_free_request(req); 2415 complete(&nvmeq->delete_done); 2416 return RQ_END_IO_NONE; 2417 } 2418 2419 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2420 blk_status_t error) 2421 { 2422 struct nvme_queue *nvmeq = req->end_io_data; 2423 2424 if (error) 2425 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2426 2427 return nvme_del_queue_end(req, error); 2428 } 2429 2430 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2431 { 2432 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2433 struct request *req; 2434 struct nvme_command cmd = { }; 2435 2436 cmd.delete_queue.opcode = opcode; 2437 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2438 2439 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2440 if (IS_ERR(req)) 2441 return PTR_ERR(req); 2442 nvme_init_request(req, &cmd); 2443 2444 if (opcode == nvme_admin_delete_cq) 2445 req->end_io = nvme_del_cq_end; 2446 else 2447 req->end_io = nvme_del_queue_end; 2448 req->end_io_data = nvmeq; 2449 2450 init_completion(&nvmeq->delete_done); 2451 blk_execute_rq_nowait(req, false); 2452 return 0; 2453 } 2454 2455 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2456 { 2457 int nr_queues = dev->online_queues - 1, sent = 0; 2458 unsigned long timeout; 2459 2460 retry: 2461 timeout = NVME_ADMIN_TIMEOUT; 2462 while (nr_queues > 0) { 2463 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2464 break; 2465 nr_queues--; 2466 sent++; 2467 } 2468 while (sent) { 2469 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2470 2471 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2472 timeout); 2473 if (timeout == 0) 2474 return false; 2475 2476 sent--; 2477 if (nr_queues) 2478 goto retry; 2479 } 2480 return true; 2481 } 2482 2483 static void nvme_delete_io_queues(struct nvme_dev *dev) 2484 { 2485 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2486 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2487 } 2488 2489 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2490 { 2491 if (dev->io_queues[HCTX_TYPE_POLL]) 2492 return 3; 2493 if (dev->io_queues[HCTX_TYPE_READ]) 2494 return 2; 2495 return 1; 2496 } 2497 2498 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2499 { 2500 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2501 /* free previously allocated queues that are no longer usable */ 2502 nvme_free_queues(dev, dev->online_queues); 2503 } 2504 2505 static int nvme_pci_enable(struct nvme_dev *dev) 2506 { 2507 int result = -ENOMEM; 2508 struct pci_dev *pdev = to_pci_dev(dev->dev); 2509 int dma_address_bits = 64; 2510 2511 if (pci_enable_device_mem(pdev)) 2512 return result; 2513 2514 pci_set_master(pdev); 2515 2516 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2517 dma_address_bits = 48; 2518 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2519 goto disable; 2520 2521 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2522 result = -ENODEV; 2523 goto disable; 2524 } 2525 2526 /* 2527 * Some devices and/or platforms don't advertise or work with INTx 2528 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2529 * adjust this later. 2530 */ 2531 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2532 if (result < 0) 2533 return result; 2534 2535 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2536 2537 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2538 io_queue_depth); 2539 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2540 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2541 dev->dbs = dev->bar + 4096; 2542 2543 /* 2544 * Some Apple controllers require a non-standard SQE size. 2545 * Interestingly they also seem to ignore the CC:IOSQES register 2546 * so we don't bother updating it here. 2547 */ 2548 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2549 dev->io_sqes = 7; 2550 else 2551 dev->io_sqes = NVME_NVM_IOSQES; 2552 2553 /* 2554 * Temporary fix for the Apple controller found in the MacBook8,1 and 2555 * some MacBook7,1 to avoid controller resets and data loss. 2556 */ 2557 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2558 dev->q_depth = 2; 2559 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2560 "set queue depth=%u to work around controller resets\n", 2561 dev->q_depth); 2562 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2563 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2564 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2565 dev->q_depth = 64; 2566 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2567 "set queue depth=%u\n", dev->q_depth); 2568 } 2569 2570 /* 2571 * Controllers with the shared tags quirk need the IO queue to be 2572 * big enough so that we get 32 tags for the admin queue 2573 */ 2574 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2575 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2576 dev->q_depth = NVME_AQ_DEPTH + 2; 2577 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2578 dev->q_depth); 2579 } 2580 2581 2582 nvme_map_cmb(dev); 2583 2584 pci_enable_pcie_error_reporting(pdev); 2585 pci_save_state(pdev); 2586 2587 return nvme_pci_configure_admin_queue(dev); 2588 2589 disable: 2590 pci_disable_device(pdev); 2591 return result; 2592 } 2593 2594 static void nvme_dev_unmap(struct nvme_dev *dev) 2595 { 2596 if (dev->bar) 2597 iounmap(dev->bar); 2598 pci_release_mem_regions(to_pci_dev(dev->dev)); 2599 } 2600 2601 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2602 { 2603 struct pci_dev *pdev = to_pci_dev(dev->dev); 2604 u32 csts; 2605 2606 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2607 return true; 2608 if (pdev->error_state != pci_channel_io_normal) 2609 return true; 2610 2611 csts = readl(dev->bar + NVME_REG_CSTS); 2612 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2613 } 2614 2615 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2616 { 2617 struct pci_dev *pdev = to_pci_dev(dev->dev); 2618 bool dead; 2619 2620 mutex_lock(&dev->shutdown_lock); 2621 dead = nvme_pci_ctrl_is_dead(dev); 2622 if (dev->ctrl.state == NVME_CTRL_LIVE || 2623 dev->ctrl.state == NVME_CTRL_RESETTING) { 2624 if (pci_is_enabled(pdev)) 2625 nvme_start_freeze(&dev->ctrl); 2626 /* 2627 * Give the controller a chance to complete all entered requests 2628 * if doing a safe shutdown. 2629 */ 2630 if (!dead && shutdown) 2631 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2632 } 2633 2634 nvme_quiesce_io_queues(&dev->ctrl); 2635 2636 if (!dead && dev->ctrl.queue_count > 0) { 2637 nvme_delete_io_queues(dev); 2638 nvme_disable_ctrl(&dev->ctrl, shutdown); 2639 nvme_poll_irqdisable(&dev->queues[0]); 2640 } 2641 nvme_suspend_io_queues(dev); 2642 nvme_suspend_queue(dev, 0); 2643 pci_free_irq_vectors(pdev); 2644 if (pci_is_enabled(pdev)) { 2645 pci_disable_pcie_error_reporting(pdev); 2646 pci_disable_device(pdev); 2647 } 2648 nvme_reap_pending_cqes(dev); 2649 2650 nvme_cancel_tagset(&dev->ctrl); 2651 nvme_cancel_admin_tagset(&dev->ctrl); 2652 2653 /* 2654 * The driver will not be starting up queues again if shutting down so 2655 * must flush all entered requests to their failed completion to avoid 2656 * deadlocking blk-mq hot-cpu notifier. 2657 */ 2658 if (shutdown) { 2659 nvme_unquiesce_io_queues(&dev->ctrl); 2660 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2661 nvme_unquiesce_admin_queue(&dev->ctrl); 2662 } 2663 mutex_unlock(&dev->shutdown_lock); 2664 } 2665 2666 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2667 { 2668 if (!nvme_wait_reset(&dev->ctrl)) 2669 return -EBUSY; 2670 nvme_dev_disable(dev, shutdown); 2671 return 0; 2672 } 2673 2674 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2675 { 2676 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2677 NVME_CTRL_PAGE_SIZE, 2678 NVME_CTRL_PAGE_SIZE, 0); 2679 if (!dev->prp_page_pool) 2680 return -ENOMEM; 2681 2682 /* Optimisation for I/Os between 4k and 128k */ 2683 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2684 256, 256, 0); 2685 if (!dev->prp_small_pool) { 2686 dma_pool_destroy(dev->prp_page_pool); 2687 return -ENOMEM; 2688 } 2689 return 0; 2690 } 2691 2692 static void nvme_release_prp_pools(struct nvme_dev *dev) 2693 { 2694 dma_pool_destroy(dev->prp_page_pool); 2695 dma_pool_destroy(dev->prp_small_pool); 2696 } 2697 2698 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2699 { 2700 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 2701 size_t alloc_size = sizeof(__le64 *) * npages + 2702 sizeof(struct scatterlist) * NVME_MAX_SEGS; 2703 2704 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2705 dev->iod_mempool = mempool_create_node(1, 2706 mempool_kmalloc, mempool_kfree, 2707 (void *)alloc_size, GFP_KERNEL, 2708 dev_to_node(dev->dev)); 2709 if (!dev->iod_mempool) 2710 return -ENOMEM; 2711 return 0; 2712 } 2713 2714 static void nvme_free_tagset(struct nvme_dev *dev) 2715 { 2716 if (dev->tagset.tags) 2717 nvme_remove_io_tag_set(&dev->ctrl); 2718 dev->ctrl.tagset = NULL; 2719 } 2720 2721 /* pairs with nvme_pci_alloc_dev */ 2722 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2723 { 2724 struct nvme_dev *dev = to_nvme_dev(ctrl); 2725 2726 nvme_free_tagset(dev); 2727 put_device(dev->dev); 2728 kfree(dev->queues); 2729 kfree(dev); 2730 } 2731 2732 static void nvme_reset_work(struct work_struct *work) 2733 { 2734 struct nvme_dev *dev = 2735 container_of(work, struct nvme_dev, ctrl.reset_work); 2736 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2737 int result; 2738 2739 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2740 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2741 dev->ctrl.state); 2742 return; 2743 } 2744 2745 /* 2746 * If we're called to reset a live controller first shut it down before 2747 * moving on. 2748 */ 2749 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2750 nvme_dev_disable(dev, false); 2751 nvme_sync_queues(&dev->ctrl); 2752 2753 mutex_lock(&dev->shutdown_lock); 2754 result = nvme_pci_enable(dev); 2755 if (result) 2756 goto out_unlock; 2757 nvme_unquiesce_admin_queue(&dev->ctrl); 2758 mutex_unlock(&dev->shutdown_lock); 2759 2760 /* 2761 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2762 * initializing procedure here. 2763 */ 2764 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2765 dev_warn(dev->ctrl.device, 2766 "failed to mark controller CONNECTING\n"); 2767 result = -EBUSY; 2768 goto out; 2769 } 2770 2771 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2772 if (result) 2773 goto out; 2774 2775 nvme_dbbuf_dma_alloc(dev); 2776 2777 result = nvme_setup_host_mem(dev); 2778 if (result < 0) 2779 goto out; 2780 2781 result = nvme_setup_io_queues(dev); 2782 if (result) 2783 goto out; 2784 2785 /* 2786 * Freeze and update the number of I/O queues as thos might have 2787 * changed. If there are no I/O queues left after this reset, keep the 2788 * controller around but remove all namespaces. 2789 */ 2790 if (dev->online_queues > 1) { 2791 nvme_unquiesce_io_queues(&dev->ctrl); 2792 nvme_wait_freeze(&dev->ctrl); 2793 nvme_pci_update_nr_queues(dev); 2794 nvme_dbbuf_set(dev); 2795 nvme_unfreeze(&dev->ctrl); 2796 } else { 2797 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2798 nvme_mark_namespaces_dead(&dev->ctrl); 2799 nvme_unquiesce_io_queues(&dev->ctrl); 2800 nvme_remove_namespaces(&dev->ctrl); 2801 nvme_free_tagset(dev); 2802 } 2803 2804 /* 2805 * If only admin queue live, keep it to do further investigation or 2806 * recovery. 2807 */ 2808 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2809 dev_warn(dev->ctrl.device, 2810 "failed to mark controller live state\n"); 2811 result = -ENODEV; 2812 goto out; 2813 } 2814 2815 nvme_start_ctrl(&dev->ctrl); 2816 return; 2817 2818 out_unlock: 2819 mutex_unlock(&dev->shutdown_lock); 2820 out: 2821 /* 2822 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2823 * may be holding this pci_dev's device lock. 2824 */ 2825 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2826 result); 2827 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2828 nvme_dev_disable(dev, true); 2829 nvme_mark_namespaces_dead(&dev->ctrl); 2830 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2831 } 2832 2833 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2834 { 2835 *val = readl(to_nvme_dev(ctrl)->bar + off); 2836 return 0; 2837 } 2838 2839 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2840 { 2841 writel(val, to_nvme_dev(ctrl)->bar + off); 2842 return 0; 2843 } 2844 2845 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2846 { 2847 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2848 return 0; 2849 } 2850 2851 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2852 { 2853 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2854 2855 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2856 } 2857 2858 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2859 { 2860 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2861 struct nvme_subsystem *subsys = ctrl->subsys; 2862 2863 dev_err(ctrl->device, 2864 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2865 pdev->vendor, pdev->device, 2866 nvme_strlen(subsys->model, sizeof(subsys->model)), 2867 subsys->model, nvme_strlen(subsys->firmware_rev, 2868 sizeof(subsys->firmware_rev)), 2869 subsys->firmware_rev); 2870 } 2871 2872 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2873 { 2874 struct nvme_dev *dev = to_nvme_dev(ctrl); 2875 2876 return dma_pci_p2pdma_supported(dev->dev); 2877 } 2878 2879 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2880 .name = "pcie", 2881 .module = THIS_MODULE, 2882 .flags = NVME_F_METADATA_SUPPORTED, 2883 .dev_attr_groups = nvme_pci_dev_attr_groups, 2884 .reg_read32 = nvme_pci_reg_read32, 2885 .reg_write32 = nvme_pci_reg_write32, 2886 .reg_read64 = nvme_pci_reg_read64, 2887 .free_ctrl = nvme_pci_free_ctrl, 2888 .submit_async_event = nvme_pci_submit_async_event, 2889 .get_address = nvme_pci_get_address, 2890 .print_device_info = nvme_pci_print_device_info, 2891 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2892 }; 2893 2894 static int nvme_dev_map(struct nvme_dev *dev) 2895 { 2896 struct pci_dev *pdev = to_pci_dev(dev->dev); 2897 2898 if (pci_request_mem_regions(pdev, "nvme")) 2899 return -ENODEV; 2900 2901 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2902 goto release; 2903 2904 return 0; 2905 release: 2906 pci_release_mem_regions(pdev); 2907 return -ENODEV; 2908 } 2909 2910 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2911 { 2912 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2913 /* 2914 * Several Samsung devices seem to drop off the PCIe bus 2915 * randomly when APST is on and uses the deepest sleep state. 2916 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2917 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2918 * 950 PRO 256GB", but it seems to be restricted to two Dell 2919 * laptops. 2920 */ 2921 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2922 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2923 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2924 return NVME_QUIRK_NO_DEEPEST_PS; 2925 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2926 /* 2927 * Samsung SSD 960 EVO drops off the PCIe bus after system 2928 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2929 * within few minutes after bootup on a Coffee Lake board - 2930 * ASUS PRIME Z370-A 2931 */ 2932 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2933 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2934 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2935 return NVME_QUIRK_NO_APST; 2936 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2937 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2938 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2939 /* 2940 * Forcing to use host managed nvme power settings for 2941 * lowest idle power with quick resume latency on 2942 * Samsung and Toshiba SSDs based on suspend behavior 2943 * on Coffee Lake board for LENOVO C640 2944 */ 2945 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2946 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2947 return NVME_QUIRK_SIMPLE_SUSPEND; 2948 } 2949 2950 return 0; 2951 } 2952 2953 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2954 const struct pci_device_id *id) 2955 { 2956 unsigned long quirks = id->driver_data; 2957 int node = dev_to_node(&pdev->dev); 2958 struct nvme_dev *dev; 2959 int ret = -ENOMEM; 2960 2961 if (node == NUMA_NO_NODE) 2962 set_dev_node(&pdev->dev, first_memory_node); 2963 2964 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2965 if (!dev) 2966 return NULL; 2967 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2968 mutex_init(&dev->shutdown_lock); 2969 2970 dev->nr_write_queues = write_queues; 2971 dev->nr_poll_queues = poll_queues; 2972 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2973 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2974 sizeof(struct nvme_queue), GFP_KERNEL, node); 2975 if (!dev->queues) 2976 goto out_free_dev; 2977 2978 dev->dev = get_device(&pdev->dev); 2979 2980 quirks |= check_vendor_combination_bug(pdev); 2981 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 2982 /* 2983 * Some systems use a bios work around to ask for D3 on 2984 * platforms that support kernel managed suspend. 2985 */ 2986 dev_info(&pdev->dev, 2987 "platform quirk: setting simple suspend\n"); 2988 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2989 } 2990 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2991 quirks); 2992 if (ret) 2993 goto out_put_device; 2994 2995 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 2996 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 2997 2998 /* 2999 * Limit the max command size to prevent iod->sg allocations going 3000 * over a single page. 3001 */ 3002 dev->ctrl.max_hw_sectors = min_t(u32, 3003 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9); 3004 dev->ctrl.max_segments = NVME_MAX_SEGS; 3005 3006 /* 3007 * There is no support for SGLs for metadata (yet), so we are limited to 3008 * a single integrity segment for the separate metadata pointer. 3009 */ 3010 dev->ctrl.max_integrity_segments = 1; 3011 return dev; 3012 3013 out_put_device: 3014 put_device(dev->dev); 3015 kfree(dev->queues); 3016 out_free_dev: 3017 kfree(dev); 3018 return ERR_PTR(ret); 3019 } 3020 3021 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3022 { 3023 struct nvme_dev *dev; 3024 int result = -ENOMEM; 3025 3026 dev = nvme_pci_alloc_dev(pdev, id); 3027 if (!dev) 3028 return -ENOMEM; 3029 3030 result = nvme_dev_map(dev); 3031 if (result) 3032 goto out_uninit_ctrl; 3033 3034 result = nvme_setup_prp_pools(dev); 3035 if (result) 3036 goto out_dev_unmap; 3037 3038 result = nvme_pci_alloc_iod_mempool(dev); 3039 if (result) 3040 goto out_release_prp_pools; 3041 3042 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3043 3044 result = nvme_pci_enable(dev); 3045 if (result) 3046 goto out_release_iod_mempool; 3047 3048 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3049 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3050 if (result) 3051 goto out_disable; 3052 3053 /* 3054 * Mark the controller as connecting before sending admin commands to 3055 * allow the timeout handler to do the right thing. 3056 */ 3057 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3058 dev_warn(dev->ctrl.device, 3059 "failed to mark controller CONNECTING\n"); 3060 result = -EBUSY; 3061 goto out_disable; 3062 } 3063 3064 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3065 if (result) 3066 goto out_disable; 3067 3068 nvme_dbbuf_dma_alloc(dev); 3069 3070 result = nvme_setup_host_mem(dev); 3071 if (result < 0) 3072 goto out_disable; 3073 3074 result = nvme_setup_io_queues(dev); 3075 if (result) 3076 goto out_disable; 3077 3078 if (dev->online_queues > 1) { 3079 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3080 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3081 nvme_dbbuf_set(dev); 3082 } 3083 3084 if (!dev->ctrl.tagset) 3085 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3086 3087 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3088 dev_warn(dev->ctrl.device, 3089 "failed to mark controller live state\n"); 3090 result = -ENODEV; 3091 goto out_disable; 3092 } 3093 3094 pci_set_drvdata(pdev, dev); 3095 3096 nvme_start_ctrl(&dev->ctrl); 3097 nvme_put_ctrl(&dev->ctrl); 3098 return 0; 3099 3100 out_disable: 3101 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3102 nvme_dev_disable(dev, true); 3103 nvme_free_host_mem(dev); 3104 nvme_dev_remove_admin(dev); 3105 nvme_dbbuf_dma_free(dev); 3106 nvme_free_queues(dev, 0); 3107 out_release_iod_mempool: 3108 mempool_destroy(dev->iod_mempool); 3109 out_release_prp_pools: 3110 nvme_release_prp_pools(dev); 3111 out_dev_unmap: 3112 nvme_dev_unmap(dev); 3113 out_uninit_ctrl: 3114 nvme_uninit_ctrl(&dev->ctrl); 3115 return result; 3116 } 3117 3118 static void nvme_reset_prepare(struct pci_dev *pdev) 3119 { 3120 struct nvme_dev *dev = pci_get_drvdata(pdev); 3121 3122 /* 3123 * We don't need to check the return value from waiting for the reset 3124 * state as pci_dev device lock is held, making it impossible to race 3125 * with ->remove(). 3126 */ 3127 nvme_disable_prepare_reset(dev, false); 3128 nvme_sync_queues(&dev->ctrl); 3129 } 3130 3131 static void nvme_reset_done(struct pci_dev *pdev) 3132 { 3133 struct nvme_dev *dev = pci_get_drvdata(pdev); 3134 3135 if (!nvme_try_sched_reset(&dev->ctrl)) 3136 flush_work(&dev->ctrl.reset_work); 3137 } 3138 3139 static void nvme_shutdown(struct pci_dev *pdev) 3140 { 3141 struct nvme_dev *dev = pci_get_drvdata(pdev); 3142 3143 nvme_disable_prepare_reset(dev, true); 3144 } 3145 3146 /* 3147 * The driver's remove may be called on a device in a partially initialized 3148 * state. This function must not have any dependencies on the device state in 3149 * order to proceed. 3150 */ 3151 static void nvme_remove(struct pci_dev *pdev) 3152 { 3153 struct nvme_dev *dev = pci_get_drvdata(pdev); 3154 3155 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3156 pci_set_drvdata(pdev, NULL); 3157 3158 if (!pci_device_is_present(pdev)) { 3159 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3160 nvme_dev_disable(dev, true); 3161 } 3162 3163 flush_work(&dev->ctrl.reset_work); 3164 nvme_stop_ctrl(&dev->ctrl); 3165 nvme_remove_namespaces(&dev->ctrl); 3166 nvme_dev_disable(dev, true); 3167 nvme_free_host_mem(dev); 3168 nvme_dev_remove_admin(dev); 3169 nvme_dbbuf_dma_free(dev); 3170 nvme_free_queues(dev, 0); 3171 mempool_destroy(dev->iod_mempool); 3172 nvme_release_prp_pools(dev); 3173 nvme_dev_unmap(dev); 3174 nvme_uninit_ctrl(&dev->ctrl); 3175 } 3176 3177 #ifdef CONFIG_PM_SLEEP 3178 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3179 { 3180 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3181 } 3182 3183 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3184 { 3185 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3186 } 3187 3188 static int nvme_resume(struct device *dev) 3189 { 3190 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3191 struct nvme_ctrl *ctrl = &ndev->ctrl; 3192 3193 if (ndev->last_ps == U32_MAX || 3194 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3195 goto reset; 3196 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3197 goto reset; 3198 3199 return 0; 3200 reset: 3201 return nvme_try_sched_reset(ctrl); 3202 } 3203 3204 static int nvme_suspend(struct device *dev) 3205 { 3206 struct pci_dev *pdev = to_pci_dev(dev); 3207 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3208 struct nvme_ctrl *ctrl = &ndev->ctrl; 3209 int ret = -EBUSY; 3210 3211 ndev->last_ps = U32_MAX; 3212 3213 /* 3214 * The platform does not remove power for a kernel managed suspend so 3215 * use host managed nvme power settings for lowest idle power if 3216 * possible. This should have quicker resume latency than a full device 3217 * shutdown. But if the firmware is involved after the suspend or the 3218 * device does not support any non-default power states, shut down the 3219 * device fully. 3220 * 3221 * If ASPM is not enabled for the device, shut down the device and allow 3222 * the PCI bus layer to put it into D3 in order to take the PCIe link 3223 * down, so as to allow the platform to achieve its minimum low-power 3224 * state (which may not be possible if the link is up). 3225 */ 3226 if (pm_suspend_via_firmware() || !ctrl->npss || 3227 !pcie_aspm_enabled(pdev) || 3228 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3229 return nvme_disable_prepare_reset(ndev, true); 3230 3231 nvme_start_freeze(ctrl); 3232 nvme_wait_freeze(ctrl); 3233 nvme_sync_queues(ctrl); 3234 3235 if (ctrl->state != NVME_CTRL_LIVE) 3236 goto unfreeze; 3237 3238 /* 3239 * Host memory access may not be successful in a system suspend state, 3240 * but the specification allows the controller to access memory in a 3241 * non-operational power state. 3242 */ 3243 if (ndev->hmb) { 3244 ret = nvme_set_host_mem(ndev, 0); 3245 if (ret < 0) 3246 goto unfreeze; 3247 } 3248 3249 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3250 if (ret < 0) 3251 goto unfreeze; 3252 3253 /* 3254 * A saved state prevents pci pm from generically controlling the 3255 * device's power. If we're using protocol specific settings, we don't 3256 * want pci interfering. 3257 */ 3258 pci_save_state(pdev); 3259 3260 ret = nvme_set_power_state(ctrl, ctrl->npss); 3261 if (ret < 0) 3262 goto unfreeze; 3263 3264 if (ret) { 3265 /* discard the saved state */ 3266 pci_load_saved_state(pdev, NULL); 3267 3268 /* 3269 * Clearing npss forces a controller reset on resume. The 3270 * correct value will be rediscovered then. 3271 */ 3272 ret = nvme_disable_prepare_reset(ndev, true); 3273 ctrl->npss = 0; 3274 } 3275 unfreeze: 3276 nvme_unfreeze(ctrl); 3277 return ret; 3278 } 3279 3280 static int nvme_simple_suspend(struct device *dev) 3281 { 3282 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3283 3284 return nvme_disable_prepare_reset(ndev, true); 3285 } 3286 3287 static int nvme_simple_resume(struct device *dev) 3288 { 3289 struct pci_dev *pdev = to_pci_dev(dev); 3290 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3291 3292 return nvme_try_sched_reset(&ndev->ctrl); 3293 } 3294 3295 static const struct dev_pm_ops nvme_dev_pm_ops = { 3296 .suspend = nvme_suspend, 3297 .resume = nvme_resume, 3298 .freeze = nvme_simple_suspend, 3299 .thaw = nvme_simple_resume, 3300 .poweroff = nvme_simple_suspend, 3301 .restore = nvme_simple_resume, 3302 }; 3303 #endif /* CONFIG_PM_SLEEP */ 3304 3305 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3306 pci_channel_state_t state) 3307 { 3308 struct nvme_dev *dev = pci_get_drvdata(pdev); 3309 3310 /* 3311 * A frozen channel requires a reset. When detected, this method will 3312 * shutdown the controller to quiesce. The controller will be restarted 3313 * after the slot reset through driver's slot_reset callback. 3314 */ 3315 switch (state) { 3316 case pci_channel_io_normal: 3317 return PCI_ERS_RESULT_CAN_RECOVER; 3318 case pci_channel_io_frozen: 3319 dev_warn(dev->ctrl.device, 3320 "frozen state error detected, reset controller\n"); 3321 nvme_dev_disable(dev, false); 3322 return PCI_ERS_RESULT_NEED_RESET; 3323 case pci_channel_io_perm_failure: 3324 dev_warn(dev->ctrl.device, 3325 "failure state error detected, request disconnect\n"); 3326 return PCI_ERS_RESULT_DISCONNECT; 3327 } 3328 return PCI_ERS_RESULT_NEED_RESET; 3329 } 3330 3331 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3332 { 3333 struct nvme_dev *dev = pci_get_drvdata(pdev); 3334 3335 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3336 pci_restore_state(pdev); 3337 nvme_reset_ctrl(&dev->ctrl); 3338 return PCI_ERS_RESULT_RECOVERED; 3339 } 3340 3341 static void nvme_error_resume(struct pci_dev *pdev) 3342 { 3343 struct nvme_dev *dev = pci_get_drvdata(pdev); 3344 3345 flush_work(&dev->ctrl.reset_work); 3346 } 3347 3348 static const struct pci_error_handlers nvme_err_handler = { 3349 .error_detected = nvme_error_detected, 3350 .slot_reset = nvme_slot_reset, 3351 .resume = nvme_error_resume, 3352 .reset_prepare = nvme_reset_prepare, 3353 .reset_done = nvme_reset_done, 3354 }; 3355 3356 static const struct pci_device_id nvme_id_table[] = { 3357 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3358 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3359 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3360 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3361 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3362 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3363 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3364 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3365 NVME_QUIRK_DEALLOCATE_ZEROES | 3366 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3367 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3368 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3369 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3370 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3371 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3372 NVME_QUIRK_MEDIUM_PRIO_SQ | 3373 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3374 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3375 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3376 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3377 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3378 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3379 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3380 NVME_QUIRK_BOGUS_NID, }, 3381 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3382 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3383 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3384 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3385 NVME_QUIRK_BOGUS_NID, }, 3386 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3387 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3388 NVME_QUIRK_NO_NS_DESC_LIST, }, 3389 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3390 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3391 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3392 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3393 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3394 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3395 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3396 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3397 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3398 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3399 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3400 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3401 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3402 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3403 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3404 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3405 NVME_QUIRK_BOGUS_NID, }, 3406 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3407 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3408 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3409 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3410 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3411 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3412 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3413 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3414 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3415 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3416 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3417 NVME_QUIRK_BOGUS_NID, }, 3418 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3419 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3420 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3421 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3422 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3423 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3424 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3425 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3426 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3427 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3428 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3429 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3430 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3431 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3432 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3433 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3434 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3435 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3436 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3437 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3438 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3439 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3440 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3441 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3442 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3443 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3444 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3445 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3446 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3447 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3448 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3449 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3450 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3451 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3452 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3453 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3454 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3455 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3456 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3457 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3458 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3459 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3460 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3461 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3462 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3463 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3464 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3465 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3466 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3467 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3468 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3469 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3470 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3471 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3472 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3473 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3474 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3475 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3476 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3477 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3478 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3479 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3480 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3481 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3482 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3483 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3484 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3485 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3486 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3487 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3488 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3489 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3490 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3491 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3492 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3493 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3494 NVME_QUIRK_128_BYTES_SQES | 3495 NVME_QUIRK_SHARED_TAGS | 3496 NVME_QUIRK_SKIP_CID_GEN }, 3497 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3498 { 0, } 3499 }; 3500 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3501 3502 static struct pci_driver nvme_driver = { 3503 .name = "nvme", 3504 .id_table = nvme_id_table, 3505 .probe = nvme_probe, 3506 .remove = nvme_remove, 3507 .shutdown = nvme_shutdown, 3508 .driver = { 3509 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3510 #ifdef CONFIG_PM_SLEEP 3511 .pm = &nvme_dev_pm_ops, 3512 #endif 3513 }, 3514 .sriov_configure = pci_sriov_configure_simple, 3515 .err_handler = &nvme_err_handler, 3516 }; 3517 3518 static int __init nvme_init(void) 3519 { 3520 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3521 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3522 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3523 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3524 BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) > 3525 S8_MAX); 3526 3527 return pci_register_driver(&nvme_driver); 3528 } 3529 3530 static void __exit nvme_exit(void) 3531 { 3532 pci_unregister_driver(&nvme_driver); 3533 flush_workqueue(nvme_wq); 3534 } 3535 3536 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3537 MODULE_LICENSE("GPL"); 3538 MODULE_VERSION("1.0"); 3539 module_init(nvme_init); 3540 module_exit(nvme_exit); 3541