xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 93f5715e)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33 
34 #include "nvme.h"
35 
36 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
38 
39 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ	4096
46 #define NVME_MAX_SEGS	127
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
67 static const struct kernel_param_ops io_queue_depth_ops = {
68 	.set = io_queue_depth_set,
69 	.get = param_get_int,
70 };
71 
72 static int io_queue_depth = 1024;
73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
75 
76 struct nvme_dev;
77 struct nvme_queue;
78 
79 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
80 
81 /*
82  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
83  */
84 struct nvme_dev {
85 	struct nvme_queue *queues;
86 	struct blk_mq_tag_set tagset;
87 	struct blk_mq_tag_set admin_tagset;
88 	u32 __iomem *dbs;
89 	struct device *dev;
90 	struct dma_pool *prp_page_pool;
91 	struct dma_pool *prp_small_pool;
92 	unsigned online_queues;
93 	unsigned max_qid;
94 	unsigned int num_vecs;
95 	int q_depth;
96 	u32 db_stride;
97 	void __iomem *bar;
98 	unsigned long bar_mapped_size;
99 	struct work_struct remove_work;
100 	struct mutex shutdown_lock;
101 	bool subsystem;
102 	void __iomem *cmb;
103 	pci_bus_addr_t cmb_bus_addr;
104 	u64 cmb_size;
105 	u32 cmbsz;
106 	u32 cmbloc;
107 	struct nvme_ctrl ctrl;
108 	struct completion ioq_wait;
109 
110 	mempool_t *iod_mempool;
111 
112 	/* shadow doorbell buffer support: */
113 	u32 *dbbuf_dbs;
114 	dma_addr_t dbbuf_dbs_dma_addr;
115 	u32 *dbbuf_eis;
116 	dma_addr_t dbbuf_eis_dma_addr;
117 
118 	/* host memory buffer support: */
119 	u64 host_mem_size;
120 	u32 nr_host_mem_descs;
121 	dma_addr_t host_mem_descs_dma;
122 	struct nvme_host_mem_buf_desc *host_mem_descs;
123 	void **host_mem_desc_bufs;
124 };
125 
126 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
127 {
128 	int n = 0, ret;
129 
130 	ret = kstrtoint(val, 10, &n);
131 	if (ret != 0 || n < 2)
132 		return -EINVAL;
133 
134 	return param_set_int(val, kp);
135 }
136 
137 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
138 {
139 	return qid * 2 * stride;
140 }
141 
142 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
143 {
144 	return (qid * 2 + 1) * stride;
145 }
146 
147 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
148 {
149 	return container_of(ctrl, struct nvme_dev, ctrl);
150 }
151 
152 /*
153  * An NVM Express queue.  Each device has at least two (one for admin
154  * commands and one for I/O commands).
155  */
156 struct nvme_queue {
157 	struct device *q_dmadev;
158 	struct nvme_dev *dev;
159 	spinlock_t sq_lock;
160 	struct nvme_command *sq_cmds;
161 	struct nvme_command __iomem *sq_cmds_io;
162 	spinlock_t cq_lock ____cacheline_aligned_in_smp;
163 	volatile struct nvme_completion *cqes;
164 	struct blk_mq_tags **tags;
165 	dma_addr_t sq_dma_addr;
166 	dma_addr_t cq_dma_addr;
167 	u32 __iomem *q_db;
168 	u16 q_depth;
169 	s16 cq_vector;
170 	u16 sq_tail;
171 	u16 cq_head;
172 	u16 last_cq_head;
173 	u16 qid;
174 	u8 cq_phase;
175 	u32 *dbbuf_sq_db;
176 	u32 *dbbuf_cq_db;
177 	u32 *dbbuf_sq_ei;
178 	u32 *dbbuf_cq_ei;
179 };
180 
181 /*
182  * The nvme_iod describes the data in an I/O, including the list of PRP
183  * entries.  You can't see it in this data structure because C doesn't let
184  * me express that.  Use nvme_init_iod to ensure there's enough space
185  * allocated to store the PRP list.
186  */
187 struct nvme_iod {
188 	struct nvme_request req;
189 	struct nvme_queue *nvmeq;
190 	bool use_sgl;
191 	int aborted;
192 	int npages;		/* In the PRP list. 0 means small pool in use */
193 	int nents;		/* Used in scatterlist */
194 	int length;		/* Of data, in bytes */
195 	dma_addr_t first_dma;
196 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
197 	struct scatterlist *sg;
198 	struct scatterlist inline_sg[0];
199 };
200 
201 /*
202  * Check we didin't inadvertently grow the command struct
203  */
204 static inline void _nvme_check_size(void)
205 {
206 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
207 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
208 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
209 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
210 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
211 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
212 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
213 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
214 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
215 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
216 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
217 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
218 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
219 }
220 
221 static inline unsigned int nvme_dbbuf_size(u32 stride)
222 {
223 	return ((num_possible_cpus() + 1) * 8 * stride);
224 }
225 
226 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
227 {
228 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229 
230 	if (dev->dbbuf_dbs)
231 		return 0;
232 
233 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
234 					    &dev->dbbuf_dbs_dma_addr,
235 					    GFP_KERNEL);
236 	if (!dev->dbbuf_dbs)
237 		return -ENOMEM;
238 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
239 					    &dev->dbbuf_eis_dma_addr,
240 					    GFP_KERNEL);
241 	if (!dev->dbbuf_eis) {
242 		dma_free_coherent(dev->dev, mem_size,
243 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
244 		dev->dbbuf_dbs = NULL;
245 		return -ENOMEM;
246 	}
247 
248 	return 0;
249 }
250 
251 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
252 {
253 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
254 
255 	if (dev->dbbuf_dbs) {
256 		dma_free_coherent(dev->dev, mem_size,
257 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
258 		dev->dbbuf_dbs = NULL;
259 	}
260 	if (dev->dbbuf_eis) {
261 		dma_free_coherent(dev->dev, mem_size,
262 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
263 		dev->dbbuf_eis = NULL;
264 	}
265 }
266 
267 static void nvme_dbbuf_init(struct nvme_dev *dev,
268 			    struct nvme_queue *nvmeq, int qid)
269 {
270 	if (!dev->dbbuf_dbs || !qid)
271 		return;
272 
273 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
274 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
275 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
276 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
277 }
278 
279 static void nvme_dbbuf_set(struct nvme_dev *dev)
280 {
281 	struct nvme_command c;
282 
283 	if (!dev->dbbuf_dbs)
284 		return;
285 
286 	memset(&c, 0, sizeof(c));
287 	c.dbbuf.opcode = nvme_admin_dbbuf;
288 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
289 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
290 
291 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
292 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
293 		/* Free memory and continue on */
294 		nvme_dbbuf_dma_free(dev);
295 	}
296 }
297 
298 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
299 {
300 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
301 }
302 
303 /* Update dbbuf and return true if an MMIO is required */
304 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
305 					      volatile u32 *dbbuf_ei)
306 {
307 	if (dbbuf_db) {
308 		u16 old_value;
309 
310 		/*
311 		 * Ensure that the queue is written before updating
312 		 * the doorbell in memory
313 		 */
314 		wmb();
315 
316 		old_value = *dbbuf_db;
317 		*dbbuf_db = value;
318 
319 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
320 			return false;
321 	}
322 
323 	return true;
324 }
325 
326 /*
327  * Max size of iod being embedded in the request payload
328  */
329 #define NVME_INT_PAGES		2
330 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
331 
332 /*
333  * Will slightly overestimate the number of pages needed.  This is OK
334  * as it only leads to a small amount of wasted memory for the lifetime of
335  * the I/O.
336  */
337 static int nvme_npages(unsigned size, struct nvme_dev *dev)
338 {
339 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
340 				      dev->ctrl.page_size);
341 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
342 }
343 
344 /*
345  * Calculates the number of pages needed for the SGL segments. For example a 4k
346  * page can accommodate 256 SGL descriptors.
347  */
348 static int nvme_pci_npages_sgl(unsigned int num_seg)
349 {
350 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
351 }
352 
353 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
354 		unsigned int size, unsigned int nseg, bool use_sgl)
355 {
356 	size_t alloc_size;
357 
358 	if (use_sgl)
359 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
360 	else
361 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
362 
363 	return alloc_size + sizeof(struct scatterlist) * nseg;
364 }
365 
366 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
367 {
368 	unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
369 				    NVME_INT_BYTES(dev), NVME_INT_PAGES,
370 				    use_sgl);
371 
372 	return sizeof(struct nvme_iod) + alloc_size;
373 }
374 
375 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
376 				unsigned int hctx_idx)
377 {
378 	struct nvme_dev *dev = data;
379 	struct nvme_queue *nvmeq = &dev->queues[0];
380 
381 	WARN_ON(hctx_idx != 0);
382 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
383 	WARN_ON(nvmeq->tags);
384 
385 	hctx->driver_data = nvmeq;
386 	nvmeq->tags = &dev->admin_tagset.tags[0];
387 	return 0;
388 }
389 
390 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
391 {
392 	struct nvme_queue *nvmeq = hctx->driver_data;
393 
394 	nvmeq->tags = NULL;
395 }
396 
397 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 			  unsigned int hctx_idx)
399 {
400 	struct nvme_dev *dev = data;
401 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
402 
403 	if (!nvmeq->tags)
404 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
405 
406 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
407 	hctx->driver_data = nvmeq;
408 	return 0;
409 }
410 
411 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
412 		unsigned int hctx_idx, unsigned int numa_node)
413 {
414 	struct nvme_dev *dev = set->driver_data;
415 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
416 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
417 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
418 
419 	BUG_ON(!nvmeq);
420 	iod->nvmeq = nvmeq;
421 
422 	nvme_req(req)->ctrl = &dev->ctrl;
423 	return 0;
424 }
425 
426 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
427 {
428 	struct nvme_dev *dev = set->driver_data;
429 
430 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
431 			dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
432 }
433 
434 /**
435  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
436  * @nvmeq: The queue to use
437  * @cmd: The command to send
438  */
439 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
440 {
441 	spin_lock(&nvmeq->sq_lock);
442 	if (nvmeq->sq_cmds_io)
443 		memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
444 				sizeof(*cmd));
445 	else
446 		memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
447 
448 	if (++nvmeq->sq_tail == nvmeq->q_depth)
449 		nvmeq->sq_tail = 0;
450 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
451 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
452 		writel(nvmeq->sq_tail, nvmeq->q_db);
453 	spin_unlock(&nvmeq->sq_lock);
454 }
455 
456 static void **nvme_pci_iod_list(struct request *req)
457 {
458 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
459 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
460 }
461 
462 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
463 {
464 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
465 	int nseg = blk_rq_nr_phys_segments(req);
466 	unsigned int avg_seg_size;
467 
468 	if (nseg == 0)
469 		return false;
470 
471 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
472 
473 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
474 		return false;
475 	if (!iod->nvmeq->qid)
476 		return false;
477 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
478 		return false;
479 	return true;
480 }
481 
482 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
483 {
484 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
485 	int nseg = blk_rq_nr_phys_segments(rq);
486 	unsigned int size = blk_rq_payload_bytes(rq);
487 
488 	iod->use_sgl = nvme_pci_use_sgls(dev, rq);
489 
490 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
491 		iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
492 		if (!iod->sg)
493 			return BLK_STS_RESOURCE;
494 	} else {
495 		iod->sg = iod->inline_sg;
496 	}
497 
498 	iod->aborted = 0;
499 	iod->npages = -1;
500 	iod->nents = 0;
501 	iod->length = size;
502 
503 	return BLK_STS_OK;
504 }
505 
506 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
507 {
508 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
509 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
510 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
511 
512 	int i;
513 
514 	if (iod->npages == 0)
515 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
516 			dma_addr);
517 
518 	for (i = 0; i < iod->npages; i++) {
519 		void *addr = nvme_pci_iod_list(req)[i];
520 
521 		if (iod->use_sgl) {
522 			struct nvme_sgl_desc *sg_list = addr;
523 
524 			next_dma_addr =
525 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
526 		} else {
527 			__le64 *prp_list = addr;
528 
529 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
530 		}
531 
532 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
533 		dma_addr = next_dma_addr;
534 	}
535 
536 	if (iod->sg != iod->inline_sg)
537 		mempool_free(iod->sg, dev->iod_mempool);
538 }
539 
540 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
541 {
542 	int i;
543 	struct scatterlist *sg;
544 
545 	for_each_sg(sgl, sg, nents, i) {
546 		dma_addr_t phys = sg_phys(sg);
547 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
548 			"dma_address:%pad dma_length:%d\n",
549 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
550 			sg_dma_len(sg));
551 	}
552 }
553 
554 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
555 		struct request *req, struct nvme_rw_command *cmnd)
556 {
557 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
558 	struct dma_pool *pool;
559 	int length = blk_rq_payload_bytes(req);
560 	struct scatterlist *sg = iod->sg;
561 	int dma_len = sg_dma_len(sg);
562 	u64 dma_addr = sg_dma_address(sg);
563 	u32 page_size = dev->ctrl.page_size;
564 	int offset = dma_addr & (page_size - 1);
565 	__le64 *prp_list;
566 	void **list = nvme_pci_iod_list(req);
567 	dma_addr_t prp_dma;
568 	int nprps, i;
569 
570 	length -= (page_size - offset);
571 	if (length <= 0) {
572 		iod->first_dma = 0;
573 		goto done;
574 	}
575 
576 	dma_len -= (page_size - offset);
577 	if (dma_len) {
578 		dma_addr += (page_size - offset);
579 	} else {
580 		sg = sg_next(sg);
581 		dma_addr = sg_dma_address(sg);
582 		dma_len = sg_dma_len(sg);
583 	}
584 
585 	if (length <= page_size) {
586 		iod->first_dma = dma_addr;
587 		goto done;
588 	}
589 
590 	nprps = DIV_ROUND_UP(length, page_size);
591 	if (nprps <= (256 / 8)) {
592 		pool = dev->prp_small_pool;
593 		iod->npages = 0;
594 	} else {
595 		pool = dev->prp_page_pool;
596 		iod->npages = 1;
597 	}
598 
599 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
600 	if (!prp_list) {
601 		iod->first_dma = dma_addr;
602 		iod->npages = -1;
603 		return BLK_STS_RESOURCE;
604 	}
605 	list[0] = prp_list;
606 	iod->first_dma = prp_dma;
607 	i = 0;
608 	for (;;) {
609 		if (i == page_size >> 3) {
610 			__le64 *old_prp_list = prp_list;
611 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
612 			if (!prp_list)
613 				return BLK_STS_RESOURCE;
614 			list[iod->npages++] = prp_list;
615 			prp_list[0] = old_prp_list[i - 1];
616 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
617 			i = 1;
618 		}
619 		prp_list[i++] = cpu_to_le64(dma_addr);
620 		dma_len -= page_size;
621 		dma_addr += page_size;
622 		length -= page_size;
623 		if (length <= 0)
624 			break;
625 		if (dma_len > 0)
626 			continue;
627 		if (unlikely(dma_len < 0))
628 			goto bad_sgl;
629 		sg = sg_next(sg);
630 		dma_addr = sg_dma_address(sg);
631 		dma_len = sg_dma_len(sg);
632 	}
633 
634 done:
635 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
636 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
637 
638 	return BLK_STS_OK;
639 
640  bad_sgl:
641 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
642 			"Invalid SGL for payload:%d nents:%d\n",
643 			blk_rq_payload_bytes(req), iod->nents);
644 	return BLK_STS_IOERR;
645 }
646 
647 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
648 		struct scatterlist *sg)
649 {
650 	sge->addr = cpu_to_le64(sg_dma_address(sg));
651 	sge->length = cpu_to_le32(sg_dma_len(sg));
652 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
653 }
654 
655 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
656 		dma_addr_t dma_addr, int entries)
657 {
658 	sge->addr = cpu_to_le64(dma_addr);
659 	if (entries < SGES_PER_PAGE) {
660 		sge->length = cpu_to_le32(entries * sizeof(*sge));
661 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
662 	} else {
663 		sge->length = cpu_to_le32(PAGE_SIZE);
664 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
665 	}
666 }
667 
668 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
669 		struct request *req, struct nvme_rw_command *cmd, int entries)
670 {
671 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
672 	struct dma_pool *pool;
673 	struct nvme_sgl_desc *sg_list;
674 	struct scatterlist *sg = iod->sg;
675 	dma_addr_t sgl_dma;
676 	int i = 0;
677 
678 	/* setting the transfer type as SGL */
679 	cmd->flags = NVME_CMD_SGL_METABUF;
680 
681 	if (entries == 1) {
682 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
683 		return BLK_STS_OK;
684 	}
685 
686 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
687 		pool = dev->prp_small_pool;
688 		iod->npages = 0;
689 	} else {
690 		pool = dev->prp_page_pool;
691 		iod->npages = 1;
692 	}
693 
694 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
695 	if (!sg_list) {
696 		iod->npages = -1;
697 		return BLK_STS_RESOURCE;
698 	}
699 
700 	nvme_pci_iod_list(req)[0] = sg_list;
701 	iod->first_dma = sgl_dma;
702 
703 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
704 
705 	do {
706 		if (i == SGES_PER_PAGE) {
707 			struct nvme_sgl_desc *old_sg_desc = sg_list;
708 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
709 
710 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
711 			if (!sg_list)
712 				return BLK_STS_RESOURCE;
713 
714 			i = 0;
715 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
716 			sg_list[i++] = *link;
717 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
718 		}
719 
720 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
721 		sg = sg_next(sg);
722 	} while (--entries > 0);
723 
724 	return BLK_STS_OK;
725 }
726 
727 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
728 		struct nvme_command *cmnd)
729 {
730 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
731 	struct request_queue *q = req->q;
732 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
733 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
734 	blk_status_t ret = BLK_STS_IOERR;
735 	int nr_mapped;
736 
737 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
738 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
739 	if (!iod->nents)
740 		goto out;
741 
742 	ret = BLK_STS_RESOURCE;
743 	nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
744 			DMA_ATTR_NO_WARN);
745 	if (!nr_mapped)
746 		goto out;
747 
748 	if (iod->use_sgl)
749 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
750 	else
751 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
752 
753 	if (ret != BLK_STS_OK)
754 		goto out_unmap;
755 
756 	ret = BLK_STS_IOERR;
757 	if (blk_integrity_rq(req)) {
758 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
759 			goto out_unmap;
760 
761 		sg_init_table(&iod->meta_sg, 1);
762 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
763 			goto out_unmap;
764 
765 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
766 			goto out_unmap;
767 	}
768 
769 	if (blk_integrity_rq(req))
770 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
771 	return BLK_STS_OK;
772 
773 out_unmap:
774 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
775 out:
776 	return ret;
777 }
778 
779 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
780 {
781 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
782 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
783 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
784 
785 	if (iod->nents) {
786 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
787 		if (blk_integrity_rq(req))
788 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
789 	}
790 
791 	nvme_cleanup_cmd(req);
792 	nvme_free_iod(dev, req);
793 }
794 
795 /*
796  * NOTE: ns is NULL when called on the admin queue.
797  */
798 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
799 			 const struct blk_mq_queue_data *bd)
800 {
801 	struct nvme_ns *ns = hctx->queue->queuedata;
802 	struct nvme_queue *nvmeq = hctx->driver_data;
803 	struct nvme_dev *dev = nvmeq->dev;
804 	struct request *req = bd->rq;
805 	struct nvme_command cmnd;
806 	blk_status_t ret;
807 
808 	/*
809 	 * We should not need to do this, but we're still using this to
810 	 * ensure we can drain requests on a dying queue.
811 	 */
812 	if (unlikely(nvmeq->cq_vector < 0))
813 		return BLK_STS_IOERR;
814 
815 	ret = nvme_setup_cmd(ns, req, &cmnd);
816 	if (ret)
817 		return ret;
818 
819 	ret = nvme_init_iod(req, dev);
820 	if (ret)
821 		goto out_free_cmd;
822 
823 	if (blk_rq_nr_phys_segments(req)) {
824 		ret = nvme_map_data(dev, req, &cmnd);
825 		if (ret)
826 			goto out_cleanup_iod;
827 	}
828 
829 	blk_mq_start_request(req);
830 	nvme_submit_cmd(nvmeq, &cmnd);
831 	return BLK_STS_OK;
832 out_cleanup_iod:
833 	nvme_free_iod(dev, req);
834 out_free_cmd:
835 	nvme_cleanup_cmd(req);
836 	return ret;
837 }
838 
839 static void nvme_pci_complete_rq(struct request *req)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 
843 	nvme_unmap_data(iod->nvmeq->dev, req);
844 	nvme_complete_rq(req);
845 }
846 
847 /* We read the CQE phase first to check if the rest of the entry is valid */
848 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
849 {
850 	return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
851 			nvmeq->cq_phase;
852 }
853 
854 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
855 {
856 	u16 head = nvmeq->cq_head;
857 
858 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
859 					      nvmeq->dbbuf_cq_ei))
860 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
861 }
862 
863 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
864 {
865 	volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
866 	struct request *req;
867 
868 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
869 		dev_warn(nvmeq->dev->ctrl.device,
870 			"invalid id %d completed on queue %d\n",
871 			cqe->command_id, le16_to_cpu(cqe->sq_id));
872 		return;
873 	}
874 
875 	/*
876 	 * AEN requests are special as they don't time out and can
877 	 * survive any kind of queue freeze and often don't respond to
878 	 * aborts.  We don't even bother to allocate a struct request
879 	 * for them but rather special case them here.
880 	 */
881 	if (unlikely(nvmeq->qid == 0 &&
882 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
883 		nvme_complete_async_event(&nvmeq->dev->ctrl,
884 				cqe->status, &cqe->result);
885 		return;
886 	}
887 
888 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
889 	nvme_end_request(req, cqe->status, cqe->result);
890 }
891 
892 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
893 {
894 	while (start != end) {
895 		nvme_handle_cqe(nvmeq, start);
896 		if (++start == nvmeq->q_depth)
897 			start = 0;
898 	}
899 }
900 
901 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
902 {
903 	if (++nvmeq->cq_head == nvmeq->q_depth) {
904 		nvmeq->cq_head = 0;
905 		nvmeq->cq_phase = !nvmeq->cq_phase;
906 	}
907 }
908 
909 static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
910 		u16 *end, int tag)
911 {
912 	bool found = false;
913 
914 	*start = nvmeq->cq_head;
915 	while (!found && nvme_cqe_pending(nvmeq)) {
916 		if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
917 			found = true;
918 		nvme_update_cq_head(nvmeq);
919 	}
920 	*end = nvmeq->cq_head;
921 
922 	if (*start != *end)
923 		nvme_ring_cq_doorbell(nvmeq);
924 	return found;
925 }
926 
927 static irqreturn_t nvme_irq(int irq, void *data)
928 {
929 	struct nvme_queue *nvmeq = data;
930 	irqreturn_t ret = IRQ_NONE;
931 	u16 start, end;
932 
933 	spin_lock(&nvmeq->cq_lock);
934 	if (nvmeq->cq_head != nvmeq->last_cq_head)
935 		ret = IRQ_HANDLED;
936 	nvme_process_cq(nvmeq, &start, &end, -1);
937 	nvmeq->last_cq_head = nvmeq->cq_head;
938 	spin_unlock(&nvmeq->cq_lock);
939 
940 	if (start != end) {
941 		nvme_complete_cqes(nvmeq, start, end);
942 		return IRQ_HANDLED;
943 	}
944 
945 	return ret;
946 }
947 
948 static irqreturn_t nvme_irq_check(int irq, void *data)
949 {
950 	struct nvme_queue *nvmeq = data;
951 	if (nvme_cqe_pending(nvmeq))
952 		return IRQ_WAKE_THREAD;
953 	return IRQ_NONE;
954 }
955 
956 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
957 {
958 	u16 start, end;
959 	bool found;
960 
961 	if (!nvme_cqe_pending(nvmeq))
962 		return 0;
963 
964 	spin_lock_irq(&nvmeq->cq_lock);
965 	found = nvme_process_cq(nvmeq, &start, &end, tag);
966 	spin_unlock_irq(&nvmeq->cq_lock);
967 
968 	nvme_complete_cqes(nvmeq, start, end);
969 	return found;
970 }
971 
972 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
973 {
974 	struct nvme_queue *nvmeq = hctx->driver_data;
975 
976 	return __nvme_poll(nvmeq, tag);
977 }
978 
979 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
980 {
981 	struct nvme_dev *dev = to_nvme_dev(ctrl);
982 	struct nvme_queue *nvmeq = &dev->queues[0];
983 	struct nvme_command c;
984 
985 	memset(&c, 0, sizeof(c));
986 	c.common.opcode = nvme_admin_async_event;
987 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
988 	nvme_submit_cmd(nvmeq, &c);
989 }
990 
991 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
992 {
993 	struct nvme_command c;
994 
995 	memset(&c, 0, sizeof(c));
996 	c.delete_queue.opcode = opcode;
997 	c.delete_queue.qid = cpu_to_le16(id);
998 
999 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1000 }
1001 
1002 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1003 		struct nvme_queue *nvmeq, s16 vector)
1004 {
1005 	struct nvme_command c;
1006 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1007 
1008 	/*
1009 	 * Note: we (ab)use the fact that the prp fields survive if no data
1010 	 * is attached to the request.
1011 	 */
1012 	memset(&c, 0, sizeof(c));
1013 	c.create_cq.opcode = nvme_admin_create_cq;
1014 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1015 	c.create_cq.cqid = cpu_to_le16(qid);
1016 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1017 	c.create_cq.cq_flags = cpu_to_le16(flags);
1018 	c.create_cq.irq_vector = cpu_to_le16(vector);
1019 
1020 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1021 }
1022 
1023 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1024 						struct nvme_queue *nvmeq)
1025 {
1026 	struct nvme_ctrl *ctrl = &dev->ctrl;
1027 	struct nvme_command c;
1028 	int flags = NVME_QUEUE_PHYS_CONTIG;
1029 
1030 	/*
1031 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1032 	 * set. Since URGENT priority is zeroes, it makes all queues
1033 	 * URGENT.
1034 	 */
1035 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1036 		flags |= NVME_SQ_PRIO_MEDIUM;
1037 
1038 	/*
1039 	 * Note: we (ab)use the fact that the prp fields survive if no data
1040 	 * is attached to the request.
1041 	 */
1042 	memset(&c, 0, sizeof(c));
1043 	c.create_sq.opcode = nvme_admin_create_sq;
1044 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1045 	c.create_sq.sqid = cpu_to_le16(qid);
1046 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1047 	c.create_sq.sq_flags = cpu_to_le16(flags);
1048 	c.create_sq.cqid = cpu_to_le16(qid);
1049 
1050 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1051 }
1052 
1053 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1054 {
1055 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1056 }
1057 
1058 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1059 {
1060 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1061 }
1062 
1063 static void abort_endio(struct request *req, blk_status_t error)
1064 {
1065 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1066 	struct nvme_queue *nvmeq = iod->nvmeq;
1067 
1068 	dev_warn(nvmeq->dev->ctrl.device,
1069 		 "Abort status: 0x%x", nvme_req(req)->status);
1070 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1071 	blk_mq_free_request(req);
1072 }
1073 
1074 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1075 {
1076 
1077 	/* If true, indicates loss of adapter communication, possibly by a
1078 	 * NVMe Subsystem reset.
1079 	 */
1080 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1081 
1082 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1083 	switch (dev->ctrl.state) {
1084 	case NVME_CTRL_RESETTING:
1085 	case NVME_CTRL_CONNECTING:
1086 		return false;
1087 	default:
1088 		break;
1089 	}
1090 
1091 	/* We shouldn't reset unless the controller is on fatal error state
1092 	 * _or_ if we lost the communication with it.
1093 	 */
1094 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1095 		return false;
1096 
1097 	return true;
1098 }
1099 
1100 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1101 {
1102 	/* Read a config register to help see what died. */
1103 	u16 pci_status;
1104 	int result;
1105 
1106 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1107 				      &pci_status);
1108 	if (result == PCIBIOS_SUCCESSFUL)
1109 		dev_warn(dev->ctrl.device,
1110 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1111 			 csts, pci_status);
1112 	else
1113 		dev_warn(dev->ctrl.device,
1114 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1115 			 csts, result);
1116 }
1117 
1118 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1119 {
1120 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1121 	struct nvme_queue *nvmeq = iod->nvmeq;
1122 	struct nvme_dev *dev = nvmeq->dev;
1123 	struct request *abort_req;
1124 	struct nvme_command cmd;
1125 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1126 
1127 	/* If PCI error recovery process is happening, we cannot reset or
1128 	 * the recovery mechanism will surely fail.
1129 	 */
1130 	mb();
1131 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1132 		return BLK_EH_RESET_TIMER;
1133 
1134 	/*
1135 	 * Reset immediately if the controller is failed
1136 	 */
1137 	if (nvme_should_reset(dev, csts)) {
1138 		nvme_warn_reset(dev, csts);
1139 		nvme_dev_disable(dev, false);
1140 		nvme_reset_ctrl(&dev->ctrl);
1141 		return BLK_EH_DONE;
1142 	}
1143 
1144 	/*
1145 	 * Did we miss an interrupt?
1146 	 */
1147 	if (__nvme_poll(nvmeq, req->tag)) {
1148 		dev_warn(dev->ctrl.device,
1149 			 "I/O %d QID %d timeout, completion polled\n",
1150 			 req->tag, nvmeq->qid);
1151 		return BLK_EH_DONE;
1152 	}
1153 
1154 	/*
1155 	 * Shutdown immediately if controller times out while starting. The
1156 	 * reset work will see the pci device disabled when it gets the forced
1157 	 * cancellation error. All outstanding requests are completed on
1158 	 * shutdown, so we return BLK_EH_DONE.
1159 	 */
1160 	switch (dev->ctrl.state) {
1161 	case NVME_CTRL_CONNECTING:
1162 	case NVME_CTRL_RESETTING:
1163 		dev_warn_ratelimited(dev->ctrl.device,
1164 			 "I/O %d QID %d timeout, disable controller\n",
1165 			 req->tag, nvmeq->qid);
1166 		nvme_dev_disable(dev, false);
1167 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1168 		return BLK_EH_DONE;
1169 	default:
1170 		break;
1171 	}
1172 
1173 	/*
1174  	 * Shutdown the controller immediately and schedule a reset if the
1175  	 * command was already aborted once before and still hasn't been
1176  	 * returned to the driver, or if this is the admin queue.
1177 	 */
1178 	if (!nvmeq->qid || iod->aborted) {
1179 		dev_warn(dev->ctrl.device,
1180 			 "I/O %d QID %d timeout, reset controller\n",
1181 			 req->tag, nvmeq->qid);
1182 		nvme_dev_disable(dev, false);
1183 		nvme_reset_ctrl(&dev->ctrl);
1184 
1185 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1186 		return BLK_EH_DONE;
1187 	}
1188 
1189 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1190 		atomic_inc(&dev->ctrl.abort_limit);
1191 		return BLK_EH_RESET_TIMER;
1192 	}
1193 	iod->aborted = 1;
1194 
1195 	memset(&cmd, 0, sizeof(cmd));
1196 	cmd.abort.opcode = nvme_admin_abort_cmd;
1197 	cmd.abort.cid = req->tag;
1198 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1199 
1200 	dev_warn(nvmeq->dev->ctrl.device,
1201 		"I/O %d QID %d timeout, aborting\n",
1202 		 req->tag, nvmeq->qid);
1203 
1204 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1205 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1206 	if (IS_ERR(abort_req)) {
1207 		atomic_inc(&dev->ctrl.abort_limit);
1208 		return BLK_EH_RESET_TIMER;
1209 	}
1210 
1211 	abort_req->timeout = ADMIN_TIMEOUT;
1212 	abort_req->end_io_data = NULL;
1213 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1214 
1215 	/*
1216 	 * The aborted req will be completed on receiving the abort req.
1217 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1218 	 * as the device then is in a faulty state.
1219 	 */
1220 	return BLK_EH_RESET_TIMER;
1221 }
1222 
1223 static void nvme_free_queue(struct nvme_queue *nvmeq)
1224 {
1225 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1226 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1227 	if (nvmeq->sq_cmds)
1228 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1229 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1230 }
1231 
1232 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1233 {
1234 	int i;
1235 
1236 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1237 		dev->ctrl.queue_count--;
1238 		nvme_free_queue(&dev->queues[i]);
1239 	}
1240 }
1241 
1242 /**
1243  * nvme_suspend_queue - put queue into suspended state
1244  * @nvmeq - queue to suspend
1245  */
1246 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1247 {
1248 	int vector;
1249 
1250 	spin_lock_irq(&nvmeq->cq_lock);
1251 	if (nvmeq->cq_vector == -1) {
1252 		spin_unlock_irq(&nvmeq->cq_lock);
1253 		return 1;
1254 	}
1255 	vector = nvmeq->cq_vector;
1256 	nvmeq->dev->online_queues--;
1257 	nvmeq->cq_vector = -1;
1258 	spin_unlock_irq(&nvmeq->cq_lock);
1259 
1260 	/*
1261 	 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
1262 	 * having to grab the lock.
1263 	 */
1264 	mb();
1265 
1266 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1267 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1268 
1269 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1270 
1271 	return 0;
1272 }
1273 
1274 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1275 {
1276 	struct nvme_queue *nvmeq = &dev->queues[0];
1277 	u16 start, end;
1278 
1279 	if (shutdown)
1280 		nvme_shutdown_ctrl(&dev->ctrl);
1281 	else
1282 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1283 
1284 	spin_lock_irq(&nvmeq->cq_lock);
1285 	nvme_process_cq(nvmeq, &start, &end, -1);
1286 	spin_unlock_irq(&nvmeq->cq_lock);
1287 
1288 	nvme_complete_cqes(nvmeq, start, end);
1289 }
1290 
1291 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1292 				int entry_size)
1293 {
1294 	int q_depth = dev->q_depth;
1295 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1296 					  dev->ctrl.page_size);
1297 
1298 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1299 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1300 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1301 		q_depth = div_u64(mem_per_q, entry_size);
1302 
1303 		/*
1304 		 * Ensure the reduced q_depth is above some threshold where it
1305 		 * would be better to map queues in system memory with the
1306 		 * original depth
1307 		 */
1308 		if (q_depth < 64)
1309 			return -ENOMEM;
1310 	}
1311 
1312 	return q_depth;
1313 }
1314 
1315 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1316 				int qid, int depth)
1317 {
1318 	/* CMB SQEs will be mapped before creation */
1319 	if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1320 		return 0;
1321 
1322 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1323 					    &nvmeq->sq_dma_addr, GFP_KERNEL);
1324 	if (!nvmeq->sq_cmds)
1325 		return -ENOMEM;
1326 	return 0;
1327 }
1328 
1329 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1330 {
1331 	struct nvme_queue *nvmeq = &dev->queues[qid];
1332 
1333 	if (dev->ctrl.queue_count > qid)
1334 		return 0;
1335 
1336 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1337 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1338 	if (!nvmeq->cqes)
1339 		goto free_nvmeq;
1340 
1341 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1342 		goto free_cqdma;
1343 
1344 	nvmeq->q_dmadev = dev->dev;
1345 	nvmeq->dev = dev;
1346 	spin_lock_init(&nvmeq->sq_lock);
1347 	spin_lock_init(&nvmeq->cq_lock);
1348 	nvmeq->cq_head = 0;
1349 	nvmeq->cq_phase = 1;
1350 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1351 	nvmeq->q_depth = depth;
1352 	nvmeq->qid = qid;
1353 	nvmeq->cq_vector = -1;
1354 	dev->ctrl.queue_count++;
1355 
1356 	return 0;
1357 
1358  free_cqdma:
1359 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1360 							nvmeq->cq_dma_addr);
1361  free_nvmeq:
1362 	return -ENOMEM;
1363 }
1364 
1365 static int queue_request_irq(struct nvme_queue *nvmeq)
1366 {
1367 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1368 	int nr = nvmeq->dev->ctrl.instance;
1369 
1370 	if (use_threaded_interrupts) {
1371 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1372 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1373 	} else {
1374 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1375 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1376 	}
1377 }
1378 
1379 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1380 {
1381 	struct nvme_dev *dev = nvmeq->dev;
1382 
1383 	spin_lock_irq(&nvmeq->cq_lock);
1384 	nvmeq->sq_tail = 0;
1385 	nvmeq->cq_head = 0;
1386 	nvmeq->cq_phase = 1;
1387 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1388 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1389 	nvme_dbbuf_init(dev, nvmeq, qid);
1390 	dev->online_queues++;
1391 	spin_unlock_irq(&nvmeq->cq_lock);
1392 }
1393 
1394 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1395 {
1396 	struct nvme_dev *dev = nvmeq->dev;
1397 	int result;
1398 	s16 vector;
1399 
1400 	if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1401 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1402 						      dev->ctrl.page_size);
1403 		nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1404 		nvmeq->sq_cmds_io = dev->cmb + offset;
1405 	}
1406 
1407 	/*
1408 	 * A queue's vector matches the queue identifier unless the controller
1409 	 * has only one vector available.
1410 	 */
1411 	vector = dev->num_vecs == 1 ? 0 : qid;
1412 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1413 	if (result)
1414 		return result;
1415 
1416 	result = adapter_alloc_sq(dev, qid, nvmeq);
1417 	if (result < 0)
1418 		return result;
1419 	else if (result)
1420 		goto release_cq;
1421 
1422 	/*
1423 	 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
1424 	 * invoke free_irq for it and cause a 'Trying to free already-free IRQ
1425 	 * xxx' warning if the create CQ/SQ command times out.
1426 	 */
1427 	nvmeq->cq_vector = vector;
1428 	nvme_init_queue(nvmeq, qid);
1429 	result = queue_request_irq(nvmeq);
1430 	if (result < 0)
1431 		goto release_sq;
1432 
1433 	return result;
1434 
1435 release_sq:
1436 	nvmeq->cq_vector = -1;
1437 	dev->online_queues--;
1438 	adapter_delete_sq(dev, qid);
1439 release_cq:
1440 	adapter_delete_cq(dev, qid);
1441 	return result;
1442 }
1443 
1444 static const struct blk_mq_ops nvme_mq_admin_ops = {
1445 	.queue_rq	= nvme_queue_rq,
1446 	.complete	= nvme_pci_complete_rq,
1447 	.init_hctx	= nvme_admin_init_hctx,
1448 	.exit_hctx      = nvme_admin_exit_hctx,
1449 	.init_request	= nvme_init_request,
1450 	.timeout	= nvme_timeout,
1451 };
1452 
1453 static const struct blk_mq_ops nvme_mq_ops = {
1454 	.queue_rq	= nvme_queue_rq,
1455 	.complete	= nvme_pci_complete_rq,
1456 	.init_hctx	= nvme_init_hctx,
1457 	.init_request	= nvme_init_request,
1458 	.map_queues	= nvme_pci_map_queues,
1459 	.timeout	= nvme_timeout,
1460 	.poll		= nvme_poll,
1461 };
1462 
1463 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1464 {
1465 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1466 		/*
1467 		 * If the controller was reset during removal, it's possible
1468 		 * user requests may be waiting on a stopped queue. Start the
1469 		 * queue to flush these to completion.
1470 		 */
1471 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1472 		blk_cleanup_queue(dev->ctrl.admin_q);
1473 		blk_mq_free_tag_set(&dev->admin_tagset);
1474 	}
1475 }
1476 
1477 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1478 {
1479 	if (!dev->ctrl.admin_q) {
1480 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1481 		dev->admin_tagset.nr_hw_queues = 1;
1482 
1483 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1484 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1485 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1486 		dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1487 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1488 		dev->admin_tagset.driver_data = dev;
1489 
1490 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1491 			return -ENOMEM;
1492 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1493 
1494 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1495 		if (IS_ERR(dev->ctrl.admin_q)) {
1496 			blk_mq_free_tag_set(&dev->admin_tagset);
1497 			return -ENOMEM;
1498 		}
1499 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1500 			nvme_dev_remove_admin(dev);
1501 			dev->ctrl.admin_q = NULL;
1502 			return -ENODEV;
1503 		}
1504 	} else
1505 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1506 
1507 	return 0;
1508 }
1509 
1510 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1511 {
1512 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1513 }
1514 
1515 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1516 {
1517 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1518 
1519 	if (size <= dev->bar_mapped_size)
1520 		return 0;
1521 	if (size > pci_resource_len(pdev, 0))
1522 		return -ENOMEM;
1523 	if (dev->bar)
1524 		iounmap(dev->bar);
1525 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1526 	if (!dev->bar) {
1527 		dev->bar_mapped_size = 0;
1528 		return -ENOMEM;
1529 	}
1530 	dev->bar_mapped_size = size;
1531 	dev->dbs = dev->bar + NVME_REG_DBS;
1532 
1533 	return 0;
1534 }
1535 
1536 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1537 {
1538 	int result;
1539 	u32 aqa;
1540 	struct nvme_queue *nvmeq;
1541 
1542 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1543 	if (result < 0)
1544 		return result;
1545 
1546 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1547 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1548 
1549 	if (dev->subsystem &&
1550 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1551 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1552 
1553 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1554 	if (result < 0)
1555 		return result;
1556 
1557 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1558 	if (result)
1559 		return result;
1560 
1561 	nvmeq = &dev->queues[0];
1562 	aqa = nvmeq->q_depth - 1;
1563 	aqa |= aqa << 16;
1564 
1565 	writel(aqa, dev->bar + NVME_REG_AQA);
1566 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1567 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1568 
1569 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1570 	if (result)
1571 		return result;
1572 
1573 	nvmeq->cq_vector = 0;
1574 	nvme_init_queue(nvmeq, 0);
1575 	result = queue_request_irq(nvmeq);
1576 	if (result) {
1577 		nvmeq->cq_vector = -1;
1578 		return result;
1579 	}
1580 
1581 	return result;
1582 }
1583 
1584 static int nvme_create_io_queues(struct nvme_dev *dev)
1585 {
1586 	unsigned i, max;
1587 	int ret = 0;
1588 
1589 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1590 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1591 			ret = -ENOMEM;
1592 			break;
1593 		}
1594 	}
1595 
1596 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1597 	for (i = dev->online_queues; i <= max; i++) {
1598 		ret = nvme_create_queue(&dev->queues[i], i);
1599 		if (ret)
1600 			break;
1601 	}
1602 
1603 	/*
1604 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1605 	 * than the desired amount of queues, and even a controller without
1606 	 * I/O queues can still be used to issue admin commands.  This might
1607 	 * be useful to upgrade a buggy firmware for example.
1608 	 */
1609 	return ret >= 0 ? 0 : ret;
1610 }
1611 
1612 static ssize_t nvme_cmb_show(struct device *dev,
1613 			     struct device_attribute *attr,
1614 			     char *buf)
1615 {
1616 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1617 
1618 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1619 		       ndev->cmbloc, ndev->cmbsz);
1620 }
1621 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1622 
1623 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1624 {
1625 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1626 
1627 	return 1ULL << (12 + 4 * szu);
1628 }
1629 
1630 static u32 nvme_cmb_size(struct nvme_dev *dev)
1631 {
1632 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1633 }
1634 
1635 static void nvme_map_cmb(struct nvme_dev *dev)
1636 {
1637 	u64 size, offset;
1638 	resource_size_t bar_size;
1639 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1640 	int bar;
1641 
1642 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1643 	if (!dev->cmbsz)
1644 		return;
1645 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1646 
1647 	if (!use_cmb_sqes)
1648 		return;
1649 
1650 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1651 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1652 	bar = NVME_CMB_BIR(dev->cmbloc);
1653 	bar_size = pci_resource_len(pdev, bar);
1654 
1655 	if (offset > bar_size)
1656 		return;
1657 
1658 	/*
1659 	 * Controllers may support a CMB size larger than their BAR,
1660 	 * for example, due to being behind a bridge. Reduce the CMB to
1661 	 * the reported size of the BAR
1662 	 */
1663 	if (size > bar_size - offset)
1664 		size = bar_size - offset;
1665 
1666 	dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1667 	if (!dev->cmb)
1668 		return;
1669 	dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1670 	dev->cmb_size = size;
1671 
1672 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1673 				    &dev_attr_cmb.attr, NULL))
1674 		dev_warn(dev->ctrl.device,
1675 			 "failed to add sysfs attribute for CMB\n");
1676 }
1677 
1678 static inline void nvme_release_cmb(struct nvme_dev *dev)
1679 {
1680 	if (dev->cmb) {
1681 		iounmap(dev->cmb);
1682 		dev->cmb = NULL;
1683 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1684 					     &dev_attr_cmb.attr, NULL);
1685 		dev->cmbsz = 0;
1686 	}
1687 }
1688 
1689 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1690 {
1691 	u64 dma_addr = dev->host_mem_descs_dma;
1692 	struct nvme_command c;
1693 	int ret;
1694 
1695 	memset(&c, 0, sizeof(c));
1696 	c.features.opcode	= nvme_admin_set_features;
1697 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1698 	c.features.dword11	= cpu_to_le32(bits);
1699 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1700 					      ilog2(dev->ctrl.page_size));
1701 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1702 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1703 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1704 
1705 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1706 	if (ret) {
1707 		dev_warn(dev->ctrl.device,
1708 			 "failed to set host mem (err %d, flags %#x).\n",
1709 			 ret, bits);
1710 	}
1711 	return ret;
1712 }
1713 
1714 static void nvme_free_host_mem(struct nvme_dev *dev)
1715 {
1716 	int i;
1717 
1718 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1719 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1720 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1721 
1722 		dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1723 				le64_to_cpu(desc->addr));
1724 	}
1725 
1726 	kfree(dev->host_mem_desc_bufs);
1727 	dev->host_mem_desc_bufs = NULL;
1728 	dma_free_coherent(dev->dev,
1729 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1730 			dev->host_mem_descs, dev->host_mem_descs_dma);
1731 	dev->host_mem_descs = NULL;
1732 	dev->nr_host_mem_descs = 0;
1733 }
1734 
1735 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1736 		u32 chunk_size)
1737 {
1738 	struct nvme_host_mem_buf_desc *descs;
1739 	u32 max_entries, len;
1740 	dma_addr_t descs_dma;
1741 	int i = 0;
1742 	void **bufs;
1743 	u64 size, tmp;
1744 
1745 	tmp = (preferred + chunk_size - 1);
1746 	do_div(tmp, chunk_size);
1747 	max_entries = tmp;
1748 
1749 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1750 		max_entries = dev->ctrl.hmmaxd;
1751 
1752 	descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1753 			&descs_dma, GFP_KERNEL);
1754 	if (!descs)
1755 		goto out;
1756 
1757 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1758 	if (!bufs)
1759 		goto out_free_descs;
1760 
1761 	for (size = 0; size < preferred && i < max_entries; size += len) {
1762 		dma_addr_t dma_addr;
1763 
1764 		len = min_t(u64, chunk_size, preferred - size);
1765 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1766 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1767 		if (!bufs[i])
1768 			break;
1769 
1770 		descs[i].addr = cpu_to_le64(dma_addr);
1771 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1772 		i++;
1773 	}
1774 
1775 	if (!size)
1776 		goto out_free_bufs;
1777 
1778 	dev->nr_host_mem_descs = i;
1779 	dev->host_mem_size = size;
1780 	dev->host_mem_descs = descs;
1781 	dev->host_mem_descs_dma = descs_dma;
1782 	dev->host_mem_desc_bufs = bufs;
1783 	return 0;
1784 
1785 out_free_bufs:
1786 	while (--i >= 0) {
1787 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1788 
1789 		dma_free_coherent(dev->dev, size, bufs[i],
1790 				le64_to_cpu(descs[i].addr));
1791 	}
1792 
1793 	kfree(bufs);
1794 out_free_descs:
1795 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1796 			descs_dma);
1797 out:
1798 	dev->host_mem_descs = NULL;
1799 	return -ENOMEM;
1800 }
1801 
1802 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1803 {
1804 	u32 chunk_size;
1805 
1806 	/* start big and work our way down */
1807 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1808 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1809 	     chunk_size /= 2) {
1810 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1811 			if (!min || dev->host_mem_size >= min)
1812 				return 0;
1813 			nvme_free_host_mem(dev);
1814 		}
1815 	}
1816 
1817 	return -ENOMEM;
1818 }
1819 
1820 static int nvme_setup_host_mem(struct nvme_dev *dev)
1821 {
1822 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1823 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1824 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1825 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1826 	int ret;
1827 
1828 	preferred = min(preferred, max);
1829 	if (min > max) {
1830 		dev_warn(dev->ctrl.device,
1831 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1832 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1833 		nvme_free_host_mem(dev);
1834 		return 0;
1835 	}
1836 
1837 	/*
1838 	 * If we already have a buffer allocated check if we can reuse it.
1839 	 */
1840 	if (dev->host_mem_descs) {
1841 		if (dev->host_mem_size >= min)
1842 			enable_bits |= NVME_HOST_MEM_RETURN;
1843 		else
1844 			nvme_free_host_mem(dev);
1845 	}
1846 
1847 	if (!dev->host_mem_descs) {
1848 		if (nvme_alloc_host_mem(dev, min, preferred)) {
1849 			dev_warn(dev->ctrl.device,
1850 				"failed to allocate host memory buffer.\n");
1851 			return 0; /* controller must work without HMB */
1852 		}
1853 
1854 		dev_info(dev->ctrl.device,
1855 			"allocated %lld MiB host memory buffer.\n",
1856 			dev->host_mem_size >> ilog2(SZ_1M));
1857 	}
1858 
1859 	ret = nvme_set_host_mem(dev, enable_bits);
1860 	if (ret)
1861 		nvme_free_host_mem(dev);
1862 	return ret;
1863 }
1864 
1865 static int nvme_setup_io_queues(struct nvme_dev *dev)
1866 {
1867 	struct nvme_queue *adminq = &dev->queues[0];
1868 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1869 	int result, nr_io_queues;
1870 	unsigned long size;
1871 
1872 	struct irq_affinity affd = {
1873 		.pre_vectors = 1
1874 	};
1875 
1876 	nr_io_queues = num_possible_cpus();
1877 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1878 	if (result < 0)
1879 		return result;
1880 
1881 	if (nr_io_queues == 0)
1882 		return 0;
1883 
1884 	if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1885 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1886 				sizeof(struct nvme_command));
1887 		if (result > 0)
1888 			dev->q_depth = result;
1889 		else
1890 			nvme_release_cmb(dev);
1891 	}
1892 
1893 	do {
1894 		size = db_bar_size(dev, nr_io_queues);
1895 		result = nvme_remap_bar(dev, size);
1896 		if (!result)
1897 			break;
1898 		if (!--nr_io_queues)
1899 			return -ENOMEM;
1900 	} while (1);
1901 	adminq->q_db = dev->dbs;
1902 
1903 	/* Deregister the admin queue's interrupt */
1904 	pci_free_irq(pdev, 0, adminq);
1905 
1906 	/*
1907 	 * If we enable msix early due to not intx, disable it again before
1908 	 * setting up the full range we need.
1909 	 */
1910 	pci_free_irq_vectors(pdev);
1911 	result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1912 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1913 	if (result <= 0)
1914 		return -EIO;
1915 	dev->num_vecs = result;
1916 	dev->max_qid = max(result - 1, 1);
1917 
1918 	/*
1919 	 * Should investigate if there's a performance win from allocating
1920 	 * more queues than interrupt vectors; it might allow the submission
1921 	 * path to scale better, even if the receive path is limited by the
1922 	 * number of interrupts.
1923 	 */
1924 
1925 	result = queue_request_irq(adminq);
1926 	if (result) {
1927 		adminq->cq_vector = -1;
1928 		return result;
1929 	}
1930 	return nvme_create_io_queues(dev);
1931 }
1932 
1933 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1934 {
1935 	struct nvme_queue *nvmeq = req->end_io_data;
1936 
1937 	blk_mq_free_request(req);
1938 	complete(&nvmeq->dev->ioq_wait);
1939 }
1940 
1941 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1942 {
1943 	struct nvme_queue *nvmeq = req->end_io_data;
1944 	u16 start, end;
1945 
1946 	if (!error) {
1947 		unsigned long flags;
1948 
1949 		spin_lock_irqsave(&nvmeq->cq_lock, flags);
1950 		nvme_process_cq(nvmeq, &start, &end, -1);
1951 		spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
1952 
1953 		nvme_complete_cqes(nvmeq, start, end);
1954 	}
1955 
1956 	nvme_del_queue_end(req, error);
1957 }
1958 
1959 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1960 {
1961 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1962 	struct request *req;
1963 	struct nvme_command cmd;
1964 
1965 	memset(&cmd, 0, sizeof(cmd));
1966 	cmd.delete_queue.opcode = opcode;
1967 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1968 
1969 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1970 	if (IS_ERR(req))
1971 		return PTR_ERR(req);
1972 
1973 	req->timeout = ADMIN_TIMEOUT;
1974 	req->end_io_data = nvmeq;
1975 
1976 	blk_execute_rq_nowait(q, NULL, req, false,
1977 			opcode == nvme_admin_delete_cq ?
1978 				nvme_del_cq_end : nvme_del_queue_end);
1979 	return 0;
1980 }
1981 
1982 static void nvme_disable_io_queues(struct nvme_dev *dev)
1983 {
1984 	int pass, queues = dev->online_queues - 1;
1985 	unsigned long timeout;
1986 	u8 opcode = nvme_admin_delete_sq;
1987 
1988 	for (pass = 0; pass < 2; pass++) {
1989 		int sent = 0, i = queues;
1990 
1991 		reinit_completion(&dev->ioq_wait);
1992  retry:
1993 		timeout = ADMIN_TIMEOUT;
1994 		for (; i > 0; i--, sent++)
1995 			if (nvme_delete_queue(&dev->queues[i], opcode))
1996 				break;
1997 
1998 		while (sent--) {
1999 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2000 			if (timeout == 0)
2001 				return;
2002 			if (i)
2003 				goto retry;
2004 		}
2005 		opcode = nvme_admin_delete_cq;
2006 	}
2007 }
2008 
2009 /*
2010  * return error value only when tagset allocation failed
2011  */
2012 static int nvme_dev_add(struct nvme_dev *dev)
2013 {
2014 	int ret;
2015 
2016 	if (!dev->ctrl.tagset) {
2017 		dev->tagset.ops = &nvme_mq_ops;
2018 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2019 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2020 		dev->tagset.numa_node = dev_to_node(dev->dev);
2021 		dev->tagset.queue_depth =
2022 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2023 		dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2024 		if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2025 			dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2026 					nvme_pci_cmd_size(dev, true));
2027 		}
2028 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2029 		dev->tagset.driver_data = dev;
2030 
2031 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2032 		if (ret) {
2033 			dev_warn(dev->ctrl.device,
2034 				"IO queues tagset allocation failed %d\n", ret);
2035 			return ret;
2036 		}
2037 		dev->ctrl.tagset = &dev->tagset;
2038 
2039 		nvme_dbbuf_set(dev);
2040 	} else {
2041 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2042 
2043 		/* Free previously allocated queues that are no longer usable */
2044 		nvme_free_queues(dev, dev->online_queues);
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static int nvme_pci_enable(struct nvme_dev *dev)
2051 {
2052 	int result = -ENOMEM;
2053 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2054 
2055 	if (pci_enable_device_mem(pdev))
2056 		return result;
2057 
2058 	pci_set_master(pdev);
2059 
2060 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2061 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2062 		goto disable;
2063 
2064 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2065 		result = -ENODEV;
2066 		goto disable;
2067 	}
2068 
2069 	/*
2070 	 * Some devices and/or platforms don't advertise or work with INTx
2071 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2072 	 * adjust this later.
2073 	 */
2074 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2075 	if (result < 0)
2076 		return result;
2077 
2078 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2079 
2080 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2081 				io_queue_depth);
2082 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2083 	dev->dbs = dev->bar + 4096;
2084 
2085 	/*
2086 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2087 	 * some MacBook7,1 to avoid controller resets and data loss.
2088 	 */
2089 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2090 		dev->q_depth = 2;
2091 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2092 			"set queue depth=%u to work around controller resets\n",
2093 			dev->q_depth);
2094 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2095 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2096 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2097 		dev->q_depth = 64;
2098 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2099                         "set queue depth=%u\n", dev->q_depth);
2100 	}
2101 
2102 	nvme_map_cmb(dev);
2103 
2104 	pci_enable_pcie_error_reporting(pdev);
2105 	pci_save_state(pdev);
2106 	return 0;
2107 
2108  disable:
2109 	pci_disable_device(pdev);
2110 	return result;
2111 }
2112 
2113 static void nvme_dev_unmap(struct nvme_dev *dev)
2114 {
2115 	if (dev->bar)
2116 		iounmap(dev->bar);
2117 	pci_release_mem_regions(to_pci_dev(dev->dev));
2118 }
2119 
2120 static void nvme_pci_disable(struct nvme_dev *dev)
2121 {
2122 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2123 
2124 	nvme_release_cmb(dev);
2125 	pci_free_irq_vectors(pdev);
2126 
2127 	if (pci_is_enabled(pdev)) {
2128 		pci_disable_pcie_error_reporting(pdev);
2129 		pci_disable_device(pdev);
2130 	}
2131 }
2132 
2133 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2134 {
2135 	int i;
2136 	bool dead = true;
2137 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2138 
2139 	mutex_lock(&dev->shutdown_lock);
2140 	if (pci_is_enabled(pdev)) {
2141 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2142 
2143 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2144 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2145 			nvme_start_freeze(&dev->ctrl);
2146 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2147 			pdev->error_state  != pci_channel_io_normal);
2148 	}
2149 
2150 	/*
2151 	 * Give the controller a chance to complete all entered requests if
2152 	 * doing a safe shutdown.
2153 	 */
2154 	if (!dead) {
2155 		if (shutdown)
2156 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2157 	}
2158 
2159 	nvme_stop_queues(&dev->ctrl);
2160 
2161 	if (!dead && dev->ctrl.queue_count > 0) {
2162 		nvme_disable_io_queues(dev);
2163 		nvme_disable_admin_queue(dev, shutdown);
2164 	}
2165 	for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2166 		nvme_suspend_queue(&dev->queues[i]);
2167 
2168 	nvme_pci_disable(dev);
2169 
2170 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2171 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2172 
2173 	/*
2174 	 * The driver will not be starting up queues again if shutting down so
2175 	 * must flush all entered requests to their failed completion to avoid
2176 	 * deadlocking blk-mq hot-cpu notifier.
2177 	 */
2178 	if (shutdown)
2179 		nvme_start_queues(&dev->ctrl);
2180 	mutex_unlock(&dev->shutdown_lock);
2181 }
2182 
2183 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2184 {
2185 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2186 						PAGE_SIZE, PAGE_SIZE, 0);
2187 	if (!dev->prp_page_pool)
2188 		return -ENOMEM;
2189 
2190 	/* Optimisation for I/Os between 4k and 128k */
2191 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2192 						256, 256, 0);
2193 	if (!dev->prp_small_pool) {
2194 		dma_pool_destroy(dev->prp_page_pool);
2195 		return -ENOMEM;
2196 	}
2197 	return 0;
2198 }
2199 
2200 static void nvme_release_prp_pools(struct nvme_dev *dev)
2201 {
2202 	dma_pool_destroy(dev->prp_page_pool);
2203 	dma_pool_destroy(dev->prp_small_pool);
2204 }
2205 
2206 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2207 {
2208 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2209 
2210 	nvme_dbbuf_dma_free(dev);
2211 	put_device(dev->dev);
2212 	if (dev->tagset.tags)
2213 		blk_mq_free_tag_set(&dev->tagset);
2214 	if (dev->ctrl.admin_q)
2215 		blk_put_queue(dev->ctrl.admin_q);
2216 	kfree(dev->queues);
2217 	free_opal_dev(dev->ctrl.opal_dev);
2218 	mempool_destroy(dev->iod_mempool);
2219 	kfree(dev);
2220 }
2221 
2222 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2223 {
2224 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2225 
2226 	nvme_get_ctrl(&dev->ctrl);
2227 	nvme_dev_disable(dev, false);
2228 	nvme_kill_queues(&dev->ctrl);
2229 	if (!queue_work(nvme_wq, &dev->remove_work))
2230 		nvme_put_ctrl(&dev->ctrl);
2231 }
2232 
2233 static void nvme_reset_work(struct work_struct *work)
2234 {
2235 	struct nvme_dev *dev =
2236 		container_of(work, struct nvme_dev, ctrl.reset_work);
2237 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2238 	int result = -ENODEV;
2239 	enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2240 
2241 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2242 		goto out;
2243 
2244 	/*
2245 	 * If we're called to reset a live controller first shut it down before
2246 	 * moving on.
2247 	 */
2248 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2249 		nvme_dev_disable(dev, false);
2250 
2251 	/*
2252 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2253 	 * initializing procedure here.
2254 	 */
2255 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2256 		dev_warn(dev->ctrl.device,
2257 			"failed to mark controller CONNECTING\n");
2258 		goto out;
2259 	}
2260 
2261 	result = nvme_pci_enable(dev);
2262 	if (result)
2263 		goto out;
2264 
2265 	result = nvme_pci_configure_admin_queue(dev);
2266 	if (result)
2267 		goto out;
2268 
2269 	result = nvme_alloc_admin_tags(dev);
2270 	if (result)
2271 		goto out;
2272 
2273 	/*
2274 	 * Limit the max command size to prevent iod->sg allocations going
2275 	 * over a single page.
2276 	 */
2277 	dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2278 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2279 
2280 	result = nvme_init_identify(&dev->ctrl);
2281 	if (result)
2282 		goto out;
2283 
2284 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2285 		if (!dev->ctrl.opal_dev)
2286 			dev->ctrl.opal_dev =
2287 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2288 		else if (was_suspend)
2289 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2290 	} else {
2291 		free_opal_dev(dev->ctrl.opal_dev);
2292 		dev->ctrl.opal_dev = NULL;
2293 	}
2294 
2295 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2296 		result = nvme_dbbuf_dma_alloc(dev);
2297 		if (result)
2298 			dev_warn(dev->dev,
2299 				 "unable to allocate dma for dbbuf\n");
2300 	}
2301 
2302 	if (dev->ctrl.hmpre) {
2303 		result = nvme_setup_host_mem(dev);
2304 		if (result < 0)
2305 			goto out;
2306 	}
2307 
2308 	result = nvme_setup_io_queues(dev);
2309 	if (result)
2310 		goto out;
2311 
2312 	/*
2313 	 * Keep the controller around but remove all namespaces if we don't have
2314 	 * any working I/O queue.
2315 	 */
2316 	if (dev->online_queues < 2) {
2317 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2318 		nvme_kill_queues(&dev->ctrl);
2319 		nvme_remove_namespaces(&dev->ctrl);
2320 		new_state = NVME_CTRL_ADMIN_ONLY;
2321 	} else {
2322 		nvme_start_queues(&dev->ctrl);
2323 		nvme_wait_freeze(&dev->ctrl);
2324 		/* hit this only when allocate tagset fails */
2325 		if (nvme_dev_add(dev))
2326 			new_state = NVME_CTRL_ADMIN_ONLY;
2327 		nvme_unfreeze(&dev->ctrl);
2328 	}
2329 
2330 	/*
2331 	 * If only admin queue live, keep it to do further investigation or
2332 	 * recovery.
2333 	 */
2334 	if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2335 		dev_warn(dev->ctrl.device,
2336 			"failed to mark controller state %d\n", new_state);
2337 		goto out;
2338 	}
2339 
2340 	nvme_start_ctrl(&dev->ctrl);
2341 	return;
2342 
2343  out:
2344 	nvme_remove_dead_ctrl(dev, result);
2345 }
2346 
2347 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2348 {
2349 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2350 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2351 
2352 	if (pci_get_drvdata(pdev))
2353 		device_release_driver(&pdev->dev);
2354 	nvme_put_ctrl(&dev->ctrl);
2355 }
2356 
2357 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2358 {
2359 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2360 	return 0;
2361 }
2362 
2363 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2364 {
2365 	writel(val, to_nvme_dev(ctrl)->bar + off);
2366 	return 0;
2367 }
2368 
2369 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2370 {
2371 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2372 	return 0;
2373 }
2374 
2375 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2376 {
2377 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2378 
2379 	return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2380 }
2381 
2382 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2383 	.name			= "pcie",
2384 	.module			= THIS_MODULE,
2385 	.flags			= NVME_F_METADATA_SUPPORTED,
2386 	.reg_read32		= nvme_pci_reg_read32,
2387 	.reg_write32		= nvme_pci_reg_write32,
2388 	.reg_read64		= nvme_pci_reg_read64,
2389 	.free_ctrl		= nvme_pci_free_ctrl,
2390 	.submit_async_event	= nvme_pci_submit_async_event,
2391 	.get_address		= nvme_pci_get_address,
2392 };
2393 
2394 static int nvme_dev_map(struct nvme_dev *dev)
2395 {
2396 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2397 
2398 	if (pci_request_mem_regions(pdev, "nvme"))
2399 		return -ENODEV;
2400 
2401 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2402 		goto release;
2403 
2404 	return 0;
2405   release:
2406 	pci_release_mem_regions(pdev);
2407 	return -ENODEV;
2408 }
2409 
2410 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2411 {
2412 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2413 		/*
2414 		 * Several Samsung devices seem to drop off the PCIe bus
2415 		 * randomly when APST is on and uses the deepest sleep state.
2416 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2417 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2418 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2419 		 * laptops.
2420 		 */
2421 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2422 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2423 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2424 			return NVME_QUIRK_NO_DEEPEST_PS;
2425 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2426 		/*
2427 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2428 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2429 		 * within few minutes after bootup on a Coffee Lake board -
2430 		 * ASUS PRIME Z370-A
2431 		 */
2432 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2433 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2434 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2435 			return NVME_QUIRK_NO_APST;
2436 	}
2437 
2438 	return 0;
2439 }
2440 
2441 static void nvme_async_probe(void *data, async_cookie_t cookie)
2442 {
2443 	struct nvme_dev *dev = data;
2444 
2445 	nvme_reset_ctrl_sync(&dev->ctrl);
2446 	flush_work(&dev->ctrl.scan_work);
2447 	nvme_put_ctrl(&dev->ctrl);
2448 }
2449 
2450 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2451 {
2452 	int node, result = -ENOMEM;
2453 	struct nvme_dev *dev;
2454 	unsigned long quirks = id->driver_data;
2455 	size_t alloc_size;
2456 
2457 	node = dev_to_node(&pdev->dev);
2458 	if (node == NUMA_NO_NODE)
2459 		set_dev_node(&pdev->dev, first_memory_node);
2460 
2461 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2462 	if (!dev)
2463 		return -ENOMEM;
2464 
2465 	dev->queues = kcalloc_node(num_possible_cpus() + 1,
2466 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2467 	if (!dev->queues)
2468 		goto free;
2469 
2470 	dev->dev = get_device(&pdev->dev);
2471 	pci_set_drvdata(pdev, dev);
2472 
2473 	result = nvme_dev_map(dev);
2474 	if (result)
2475 		goto put_pci;
2476 
2477 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2478 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2479 	mutex_init(&dev->shutdown_lock);
2480 	init_completion(&dev->ioq_wait);
2481 
2482 	result = nvme_setup_prp_pools(dev);
2483 	if (result)
2484 		goto unmap;
2485 
2486 	quirks |= check_vendor_combination_bug(pdev);
2487 
2488 	/*
2489 	 * Double check that our mempool alloc size will cover the biggest
2490 	 * command we support.
2491 	 */
2492 	alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2493 						NVME_MAX_SEGS, true);
2494 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2495 
2496 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2497 						mempool_kfree,
2498 						(void *) alloc_size,
2499 						GFP_KERNEL, node);
2500 	if (!dev->iod_mempool) {
2501 		result = -ENOMEM;
2502 		goto release_pools;
2503 	}
2504 
2505 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2506 			quirks);
2507 	if (result)
2508 		goto release_mempool;
2509 
2510 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2511 
2512 	nvme_get_ctrl(&dev->ctrl);
2513 	async_schedule(nvme_async_probe, dev);
2514 
2515 	return 0;
2516 
2517  release_mempool:
2518 	mempool_destroy(dev->iod_mempool);
2519  release_pools:
2520 	nvme_release_prp_pools(dev);
2521  unmap:
2522 	nvme_dev_unmap(dev);
2523  put_pci:
2524 	put_device(dev->dev);
2525  free:
2526 	kfree(dev->queues);
2527 	kfree(dev);
2528 	return result;
2529 }
2530 
2531 static void nvme_reset_prepare(struct pci_dev *pdev)
2532 {
2533 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2534 	nvme_dev_disable(dev, false);
2535 }
2536 
2537 static void nvme_reset_done(struct pci_dev *pdev)
2538 {
2539 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2540 	nvme_reset_ctrl_sync(&dev->ctrl);
2541 }
2542 
2543 static void nvme_shutdown(struct pci_dev *pdev)
2544 {
2545 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2546 	nvme_dev_disable(dev, true);
2547 }
2548 
2549 /*
2550  * The driver's remove may be called on a device in a partially initialized
2551  * state. This function must not have any dependencies on the device state in
2552  * order to proceed.
2553  */
2554 static void nvme_remove(struct pci_dev *pdev)
2555 {
2556 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2557 
2558 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2559 
2560 	cancel_work_sync(&dev->ctrl.reset_work);
2561 	pci_set_drvdata(pdev, NULL);
2562 
2563 	if (!pci_device_is_present(pdev)) {
2564 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2565 		nvme_dev_disable(dev, true);
2566 	}
2567 
2568 	flush_work(&dev->ctrl.reset_work);
2569 	nvme_stop_ctrl(&dev->ctrl);
2570 	nvme_remove_namespaces(&dev->ctrl);
2571 	nvme_dev_disable(dev, true);
2572 	nvme_free_host_mem(dev);
2573 	nvme_dev_remove_admin(dev);
2574 	nvme_free_queues(dev, 0);
2575 	nvme_uninit_ctrl(&dev->ctrl);
2576 	nvme_release_prp_pools(dev);
2577 	nvme_dev_unmap(dev);
2578 	nvme_put_ctrl(&dev->ctrl);
2579 }
2580 
2581 #ifdef CONFIG_PM_SLEEP
2582 static int nvme_suspend(struct device *dev)
2583 {
2584 	struct pci_dev *pdev = to_pci_dev(dev);
2585 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2586 
2587 	nvme_dev_disable(ndev, true);
2588 	return 0;
2589 }
2590 
2591 static int nvme_resume(struct device *dev)
2592 {
2593 	struct pci_dev *pdev = to_pci_dev(dev);
2594 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2595 
2596 	nvme_reset_ctrl(&ndev->ctrl);
2597 	return 0;
2598 }
2599 #endif
2600 
2601 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2602 
2603 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2604 						pci_channel_state_t state)
2605 {
2606 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2607 
2608 	/*
2609 	 * A frozen channel requires a reset. When detected, this method will
2610 	 * shutdown the controller to quiesce. The controller will be restarted
2611 	 * after the slot reset through driver's slot_reset callback.
2612 	 */
2613 	switch (state) {
2614 	case pci_channel_io_normal:
2615 		return PCI_ERS_RESULT_CAN_RECOVER;
2616 	case pci_channel_io_frozen:
2617 		dev_warn(dev->ctrl.device,
2618 			"frozen state error detected, reset controller\n");
2619 		nvme_dev_disable(dev, false);
2620 		return PCI_ERS_RESULT_NEED_RESET;
2621 	case pci_channel_io_perm_failure:
2622 		dev_warn(dev->ctrl.device,
2623 			"failure state error detected, request disconnect\n");
2624 		return PCI_ERS_RESULT_DISCONNECT;
2625 	}
2626 	return PCI_ERS_RESULT_NEED_RESET;
2627 }
2628 
2629 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2630 {
2631 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2632 
2633 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2634 	pci_restore_state(pdev);
2635 	nvme_reset_ctrl(&dev->ctrl);
2636 	return PCI_ERS_RESULT_RECOVERED;
2637 }
2638 
2639 static void nvme_error_resume(struct pci_dev *pdev)
2640 {
2641 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2642 
2643 	flush_work(&dev->ctrl.reset_work);
2644 	pci_cleanup_aer_uncorrect_error_status(pdev);
2645 }
2646 
2647 static const struct pci_error_handlers nvme_err_handler = {
2648 	.error_detected	= nvme_error_detected,
2649 	.slot_reset	= nvme_slot_reset,
2650 	.resume		= nvme_error_resume,
2651 	.reset_prepare	= nvme_reset_prepare,
2652 	.reset_done	= nvme_reset_done,
2653 };
2654 
2655 static const struct pci_device_id nvme_id_table[] = {
2656 	{ PCI_VDEVICE(INTEL, 0x0953),
2657 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2658 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2659 	{ PCI_VDEVICE(INTEL, 0x0a53),
2660 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2661 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2662 	{ PCI_VDEVICE(INTEL, 0x0a54),
2663 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2664 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2665 	{ PCI_VDEVICE(INTEL, 0x0a55),
2666 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2667 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2668 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2669 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2670 				NVME_QUIRK_MEDIUM_PRIO_SQ },
2671 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2672 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2673 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2674 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2675 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2676 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2677 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
2678 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2679 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2680 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2681 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2682 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2683 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2684 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2685 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
2686 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2687 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
2688 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2689 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
2690 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2691 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2692 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2693 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2694 	{ 0, }
2695 };
2696 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2697 
2698 static struct pci_driver nvme_driver = {
2699 	.name		= "nvme",
2700 	.id_table	= nvme_id_table,
2701 	.probe		= nvme_probe,
2702 	.remove		= nvme_remove,
2703 	.shutdown	= nvme_shutdown,
2704 	.driver		= {
2705 		.pm	= &nvme_dev_pm_ops,
2706 	},
2707 	.sriov_configure = pci_sriov_configure_simple,
2708 	.err_handler	= &nvme_err_handler,
2709 };
2710 
2711 static int __init nvme_init(void)
2712 {
2713 	return pci_register_driver(&nvme_driver);
2714 }
2715 
2716 static void __exit nvme_exit(void)
2717 {
2718 	pci_unregister_driver(&nvme_driver);
2719 	flush_workqueue(nvme_wq);
2720 	_nvme_check_size();
2721 }
2722 
2723 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2724 MODULE_LICENSE("GPL");
2725 MODULE_VERSION("1.0");
2726 module_init(nvme_init);
2727 module_exit(nvme_exit);
2728