1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/once.h> 21 #include <linux/pci.h> 22 #include <linux/suspend.h> 23 #include <linux/t10-pi.h> 24 #include <linux/types.h> 25 #include <linux/io-64-nonatomic-lo-hi.h> 26 #include <linux/sed-opal.h> 27 #include <linux/pci-p2pdma.h> 28 29 #include "trace.h" 30 #include "nvme.h" 31 32 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 33 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 34 35 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 36 37 /* 38 * These can be higher, but we need to ensure that any command doesn't 39 * require an sg allocation that needs more than a page of data. 40 */ 41 #define NVME_MAX_KB_SZ 4096 42 #define NVME_MAX_SEGS 127 43 44 static int use_threaded_interrupts; 45 module_param(use_threaded_interrupts, int, 0); 46 47 static bool use_cmb_sqes = true; 48 module_param(use_cmb_sqes, bool, 0444); 49 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 50 51 static unsigned int max_host_mem_size_mb = 128; 52 module_param(max_host_mem_size_mb, uint, 0444); 53 MODULE_PARM_DESC(max_host_mem_size_mb, 54 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 55 56 static unsigned int sgl_threshold = SZ_32K; 57 module_param(sgl_threshold, uint, 0644); 58 MODULE_PARM_DESC(sgl_threshold, 59 "Use SGLs when average request segment size is larger or equal to " 60 "this size. Use 0 to disable SGLs."); 61 62 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 63 static const struct kernel_param_ops io_queue_depth_ops = { 64 .set = io_queue_depth_set, 65 .get = param_get_uint, 66 }; 67 68 static unsigned int io_queue_depth = 1024; 69 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 70 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 71 72 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 73 { 74 unsigned int n; 75 int ret; 76 77 ret = kstrtouint(val, 10, &n); 78 if (ret != 0 || n > num_possible_cpus()) 79 return -EINVAL; 80 return param_set_uint(val, kp); 81 } 82 83 static const struct kernel_param_ops io_queue_count_ops = { 84 .set = io_queue_count_set, 85 .get = param_get_uint, 86 }; 87 88 static unsigned int write_queues; 89 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 90 MODULE_PARM_DESC(write_queues, 91 "Number of queues to use for writes. If not set, reads and writes " 92 "will share a queue set."); 93 94 static unsigned int poll_queues; 95 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 96 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 97 98 static bool noacpi; 99 module_param(noacpi, bool, 0444); 100 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 101 102 struct nvme_dev; 103 struct nvme_queue; 104 105 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 106 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 107 108 /* 109 * Represents an NVM Express device. Each nvme_dev is a PCI function. 110 */ 111 struct nvme_dev { 112 struct nvme_queue *queues; 113 struct blk_mq_tag_set tagset; 114 struct blk_mq_tag_set admin_tagset; 115 u32 __iomem *dbs; 116 struct device *dev; 117 struct dma_pool *prp_page_pool; 118 struct dma_pool *prp_small_pool; 119 unsigned online_queues; 120 unsigned max_qid; 121 unsigned io_queues[HCTX_MAX_TYPES]; 122 unsigned int num_vecs; 123 u32 q_depth; 124 int io_sqes; 125 u32 db_stride; 126 void __iomem *bar; 127 unsigned long bar_mapped_size; 128 struct work_struct remove_work; 129 struct mutex shutdown_lock; 130 bool subsystem; 131 u64 cmb_size; 132 bool cmb_use_sqes; 133 u32 cmbsz; 134 u32 cmbloc; 135 struct nvme_ctrl ctrl; 136 u32 last_ps; 137 138 mempool_t *iod_mempool; 139 140 /* shadow doorbell buffer support: */ 141 u32 *dbbuf_dbs; 142 dma_addr_t dbbuf_dbs_dma_addr; 143 u32 *dbbuf_eis; 144 dma_addr_t dbbuf_eis_dma_addr; 145 146 /* host memory buffer support: */ 147 u64 host_mem_size; 148 u32 nr_host_mem_descs; 149 dma_addr_t host_mem_descs_dma; 150 struct nvme_host_mem_buf_desc *host_mem_descs; 151 void **host_mem_desc_bufs; 152 unsigned int nr_allocated_queues; 153 unsigned int nr_write_queues; 154 unsigned int nr_poll_queues; 155 }; 156 157 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 158 { 159 int ret; 160 u32 n; 161 162 ret = kstrtou32(val, 10, &n); 163 if (ret != 0 || n < 2) 164 return -EINVAL; 165 166 return param_set_uint(val, kp); 167 } 168 169 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 170 { 171 return qid * 2 * stride; 172 } 173 174 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 175 { 176 return (qid * 2 + 1) * stride; 177 } 178 179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 180 { 181 return container_of(ctrl, struct nvme_dev, ctrl); 182 } 183 184 /* 185 * An NVM Express queue. Each device has at least two (one for admin 186 * commands and one for I/O commands). 187 */ 188 struct nvme_queue { 189 struct nvme_dev *dev; 190 spinlock_t sq_lock; 191 void *sq_cmds; 192 /* only used for poll queues: */ 193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 194 struct nvme_completion *cqes; 195 dma_addr_t sq_dma_addr; 196 dma_addr_t cq_dma_addr; 197 u32 __iomem *q_db; 198 u32 q_depth; 199 u16 cq_vector; 200 u16 sq_tail; 201 u16 last_sq_tail; 202 u16 cq_head; 203 u16 qid; 204 u8 cq_phase; 205 u8 sqes; 206 unsigned long flags; 207 #define NVMEQ_ENABLED 0 208 #define NVMEQ_SQ_CMB 1 209 #define NVMEQ_DELETE_ERROR 2 210 #define NVMEQ_POLLED 3 211 u32 *dbbuf_sq_db; 212 u32 *dbbuf_cq_db; 213 u32 *dbbuf_sq_ei; 214 u32 *dbbuf_cq_ei; 215 struct completion delete_done; 216 }; 217 218 /* 219 * The nvme_iod describes the data in an I/O. 220 * 221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 222 * to the actual struct scatterlist. 223 */ 224 struct nvme_iod { 225 struct nvme_request req; 226 struct nvme_queue *nvmeq; 227 bool use_sgl; 228 int aborted; 229 int npages; /* In the PRP list. 0 means small pool in use */ 230 int nents; /* Used in scatterlist */ 231 dma_addr_t first_dma; 232 unsigned int dma_len; /* length of single DMA segment mapping */ 233 dma_addr_t meta_dma; 234 struct scatterlist *sg; 235 }; 236 237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 238 { 239 return dev->nr_allocated_queues * 8 * dev->db_stride; 240 } 241 242 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 243 { 244 unsigned int mem_size = nvme_dbbuf_size(dev); 245 246 if (dev->dbbuf_dbs) 247 return 0; 248 249 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 250 &dev->dbbuf_dbs_dma_addr, 251 GFP_KERNEL); 252 if (!dev->dbbuf_dbs) 253 return -ENOMEM; 254 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 255 &dev->dbbuf_eis_dma_addr, 256 GFP_KERNEL); 257 if (!dev->dbbuf_eis) { 258 dma_free_coherent(dev->dev, mem_size, 259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 260 dev->dbbuf_dbs = NULL; 261 return -ENOMEM; 262 } 263 264 return 0; 265 } 266 267 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 268 { 269 unsigned int mem_size = nvme_dbbuf_size(dev); 270 271 if (dev->dbbuf_dbs) { 272 dma_free_coherent(dev->dev, mem_size, 273 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 274 dev->dbbuf_dbs = NULL; 275 } 276 if (dev->dbbuf_eis) { 277 dma_free_coherent(dev->dev, mem_size, 278 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 279 dev->dbbuf_eis = NULL; 280 } 281 } 282 283 static void nvme_dbbuf_init(struct nvme_dev *dev, 284 struct nvme_queue *nvmeq, int qid) 285 { 286 if (!dev->dbbuf_dbs || !qid) 287 return; 288 289 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 290 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 291 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 292 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 293 } 294 295 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 296 { 297 if (!nvmeq->qid) 298 return; 299 300 nvmeq->dbbuf_sq_db = NULL; 301 nvmeq->dbbuf_cq_db = NULL; 302 nvmeq->dbbuf_sq_ei = NULL; 303 nvmeq->dbbuf_cq_ei = NULL; 304 } 305 306 static void nvme_dbbuf_set(struct nvme_dev *dev) 307 { 308 struct nvme_command c; 309 unsigned int i; 310 311 if (!dev->dbbuf_dbs) 312 return; 313 314 memset(&c, 0, sizeof(c)); 315 c.dbbuf.opcode = nvme_admin_dbbuf; 316 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 317 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 318 319 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 320 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 321 /* Free memory and continue on */ 322 nvme_dbbuf_dma_free(dev); 323 324 for (i = 1; i <= dev->online_queues; i++) 325 nvme_dbbuf_free(&dev->queues[i]); 326 } 327 } 328 329 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 330 { 331 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 332 } 333 334 /* Update dbbuf and return true if an MMIO is required */ 335 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 336 volatile u32 *dbbuf_ei) 337 { 338 if (dbbuf_db) { 339 u16 old_value; 340 341 /* 342 * Ensure that the queue is written before updating 343 * the doorbell in memory 344 */ 345 wmb(); 346 347 old_value = *dbbuf_db; 348 *dbbuf_db = value; 349 350 /* 351 * Ensure that the doorbell is updated before reading the event 352 * index from memory. The controller needs to provide similar 353 * ordering to ensure the envent index is updated before reading 354 * the doorbell. 355 */ 356 mb(); 357 358 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 359 return false; 360 } 361 362 return true; 363 } 364 365 /* 366 * Will slightly overestimate the number of pages needed. This is OK 367 * as it only leads to a small amount of wasted memory for the lifetime of 368 * the I/O. 369 */ 370 static int nvme_pci_npages_prp(void) 371 { 372 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 373 NVME_CTRL_PAGE_SIZE); 374 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 375 } 376 377 /* 378 * Calculates the number of pages needed for the SGL segments. For example a 4k 379 * page can accommodate 256 SGL descriptors. 380 */ 381 static int nvme_pci_npages_sgl(void) 382 { 383 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 384 PAGE_SIZE); 385 } 386 387 static size_t nvme_pci_iod_alloc_size(void) 388 { 389 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 390 391 return sizeof(__le64 *) * npages + 392 sizeof(struct scatterlist) * NVME_MAX_SEGS; 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = data; 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = data; 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 420 unsigned int hctx_idx, unsigned int numa_node) 421 { 422 struct nvme_dev *dev = set->driver_data; 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 425 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 426 427 BUG_ON(!nvmeq); 428 iod->nvmeq = nvmeq; 429 430 nvme_req(req)->ctrl = &dev->ctrl; 431 return 0; 432 } 433 434 static int queue_irq_offset(struct nvme_dev *dev) 435 { 436 /* if we have more than 1 vec, admin queue offsets us by 1 */ 437 if (dev->num_vecs > 1) 438 return 1; 439 440 return 0; 441 } 442 443 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 444 { 445 struct nvme_dev *dev = set->driver_data; 446 int i, qoff, offset; 447 448 offset = queue_irq_offset(dev); 449 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 450 struct blk_mq_queue_map *map = &set->map[i]; 451 452 map->nr_queues = dev->io_queues[i]; 453 if (!map->nr_queues) { 454 BUG_ON(i == HCTX_TYPE_DEFAULT); 455 continue; 456 } 457 458 /* 459 * The poll queue(s) doesn't have an IRQ (and hence IRQ 460 * affinity), so use the regular blk-mq cpu mapping 461 */ 462 map->queue_offset = qoff; 463 if (i != HCTX_TYPE_POLL && offset) 464 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 465 else 466 blk_mq_map_queues(map); 467 qoff += map->nr_queues; 468 offset += map->nr_queues; 469 } 470 471 return 0; 472 } 473 474 /* 475 * Write sq tail if we are asked to, or if the next command would wrap. 476 */ 477 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 478 { 479 if (!write_sq) { 480 u16 next_tail = nvmeq->sq_tail + 1; 481 482 if (next_tail == nvmeq->q_depth) 483 next_tail = 0; 484 if (next_tail != nvmeq->last_sq_tail) 485 return; 486 } 487 488 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 489 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 490 writel(nvmeq->sq_tail, nvmeq->q_db); 491 nvmeq->last_sq_tail = nvmeq->sq_tail; 492 } 493 494 /** 495 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 496 * @nvmeq: The queue to use 497 * @cmd: The command to send 498 * @write_sq: whether to write to the SQ doorbell 499 */ 500 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 501 bool write_sq) 502 { 503 spin_lock(&nvmeq->sq_lock); 504 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 505 cmd, sizeof(*cmd)); 506 if (++nvmeq->sq_tail == nvmeq->q_depth) 507 nvmeq->sq_tail = 0; 508 nvme_write_sq_db(nvmeq, write_sq); 509 spin_unlock(&nvmeq->sq_lock); 510 } 511 512 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 513 { 514 struct nvme_queue *nvmeq = hctx->driver_data; 515 516 spin_lock(&nvmeq->sq_lock); 517 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 518 nvme_write_sq_db(nvmeq, true); 519 spin_unlock(&nvmeq->sq_lock); 520 } 521 522 static void **nvme_pci_iod_list(struct request *req) 523 { 524 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 525 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 526 } 527 528 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 529 { 530 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 531 int nseg = blk_rq_nr_phys_segments(req); 532 unsigned int avg_seg_size; 533 534 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 535 536 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 537 return false; 538 if (!iod->nvmeq->qid) 539 return false; 540 if (!sgl_threshold || avg_seg_size < sgl_threshold) 541 return false; 542 return true; 543 } 544 545 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 546 { 547 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 548 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 549 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 550 int i; 551 552 if (iod->dma_len) { 553 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, 554 rq_dma_dir(req)); 555 return; 556 } 557 558 WARN_ON_ONCE(!iod->nents); 559 560 if (is_pci_p2pdma_page(sg_page(iod->sg))) 561 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 562 rq_dma_dir(req)); 563 else 564 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 565 566 567 if (iod->npages == 0) 568 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 569 dma_addr); 570 571 for (i = 0; i < iod->npages; i++) { 572 void *addr = nvme_pci_iod_list(req)[i]; 573 574 if (iod->use_sgl) { 575 struct nvme_sgl_desc *sg_list = addr; 576 577 next_dma_addr = 578 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 579 } else { 580 __le64 *prp_list = addr; 581 582 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 583 } 584 585 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 586 dma_addr = next_dma_addr; 587 } 588 589 mempool_free(iod->sg, dev->iod_mempool); 590 } 591 592 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 593 { 594 int i; 595 struct scatterlist *sg; 596 597 for_each_sg(sgl, sg, nents, i) { 598 dma_addr_t phys = sg_phys(sg); 599 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 600 "dma_address:%pad dma_length:%d\n", 601 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 602 sg_dma_len(sg)); 603 } 604 } 605 606 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 607 struct request *req, struct nvme_rw_command *cmnd) 608 { 609 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 610 struct dma_pool *pool; 611 int length = blk_rq_payload_bytes(req); 612 struct scatterlist *sg = iod->sg; 613 int dma_len = sg_dma_len(sg); 614 u64 dma_addr = sg_dma_address(sg); 615 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 616 __le64 *prp_list; 617 void **list = nvme_pci_iod_list(req); 618 dma_addr_t prp_dma; 619 int nprps, i; 620 621 length -= (NVME_CTRL_PAGE_SIZE - offset); 622 if (length <= 0) { 623 iod->first_dma = 0; 624 goto done; 625 } 626 627 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 628 if (dma_len) { 629 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 630 } else { 631 sg = sg_next(sg); 632 dma_addr = sg_dma_address(sg); 633 dma_len = sg_dma_len(sg); 634 } 635 636 if (length <= NVME_CTRL_PAGE_SIZE) { 637 iod->first_dma = dma_addr; 638 goto done; 639 } 640 641 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 642 if (nprps <= (256 / 8)) { 643 pool = dev->prp_small_pool; 644 iod->npages = 0; 645 } else { 646 pool = dev->prp_page_pool; 647 iod->npages = 1; 648 } 649 650 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 651 if (!prp_list) { 652 iod->first_dma = dma_addr; 653 iod->npages = -1; 654 return BLK_STS_RESOURCE; 655 } 656 list[0] = prp_list; 657 iod->first_dma = prp_dma; 658 i = 0; 659 for (;;) { 660 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 661 __le64 *old_prp_list = prp_list; 662 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 663 if (!prp_list) 664 return BLK_STS_RESOURCE; 665 list[iod->npages++] = prp_list; 666 prp_list[0] = old_prp_list[i - 1]; 667 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 668 i = 1; 669 } 670 prp_list[i++] = cpu_to_le64(dma_addr); 671 dma_len -= NVME_CTRL_PAGE_SIZE; 672 dma_addr += NVME_CTRL_PAGE_SIZE; 673 length -= NVME_CTRL_PAGE_SIZE; 674 if (length <= 0) 675 break; 676 if (dma_len > 0) 677 continue; 678 if (unlikely(dma_len < 0)) 679 goto bad_sgl; 680 sg = sg_next(sg); 681 dma_addr = sg_dma_address(sg); 682 dma_len = sg_dma_len(sg); 683 } 684 685 done: 686 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 687 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 688 689 return BLK_STS_OK; 690 691 bad_sgl: 692 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 693 "Invalid SGL for payload:%d nents:%d\n", 694 blk_rq_payload_bytes(req), iod->nents); 695 return BLK_STS_IOERR; 696 } 697 698 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 699 struct scatterlist *sg) 700 { 701 sge->addr = cpu_to_le64(sg_dma_address(sg)); 702 sge->length = cpu_to_le32(sg_dma_len(sg)); 703 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 704 } 705 706 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 707 dma_addr_t dma_addr, int entries) 708 { 709 sge->addr = cpu_to_le64(dma_addr); 710 if (entries < SGES_PER_PAGE) { 711 sge->length = cpu_to_le32(entries * sizeof(*sge)); 712 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 713 } else { 714 sge->length = cpu_to_le32(PAGE_SIZE); 715 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 716 } 717 } 718 719 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 720 struct request *req, struct nvme_rw_command *cmd, int entries) 721 { 722 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 723 struct dma_pool *pool; 724 struct nvme_sgl_desc *sg_list; 725 struct scatterlist *sg = iod->sg; 726 dma_addr_t sgl_dma; 727 int i = 0; 728 729 /* setting the transfer type as SGL */ 730 cmd->flags = NVME_CMD_SGL_METABUF; 731 732 if (entries == 1) { 733 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 734 return BLK_STS_OK; 735 } 736 737 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 738 pool = dev->prp_small_pool; 739 iod->npages = 0; 740 } else { 741 pool = dev->prp_page_pool; 742 iod->npages = 1; 743 } 744 745 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 746 if (!sg_list) { 747 iod->npages = -1; 748 return BLK_STS_RESOURCE; 749 } 750 751 nvme_pci_iod_list(req)[0] = sg_list; 752 iod->first_dma = sgl_dma; 753 754 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 755 756 do { 757 if (i == SGES_PER_PAGE) { 758 struct nvme_sgl_desc *old_sg_desc = sg_list; 759 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 760 761 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 762 if (!sg_list) 763 return BLK_STS_RESOURCE; 764 765 i = 0; 766 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 767 sg_list[i++] = *link; 768 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 769 } 770 771 nvme_pci_sgl_set_data(&sg_list[i++], sg); 772 sg = sg_next(sg); 773 } while (--entries > 0); 774 775 return BLK_STS_OK; 776 } 777 778 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 779 struct request *req, struct nvme_rw_command *cmnd, 780 struct bio_vec *bv) 781 { 782 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 783 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 784 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 785 786 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 787 if (dma_mapping_error(dev->dev, iod->first_dma)) 788 return BLK_STS_RESOURCE; 789 iod->dma_len = bv->bv_len; 790 791 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 792 if (bv->bv_len > first_prp_len) 793 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 794 return BLK_STS_OK; 795 } 796 797 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 798 struct request *req, struct nvme_rw_command *cmnd, 799 struct bio_vec *bv) 800 { 801 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 802 803 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 804 if (dma_mapping_error(dev->dev, iod->first_dma)) 805 return BLK_STS_RESOURCE; 806 iod->dma_len = bv->bv_len; 807 808 cmnd->flags = NVME_CMD_SGL_METABUF; 809 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 810 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 811 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 812 return BLK_STS_OK; 813 } 814 815 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 816 struct nvme_command *cmnd) 817 { 818 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 819 blk_status_t ret = BLK_STS_RESOURCE; 820 int nr_mapped; 821 822 if (blk_rq_nr_phys_segments(req) == 1) { 823 struct bio_vec bv = req_bvec(req); 824 825 if (!is_pci_p2pdma_page(bv.bv_page)) { 826 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 827 return nvme_setup_prp_simple(dev, req, 828 &cmnd->rw, &bv); 829 830 if (iod->nvmeq->qid && 831 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 832 return nvme_setup_sgl_simple(dev, req, 833 &cmnd->rw, &bv); 834 } 835 } 836 837 iod->dma_len = 0; 838 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 839 if (!iod->sg) 840 return BLK_STS_RESOURCE; 841 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 842 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 843 if (!iod->nents) 844 goto out; 845 846 if (is_pci_p2pdma_page(sg_page(iod->sg))) 847 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 848 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 849 else 850 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 851 rq_dma_dir(req), DMA_ATTR_NO_WARN); 852 if (!nr_mapped) 853 goto out; 854 855 iod->use_sgl = nvme_pci_use_sgls(dev, req); 856 if (iod->use_sgl) 857 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 858 else 859 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 860 out: 861 if (ret != BLK_STS_OK) 862 nvme_unmap_data(dev, req); 863 return ret; 864 } 865 866 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 867 struct nvme_command *cmnd) 868 { 869 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 870 871 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 872 rq_dma_dir(req), 0); 873 if (dma_mapping_error(dev->dev, iod->meta_dma)) 874 return BLK_STS_IOERR; 875 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 876 return BLK_STS_OK; 877 } 878 879 /* 880 * NOTE: ns is NULL when called on the admin queue. 881 */ 882 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 883 const struct blk_mq_queue_data *bd) 884 { 885 struct nvme_ns *ns = hctx->queue->queuedata; 886 struct nvme_queue *nvmeq = hctx->driver_data; 887 struct nvme_dev *dev = nvmeq->dev; 888 struct request *req = bd->rq; 889 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 890 struct nvme_command cmnd; 891 blk_status_t ret; 892 893 iod->aborted = 0; 894 iod->npages = -1; 895 iod->nents = 0; 896 897 /* 898 * We should not need to do this, but we're still using this to 899 * ensure we can drain requests on a dying queue. 900 */ 901 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 902 return BLK_STS_IOERR; 903 904 ret = nvme_setup_cmd(ns, req, &cmnd); 905 if (ret) 906 return ret; 907 908 if (blk_rq_nr_phys_segments(req)) { 909 ret = nvme_map_data(dev, req, &cmnd); 910 if (ret) 911 goto out_free_cmd; 912 } 913 914 if (blk_integrity_rq(req)) { 915 ret = nvme_map_metadata(dev, req, &cmnd); 916 if (ret) 917 goto out_unmap_data; 918 } 919 920 blk_mq_start_request(req); 921 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 922 return BLK_STS_OK; 923 out_unmap_data: 924 nvme_unmap_data(dev, req); 925 out_free_cmd: 926 nvme_cleanup_cmd(req); 927 return ret; 928 } 929 930 static void nvme_pci_complete_rq(struct request *req) 931 { 932 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 933 struct nvme_dev *dev = iod->nvmeq->dev; 934 935 if (blk_integrity_rq(req)) 936 dma_unmap_page(dev->dev, iod->meta_dma, 937 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 938 if (blk_rq_nr_phys_segments(req)) 939 nvme_unmap_data(dev, req); 940 nvme_complete_rq(req); 941 } 942 943 /* We read the CQE phase first to check if the rest of the entry is valid */ 944 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 945 { 946 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 947 948 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 949 } 950 951 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 952 { 953 u16 head = nvmeq->cq_head; 954 955 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 956 nvmeq->dbbuf_cq_ei)) 957 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 958 } 959 960 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 961 { 962 if (!nvmeq->qid) 963 return nvmeq->dev->admin_tagset.tags[0]; 964 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 965 } 966 967 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 968 { 969 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 970 struct request *req; 971 972 /* 973 * AEN requests are special as they don't time out and can 974 * survive any kind of queue freeze and often don't respond to 975 * aborts. We don't even bother to allocate a struct request 976 * for them but rather special case them here. 977 */ 978 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { 979 nvme_complete_async_event(&nvmeq->dev->ctrl, 980 cqe->status, &cqe->result); 981 return; 982 } 983 984 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); 985 if (unlikely(!req)) { 986 dev_warn(nvmeq->dev->ctrl.device, 987 "invalid id %d completed on queue %d\n", 988 cqe->command_id, le16_to_cpu(cqe->sq_id)); 989 return; 990 } 991 992 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 993 if (!nvme_try_complete_req(req, cqe->status, cqe->result)) 994 nvme_pci_complete_rq(req); 995 } 996 997 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 998 { 999 u16 tmp = nvmeq->cq_head + 1; 1000 1001 if (tmp == nvmeq->q_depth) { 1002 nvmeq->cq_head = 0; 1003 nvmeq->cq_phase ^= 1; 1004 } else { 1005 nvmeq->cq_head = tmp; 1006 } 1007 } 1008 1009 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 1010 { 1011 int found = 0; 1012 1013 while (nvme_cqe_pending(nvmeq)) { 1014 found++; 1015 /* 1016 * load-load control dependency between phase and the rest of 1017 * the cqe requires a full read memory barrier 1018 */ 1019 dma_rmb(); 1020 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 1021 nvme_update_cq_head(nvmeq); 1022 } 1023 1024 if (found) 1025 nvme_ring_cq_doorbell(nvmeq); 1026 return found; 1027 } 1028 1029 static irqreturn_t nvme_irq(int irq, void *data) 1030 { 1031 struct nvme_queue *nvmeq = data; 1032 irqreturn_t ret = IRQ_NONE; 1033 1034 /* 1035 * The rmb/wmb pair ensures we see all updates from a previous run of 1036 * the irq handler, even if that was on another CPU. 1037 */ 1038 rmb(); 1039 if (nvme_process_cq(nvmeq)) 1040 ret = IRQ_HANDLED; 1041 wmb(); 1042 1043 return ret; 1044 } 1045 1046 static irqreturn_t nvme_irq_check(int irq, void *data) 1047 { 1048 struct nvme_queue *nvmeq = data; 1049 1050 if (nvme_cqe_pending(nvmeq)) 1051 return IRQ_WAKE_THREAD; 1052 return IRQ_NONE; 1053 } 1054 1055 /* 1056 * Poll for completions for any interrupt driven queue 1057 * Can be called from any context. 1058 */ 1059 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1060 { 1061 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1062 1063 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1064 1065 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1066 nvme_process_cq(nvmeq); 1067 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1068 } 1069 1070 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1071 { 1072 struct nvme_queue *nvmeq = hctx->driver_data; 1073 bool found; 1074 1075 if (!nvme_cqe_pending(nvmeq)) 1076 return 0; 1077 1078 spin_lock(&nvmeq->cq_poll_lock); 1079 found = nvme_process_cq(nvmeq); 1080 spin_unlock(&nvmeq->cq_poll_lock); 1081 1082 return found; 1083 } 1084 1085 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1086 { 1087 struct nvme_dev *dev = to_nvme_dev(ctrl); 1088 struct nvme_queue *nvmeq = &dev->queues[0]; 1089 struct nvme_command c; 1090 1091 memset(&c, 0, sizeof(c)); 1092 c.common.opcode = nvme_admin_async_event; 1093 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1094 nvme_submit_cmd(nvmeq, &c, true); 1095 } 1096 1097 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1098 { 1099 struct nvme_command c; 1100 1101 memset(&c, 0, sizeof(c)); 1102 c.delete_queue.opcode = opcode; 1103 c.delete_queue.qid = cpu_to_le16(id); 1104 1105 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1106 } 1107 1108 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1109 struct nvme_queue *nvmeq, s16 vector) 1110 { 1111 struct nvme_command c; 1112 int flags = NVME_QUEUE_PHYS_CONTIG; 1113 1114 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1115 flags |= NVME_CQ_IRQ_ENABLED; 1116 1117 /* 1118 * Note: we (ab)use the fact that the prp fields survive if no data 1119 * is attached to the request. 1120 */ 1121 memset(&c, 0, sizeof(c)); 1122 c.create_cq.opcode = nvme_admin_create_cq; 1123 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1124 c.create_cq.cqid = cpu_to_le16(qid); 1125 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1126 c.create_cq.cq_flags = cpu_to_le16(flags); 1127 c.create_cq.irq_vector = cpu_to_le16(vector); 1128 1129 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1130 } 1131 1132 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1133 struct nvme_queue *nvmeq) 1134 { 1135 struct nvme_ctrl *ctrl = &dev->ctrl; 1136 struct nvme_command c; 1137 int flags = NVME_QUEUE_PHYS_CONTIG; 1138 1139 /* 1140 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1141 * set. Since URGENT priority is zeroes, it makes all queues 1142 * URGENT. 1143 */ 1144 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1145 flags |= NVME_SQ_PRIO_MEDIUM; 1146 1147 /* 1148 * Note: we (ab)use the fact that the prp fields survive if no data 1149 * is attached to the request. 1150 */ 1151 memset(&c, 0, sizeof(c)); 1152 c.create_sq.opcode = nvme_admin_create_sq; 1153 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1154 c.create_sq.sqid = cpu_to_le16(qid); 1155 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1156 c.create_sq.sq_flags = cpu_to_le16(flags); 1157 c.create_sq.cqid = cpu_to_le16(qid); 1158 1159 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1160 } 1161 1162 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1163 { 1164 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1165 } 1166 1167 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1168 { 1169 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1170 } 1171 1172 static void abort_endio(struct request *req, blk_status_t error) 1173 { 1174 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1175 struct nvme_queue *nvmeq = iod->nvmeq; 1176 1177 dev_warn(nvmeq->dev->ctrl.device, 1178 "Abort status: 0x%x", nvme_req(req)->status); 1179 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1180 blk_mq_free_request(req); 1181 } 1182 1183 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1184 { 1185 /* If true, indicates loss of adapter communication, possibly by a 1186 * NVMe Subsystem reset. 1187 */ 1188 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1189 1190 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1191 switch (dev->ctrl.state) { 1192 case NVME_CTRL_RESETTING: 1193 case NVME_CTRL_CONNECTING: 1194 return false; 1195 default: 1196 break; 1197 } 1198 1199 /* We shouldn't reset unless the controller is on fatal error state 1200 * _or_ if we lost the communication with it. 1201 */ 1202 if (!(csts & NVME_CSTS_CFS) && !nssro) 1203 return false; 1204 1205 return true; 1206 } 1207 1208 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1209 { 1210 /* Read a config register to help see what died. */ 1211 u16 pci_status; 1212 int result; 1213 1214 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1215 &pci_status); 1216 if (result == PCIBIOS_SUCCESSFUL) 1217 dev_warn(dev->ctrl.device, 1218 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1219 csts, pci_status); 1220 else 1221 dev_warn(dev->ctrl.device, 1222 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1223 csts, result); 1224 } 1225 1226 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1227 { 1228 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1229 struct nvme_queue *nvmeq = iod->nvmeq; 1230 struct nvme_dev *dev = nvmeq->dev; 1231 struct request *abort_req; 1232 struct nvme_command cmd; 1233 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1234 1235 /* If PCI error recovery process is happening, we cannot reset or 1236 * the recovery mechanism will surely fail. 1237 */ 1238 mb(); 1239 if (pci_channel_offline(to_pci_dev(dev->dev))) 1240 return BLK_EH_RESET_TIMER; 1241 1242 /* 1243 * Reset immediately if the controller is failed 1244 */ 1245 if (nvme_should_reset(dev, csts)) { 1246 nvme_warn_reset(dev, csts); 1247 nvme_dev_disable(dev, false); 1248 nvme_reset_ctrl(&dev->ctrl); 1249 return BLK_EH_DONE; 1250 } 1251 1252 /* 1253 * Did we miss an interrupt? 1254 */ 1255 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1256 nvme_poll(req->mq_hctx); 1257 else 1258 nvme_poll_irqdisable(nvmeq); 1259 1260 if (blk_mq_request_completed(req)) { 1261 dev_warn(dev->ctrl.device, 1262 "I/O %d QID %d timeout, completion polled\n", 1263 req->tag, nvmeq->qid); 1264 return BLK_EH_DONE; 1265 } 1266 1267 /* 1268 * Shutdown immediately if controller times out while starting. The 1269 * reset work will see the pci device disabled when it gets the forced 1270 * cancellation error. All outstanding requests are completed on 1271 * shutdown, so we return BLK_EH_DONE. 1272 */ 1273 switch (dev->ctrl.state) { 1274 case NVME_CTRL_CONNECTING: 1275 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1276 fallthrough; 1277 case NVME_CTRL_DELETING: 1278 dev_warn_ratelimited(dev->ctrl.device, 1279 "I/O %d QID %d timeout, disable controller\n", 1280 req->tag, nvmeq->qid); 1281 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1282 nvme_dev_disable(dev, true); 1283 return BLK_EH_DONE; 1284 case NVME_CTRL_RESETTING: 1285 return BLK_EH_RESET_TIMER; 1286 default: 1287 break; 1288 } 1289 1290 /* 1291 * Shutdown the controller immediately and schedule a reset if the 1292 * command was already aborted once before and still hasn't been 1293 * returned to the driver, or if this is the admin queue. 1294 */ 1295 if (!nvmeq->qid || iod->aborted) { 1296 dev_warn(dev->ctrl.device, 1297 "I/O %d QID %d timeout, reset controller\n", 1298 req->tag, nvmeq->qid); 1299 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1300 nvme_dev_disable(dev, false); 1301 nvme_reset_ctrl(&dev->ctrl); 1302 1303 return BLK_EH_DONE; 1304 } 1305 1306 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1307 atomic_inc(&dev->ctrl.abort_limit); 1308 return BLK_EH_RESET_TIMER; 1309 } 1310 iod->aborted = 1; 1311 1312 memset(&cmd, 0, sizeof(cmd)); 1313 cmd.abort.opcode = nvme_admin_abort_cmd; 1314 cmd.abort.cid = req->tag; 1315 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1316 1317 dev_warn(nvmeq->dev->ctrl.device, 1318 "I/O %d QID %d timeout, aborting\n", 1319 req->tag, nvmeq->qid); 1320 1321 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1322 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1323 if (IS_ERR(abort_req)) { 1324 atomic_inc(&dev->ctrl.abort_limit); 1325 return BLK_EH_RESET_TIMER; 1326 } 1327 1328 abort_req->timeout = ADMIN_TIMEOUT; 1329 abort_req->end_io_data = NULL; 1330 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1331 1332 /* 1333 * The aborted req will be completed on receiving the abort req. 1334 * We enable the timer again. If hit twice, it'll cause a device reset, 1335 * as the device then is in a faulty state. 1336 */ 1337 return BLK_EH_RESET_TIMER; 1338 } 1339 1340 static void nvme_free_queue(struct nvme_queue *nvmeq) 1341 { 1342 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1343 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1344 if (!nvmeq->sq_cmds) 1345 return; 1346 1347 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1348 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1349 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1350 } else { 1351 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1352 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1353 } 1354 } 1355 1356 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1357 { 1358 int i; 1359 1360 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1361 dev->ctrl.queue_count--; 1362 nvme_free_queue(&dev->queues[i]); 1363 } 1364 } 1365 1366 /** 1367 * nvme_suspend_queue - put queue into suspended state 1368 * @nvmeq: queue to suspend 1369 */ 1370 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1371 { 1372 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1373 return 1; 1374 1375 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1376 mb(); 1377 1378 nvmeq->dev->online_queues--; 1379 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1380 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1381 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1382 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1383 return 0; 1384 } 1385 1386 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1387 { 1388 int i; 1389 1390 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1391 nvme_suspend_queue(&dev->queues[i]); 1392 } 1393 1394 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1395 { 1396 struct nvme_queue *nvmeq = &dev->queues[0]; 1397 1398 if (shutdown) 1399 nvme_shutdown_ctrl(&dev->ctrl); 1400 else 1401 nvme_disable_ctrl(&dev->ctrl); 1402 1403 nvme_poll_irqdisable(nvmeq); 1404 } 1405 1406 /* 1407 * Called only on a device that has been disabled and after all other threads 1408 * that can check this device's completion queues have synced, except 1409 * nvme_poll(). This is the last chance for the driver to see a natural 1410 * completion before nvme_cancel_request() terminates all incomplete requests. 1411 */ 1412 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1413 { 1414 int i; 1415 1416 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1417 spin_lock(&dev->queues[i].cq_poll_lock); 1418 nvme_process_cq(&dev->queues[i]); 1419 spin_unlock(&dev->queues[i].cq_poll_lock); 1420 } 1421 } 1422 1423 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1424 int entry_size) 1425 { 1426 int q_depth = dev->q_depth; 1427 unsigned q_size_aligned = roundup(q_depth * entry_size, 1428 NVME_CTRL_PAGE_SIZE); 1429 1430 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1431 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1432 1433 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1434 q_depth = div_u64(mem_per_q, entry_size); 1435 1436 /* 1437 * Ensure the reduced q_depth is above some threshold where it 1438 * would be better to map queues in system memory with the 1439 * original depth 1440 */ 1441 if (q_depth < 64) 1442 return -ENOMEM; 1443 } 1444 1445 return q_depth; 1446 } 1447 1448 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1449 int qid) 1450 { 1451 struct pci_dev *pdev = to_pci_dev(dev->dev); 1452 1453 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1454 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1455 if (nvmeq->sq_cmds) { 1456 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1457 nvmeq->sq_cmds); 1458 if (nvmeq->sq_dma_addr) { 1459 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1460 return 0; 1461 } 1462 1463 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1464 } 1465 } 1466 1467 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1468 &nvmeq->sq_dma_addr, GFP_KERNEL); 1469 if (!nvmeq->sq_cmds) 1470 return -ENOMEM; 1471 return 0; 1472 } 1473 1474 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1475 { 1476 struct nvme_queue *nvmeq = &dev->queues[qid]; 1477 1478 if (dev->ctrl.queue_count > qid) 1479 return 0; 1480 1481 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1482 nvmeq->q_depth = depth; 1483 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1484 &nvmeq->cq_dma_addr, GFP_KERNEL); 1485 if (!nvmeq->cqes) 1486 goto free_nvmeq; 1487 1488 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1489 goto free_cqdma; 1490 1491 nvmeq->dev = dev; 1492 spin_lock_init(&nvmeq->sq_lock); 1493 spin_lock_init(&nvmeq->cq_poll_lock); 1494 nvmeq->cq_head = 0; 1495 nvmeq->cq_phase = 1; 1496 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1497 nvmeq->qid = qid; 1498 dev->ctrl.queue_count++; 1499 1500 return 0; 1501 1502 free_cqdma: 1503 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1504 nvmeq->cq_dma_addr); 1505 free_nvmeq: 1506 return -ENOMEM; 1507 } 1508 1509 static int queue_request_irq(struct nvme_queue *nvmeq) 1510 { 1511 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1512 int nr = nvmeq->dev->ctrl.instance; 1513 1514 if (use_threaded_interrupts) { 1515 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1516 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1517 } else { 1518 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1519 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1520 } 1521 } 1522 1523 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1524 { 1525 struct nvme_dev *dev = nvmeq->dev; 1526 1527 nvmeq->sq_tail = 0; 1528 nvmeq->last_sq_tail = 0; 1529 nvmeq->cq_head = 0; 1530 nvmeq->cq_phase = 1; 1531 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1532 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1533 nvme_dbbuf_init(dev, nvmeq, qid); 1534 dev->online_queues++; 1535 wmb(); /* ensure the first interrupt sees the initialization */ 1536 } 1537 1538 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1539 { 1540 struct nvme_dev *dev = nvmeq->dev; 1541 int result; 1542 u16 vector = 0; 1543 1544 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1545 1546 /* 1547 * A queue's vector matches the queue identifier unless the controller 1548 * has only one vector available. 1549 */ 1550 if (!polled) 1551 vector = dev->num_vecs == 1 ? 0 : qid; 1552 else 1553 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1554 1555 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1556 if (result) 1557 return result; 1558 1559 result = adapter_alloc_sq(dev, qid, nvmeq); 1560 if (result < 0) 1561 return result; 1562 if (result) 1563 goto release_cq; 1564 1565 nvmeq->cq_vector = vector; 1566 nvme_init_queue(nvmeq, qid); 1567 1568 if (!polled) { 1569 result = queue_request_irq(nvmeq); 1570 if (result < 0) 1571 goto release_sq; 1572 } 1573 1574 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1575 return result; 1576 1577 release_sq: 1578 dev->online_queues--; 1579 adapter_delete_sq(dev, qid); 1580 release_cq: 1581 adapter_delete_cq(dev, qid); 1582 return result; 1583 } 1584 1585 static const struct blk_mq_ops nvme_mq_admin_ops = { 1586 .queue_rq = nvme_queue_rq, 1587 .complete = nvme_pci_complete_rq, 1588 .init_hctx = nvme_admin_init_hctx, 1589 .init_request = nvme_init_request, 1590 .timeout = nvme_timeout, 1591 }; 1592 1593 static const struct blk_mq_ops nvme_mq_ops = { 1594 .queue_rq = nvme_queue_rq, 1595 .complete = nvme_pci_complete_rq, 1596 .commit_rqs = nvme_commit_rqs, 1597 .init_hctx = nvme_init_hctx, 1598 .init_request = nvme_init_request, 1599 .map_queues = nvme_pci_map_queues, 1600 .timeout = nvme_timeout, 1601 .poll = nvme_poll, 1602 }; 1603 1604 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1605 { 1606 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1607 /* 1608 * If the controller was reset during removal, it's possible 1609 * user requests may be waiting on a stopped queue. Start the 1610 * queue to flush these to completion. 1611 */ 1612 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1613 blk_cleanup_queue(dev->ctrl.admin_q); 1614 blk_mq_free_tag_set(&dev->admin_tagset); 1615 } 1616 } 1617 1618 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1619 { 1620 if (!dev->ctrl.admin_q) { 1621 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1622 dev->admin_tagset.nr_hw_queues = 1; 1623 1624 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1625 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1626 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1627 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1628 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1629 dev->admin_tagset.driver_data = dev; 1630 1631 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1632 return -ENOMEM; 1633 dev->ctrl.admin_tagset = &dev->admin_tagset; 1634 1635 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1636 if (IS_ERR(dev->ctrl.admin_q)) { 1637 blk_mq_free_tag_set(&dev->admin_tagset); 1638 return -ENOMEM; 1639 } 1640 if (!blk_get_queue(dev->ctrl.admin_q)) { 1641 nvme_dev_remove_admin(dev); 1642 dev->ctrl.admin_q = NULL; 1643 return -ENODEV; 1644 } 1645 } else 1646 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1647 1648 return 0; 1649 } 1650 1651 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1652 { 1653 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1654 } 1655 1656 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1657 { 1658 struct pci_dev *pdev = to_pci_dev(dev->dev); 1659 1660 if (size <= dev->bar_mapped_size) 1661 return 0; 1662 if (size > pci_resource_len(pdev, 0)) 1663 return -ENOMEM; 1664 if (dev->bar) 1665 iounmap(dev->bar); 1666 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1667 if (!dev->bar) { 1668 dev->bar_mapped_size = 0; 1669 return -ENOMEM; 1670 } 1671 dev->bar_mapped_size = size; 1672 dev->dbs = dev->bar + NVME_REG_DBS; 1673 1674 return 0; 1675 } 1676 1677 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1678 { 1679 int result; 1680 u32 aqa; 1681 struct nvme_queue *nvmeq; 1682 1683 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1684 if (result < 0) 1685 return result; 1686 1687 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1688 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1689 1690 if (dev->subsystem && 1691 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1692 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1693 1694 result = nvme_disable_ctrl(&dev->ctrl); 1695 if (result < 0) 1696 return result; 1697 1698 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1699 if (result) 1700 return result; 1701 1702 dev->ctrl.numa_node = dev_to_node(dev->dev); 1703 1704 nvmeq = &dev->queues[0]; 1705 aqa = nvmeq->q_depth - 1; 1706 aqa |= aqa << 16; 1707 1708 writel(aqa, dev->bar + NVME_REG_AQA); 1709 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1710 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1711 1712 result = nvme_enable_ctrl(&dev->ctrl); 1713 if (result) 1714 return result; 1715 1716 nvmeq->cq_vector = 0; 1717 nvme_init_queue(nvmeq, 0); 1718 result = queue_request_irq(nvmeq); 1719 if (result) { 1720 dev->online_queues--; 1721 return result; 1722 } 1723 1724 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1725 return result; 1726 } 1727 1728 static int nvme_create_io_queues(struct nvme_dev *dev) 1729 { 1730 unsigned i, max, rw_queues; 1731 int ret = 0; 1732 1733 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1734 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1735 ret = -ENOMEM; 1736 break; 1737 } 1738 } 1739 1740 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1741 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1742 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1743 dev->io_queues[HCTX_TYPE_READ]; 1744 } else { 1745 rw_queues = max; 1746 } 1747 1748 for (i = dev->online_queues; i <= max; i++) { 1749 bool polled = i > rw_queues; 1750 1751 ret = nvme_create_queue(&dev->queues[i], i, polled); 1752 if (ret) 1753 break; 1754 } 1755 1756 /* 1757 * Ignore failing Create SQ/CQ commands, we can continue with less 1758 * than the desired amount of queues, and even a controller without 1759 * I/O queues can still be used to issue admin commands. This might 1760 * be useful to upgrade a buggy firmware for example. 1761 */ 1762 return ret >= 0 ? 0 : ret; 1763 } 1764 1765 static ssize_t nvme_cmb_show(struct device *dev, 1766 struct device_attribute *attr, 1767 char *buf) 1768 { 1769 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1770 1771 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1772 ndev->cmbloc, ndev->cmbsz); 1773 } 1774 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1775 1776 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1777 { 1778 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1779 1780 return 1ULL << (12 + 4 * szu); 1781 } 1782 1783 static u32 nvme_cmb_size(struct nvme_dev *dev) 1784 { 1785 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1786 } 1787 1788 static void nvme_map_cmb(struct nvme_dev *dev) 1789 { 1790 u64 size, offset; 1791 resource_size_t bar_size; 1792 struct pci_dev *pdev = to_pci_dev(dev->dev); 1793 int bar; 1794 1795 if (dev->cmb_size) 1796 return; 1797 1798 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1799 if (!dev->cmbsz) 1800 return; 1801 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1802 1803 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1804 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1805 bar = NVME_CMB_BIR(dev->cmbloc); 1806 bar_size = pci_resource_len(pdev, bar); 1807 1808 if (offset > bar_size) 1809 return; 1810 1811 /* 1812 * Controllers may support a CMB size larger than their BAR, 1813 * for example, due to being behind a bridge. Reduce the CMB to 1814 * the reported size of the BAR 1815 */ 1816 if (size > bar_size - offset) 1817 size = bar_size - offset; 1818 1819 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1820 dev_warn(dev->ctrl.device, 1821 "failed to register the CMB\n"); 1822 return; 1823 } 1824 1825 dev->cmb_size = size; 1826 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1827 1828 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1829 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1830 pci_p2pmem_publish(pdev, true); 1831 1832 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1833 &dev_attr_cmb.attr, NULL)) 1834 dev_warn(dev->ctrl.device, 1835 "failed to add sysfs attribute for CMB\n"); 1836 } 1837 1838 static inline void nvme_release_cmb(struct nvme_dev *dev) 1839 { 1840 if (dev->cmb_size) { 1841 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1842 &dev_attr_cmb.attr, NULL); 1843 dev->cmb_size = 0; 1844 } 1845 } 1846 1847 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1848 { 1849 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1850 u64 dma_addr = dev->host_mem_descs_dma; 1851 struct nvme_command c; 1852 int ret; 1853 1854 memset(&c, 0, sizeof(c)); 1855 c.features.opcode = nvme_admin_set_features; 1856 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1857 c.features.dword11 = cpu_to_le32(bits); 1858 c.features.dword12 = cpu_to_le32(host_mem_size); 1859 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1860 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1861 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1862 1863 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1864 if (ret) { 1865 dev_warn(dev->ctrl.device, 1866 "failed to set host mem (err %d, flags %#x).\n", 1867 ret, bits); 1868 } 1869 return ret; 1870 } 1871 1872 static void nvme_free_host_mem(struct nvme_dev *dev) 1873 { 1874 int i; 1875 1876 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1877 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1878 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1879 1880 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1881 le64_to_cpu(desc->addr), 1882 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1883 } 1884 1885 kfree(dev->host_mem_desc_bufs); 1886 dev->host_mem_desc_bufs = NULL; 1887 dma_free_coherent(dev->dev, 1888 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1889 dev->host_mem_descs, dev->host_mem_descs_dma); 1890 dev->host_mem_descs = NULL; 1891 dev->nr_host_mem_descs = 0; 1892 } 1893 1894 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1895 u32 chunk_size) 1896 { 1897 struct nvme_host_mem_buf_desc *descs; 1898 u32 max_entries, len; 1899 dma_addr_t descs_dma; 1900 int i = 0; 1901 void **bufs; 1902 u64 size, tmp; 1903 1904 tmp = (preferred + chunk_size - 1); 1905 do_div(tmp, chunk_size); 1906 max_entries = tmp; 1907 1908 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1909 max_entries = dev->ctrl.hmmaxd; 1910 1911 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1912 &descs_dma, GFP_KERNEL); 1913 if (!descs) 1914 goto out; 1915 1916 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1917 if (!bufs) 1918 goto out_free_descs; 1919 1920 for (size = 0; size < preferred && i < max_entries; size += len) { 1921 dma_addr_t dma_addr; 1922 1923 len = min_t(u64, chunk_size, preferred - size); 1924 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1925 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1926 if (!bufs[i]) 1927 break; 1928 1929 descs[i].addr = cpu_to_le64(dma_addr); 1930 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1931 i++; 1932 } 1933 1934 if (!size) 1935 goto out_free_bufs; 1936 1937 dev->nr_host_mem_descs = i; 1938 dev->host_mem_size = size; 1939 dev->host_mem_descs = descs; 1940 dev->host_mem_descs_dma = descs_dma; 1941 dev->host_mem_desc_bufs = bufs; 1942 return 0; 1943 1944 out_free_bufs: 1945 while (--i >= 0) { 1946 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1947 1948 dma_free_attrs(dev->dev, size, bufs[i], 1949 le64_to_cpu(descs[i].addr), 1950 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1951 } 1952 1953 kfree(bufs); 1954 out_free_descs: 1955 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1956 descs_dma); 1957 out: 1958 dev->host_mem_descs = NULL; 1959 return -ENOMEM; 1960 } 1961 1962 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1963 { 1964 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1965 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1966 u64 chunk_size; 1967 1968 /* start big and work our way down */ 1969 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 1970 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1971 if (!min || dev->host_mem_size >= min) 1972 return 0; 1973 nvme_free_host_mem(dev); 1974 } 1975 } 1976 1977 return -ENOMEM; 1978 } 1979 1980 static int nvme_setup_host_mem(struct nvme_dev *dev) 1981 { 1982 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1983 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1984 u64 min = (u64)dev->ctrl.hmmin * 4096; 1985 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1986 int ret; 1987 1988 preferred = min(preferred, max); 1989 if (min > max) { 1990 dev_warn(dev->ctrl.device, 1991 "min host memory (%lld MiB) above limit (%d MiB).\n", 1992 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1993 nvme_free_host_mem(dev); 1994 return 0; 1995 } 1996 1997 /* 1998 * If we already have a buffer allocated check if we can reuse it. 1999 */ 2000 if (dev->host_mem_descs) { 2001 if (dev->host_mem_size >= min) 2002 enable_bits |= NVME_HOST_MEM_RETURN; 2003 else 2004 nvme_free_host_mem(dev); 2005 } 2006 2007 if (!dev->host_mem_descs) { 2008 if (nvme_alloc_host_mem(dev, min, preferred)) { 2009 dev_warn(dev->ctrl.device, 2010 "failed to allocate host memory buffer.\n"); 2011 return 0; /* controller must work without HMB */ 2012 } 2013 2014 dev_info(dev->ctrl.device, 2015 "allocated %lld MiB host memory buffer.\n", 2016 dev->host_mem_size >> ilog2(SZ_1M)); 2017 } 2018 2019 ret = nvme_set_host_mem(dev, enable_bits); 2020 if (ret) 2021 nvme_free_host_mem(dev); 2022 return ret; 2023 } 2024 2025 /* 2026 * nirqs is the number of interrupts available for write and read 2027 * queues. The core already reserved an interrupt for the admin queue. 2028 */ 2029 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2030 { 2031 struct nvme_dev *dev = affd->priv; 2032 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2033 2034 /* 2035 * If there is no interrupt available for queues, ensure that 2036 * the default queue is set to 1. The affinity set size is 2037 * also set to one, but the irq core ignores it for this case. 2038 * 2039 * If only one interrupt is available or 'write_queue' == 0, combine 2040 * write and read queues. 2041 * 2042 * If 'write_queues' > 0, ensure it leaves room for at least one read 2043 * queue. 2044 */ 2045 if (!nrirqs) { 2046 nrirqs = 1; 2047 nr_read_queues = 0; 2048 } else if (nrirqs == 1 || !nr_write_queues) { 2049 nr_read_queues = 0; 2050 } else if (nr_write_queues >= nrirqs) { 2051 nr_read_queues = 1; 2052 } else { 2053 nr_read_queues = nrirqs - nr_write_queues; 2054 } 2055 2056 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2057 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2058 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2059 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2060 affd->nr_sets = nr_read_queues ? 2 : 1; 2061 } 2062 2063 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2064 { 2065 struct pci_dev *pdev = to_pci_dev(dev->dev); 2066 struct irq_affinity affd = { 2067 .pre_vectors = 1, 2068 .calc_sets = nvme_calc_irq_sets, 2069 .priv = dev, 2070 }; 2071 unsigned int irq_queues, poll_queues; 2072 2073 /* 2074 * Poll queues don't need interrupts, but we need at least one I/O queue 2075 * left over for non-polled I/O. 2076 */ 2077 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2078 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2079 2080 /* 2081 * Initialize for the single interrupt case, will be updated in 2082 * nvme_calc_irq_sets(). 2083 */ 2084 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2085 dev->io_queues[HCTX_TYPE_READ] = 0; 2086 2087 /* 2088 * We need interrupts for the admin queue and each non-polled I/O queue, 2089 * but some Apple controllers require all queues to use the first 2090 * vector. 2091 */ 2092 irq_queues = 1; 2093 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2094 irq_queues += (nr_io_queues - poll_queues); 2095 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2096 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2097 } 2098 2099 static void nvme_disable_io_queues(struct nvme_dev *dev) 2100 { 2101 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2102 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2103 } 2104 2105 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2106 { 2107 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2108 } 2109 2110 static int nvme_setup_io_queues(struct nvme_dev *dev) 2111 { 2112 struct nvme_queue *adminq = &dev->queues[0]; 2113 struct pci_dev *pdev = to_pci_dev(dev->dev); 2114 unsigned int nr_io_queues; 2115 unsigned long size; 2116 int result; 2117 2118 /* 2119 * Sample the module parameters once at reset time so that we have 2120 * stable values to work with. 2121 */ 2122 dev->nr_write_queues = write_queues; 2123 dev->nr_poll_queues = poll_queues; 2124 2125 /* 2126 * If tags are shared with admin queue (Apple bug), then 2127 * make sure we only use one IO queue. 2128 */ 2129 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2130 nr_io_queues = 1; 2131 else 2132 nr_io_queues = min(nvme_max_io_queues(dev), 2133 dev->nr_allocated_queues - 1); 2134 2135 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2136 if (result < 0) 2137 return result; 2138 2139 if (nr_io_queues == 0) 2140 return 0; 2141 2142 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2143 2144 if (dev->cmb_use_sqes) { 2145 result = nvme_cmb_qdepth(dev, nr_io_queues, 2146 sizeof(struct nvme_command)); 2147 if (result > 0) 2148 dev->q_depth = result; 2149 else 2150 dev->cmb_use_sqes = false; 2151 } 2152 2153 do { 2154 size = db_bar_size(dev, nr_io_queues); 2155 result = nvme_remap_bar(dev, size); 2156 if (!result) 2157 break; 2158 if (!--nr_io_queues) 2159 return -ENOMEM; 2160 } while (1); 2161 adminq->q_db = dev->dbs; 2162 2163 retry: 2164 /* Deregister the admin queue's interrupt */ 2165 pci_free_irq(pdev, 0, adminq); 2166 2167 /* 2168 * If we enable msix early due to not intx, disable it again before 2169 * setting up the full range we need. 2170 */ 2171 pci_free_irq_vectors(pdev); 2172 2173 result = nvme_setup_irqs(dev, nr_io_queues); 2174 if (result <= 0) 2175 return -EIO; 2176 2177 dev->num_vecs = result; 2178 result = max(result - 1, 1); 2179 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2180 2181 /* 2182 * Should investigate if there's a performance win from allocating 2183 * more queues than interrupt vectors; it might allow the submission 2184 * path to scale better, even if the receive path is limited by the 2185 * number of interrupts. 2186 */ 2187 result = queue_request_irq(adminq); 2188 if (result) 2189 return result; 2190 set_bit(NVMEQ_ENABLED, &adminq->flags); 2191 2192 result = nvme_create_io_queues(dev); 2193 if (result || dev->online_queues < 2) 2194 return result; 2195 2196 if (dev->online_queues - 1 < dev->max_qid) { 2197 nr_io_queues = dev->online_queues - 1; 2198 nvme_disable_io_queues(dev); 2199 nvme_suspend_io_queues(dev); 2200 goto retry; 2201 } 2202 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2203 dev->io_queues[HCTX_TYPE_DEFAULT], 2204 dev->io_queues[HCTX_TYPE_READ], 2205 dev->io_queues[HCTX_TYPE_POLL]); 2206 return 0; 2207 } 2208 2209 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2210 { 2211 struct nvme_queue *nvmeq = req->end_io_data; 2212 2213 blk_mq_free_request(req); 2214 complete(&nvmeq->delete_done); 2215 } 2216 2217 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2218 { 2219 struct nvme_queue *nvmeq = req->end_io_data; 2220 2221 if (error) 2222 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2223 2224 nvme_del_queue_end(req, error); 2225 } 2226 2227 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2228 { 2229 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2230 struct request *req; 2231 struct nvme_command cmd; 2232 2233 memset(&cmd, 0, sizeof(cmd)); 2234 cmd.delete_queue.opcode = opcode; 2235 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2236 2237 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2238 if (IS_ERR(req)) 2239 return PTR_ERR(req); 2240 2241 req->timeout = ADMIN_TIMEOUT; 2242 req->end_io_data = nvmeq; 2243 2244 init_completion(&nvmeq->delete_done); 2245 blk_execute_rq_nowait(q, NULL, req, false, 2246 opcode == nvme_admin_delete_cq ? 2247 nvme_del_cq_end : nvme_del_queue_end); 2248 return 0; 2249 } 2250 2251 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2252 { 2253 int nr_queues = dev->online_queues - 1, sent = 0; 2254 unsigned long timeout; 2255 2256 retry: 2257 timeout = ADMIN_TIMEOUT; 2258 while (nr_queues > 0) { 2259 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2260 break; 2261 nr_queues--; 2262 sent++; 2263 } 2264 while (sent) { 2265 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2266 2267 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2268 timeout); 2269 if (timeout == 0) 2270 return false; 2271 2272 sent--; 2273 if (nr_queues) 2274 goto retry; 2275 } 2276 return true; 2277 } 2278 2279 static void nvme_dev_add(struct nvme_dev *dev) 2280 { 2281 int ret; 2282 2283 if (!dev->ctrl.tagset) { 2284 dev->tagset.ops = &nvme_mq_ops; 2285 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2286 dev->tagset.nr_maps = 2; /* default + read */ 2287 if (dev->io_queues[HCTX_TYPE_POLL]) 2288 dev->tagset.nr_maps++; 2289 dev->tagset.timeout = NVME_IO_TIMEOUT; 2290 dev->tagset.numa_node = dev->ctrl.numa_node; 2291 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2292 BLK_MQ_MAX_DEPTH) - 1; 2293 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2294 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2295 dev->tagset.driver_data = dev; 2296 2297 /* 2298 * Some Apple controllers requires tags to be unique 2299 * across admin and IO queue, so reserve the first 32 2300 * tags of the IO queue. 2301 */ 2302 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2303 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2304 2305 ret = blk_mq_alloc_tag_set(&dev->tagset); 2306 if (ret) { 2307 dev_warn(dev->ctrl.device, 2308 "IO queues tagset allocation failed %d\n", ret); 2309 return; 2310 } 2311 dev->ctrl.tagset = &dev->tagset; 2312 } else { 2313 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2314 2315 /* Free previously allocated queues that are no longer usable */ 2316 nvme_free_queues(dev, dev->online_queues); 2317 } 2318 2319 nvme_dbbuf_set(dev); 2320 } 2321 2322 static int nvme_pci_enable(struct nvme_dev *dev) 2323 { 2324 int result = -ENOMEM; 2325 struct pci_dev *pdev = to_pci_dev(dev->dev); 2326 2327 if (pci_enable_device_mem(pdev)) 2328 return result; 2329 2330 pci_set_master(pdev); 2331 2332 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2333 goto disable; 2334 2335 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2336 result = -ENODEV; 2337 goto disable; 2338 } 2339 2340 /* 2341 * Some devices and/or platforms don't advertise or work with INTx 2342 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2343 * adjust this later. 2344 */ 2345 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2346 if (result < 0) 2347 return result; 2348 2349 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2350 2351 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2352 io_queue_depth); 2353 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2354 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2355 dev->dbs = dev->bar + 4096; 2356 2357 /* 2358 * Some Apple controllers require a non-standard SQE size. 2359 * Interestingly they also seem to ignore the CC:IOSQES register 2360 * so we don't bother updating it here. 2361 */ 2362 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2363 dev->io_sqes = 7; 2364 else 2365 dev->io_sqes = NVME_NVM_IOSQES; 2366 2367 /* 2368 * Temporary fix for the Apple controller found in the MacBook8,1 and 2369 * some MacBook7,1 to avoid controller resets and data loss. 2370 */ 2371 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2372 dev->q_depth = 2; 2373 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2374 "set queue depth=%u to work around controller resets\n", 2375 dev->q_depth); 2376 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2377 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2378 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2379 dev->q_depth = 64; 2380 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2381 "set queue depth=%u\n", dev->q_depth); 2382 } 2383 2384 /* 2385 * Controllers with the shared tags quirk need the IO queue to be 2386 * big enough so that we get 32 tags for the admin queue 2387 */ 2388 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2389 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2390 dev->q_depth = NVME_AQ_DEPTH + 2; 2391 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2392 dev->q_depth); 2393 } 2394 2395 2396 nvme_map_cmb(dev); 2397 2398 pci_enable_pcie_error_reporting(pdev); 2399 pci_save_state(pdev); 2400 return 0; 2401 2402 disable: 2403 pci_disable_device(pdev); 2404 return result; 2405 } 2406 2407 static void nvme_dev_unmap(struct nvme_dev *dev) 2408 { 2409 if (dev->bar) 2410 iounmap(dev->bar); 2411 pci_release_mem_regions(to_pci_dev(dev->dev)); 2412 } 2413 2414 static void nvme_pci_disable(struct nvme_dev *dev) 2415 { 2416 struct pci_dev *pdev = to_pci_dev(dev->dev); 2417 2418 pci_free_irq_vectors(pdev); 2419 2420 if (pci_is_enabled(pdev)) { 2421 pci_disable_pcie_error_reporting(pdev); 2422 pci_disable_device(pdev); 2423 } 2424 } 2425 2426 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2427 { 2428 bool dead = true, freeze = false; 2429 struct pci_dev *pdev = to_pci_dev(dev->dev); 2430 2431 mutex_lock(&dev->shutdown_lock); 2432 if (pci_is_enabled(pdev)) { 2433 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2434 2435 if (dev->ctrl.state == NVME_CTRL_LIVE || 2436 dev->ctrl.state == NVME_CTRL_RESETTING) { 2437 freeze = true; 2438 nvme_start_freeze(&dev->ctrl); 2439 } 2440 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2441 pdev->error_state != pci_channel_io_normal); 2442 } 2443 2444 /* 2445 * Give the controller a chance to complete all entered requests if 2446 * doing a safe shutdown. 2447 */ 2448 if (!dead && shutdown && freeze) 2449 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2450 2451 nvme_stop_queues(&dev->ctrl); 2452 2453 if (!dead && dev->ctrl.queue_count > 0) { 2454 nvme_disable_io_queues(dev); 2455 nvme_disable_admin_queue(dev, shutdown); 2456 } 2457 nvme_suspend_io_queues(dev); 2458 nvme_suspend_queue(&dev->queues[0]); 2459 nvme_pci_disable(dev); 2460 nvme_reap_pending_cqes(dev); 2461 2462 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2463 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2464 blk_mq_tagset_wait_completed_request(&dev->tagset); 2465 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2466 2467 /* 2468 * The driver will not be starting up queues again if shutting down so 2469 * must flush all entered requests to their failed completion to avoid 2470 * deadlocking blk-mq hot-cpu notifier. 2471 */ 2472 if (shutdown) { 2473 nvme_start_queues(&dev->ctrl); 2474 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2475 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2476 } 2477 mutex_unlock(&dev->shutdown_lock); 2478 } 2479 2480 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2481 { 2482 if (!nvme_wait_reset(&dev->ctrl)) 2483 return -EBUSY; 2484 nvme_dev_disable(dev, shutdown); 2485 return 0; 2486 } 2487 2488 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2489 { 2490 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2491 NVME_CTRL_PAGE_SIZE, 2492 NVME_CTRL_PAGE_SIZE, 0); 2493 if (!dev->prp_page_pool) 2494 return -ENOMEM; 2495 2496 /* Optimisation for I/Os between 4k and 128k */ 2497 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2498 256, 256, 0); 2499 if (!dev->prp_small_pool) { 2500 dma_pool_destroy(dev->prp_page_pool); 2501 return -ENOMEM; 2502 } 2503 return 0; 2504 } 2505 2506 static void nvme_release_prp_pools(struct nvme_dev *dev) 2507 { 2508 dma_pool_destroy(dev->prp_page_pool); 2509 dma_pool_destroy(dev->prp_small_pool); 2510 } 2511 2512 static void nvme_free_tagset(struct nvme_dev *dev) 2513 { 2514 if (dev->tagset.tags) 2515 blk_mq_free_tag_set(&dev->tagset); 2516 dev->ctrl.tagset = NULL; 2517 } 2518 2519 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2520 { 2521 struct nvme_dev *dev = to_nvme_dev(ctrl); 2522 2523 nvme_dbbuf_dma_free(dev); 2524 nvme_free_tagset(dev); 2525 if (dev->ctrl.admin_q) 2526 blk_put_queue(dev->ctrl.admin_q); 2527 free_opal_dev(dev->ctrl.opal_dev); 2528 mempool_destroy(dev->iod_mempool); 2529 put_device(dev->dev); 2530 kfree(dev->queues); 2531 kfree(dev); 2532 } 2533 2534 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2535 { 2536 /* 2537 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2538 * may be holding this pci_dev's device lock. 2539 */ 2540 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2541 nvme_get_ctrl(&dev->ctrl); 2542 nvme_dev_disable(dev, false); 2543 nvme_kill_queues(&dev->ctrl); 2544 if (!queue_work(nvme_wq, &dev->remove_work)) 2545 nvme_put_ctrl(&dev->ctrl); 2546 } 2547 2548 static void nvme_reset_work(struct work_struct *work) 2549 { 2550 struct nvme_dev *dev = 2551 container_of(work, struct nvme_dev, ctrl.reset_work); 2552 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2553 int result; 2554 2555 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2556 result = -ENODEV; 2557 goto out; 2558 } 2559 2560 /* 2561 * If we're called to reset a live controller first shut it down before 2562 * moving on. 2563 */ 2564 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2565 nvme_dev_disable(dev, false); 2566 nvme_sync_queues(&dev->ctrl); 2567 2568 mutex_lock(&dev->shutdown_lock); 2569 result = nvme_pci_enable(dev); 2570 if (result) 2571 goto out_unlock; 2572 2573 result = nvme_pci_configure_admin_queue(dev); 2574 if (result) 2575 goto out_unlock; 2576 2577 result = nvme_alloc_admin_tags(dev); 2578 if (result) 2579 goto out_unlock; 2580 2581 /* 2582 * Limit the max command size to prevent iod->sg allocations going 2583 * over a single page. 2584 */ 2585 dev->ctrl.max_hw_sectors = min_t(u32, 2586 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2587 dev->ctrl.max_segments = NVME_MAX_SEGS; 2588 2589 /* 2590 * Don't limit the IOMMU merged segment size. 2591 */ 2592 dma_set_max_seg_size(dev->dev, 0xffffffff); 2593 2594 mutex_unlock(&dev->shutdown_lock); 2595 2596 /* 2597 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2598 * initializing procedure here. 2599 */ 2600 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2601 dev_warn(dev->ctrl.device, 2602 "failed to mark controller CONNECTING\n"); 2603 result = -EBUSY; 2604 goto out; 2605 } 2606 2607 /* 2608 * We do not support an SGL for metadata (yet), so we are limited to a 2609 * single integrity segment for the separate metadata pointer. 2610 */ 2611 dev->ctrl.max_integrity_segments = 1; 2612 2613 result = nvme_init_identify(&dev->ctrl); 2614 if (result) 2615 goto out; 2616 2617 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2618 if (!dev->ctrl.opal_dev) 2619 dev->ctrl.opal_dev = 2620 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2621 else if (was_suspend) 2622 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2623 } else { 2624 free_opal_dev(dev->ctrl.opal_dev); 2625 dev->ctrl.opal_dev = NULL; 2626 } 2627 2628 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2629 result = nvme_dbbuf_dma_alloc(dev); 2630 if (result) 2631 dev_warn(dev->dev, 2632 "unable to allocate dma for dbbuf\n"); 2633 } 2634 2635 if (dev->ctrl.hmpre) { 2636 result = nvme_setup_host_mem(dev); 2637 if (result < 0) 2638 goto out; 2639 } 2640 2641 result = nvme_setup_io_queues(dev); 2642 if (result) 2643 goto out; 2644 2645 /* 2646 * Keep the controller around but remove all namespaces if we don't have 2647 * any working I/O queue. 2648 */ 2649 if (dev->online_queues < 2) { 2650 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2651 nvme_kill_queues(&dev->ctrl); 2652 nvme_remove_namespaces(&dev->ctrl); 2653 nvme_free_tagset(dev); 2654 } else { 2655 nvme_start_queues(&dev->ctrl); 2656 nvme_wait_freeze(&dev->ctrl); 2657 nvme_dev_add(dev); 2658 nvme_unfreeze(&dev->ctrl); 2659 } 2660 2661 /* 2662 * If only admin queue live, keep it to do further investigation or 2663 * recovery. 2664 */ 2665 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2666 dev_warn(dev->ctrl.device, 2667 "failed to mark controller live state\n"); 2668 result = -ENODEV; 2669 goto out; 2670 } 2671 2672 nvme_start_ctrl(&dev->ctrl); 2673 return; 2674 2675 out_unlock: 2676 mutex_unlock(&dev->shutdown_lock); 2677 out: 2678 if (result) 2679 dev_warn(dev->ctrl.device, 2680 "Removing after probe failure status: %d\n", result); 2681 nvme_remove_dead_ctrl(dev); 2682 } 2683 2684 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2685 { 2686 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2687 struct pci_dev *pdev = to_pci_dev(dev->dev); 2688 2689 if (pci_get_drvdata(pdev)) 2690 device_release_driver(&pdev->dev); 2691 nvme_put_ctrl(&dev->ctrl); 2692 } 2693 2694 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2695 { 2696 *val = readl(to_nvme_dev(ctrl)->bar + off); 2697 return 0; 2698 } 2699 2700 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2701 { 2702 writel(val, to_nvme_dev(ctrl)->bar + off); 2703 return 0; 2704 } 2705 2706 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2707 { 2708 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2709 return 0; 2710 } 2711 2712 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2713 { 2714 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2715 2716 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2717 } 2718 2719 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2720 .name = "pcie", 2721 .module = THIS_MODULE, 2722 .flags = NVME_F_METADATA_SUPPORTED | 2723 NVME_F_PCI_P2PDMA, 2724 .reg_read32 = nvme_pci_reg_read32, 2725 .reg_write32 = nvme_pci_reg_write32, 2726 .reg_read64 = nvme_pci_reg_read64, 2727 .free_ctrl = nvme_pci_free_ctrl, 2728 .submit_async_event = nvme_pci_submit_async_event, 2729 .get_address = nvme_pci_get_address, 2730 }; 2731 2732 static int nvme_dev_map(struct nvme_dev *dev) 2733 { 2734 struct pci_dev *pdev = to_pci_dev(dev->dev); 2735 2736 if (pci_request_mem_regions(pdev, "nvme")) 2737 return -ENODEV; 2738 2739 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2740 goto release; 2741 2742 return 0; 2743 release: 2744 pci_release_mem_regions(pdev); 2745 return -ENODEV; 2746 } 2747 2748 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2749 { 2750 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2751 /* 2752 * Several Samsung devices seem to drop off the PCIe bus 2753 * randomly when APST is on and uses the deepest sleep state. 2754 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2755 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2756 * 950 PRO 256GB", but it seems to be restricted to two Dell 2757 * laptops. 2758 */ 2759 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2760 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2761 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2762 return NVME_QUIRK_NO_DEEPEST_PS; 2763 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2764 /* 2765 * Samsung SSD 960 EVO drops off the PCIe bus after system 2766 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2767 * within few minutes after bootup on a Coffee Lake board - 2768 * ASUS PRIME Z370-A 2769 */ 2770 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2771 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2772 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2773 return NVME_QUIRK_NO_APST; 2774 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2775 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2776 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2777 /* 2778 * Forcing to use host managed nvme power settings for 2779 * lowest idle power with quick resume latency on 2780 * Samsung and Toshiba SSDs based on suspend behavior 2781 * on Coffee Lake board for LENOVO C640 2782 */ 2783 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2784 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2785 return NVME_QUIRK_SIMPLE_SUSPEND; 2786 } 2787 2788 return 0; 2789 } 2790 2791 #ifdef CONFIG_ACPI 2792 static bool nvme_acpi_storage_d3(struct pci_dev *dev) 2793 { 2794 struct acpi_device *adev; 2795 struct pci_dev *root; 2796 acpi_handle handle; 2797 acpi_status status; 2798 u8 val; 2799 2800 /* 2801 * Look for _DSD property specifying that the storage device on the port 2802 * must use D3 to support deep platform power savings during 2803 * suspend-to-idle. 2804 */ 2805 root = pcie_find_root_port(dev); 2806 if (!root) 2807 return false; 2808 2809 adev = ACPI_COMPANION(&root->dev); 2810 if (!adev) 2811 return false; 2812 2813 /* 2814 * The property is defined in the PXSX device for South complex ports 2815 * and in the PEGP device for North complex ports. 2816 */ 2817 status = acpi_get_handle(adev->handle, "PXSX", &handle); 2818 if (ACPI_FAILURE(status)) { 2819 status = acpi_get_handle(adev->handle, "PEGP", &handle); 2820 if (ACPI_FAILURE(status)) 2821 return false; 2822 } 2823 2824 if (acpi_bus_get_device(handle, &adev)) 2825 return false; 2826 2827 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 2828 &val)) 2829 return false; 2830 return val == 1; 2831 } 2832 #else 2833 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev) 2834 { 2835 return false; 2836 } 2837 #endif /* CONFIG_ACPI */ 2838 2839 static void nvme_async_probe(void *data, async_cookie_t cookie) 2840 { 2841 struct nvme_dev *dev = data; 2842 2843 flush_work(&dev->ctrl.reset_work); 2844 flush_work(&dev->ctrl.scan_work); 2845 nvme_put_ctrl(&dev->ctrl); 2846 } 2847 2848 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2849 { 2850 int node, result = -ENOMEM; 2851 struct nvme_dev *dev; 2852 unsigned long quirks = id->driver_data; 2853 size_t alloc_size; 2854 2855 node = dev_to_node(&pdev->dev); 2856 if (node == NUMA_NO_NODE) 2857 set_dev_node(&pdev->dev, first_memory_node); 2858 2859 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2860 if (!dev) 2861 return -ENOMEM; 2862 2863 dev->nr_write_queues = write_queues; 2864 dev->nr_poll_queues = poll_queues; 2865 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2866 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2867 sizeof(struct nvme_queue), GFP_KERNEL, node); 2868 if (!dev->queues) 2869 goto free; 2870 2871 dev->dev = get_device(&pdev->dev); 2872 pci_set_drvdata(pdev, dev); 2873 2874 result = nvme_dev_map(dev); 2875 if (result) 2876 goto put_pci; 2877 2878 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2879 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2880 mutex_init(&dev->shutdown_lock); 2881 2882 result = nvme_setup_prp_pools(dev); 2883 if (result) 2884 goto unmap; 2885 2886 quirks |= check_vendor_combination_bug(pdev); 2887 2888 if (!noacpi && nvme_acpi_storage_d3(pdev)) { 2889 /* 2890 * Some systems use a bios work around to ask for D3 on 2891 * platforms that support kernel managed suspend. 2892 */ 2893 dev_info(&pdev->dev, 2894 "platform quirk: setting simple suspend\n"); 2895 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2896 } 2897 2898 /* 2899 * Double check that our mempool alloc size will cover the biggest 2900 * command we support. 2901 */ 2902 alloc_size = nvme_pci_iod_alloc_size(); 2903 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2904 2905 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2906 mempool_kfree, 2907 (void *) alloc_size, 2908 GFP_KERNEL, node); 2909 if (!dev->iod_mempool) { 2910 result = -ENOMEM; 2911 goto release_pools; 2912 } 2913 2914 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2915 quirks); 2916 if (result) 2917 goto release_mempool; 2918 2919 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2920 2921 nvme_reset_ctrl(&dev->ctrl); 2922 async_schedule(nvme_async_probe, dev); 2923 2924 return 0; 2925 2926 release_mempool: 2927 mempool_destroy(dev->iod_mempool); 2928 release_pools: 2929 nvme_release_prp_pools(dev); 2930 unmap: 2931 nvme_dev_unmap(dev); 2932 put_pci: 2933 put_device(dev->dev); 2934 free: 2935 kfree(dev->queues); 2936 kfree(dev); 2937 return result; 2938 } 2939 2940 static void nvme_reset_prepare(struct pci_dev *pdev) 2941 { 2942 struct nvme_dev *dev = pci_get_drvdata(pdev); 2943 2944 /* 2945 * We don't need to check the return value from waiting for the reset 2946 * state as pci_dev device lock is held, making it impossible to race 2947 * with ->remove(). 2948 */ 2949 nvme_disable_prepare_reset(dev, false); 2950 nvme_sync_queues(&dev->ctrl); 2951 } 2952 2953 static void nvme_reset_done(struct pci_dev *pdev) 2954 { 2955 struct nvme_dev *dev = pci_get_drvdata(pdev); 2956 2957 if (!nvme_try_sched_reset(&dev->ctrl)) 2958 flush_work(&dev->ctrl.reset_work); 2959 } 2960 2961 static void nvme_shutdown(struct pci_dev *pdev) 2962 { 2963 struct nvme_dev *dev = pci_get_drvdata(pdev); 2964 2965 nvme_disable_prepare_reset(dev, true); 2966 } 2967 2968 /* 2969 * The driver's remove may be called on a device in a partially initialized 2970 * state. This function must not have any dependencies on the device state in 2971 * order to proceed. 2972 */ 2973 static void nvme_remove(struct pci_dev *pdev) 2974 { 2975 struct nvme_dev *dev = pci_get_drvdata(pdev); 2976 2977 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2978 pci_set_drvdata(pdev, NULL); 2979 2980 if (!pci_device_is_present(pdev)) { 2981 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2982 nvme_dev_disable(dev, true); 2983 nvme_dev_remove_admin(dev); 2984 } 2985 2986 flush_work(&dev->ctrl.reset_work); 2987 nvme_stop_ctrl(&dev->ctrl); 2988 nvme_remove_namespaces(&dev->ctrl); 2989 nvme_dev_disable(dev, true); 2990 nvme_release_cmb(dev); 2991 nvme_free_host_mem(dev); 2992 nvme_dev_remove_admin(dev); 2993 nvme_free_queues(dev, 0); 2994 nvme_release_prp_pools(dev); 2995 nvme_dev_unmap(dev); 2996 nvme_uninit_ctrl(&dev->ctrl); 2997 } 2998 2999 #ifdef CONFIG_PM_SLEEP 3000 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3001 { 3002 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3003 } 3004 3005 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3006 { 3007 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3008 } 3009 3010 static int nvme_resume(struct device *dev) 3011 { 3012 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3013 struct nvme_ctrl *ctrl = &ndev->ctrl; 3014 3015 if (ndev->last_ps == U32_MAX || 3016 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3017 return nvme_try_sched_reset(&ndev->ctrl); 3018 return 0; 3019 } 3020 3021 static int nvme_suspend(struct device *dev) 3022 { 3023 struct pci_dev *pdev = to_pci_dev(dev); 3024 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3025 struct nvme_ctrl *ctrl = &ndev->ctrl; 3026 int ret = -EBUSY; 3027 3028 ndev->last_ps = U32_MAX; 3029 3030 /* 3031 * The platform does not remove power for a kernel managed suspend so 3032 * use host managed nvme power settings for lowest idle power if 3033 * possible. This should have quicker resume latency than a full device 3034 * shutdown. But if the firmware is involved after the suspend or the 3035 * device does not support any non-default power states, shut down the 3036 * device fully. 3037 * 3038 * If ASPM is not enabled for the device, shut down the device and allow 3039 * the PCI bus layer to put it into D3 in order to take the PCIe link 3040 * down, so as to allow the platform to achieve its minimum low-power 3041 * state (which may not be possible if the link is up). 3042 * 3043 * If a host memory buffer is enabled, shut down the device as the NVMe 3044 * specification allows the device to access the host memory buffer in 3045 * host DRAM from all power states, but hosts will fail access to DRAM 3046 * during S3. 3047 */ 3048 if (pm_suspend_via_firmware() || !ctrl->npss || 3049 !pcie_aspm_enabled(pdev) || 3050 ndev->nr_host_mem_descs || 3051 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3052 return nvme_disable_prepare_reset(ndev, true); 3053 3054 nvme_start_freeze(ctrl); 3055 nvme_wait_freeze(ctrl); 3056 nvme_sync_queues(ctrl); 3057 3058 if (ctrl->state != NVME_CTRL_LIVE) 3059 goto unfreeze; 3060 3061 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3062 if (ret < 0) 3063 goto unfreeze; 3064 3065 /* 3066 * A saved state prevents pci pm from generically controlling the 3067 * device's power. If we're using protocol specific settings, we don't 3068 * want pci interfering. 3069 */ 3070 pci_save_state(pdev); 3071 3072 ret = nvme_set_power_state(ctrl, ctrl->npss); 3073 if (ret < 0) 3074 goto unfreeze; 3075 3076 if (ret) { 3077 /* discard the saved state */ 3078 pci_load_saved_state(pdev, NULL); 3079 3080 /* 3081 * Clearing npss forces a controller reset on resume. The 3082 * correct value will be rediscovered then. 3083 */ 3084 ret = nvme_disable_prepare_reset(ndev, true); 3085 ctrl->npss = 0; 3086 } 3087 unfreeze: 3088 nvme_unfreeze(ctrl); 3089 return ret; 3090 } 3091 3092 static int nvme_simple_suspend(struct device *dev) 3093 { 3094 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3095 3096 return nvme_disable_prepare_reset(ndev, true); 3097 } 3098 3099 static int nvme_simple_resume(struct device *dev) 3100 { 3101 struct pci_dev *pdev = to_pci_dev(dev); 3102 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3103 3104 return nvme_try_sched_reset(&ndev->ctrl); 3105 } 3106 3107 static const struct dev_pm_ops nvme_dev_pm_ops = { 3108 .suspend = nvme_suspend, 3109 .resume = nvme_resume, 3110 .freeze = nvme_simple_suspend, 3111 .thaw = nvme_simple_resume, 3112 .poweroff = nvme_simple_suspend, 3113 .restore = nvme_simple_resume, 3114 }; 3115 #endif /* CONFIG_PM_SLEEP */ 3116 3117 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3118 pci_channel_state_t state) 3119 { 3120 struct nvme_dev *dev = pci_get_drvdata(pdev); 3121 3122 /* 3123 * A frozen channel requires a reset. When detected, this method will 3124 * shutdown the controller to quiesce. The controller will be restarted 3125 * after the slot reset through driver's slot_reset callback. 3126 */ 3127 switch (state) { 3128 case pci_channel_io_normal: 3129 return PCI_ERS_RESULT_CAN_RECOVER; 3130 case pci_channel_io_frozen: 3131 dev_warn(dev->ctrl.device, 3132 "frozen state error detected, reset controller\n"); 3133 nvme_dev_disable(dev, false); 3134 return PCI_ERS_RESULT_NEED_RESET; 3135 case pci_channel_io_perm_failure: 3136 dev_warn(dev->ctrl.device, 3137 "failure state error detected, request disconnect\n"); 3138 return PCI_ERS_RESULT_DISCONNECT; 3139 } 3140 return PCI_ERS_RESULT_NEED_RESET; 3141 } 3142 3143 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3144 { 3145 struct nvme_dev *dev = pci_get_drvdata(pdev); 3146 3147 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3148 pci_restore_state(pdev); 3149 nvme_reset_ctrl(&dev->ctrl); 3150 return PCI_ERS_RESULT_RECOVERED; 3151 } 3152 3153 static void nvme_error_resume(struct pci_dev *pdev) 3154 { 3155 struct nvme_dev *dev = pci_get_drvdata(pdev); 3156 3157 flush_work(&dev->ctrl.reset_work); 3158 } 3159 3160 static const struct pci_error_handlers nvme_err_handler = { 3161 .error_detected = nvme_error_detected, 3162 .slot_reset = nvme_slot_reset, 3163 .resume = nvme_error_resume, 3164 .reset_prepare = nvme_reset_prepare, 3165 .reset_done = nvme_reset_done, 3166 }; 3167 3168 static const struct pci_device_id nvme_id_table[] = { 3169 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3170 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3171 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3172 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3173 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3174 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3175 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3176 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3177 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3178 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3179 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3180 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3181 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3182 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3183 NVME_QUIRK_MEDIUM_PRIO_SQ | 3184 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3185 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3186 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3187 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3188 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3189 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3190 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3191 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3192 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3193 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3194 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3195 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3196 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3197 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3198 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3199 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3200 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3201 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3202 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3203 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3204 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3205 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3206 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3207 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3208 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3209 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3210 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3211 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3212 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3213 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3214 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3215 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3216 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3217 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3218 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3219 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3220 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3221 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3222 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3223 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3224 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3225 NVME_QUIRK_128_BYTES_SQES | 3226 NVME_QUIRK_SHARED_TAGS }, 3227 3228 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3229 { 0, } 3230 }; 3231 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3232 3233 static struct pci_driver nvme_driver = { 3234 .name = "nvme", 3235 .id_table = nvme_id_table, 3236 .probe = nvme_probe, 3237 .remove = nvme_remove, 3238 .shutdown = nvme_shutdown, 3239 #ifdef CONFIG_PM_SLEEP 3240 .driver = { 3241 .pm = &nvme_dev_pm_ops, 3242 }, 3243 #endif 3244 .sriov_configure = pci_sriov_configure_simple, 3245 .err_handler = &nvme_err_handler, 3246 }; 3247 3248 static int __init nvme_init(void) 3249 { 3250 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3251 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3252 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3253 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3254 3255 return pci_register_driver(&nvme_driver); 3256 } 3257 3258 static void __exit nvme_exit(void) 3259 { 3260 pci_unregister_driver(&nvme_driver); 3261 flush_workqueue(nvme_wq); 3262 } 3263 3264 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3265 MODULE_LICENSE("GPL"); 3266 MODULE_VERSION("1.0"); 3267 module_init(nvme_init); 3268 module_exit(nvme_exit); 3269