1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 145 mempool_t *iod_mempool; 146 147 /* shadow doorbell buffer support: */ 148 __le32 *dbbuf_dbs; 149 dma_addr_t dbbuf_dbs_dma_addr; 150 __le32 *dbbuf_eis; 151 dma_addr_t dbbuf_eis_dma_addr; 152 153 /* host memory buffer support: */ 154 u64 host_mem_size; 155 u32 nr_host_mem_descs; 156 dma_addr_t host_mem_descs_dma; 157 struct nvme_host_mem_buf_desc *host_mem_descs; 158 void **host_mem_desc_bufs; 159 unsigned int nr_allocated_queues; 160 unsigned int nr_write_queues; 161 unsigned int nr_poll_queues; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 __le32 *dbbuf_sq_db; 213 __le32 *dbbuf_cq_db; 214 __le32 *dbbuf_sq_ei; 215 __le32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 union nvme_descriptor { 220 struct nvme_sgl_desc *sg_list; 221 __le64 *prp_list; 222 }; 223 224 /* 225 * The nvme_iod describes the data in an I/O. 226 * 227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 228 * to the actual struct scatterlist. 229 */ 230 struct nvme_iod { 231 struct nvme_request req; 232 struct nvme_command cmd; 233 bool aborted; 234 s8 nr_allocations; /* PRP list pool allocations. 0 means small 235 pool in use */ 236 unsigned int dma_len; /* length of single DMA segment mapping */ 237 dma_addr_t first_dma; 238 dma_addr_t meta_dma; 239 struct sg_table sgt; 240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 241 }; 242 243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 244 { 245 return dev->nr_allocated_queues * 8 * dev->db_stride; 246 } 247 248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 249 { 250 unsigned int mem_size = nvme_dbbuf_size(dev); 251 252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 253 return; 254 255 if (dev->dbbuf_dbs) { 256 /* 257 * Clear the dbbuf memory so the driver doesn't observe stale 258 * values from the previous instantiation. 259 */ 260 memset(dev->dbbuf_dbs, 0, mem_size); 261 memset(dev->dbbuf_eis, 0, mem_size); 262 return; 263 } 264 265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 266 &dev->dbbuf_dbs_dma_addr, 267 GFP_KERNEL); 268 if (!dev->dbbuf_dbs) 269 goto fail; 270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_eis_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_eis) 274 goto fail_free_dbbuf_dbs; 275 return; 276 277 fail_free_dbbuf_dbs: 278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 279 dev->dbbuf_dbs_dma_addr); 280 dev->dbbuf_dbs = NULL; 281 fail: 282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 283 } 284 285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 286 { 287 unsigned int mem_size = nvme_dbbuf_size(dev); 288 289 if (dev->dbbuf_dbs) { 290 dma_free_coherent(dev->dev, mem_size, 291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 292 dev->dbbuf_dbs = NULL; 293 } 294 if (dev->dbbuf_eis) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 297 dev->dbbuf_eis = NULL; 298 } 299 } 300 301 static void nvme_dbbuf_init(struct nvme_dev *dev, 302 struct nvme_queue *nvmeq, int qid) 303 { 304 if (!dev->dbbuf_dbs || !qid) 305 return; 306 307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 311 } 312 313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 314 { 315 if (!nvmeq->qid) 316 return; 317 318 nvmeq->dbbuf_sq_db = NULL; 319 nvmeq->dbbuf_cq_db = NULL; 320 nvmeq->dbbuf_sq_ei = NULL; 321 nvmeq->dbbuf_cq_ei = NULL; 322 } 323 324 static void nvme_dbbuf_set(struct nvme_dev *dev) 325 { 326 struct nvme_command c = { }; 327 unsigned int i; 328 329 if (!dev->dbbuf_dbs) 330 return; 331 332 c.dbbuf.opcode = nvme_admin_dbbuf; 333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 335 336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 338 /* Free memory and continue on */ 339 nvme_dbbuf_dma_free(dev); 340 341 for (i = 1; i <= dev->online_queues; i++) 342 nvme_dbbuf_free(&dev->queues[i]); 343 } 344 } 345 346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 347 { 348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 349 } 350 351 /* Update dbbuf and return true if an MMIO is required */ 352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 353 volatile __le32 *dbbuf_ei) 354 { 355 if (dbbuf_db) { 356 u16 old_value, event_idx; 357 358 /* 359 * Ensure that the queue is written before updating 360 * the doorbell in memory 361 */ 362 wmb(); 363 364 old_value = le32_to_cpu(*dbbuf_db); 365 *dbbuf_db = cpu_to_le32(value); 366 367 /* 368 * Ensure that the doorbell is updated before reading the event 369 * index from memory. The controller needs to provide similar 370 * ordering to ensure the envent index is updated before reading 371 * the doorbell. 372 */ 373 mb(); 374 375 event_idx = le32_to_cpu(*dbbuf_ei); 376 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 377 return false; 378 } 379 380 return true; 381 } 382 383 /* 384 * Will slightly overestimate the number of pages needed. This is OK 385 * as it only leads to a small amount of wasted memory for the lifetime of 386 * the I/O. 387 */ 388 static int nvme_pci_npages_prp(void) 389 { 390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = to_nvme_dev(data); 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = to_nvme_dev(data); 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 420 struct request *req, unsigned int hctx_idx, 421 unsigned int numa_node) 422 { 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 425 nvme_req(req)->ctrl = set->driver_data; 426 nvme_req(req)->cmd = &iod->cmd; 427 return 0; 428 } 429 430 static int queue_irq_offset(struct nvme_dev *dev) 431 { 432 /* if we have more than 1 vec, admin queue offsets us by 1 */ 433 if (dev->num_vecs > 1) 434 return 1; 435 436 return 0; 437 } 438 439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 440 { 441 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 442 int i, qoff, offset; 443 444 offset = queue_irq_offset(dev); 445 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 446 struct blk_mq_queue_map *map = &set->map[i]; 447 448 map->nr_queues = dev->io_queues[i]; 449 if (!map->nr_queues) { 450 BUG_ON(i == HCTX_TYPE_DEFAULT); 451 continue; 452 } 453 454 /* 455 * The poll queue(s) doesn't have an IRQ (and hence IRQ 456 * affinity), so use the regular blk-mq cpu mapping 457 */ 458 map->queue_offset = qoff; 459 if (i != HCTX_TYPE_POLL && offset) 460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 461 else 462 blk_mq_map_queues(map); 463 qoff += map->nr_queues; 464 offset += map->nr_queues; 465 } 466 } 467 468 /* 469 * Write sq tail if we are asked to, or if the next command would wrap. 470 */ 471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 472 { 473 if (!write_sq) { 474 u16 next_tail = nvmeq->sq_tail + 1; 475 476 if (next_tail == nvmeq->q_depth) 477 next_tail = 0; 478 if (next_tail != nvmeq->last_sq_tail) 479 return; 480 } 481 482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 484 writel(nvmeq->sq_tail, nvmeq->q_db); 485 nvmeq->last_sq_tail = nvmeq->sq_tail; 486 } 487 488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 489 struct nvme_command *cmd) 490 { 491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 492 absolute_pointer(cmd), sizeof(*cmd)); 493 if (++nvmeq->sq_tail == nvmeq->q_depth) 494 nvmeq->sq_tail = 0; 495 } 496 497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 498 { 499 struct nvme_queue *nvmeq = hctx->driver_data; 500 501 spin_lock(&nvmeq->sq_lock); 502 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 503 nvme_write_sq_db(nvmeq, true); 504 spin_unlock(&nvmeq->sq_lock); 505 } 506 507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 508 int nseg) 509 { 510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 511 unsigned int avg_seg_size; 512 513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 514 515 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 516 return false; 517 if (!nvmeq->qid) 518 return false; 519 if (!sgl_threshold || avg_seg_size < sgl_threshold) 520 return false; 521 return true; 522 } 523 524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 525 { 526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 dma_addr_t dma_addr = iod->first_dma; 529 int i; 530 531 for (i = 0; i < iod->nr_allocations; i++) { 532 __le64 *prp_list = iod->list[i].prp_list; 533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 534 535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 536 dma_addr = next_dma_addr; 537 } 538 } 539 540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 541 { 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 543 544 if (iod->dma_len) { 545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 546 rq_dma_dir(req)); 547 return; 548 } 549 550 WARN_ON_ONCE(!iod->sgt.nents); 551 552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 553 554 if (iod->nr_allocations == 0) 555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 556 iod->first_dma); 557 else if (iod->nr_allocations == 1) 558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 559 iod->first_dma); 560 else 561 nvme_free_prps(dev, req); 562 mempool_free(iod->sgt.sgl, dev->iod_mempool); 563 } 564 565 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 566 { 567 int i; 568 struct scatterlist *sg; 569 570 for_each_sg(sgl, sg, nents, i) { 571 dma_addr_t phys = sg_phys(sg); 572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 573 "dma_address:%pad dma_length:%d\n", 574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 575 sg_dma_len(sg)); 576 } 577 } 578 579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 580 struct request *req, struct nvme_rw_command *cmnd) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 struct dma_pool *pool; 584 int length = blk_rq_payload_bytes(req); 585 struct scatterlist *sg = iod->sgt.sgl; 586 int dma_len = sg_dma_len(sg); 587 u64 dma_addr = sg_dma_address(sg); 588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 589 __le64 *prp_list; 590 dma_addr_t prp_dma; 591 int nprps, i; 592 593 length -= (NVME_CTRL_PAGE_SIZE - offset); 594 if (length <= 0) { 595 iod->first_dma = 0; 596 goto done; 597 } 598 599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 600 if (dma_len) { 601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 602 } else { 603 sg = sg_next(sg); 604 dma_addr = sg_dma_address(sg); 605 dma_len = sg_dma_len(sg); 606 } 607 608 if (length <= NVME_CTRL_PAGE_SIZE) { 609 iod->first_dma = dma_addr; 610 goto done; 611 } 612 613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 614 if (nprps <= (256 / 8)) { 615 pool = dev->prp_small_pool; 616 iod->nr_allocations = 0; 617 } else { 618 pool = dev->prp_page_pool; 619 iod->nr_allocations = 1; 620 } 621 622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 623 if (!prp_list) { 624 iod->nr_allocations = -1; 625 return BLK_STS_RESOURCE; 626 } 627 iod->list[0].prp_list = prp_list; 628 iod->first_dma = prp_dma; 629 i = 0; 630 for (;;) { 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 632 __le64 *old_prp_list = prp_list; 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 634 if (!prp_list) 635 goto free_prps; 636 iod->list[iod->nr_allocations++].prp_list = prp_list; 637 prp_list[0] = old_prp_list[i - 1]; 638 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 639 i = 1; 640 } 641 prp_list[i++] = cpu_to_le64(dma_addr); 642 dma_len -= NVME_CTRL_PAGE_SIZE; 643 dma_addr += NVME_CTRL_PAGE_SIZE; 644 length -= NVME_CTRL_PAGE_SIZE; 645 if (length <= 0) 646 break; 647 if (dma_len > 0) 648 continue; 649 if (unlikely(dma_len < 0)) 650 goto bad_sgl; 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 done: 656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 658 return BLK_STS_OK; 659 free_prps: 660 nvme_free_prps(dev, req); 661 return BLK_STS_RESOURCE; 662 bad_sgl: 663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 664 "Invalid SGL for payload:%d nents:%d\n", 665 blk_rq_payload_bytes(req), iod->sgt.nents); 666 return BLK_STS_IOERR; 667 } 668 669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 670 struct scatterlist *sg) 671 { 672 sge->addr = cpu_to_le64(sg_dma_address(sg)); 673 sge->length = cpu_to_le32(sg_dma_len(sg)); 674 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 675 } 676 677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 678 dma_addr_t dma_addr, int entries) 679 { 680 sge->addr = cpu_to_le64(dma_addr); 681 sge->length = cpu_to_le32(entries * sizeof(*sge)); 682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 683 } 684 685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 686 struct request *req, struct nvme_rw_command *cmd) 687 { 688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 689 struct dma_pool *pool; 690 struct nvme_sgl_desc *sg_list; 691 struct scatterlist *sg = iod->sgt.sgl; 692 unsigned int entries = iod->sgt.nents; 693 dma_addr_t sgl_dma; 694 int i = 0; 695 696 /* setting the transfer type as SGL */ 697 cmd->flags = NVME_CMD_SGL_METABUF; 698 699 if (entries == 1) { 700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 701 return BLK_STS_OK; 702 } 703 704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 705 pool = dev->prp_small_pool; 706 iod->nr_allocations = 0; 707 } else { 708 pool = dev->prp_page_pool; 709 iod->nr_allocations = 1; 710 } 711 712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 713 if (!sg_list) { 714 iod->nr_allocations = -1; 715 return BLK_STS_RESOURCE; 716 } 717 718 iod->list[0].sg_list = sg_list; 719 iod->first_dma = sgl_dma; 720 721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 722 do { 723 nvme_pci_sgl_set_data(&sg_list[i++], sg); 724 sg = sg_next(sg); 725 } while (--entries > 0); 726 727 return BLK_STS_OK; 728 } 729 730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 731 struct request *req, struct nvme_rw_command *cmnd, 732 struct bio_vec *bv) 733 { 734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 737 738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 739 if (dma_mapping_error(dev->dev, iod->first_dma)) 740 return BLK_STS_RESOURCE; 741 iod->dma_len = bv->bv_len; 742 743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 744 if (bv->bv_len > first_prp_len) 745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 746 else 747 cmnd->dptr.prp2 = 0; 748 return BLK_STS_OK; 749 } 750 751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 752 struct request *req, struct nvme_rw_command *cmnd, 753 struct bio_vec *bv) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 758 if (dma_mapping_error(dev->dev, iod->first_dma)) 759 return BLK_STS_RESOURCE; 760 iod->dma_len = bv->bv_len; 761 762 cmnd->flags = NVME_CMD_SGL_METABUF; 763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 766 return BLK_STS_OK; 767 } 768 769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 770 struct nvme_command *cmnd) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 blk_status_t ret = BLK_STS_RESOURCE; 774 int rc; 775 776 if (blk_rq_nr_phys_segments(req) == 1) { 777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 778 struct bio_vec bv = req_bvec(req); 779 780 if (!is_pci_p2pdma_page(bv.bv_page)) { 781 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 782 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 783 return nvme_setup_prp_simple(dev, req, 784 &cmnd->rw, &bv); 785 786 if (nvmeq->qid && sgl_threshold && 787 nvme_ctrl_sgl_supported(&dev->ctrl)) 788 return nvme_setup_sgl_simple(dev, req, 789 &cmnd->rw, &bv); 790 } 791 } 792 793 iod->dma_len = 0; 794 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 795 if (!iod->sgt.sgl) 796 return BLK_STS_RESOURCE; 797 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 798 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 799 if (!iod->sgt.orig_nents) 800 goto out_free_sg; 801 802 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 803 DMA_ATTR_NO_WARN); 804 if (rc) { 805 if (rc == -EREMOTEIO) 806 ret = BLK_STS_TARGET; 807 goto out_free_sg; 808 } 809 810 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 811 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 812 else 813 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 814 if (ret != BLK_STS_OK) 815 goto out_unmap_sg; 816 return BLK_STS_OK; 817 818 out_unmap_sg: 819 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 820 out_free_sg: 821 mempool_free(iod->sgt.sgl, dev->iod_mempool); 822 return ret; 823 } 824 825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 826 struct nvme_command *cmnd) 827 { 828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 829 830 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 831 rq_dma_dir(req), 0); 832 if (dma_mapping_error(dev->dev, iod->meta_dma)) 833 return BLK_STS_IOERR; 834 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 835 return BLK_STS_OK; 836 } 837 838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 839 { 840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 841 blk_status_t ret; 842 843 iod->aborted = false; 844 iod->nr_allocations = -1; 845 iod->sgt.nents = 0; 846 847 ret = nvme_setup_cmd(req->q->queuedata, req); 848 if (ret) 849 return ret; 850 851 if (blk_rq_nr_phys_segments(req)) { 852 ret = nvme_map_data(dev, req, &iod->cmd); 853 if (ret) 854 goto out_free_cmd; 855 } 856 857 if (blk_integrity_rq(req)) { 858 ret = nvme_map_metadata(dev, req, &iod->cmd); 859 if (ret) 860 goto out_unmap_data; 861 } 862 863 nvme_start_request(req); 864 return BLK_STS_OK; 865 out_unmap_data: 866 nvme_unmap_data(dev, req); 867 out_free_cmd: 868 nvme_cleanup_cmd(req); 869 return ret; 870 } 871 872 /* 873 * NOTE: ns is NULL when called on the admin queue. 874 */ 875 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 876 const struct blk_mq_queue_data *bd) 877 { 878 struct nvme_queue *nvmeq = hctx->driver_data; 879 struct nvme_dev *dev = nvmeq->dev; 880 struct request *req = bd->rq; 881 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 882 blk_status_t ret; 883 884 /* 885 * We should not need to do this, but we're still using this to 886 * ensure we can drain requests on a dying queue. 887 */ 888 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 889 return BLK_STS_IOERR; 890 891 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 892 return nvme_fail_nonready_command(&dev->ctrl, req); 893 894 ret = nvme_prep_rq(dev, req); 895 if (unlikely(ret)) 896 return ret; 897 spin_lock(&nvmeq->sq_lock); 898 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 899 nvme_write_sq_db(nvmeq, bd->last); 900 spin_unlock(&nvmeq->sq_lock); 901 return BLK_STS_OK; 902 } 903 904 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 905 { 906 spin_lock(&nvmeq->sq_lock); 907 while (!rq_list_empty(*rqlist)) { 908 struct request *req = rq_list_pop(rqlist); 909 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 910 911 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 912 } 913 nvme_write_sq_db(nvmeq, true); 914 spin_unlock(&nvmeq->sq_lock); 915 } 916 917 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 918 { 919 /* 920 * We should not need to do this, but we're still using this to 921 * ensure we can drain requests on a dying queue. 922 */ 923 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 924 return false; 925 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 926 return false; 927 928 req->mq_hctx->tags->rqs[req->tag] = req; 929 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 930 } 931 932 static void nvme_queue_rqs(struct request **rqlist) 933 { 934 struct request *req, *next, *prev = NULL; 935 struct request *requeue_list = NULL; 936 937 rq_list_for_each_safe(rqlist, req, next) { 938 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 939 940 if (!nvme_prep_rq_batch(nvmeq, req)) { 941 /* detach 'req' and add to remainder list */ 942 rq_list_move(rqlist, &requeue_list, req, prev); 943 944 req = prev; 945 if (!req) 946 continue; 947 } 948 949 if (!next || req->mq_hctx != next->mq_hctx) { 950 /* detach rest of list, and submit */ 951 req->rq_next = NULL; 952 nvme_submit_cmds(nvmeq, rqlist); 953 *rqlist = next; 954 prev = NULL; 955 } else 956 prev = req; 957 } 958 959 *rqlist = requeue_list; 960 } 961 962 static __always_inline void nvme_pci_unmap_rq(struct request *req) 963 { 964 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 965 struct nvme_dev *dev = nvmeq->dev; 966 967 if (blk_integrity_rq(req)) { 968 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 969 970 dma_unmap_page(dev->dev, iod->meta_dma, 971 rq_integrity_vec(req)->bv_len, rq_dma_dir(req)); 972 } 973 974 if (blk_rq_nr_phys_segments(req)) 975 nvme_unmap_data(dev, req); 976 } 977 978 static void nvme_pci_complete_rq(struct request *req) 979 { 980 nvme_pci_unmap_rq(req); 981 nvme_complete_rq(req); 982 } 983 984 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 985 { 986 nvme_complete_batch(iob, nvme_pci_unmap_rq); 987 } 988 989 /* We read the CQE phase first to check if the rest of the entry is valid */ 990 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 991 { 992 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 993 994 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 995 } 996 997 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 998 { 999 u16 head = nvmeq->cq_head; 1000 1001 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1002 nvmeq->dbbuf_cq_ei)) 1003 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1004 } 1005 1006 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1007 { 1008 if (!nvmeq->qid) 1009 return nvmeq->dev->admin_tagset.tags[0]; 1010 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1011 } 1012 1013 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1014 struct io_comp_batch *iob, u16 idx) 1015 { 1016 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1017 __u16 command_id = READ_ONCE(cqe->command_id); 1018 struct request *req; 1019 1020 /* 1021 * AEN requests are special as they don't time out and can 1022 * survive any kind of queue freeze and often don't respond to 1023 * aborts. We don't even bother to allocate a struct request 1024 * for them but rather special case them here. 1025 */ 1026 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1027 nvme_complete_async_event(&nvmeq->dev->ctrl, 1028 cqe->status, &cqe->result); 1029 return; 1030 } 1031 1032 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1033 if (unlikely(!req)) { 1034 dev_warn(nvmeq->dev->ctrl.device, 1035 "invalid id %d completed on queue %d\n", 1036 command_id, le16_to_cpu(cqe->sq_id)); 1037 return; 1038 } 1039 1040 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1041 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1042 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1043 nvme_pci_complete_batch)) 1044 nvme_pci_complete_rq(req); 1045 } 1046 1047 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1048 { 1049 u32 tmp = nvmeq->cq_head + 1; 1050 1051 if (tmp == nvmeq->q_depth) { 1052 nvmeq->cq_head = 0; 1053 nvmeq->cq_phase ^= 1; 1054 } else { 1055 nvmeq->cq_head = tmp; 1056 } 1057 } 1058 1059 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1060 struct io_comp_batch *iob) 1061 { 1062 int found = 0; 1063 1064 while (nvme_cqe_pending(nvmeq)) { 1065 found++; 1066 /* 1067 * load-load control dependency between phase and the rest of 1068 * the cqe requires a full read memory barrier 1069 */ 1070 dma_rmb(); 1071 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1072 nvme_update_cq_head(nvmeq); 1073 } 1074 1075 if (found) 1076 nvme_ring_cq_doorbell(nvmeq); 1077 return found; 1078 } 1079 1080 static irqreturn_t nvme_irq(int irq, void *data) 1081 { 1082 struct nvme_queue *nvmeq = data; 1083 DEFINE_IO_COMP_BATCH(iob); 1084 1085 if (nvme_poll_cq(nvmeq, &iob)) { 1086 if (!rq_list_empty(iob.req_list)) 1087 nvme_pci_complete_batch(&iob); 1088 return IRQ_HANDLED; 1089 } 1090 return IRQ_NONE; 1091 } 1092 1093 static irqreturn_t nvme_irq_check(int irq, void *data) 1094 { 1095 struct nvme_queue *nvmeq = data; 1096 1097 if (nvme_cqe_pending(nvmeq)) 1098 return IRQ_WAKE_THREAD; 1099 return IRQ_NONE; 1100 } 1101 1102 /* 1103 * Poll for completions for any interrupt driven queue 1104 * Can be called from any context. 1105 */ 1106 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1107 { 1108 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1109 1110 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1111 1112 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1113 nvme_poll_cq(nvmeq, NULL); 1114 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1115 } 1116 1117 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1118 { 1119 struct nvme_queue *nvmeq = hctx->driver_data; 1120 bool found; 1121 1122 if (!nvme_cqe_pending(nvmeq)) 1123 return 0; 1124 1125 spin_lock(&nvmeq->cq_poll_lock); 1126 found = nvme_poll_cq(nvmeq, iob); 1127 spin_unlock(&nvmeq->cq_poll_lock); 1128 1129 return found; 1130 } 1131 1132 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1133 { 1134 struct nvme_dev *dev = to_nvme_dev(ctrl); 1135 struct nvme_queue *nvmeq = &dev->queues[0]; 1136 struct nvme_command c = { }; 1137 1138 c.common.opcode = nvme_admin_async_event; 1139 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1140 1141 spin_lock(&nvmeq->sq_lock); 1142 nvme_sq_copy_cmd(nvmeq, &c); 1143 nvme_write_sq_db(nvmeq, true); 1144 spin_unlock(&nvmeq->sq_lock); 1145 } 1146 1147 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1148 { 1149 struct nvme_command c = { }; 1150 1151 c.delete_queue.opcode = opcode; 1152 c.delete_queue.qid = cpu_to_le16(id); 1153 1154 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1155 } 1156 1157 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1158 struct nvme_queue *nvmeq, s16 vector) 1159 { 1160 struct nvme_command c = { }; 1161 int flags = NVME_QUEUE_PHYS_CONTIG; 1162 1163 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1164 flags |= NVME_CQ_IRQ_ENABLED; 1165 1166 /* 1167 * Note: we (ab)use the fact that the prp fields survive if no data 1168 * is attached to the request. 1169 */ 1170 c.create_cq.opcode = nvme_admin_create_cq; 1171 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1172 c.create_cq.cqid = cpu_to_le16(qid); 1173 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1174 c.create_cq.cq_flags = cpu_to_le16(flags); 1175 c.create_cq.irq_vector = cpu_to_le16(vector); 1176 1177 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1178 } 1179 1180 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1181 struct nvme_queue *nvmeq) 1182 { 1183 struct nvme_ctrl *ctrl = &dev->ctrl; 1184 struct nvme_command c = { }; 1185 int flags = NVME_QUEUE_PHYS_CONTIG; 1186 1187 /* 1188 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1189 * set. Since URGENT priority is zeroes, it makes all queues 1190 * URGENT. 1191 */ 1192 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1193 flags |= NVME_SQ_PRIO_MEDIUM; 1194 1195 /* 1196 * Note: we (ab)use the fact that the prp fields survive if no data 1197 * is attached to the request. 1198 */ 1199 c.create_sq.opcode = nvme_admin_create_sq; 1200 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1201 c.create_sq.sqid = cpu_to_le16(qid); 1202 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1203 c.create_sq.sq_flags = cpu_to_le16(flags); 1204 c.create_sq.cqid = cpu_to_le16(qid); 1205 1206 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1207 } 1208 1209 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1210 { 1211 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1212 } 1213 1214 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1215 { 1216 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1217 } 1218 1219 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1220 { 1221 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1222 1223 dev_warn(nvmeq->dev->ctrl.device, 1224 "Abort status: 0x%x", nvme_req(req)->status); 1225 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1226 blk_mq_free_request(req); 1227 return RQ_END_IO_NONE; 1228 } 1229 1230 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1231 { 1232 /* If true, indicates loss of adapter communication, possibly by a 1233 * NVMe Subsystem reset. 1234 */ 1235 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1236 1237 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1238 switch (nvme_ctrl_state(&dev->ctrl)) { 1239 case NVME_CTRL_RESETTING: 1240 case NVME_CTRL_CONNECTING: 1241 return false; 1242 default: 1243 break; 1244 } 1245 1246 /* We shouldn't reset unless the controller is on fatal error state 1247 * _or_ if we lost the communication with it. 1248 */ 1249 if (!(csts & NVME_CSTS_CFS) && !nssro) 1250 return false; 1251 1252 return true; 1253 } 1254 1255 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1256 { 1257 /* Read a config register to help see what died. */ 1258 u16 pci_status; 1259 int result; 1260 1261 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1262 &pci_status); 1263 if (result == PCIBIOS_SUCCESSFUL) 1264 dev_warn(dev->ctrl.device, 1265 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1266 csts, pci_status); 1267 else 1268 dev_warn(dev->ctrl.device, 1269 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1270 csts, result); 1271 1272 if (csts != ~0) 1273 return; 1274 1275 dev_warn(dev->ctrl.device, 1276 "Does your device have a faulty power saving mode enabled?\n"); 1277 dev_warn(dev->ctrl.device, 1278 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1279 } 1280 1281 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1282 { 1283 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1284 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1285 struct nvme_dev *dev = nvmeq->dev; 1286 struct request *abort_req; 1287 struct nvme_command cmd = { }; 1288 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1289 1290 if (nvme_state_terminal(&dev->ctrl)) 1291 goto disable; 1292 1293 /* If PCI error recovery process is happening, we cannot reset or 1294 * the recovery mechanism will surely fail. 1295 */ 1296 mb(); 1297 if (pci_channel_offline(to_pci_dev(dev->dev))) 1298 return BLK_EH_RESET_TIMER; 1299 1300 /* 1301 * Reset immediately if the controller is failed 1302 */ 1303 if (nvme_should_reset(dev, csts)) { 1304 nvme_warn_reset(dev, csts); 1305 goto disable; 1306 } 1307 1308 /* 1309 * Did we miss an interrupt? 1310 */ 1311 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1312 nvme_poll(req->mq_hctx, NULL); 1313 else 1314 nvme_poll_irqdisable(nvmeq); 1315 1316 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1317 dev_warn(dev->ctrl.device, 1318 "I/O %d QID %d timeout, completion polled\n", 1319 req->tag, nvmeq->qid); 1320 return BLK_EH_DONE; 1321 } 1322 1323 /* 1324 * Shutdown immediately if controller times out while starting. The 1325 * reset work will see the pci device disabled when it gets the forced 1326 * cancellation error. All outstanding requests are completed on 1327 * shutdown, so we return BLK_EH_DONE. 1328 */ 1329 switch (nvme_ctrl_state(&dev->ctrl)) { 1330 case NVME_CTRL_CONNECTING: 1331 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1332 fallthrough; 1333 case NVME_CTRL_DELETING: 1334 dev_warn_ratelimited(dev->ctrl.device, 1335 "I/O %d QID %d timeout, disable controller\n", 1336 req->tag, nvmeq->qid); 1337 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1338 nvme_dev_disable(dev, true); 1339 return BLK_EH_DONE; 1340 case NVME_CTRL_RESETTING: 1341 return BLK_EH_RESET_TIMER; 1342 default: 1343 break; 1344 } 1345 1346 /* 1347 * Shutdown the controller immediately and schedule a reset if the 1348 * command was already aborted once before and still hasn't been 1349 * returned to the driver, or if this is the admin queue. 1350 */ 1351 if (!nvmeq->qid || iod->aborted) { 1352 dev_warn(dev->ctrl.device, 1353 "I/O %d QID %d timeout, reset controller\n", 1354 req->tag, nvmeq->qid); 1355 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1356 goto disable; 1357 } 1358 1359 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1360 atomic_inc(&dev->ctrl.abort_limit); 1361 return BLK_EH_RESET_TIMER; 1362 } 1363 iod->aborted = true; 1364 1365 cmd.abort.opcode = nvme_admin_abort_cmd; 1366 cmd.abort.cid = nvme_cid(req); 1367 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1368 1369 dev_warn(nvmeq->dev->ctrl.device, 1370 "I/O %d (%s) QID %d timeout, aborting\n", 1371 req->tag, 1372 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1373 nvmeq->qid); 1374 1375 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1376 BLK_MQ_REQ_NOWAIT); 1377 if (IS_ERR(abort_req)) { 1378 atomic_inc(&dev->ctrl.abort_limit); 1379 return BLK_EH_RESET_TIMER; 1380 } 1381 nvme_init_request(abort_req, &cmd); 1382 1383 abort_req->end_io = abort_endio; 1384 abort_req->end_io_data = NULL; 1385 blk_execute_rq_nowait(abort_req, false); 1386 1387 /* 1388 * The aborted req will be completed on receiving the abort req. 1389 * We enable the timer again. If hit twice, it'll cause a device reset, 1390 * as the device then is in a faulty state. 1391 */ 1392 return BLK_EH_RESET_TIMER; 1393 1394 disable: 1395 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1396 if (nvme_state_terminal(&dev->ctrl)) 1397 nvme_dev_disable(dev, true); 1398 return BLK_EH_DONE; 1399 } 1400 1401 nvme_dev_disable(dev, false); 1402 if (nvme_try_sched_reset(&dev->ctrl)) 1403 nvme_unquiesce_io_queues(&dev->ctrl); 1404 return BLK_EH_DONE; 1405 } 1406 1407 static void nvme_free_queue(struct nvme_queue *nvmeq) 1408 { 1409 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1410 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1411 if (!nvmeq->sq_cmds) 1412 return; 1413 1414 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1415 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1416 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1417 } else { 1418 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1419 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1420 } 1421 } 1422 1423 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1424 { 1425 int i; 1426 1427 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1428 dev->ctrl.queue_count--; 1429 nvme_free_queue(&dev->queues[i]); 1430 } 1431 } 1432 1433 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1434 { 1435 struct nvme_queue *nvmeq = &dev->queues[qid]; 1436 1437 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1438 return; 1439 1440 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1441 mb(); 1442 1443 nvmeq->dev->online_queues--; 1444 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1445 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1446 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1447 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1448 } 1449 1450 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1451 { 1452 int i; 1453 1454 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1455 nvme_suspend_queue(dev, i); 1456 } 1457 1458 /* 1459 * Called only on a device that has been disabled and after all other threads 1460 * that can check this device's completion queues have synced, except 1461 * nvme_poll(). This is the last chance for the driver to see a natural 1462 * completion before nvme_cancel_request() terminates all incomplete requests. 1463 */ 1464 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1465 { 1466 int i; 1467 1468 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1469 spin_lock(&dev->queues[i].cq_poll_lock); 1470 nvme_poll_cq(&dev->queues[i], NULL); 1471 spin_unlock(&dev->queues[i].cq_poll_lock); 1472 } 1473 } 1474 1475 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1476 int entry_size) 1477 { 1478 int q_depth = dev->q_depth; 1479 unsigned q_size_aligned = roundup(q_depth * entry_size, 1480 NVME_CTRL_PAGE_SIZE); 1481 1482 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1483 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1484 1485 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1486 q_depth = div_u64(mem_per_q, entry_size); 1487 1488 /* 1489 * Ensure the reduced q_depth is above some threshold where it 1490 * would be better to map queues in system memory with the 1491 * original depth 1492 */ 1493 if (q_depth < 64) 1494 return -ENOMEM; 1495 } 1496 1497 return q_depth; 1498 } 1499 1500 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1501 int qid) 1502 { 1503 struct pci_dev *pdev = to_pci_dev(dev->dev); 1504 1505 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1506 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1507 if (nvmeq->sq_cmds) { 1508 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1509 nvmeq->sq_cmds); 1510 if (nvmeq->sq_dma_addr) { 1511 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1512 return 0; 1513 } 1514 1515 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1516 } 1517 } 1518 1519 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1520 &nvmeq->sq_dma_addr, GFP_KERNEL); 1521 if (!nvmeq->sq_cmds) 1522 return -ENOMEM; 1523 return 0; 1524 } 1525 1526 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1527 { 1528 struct nvme_queue *nvmeq = &dev->queues[qid]; 1529 1530 if (dev->ctrl.queue_count > qid) 1531 return 0; 1532 1533 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1534 nvmeq->q_depth = depth; 1535 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1536 &nvmeq->cq_dma_addr, GFP_KERNEL); 1537 if (!nvmeq->cqes) 1538 goto free_nvmeq; 1539 1540 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1541 goto free_cqdma; 1542 1543 nvmeq->dev = dev; 1544 spin_lock_init(&nvmeq->sq_lock); 1545 spin_lock_init(&nvmeq->cq_poll_lock); 1546 nvmeq->cq_head = 0; 1547 nvmeq->cq_phase = 1; 1548 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1549 nvmeq->qid = qid; 1550 dev->ctrl.queue_count++; 1551 1552 return 0; 1553 1554 free_cqdma: 1555 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1556 nvmeq->cq_dma_addr); 1557 free_nvmeq: 1558 return -ENOMEM; 1559 } 1560 1561 static int queue_request_irq(struct nvme_queue *nvmeq) 1562 { 1563 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1564 int nr = nvmeq->dev->ctrl.instance; 1565 1566 if (use_threaded_interrupts) { 1567 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1568 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1569 } else { 1570 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1571 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1572 } 1573 } 1574 1575 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1576 { 1577 struct nvme_dev *dev = nvmeq->dev; 1578 1579 nvmeq->sq_tail = 0; 1580 nvmeq->last_sq_tail = 0; 1581 nvmeq->cq_head = 0; 1582 nvmeq->cq_phase = 1; 1583 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1584 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1585 nvme_dbbuf_init(dev, nvmeq, qid); 1586 dev->online_queues++; 1587 wmb(); /* ensure the first interrupt sees the initialization */ 1588 } 1589 1590 /* 1591 * Try getting shutdown_lock while setting up IO queues. 1592 */ 1593 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1594 { 1595 /* 1596 * Give up if the lock is being held by nvme_dev_disable. 1597 */ 1598 if (!mutex_trylock(&dev->shutdown_lock)) 1599 return -ENODEV; 1600 1601 /* 1602 * Controller is in wrong state, fail early. 1603 */ 1604 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1605 mutex_unlock(&dev->shutdown_lock); 1606 return -ENODEV; 1607 } 1608 1609 return 0; 1610 } 1611 1612 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1613 { 1614 struct nvme_dev *dev = nvmeq->dev; 1615 int result; 1616 u16 vector = 0; 1617 1618 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1619 1620 /* 1621 * A queue's vector matches the queue identifier unless the controller 1622 * has only one vector available. 1623 */ 1624 if (!polled) 1625 vector = dev->num_vecs == 1 ? 0 : qid; 1626 else 1627 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1628 1629 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1630 if (result) 1631 return result; 1632 1633 result = adapter_alloc_sq(dev, qid, nvmeq); 1634 if (result < 0) 1635 return result; 1636 if (result) 1637 goto release_cq; 1638 1639 nvmeq->cq_vector = vector; 1640 1641 result = nvme_setup_io_queues_trylock(dev); 1642 if (result) 1643 return result; 1644 nvme_init_queue(nvmeq, qid); 1645 if (!polled) { 1646 result = queue_request_irq(nvmeq); 1647 if (result < 0) 1648 goto release_sq; 1649 } 1650 1651 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1652 mutex_unlock(&dev->shutdown_lock); 1653 return result; 1654 1655 release_sq: 1656 dev->online_queues--; 1657 mutex_unlock(&dev->shutdown_lock); 1658 adapter_delete_sq(dev, qid); 1659 release_cq: 1660 adapter_delete_cq(dev, qid); 1661 return result; 1662 } 1663 1664 static const struct blk_mq_ops nvme_mq_admin_ops = { 1665 .queue_rq = nvme_queue_rq, 1666 .complete = nvme_pci_complete_rq, 1667 .init_hctx = nvme_admin_init_hctx, 1668 .init_request = nvme_pci_init_request, 1669 .timeout = nvme_timeout, 1670 }; 1671 1672 static const struct blk_mq_ops nvme_mq_ops = { 1673 .queue_rq = nvme_queue_rq, 1674 .queue_rqs = nvme_queue_rqs, 1675 .complete = nvme_pci_complete_rq, 1676 .commit_rqs = nvme_commit_rqs, 1677 .init_hctx = nvme_init_hctx, 1678 .init_request = nvme_pci_init_request, 1679 .map_queues = nvme_pci_map_queues, 1680 .timeout = nvme_timeout, 1681 .poll = nvme_poll, 1682 }; 1683 1684 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1685 { 1686 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1687 /* 1688 * If the controller was reset during removal, it's possible 1689 * user requests may be waiting on a stopped queue. Start the 1690 * queue to flush these to completion. 1691 */ 1692 nvme_unquiesce_admin_queue(&dev->ctrl); 1693 nvme_remove_admin_tag_set(&dev->ctrl); 1694 } 1695 } 1696 1697 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1698 { 1699 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1700 } 1701 1702 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1703 { 1704 struct pci_dev *pdev = to_pci_dev(dev->dev); 1705 1706 if (size <= dev->bar_mapped_size) 1707 return 0; 1708 if (size > pci_resource_len(pdev, 0)) 1709 return -ENOMEM; 1710 if (dev->bar) 1711 iounmap(dev->bar); 1712 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1713 if (!dev->bar) { 1714 dev->bar_mapped_size = 0; 1715 return -ENOMEM; 1716 } 1717 dev->bar_mapped_size = size; 1718 dev->dbs = dev->bar + NVME_REG_DBS; 1719 1720 return 0; 1721 } 1722 1723 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1724 { 1725 int result; 1726 u32 aqa; 1727 struct nvme_queue *nvmeq; 1728 1729 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1730 if (result < 0) 1731 return result; 1732 1733 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1734 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1735 1736 if (dev->subsystem && 1737 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1738 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1739 1740 /* 1741 * If the device has been passed off to us in an enabled state, just 1742 * clear the enabled bit. The spec says we should set the 'shutdown 1743 * notification bits', but doing so may cause the device to complete 1744 * commands to the admin queue ... and we don't know what memory that 1745 * might be pointing at! 1746 */ 1747 result = nvme_disable_ctrl(&dev->ctrl, false); 1748 if (result < 0) 1749 return result; 1750 1751 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1752 if (result) 1753 return result; 1754 1755 dev->ctrl.numa_node = dev_to_node(dev->dev); 1756 1757 nvmeq = &dev->queues[0]; 1758 aqa = nvmeq->q_depth - 1; 1759 aqa |= aqa << 16; 1760 1761 writel(aqa, dev->bar + NVME_REG_AQA); 1762 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1763 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1764 1765 result = nvme_enable_ctrl(&dev->ctrl); 1766 if (result) 1767 return result; 1768 1769 nvmeq->cq_vector = 0; 1770 nvme_init_queue(nvmeq, 0); 1771 result = queue_request_irq(nvmeq); 1772 if (result) { 1773 dev->online_queues--; 1774 return result; 1775 } 1776 1777 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1778 return result; 1779 } 1780 1781 static int nvme_create_io_queues(struct nvme_dev *dev) 1782 { 1783 unsigned i, max, rw_queues; 1784 int ret = 0; 1785 1786 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1787 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1788 ret = -ENOMEM; 1789 break; 1790 } 1791 } 1792 1793 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1794 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1795 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1796 dev->io_queues[HCTX_TYPE_READ]; 1797 } else { 1798 rw_queues = max; 1799 } 1800 1801 for (i = dev->online_queues; i <= max; i++) { 1802 bool polled = i > rw_queues; 1803 1804 ret = nvme_create_queue(&dev->queues[i], i, polled); 1805 if (ret) 1806 break; 1807 } 1808 1809 /* 1810 * Ignore failing Create SQ/CQ commands, we can continue with less 1811 * than the desired amount of queues, and even a controller without 1812 * I/O queues can still be used to issue admin commands. This might 1813 * be useful to upgrade a buggy firmware for example. 1814 */ 1815 return ret >= 0 ? 0 : ret; 1816 } 1817 1818 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1819 { 1820 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1821 1822 return 1ULL << (12 + 4 * szu); 1823 } 1824 1825 static u32 nvme_cmb_size(struct nvme_dev *dev) 1826 { 1827 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1828 } 1829 1830 static void nvme_map_cmb(struct nvme_dev *dev) 1831 { 1832 u64 size, offset; 1833 resource_size_t bar_size; 1834 struct pci_dev *pdev = to_pci_dev(dev->dev); 1835 int bar; 1836 1837 if (dev->cmb_size) 1838 return; 1839 1840 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1841 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1842 1843 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1844 if (!dev->cmbsz) 1845 return; 1846 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1847 1848 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1849 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1850 bar = NVME_CMB_BIR(dev->cmbloc); 1851 bar_size = pci_resource_len(pdev, bar); 1852 1853 if (offset > bar_size) 1854 return; 1855 1856 /* 1857 * Tell the controller about the host side address mapping the CMB, 1858 * and enable CMB decoding for the NVMe 1.4+ scheme: 1859 */ 1860 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1861 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1862 (pci_bus_address(pdev, bar) + offset), 1863 dev->bar + NVME_REG_CMBMSC); 1864 } 1865 1866 /* 1867 * Controllers may support a CMB size larger than their BAR, 1868 * for example, due to being behind a bridge. Reduce the CMB to 1869 * the reported size of the BAR 1870 */ 1871 if (size > bar_size - offset) 1872 size = bar_size - offset; 1873 1874 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1875 dev_warn(dev->ctrl.device, 1876 "failed to register the CMB\n"); 1877 return; 1878 } 1879 1880 dev->cmb_size = size; 1881 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1882 1883 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1884 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1885 pci_p2pmem_publish(pdev, true); 1886 1887 nvme_update_attrs(dev); 1888 } 1889 1890 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1891 { 1892 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1893 u64 dma_addr = dev->host_mem_descs_dma; 1894 struct nvme_command c = { }; 1895 int ret; 1896 1897 c.features.opcode = nvme_admin_set_features; 1898 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1899 c.features.dword11 = cpu_to_le32(bits); 1900 c.features.dword12 = cpu_to_le32(host_mem_size); 1901 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1902 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1903 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1904 1905 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1906 if (ret) { 1907 dev_warn(dev->ctrl.device, 1908 "failed to set host mem (err %d, flags %#x).\n", 1909 ret, bits); 1910 } else 1911 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1912 1913 return ret; 1914 } 1915 1916 static void nvme_free_host_mem(struct nvme_dev *dev) 1917 { 1918 int i; 1919 1920 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1921 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1922 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1923 1924 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1925 le64_to_cpu(desc->addr), 1926 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1927 } 1928 1929 kfree(dev->host_mem_desc_bufs); 1930 dev->host_mem_desc_bufs = NULL; 1931 dma_free_coherent(dev->dev, 1932 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1933 dev->host_mem_descs, dev->host_mem_descs_dma); 1934 dev->host_mem_descs = NULL; 1935 dev->nr_host_mem_descs = 0; 1936 } 1937 1938 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1939 u32 chunk_size) 1940 { 1941 struct nvme_host_mem_buf_desc *descs; 1942 u32 max_entries, len; 1943 dma_addr_t descs_dma; 1944 int i = 0; 1945 void **bufs; 1946 u64 size, tmp; 1947 1948 tmp = (preferred + chunk_size - 1); 1949 do_div(tmp, chunk_size); 1950 max_entries = tmp; 1951 1952 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1953 max_entries = dev->ctrl.hmmaxd; 1954 1955 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1956 &descs_dma, GFP_KERNEL); 1957 if (!descs) 1958 goto out; 1959 1960 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1961 if (!bufs) 1962 goto out_free_descs; 1963 1964 for (size = 0; size < preferred && i < max_entries; size += len) { 1965 dma_addr_t dma_addr; 1966 1967 len = min_t(u64, chunk_size, preferred - size); 1968 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1969 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1970 if (!bufs[i]) 1971 break; 1972 1973 descs[i].addr = cpu_to_le64(dma_addr); 1974 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1975 i++; 1976 } 1977 1978 if (!size) 1979 goto out_free_bufs; 1980 1981 dev->nr_host_mem_descs = i; 1982 dev->host_mem_size = size; 1983 dev->host_mem_descs = descs; 1984 dev->host_mem_descs_dma = descs_dma; 1985 dev->host_mem_desc_bufs = bufs; 1986 return 0; 1987 1988 out_free_bufs: 1989 while (--i >= 0) { 1990 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1991 1992 dma_free_attrs(dev->dev, size, bufs[i], 1993 le64_to_cpu(descs[i].addr), 1994 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1995 } 1996 1997 kfree(bufs); 1998 out_free_descs: 1999 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2000 descs_dma); 2001 out: 2002 dev->host_mem_descs = NULL; 2003 return -ENOMEM; 2004 } 2005 2006 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2007 { 2008 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2009 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2010 u64 chunk_size; 2011 2012 /* start big and work our way down */ 2013 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2014 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2015 if (!min || dev->host_mem_size >= min) 2016 return 0; 2017 nvme_free_host_mem(dev); 2018 } 2019 } 2020 2021 return -ENOMEM; 2022 } 2023 2024 static int nvme_setup_host_mem(struct nvme_dev *dev) 2025 { 2026 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2027 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2028 u64 min = (u64)dev->ctrl.hmmin * 4096; 2029 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2030 int ret; 2031 2032 if (!dev->ctrl.hmpre) 2033 return 0; 2034 2035 preferred = min(preferred, max); 2036 if (min > max) { 2037 dev_warn(dev->ctrl.device, 2038 "min host memory (%lld MiB) above limit (%d MiB).\n", 2039 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2040 nvme_free_host_mem(dev); 2041 return 0; 2042 } 2043 2044 /* 2045 * If we already have a buffer allocated check if we can reuse it. 2046 */ 2047 if (dev->host_mem_descs) { 2048 if (dev->host_mem_size >= min) 2049 enable_bits |= NVME_HOST_MEM_RETURN; 2050 else 2051 nvme_free_host_mem(dev); 2052 } 2053 2054 if (!dev->host_mem_descs) { 2055 if (nvme_alloc_host_mem(dev, min, preferred)) { 2056 dev_warn(dev->ctrl.device, 2057 "failed to allocate host memory buffer.\n"); 2058 return 0; /* controller must work without HMB */ 2059 } 2060 2061 dev_info(dev->ctrl.device, 2062 "allocated %lld MiB host memory buffer.\n", 2063 dev->host_mem_size >> ilog2(SZ_1M)); 2064 } 2065 2066 ret = nvme_set_host_mem(dev, enable_bits); 2067 if (ret) 2068 nvme_free_host_mem(dev); 2069 return ret; 2070 } 2071 2072 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2073 char *buf) 2074 { 2075 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2076 2077 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2078 ndev->cmbloc, ndev->cmbsz); 2079 } 2080 static DEVICE_ATTR_RO(cmb); 2081 2082 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2083 char *buf) 2084 { 2085 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2086 2087 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2088 } 2089 static DEVICE_ATTR_RO(cmbloc); 2090 2091 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2092 char *buf) 2093 { 2094 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2095 2096 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2097 } 2098 static DEVICE_ATTR_RO(cmbsz); 2099 2100 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2101 char *buf) 2102 { 2103 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2104 2105 return sysfs_emit(buf, "%d\n", ndev->hmb); 2106 } 2107 2108 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2109 const char *buf, size_t count) 2110 { 2111 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2112 bool new; 2113 int ret; 2114 2115 if (kstrtobool(buf, &new) < 0) 2116 return -EINVAL; 2117 2118 if (new == ndev->hmb) 2119 return count; 2120 2121 if (new) { 2122 ret = nvme_setup_host_mem(ndev); 2123 } else { 2124 ret = nvme_set_host_mem(ndev, 0); 2125 if (!ret) 2126 nvme_free_host_mem(ndev); 2127 } 2128 2129 if (ret < 0) 2130 return ret; 2131 2132 return count; 2133 } 2134 static DEVICE_ATTR_RW(hmb); 2135 2136 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2137 struct attribute *a, int n) 2138 { 2139 struct nvme_ctrl *ctrl = 2140 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2141 struct nvme_dev *dev = to_nvme_dev(ctrl); 2142 2143 if (a == &dev_attr_cmb.attr || 2144 a == &dev_attr_cmbloc.attr || 2145 a == &dev_attr_cmbsz.attr) { 2146 if (!dev->cmbsz) 2147 return 0; 2148 } 2149 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2150 return 0; 2151 2152 return a->mode; 2153 } 2154 2155 static struct attribute *nvme_pci_attrs[] = { 2156 &dev_attr_cmb.attr, 2157 &dev_attr_cmbloc.attr, 2158 &dev_attr_cmbsz.attr, 2159 &dev_attr_hmb.attr, 2160 NULL, 2161 }; 2162 2163 static const struct attribute_group nvme_pci_dev_attrs_group = { 2164 .attrs = nvme_pci_attrs, 2165 .is_visible = nvme_pci_attrs_are_visible, 2166 }; 2167 2168 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2169 &nvme_dev_attrs_group, 2170 &nvme_pci_dev_attrs_group, 2171 NULL, 2172 }; 2173 2174 static void nvme_update_attrs(struct nvme_dev *dev) 2175 { 2176 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2177 } 2178 2179 /* 2180 * nirqs is the number of interrupts available for write and read 2181 * queues. The core already reserved an interrupt for the admin queue. 2182 */ 2183 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2184 { 2185 struct nvme_dev *dev = affd->priv; 2186 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2187 2188 /* 2189 * If there is no interrupt available for queues, ensure that 2190 * the default queue is set to 1. The affinity set size is 2191 * also set to one, but the irq core ignores it for this case. 2192 * 2193 * If only one interrupt is available or 'write_queue' == 0, combine 2194 * write and read queues. 2195 * 2196 * If 'write_queues' > 0, ensure it leaves room for at least one read 2197 * queue. 2198 */ 2199 if (!nrirqs) { 2200 nrirqs = 1; 2201 nr_read_queues = 0; 2202 } else if (nrirqs == 1 || !nr_write_queues) { 2203 nr_read_queues = 0; 2204 } else if (nr_write_queues >= nrirqs) { 2205 nr_read_queues = 1; 2206 } else { 2207 nr_read_queues = nrirqs - nr_write_queues; 2208 } 2209 2210 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2211 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2212 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2213 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2214 affd->nr_sets = nr_read_queues ? 2 : 1; 2215 } 2216 2217 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2218 { 2219 struct pci_dev *pdev = to_pci_dev(dev->dev); 2220 struct irq_affinity affd = { 2221 .pre_vectors = 1, 2222 .calc_sets = nvme_calc_irq_sets, 2223 .priv = dev, 2224 }; 2225 unsigned int irq_queues, poll_queues; 2226 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2227 2228 /* 2229 * Poll queues don't need interrupts, but we need at least one I/O queue 2230 * left over for non-polled I/O. 2231 */ 2232 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2233 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2234 2235 /* 2236 * Initialize for the single interrupt case, will be updated in 2237 * nvme_calc_irq_sets(). 2238 */ 2239 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2240 dev->io_queues[HCTX_TYPE_READ] = 0; 2241 2242 /* 2243 * We need interrupts for the admin queue and each non-polled I/O queue, 2244 * but some Apple controllers require all queues to use the first 2245 * vector. 2246 */ 2247 irq_queues = 1; 2248 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2249 irq_queues += (nr_io_queues - poll_queues); 2250 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2251 flags &= ~PCI_IRQ_MSI; 2252 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2253 &affd); 2254 } 2255 2256 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2257 { 2258 /* 2259 * If tags are shared with admin queue (Apple bug), then 2260 * make sure we only use one IO queue. 2261 */ 2262 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2263 return 1; 2264 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2265 } 2266 2267 static int nvme_setup_io_queues(struct nvme_dev *dev) 2268 { 2269 struct nvme_queue *adminq = &dev->queues[0]; 2270 struct pci_dev *pdev = to_pci_dev(dev->dev); 2271 unsigned int nr_io_queues; 2272 unsigned long size; 2273 int result; 2274 2275 /* 2276 * Sample the module parameters once at reset time so that we have 2277 * stable values to work with. 2278 */ 2279 dev->nr_write_queues = write_queues; 2280 dev->nr_poll_queues = poll_queues; 2281 2282 nr_io_queues = dev->nr_allocated_queues - 1; 2283 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2284 if (result < 0) 2285 return result; 2286 2287 if (nr_io_queues == 0) 2288 return 0; 2289 2290 /* 2291 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2292 * from set to unset. If there is a window to it is truely freed, 2293 * pci_free_irq_vectors() jumping into this window will crash. 2294 * And take lock to avoid racing with pci_free_irq_vectors() in 2295 * nvme_dev_disable() path. 2296 */ 2297 result = nvme_setup_io_queues_trylock(dev); 2298 if (result) 2299 return result; 2300 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2301 pci_free_irq(pdev, 0, adminq); 2302 2303 if (dev->cmb_use_sqes) { 2304 result = nvme_cmb_qdepth(dev, nr_io_queues, 2305 sizeof(struct nvme_command)); 2306 if (result > 0) { 2307 dev->q_depth = result; 2308 dev->ctrl.sqsize = result - 1; 2309 } else { 2310 dev->cmb_use_sqes = false; 2311 } 2312 } 2313 2314 do { 2315 size = db_bar_size(dev, nr_io_queues); 2316 result = nvme_remap_bar(dev, size); 2317 if (!result) 2318 break; 2319 if (!--nr_io_queues) { 2320 result = -ENOMEM; 2321 goto out_unlock; 2322 } 2323 } while (1); 2324 adminq->q_db = dev->dbs; 2325 2326 retry: 2327 /* Deregister the admin queue's interrupt */ 2328 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2329 pci_free_irq(pdev, 0, adminq); 2330 2331 /* 2332 * If we enable msix early due to not intx, disable it again before 2333 * setting up the full range we need. 2334 */ 2335 pci_free_irq_vectors(pdev); 2336 2337 result = nvme_setup_irqs(dev, nr_io_queues); 2338 if (result <= 0) { 2339 result = -EIO; 2340 goto out_unlock; 2341 } 2342 2343 dev->num_vecs = result; 2344 result = max(result - 1, 1); 2345 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2346 2347 /* 2348 * Should investigate if there's a performance win from allocating 2349 * more queues than interrupt vectors; it might allow the submission 2350 * path to scale better, even if the receive path is limited by the 2351 * number of interrupts. 2352 */ 2353 result = queue_request_irq(adminq); 2354 if (result) 2355 goto out_unlock; 2356 set_bit(NVMEQ_ENABLED, &adminq->flags); 2357 mutex_unlock(&dev->shutdown_lock); 2358 2359 result = nvme_create_io_queues(dev); 2360 if (result || dev->online_queues < 2) 2361 return result; 2362 2363 if (dev->online_queues - 1 < dev->max_qid) { 2364 nr_io_queues = dev->online_queues - 1; 2365 nvme_delete_io_queues(dev); 2366 result = nvme_setup_io_queues_trylock(dev); 2367 if (result) 2368 return result; 2369 nvme_suspend_io_queues(dev); 2370 goto retry; 2371 } 2372 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2373 dev->io_queues[HCTX_TYPE_DEFAULT], 2374 dev->io_queues[HCTX_TYPE_READ], 2375 dev->io_queues[HCTX_TYPE_POLL]); 2376 return 0; 2377 out_unlock: 2378 mutex_unlock(&dev->shutdown_lock); 2379 return result; 2380 } 2381 2382 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2383 blk_status_t error) 2384 { 2385 struct nvme_queue *nvmeq = req->end_io_data; 2386 2387 blk_mq_free_request(req); 2388 complete(&nvmeq->delete_done); 2389 return RQ_END_IO_NONE; 2390 } 2391 2392 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2393 blk_status_t error) 2394 { 2395 struct nvme_queue *nvmeq = req->end_io_data; 2396 2397 if (error) 2398 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2399 2400 return nvme_del_queue_end(req, error); 2401 } 2402 2403 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2404 { 2405 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2406 struct request *req; 2407 struct nvme_command cmd = { }; 2408 2409 cmd.delete_queue.opcode = opcode; 2410 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2411 2412 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2413 if (IS_ERR(req)) 2414 return PTR_ERR(req); 2415 nvme_init_request(req, &cmd); 2416 2417 if (opcode == nvme_admin_delete_cq) 2418 req->end_io = nvme_del_cq_end; 2419 else 2420 req->end_io = nvme_del_queue_end; 2421 req->end_io_data = nvmeq; 2422 2423 init_completion(&nvmeq->delete_done); 2424 blk_execute_rq_nowait(req, false); 2425 return 0; 2426 } 2427 2428 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2429 { 2430 int nr_queues = dev->online_queues - 1, sent = 0; 2431 unsigned long timeout; 2432 2433 retry: 2434 timeout = NVME_ADMIN_TIMEOUT; 2435 while (nr_queues > 0) { 2436 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2437 break; 2438 nr_queues--; 2439 sent++; 2440 } 2441 while (sent) { 2442 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2443 2444 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2445 timeout); 2446 if (timeout == 0) 2447 return false; 2448 2449 sent--; 2450 if (nr_queues) 2451 goto retry; 2452 } 2453 return true; 2454 } 2455 2456 static void nvme_delete_io_queues(struct nvme_dev *dev) 2457 { 2458 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2459 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2460 } 2461 2462 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2463 { 2464 if (dev->io_queues[HCTX_TYPE_POLL]) 2465 return 3; 2466 if (dev->io_queues[HCTX_TYPE_READ]) 2467 return 2; 2468 return 1; 2469 } 2470 2471 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2472 { 2473 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2474 /* free previously allocated queues that are no longer usable */ 2475 nvme_free_queues(dev, dev->online_queues); 2476 } 2477 2478 static int nvme_pci_enable(struct nvme_dev *dev) 2479 { 2480 int result = -ENOMEM; 2481 struct pci_dev *pdev = to_pci_dev(dev->dev); 2482 unsigned int flags = PCI_IRQ_ALL_TYPES; 2483 2484 if (pci_enable_device_mem(pdev)) 2485 return result; 2486 2487 pci_set_master(pdev); 2488 2489 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2490 result = -ENODEV; 2491 goto disable; 2492 } 2493 2494 /* 2495 * Some devices and/or platforms don't advertise or work with INTx 2496 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2497 * adjust this later. 2498 */ 2499 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2500 flags &= ~PCI_IRQ_MSI; 2501 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2502 if (result < 0) 2503 goto disable; 2504 2505 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2506 2507 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2508 io_queue_depth); 2509 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2510 dev->dbs = dev->bar + 4096; 2511 2512 /* 2513 * Some Apple controllers require a non-standard SQE size. 2514 * Interestingly they also seem to ignore the CC:IOSQES register 2515 * so we don't bother updating it here. 2516 */ 2517 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2518 dev->io_sqes = 7; 2519 else 2520 dev->io_sqes = NVME_NVM_IOSQES; 2521 2522 /* 2523 * Temporary fix for the Apple controller found in the MacBook8,1 and 2524 * some MacBook7,1 to avoid controller resets and data loss. 2525 */ 2526 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2527 dev->q_depth = 2; 2528 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2529 "set queue depth=%u to work around controller resets\n", 2530 dev->q_depth); 2531 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2532 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2533 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2534 dev->q_depth = 64; 2535 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2536 "set queue depth=%u\n", dev->q_depth); 2537 } 2538 2539 /* 2540 * Controllers with the shared tags quirk need the IO queue to be 2541 * big enough so that we get 32 tags for the admin queue 2542 */ 2543 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2544 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2545 dev->q_depth = NVME_AQ_DEPTH + 2; 2546 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2547 dev->q_depth); 2548 } 2549 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2550 2551 nvme_map_cmb(dev); 2552 2553 pci_save_state(pdev); 2554 2555 result = nvme_pci_configure_admin_queue(dev); 2556 if (result) 2557 goto free_irq; 2558 return result; 2559 2560 free_irq: 2561 pci_free_irq_vectors(pdev); 2562 disable: 2563 pci_disable_device(pdev); 2564 return result; 2565 } 2566 2567 static void nvme_dev_unmap(struct nvme_dev *dev) 2568 { 2569 if (dev->bar) 2570 iounmap(dev->bar); 2571 pci_release_mem_regions(to_pci_dev(dev->dev)); 2572 } 2573 2574 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2575 { 2576 struct pci_dev *pdev = to_pci_dev(dev->dev); 2577 u32 csts; 2578 2579 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2580 return true; 2581 if (pdev->error_state != pci_channel_io_normal) 2582 return true; 2583 2584 csts = readl(dev->bar + NVME_REG_CSTS); 2585 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2586 } 2587 2588 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2589 { 2590 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2591 struct pci_dev *pdev = to_pci_dev(dev->dev); 2592 bool dead; 2593 2594 mutex_lock(&dev->shutdown_lock); 2595 dead = nvme_pci_ctrl_is_dead(dev); 2596 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2597 if (pci_is_enabled(pdev)) 2598 nvme_start_freeze(&dev->ctrl); 2599 /* 2600 * Give the controller a chance to complete all entered requests 2601 * if doing a safe shutdown. 2602 */ 2603 if (!dead && shutdown) 2604 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2605 } 2606 2607 nvme_quiesce_io_queues(&dev->ctrl); 2608 2609 if (!dead && dev->ctrl.queue_count > 0) { 2610 nvme_delete_io_queues(dev); 2611 nvme_disable_ctrl(&dev->ctrl, shutdown); 2612 nvme_poll_irqdisable(&dev->queues[0]); 2613 } 2614 nvme_suspend_io_queues(dev); 2615 nvme_suspend_queue(dev, 0); 2616 pci_free_irq_vectors(pdev); 2617 if (pci_is_enabled(pdev)) 2618 pci_disable_device(pdev); 2619 nvme_reap_pending_cqes(dev); 2620 2621 nvme_cancel_tagset(&dev->ctrl); 2622 nvme_cancel_admin_tagset(&dev->ctrl); 2623 2624 /* 2625 * The driver will not be starting up queues again if shutting down so 2626 * must flush all entered requests to their failed completion to avoid 2627 * deadlocking blk-mq hot-cpu notifier. 2628 */ 2629 if (shutdown) { 2630 nvme_unquiesce_io_queues(&dev->ctrl); 2631 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2632 nvme_unquiesce_admin_queue(&dev->ctrl); 2633 } 2634 mutex_unlock(&dev->shutdown_lock); 2635 } 2636 2637 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2638 { 2639 if (!nvme_wait_reset(&dev->ctrl)) 2640 return -EBUSY; 2641 nvme_dev_disable(dev, shutdown); 2642 return 0; 2643 } 2644 2645 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2646 { 2647 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2648 NVME_CTRL_PAGE_SIZE, 2649 NVME_CTRL_PAGE_SIZE, 0); 2650 if (!dev->prp_page_pool) 2651 return -ENOMEM; 2652 2653 /* Optimisation for I/Os between 4k and 128k */ 2654 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2655 256, 256, 0); 2656 if (!dev->prp_small_pool) { 2657 dma_pool_destroy(dev->prp_page_pool); 2658 return -ENOMEM; 2659 } 2660 return 0; 2661 } 2662 2663 static void nvme_release_prp_pools(struct nvme_dev *dev) 2664 { 2665 dma_pool_destroy(dev->prp_page_pool); 2666 dma_pool_destroy(dev->prp_small_pool); 2667 } 2668 2669 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2670 { 2671 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2672 2673 dev->iod_mempool = mempool_create_node(1, 2674 mempool_kmalloc, mempool_kfree, 2675 (void *)alloc_size, GFP_KERNEL, 2676 dev_to_node(dev->dev)); 2677 if (!dev->iod_mempool) 2678 return -ENOMEM; 2679 return 0; 2680 } 2681 2682 static void nvme_free_tagset(struct nvme_dev *dev) 2683 { 2684 if (dev->tagset.tags) 2685 nvme_remove_io_tag_set(&dev->ctrl); 2686 dev->ctrl.tagset = NULL; 2687 } 2688 2689 /* pairs with nvme_pci_alloc_dev */ 2690 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2691 { 2692 struct nvme_dev *dev = to_nvme_dev(ctrl); 2693 2694 nvme_free_tagset(dev); 2695 put_device(dev->dev); 2696 kfree(dev->queues); 2697 kfree(dev); 2698 } 2699 2700 static void nvme_reset_work(struct work_struct *work) 2701 { 2702 struct nvme_dev *dev = 2703 container_of(work, struct nvme_dev, ctrl.reset_work); 2704 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2705 int result; 2706 2707 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2708 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2709 dev->ctrl.state); 2710 result = -ENODEV; 2711 goto out; 2712 } 2713 2714 /* 2715 * If we're called to reset a live controller first shut it down before 2716 * moving on. 2717 */ 2718 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2719 nvme_dev_disable(dev, false); 2720 nvme_sync_queues(&dev->ctrl); 2721 2722 mutex_lock(&dev->shutdown_lock); 2723 result = nvme_pci_enable(dev); 2724 if (result) 2725 goto out_unlock; 2726 nvme_unquiesce_admin_queue(&dev->ctrl); 2727 mutex_unlock(&dev->shutdown_lock); 2728 2729 /* 2730 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2731 * initializing procedure here. 2732 */ 2733 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2734 dev_warn(dev->ctrl.device, 2735 "failed to mark controller CONNECTING\n"); 2736 result = -EBUSY; 2737 goto out; 2738 } 2739 2740 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2741 if (result) 2742 goto out; 2743 2744 nvme_dbbuf_dma_alloc(dev); 2745 2746 result = nvme_setup_host_mem(dev); 2747 if (result < 0) 2748 goto out; 2749 2750 result = nvme_setup_io_queues(dev); 2751 if (result) 2752 goto out; 2753 2754 /* 2755 * Freeze and update the number of I/O queues as thos might have 2756 * changed. If there are no I/O queues left after this reset, keep the 2757 * controller around but remove all namespaces. 2758 */ 2759 if (dev->online_queues > 1) { 2760 nvme_unquiesce_io_queues(&dev->ctrl); 2761 nvme_wait_freeze(&dev->ctrl); 2762 nvme_pci_update_nr_queues(dev); 2763 nvme_dbbuf_set(dev); 2764 nvme_unfreeze(&dev->ctrl); 2765 } else { 2766 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2767 nvme_mark_namespaces_dead(&dev->ctrl); 2768 nvme_unquiesce_io_queues(&dev->ctrl); 2769 nvme_remove_namespaces(&dev->ctrl); 2770 nvme_free_tagset(dev); 2771 } 2772 2773 /* 2774 * If only admin queue live, keep it to do further investigation or 2775 * recovery. 2776 */ 2777 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2778 dev_warn(dev->ctrl.device, 2779 "failed to mark controller live state\n"); 2780 result = -ENODEV; 2781 goto out; 2782 } 2783 2784 nvme_start_ctrl(&dev->ctrl); 2785 return; 2786 2787 out_unlock: 2788 mutex_unlock(&dev->shutdown_lock); 2789 out: 2790 /* 2791 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2792 * may be holding this pci_dev's device lock. 2793 */ 2794 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2795 result); 2796 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2797 nvme_dev_disable(dev, true); 2798 nvme_sync_queues(&dev->ctrl); 2799 nvme_mark_namespaces_dead(&dev->ctrl); 2800 nvme_unquiesce_io_queues(&dev->ctrl); 2801 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2802 } 2803 2804 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2805 { 2806 *val = readl(to_nvme_dev(ctrl)->bar + off); 2807 return 0; 2808 } 2809 2810 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2811 { 2812 writel(val, to_nvme_dev(ctrl)->bar + off); 2813 return 0; 2814 } 2815 2816 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2817 { 2818 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2819 return 0; 2820 } 2821 2822 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2823 { 2824 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2825 2826 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2827 } 2828 2829 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2830 { 2831 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2832 struct nvme_subsystem *subsys = ctrl->subsys; 2833 2834 dev_err(ctrl->device, 2835 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2836 pdev->vendor, pdev->device, 2837 nvme_strlen(subsys->model, sizeof(subsys->model)), 2838 subsys->model, nvme_strlen(subsys->firmware_rev, 2839 sizeof(subsys->firmware_rev)), 2840 subsys->firmware_rev); 2841 } 2842 2843 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2844 { 2845 struct nvme_dev *dev = to_nvme_dev(ctrl); 2846 2847 return dma_pci_p2pdma_supported(dev->dev); 2848 } 2849 2850 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2851 .name = "pcie", 2852 .module = THIS_MODULE, 2853 .flags = NVME_F_METADATA_SUPPORTED, 2854 .dev_attr_groups = nvme_pci_dev_attr_groups, 2855 .reg_read32 = nvme_pci_reg_read32, 2856 .reg_write32 = nvme_pci_reg_write32, 2857 .reg_read64 = nvme_pci_reg_read64, 2858 .free_ctrl = nvme_pci_free_ctrl, 2859 .submit_async_event = nvme_pci_submit_async_event, 2860 .get_address = nvme_pci_get_address, 2861 .print_device_info = nvme_pci_print_device_info, 2862 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2863 }; 2864 2865 static int nvme_dev_map(struct nvme_dev *dev) 2866 { 2867 struct pci_dev *pdev = to_pci_dev(dev->dev); 2868 2869 if (pci_request_mem_regions(pdev, "nvme")) 2870 return -ENODEV; 2871 2872 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2873 goto release; 2874 2875 return 0; 2876 release: 2877 pci_release_mem_regions(pdev); 2878 return -ENODEV; 2879 } 2880 2881 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2882 { 2883 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2884 /* 2885 * Several Samsung devices seem to drop off the PCIe bus 2886 * randomly when APST is on and uses the deepest sleep state. 2887 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2888 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2889 * 950 PRO 256GB", but it seems to be restricted to two Dell 2890 * laptops. 2891 */ 2892 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2893 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2894 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2895 return NVME_QUIRK_NO_DEEPEST_PS; 2896 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2897 /* 2898 * Samsung SSD 960 EVO drops off the PCIe bus after system 2899 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2900 * within few minutes after bootup on a Coffee Lake board - 2901 * ASUS PRIME Z370-A 2902 */ 2903 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2904 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2905 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2906 return NVME_QUIRK_NO_APST; 2907 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2908 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2909 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2910 /* 2911 * Forcing to use host managed nvme power settings for 2912 * lowest idle power with quick resume latency on 2913 * Samsung and Toshiba SSDs based on suspend behavior 2914 * on Coffee Lake board for LENOVO C640 2915 */ 2916 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2917 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2918 return NVME_QUIRK_SIMPLE_SUSPEND; 2919 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 2920 pdev->device == 0x500f)) { 2921 /* 2922 * Exclude some Kingston NV1 and A2000 devices from 2923 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 2924 * lot fo energy with s2idle sleep on some TUXEDO platforms. 2925 */ 2926 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 2927 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 2928 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 2929 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 2930 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2931 } 2932 2933 return 0; 2934 } 2935 2936 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2937 const struct pci_device_id *id) 2938 { 2939 unsigned long quirks = id->driver_data; 2940 int node = dev_to_node(&pdev->dev); 2941 struct nvme_dev *dev; 2942 int ret = -ENOMEM; 2943 2944 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2945 if (!dev) 2946 return ERR_PTR(-ENOMEM); 2947 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2948 mutex_init(&dev->shutdown_lock); 2949 2950 dev->nr_write_queues = write_queues; 2951 dev->nr_poll_queues = poll_queues; 2952 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2953 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2954 sizeof(struct nvme_queue), GFP_KERNEL, node); 2955 if (!dev->queues) 2956 goto out_free_dev; 2957 2958 dev->dev = get_device(&pdev->dev); 2959 2960 quirks |= check_vendor_combination_bug(pdev); 2961 if (!noacpi && 2962 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 2963 acpi_storage_d3(&pdev->dev)) { 2964 /* 2965 * Some systems use a bios work around to ask for D3 on 2966 * platforms that support kernel managed suspend. 2967 */ 2968 dev_info(&pdev->dev, 2969 "platform quirk: setting simple suspend\n"); 2970 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2971 } 2972 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2973 quirks); 2974 if (ret) 2975 goto out_put_device; 2976 2977 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2978 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2979 else 2980 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2981 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 2982 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 2983 2984 /* 2985 * Limit the max command size to prevent iod->sg allocations going 2986 * over a single page. 2987 */ 2988 dev->ctrl.max_hw_sectors = min_t(u32, 2989 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 2990 dev->ctrl.max_segments = NVME_MAX_SEGS; 2991 2992 /* 2993 * There is no support for SGLs for metadata (yet), so we are limited to 2994 * a single integrity segment for the separate metadata pointer. 2995 */ 2996 dev->ctrl.max_integrity_segments = 1; 2997 return dev; 2998 2999 out_put_device: 3000 put_device(dev->dev); 3001 kfree(dev->queues); 3002 out_free_dev: 3003 kfree(dev); 3004 return ERR_PTR(ret); 3005 } 3006 3007 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3008 { 3009 struct nvme_dev *dev; 3010 int result = -ENOMEM; 3011 3012 dev = nvme_pci_alloc_dev(pdev, id); 3013 if (IS_ERR(dev)) 3014 return PTR_ERR(dev); 3015 3016 result = nvme_dev_map(dev); 3017 if (result) 3018 goto out_uninit_ctrl; 3019 3020 result = nvme_setup_prp_pools(dev); 3021 if (result) 3022 goto out_dev_unmap; 3023 3024 result = nvme_pci_alloc_iod_mempool(dev); 3025 if (result) 3026 goto out_release_prp_pools; 3027 3028 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3029 3030 result = nvme_pci_enable(dev); 3031 if (result) 3032 goto out_release_iod_mempool; 3033 3034 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3035 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3036 if (result) 3037 goto out_disable; 3038 3039 /* 3040 * Mark the controller as connecting before sending admin commands to 3041 * allow the timeout handler to do the right thing. 3042 */ 3043 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3044 dev_warn(dev->ctrl.device, 3045 "failed to mark controller CONNECTING\n"); 3046 result = -EBUSY; 3047 goto out_disable; 3048 } 3049 3050 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3051 if (result) 3052 goto out_disable; 3053 3054 nvme_dbbuf_dma_alloc(dev); 3055 3056 result = nvme_setup_host_mem(dev); 3057 if (result < 0) 3058 goto out_disable; 3059 3060 result = nvme_setup_io_queues(dev); 3061 if (result) 3062 goto out_disable; 3063 3064 if (dev->online_queues > 1) { 3065 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3066 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3067 nvme_dbbuf_set(dev); 3068 } 3069 3070 if (!dev->ctrl.tagset) 3071 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3072 3073 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3074 dev_warn(dev->ctrl.device, 3075 "failed to mark controller live state\n"); 3076 result = -ENODEV; 3077 goto out_disable; 3078 } 3079 3080 pci_set_drvdata(pdev, dev); 3081 3082 nvme_start_ctrl(&dev->ctrl); 3083 nvme_put_ctrl(&dev->ctrl); 3084 flush_work(&dev->ctrl.scan_work); 3085 return 0; 3086 3087 out_disable: 3088 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3089 nvme_dev_disable(dev, true); 3090 nvme_free_host_mem(dev); 3091 nvme_dev_remove_admin(dev); 3092 nvme_dbbuf_dma_free(dev); 3093 nvme_free_queues(dev, 0); 3094 out_release_iod_mempool: 3095 mempool_destroy(dev->iod_mempool); 3096 out_release_prp_pools: 3097 nvme_release_prp_pools(dev); 3098 out_dev_unmap: 3099 nvme_dev_unmap(dev); 3100 out_uninit_ctrl: 3101 nvme_uninit_ctrl(&dev->ctrl); 3102 nvme_put_ctrl(&dev->ctrl); 3103 return result; 3104 } 3105 3106 static void nvme_reset_prepare(struct pci_dev *pdev) 3107 { 3108 struct nvme_dev *dev = pci_get_drvdata(pdev); 3109 3110 /* 3111 * We don't need to check the return value from waiting for the reset 3112 * state as pci_dev device lock is held, making it impossible to race 3113 * with ->remove(). 3114 */ 3115 nvme_disable_prepare_reset(dev, false); 3116 nvme_sync_queues(&dev->ctrl); 3117 } 3118 3119 static void nvme_reset_done(struct pci_dev *pdev) 3120 { 3121 struct nvme_dev *dev = pci_get_drvdata(pdev); 3122 3123 if (!nvme_try_sched_reset(&dev->ctrl)) 3124 flush_work(&dev->ctrl.reset_work); 3125 } 3126 3127 static void nvme_shutdown(struct pci_dev *pdev) 3128 { 3129 struct nvme_dev *dev = pci_get_drvdata(pdev); 3130 3131 nvme_disable_prepare_reset(dev, true); 3132 } 3133 3134 /* 3135 * The driver's remove may be called on a device in a partially initialized 3136 * state. This function must not have any dependencies on the device state in 3137 * order to proceed. 3138 */ 3139 static void nvme_remove(struct pci_dev *pdev) 3140 { 3141 struct nvme_dev *dev = pci_get_drvdata(pdev); 3142 3143 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3144 pci_set_drvdata(pdev, NULL); 3145 3146 if (!pci_device_is_present(pdev)) { 3147 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3148 nvme_dev_disable(dev, true); 3149 } 3150 3151 flush_work(&dev->ctrl.reset_work); 3152 nvme_stop_ctrl(&dev->ctrl); 3153 nvme_remove_namespaces(&dev->ctrl); 3154 nvme_dev_disable(dev, true); 3155 nvme_free_host_mem(dev); 3156 nvme_dev_remove_admin(dev); 3157 nvme_dbbuf_dma_free(dev); 3158 nvme_free_queues(dev, 0); 3159 mempool_destroy(dev->iod_mempool); 3160 nvme_release_prp_pools(dev); 3161 nvme_dev_unmap(dev); 3162 nvme_uninit_ctrl(&dev->ctrl); 3163 } 3164 3165 #ifdef CONFIG_PM_SLEEP 3166 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3167 { 3168 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3169 } 3170 3171 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3172 { 3173 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3174 } 3175 3176 static int nvme_resume(struct device *dev) 3177 { 3178 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3179 struct nvme_ctrl *ctrl = &ndev->ctrl; 3180 3181 if (ndev->last_ps == U32_MAX || 3182 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3183 goto reset; 3184 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3185 goto reset; 3186 3187 return 0; 3188 reset: 3189 return nvme_try_sched_reset(ctrl); 3190 } 3191 3192 static int nvme_suspend(struct device *dev) 3193 { 3194 struct pci_dev *pdev = to_pci_dev(dev); 3195 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3196 struct nvme_ctrl *ctrl = &ndev->ctrl; 3197 int ret = -EBUSY; 3198 3199 ndev->last_ps = U32_MAX; 3200 3201 /* 3202 * The platform does not remove power for a kernel managed suspend so 3203 * use host managed nvme power settings for lowest idle power if 3204 * possible. This should have quicker resume latency than a full device 3205 * shutdown. But if the firmware is involved after the suspend or the 3206 * device does not support any non-default power states, shut down the 3207 * device fully. 3208 * 3209 * If ASPM is not enabled for the device, shut down the device and allow 3210 * the PCI bus layer to put it into D3 in order to take the PCIe link 3211 * down, so as to allow the platform to achieve its minimum low-power 3212 * state (which may not be possible if the link is up). 3213 */ 3214 if (pm_suspend_via_firmware() || !ctrl->npss || 3215 !pcie_aspm_enabled(pdev) || 3216 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3217 return nvme_disable_prepare_reset(ndev, true); 3218 3219 nvme_start_freeze(ctrl); 3220 nvme_wait_freeze(ctrl); 3221 nvme_sync_queues(ctrl); 3222 3223 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3224 goto unfreeze; 3225 3226 /* 3227 * Host memory access may not be successful in a system suspend state, 3228 * but the specification allows the controller to access memory in a 3229 * non-operational power state. 3230 */ 3231 if (ndev->hmb) { 3232 ret = nvme_set_host_mem(ndev, 0); 3233 if (ret < 0) 3234 goto unfreeze; 3235 } 3236 3237 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3238 if (ret < 0) 3239 goto unfreeze; 3240 3241 /* 3242 * A saved state prevents pci pm from generically controlling the 3243 * device's power. If we're using protocol specific settings, we don't 3244 * want pci interfering. 3245 */ 3246 pci_save_state(pdev); 3247 3248 ret = nvme_set_power_state(ctrl, ctrl->npss); 3249 if (ret < 0) 3250 goto unfreeze; 3251 3252 if (ret) { 3253 /* discard the saved state */ 3254 pci_load_saved_state(pdev, NULL); 3255 3256 /* 3257 * Clearing npss forces a controller reset on resume. The 3258 * correct value will be rediscovered then. 3259 */ 3260 ret = nvme_disable_prepare_reset(ndev, true); 3261 ctrl->npss = 0; 3262 } 3263 unfreeze: 3264 nvme_unfreeze(ctrl); 3265 return ret; 3266 } 3267 3268 static int nvme_simple_suspend(struct device *dev) 3269 { 3270 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3271 3272 return nvme_disable_prepare_reset(ndev, true); 3273 } 3274 3275 static int nvme_simple_resume(struct device *dev) 3276 { 3277 struct pci_dev *pdev = to_pci_dev(dev); 3278 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3279 3280 return nvme_try_sched_reset(&ndev->ctrl); 3281 } 3282 3283 static const struct dev_pm_ops nvme_dev_pm_ops = { 3284 .suspend = nvme_suspend, 3285 .resume = nvme_resume, 3286 .freeze = nvme_simple_suspend, 3287 .thaw = nvme_simple_resume, 3288 .poweroff = nvme_simple_suspend, 3289 .restore = nvme_simple_resume, 3290 }; 3291 #endif /* CONFIG_PM_SLEEP */ 3292 3293 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3294 pci_channel_state_t state) 3295 { 3296 struct nvme_dev *dev = pci_get_drvdata(pdev); 3297 3298 /* 3299 * A frozen channel requires a reset. When detected, this method will 3300 * shutdown the controller to quiesce. The controller will be restarted 3301 * after the slot reset through driver's slot_reset callback. 3302 */ 3303 switch (state) { 3304 case pci_channel_io_normal: 3305 return PCI_ERS_RESULT_CAN_RECOVER; 3306 case pci_channel_io_frozen: 3307 dev_warn(dev->ctrl.device, 3308 "frozen state error detected, reset controller\n"); 3309 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3310 nvme_dev_disable(dev, true); 3311 return PCI_ERS_RESULT_DISCONNECT; 3312 } 3313 nvme_dev_disable(dev, false); 3314 return PCI_ERS_RESULT_NEED_RESET; 3315 case pci_channel_io_perm_failure: 3316 dev_warn(dev->ctrl.device, 3317 "failure state error detected, request disconnect\n"); 3318 return PCI_ERS_RESULT_DISCONNECT; 3319 } 3320 return PCI_ERS_RESULT_NEED_RESET; 3321 } 3322 3323 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3324 { 3325 struct nvme_dev *dev = pci_get_drvdata(pdev); 3326 3327 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3328 pci_restore_state(pdev); 3329 if (!nvme_try_sched_reset(&dev->ctrl)) 3330 nvme_unquiesce_io_queues(&dev->ctrl); 3331 return PCI_ERS_RESULT_RECOVERED; 3332 } 3333 3334 static void nvme_error_resume(struct pci_dev *pdev) 3335 { 3336 struct nvme_dev *dev = pci_get_drvdata(pdev); 3337 3338 flush_work(&dev->ctrl.reset_work); 3339 } 3340 3341 static const struct pci_error_handlers nvme_err_handler = { 3342 .error_detected = nvme_error_detected, 3343 .slot_reset = nvme_slot_reset, 3344 .resume = nvme_error_resume, 3345 .reset_prepare = nvme_reset_prepare, 3346 .reset_done = nvme_reset_done, 3347 }; 3348 3349 static const struct pci_device_id nvme_id_table[] = { 3350 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3351 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3352 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3353 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3354 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3355 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3356 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3357 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3358 NVME_QUIRK_DEALLOCATE_ZEROES | 3359 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3360 NVME_QUIRK_BOGUS_NID, }, 3361 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3362 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3363 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3364 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3365 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3366 NVME_QUIRK_MEDIUM_PRIO_SQ | 3367 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3368 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3369 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3370 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3371 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3372 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3373 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3374 NVME_QUIRK_BOGUS_NID, }, 3375 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3376 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3377 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3378 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3379 NVME_QUIRK_BOGUS_NID, }, 3380 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3381 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3382 NVME_QUIRK_BOGUS_NID, }, 3383 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3384 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3385 NVME_QUIRK_NO_NS_DESC_LIST, }, 3386 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3387 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3388 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3389 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3390 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3391 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3392 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3393 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3394 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3395 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3396 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3397 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3398 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3399 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3400 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3401 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3402 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3403 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3404 NVME_QUIRK_BOGUS_NID, }, 3405 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3406 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3407 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3408 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3409 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3410 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3411 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3412 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3413 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3414 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3415 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3416 NVME_QUIRK_BOGUS_NID, }, 3417 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3418 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3419 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3420 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3421 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3422 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3423 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3424 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3425 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3426 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3427 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3428 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3429 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3430 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3431 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3432 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3433 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3434 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3435 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3436 NVME_QUIRK_BOGUS_NID, }, 3437 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3438 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3439 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3440 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3441 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3442 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3443 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3444 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3445 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3446 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3447 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3448 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3449 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3450 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3451 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3452 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3453 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3454 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3455 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3456 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3457 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3458 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3459 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3460 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3461 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3462 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3463 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3464 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3465 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3466 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3467 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3468 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3469 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3470 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3471 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3472 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3473 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3474 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3475 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3476 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3477 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3478 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3479 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3480 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3481 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3482 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3483 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3484 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3485 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3486 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3487 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3488 .driver_data = NVME_QUIRK_BOGUS_NID | 3489 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3490 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3491 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3492 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3493 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3494 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3495 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3496 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3497 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3498 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3499 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3500 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3501 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3502 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3503 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3504 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3505 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3506 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3507 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3508 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3509 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3510 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3511 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3512 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3513 NVME_QUIRK_128_BYTES_SQES | 3514 NVME_QUIRK_SHARED_TAGS | 3515 NVME_QUIRK_SKIP_CID_GEN | 3516 NVME_QUIRK_IDENTIFY_CNS }, 3517 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3518 { 0, } 3519 }; 3520 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3521 3522 static struct pci_driver nvme_driver = { 3523 .name = "nvme", 3524 .id_table = nvme_id_table, 3525 .probe = nvme_probe, 3526 .remove = nvme_remove, 3527 .shutdown = nvme_shutdown, 3528 .driver = { 3529 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3530 #ifdef CONFIG_PM_SLEEP 3531 .pm = &nvme_dev_pm_ops, 3532 #endif 3533 }, 3534 .sriov_configure = pci_sriov_configure_simple, 3535 .err_handler = &nvme_err_handler, 3536 }; 3537 3538 static int __init nvme_init(void) 3539 { 3540 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3541 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3542 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3543 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3544 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3545 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3546 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3547 3548 return pci_register_driver(&nvme_driver); 3549 } 3550 3551 static void __exit nvme_exit(void) 3552 { 3553 pci_unregister_driver(&nvme_driver); 3554 flush_workqueue(nvme_wq); 3555 } 3556 3557 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3558 MODULE_LICENSE("GPL"); 3559 MODULE_VERSION("1.0"); 3560 module_init(nvme_init); 3561 module_exit(nvme_exit); 3562