1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/once.h> 22 #include <linux/pci.h> 23 #include <linux/suspend.h> 24 #include <linux/t10-pi.h> 25 #include <linux/types.h> 26 #include <linux/io-64-nonatomic-lo-hi.h> 27 #include <linux/io-64-nonatomic-hi-lo.h> 28 #include <linux/sed-opal.h> 29 #include <linux/pci-p2pdma.h> 30 31 #include "trace.h" 32 #include "nvme.h" 33 34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 36 37 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 38 39 /* 40 * These can be higher, but we need to ensure that any command doesn't 41 * require an sg allocation that needs more than a page of data. 42 */ 43 #define NVME_MAX_KB_SZ 4096 44 #define NVME_MAX_SEGS 127 45 46 static int use_threaded_interrupts; 47 module_param(use_threaded_interrupts, int, 0); 48 49 static bool use_cmb_sqes = true; 50 module_param(use_cmb_sqes, bool, 0444); 51 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 52 53 static unsigned int max_host_mem_size_mb = 128; 54 module_param(max_host_mem_size_mb, uint, 0444); 55 MODULE_PARM_DESC(max_host_mem_size_mb, 56 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 57 58 static unsigned int sgl_threshold = SZ_32K; 59 module_param(sgl_threshold, uint, 0644); 60 MODULE_PARM_DESC(sgl_threshold, 61 "Use SGLs when average request segment size is larger or equal to " 62 "this size. Use 0 to disable SGLs."); 63 64 #define NVME_PCI_MIN_QUEUE_SIZE 2 65 #define NVME_PCI_MAX_QUEUE_SIZE 4095 66 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 67 static const struct kernel_param_ops io_queue_depth_ops = { 68 .set = io_queue_depth_set, 69 .get = param_get_uint, 70 }; 71 72 static unsigned int io_queue_depth = 1024; 73 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 74 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 75 76 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 77 { 78 unsigned int n; 79 int ret; 80 81 ret = kstrtouint(val, 10, &n); 82 if (ret != 0 || n > num_possible_cpus()) 83 return -EINVAL; 84 return param_set_uint(val, kp); 85 } 86 87 static const struct kernel_param_ops io_queue_count_ops = { 88 .set = io_queue_count_set, 89 .get = param_get_uint, 90 }; 91 92 static unsigned int write_queues; 93 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 94 MODULE_PARM_DESC(write_queues, 95 "Number of queues to use for writes. If not set, reads and writes " 96 "will share a queue set."); 97 98 static unsigned int poll_queues; 99 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 100 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 101 102 static bool noacpi; 103 module_param(noacpi, bool, 0444); 104 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 105 106 struct nvme_dev; 107 struct nvme_queue; 108 109 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 110 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 111 112 /* 113 * Represents an NVM Express device. Each nvme_dev is a PCI function. 114 */ 115 struct nvme_dev { 116 struct nvme_queue *queues; 117 struct blk_mq_tag_set tagset; 118 struct blk_mq_tag_set admin_tagset; 119 u32 __iomem *dbs; 120 struct device *dev; 121 struct dma_pool *prp_page_pool; 122 struct dma_pool *prp_small_pool; 123 unsigned online_queues; 124 unsigned max_qid; 125 unsigned io_queues[HCTX_MAX_TYPES]; 126 unsigned int num_vecs; 127 u32 q_depth; 128 int io_sqes; 129 u32 db_stride; 130 void __iomem *bar; 131 unsigned long bar_mapped_size; 132 struct work_struct remove_work; 133 struct mutex shutdown_lock; 134 bool subsystem; 135 u64 cmb_size; 136 bool cmb_use_sqes; 137 u32 cmbsz; 138 u32 cmbloc; 139 struct nvme_ctrl ctrl; 140 u32 last_ps; 141 bool hmb; 142 143 mempool_t *iod_mempool; 144 145 /* shadow doorbell buffer support: */ 146 u32 *dbbuf_dbs; 147 dma_addr_t dbbuf_dbs_dma_addr; 148 u32 *dbbuf_eis; 149 dma_addr_t dbbuf_eis_dma_addr; 150 151 /* host memory buffer support: */ 152 u64 host_mem_size; 153 u32 nr_host_mem_descs; 154 dma_addr_t host_mem_descs_dma; 155 struct nvme_host_mem_buf_desc *host_mem_descs; 156 void **host_mem_desc_bufs; 157 unsigned int nr_allocated_queues; 158 unsigned int nr_write_queues; 159 unsigned int nr_poll_queues; 160 161 bool attrs_added; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 u32 *dbbuf_sq_db; 213 u32 *dbbuf_cq_db; 214 u32 *dbbuf_sq_ei; 215 u32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 /* 220 * The nvme_iod describes the data in an I/O. 221 * 222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 223 * to the actual struct scatterlist. 224 */ 225 struct nvme_iod { 226 struct nvme_request req; 227 struct nvme_command cmd; 228 struct nvme_queue *nvmeq; 229 bool use_sgl; 230 int aborted; 231 int npages; /* In the PRP list. 0 means small pool in use */ 232 int nents; /* Used in scatterlist */ 233 dma_addr_t first_dma; 234 unsigned int dma_len; /* length of single DMA segment mapping */ 235 dma_addr_t meta_dma; 236 struct scatterlist *sg; 237 }; 238 239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 240 { 241 return dev->nr_allocated_queues * 8 * dev->db_stride; 242 } 243 244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 245 { 246 unsigned int mem_size = nvme_dbbuf_size(dev); 247 248 if (dev->dbbuf_dbs) { 249 /* 250 * Clear the dbbuf memory so the driver doesn't observe stale 251 * values from the previous instantiation. 252 */ 253 memset(dev->dbbuf_dbs, 0, mem_size); 254 memset(dev->dbbuf_eis, 0, mem_size); 255 return 0; 256 } 257 258 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 259 &dev->dbbuf_dbs_dma_addr, 260 GFP_KERNEL); 261 if (!dev->dbbuf_dbs) 262 return -ENOMEM; 263 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 264 &dev->dbbuf_eis_dma_addr, 265 GFP_KERNEL); 266 if (!dev->dbbuf_eis) { 267 dma_free_coherent(dev->dev, mem_size, 268 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 269 dev->dbbuf_dbs = NULL; 270 return -ENOMEM; 271 } 272 273 return 0; 274 } 275 276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 277 { 278 unsigned int mem_size = nvme_dbbuf_size(dev); 279 280 if (dev->dbbuf_dbs) { 281 dma_free_coherent(dev->dev, mem_size, 282 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 283 dev->dbbuf_dbs = NULL; 284 } 285 if (dev->dbbuf_eis) { 286 dma_free_coherent(dev->dev, mem_size, 287 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 288 dev->dbbuf_eis = NULL; 289 } 290 } 291 292 static void nvme_dbbuf_init(struct nvme_dev *dev, 293 struct nvme_queue *nvmeq, int qid) 294 { 295 if (!dev->dbbuf_dbs || !qid) 296 return; 297 298 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 299 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 300 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 301 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 302 } 303 304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 305 { 306 if (!nvmeq->qid) 307 return; 308 309 nvmeq->dbbuf_sq_db = NULL; 310 nvmeq->dbbuf_cq_db = NULL; 311 nvmeq->dbbuf_sq_ei = NULL; 312 nvmeq->dbbuf_cq_ei = NULL; 313 } 314 315 static void nvme_dbbuf_set(struct nvme_dev *dev) 316 { 317 struct nvme_command c = { }; 318 unsigned int i; 319 320 if (!dev->dbbuf_dbs) 321 return; 322 323 c.dbbuf.opcode = nvme_admin_dbbuf; 324 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 325 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 326 327 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 328 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 329 /* Free memory and continue on */ 330 nvme_dbbuf_dma_free(dev); 331 332 for (i = 1; i <= dev->online_queues; i++) 333 nvme_dbbuf_free(&dev->queues[i]); 334 } 335 } 336 337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 338 { 339 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 340 } 341 342 /* Update dbbuf and return true if an MMIO is required */ 343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 344 volatile u32 *dbbuf_ei) 345 { 346 if (dbbuf_db) { 347 u16 old_value; 348 349 /* 350 * Ensure that the queue is written before updating 351 * the doorbell in memory 352 */ 353 wmb(); 354 355 old_value = *dbbuf_db; 356 *dbbuf_db = value; 357 358 /* 359 * Ensure that the doorbell is updated before reading the event 360 * index from memory. The controller needs to provide similar 361 * ordering to ensure the envent index is updated before reading 362 * the doorbell. 363 */ 364 mb(); 365 366 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 367 return false; 368 } 369 370 return true; 371 } 372 373 /* 374 * Will slightly overestimate the number of pages needed. This is OK 375 * as it only leads to a small amount of wasted memory for the lifetime of 376 * the I/O. 377 */ 378 static int nvme_pci_npages_prp(void) 379 { 380 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 381 NVME_CTRL_PAGE_SIZE); 382 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 383 } 384 385 /* 386 * Calculates the number of pages needed for the SGL segments. For example a 4k 387 * page can accommodate 256 SGL descriptors. 388 */ 389 static int nvme_pci_npages_sgl(void) 390 { 391 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 392 PAGE_SIZE); 393 } 394 395 static size_t nvme_pci_iod_alloc_size(void) 396 { 397 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 398 399 return sizeof(__le64 *) * npages + 400 sizeof(struct scatterlist) * NVME_MAX_SEGS; 401 } 402 403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 404 unsigned int hctx_idx) 405 { 406 struct nvme_dev *dev = data; 407 struct nvme_queue *nvmeq = &dev->queues[0]; 408 409 WARN_ON(hctx_idx != 0); 410 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 411 412 hctx->driver_data = nvmeq; 413 return 0; 414 } 415 416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 417 unsigned int hctx_idx) 418 { 419 struct nvme_dev *dev = data; 420 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 421 422 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 423 hctx->driver_data = nvmeq; 424 return 0; 425 } 426 427 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 428 unsigned int hctx_idx, unsigned int numa_node) 429 { 430 struct nvme_dev *dev = set->driver_data; 431 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 432 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 433 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 434 435 BUG_ON(!nvmeq); 436 iod->nvmeq = nvmeq; 437 438 nvme_req(req)->ctrl = &dev->ctrl; 439 nvme_req(req)->cmd = &iod->cmd; 440 return 0; 441 } 442 443 static int queue_irq_offset(struct nvme_dev *dev) 444 { 445 /* if we have more than 1 vec, admin queue offsets us by 1 */ 446 if (dev->num_vecs > 1) 447 return 1; 448 449 return 0; 450 } 451 452 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 453 { 454 struct nvme_dev *dev = set->driver_data; 455 int i, qoff, offset; 456 457 offset = queue_irq_offset(dev); 458 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 459 struct blk_mq_queue_map *map = &set->map[i]; 460 461 map->nr_queues = dev->io_queues[i]; 462 if (!map->nr_queues) { 463 BUG_ON(i == HCTX_TYPE_DEFAULT); 464 continue; 465 } 466 467 /* 468 * The poll queue(s) doesn't have an IRQ (and hence IRQ 469 * affinity), so use the regular blk-mq cpu mapping 470 */ 471 map->queue_offset = qoff; 472 if (i != HCTX_TYPE_POLL && offset) 473 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 474 else 475 blk_mq_map_queues(map); 476 qoff += map->nr_queues; 477 offset += map->nr_queues; 478 } 479 480 return 0; 481 } 482 483 /* 484 * Write sq tail if we are asked to, or if the next command would wrap. 485 */ 486 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 487 { 488 if (!write_sq) { 489 u16 next_tail = nvmeq->sq_tail + 1; 490 491 if (next_tail == nvmeq->q_depth) 492 next_tail = 0; 493 if (next_tail != nvmeq->last_sq_tail) 494 return; 495 } 496 497 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 498 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 499 writel(nvmeq->sq_tail, nvmeq->q_db); 500 nvmeq->last_sq_tail = nvmeq->sq_tail; 501 } 502 503 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 504 struct nvme_command *cmd) 505 { 506 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 507 absolute_pointer(cmd), sizeof(*cmd)); 508 if (++nvmeq->sq_tail == nvmeq->q_depth) 509 nvmeq->sq_tail = 0; 510 } 511 512 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 513 { 514 struct nvme_queue *nvmeq = hctx->driver_data; 515 516 spin_lock(&nvmeq->sq_lock); 517 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 518 nvme_write_sq_db(nvmeq, true); 519 spin_unlock(&nvmeq->sq_lock); 520 } 521 522 static void **nvme_pci_iod_list(struct request *req) 523 { 524 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 525 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 526 } 527 528 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 529 { 530 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 531 int nseg = blk_rq_nr_phys_segments(req); 532 unsigned int avg_seg_size; 533 534 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 535 536 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 537 return false; 538 if (!iod->nvmeq->qid) 539 return false; 540 if (!sgl_threshold || avg_seg_size < sgl_threshold) 541 return false; 542 return true; 543 } 544 545 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 546 { 547 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 548 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 549 dma_addr_t dma_addr = iod->first_dma; 550 int i; 551 552 for (i = 0; i < iod->npages; i++) { 553 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 554 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 555 556 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 557 dma_addr = next_dma_addr; 558 } 559 } 560 561 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 562 { 563 const int last_sg = SGES_PER_PAGE - 1; 564 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 565 dma_addr_t dma_addr = iod->first_dma; 566 int i; 567 568 for (i = 0; i < iod->npages; i++) { 569 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 570 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 571 572 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 573 dma_addr = next_dma_addr; 574 } 575 } 576 577 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) 578 { 579 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 580 581 if (is_pci_p2pdma_page(sg_page(iod->sg))) 582 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 583 rq_dma_dir(req)); 584 else 585 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 586 } 587 588 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 589 { 590 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 591 592 if (iod->dma_len) { 593 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 594 rq_dma_dir(req)); 595 return; 596 } 597 598 WARN_ON_ONCE(!iod->nents); 599 600 nvme_unmap_sg(dev, req); 601 if (iod->npages == 0) 602 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 603 iod->first_dma); 604 else if (iod->use_sgl) 605 nvme_free_sgls(dev, req); 606 else 607 nvme_free_prps(dev, req); 608 mempool_free(iod->sg, dev->iod_mempool); 609 } 610 611 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 612 { 613 int i; 614 struct scatterlist *sg; 615 616 for_each_sg(sgl, sg, nents, i) { 617 dma_addr_t phys = sg_phys(sg); 618 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 619 "dma_address:%pad dma_length:%d\n", 620 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 621 sg_dma_len(sg)); 622 } 623 } 624 625 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 626 struct request *req, struct nvme_rw_command *cmnd) 627 { 628 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 629 struct dma_pool *pool; 630 int length = blk_rq_payload_bytes(req); 631 struct scatterlist *sg = iod->sg; 632 int dma_len = sg_dma_len(sg); 633 u64 dma_addr = sg_dma_address(sg); 634 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 635 __le64 *prp_list; 636 void **list = nvme_pci_iod_list(req); 637 dma_addr_t prp_dma; 638 int nprps, i; 639 640 length -= (NVME_CTRL_PAGE_SIZE - offset); 641 if (length <= 0) { 642 iod->first_dma = 0; 643 goto done; 644 } 645 646 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 647 if (dma_len) { 648 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 649 } else { 650 sg = sg_next(sg); 651 dma_addr = sg_dma_address(sg); 652 dma_len = sg_dma_len(sg); 653 } 654 655 if (length <= NVME_CTRL_PAGE_SIZE) { 656 iod->first_dma = dma_addr; 657 goto done; 658 } 659 660 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 661 if (nprps <= (256 / 8)) { 662 pool = dev->prp_small_pool; 663 iod->npages = 0; 664 } else { 665 pool = dev->prp_page_pool; 666 iod->npages = 1; 667 } 668 669 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 670 if (!prp_list) { 671 iod->first_dma = dma_addr; 672 iod->npages = -1; 673 return BLK_STS_RESOURCE; 674 } 675 list[0] = prp_list; 676 iod->first_dma = prp_dma; 677 i = 0; 678 for (;;) { 679 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 680 __le64 *old_prp_list = prp_list; 681 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 682 if (!prp_list) 683 goto free_prps; 684 list[iod->npages++] = prp_list; 685 prp_list[0] = old_prp_list[i - 1]; 686 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 687 i = 1; 688 } 689 prp_list[i++] = cpu_to_le64(dma_addr); 690 dma_len -= NVME_CTRL_PAGE_SIZE; 691 dma_addr += NVME_CTRL_PAGE_SIZE; 692 length -= NVME_CTRL_PAGE_SIZE; 693 if (length <= 0) 694 break; 695 if (dma_len > 0) 696 continue; 697 if (unlikely(dma_len < 0)) 698 goto bad_sgl; 699 sg = sg_next(sg); 700 dma_addr = sg_dma_address(sg); 701 dma_len = sg_dma_len(sg); 702 } 703 done: 704 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 705 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 706 return BLK_STS_OK; 707 free_prps: 708 nvme_free_prps(dev, req); 709 return BLK_STS_RESOURCE; 710 bad_sgl: 711 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 712 "Invalid SGL for payload:%d nents:%d\n", 713 blk_rq_payload_bytes(req), iod->nents); 714 return BLK_STS_IOERR; 715 } 716 717 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 718 struct scatterlist *sg) 719 { 720 sge->addr = cpu_to_le64(sg_dma_address(sg)); 721 sge->length = cpu_to_le32(sg_dma_len(sg)); 722 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 723 } 724 725 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 726 dma_addr_t dma_addr, int entries) 727 { 728 sge->addr = cpu_to_le64(dma_addr); 729 if (entries < SGES_PER_PAGE) { 730 sge->length = cpu_to_le32(entries * sizeof(*sge)); 731 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 732 } else { 733 sge->length = cpu_to_le32(PAGE_SIZE); 734 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 735 } 736 } 737 738 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 739 struct request *req, struct nvme_rw_command *cmd, int entries) 740 { 741 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 742 struct dma_pool *pool; 743 struct nvme_sgl_desc *sg_list; 744 struct scatterlist *sg = iod->sg; 745 dma_addr_t sgl_dma; 746 int i = 0; 747 748 /* setting the transfer type as SGL */ 749 cmd->flags = NVME_CMD_SGL_METABUF; 750 751 if (entries == 1) { 752 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 753 return BLK_STS_OK; 754 } 755 756 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 757 pool = dev->prp_small_pool; 758 iod->npages = 0; 759 } else { 760 pool = dev->prp_page_pool; 761 iod->npages = 1; 762 } 763 764 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 765 if (!sg_list) { 766 iod->npages = -1; 767 return BLK_STS_RESOURCE; 768 } 769 770 nvme_pci_iod_list(req)[0] = sg_list; 771 iod->first_dma = sgl_dma; 772 773 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 774 775 do { 776 if (i == SGES_PER_PAGE) { 777 struct nvme_sgl_desc *old_sg_desc = sg_list; 778 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 779 780 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 781 if (!sg_list) 782 goto free_sgls; 783 784 i = 0; 785 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 786 sg_list[i++] = *link; 787 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 788 } 789 790 nvme_pci_sgl_set_data(&sg_list[i++], sg); 791 sg = sg_next(sg); 792 } while (--entries > 0); 793 794 return BLK_STS_OK; 795 free_sgls: 796 nvme_free_sgls(dev, req); 797 return BLK_STS_RESOURCE; 798 } 799 800 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 801 struct request *req, struct nvme_rw_command *cmnd, 802 struct bio_vec *bv) 803 { 804 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 805 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 806 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 807 808 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 809 if (dma_mapping_error(dev->dev, iod->first_dma)) 810 return BLK_STS_RESOURCE; 811 iod->dma_len = bv->bv_len; 812 813 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 814 if (bv->bv_len > first_prp_len) 815 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 816 return BLK_STS_OK; 817 } 818 819 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 820 struct request *req, struct nvme_rw_command *cmnd, 821 struct bio_vec *bv) 822 { 823 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 824 825 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 826 if (dma_mapping_error(dev->dev, iod->first_dma)) 827 return BLK_STS_RESOURCE; 828 iod->dma_len = bv->bv_len; 829 830 cmnd->flags = NVME_CMD_SGL_METABUF; 831 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 832 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 833 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 834 return BLK_STS_OK; 835 } 836 837 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 838 struct nvme_command *cmnd) 839 { 840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 841 blk_status_t ret = BLK_STS_RESOURCE; 842 int nr_mapped; 843 844 if (blk_rq_nr_phys_segments(req) == 1) { 845 struct bio_vec bv = req_bvec(req); 846 847 if (!is_pci_p2pdma_page(bv.bv_page)) { 848 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 849 return nvme_setup_prp_simple(dev, req, 850 &cmnd->rw, &bv); 851 852 if (iod->nvmeq->qid && sgl_threshold && 853 nvme_ctrl_sgl_supported(&dev->ctrl)) 854 return nvme_setup_sgl_simple(dev, req, 855 &cmnd->rw, &bv); 856 } 857 } 858 859 iod->dma_len = 0; 860 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 861 if (!iod->sg) 862 return BLK_STS_RESOURCE; 863 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 864 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 865 if (!iod->nents) 866 goto out_free_sg; 867 868 if (is_pci_p2pdma_page(sg_page(iod->sg))) 869 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 870 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 871 else 872 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 873 rq_dma_dir(req), DMA_ATTR_NO_WARN); 874 if (!nr_mapped) 875 goto out_free_sg; 876 877 iod->use_sgl = nvme_pci_use_sgls(dev, req); 878 if (iod->use_sgl) 879 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 880 else 881 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 882 if (ret != BLK_STS_OK) 883 goto out_unmap_sg; 884 return BLK_STS_OK; 885 886 out_unmap_sg: 887 nvme_unmap_sg(dev, req); 888 out_free_sg: 889 mempool_free(iod->sg, dev->iod_mempool); 890 return ret; 891 } 892 893 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 894 struct nvme_command *cmnd) 895 { 896 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 897 898 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 899 rq_dma_dir(req), 0); 900 if (dma_mapping_error(dev->dev, iod->meta_dma)) 901 return BLK_STS_IOERR; 902 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 903 return BLK_STS_OK; 904 } 905 906 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 907 { 908 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 909 blk_status_t ret; 910 911 iod->aborted = 0; 912 iod->npages = -1; 913 iod->nents = 0; 914 915 ret = nvme_setup_cmd(req->q->queuedata, req); 916 if (ret) 917 return ret; 918 919 if (blk_rq_nr_phys_segments(req)) { 920 ret = nvme_map_data(dev, req, &iod->cmd); 921 if (ret) 922 goto out_free_cmd; 923 } 924 925 if (blk_integrity_rq(req)) { 926 ret = nvme_map_metadata(dev, req, &iod->cmd); 927 if (ret) 928 goto out_unmap_data; 929 } 930 931 blk_mq_start_request(req); 932 return BLK_STS_OK; 933 out_unmap_data: 934 nvme_unmap_data(dev, req); 935 out_free_cmd: 936 nvme_cleanup_cmd(req); 937 return ret; 938 } 939 940 /* 941 * NOTE: ns is NULL when called on the admin queue. 942 */ 943 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 944 const struct blk_mq_queue_data *bd) 945 { 946 struct nvme_queue *nvmeq = hctx->driver_data; 947 struct nvme_dev *dev = nvmeq->dev; 948 struct request *req = bd->rq; 949 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 950 blk_status_t ret; 951 952 /* 953 * We should not need to do this, but we're still using this to 954 * ensure we can drain requests on a dying queue. 955 */ 956 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 957 return BLK_STS_IOERR; 958 959 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 960 return nvme_fail_nonready_command(&dev->ctrl, req); 961 962 ret = nvme_prep_rq(dev, req); 963 if (unlikely(ret)) 964 return ret; 965 spin_lock(&nvmeq->sq_lock); 966 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 967 nvme_write_sq_db(nvmeq, bd->last); 968 spin_unlock(&nvmeq->sq_lock); 969 return BLK_STS_OK; 970 } 971 972 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 973 { 974 spin_lock(&nvmeq->sq_lock); 975 while (!rq_list_empty(*rqlist)) { 976 struct request *req = rq_list_pop(rqlist); 977 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 978 979 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 980 } 981 nvme_write_sq_db(nvmeq, true); 982 spin_unlock(&nvmeq->sq_lock); 983 } 984 985 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 986 { 987 /* 988 * We should not need to do this, but we're still using this to 989 * ensure we can drain requests on a dying queue. 990 */ 991 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 992 return false; 993 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 994 return false; 995 996 req->mq_hctx->tags->rqs[req->tag] = req; 997 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 998 } 999 1000 static void nvme_queue_rqs(struct request **rqlist) 1001 { 1002 struct request *req, *next, *prev = NULL; 1003 struct request *requeue_list = NULL; 1004 1005 rq_list_for_each_safe(rqlist, req, next) { 1006 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1007 1008 if (!nvme_prep_rq_batch(nvmeq, req)) { 1009 /* detach 'req' and add to remainder list */ 1010 rq_list_move(rqlist, &requeue_list, req, prev); 1011 1012 req = prev; 1013 if (!req) 1014 continue; 1015 } 1016 1017 if (!next || req->mq_hctx != next->mq_hctx) { 1018 /* detach rest of list, and submit */ 1019 req->rq_next = NULL; 1020 nvme_submit_cmds(nvmeq, rqlist); 1021 *rqlist = next; 1022 prev = NULL; 1023 } else 1024 prev = req; 1025 } 1026 1027 *rqlist = requeue_list; 1028 } 1029 1030 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1031 { 1032 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1033 struct nvme_dev *dev = iod->nvmeq->dev; 1034 1035 if (blk_integrity_rq(req)) 1036 dma_unmap_page(dev->dev, iod->meta_dma, 1037 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 1038 if (blk_rq_nr_phys_segments(req)) 1039 nvme_unmap_data(dev, req); 1040 } 1041 1042 static void nvme_pci_complete_rq(struct request *req) 1043 { 1044 nvme_pci_unmap_rq(req); 1045 nvme_complete_rq(req); 1046 } 1047 1048 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1049 { 1050 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1051 } 1052 1053 /* We read the CQE phase first to check if the rest of the entry is valid */ 1054 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1055 { 1056 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1057 1058 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1059 } 1060 1061 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1062 { 1063 u16 head = nvmeq->cq_head; 1064 1065 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1066 nvmeq->dbbuf_cq_ei)) 1067 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1068 } 1069 1070 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1071 { 1072 if (!nvmeq->qid) 1073 return nvmeq->dev->admin_tagset.tags[0]; 1074 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1075 } 1076 1077 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1078 struct io_comp_batch *iob, u16 idx) 1079 { 1080 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1081 __u16 command_id = READ_ONCE(cqe->command_id); 1082 struct request *req; 1083 1084 /* 1085 * AEN requests are special as they don't time out and can 1086 * survive any kind of queue freeze and often don't respond to 1087 * aborts. We don't even bother to allocate a struct request 1088 * for them but rather special case them here. 1089 */ 1090 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1091 nvme_complete_async_event(&nvmeq->dev->ctrl, 1092 cqe->status, &cqe->result); 1093 return; 1094 } 1095 1096 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1097 if (unlikely(!req)) { 1098 dev_warn(nvmeq->dev->ctrl.device, 1099 "invalid id %d completed on queue %d\n", 1100 command_id, le16_to_cpu(cqe->sq_id)); 1101 return; 1102 } 1103 1104 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1105 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1106 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1107 nvme_pci_complete_batch)) 1108 nvme_pci_complete_rq(req); 1109 } 1110 1111 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1112 { 1113 u32 tmp = nvmeq->cq_head + 1; 1114 1115 if (tmp == nvmeq->q_depth) { 1116 nvmeq->cq_head = 0; 1117 nvmeq->cq_phase ^= 1; 1118 } else { 1119 nvmeq->cq_head = tmp; 1120 } 1121 } 1122 1123 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1124 struct io_comp_batch *iob) 1125 { 1126 int found = 0; 1127 1128 while (nvme_cqe_pending(nvmeq)) { 1129 found++; 1130 /* 1131 * load-load control dependency between phase and the rest of 1132 * the cqe requires a full read memory barrier 1133 */ 1134 dma_rmb(); 1135 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1136 nvme_update_cq_head(nvmeq); 1137 } 1138 1139 if (found) 1140 nvme_ring_cq_doorbell(nvmeq); 1141 return found; 1142 } 1143 1144 static irqreturn_t nvme_irq(int irq, void *data) 1145 { 1146 struct nvme_queue *nvmeq = data; 1147 DEFINE_IO_COMP_BATCH(iob); 1148 1149 if (nvme_poll_cq(nvmeq, &iob)) { 1150 if (!rq_list_empty(iob.req_list)) 1151 nvme_pci_complete_batch(&iob); 1152 return IRQ_HANDLED; 1153 } 1154 return IRQ_NONE; 1155 } 1156 1157 static irqreturn_t nvme_irq_check(int irq, void *data) 1158 { 1159 struct nvme_queue *nvmeq = data; 1160 1161 if (nvme_cqe_pending(nvmeq)) 1162 return IRQ_WAKE_THREAD; 1163 return IRQ_NONE; 1164 } 1165 1166 /* 1167 * Poll for completions for any interrupt driven queue 1168 * Can be called from any context. 1169 */ 1170 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1171 { 1172 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1173 1174 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1175 1176 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1177 nvme_poll_cq(nvmeq, NULL); 1178 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1179 } 1180 1181 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1182 { 1183 struct nvme_queue *nvmeq = hctx->driver_data; 1184 bool found; 1185 1186 if (!nvme_cqe_pending(nvmeq)) 1187 return 0; 1188 1189 spin_lock(&nvmeq->cq_poll_lock); 1190 found = nvme_poll_cq(nvmeq, iob); 1191 spin_unlock(&nvmeq->cq_poll_lock); 1192 1193 return found; 1194 } 1195 1196 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1197 { 1198 struct nvme_dev *dev = to_nvme_dev(ctrl); 1199 struct nvme_queue *nvmeq = &dev->queues[0]; 1200 struct nvme_command c = { }; 1201 1202 c.common.opcode = nvme_admin_async_event; 1203 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1204 1205 spin_lock(&nvmeq->sq_lock); 1206 nvme_sq_copy_cmd(nvmeq, &c); 1207 nvme_write_sq_db(nvmeq, true); 1208 spin_unlock(&nvmeq->sq_lock); 1209 } 1210 1211 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1212 { 1213 struct nvme_command c = { }; 1214 1215 c.delete_queue.opcode = opcode; 1216 c.delete_queue.qid = cpu_to_le16(id); 1217 1218 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1219 } 1220 1221 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1222 struct nvme_queue *nvmeq, s16 vector) 1223 { 1224 struct nvme_command c = { }; 1225 int flags = NVME_QUEUE_PHYS_CONTIG; 1226 1227 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1228 flags |= NVME_CQ_IRQ_ENABLED; 1229 1230 /* 1231 * Note: we (ab)use the fact that the prp fields survive if no data 1232 * is attached to the request. 1233 */ 1234 c.create_cq.opcode = nvme_admin_create_cq; 1235 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1236 c.create_cq.cqid = cpu_to_le16(qid); 1237 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1238 c.create_cq.cq_flags = cpu_to_le16(flags); 1239 c.create_cq.irq_vector = cpu_to_le16(vector); 1240 1241 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1242 } 1243 1244 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1245 struct nvme_queue *nvmeq) 1246 { 1247 struct nvme_ctrl *ctrl = &dev->ctrl; 1248 struct nvme_command c = { }; 1249 int flags = NVME_QUEUE_PHYS_CONTIG; 1250 1251 /* 1252 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1253 * set. Since URGENT priority is zeroes, it makes all queues 1254 * URGENT. 1255 */ 1256 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1257 flags |= NVME_SQ_PRIO_MEDIUM; 1258 1259 /* 1260 * Note: we (ab)use the fact that the prp fields survive if no data 1261 * is attached to the request. 1262 */ 1263 c.create_sq.opcode = nvme_admin_create_sq; 1264 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1265 c.create_sq.sqid = cpu_to_le16(qid); 1266 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1267 c.create_sq.sq_flags = cpu_to_le16(flags); 1268 c.create_sq.cqid = cpu_to_le16(qid); 1269 1270 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1271 } 1272 1273 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1274 { 1275 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1276 } 1277 1278 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1279 { 1280 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1281 } 1282 1283 static void abort_endio(struct request *req, blk_status_t error) 1284 { 1285 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1286 struct nvme_queue *nvmeq = iod->nvmeq; 1287 1288 dev_warn(nvmeq->dev->ctrl.device, 1289 "Abort status: 0x%x", nvme_req(req)->status); 1290 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1291 blk_mq_free_request(req); 1292 } 1293 1294 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1295 { 1296 /* If true, indicates loss of adapter communication, possibly by a 1297 * NVMe Subsystem reset. 1298 */ 1299 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1300 1301 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1302 switch (dev->ctrl.state) { 1303 case NVME_CTRL_RESETTING: 1304 case NVME_CTRL_CONNECTING: 1305 return false; 1306 default: 1307 break; 1308 } 1309 1310 /* We shouldn't reset unless the controller is on fatal error state 1311 * _or_ if we lost the communication with it. 1312 */ 1313 if (!(csts & NVME_CSTS_CFS) && !nssro) 1314 return false; 1315 1316 return true; 1317 } 1318 1319 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1320 { 1321 /* Read a config register to help see what died. */ 1322 u16 pci_status; 1323 int result; 1324 1325 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1326 &pci_status); 1327 if (result == PCIBIOS_SUCCESSFUL) 1328 dev_warn(dev->ctrl.device, 1329 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1330 csts, pci_status); 1331 else 1332 dev_warn(dev->ctrl.device, 1333 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1334 csts, result); 1335 } 1336 1337 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1338 { 1339 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1340 struct nvme_queue *nvmeq = iod->nvmeq; 1341 struct nvme_dev *dev = nvmeq->dev; 1342 struct request *abort_req; 1343 struct nvme_command cmd = { }; 1344 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1345 1346 /* If PCI error recovery process is happening, we cannot reset or 1347 * the recovery mechanism will surely fail. 1348 */ 1349 mb(); 1350 if (pci_channel_offline(to_pci_dev(dev->dev))) 1351 return BLK_EH_RESET_TIMER; 1352 1353 /* 1354 * Reset immediately if the controller is failed 1355 */ 1356 if (nvme_should_reset(dev, csts)) { 1357 nvme_warn_reset(dev, csts); 1358 nvme_dev_disable(dev, false); 1359 nvme_reset_ctrl(&dev->ctrl); 1360 return BLK_EH_DONE; 1361 } 1362 1363 /* 1364 * Did we miss an interrupt? 1365 */ 1366 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1367 nvme_poll(req->mq_hctx, NULL); 1368 else 1369 nvme_poll_irqdisable(nvmeq); 1370 1371 if (blk_mq_request_completed(req)) { 1372 dev_warn(dev->ctrl.device, 1373 "I/O %d QID %d timeout, completion polled\n", 1374 req->tag, nvmeq->qid); 1375 return BLK_EH_DONE; 1376 } 1377 1378 /* 1379 * Shutdown immediately if controller times out while starting. The 1380 * reset work will see the pci device disabled when it gets the forced 1381 * cancellation error. All outstanding requests are completed on 1382 * shutdown, so we return BLK_EH_DONE. 1383 */ 1384 switch (dev->ctrl.state) { 1385 case NVME_CTRL_CONNECTING: 1386 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1387 fallthrough; 1388 case NVME_CTRL_DELETING: 1389 dev_warn_ratelimited(dev->ctrl.device, 1390 "I/O %d QID %d timeout, disable controller\n", 1391 req->tag, nvmeq->qid); 1392 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1393 nvme_dev_disable(dev, true); 1394 return BLK_EH_DONE; 1395 case NVME_CTRL_RESETTING: 1396 return BLK_EH_RESET_TIMER; 1397 default: 1398 break; 1399 } 1400 1401 /* 1402 * Shutdown the controller immediately and schedule a reset if the 1403 * command was already aborted once before and still hasn't been 1404 * returned to the driver, or if this is the admin queue. 1405 */ 1406 if (!nvmeq->qid || iod->aborted) { 1407 dev_warn(dev->ctrl.device, 1408 "I/O %d QID %d timeout, reset controller\n", 1409 req->tag, nvmeq->qid); 1410 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1411 nvme_dev_disable(dev, false); 1412 nvme_reset_ctrl(&dev->ctrl); 1413 1414 return BLK_EH_DONE; 1415 } 1416 1417 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1418 atomic_inc(&dev->ctrl.abort_limit); 1419 return BLK_EH_RESET_TIMER; 1420 } 1421 iod->aborted = 1; 1422 1423 cmd.abort.opcode = nvme_admin_abort_cmd; 1424 cmd.abort.cid = nvme_cid(req); 1425 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1426 1427 dev_warn(nvmeq->dev->ctrl.device, 1428 "I/O %d QID %d timeout, aborting\n", 1429 req->tag, nvmeq->qid); 1430 1431 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1432 BLK_MQ_REQ_NOWAIT); 1433 if (IS_ERR(abort_req)) { 1434 atomic_inc(&dev->ctrl.abort_limit); 1435 return BLK_EH_RESET_TIMER; 1436 } 1437 1438 abort_req->end_io_data = NULL; 1439 blk_execute_rq_nowait(abort_req, false, abort_endio); 1440 1441 /* 1442 * The aborted req will be completed on receiving the abort req. 1443 * We enable the timer again. If hit twice, it'll cause a device reset, 1444 * as the device then is in a faulty state. 1445 */ 1446 return BLK_EH_RESET_TIMER; 1447 } 1448 1449 static void nvme_free_queue(struct nvme_queue *nvmeq) 1450 { 1451 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1452 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1453 if (!nvmeq->sq_cmds) 1454 return; 1455 1456 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1457 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1458 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1459 } else { 1460 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1461 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1462 } 1463 } 1464 1465 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1466 { 1467 int i; 1468 1469 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1470 dev->ctrl.queue_count--; 1471 nvme_free_queue(&dev->queues[i]); 1472 } 1473 } 1474 1475 /** 1476 * nvme_suspend_queue - put queue into suspended state 1477 * @nvmeq: queue to suspend 1478 */ 1479 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1480 { 1481 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1482 return 1; 1483 1484 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1485 mb(); 1486 1487 nvmeq->dev->online_queues--; 1488 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1489 nvme_stop_admin_queue(&nvmeq->dev->ctrl); 1490 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1491 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1492 return 0; 1493 } 1494 1495 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1496 { 1497 int i; 1498 1499 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1500 nvme_suspend_queue(&dev->queues[i]); 1501 } 1502 1503 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1504 { 1505 struct nvme_queue *nvmeq = &dev->queues[0]; 1506 1507 if (shutdown) 1508 nvme_shutdown_ctrl(&dev->ctrl); 1509 else 1510 nvme_disable_ctrl(&dev->ctrl); 1511 1512 nvme_poll_irqdisable(nvmeq); 1513 } 1514 1515 /* 1516 * Called only on a device that has been disabled and after all other threads 1517 * that can check this device's completion queues have synced, except 1518 * nvme_poll(). This is the last chance for the driver to see a natural 1519 * completion before nvme_cancel_request() terminates all incomplete requests. 1520 */ 1521 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1522 { 1523 int i; 1524 1525 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1526 spin_lock(&dev->queues[i].cq_poll_lock); 1527 nvme_poll_cq(&dev->queues[i], NULL); 1528 spin_unlock(&dev->queues[i].cq_poll_lock); 1529 } 1530 } 1531 1532 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1533 int entry_size) 1534 { 1535 int q_depth = dev->q_depth; 1536 unsigned q_size_aligned = roundup(q_depth * entry_size, 1537 NVME_CTRL_PAGE_SIZE); 1538 1539 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1540 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1541 1542 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1543 q_depth = div_u64(mem_per_q, entry_size); 1544 1545 /* 1546 * Ensure the reduced q_depth is above some threshold where it 1547 * would be better to map queues in system memory with the 1548 * original depth 1549 */ 1550 if (q_depth < 64) 1551 return -ENOMEM; 1552 } 1553 1554 return q_depth; 1555 } 1556 1557 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1558 int qid) 1559 { 1560 struct pci_dev *pdev = to_pci_dev(dev->dev); 1561 1562 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1563 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1564 if (nvmeq->sq_cmds) { 1565 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1566 nvmeq->sq_cmds); 1567 if (nvmeq->sq_dma_addr) { 1568 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1569 return 0; 1570 } 1571 1572 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1573 } 1574 } 1575 1576 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1577 &nvmeq->sq_dma_addr, GFP_KERNEL); 1578 if (!nvmeq->sq_cmds) 1579 return -ENOMEM; 1580 return 0; 1581 } 1582 1583 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1584 { 1585 struct nvme_queue *nvmeq = &dev->queues[qid]; 1586 1587 if (dev->ctrl.queue_count > qid) 1588 return 0; 1589 1590 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1591 nvmeq->q_depth = depth; 1592 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1593 &nvmeq->cq_dma_addr, GFP_KERNEL); 1594 if (!nvmeq->cqes) 1595 goto free_nvmeq; 1596 1597 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1598 goto free_cqdma; 1599 1600 nvmeq->dev = dev; 1601 spin_lock_init(&nvmeq->sq_lock); 1602 spin_lock_init(&nvmeq->cq_poll_lock); 1603 nvmeq->cq_head = 0; 1604 nvmeq->cq_phase = 1; 1605 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1606 nvmeq->qid = qid; 1607 dev->ctrl.queue_count++; 1608 1609 return 0; 1610 1611 free_cqdma: 1612 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1613 nvmeq->cq_dma_addr); 1614 free_nvmeq: 1615 return -ENOMEM; 1616 } 1617 1618 static int queue_request_irq(struct nvme_queue *nvmeq) 1619 { 1620 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1621 int nr = nvmeq->dev->ctrl.instance; 1622 1623 if (use_threaded_interrupts) { 1624 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1625 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1626 } else { 1627 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1628 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1629 } 1630 } 1631 1632 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1633 { 1634 struct nvme_dev *dev = nvmeq->dev; 1635 1636 nvmeq->sq_tail = 0; 1637 nvmeq->last_sq_tail = 0; 1638 nvmeq->cq_head = 0; 1639 nvmeq->cq_phase = 1; 1640 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1641 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1642 nvme_dbbuf_init(dev, nvmeq, qid); 1643 dev->online_queues++; 1644 wmb(); /* ensure the first interrupt sees the initialization */ 1645 } 1646 1647 /* 1648 * Try getting shutdown_lock while setting up IO queues. 1649 */ 1650 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1651 { 1652 /* 1653 * Give up if the lock is being held by nvme_dev_disable. 1654 */ 1655 if (!mutex_trylock(&dev->shutdown_lock)) 1656 return -ENODEV; 1657 1658 /* 1659 * Controller is in wrong state, fail early. 1660 */ 1661 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1662 mutex_unlock(&dev->shutdown_lock); 1663 return -ENODEV; 1664 } 1665 1666 return 0; 1667 } 1668 1669 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1670 { 1671 struct nvme_dev *dev = nvmeq->dev; 1672 int result; 1673 u16 vector = 0; 1674 1675 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1676 1677 /* 1678 * A queue's vector matches the queue identifier unless the controller 1679 * has only one vector available. 1680 */ 1681 if (!polled) 1682 vector = dev->num_vecs == 1 ? 0 : qid; 1683 else 1684 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1685 1686 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1687 if (result) 1688 return result; 1689 1690 result = adapter_alloc_sq(dev, qid, nvmeq); 1691 if (result < 0) 1692 return result; 1693 if (result) 1694 goto release_cq; 1695 1696 nvmeq->cq_vector = vector; 1697 1698 result = nvme_setup_io_queues_trylock(dev); 1699 if (result) 1700 return result; 1701 nvme_init_queue(nvmeq, qid); 1702 if (!polled) { 1703 result = queue_request_irq(nvmeq); 1704 if (result < 0) 1705 goto release_sq; 1706 } 1707 1708 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1709 mutex_unlock(&dev->shutdown_lock); 1710 return result; 1711 1712 release_sq: 1713 dev->online_queues--; 1714 mutex_unlock(&dev->shutdown_lock); 1715 adapter_delete_sq(dev, qid); 1716 release_cq: 1717 adapter_delete_cq(dev, qid); 1718 return result; 1719 } 1720 1721 static const struct blk_mq_ops nvme_mq_admin_ops = { 1722 .queue_rq = nvme_queue_rq, 1723 .complete = nvme_pci_complete_rq, 1724 .init_hctx = nvme_admin_init_hctx, 1725 .init_request = nvme_init_request, 1726 .timeout = nvme_timeout, 1727 }; 1728 1729 static const struct blk_mq_ops nvme_mq_ops = { 1730 .queue_rq = nvme_queue_rq, 1731 .queue_rqs = nvme_queue_rqs, 1732 .complete = nvme_pci_complete_rq, 1733 .commit_rqs = nvme_commit_rqs, 1734 .init_hctx = nvme_init_hctx, 1735 .init_request = nvme_init_request, 1736 .map_queues = nvme_pci_map_queues, 1737 .timeout = nvme_timeout, 1738 .poll = nvme_poll, 1739 }; 1740 1741 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1742 { 1743 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1744 /* 1745 * If the controller was reset during removal, it's possible 1746 * user requests may be waiting on a stopped queue. Start the 1747 * queue to flush these to completion. 1748 */ 1749 nvme_start_admin_queue(&dev->ctrl); 1750 blk_cleanup_queue(dev->ctrl.admin_q); 1751 blk_mq_free_tag_set(&dev->admin_tagset); 1752 } 1753 } 1754 1755 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1756 { 1757 if (!dev->ctrl.admin_q) { 1758 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1759 dev->admin_tagset.nr_hw_queues = 1; 1760 1761 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1762 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1763 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1764 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1765 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1766 dev->admin_tagset.driver_data = dev; 1767 1768 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1769 return -ENOMEM; 1770 dev->ctrl.admin_tagset = &dev->admin_tagset; 1771 1772 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1773 if (IS_ERR(dev->ctrl.admin_q)) { 1774 blk_mq_free_tag_set(&dev->admin_tagset); 1775 return -ENOMEM; 1776 } 1777 if (!blk_get_queue(dev->ctrl.admin_q)) { 1778 nvme_dev_remove_admin(dev); 1779 dev->ctrl.admin_q = NULL; 1780 return -ENODEV; 1781 } 1782 } else 1783 nvme_start_admin_queue(&dev->ctrl); 1784 1785 return 0; 1786 } 1787 1788 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1789 { 1790 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1791 } 1792 1793 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1794 { 1795 struct pci_dev *pdev = to_pci_dev(dev->dev); 1796 1797 if (size <= dev->bar_mapped_size) 1798 return 0; 1799 if (size > pci_resource_len(pdev, 0)) 1800 return -ENOMEM; 1801 if (dev->bar) 1802 iounmap(dev->bar); 1803 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1804 if (!dev->bar) { 1805 dev->bar_mapped_size = 0; 1806 return -ENOMEM; 1807 } 1808 dev->bar_mapped_size = size; 1809 dev->dbs = dev->bar + NVME_REG_DBS; 1810 1811 return 0; 1812 } 1813 1814 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1815 { 1816 int result; 1817 u32 aqa; 1818 struct nvme_queue *nvmeq; 1819 1820 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1821 if (result < 0) 1822 return result; 1823 1824 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1825 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1826 1827 if (dev->subsystem && 1828 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1829 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1830 1831 result = nvme_disable_ctrl(&dev->ctrl); 1832 if (result < 0) 1833 return result; 1834 1835 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1836 if (result) 1837 return result; 1838 1839 dev->ctrl.numa_node = dev_to_node(dev->dev); 1840 1841 nvmeq = &dev->queues[0]; 1842 aqa = nvmeq->q_depth - 1; 1843 aqa |= aqa << 16; 1844 1845 writel(aqa, dev->bar + NVME_REG_AQA); 1846 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1847 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1848 1849 result = nvme_enable_ctrl(&dev->ctrl); 1850 if (result) 1851 return result; 1852 1853 nvmeq->cq_vector = 0; 1854 nvme_init_queue(nvmeq, 0); 1855 result = queue_request_irq(nvmeq); 1856 if (result) { 1857 dev->online_queues--; 1858 return result; 1859 } 1860 1861 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1862 return result; 1863 } 1864 1865 static int nvme_create_io_queues(struct nvme_dev *dev) 1866 { 1867 unsigned i, max, rw_queues; 1868 int ret = 0; 1869 1870 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1871 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1872 ret = -ENOMEM; 1873 break; 1874 } 1875 } 1876 1877 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1878 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1879 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1880 dev->io_queues[HCTX_TYPE_READ]; 1881 } else { 1882 rw_queues = max; 1883 } 1884 1885 for (i = dev->online_queues; i <= max; i++) { 1886 bool polled = i > rw_queues; 1887 1888 ret = nvme_create_queue(&dev->queues[i], i, polled); 1889 if (ret) 1890 break; 1891 } 1892 1893 /* 1894 * Ignore failing Create SQ/CQ commands, we can continue with less 1895 * than the desired amount of queues, and even a controller without 1896 * I/O queues can still be used to issue admin commands. This might 1897 * be useful to upgrade a buggy firmware for example. 1898 */ 1899 return ret >= 0 ? 0 : ret; 1900 } 1901 1902 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1903 { 1904 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1905 1906 return 1ULL << (12 + 4 * szu); 1907 } 1908 1909 static u32 nvme_cmb_size(struct nvme_dev *dev) 1910 { 1911 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1912 } 1913 1914 static void nvme_map_cmb(struct nvme_dev *dev) 1915 { 1916 u64 size, offset; 1917 resource_size_t bar_size; 1918 struct pci_dev *pdev = to_pci_dev(dev->dev); 1919 int bar; 1920 1921 if (dev->cmb_size) 1922 return; 1923 1924 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1925 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1926 1927 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1928 if (!dev->cmbsz) 1929 return; 1930 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1931 1932 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1933 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1934 bar = NVME_CMB_BIR(dev->cmbloc); 1935 bar_size = pci_resource_len(pdev, bar); 1936 1937 if (offset > bar_size) 1938 return; 1939 1940 /* 1941 * Tell the controller about the host side address mapping the CMB, 1942 * and enable CMB decoding for the NVMe 1.4+ scheme: 1943 */ 1944 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1945 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1946 (pci_bus_address(pdev, bar) + offset), 1947 dev->bar + NVME_REG_CMBMSC); 1948 } 1949 1950 /* 1951 * Controllers may support a CMB size larger than their BAR, 1952 * for example, due to being behind a bridge. Reduce the CMB to 1953 * the reported size of the BAR 1954 */ 1955 if (size > bar_size - offset) 1956 size = bar_size - offset; 1957 1958 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1959 dev_warn(dev->ctrl.device, 1960 "failed to register the CMB\n"); 1961 return; 1962 } 1963 1964 dev->cmb_size = size; 1965 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1966 1967 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1968 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1969 pci_p2pmem_publish(pdev, true); 1970 } 1971 1972 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1973 { 1974 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1975 u64 dma_addr = dev->host_mem_descs_dma; 1976 struct nvme_command c = { }; 1977 int ret; 1978 1979 c.features.opcode = nvme_admin_set_features; 1980 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1981 c.features.dword11 = cpu_to_le32(bits); 1982 c.features.dword12 = cpu_to_le32(host_mem_size); 1983 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1984 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1985 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1986 1987 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1988 if (ret) { 1989 dev_warn(dev->ctrl.device, 1990 "failed to set host mem (err %d, flags %#x).\n", 1991 ret, bits); 1992 } else 1993 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1994 1995 return ret; 1996 } 1997 1998 static void nvme_free_host_mem(struct nvme_dev *dev) 1999 { 2000 int i; 2001 2002 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2003 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2004 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2005 2006 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2007 le64_to_cpu(desc->addr), 2008 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2009 } 2010 2011 kfree(dev->host_mem_desc_bufs); 2012 dev->host_mem_desc_bufs = NULL; 2013 dma_free_coherent(dev->dev, 2014 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 2015 dev->host_mem_descs, dev->host_mem_descs_dma); 2016 dev->host_mem_descs = NULL; 2017 dev->nr_host_mem_descs = 0; 2018 } 2019 2020 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 2021 u32 chunk_size) 2022 { 2023 struct nvme_host_mem_buf_desc *descs; 2024 u32 max_entries, len; 2025 dma_addr_t descs_dma; 2026 int i = 0; 2027 void **bufs; 2028 u64 size, tmp; 2029 2030 tmp = (preferred + chunk_size - 1); 2031 do_div(tmp, chunk_size); 2032 max_entries = tmp; 2033 2034 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2035 max_entries = dev->ctrl.hmmaxd; 2036 2037 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 2038 &descs_dma, GFP_KERNEL); 2039 if (!descs) 2040 goto out; 2041 2042 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2043 if (!bufs) 2044 goto out_free_descs; 2045 2046 for (size = 0; size < preferred && i < max_entries; size += len) { 2047 dma_addr_t dma_addr; 2048 2049 len = min_t(u64, chunk_size, preferred - size); 2050 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2051 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2052 if (!bufs[i]) 2053 break; 2054 2055 descs[i].addr = cpu_to_le64(dma_addr); 2056 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2057 i++; 2058 } 2059 2060 if (!size) 2061 goto out_free_bufs; 2062 2063 dev->nr_host_mem_descs = i; 2064 dev->host_mem_size = size; 2065 dev->host_mem_descs = descs; 2066 dev->host_mem_descs_dma = descs_dma; 2067 dev->host_mem_desc_bufs = bufs; 2068 return 0; 2069 2070 out_free_bufs: 2071 while (--i >= 0) { 2072 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 2073 2074 dma_free_attrs(dev->dev, size, bufs[i], 2075 le64_to_cpu(descs[i].addr), 2076 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2077 } 2078 2079 kfree(bufs); 2080 out_free_descs: 2081 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2082 descs_dma); 2083 out: 2084 dev->host_mem_descs = NULL; 2085 return -ENOMEM; 2086 } 2087 2088 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2089 { 2090 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2091 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2092 u64 chunk_size; 2093 2094 /* start big and work our way down */ 2095 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2096 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2097 if (!min || dev->host_mem_size >= min) 2098 return 0; 2099 nvme_free_host_mem(dev); 2100 } 2101 } 2102 2103 return -ENOMEM; 2104 } 2105 2106 static int nvme_setup_host_mem(struct nvme_dev *dev) 2107 { 2108 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2109 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2110 u64 min = (u64)dev->ctrl.hmmin * 4096; 2111 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2112 int ret; 2113 2114 preferred = min(preferred, max); 2115 if (min > max) { 2116 dev_warn(dev->ctrl.device, 2117 "min host memory (%lld MiB) above limit (%d MiB).\n", 2118 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2119 nvme_free_host_mem(dev); 2120 return 0; 2121 } 2122 2123 /* 2124 * If we already have a buffer allocated check if we can reuse it. 2125 */ 2126 if (dev->host_mem_descs) { 2127 if (dev->host_mem_size >= min) 2128 enable_bits |= NVME_HOST_MEM_RETURN; 2129 else 2130 nvme_free_host_mem(dev); 2131 } 2132 2133 if (!dev->host_mem_descs) { 2134 if (nvme_alloc_host_mem(dev, min, preferred)) { 2135 dev_warn(dev->ctrl.device, 2136 "failed to allocate host memory buffer.\n"); 2137 return 0; /* controller must work without HMB */ 2138 } 2139 2140 dev_info(dev->ctrl.device, 2141 "allocated %lld MiB host memory buffer.\n", 2142 dev->host_mem_size >> ilog2(SZ_1M)); 2143 } 2144 2145 ret = nvme_set_host_mem(dev, enable_bits); 2146 if (ret) 2147 nvme_free_host_mem(dev); 2148 return ret; 2149 } 2150 2151 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2152 char *buf) 2153 { 2154 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2155 2156 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2157 ndev->cmbloc, ndev->cmbsz); 2158 } 2159 static DEVICE_ATTR_RO(cmb); 2160 2161 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2162 char *buf) 2163 { 2164 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2165 2166 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2167 } 2168 static DEVICE_ATTR_RO(cmbloc); 2169 2170 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2171 char *buf) 2172 { 2173 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2174 2175 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2176 } 2177 static DEVICE_ATTR_RO(cmbsz); 2178 2179 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2180 char *buf) 2181 { 2182 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2183 2184 return sysfs_emit(buf, "%d\n", ndev->hmb); 2185 } 2186 2187 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2188 const char *buf, size_t count) 2189 { 2190 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2191 bool new; 2192 int ret; 2193 2194 if (strtobool(buf, &new) < 0) 2195 return -EINVAL; 2196 2197 if (new == ndev->hmb) 2198 return count; 2199 2200 if (new) { 2201 ret = nvme_setup_host_mem(ndev); 2202 } else { 2203 ret = nvme_set_host_mem(ndev, 0); 2204 if (!ret) 2205 nvme_free_host_mem(ndev); 2206 } 2207 2208 if (ret < 0) 2209 return ret; 2210 2211 return count; 2212 } 2213 static DEVICE_ATTR_RW(hmb); 2214 2215 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2216 struct attribute *a, int n) 2217 { 2218 struct nvme_ctrl *ctrl = 2219 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2220 struct nvme_dev *dev = to_nvme_dev(ctrl); 2221 2222 if (a == &dev_attr_cmb.attr || 2223 a == &dev_attr_cmbloc.attr || 2224 a == &dev_attr_cmbsz.attr) { 2225 if (!dev->cmbsz) 2226 return 0; 2227 } 2228 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2229 return 0; 2230 2231 return a->mode; 2232 } 2233 2234 static struct attribute *nvme_pci_attrs[] = { 2235 &dev_attr_cmb.attr, 2236 &dev_attr_cmbloc.attr, 2237 &dev_attr_cmbsz.attr, 2238 &dev_attr_hmb.attr, 2239 NULL, 2240 }; 2241 2242 static const struct attribute_group nvme_pci_attr_group = { 2243 .attrs = nvme_pci_attrs, 2244 .is_visible = nvme_pci_attrs_are_visible, 2245 }; 2246 2247 /* 2248 * nirqs is the number of interrupts available for write and read 2249 * queues. The core already reserved an interrupt for the admin queue. 2250 */ 2251 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2252 { 2253 struct nvme_dev *dev = affd->priv; 2254 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2255 2256 /* 2257 * If there is no interrupt available for queues, ensure that 2258 * the default queue is set to 1. The affinity set size is 2259 * also set to one, but the irq core ignores it for this case. 2260 * 2261 * If only one interrupt is available or 'write_queue' == 0, combine 2262 * write and read queues. 2263 * 2264 * If 'write_queues' > 0, ensure it leaves room for at least one read 2265 * queue. 2266 */ 2267 if (!nrirqs) { 2268 nrirqs = 1; 2269 nr_read_queues = 0; 2270 } else if (nrirqs == 1 || !nr_write_queues) { 2271 nr_read_queues = 0; 2272 } else if (nr_write_queues >= nrirqs) { 2273 nr_read_queues = 1; 2274 } else { 2275 nr_read_queues = nrirqs - nr_write_queues; 2276 } 2277 2278 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2279 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2280 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2281 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2282 affd->nr_sets = nr_read_queues ? 2 : 1; 2283 } 2284 2285 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2286 { 2287 struct pci_dev *pdev = to_pci_dev(dev->dev); 2288 struct irq_affinity affd = { 2289 .pre_vectors = 1, 2290 .calc_sets = nvme_calc_irq_sets, 2291 .priv = dev, 2292 }; 2293 unsigned int irq_queues, poll_queues; 2294 2295 /* 2296 * Poll queues don't need interrupts, but we need at least one I/O queue 2297 * left over for non-polled I/O. 2298 */ 2299 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2300 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2301 2302 /* 2303 * Initialize for the single interrupt case, will be updated in 2304 * nvme_calc_irq_sets(). 2305 */ 2306 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2307 dev->io_queues[HCTX_TYPE_READ] = 0; 2308 2309 /* 2310 * We need interrupts for the admin queue and each non-polled I/O queue, 2311 * but some Apple controllers require all queues to use the first 2312 * vector. 2313 */ 2314 irq_queues = 1; 2315 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2316 irq_queues += (nr_io_queues - poll_queues); 2317 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2318 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2319 } 2320 2321 static void nvme_disable_io_queues(struct nvme_dev *dev) 2322 { 2323 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2324 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2325 } 2326 2327 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2328 { 2329 /* 2330 * If tags are shared with admin queue (Apple bug), then 2331 * make sure we only use one IO queue. 2332 */ 2333 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2334 return 1; 2335 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2336 } 2337 2338 static int nvme_setup_io_queues(struct nvme_dev *dev) 2339 { 2340 struct nvme_queue *adminq = &dev->queues[0]; 2341 struct pci_dev *pdev = to_pci_dev(dev->dev); 2342 unsigned int nr_io_queues; 2343 unsigned long size; 2344 int result; 2345 2346 /* 2347 * Sample the module parameters once at reset time so that we have 2348 * stable values to work with. 2349 */ 2350 dev->nr_write_queues = write_queues; 2351 dev->nr_poll_queues = poll_queues; 2352 2353 nr_io_queues = dev->nr_allocated_queues - 1; 2354 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2355 if (result < 0) 2356 return result; 2357 2358 if (nr_io_queues == 0) 2359 return 0; 2360 2361 /* 2362 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2363 * from set to unset. If there is a window to it is truely freed, 2364 * pci_free_irq_vectors() jumping into this window will crash. 2365 * And take lock to avoid racing with pci_free_irq_vectors() in 2366 * nvme_dev_disable() path. 2367 */ 2368 result = nvme_setup_io_queues_trylock(dev); 2369 if (result) 2370 return result; 2371 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2372 pci_free_irq(pdev, 0, adminq); 2373 2374 if (dev->cmb_use_sqes) { 2375 result = nvme_cmb_qdepth(dev, nr_io_queues, 2376 sizeof(struct nvme_command)); 2377 if (result > 0) 2378 dev->q_depth = result; 2379 else 2380 dev->cmb_use_sqes = false; 2381 } 2382 2383 do { 2384 size = db_bar_size(dev, nr_io_queues); 2385 result = nvme_remap_bar(dev, size); 2386 if (!result) 2387 break; 2388 if (!--nr_io_queues) { 2389 result = -ENOMEM; 2390 goto out_unlock; 2391 } 2392 } while (1); 2393 adminq->q_db = dev->dbs; 2394 2395 retry: 2396 /* Deregister the admin queue's interrupt */ 2397 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2398 pci_free_irq(pdev, 0, adminq); 2399 2400 /* 2401 * If we enable msix early due to not intx, disable it again before 2402 * setting up the full range we need. 2403 */ 2404 pci_free_irq_vectors(pdev); 2405 2406 result = nvme_setup_irqs(dev, nr_io_queues); 2407 if (result <= 0) { 2408 result = -EIO; 2409 goto out_unlock; 2410 } 2411 2412 dev->num_vecs = result; 2413 result = max(result - 1, 1); 2414 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2415 2416 /* 2417 * Should investigate if there's a performance win from allocating 2418 * more queues than interrupt vectors; it might allow the submission 2419 * path to scale better, even if the receive path is limited by the 2420 * number of interrupts. 2421 */ 2422 result = queue_request_irq(adminq); 2423 if (result) 2424 goto out_unlock; 2425 set_bit(NVMEQ_ENABLED, &adminq->flags); 2426 mutex_unlock(&dev->shutdown_lock); 2427 2428 result = nvme_create_io_queues(dev); 2429 if (result || dev->online_queues < 2) 2430 return result; 2431 2432 if (dev->online_queues - 1 < dev->max_qid) { 2433 nr_io_queues = dev->online_queues - 1; 2434 nvme_disable_io_queues(dev); 2435 result = nvme_setup_io_queues_trylock(dev); 2436 if (result) 2437 return result; 2438 nvme_suspend_io_queues(dev); 2439 goto retry; 2440 } 2441 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2442 dev->io_queues[HCTX_TYPE_DEFAULT], 2443 dev->io_queues[HCTX_TYPE_READ], 2444 dev->io_queues[HCTX_TYPE_POLL]); 2445 return 0; 2446 out_unlock: 2447 mutex_unlock(&dev->shutdown_lock); 2448 return result; 2449 } 2450 2451 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2452 { 2453 struct nvme_queue *nvmeq = req->end_io_data; 2454 2455 blk_mq_free_request(req); 2456 complete(&nvmeq->delete_done); 2457 } 2458 2459 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2460 { 2461 struct nvme_queue *nvmeq = req->end_io_data; 2462 2463 if (error) 2464 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2465 2466 nvme_del_queue_end(req, error); 2467 } 2468 2469 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2470 { 2471 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2472 struct request *req; 2473 struct nvme_command cmd = { }; 2474 2475 cmd.delete_queue.opcode = opcode; 2476 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2477 2478 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 2479 if (IS_ERR(req)) 2480 return PTR_ERR(req); 2481 2482 req->end_io_data = nvmeq; 2483 2484 init_completion(&nvmeq->delete_done); 2485 blk_execute_rq_nowait(req, false, opcode == nvme_admin_delete_cq ? 2486 nvme_del_cq_end : nvme_del_queue_end); 2487 return 0; 2488 } 2489 2490 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2491 { 2492 int nr_queues = dev->online_queues - 1, sent = 0; 2493 unsigned long timeout; 2494 2495 retry: 2496 timeout = NVME_ADMIN_TIMEOUT; 2497 while (nr_queues > 0) { 2498 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2499 break; 2500 nr_queues--; 2501 sent++; 2502 } 2503 while (sent) { 2504 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2505 2506 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2507 timeout); 2508 if (timeout == 0) 2509 return false; 2510 2511 sent--; 2512 if (nr_queues) 2513 goto retry; 2514 } 2515 return true; 2516 } 2517 2518 static void nvme_dev_add(struct nvme_dev *dev) 2519 { 2520 int ret; 2521 2522 if (!dev->ctrl.tagset) { 2523 dev->tagset.ops = &nvme_mq_ops; 2524 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2525 dev->tagset.nr_maps = 2; /* default + read */ 2526 if (dev->io_queues[HCTX_TYPE_POLL]) 2527 dev->tagset.nr_maps++; 2528 dev->tagset.timeout = NVME_IO_TIMEOUT; 2529 dev->tagset.numa_node = dev->ctrl.numa_node; 2530 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2531 BLK_MQ_MAX_DEPTH) - 1; 2532 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2533 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2534 dev->tagset.driver_data = dev; 2535 2536 /* 2537 * Some Apple controllers requires tags to be unique 2538 * across admin and IO queue, so reserve the first 32 2539 * tags of the IO queue. 2540 */ 2541 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2542 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2543 2544 ret = blk_mq_alloc_tag_set(&dev->tagset); 2545 if (ret) { 2546 dev_warn(dev->ctrl.device, 2547 "IO queues tagset allocation failed %d\n", ret); 2548 return; 2549 } 2550 dev->ctrl.tagset = &dev->tagset; 2551 } else { 2552 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2553 2554 /* Free previously allocated queues that are no longer usable */ 2555 nvme_free_queues(dev, dev->online_queues); 2556 } 2557 2558 nvme_dbbuf_set(dev); 2559 } 2560 2561 static int nvme_pci_enable(struct nvme_dev *dev) 2562 { 2563 int result = -ENOMEM; 2564 struct pci_dev *pdev = to_pci_dev(dev->dev); 2565 int dma_address_bits = 64; 2566 2567 if (pci_enable_device_mem(pdev)) 2568 return result; 2569 2570 pci_set_master(pdev); 2571 2572 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2573 dma_address_bits = 48; 2574 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2575 goto disable; 2576 2577 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2578 result = -ENODEV; 2579 goto disable; 2580 } 2581 2582 /* 2583 * Some devices and/or platforms don't advertise or work with INTx 2584 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2585 * adjust this later. 2586 */ 2587 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2588 if (result < 0) 2589 return result; 2590 2591 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2592 2593 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2594 io_queue_depth); 2595 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2596 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2597 dev->dbs = dev->bar + 4096; 2598 2599 /* 2600 * Some Apple controllers require a non-standard SQE size. 2601 * Interestingly they also seem to ignore the CC:IOSQES register 2602 * so we don't bother updating it here. 2603 */ 2604 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2605 dev->io_sqes = 7; 2606 else 2607 dev->io_sqes = NVME_NVM_IOSQES; 2608 2609 /* 2610 * Temporary fix for the Apple controller found in the MacBook8,1 and 2611 * some MacBook7,1 to avoid controller resets and data loss. 2612 */ 2613 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2614 dev->q_depth = 2; 2615 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2616 "set queue depth=%u to work around controller resets\n", 2617 dev->q_depth); 2618 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2619 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2620 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2621 dev->q_depth = 64; 2622 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2623 "set queue depth=%u\n", dev->q_depth); 2624 } 2625 2626 /* 2627 * Controllers with the shared tags quirk need the IO queue to be 2628 * big enough so that we get 32 tags for the admin queue 2629 */ 2630 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2631 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2632 dev->q_depth = NVME_AQ_DEPTH + 2; 2633 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2634 dev->q_depth); 2635 } 2636 2637 2638 nvme_map_cmb(dev); 2639 2640 pci_enable_pcie_error_reporting(pdev); 2641 pci_save_state(pdev); 2642 return 0; 2643 2644 disable: 2645 pci_disable_device(pdev); 2646 return result; 2647 } 2648 2649 static void nvme_dev_unmap(struct nvme_dev *dev) 2650 { 2651 if (dev->bar) 2652 iounmap(dev->bar); 2653 pci_release_mem_regions(to_pci_dev(dev->dev)); 2654 } 2655 2656 static void nvme_pci_disable(struct nvme_dev *dev) 2657 { 2658 struct pci_dev *pdev = to_pci_dev(dev->dev); 2659 2660 pci_free_irq_vectors(pdev); 2661 2662 if (pci_is_enabled(pdev)) { 2663 pci_disable_pcie_error_reporting(pdev); 2664 pci_disable_device(pdev); 2665 } 2666 } 2667 2668 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2669 { 2670 bool dead = true, freeze = false; 2671 struct pci_dev *pdev = to_pci_dev(dev->dev); 2672 2673 mutex_lock(&dev->shutdown_lock); 2674 if (pci_is_enabled(pdev)) { 2675 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2676 2677 if (dev->ctrl.state == NVME_CTRL_LIVE || 2678 dev->ctrl.state == NVME_CTRL_RESETTING) { 2679 freeze = true; 2680 nvme_start_freeze(&dev->ctrl); 2681 } 2682 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2683 pdev->error_state != pci_channel_io_normal); 2684 } 2685 2686 /* 2687 * Give the controller a chance to complete all entered requests if 2688 * doing a safe shutdown. 2689 */ 2690 if (!dead && shutdown && freeze) 2691 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2692 2693 nvme_stop_queues(&dev->ctrl); 2694 2695 if (!dead && dev->ctrl.queue_count > 0) { 2696 nvme_disable_io_queues(dev); 2697 nvme_disable_admin_queue(dev, shutdown); 2698 } 2699 nvme_suspend_io_queues(dev); 2700 nvme_suspend_queue(&dev->queues[0]); 2701 nvme_pci_disable(dev); 2702 nvme_reap_pending_cqes(dev); 2703 2704 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2705 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2706 blk_mq_tagset_wait_completed_request(&dev->tagset); 2707 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2708 2709 /* 2710 * The driver will not be starting up queues again if shutting down so 2711 * must flush all entered requests to their failed completion to avoid 2712 * deadlocking blk-mq hot-cpu notifier. 2713 */ 2714 if (shutdown) { 2715 nvme_start_queues(&dev->ctrl); 2716 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2717 nvme_start_admin_queue(&dev->ctrl); 2718 } 2719 mutex_unlock(&dev->shutdown_lock); 2720 } 2721 2722 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2723 { 2724 if (!nvme_wait_reset(&dev->ctrl)) 2725 return -EBUSY; 2726 nvme_dev_disable(dev, shutdown); 2727 return 0; 2728 } 2729 2730 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2731 { 2732 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2733 NVME_CTRL_PAGE_SIZE, 2734 NVME_CTRL_PAGE_SIZE, 0); 2735 if (!dev->prp_page_pool) 2736 return -ENOMEM; 2737 2738 /* Optimisation for I/Os between 4k and 128k */ 2739 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2740 256, 256, 0); 2741 if (!dev->prp_small_pool) { 2742 dma_pool_destroy(dev->prp_page_pool); 2743 return -ENOMEM; 2744 } 2745 return 0; 2746 } 2747 2748 static void nvme_release_prp_pools(struct nvme_dev *dev) 2749 { 2750 dma_pool_destroy(dev->prp_page_pool); 2751 dma_pool_destroy(dev->prp_small_pool); 2752 } 2753 2754 static void nvme_free_tagset(struct nvme_dev *dev) 2755 { 2756 if (dev->tagset.tags) 2757 blk_mq_free_tag_set(&dev->tagset); 2758 dev->ctrl.tagset = NULL; 2759 } 2760 2761 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2762 { 2763 struct nvme_dev *dev = to_nvme_dev(ctrl); 2764 2765 nvme_dbbuf_dma_free(dev); 2766 nvme_free_tagset(dev); 2767 if (dev->ctrl.admin_q) 2768 blk_put_queue(dev->ctrl.admin_q); 2769 free_opal_dev(dev->ctrl.opal_dev); 2770 mempool_destroy(dev->iod_mempool); 2771 put_device(dev->dev); 2772 kfree(dev->queues); 2773 kfree(dev); 2774 } 2775 2776 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2777 { 2778 /* 2779 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2780 * may be holding this pci_dev's device lock. 2781 */ 2782 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2783 nvme_get_ctrl(&dev->ctrl); 2784 nvme_dev_disable(dev, false); 2785 nvme_kill_queues(&dev->ctrl); 2786 if (!queue_work(nvme_wq, &dev->remove_work)) 2787 nvme_put_ctrl(&dev->ctrl); 2788 } 2789 2790 static void nvme_reset_work(struct work_struct *work) 2791 { 2792 struct nvme_dev *dev = 2793 container_of(work, struct nvme_dev, ctrl.reset_work); 2794 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2795 int result; 2796 2797 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2798 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2799 dev->ctrl.state); 2800 result = -ENODEV; 2801 goto out; 2802 } 2803 2804 /* 2805 * If we're called to reset a live controller first shut it down before 2806 * moving on. 2807 */ 2808 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2809 nvme_dev_disable(dev, false); 2810 nvme_sync_queues(&dev->ctrl); 2811 2812 mutex_lock(&dev->shutdown_lock); 2813 result = nvme_pci_enable(dev); 2814 if (result) 2815 goto out_unlock; 2816 2817 result = nvme_pci_configure_admin_queue(dev); 2818 if (result) 2819 goto out_unlock; 2820 2821 result = nvme_alloc_admin_tags(dev); 2822 if (result) 2823 goto out_unlock; 2824 2825 /* 2826 * Limit the max command size to prevent iod->sg allocations going 2827 * over a single page. 2828 */ 2829 dev->ctrl.max_hw_sectors = min_t(u32, 2830 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2831 dev->ctrl.max_segments = NVME_MAX_SEGS; 2832 2833 /* 2834 * Don't limit the IOMMU merged segment size. 2835 */ 2836 dma_set_max_seg_size(dev->dev, 0xffffffff); 2837 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2838 2839 mutex_unlock(&dev->shutdown_lock); 2840 2841 /* 2842 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2843 * initializing procedure here. 2844 */ 2845 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2846 dev_warn(dev->ctrl.device, 2847 "failed to mark controller CONNECTING\n"); 2848 result = -EBUSY; 2849 goto out; 2850 } 2851 2852 /* 2853 * We do not support an SGL for metadata (yet), so we are limited to a 2854 * single integrity segment for the separate metadata pointer. 2855 */ 2856 dev->ctrl.max_integrity_segments = 1; 2857 2858 result = nvme_init_ctrl_finish(&dev->ctrl); 2859 if (result) 2860 goto out; 2861 2862 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2863 if (!dev->ctrl.opal_dev) 2864 dev->ctrl.opal_dev = 2865 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2866 else if (was_suspend) 2867 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2868 } else { 2869 free_opal_dev(dev->ctrl.opal_dev); 2870 dev->ctrl.opal_dev = NULL; 2871 } 2872 2873 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2874 result = nvme_dbbuf_dma_alloc(dev); 2875 if (result) 2876 dev_warn(dev->dev, 2877 "unable to allocate dma for dbbuf\n"); 2878 } 2879 2880 if (dev->ctrl.hmpre) { 2881 result = nvme_setup_host_mem(dev); 2882 if (result < 0) 2883 goto out; 2884 } 2885 2886 result = nvme_setup_io_queues(dev); 2887 if (result) 2888 goto out; 2889 2890 /* 2891 * Keep the controller around but remove all namespaces if we don't have 2892 * any working I/O queue. 2893 */ 2894 if (dev->online_queues < 2) { 2895 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2896 nvme_kill_queues(&dev->ctrl); 2897 nvme_remove_namespaces(&dev->ctrl); 2898 nvme_free_tagset(dev); 2899 } else { 2900 nvme_start_queues(&dev->ctrl); 2901 nvme_wait_freeze(&dev->ctrl); 2902 nvme_dev_add(dev); 2903 nvme_unfreeze(&dev->ctrl); 2904 } 2905 2906 /* 2907 * If only admin queue live, keep it to do further investigation or 2908 * recovery. 2909 */ 2910 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2911 dev_warn(dev->ctrl.device, 2912 "failed to mark controller live state\n"); 2913 result = -ENODEV; 2914 goto out; 2915 } 2916 2917 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj, 2918 &nvme_pci_attr_group)) 2919 dev->attrs_added = true; 2920 2921 nvme_start_ctrl(&dev->ctrl); 2922 return; 2923 2924 out_unlock: 2925 mutex_unlock(&dev->shutdown_lock); 2926 out: 2927 if (result) 2928 dev_warn(dev->ctrl.device, 2929 "Removing after probe failure status: %d\n", result); 2930 nvme_remove_dead_ctrl(dev); 2931 } 2932 2933 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2934 { 2935 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2936 struct pci_dev *pdev = to_pci_dev(dev->dev); 2937 2938 if (pci_get_drvdata(pdev)) 2939 device_release_driver(&pdev->dev); 2940 nvme_put_ctrl(&dev->ctrl); 2941 } 2942 2943 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2944 { 2945 *val = readl(to_nvme_dev(ctrl)->bar + off); 2946 return 0; 2947 } 2948 2949 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2950 { 2951 writel(val, to_nvme_dev(ctrl)->bar + off); 2952 return 0; 2953 } 2954 2955 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2956 { 2957 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2958 return 0; 2959 } 2960 2961 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2962 { 2963 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2964 2965 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2966 } 2967 2968 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2969 .name = "pcie", 2970 .module = THIS_MODULE, 2971 .flags = NVME_F_METADATA_SUPPORTED | 2972 NVME_F_PCI_P2PDMA, 2973 .reg_read32 = nvme_pci_reg_read32, 2974 .reg_write32 = nvme_pci_reg_write32, 2975 .reg_read64 = nvme_pci_reg_read64, 2976 .free_ctrl = nvme_pci_free_ctrl, 2977 .submit_async_event = nvme_pci_submit_async_event, 2978 .get_address = nvme_pci_get_address, 2979 }; 2980 2981 static int nvme_dev_map(struct nvme_dev *dev) 2982 { 2983 struct pci_dev *pdev = to_pci_dev(dev->dev); 2984 2985 if (pci_request_mem_regions(pdev, "nvme")) 2986 return -ENODEV; 2987 2988 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2989 goto release; 2990 2991 return 0; 2992 release: 2993 pci_release_mem_regions(pdev); 2994 return -ENODEV; 2995 } 2996 2997 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2998 { 2999 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3000 /* 3001 * Several Samsung devices seem to drop off the PCIe bus 3002 * randomly when APST is on and uses the deepest sleep state. 3003 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3004 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3005 * 950 PRO 256GB", but it seems to be restricted to two Dell 3006 * laptops. 3007 */ 3008 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3009 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3010 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3011 return NVME_QUIRK_NO_DEEPEST_PS; 3012 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3013 /* 3014 * Samsung SSD 960 EVO drops off the PCIe bus after system 3015 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3016 * within few minutes after bootup on a Coffee Lake board - 3017 * ASUS PRIME Z370-A 3018 */ 3019 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3020 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3021 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3022 return NVME_QUIRK_NO_APST; 3023 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3024 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3025 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3026 /* 3027 * Forcing to use host managed nvme power settings for 3028 * lowest idle power with quick resume latency on 3029 * Samsung and Toshiba SSDs based on suspend behavior 3030 * on Coffee Lake board for LENOVO C640 3031 */ 3032 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3033 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3034 return NVME_QUIRK_SIMPLE_SUSPEND; 3035 } 3036 3037 return 0; 3038 } 3039 3040 static void nvme_async_probe(void *data, async_cookie_t cookie) 3041 { 3042 struct nvme_dev *dev = data; 3043 3044 flush_work(&dev->ctrl.reset_work); 3045 flush_work(&dev->ctrl.scan_work); 3046 nvme_put_ctrl(&dev->ctrl); 3047 } 3048 3049 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3050 { 3051 int node, result = -ENOMEM; 3052 struct nvme_dev *dev; 3053 unsigned long quirks = id->driver_data; 3054 size_t alloc_size; 3055 3056 node = dev_to_node(&pdev->dev); 3057 if (node == NUMA_NO_NODE) 3058 set_dev_node(&pdev->dev, first_memory_node); 3059 3060 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3061 if (!dev) 3062 return -ENOMEM; 3063 3064 dev->nr_write_queues = write_queues; 3065 dev->nr_poll_queues = poll_queues; 3066 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3067 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3068 sizeof(struct nvme_queue), GFP_KERNEL, node); 3069 if (!dev->queues) 3070 goto free; 3071 3072 dev->dev = get_device(&pdev->dev); 3073 pci_set_drvdata(pdev, dev); 3074 3075 result = nvme_dev_map(dev); 3076 if (result) 3077 goto put_pci; 3078 3079 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3080 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 3081 mutex_init(&dev->shutdown_lock); 3082 3083 result = nvme_setup_prp_pools(dev); 3084 if (result) 3085 goto unmap; 3086 3087 quirks |= check_vendor_combination_bug(pdev); 3088 3089 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 3090 /* 3091 * Some systems use a bios work around to ask for D3 on 3092 * platforms that support kernel managed suspend. 3093 */ 3094 dev_info(&pdev->dev, 3095 "platform quirk: setting simple suspend\n"); 3096 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3097 } 3098 3099 /* 3100 * Double check that our mempool alloc size will cover the biggest 3101 * command we support. 3102 */ 3103 alloc_size = nvme_pci_iod_alloc_size(); 3104 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 3105 3106 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 3107 mempool_kfree, 3108 (void *) alloc_size, 3109 GFP_KERNEL, node); 3110 if (!dev->iod_mempool) { 3111 result = -ENOMEM; 3112 goto release_pools; 3113 } 3114 3115 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3116 quirks); 3117 if (result) 3118 goto release_mempool; 3119 3120 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3121 3122 nvme_reset_ctrl(&dev->ctrl); 3123 async_schedule(nvme_async_probe, dev); 3124 3125 return 0; 3126 3127 release_mempool: 3128 mempool_destroy(dev->iod_mempool); 3129 release_pools: 3130 nvme_release_prp_pools(dev); 3131 unmap: 3132 nvme_dev_unmap(dev); 3133 put_pci: 3134 put_device(dev->dev); 3135 free: 3136 kfree(dev->queues); 3137 kfree(dev); 3138 return result; 3139 } 3140 3141 static void nvme_reset_prepare(struct pci_dev *pdev) 3142 { 3143 struct nvme_dev *dev = pci_get_drvdata(pdev); 3144 3145 /* 3146 * We don't need to check the return value from waiting for the reset 3147 * state as pci_dev device lock is held, making it impossible to race 3148 * with ->remove(). 3149 */ 3150 nvme_disable_prepare_reset(dev, false); 3151 nvme_sync_queues(&dev->ctrl); 3152 } 3153 3154 static void nvme_reset_done(struct pci_dev *pdev) 3155 { 3156 struct nvme_dev *dev = pci_get_drvdata(pdev); 3157 3158 if (!nvme_try_sched_reset(&dev->ctrl)) 3159 flush_work(&dev->ctrl.reset_work); 3160 } 3161 3162 static void nvme_shutdown(struct pci_dev *pdev) 3163 { 3164 struct nvme_dev *dev = pci_get_drvdata(pdev); 3165 3166 nvme_disable_prepare_reset(dev, true); 3167 } 3168 3169 static void nvme_remove_attrs(struct nvme_dev *dev) 3170 { 3171 if (dev->attrs_added) 3172 sysfs_remove_group(&dev->ctrl.device->kobj, 3173 &nvme_pci_attr_group); 3174 } 3175 3176 /* 3177 * The driver's remove may be called on a device in a partially initialized 3178 * state. This function must not have any dependencies on the device state in 3179 * order to proceed. 3180 */ 3181 static void nvme_remove(struct pci_dev *pdev) 3182 { 3183 struct nvme_dev *dev = pci_get_drvdata(pdev); 3184 3185 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3186 pci_set_drvdata(pdev, NULL); 3187 3188 if (!pci_device_is_present(pdev)) { 3189 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3190 nvme_dev_disable(dev, true); 3191 } 3192 3193 flush_work(&dev->ctrl.reset_work); 3194 nvme_stop_ctrl(&dev->ctrl); 3195 nvme_remove_namespaces(&dev->ctrl); 3196 nvme_dev_disable(dev, true); 3197 nvme_remove_attrs(dev); 3198 nvme_free_host_mem(dev); 3199 nvme_dev_remove_admin(dev); 3200 nvme_free_queues(dev, 0); 3201 nvme_release_prp_pools(dev); 3202 nvme_dev_unmap(dev); 3203 nvme_uninit_ctrl(&dev->ctrl); 3204 } 3205 3206 #ifdef CONFIG_PM_SLEEP 3207 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3208 { 3209 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3210 } 3211 3212 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3213 { 3214 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3215 } 3216 3217 static int nvme_resume(struct device *dev) 3218 { 3219 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3220 struct nvme_ctrl *ctrl = &ndev->ctrl; 3221 3222 if (ndev->last_ps == U32_MAX || 3223 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3224 goto reset; 3225 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3226 goto reset; 3227 3228 return 0; 3229 reset: 3230 return nvme_try_sched_reset(ctrl); 3231 } 3232 3233 static int nvme_suspend(struct device *dev) 3234 { 3235 struct pci_dev *pdev = to_pci_dev(dev); 3236 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3237 struct nvme_ctrl *ctrl = &ndev->ctrl; 3238 int ret = -EBUSY; 3239 3240 ndev->last_ps = U32_MAX; 3241 3242 /* 3243 * The platform does not remove power for a kernel managed suspend so 3244 * use host managed nvme power settings for lowest idle power if 3245 * possible. This should have quicker resume latency than a full device 3246 * shutdown. But if the firmware is involved after the suspend or the 3247 * device does not support any non-default power states, shut down the 3248 * device fully. 3249 * 3250 * If ASPM is not enabled for the device, shut down the device and allow 3251 * the PCI bus layer to put it into D3 in order to take the PCIe link 3252 * down, so as to allow the platform to achieve its minimum low-power 3253 * state (which may not be possible if the link is up). 3254 */ 3255 if (pm_suspend_via_firmware() || !ctrl->npss || 3256 !pcie_aspm_enabled(pdev) || 3257 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3258 return nvme_disable_prepare_reset(ndev, true); 3259 3260 nvme_start_freeze(ctrl); 3261 nvme_wait_freeze(ctrl); 3262 nvme_sync_queues(ctrl); 3263 3264 if (ctrl->state != NVME_CTRL_LIVE) 3265 goto unfreeze; 3266 3267 /* 3268 * Host memory access may not be successful in a system suspend state, 3269 * but the specification allows the controller to access memory in a 3270 * non-operational power state. 3271 */ 3272 if (ndev->hmb) { 3273 ret = nvme_set_host_mem(ndev, 0); 3274 if (ret < 0) 3275 goto unfreeze; 3276 } 3277 3278 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3279 if (ret < 0) 3280 goto unfreeze; 3281 3282 /* 3283 * A saved state prevents pci pm from generically controlling the 3284 * device's power. If we're using protocol specific settings, we don't 3285 * want pci interfering. 3286 */ 3287 pci_save_state(pdev); 3288 3289 ret = nvme_set_power_state(ctrl, ctrl->npss); 3290 if (ret < 0) 3291 goto unfreeze; 3292 3293 if (ret) { 3294 /* discard the saved state */ 3295 pci_load_saved_state(pdev, NULL); 3296 3297 /* 3298 * Clearing npss forces a controller reset on resume. The 3299 * correct value will be rediscovered then. 3300 */ 3301 ret = nvme_disable_prepare_reset(ndev, true); 3302 ctrl->npss = 0; 3303 } 3304 unfreeze: 3305 nvme_unfreeze(ctrl); 3306 return ret; 3307 } 3308 3309 static int nvme_simple_suspend(struct device *dev) 3310 { 3311 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3312 3313 return nvme_disable_prepare_reset(ndev, true); 3314 } 3315 3316 static int nvme_simple_resume(struct device *dev) 3317 { 3318 struct pci_dev *pdev = to_pci_dev(dev); 3319 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3320 3321 return nvme_try_sched_reset(&ndev->ctrl); 3322 } 3323 3324 static const struct dev_pm_ops nvme_dev_pm_ops = { 3325 .suspend = nvme_suspend, 3326 .resume = nvme_resume, 3327 .freeze = nvme_simple_suspend, 3328 .thaw = nvme_simple_resume, 3329 .poweroff = nvme_simple_suspend, 3330 .restore = nvme_simple_resume, 3331 }; 3332 #endif /* CONFIG_PM_SLEEP */ 3333 3334 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3335 pci_channel_state_t state) 3336 { 3337 struct nvme_dev *dev = pci_get_drvdata(pdev); 3338 3339 /* 3340 * A frozen channel requires a reset. When detected, this method will 3341 * shutdown the controller to quiesce. The controller will be restarted 3342 * after the slot reset through driver's slot_reset callback. 3343 */ 3344 switch (state) { 3345 case pci_channel_io_normal: 3346 return PCI_ERS_RESULT_CAN_RECOVER; 3347 case pci_channel_io_frozen: 3348 dev_warn(dev->ctrl.device, 3349 "frozen state error detected, reset controller\n"); 3350 nvme_dev_disable(dev, false); 3351 return PCI_ERS_RESULT_NEED_RESET; 3352 case pci_channel_io_perm_failure: 3353 dev_warn(dev->ctrl.device, 3354 "failure state error detected, request disconnect\n"); 3355 return PCI_ERS_RESULT_DISCONNECT; 3356 } 3357 return PCI_ERS_RESULT_NEED_RESET; 3358 } 3359 3360 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3361 { 3362 struct nvme_dev *dev = pci_get_drvdata(pdev); 3363 3364 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3365 pci_restore_state(pdev); 3366 nvme_reset_ctrl(&dev->ctrl); 3367 return PCI_ERS_RESULT_RECOVERED; 3368 } 3369 3370 static void nvme_error_resume(struct pci_dev *pdev) 3371 { 3372 struct nvme_dev *dev = pci_get_drvdata(pdev); 3373 3374 flush_work(&dev->ctrl.reset_work); 3375 } 3376 3377 static const struct pci_error_handlers nvme_err_handler = { 3378 .error_detected = nvme_error_detected, 3379 .slot_reset = nvme_slot_reset, 3380 .resume = nvme_error_resume, 3381 .reset_prepare = nvme_reset_prepare, 3382 .reset_done = nvme_reset_done, 3383 }; 3384 3385 static const struct pci_device_id nvme_id_table[] = { 3386 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3387 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3388 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3389 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3390 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3391 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3392 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3393 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3394 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3395 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3396 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3397 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3398 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3399 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3400 NVME_QUIRK_MEDIUM_PRIO_SQ | 3401 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3402 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3403 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3404 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3405 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3406 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3407 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3408 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3409 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3410 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3411 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3412 NVME_QUIRK_NO_NS_DESC_LIST, }, 3413 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3414 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3415 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3416 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3417 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3418 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3419 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3420 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3421 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3422 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3423 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3424 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3425 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3426 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3427 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3428 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3429 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3430 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3431 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3432 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3433 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3434 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3435 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3436 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3437 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3438 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3439 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3440 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3441 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3442 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3443 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3444 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3445 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3446 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3447 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3448 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3449 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3450 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3451 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3452 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3453 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3454 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3455 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3456 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3457 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3458 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3459 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3460 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3461 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3462 NVME_QUIRK_128_BYTES_SQES | 3463 NVME_QUIRK_SHARED_TAGS | 3464 NVME_QUIRK_SKIP_CID_GEN }, 3465 3466 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3467 { 0, } 3468 }; 3469 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3470 3471 static struct pci_driver nvme_driver = { 3472 .name = "nvme", 3473 .id_table = nvme_id_table, 3474 .probe = nvme_probe, 3475 .remove = nvme_remove, 3476 .shutdown = nvme_shutdown, 3477 #ifdef CONFIG_PM_SLEEP 3478 .driver = { 3479 .pm = &nvme_dev_pm_ops, 3480 }, 3481 #endif 3482 .sriov_configure = pci_sriov_configure_simple, 3483 .err_handler = &nvme_err_handler, 3484 }; 3485 3486 static int __init nvme_init(void) 3487 { 3488 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3489 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3490 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3491 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3492 3493 return pci_register_driver(&nvme_driver); 3494 } 3495 3496 static void __exit nvme_exit(void) 3497 { 3498 pci_unregister_driver(&nvme_driver); 3499 flush_workqueue(nvme_wq); 3500 } 3501 3502 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3503 MODULE_LICENSE("GPL"); 3504 MODULE_VERSION("1.0"); 3505 module_init(nvme_init); 3506 module_exit(nvme_exit); 3507