xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 8730046c)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 
47 #include "nvme.h"
48 
49 #define NVME_Q_DEPTH		1024
50 #define NVME_AQ_DEPTH		256
51 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
53 
54 /*
55  * We handle AEN commands ourselves and don't even let the
56  * block layer know about them.
57  */
58 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
59 
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62 
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66 
67 static struct workqueue_struct *nvme_workq;
68 
69 struct nvme_dev;
70 struct nvme_queue;
71 
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75 
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80 	struct nvme_queue **queues;
81 	struct blk_mq_tag_set tagset;
82 	struct blk_mq_tag_set admin_tagset;
83 	u32 __iomem *dbs;
84 	struct device *dev;
85 	struct dma_pool *prp_page_pool;
86 	struct dma_pool *prp_small_pool;
87 	unsigned queue_count;
88 	unsigned online_queues;
89 	unsigned max_qid;
90 	int q_depth;
91 	u32 db_stride;
92 	void __iomem *bar;
93 	struct work_struct reset_work;
94 	struct work_struct remove_work;
95 	struct timer_list watchdog_timer;
96 	struct mutex shutdown_lock;
97 	bool subsystem;
98 	void __iomem *cmb;
99 	dma_addr_t cmb_dma_addr;
100 	u64 cmb_size;
101 	u32 cmbsz;
102 	u32 cmbloc;
103 	struct nvme_ctrl ctrl;
104 	struct completion ioq_wait;
105 };
106 
107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
108 {
109 	return container_of(ctrl, struct nvme_dev, ctrl);
110 }
111 
112 /*
113  * An NVM Express queue.  Each device has at least two (one for admin
114  * commands and one for I/O commands).
115  */
116 struct nvme_queue {
117 	struct device *q_dmadev;
118 	struct nvme_dev *dev;
119 	char irqname[24];	/* nvme4294967295-65535\0 */
120 	spinlock_t q_lock;
121 	struct nvme_command *sq_cmds;
122 	struct nvme_command __iomem *sq_cmds_io;
123 	volatile struct nvme_completion *cqes;
124 	struct blk_mq_tags **tags;
125 	dma_addr_t sq_dma_addr;
126 	dma_addr_t cq_dma_addr;
127 	u32 __iomem *q_db;
128 	u16 q_depth;
129 	s16 cq_vector;
130 	u16 sq_tail;
131 	u16 cq_head;
132 	u16 qid;
133 	u8 cq_phase;
134 	u8 cqe_seen;
135 };
136 
137 /*
138  * The nvme_iod describes the data in an I/O, including the list of PRP
139  * entries.  You can't see it in this data structure because C doesn't let
140  * me express that.  Use nvme_init_iod to ensure there's enough space
141  * allocated to store the PRP list.
142  */
143 struct nvme_iod {
144 	struct nvme_request req;
145 	struct nvme_queue *nvmeq;
146 	int aborted;
147 	int npages;		/* In the PRP list. 0 means small pool in use */
148 	int nents;		/* Used in scatterlist */
149 	int length;		/* Of data, in bytes */
150 	dma_addr_t first_dma;
151 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
152 	struct scatterlist *sg;
153 	struct scatterlist inline_sg[0];
154 };
155 
156 /*
157  * Check we didin't inadvertently grow the command struct
158  */
159 static inline void _nvme_check_size(void)
160 {
161 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
162 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
163 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
164 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
165 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
166 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
167 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
168 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
169 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
170 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
171 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
172 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
173 }
174 
175 /*
176  * Max size of iod being embedded in the request payload
177  */
178 #define NVME_INT_PAGES		2
179 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
180 
181 /*
182  * Will slightly overestimate the number of pages needed.  This is OK
183  * as it only leads to a small amount of wasted memory for the lifetime of
184  * the I/O.
185  */
186 static int nvme_npages(unsigned size, struct nvme_dev *dev)
187 {
188 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
189 				      dev->ctrl.page_size);
190 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
191 }
192 
193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
194 		unsigned int size, unsigned int nseg)
195 {
196 	return sizeof(__le64 *) * nvme_npages(size, dev) +
197 			sizeof(struct scatterlist) * nseg;
198 }
199 
200 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
201 {
202 	return sizeof(struct nvme_iod) +
203 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
204 }
205 
206 static int nvmeq_irq(struct nvme_queue *nvmeq)
207 {
208 	return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
209 }
210 
211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 				unsigned int hctx_idx)
213 {
214 	struct nvme_dev *dev = data;
215 	struct nvme_queue *nvmeq = dev->queues[0];
216 
217 	WARN_ON(hctx_idx != 0);
218 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
219 	WARN_ON(nvmeq->tags);
220 
221 	hctx->driver_data = nvmeq;
222 	nvmeq->tags = &dev->admin_tagset.tags[0];
223 	return 0;
224 }
225 
226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
227 {
228 	struct nvme_queue *nvmeq = hctx->driver_data;
229 
230 	nvmeq->tags = NULL;
231 }
232 
233 static int nvme_admin_init_request(void *data, struct request *req,
234 				unsigned int hctx_idx, unsigned int rq_idx,
235 				unsigned int numa_node)
236 {
237 	struct nvme_dev *dev = data;
238 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
239 	struct nvme_queue *nvmeq = dev->queues[0];
240 
241 	BUG_ON(!nvmeq);
242 	iod->nvmeq = nvmeq;
243 	return 0;
244 }
245 
246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
247 			  unsigned int hctx_idx)
248 {
249 	struct nvme_dev *dev = data;
250 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
251 
252 	if (!nvmeq->tags)
253 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
254 
255 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
256 	hctx->driver_data = nvmeq;
257 	return 0;
258 }
259 
260 static int nvme_init_request(void *data, struct request *req,
261 				unsigned int hctx_idx, unsigned int rq_idx,
262 				unsigned int numa_node)
263 {
264 	struct nvme_dev *dev = data;
265 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
266 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267 
268 	BUG_ON(!nvmeq);
269 	iod->nvmeq = nvmeq;
270 	return 0;
271 }
272 
273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
274 {
275 	struct nvme_dev *dev = set->driver_data;
276 
277 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
278 }
279 
280 /**
281  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
282  * @nvmeq: The queue to use
283  * @cmd: The command to send
284  *
285  * Safe to use from interrupt context
286  */
287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
288 						struct nvme_command *cmd)
289 {
290 	u16 tail = nvmeq->sq_tail;
291 
292 	if (nvmeq->sq_cmds_io)
293 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
294 	else
295 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
296 
297 	if (++tail == nvmeq->q_depth)
298 		tail = 0;
299 	writel(tail, nvmeq->q_db);
300 	nvmeq->sq_tail = tail;
301 }
302 
303 static __le64 **iod_list(struct request *req)
304 {
305 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
306 	return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
307 }
308 
309 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
310 {
311 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
312 	int nseg = blk_rq_nr_phys_segments(rq);
313 	unsigned int size = blk_rq_payload_bytes(rq);
314 
315 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
316 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
317 		if (!iod->sg)
318 			return BLK_MQ_RQ_QUEUE_BUSY;
319 	} else {
320 		iod->sg = iod->inline_sg;
321 	}
322 
323 	iod->aborted = 0;
324 	iod->npages = -1;
325 	iod->nents = 0;
326 	iod->length = size;
327 
328 	if (!(rq->rq_flags & RQF_DONTPREP)) {
329 		rq->retries = 0;
330 		rq->rq_flags |= RQF_DONTPREP;
331 	}
332 	return BLK_MQ_RQ_QUEUE_OK;
333 }
334 
335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
336 {
337 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
338 	const int last_prp = dev->ctrl.page_size / 8 - 1;
339 	int i;
340 	__le64 **list = iod_list(req);
341 	dma_addr_t prp_dma = iod->first_dma;
342 
343 	if (iod->npages == 0)
344 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345 	for (i = 0; i < iod->npages; i++) {
346 		__le64 *prp_list = list[i];
347 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349 		prp_dma = next_prp_dma;
350 	}
351 
352 	if (iod->sg != iod->inline_sg)
353 		kfree(iod->sg);
354 }
355 
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359 	if (be32_to_cpu(pi->ref_tag) == v)
360 		pi->ref_tag = cpu_to_be32(p);
361 }
362 
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365 	if (be32_to_cpu(pi->ref_tag) == p)
366 		pi->ref_tag = cpu_to_be32(v);
367 }
368 
369 /**
370  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371  *
372  * The virtual start sector is the one that was originally submitted by the
373  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
374  * start sector may be different. Remap protection information to match the
375  * physical LBA on writes, and back to the original seed on reads.
376  *
377  * Type 0 and 3 do not have a ref tag, so no remapping required.
378  */
379 static void nvme_dif_remap(struct request *req,
380 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382 	struct nvme_ns *ns = req->rq_disk->private_data;
383 	struct bio_integrity_payload *bip;
384 	struct t10_pi_tuple *pi;
385 	void *p, *pmap;
386 	u32 i, nlb, ts, phys, virt;
387 
388 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389 		return;
390 
391 	bip = bio_integrity(req->bio);
392 	if (!bip)
393 		return;
394 
395 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396 
397 	p = pmap;
398 	virt = bip_get_seed(bip);
399 	phys = nvme_block_nr(ns, blk_rq_pos(req));
400 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401 	ts = ns->disk->queue->integrity.tuple_size;
402 
403 	for (i = 0; i < nlb; i++, virt++, phys++) {
404 		pi = (struct t10_pi_tuple *)p;
405 		dif_swap(phys, virt, pi);
406 		p += ts;
407 	}
408 	kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422 
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
424 {
425 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 	struct dma_pool *pool;
427 	int length = blk_rq_payload_bytes(req);
428 	struct scatterlist *sg = iod->sg;
429 	int dma_len = sg_dma_len(sg);
430 	u64 dma_addr = sg_dma_address(sg);
431 	u32 page_size = dev->ctrl.page_size;
432 	int offset = dma_addr & (page_size - 1);
433 	__le64 *prp_list;
434 	__le64 **list = iod_list(req);
435 	dma_addr_t prp_dma;
436 	int nprps, i;
437 
438 	length -= (page_size - offset);
439 	if (length <= 0)
440 		return true;
441 
442 	dma_len -= (page_size - offset);
443 	if (dma_len) {
444 		dma_addr += (page_size - offset);
445 	} else {
446 		sg = sg_next(sg);
447 		dma_addr = sg_dma_address(sg);
448 		dma_len = sg_dma_len(sg);
449 	}
450 
451 	if (length <= page_size) {
452 		iod->first_dma = dma_addr;
453 		return true;
454 	}
455 
456 	nprps = DIV_ROUND_UP(length, page_size);
457 	if (nprps <= (256 / 8)) {
458 		pool = dev->prp_small_pool;
459 		iod->npages = 0;
460 	} else {
461 		pool = dev->prp_page_pool;
462 		iod->npages = 1;
463 	}
464 
465 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
466 	if (!prp_list) {
467 		iod->first_dma = dma_addr;
468 		iod->npages = -1;
469 		return false;
470 	}
471 	list[0] = prp_list;
472 	iod->first_dma = prp_dma;
473 	i = 0;
474 	for (;;) {
475 		if (i == page_size >> 3) {
476 			__le64 *old_prp_list = prp_list;
477 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
478 			if (!prp_list)
479 				return false;
480 			list[iod->npages++] = prp_list;
481 			prp_list[0] = old_prp_list[i - 1];
482 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
483 			i = 1;
484 		}
485 		prp_list[i++] = cpu_to_le64(dma_addr);
486 		dma_len -= page_size;
487 		dma_addr += page_size;
488 		length -= page_size;
489 		if (length <= 0)
490 			break;
491 		if (dma_len > 0)
492 			continue;
493 		BUG_ON(dma_len < 0);
494 		sg = sg_next(sg);
495 		dma_addr = sg_dma_address(sg);
496 		dma_len = sg_dma_len(sg);
497 	}
498 
499 	return true;
500 }
501 
502 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
503 		struct nvme_command *cmnd)
504 {
505 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
506 	struct request_queue *q = req->q;
507 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
508 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
509 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
510 
511 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
512 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
513 	if (!iod->nents)
514 		goto out;
515 
516 	ret = BLK_MQ_RQ_QUEUE_BUSY;
517 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
518 				DMA_ATTR_NO_WARN))
519 		goto out;
520 
521 	if (!nvme_setup_prps(dev, req))
522 		goto out_unmap;
523 
524 	ret = BLK_MQ_RQ_QUEUE_ERROR;
525 	if (blk_integrity_rq(req)) {
526 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
527 			goto out_unmap;
528 
529 		sg_init_table(&iod->meta_sg, 1);
530 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
531 			goto out_unmap;
532 
533 		if (rq_data_dir(req))
534 			nvme_dif_remap(req, nvme_dif_prep);
535 
536 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
537 			goto out_unmap;
538 	}
539 
540 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
541 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
542 	if (blk_integrity_rq(req))
543 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
544 	return BLK_MQ_RQ_QUEUE_OK;
545 
546 out_unmap:
547 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
548 out:
549 	return ret;
550 }
551 
552 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
553 {
554 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
556 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
557 
558 	if (iod->nents) {
559 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
560 		if (blk_integrity_rq(req)) {
561 			if (!rq_data_dir(req))
562 				nvme_dif_remap(req, nvme_dif_complete);
563 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
564 		}
565 	}
566 
567 	nvme_cleanup_cmd(req);
568 	nvme_free_iod(dev, req);
569 }
570 
571 /*
572  * NOTE: ns is NULL when called on the admin queue.
573  */
574 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
575 			 const struct blk_mq_queue_data *bd)
576 {
577 	struct nvme_ns *ns = hctx->queue->queuedata;
578 	struct nvme_queue *nvmeq = hctx->driver_data;
579 	struct nvme_dev *dev = nvmeq->dev;
580 	struct request *req = bd->rq;
581 	struct nvme_command cmnd;
582 	int ret = BLK_MQ_RQ_QUEUE_OK;
583 
584 	/*
585 	 * If formated with metadata, require the block layer provide a buffer
586 	 * unless this namespace is formated such that the metadata can be
587 	 * stripped/generated by the controller with PRACT=1.
588 	 */
589 	if (ns && ns->ms && !blk_integrity_rq(req)) {
590 		if (!(ns->pi_type && ns->ms == 8) &&
591 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
592 			blk_mq_end_request(req, -EFAULT);
593 			return BLK_MQ_RQ_QUEUE_OK;
594 		}
595 	}
596 
597 	ret = nvme_setup_cmd(ns, req, &cmnd);
598 	if (ret != BLK_MQ_RQ_QUEUE_OK)
599 		return ret;
600 
601 	ret = nvme_init_iod(req, dev);
602 	if (ret != BLK_MQ_RQ_QUEUE_OK)
603 		goto out_free_cmd;
604 
605 	if (blk_rq_nr_phys_segments(req))
606 		ret = nvme_map_data(dev, req, &cmnd);
607 
608 	if (ret != BLK_MQ_RQ_QUEUE_OK)
609 		goto out_cleanup_iod;
610 
611 	blk_mq_start_request(req);
612 
613 	spin_lock_irq(&nvmeq->q_lock);
614 	if (unlikely(nvmeq->cq_vector < 0)) {
615 		if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
616 			ret = BLK_MQ_RQ_QUEUE_BUSY;
617 		else
618 			ret = BLK_MQ_RQ_QUEUE_ERROR;
619 		spin_unlock_irq(&nvmeq->q_lock);
620 		goto out_cleanup_iod;
621 	}
622 	__nvme_submit_cmd(nvmeq, &cmnd);
623 	nvme_process_cq(nvmeq);
624 	spin_unlock_irq(&nvmeq->q_lock);
625 	return BLK_MQ_RQ_QUEUE_OK;
626 out_cleanup_iod:
627 	nvme_free_iod(dev, req);
628 out_free_cmd:
629 	nvme_cleanup_cmd(req);
630 	return ret;
631 }
632 
633 static void nvme_complete_rq(struct request *req)
634 {
635 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
636 	struct nvme_dev *dev = iod->nvmeq->dev;
637 	int error = 0;
638 
639 	nvme_unmap_data(dev, req);
640 
641 	if (unlikely(req->errors)) {
642 		if (nvme_req_needs_retry(req, req->errors)) {
643 			req->retries++;
644 			nvme_requeue_req(req);
645 			return;
646 		}
647 
648 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
649 			error = req->errors;
650 		else
651 			error = nvme_error_status(req->errors);
652 	}
653 
654 	if (unlikely(iod->aborted)) {
655 		dev_warn(dev->ctrl.device,
656 			"completing aborted command with status: %04x\n",
657 			req->errors);
658 	}
659 
660 	blk_mq_end_request(req, error);
661 }
662 
663 /* We read the CQE phase first to check if the rest of the entry is valid */
664 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
665 		u16 phase)
666 {
667 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
668 }
669 
670 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
671 {
672 	u16 head, phase;
673 
674 	head = nvmeq->cq_head;
675 	phase = nvmeq->cq_phase;
676 
677 	while (nvme_cqe_valid(nvmeq, head, phase)) {
678 		struct nvme_completion cqe = nvmeq->cqes[head];
679 		struct request *req;
680 
681 		if (++head == nvmeq->q_depth) {
682 			head = 0;
683 			phase = !phase;
684 		}
685 
686 		if (tag && *tag == cqe.command_id)
687 			*tag = -1;
688 
689 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
690 			dev_warn(nvmeq->dev->ctrl.device,
691 				"invalid id %d completed on queue %d\n",
692 				cqe.command_id, le16_to_cpu(cqe.sq_id));
693 			continue;
694 		}
695 
696 		/*
697 		 * AEN requests are special as they don't time out and can
698 		 * survive any kind of queue freeze and often don't respond to
699 		 * aborts.  We don't even bother to allocate a struct request
700 		 * for them but rather special case them here.
701 		 */
702 		if (unlikely(nvmeq->qid == 0 &&
703 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
704 			nvme_complete_async_event(&nvmeq->dev->ctrl,
705 					cqe.status, &cqe.result);
706 			continue;
707 		}
708 
709 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
710 		nvme_req(req)->result = cqe.result;
711 		blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
712 	}
713 
714 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
715 		return;
716 
717 	if (likely(nvmeq->cq_vector >= 0))
718 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
719 	nvmeq->cq_head = head;
720 	nvmeq->cq_phase = phase;
721 
722 	nvmeq->cqe_seen = 1;
723 }
724 
725 static void nvme_process_cq(struct nvme_queue *nvmeq)
726 {
727 	__nvme_process_cq(nvmeq, NULL);
728 }
729 
730 static irqreturn_t nvme_irq(int irq, void *data)
731 {
732 	irqreturn_t result;
733 	struct nvme_queue *nvmeq = data;
734 	spin_lock(&nvmeq->q_lock);
735 	nvme_process_cq(nvmeq);
736 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
737 	nvmeq->cqe_seen = 0;
738 	spin_unlock(&nvmeq->q_lock);
739 	return result;
740 }
741 
742 static irqreturn_t nvme_irq_check(int irq, void *data)
743 {
744 	struct nvme_queue *nvmeq = data;
745 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
746 		return IRQ_WAKE_THREAD;
747 	return IRQ_NONE;
748 }
749 
750 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
751 {
752 	struct nvme_queue *nvmeq = hctx->driver_data;
753 
754 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
755 		spin_lock_irq(&nvmeq->q_lock);
756 		__nvme_process_cq(nvmeq, &tag);
757 		spin_unlock_irq(&nvmeq->q_lock);
758 
759 		if (tag == -1)
760 			return 1;
761 	}
762 
763 	return 0;
764 }
765 
766 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
767 {
768 	struct nvme_dev *dev = to_nvme_dev(ctrl);
769 	struct nvme_queue *nvmeq = dev->queues[0];
770 	struct nvme_command c;
771 
772 	memset(&c, 0, sizeof(c));
773 	c.common.opcode = nvme_admin_async_event;
774 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
775 
776 	spin_lock_irq(&nvmeq->q_lock);
777 	__nvme_submit_cmd(nvmeq, &c);
778 	spin_unlock_irq(&nvmeq->q_lock);
779 }
780 
781 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
782 {
783 	struct nvme_command c;
784 
785 	memset(&c, 0, sizeof(c));
786 	c.delete_queue.opcode = opcode;
787 	c.delete_queue.qid = cpu_to_le16(id);
788 
789 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
790 }
791 
792 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
793 						struct nvme_queue *nvmeq)
794 {
795 	struct nvme_command c;
796 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
797 
798 	/*
799 	 * Note: we (ab)use the fact the the prp fields survive if no data
800 	 * is attached to the request.
801 	 */
802 	memset(&c, 0, sizeof(c));
803 	c.create_cq.opcode = nvme_admin_create_cq;
804 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
805 	c.create_cq.cqid = cpu_to_le16(qid);
806 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
807 	c.create_cq.cq_flags = cpu_to_le16(flags);
808 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
809 
810 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
811 }
812 
813 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
814 						struct nvme_queue *nvmeq)
815 {
816 	struct nvme_command c;
817 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
818 
819 	/*
820 	 * Note: we (ab)use the fact the the prp fields survive if no data
821 	 * is attached to the request.
822 	 */
823 	memset(&c, 0, sizeof(c));
824 	c.create_sq.opcode = nvme_admin_create_sq;
825 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
826 	c.create_sq.sqid = cpu_to_le16(qid);
827 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
828 	c.create_sq.sq_flags = cpu_to_le16(flags);
829 	c.create_sq.cqid = cpu_to_le16(qid);
830 
831 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
832 }
833 
834 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
835 {
836 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
837 }
838 
839 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
840 {
841 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
842 }
843 
844 static void abort_endio(struct request *req, int error)
845 {
846 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 	struct nvme_queue *nvmeq = iod->nvmeq;
848 	u16 status = req->errors;
849 
850 	dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
851 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
852 	blk_mq_free_request(req);
853 }
854 
855 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
856 {
857 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
858 	struct nvme_queue *nvmeq = iod->nvmeq;
859 	struct nvme_dev *dev = nvmeq->dev;
860 	struct request *abort_req;
861 	struct nvme_command cmd;
862 
863 	/*
864 	 * Shutdown immediately if controller times out while starting. The
865 	 * reset work will see the pci device disabled when it gets the forced
866 	 * cancellation error. All outstanding requests are completed on
867 	 * shutdown, so we return BLK_EH_HANDLED.
868 	 */
869 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
870 		dev_warn(dev->ctrl.device,
871 			 "I/O %d QID %d timeout, disable controller\n",
872 			 req->tag, nvmeq->qid);
873 		nvme_dev_disable(dev, false);
874 		req->errors = NVME_SC_CANCELLED;
875 		return BLK_EH_HANDLED;
876 	}
877 
878 	/*
879  	 * Shutdown the controller immediately and schedule a reset if the
880  	 * command was already aborted once before and still hasn't been
881  	 * returned to the driver, or if this is the admin queue.
882 	 */
883 	if (!nvmeq->qid || iod->aborted) {
884 		dev_warn(dev->ctrl.device,
885 			 "I/O %d QID %d timeout, reset controller\n",
886 			 req->tag, nvmeq->qid);
887 		nvme_dev_disable(dev, false);
888 		nvme_reset(dev);
889 
890 		/*
891 		 * Mark the request as handled, since the inline shutdown
892 		 * forces all outstanding requests to complete.
893 		 */
894 		req->errors = NVME_SC_CANCELLED;
895 		return BLK_EH_HANDLED;
896 	}
897 
898 	iod->aborted = 1;
899 
900 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
901 		atomic_inc(&dev->ctrl.abort_limit);
902 		return BLK_EH_RESET_TIMER;
903 	}
904 
905 	memset(&cmd, 0, sizeof(cmd));
906 	cmd.abort.opcode = nvme_admin_abort_cmd;
907 	cmd.abort.cid = req->tag;
908 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
909 
910 	dev_warn(nvmeq->dev->ctrl.device,
911 		"I/O %d QID %d timeout, aborting\n",
912 		 req->tag, nvmeq->qid);
913 
914 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
915 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
916 	if (IS_ERR(abort_req)) {
917 		atomic_inc(&dev->ctrl.abort_limit);
918 		return BLK_EH_RESET_TIMER;
919 	}
920 
921 	abort_req->timeout = ADMIN_TIMEOUT;
922 	abort_req->end_io_data = NULL;
923 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
924 
925 	/*
926 	 * The aborted req will be completed on receiving the abort req.
927 	 * We enable the timer again. If hit twice, it'll cause a device reset,
928 	 * as the device then is in a faulty state.
929 	 */
930 	return BLK_EH_RESET_TIMER;
931 }
932 
933 static void nvme_free_queue(struct nvme_queue *nvmeq)
934 {
935 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
936 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
937 	if (nvmeq->sq_cmds)
938 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
939 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
940 	kfree(nvmeq);
941 }
942 
943 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
944 {
945 	int i;
946 
947 	for (i = dev->queue_count - 1; i >= lowest; i--) {
948 		struct nvme_queue *nvmeq = dev->queues[i];
949 		dev->queue_count--;
950 		dev->queues[i] = NULL;
951 		nvme_free_queue(nvmeq);
952 	}
953 }
954 
955 /**
956  * nvme_suspend_queue - put queue into suspended state
957  * @nvmeq - queue to suspend
958  */
959 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
960 {
961 	int vector;
962 
963 	spin_lock_irq(&nvmeq->q_lock);
964 	if (nvmeq->cq_vector == -1) {
965 		spin_unlock_irq(&nvmeq->q_lock);
966 		return 1;
967 	}
968 	vector = nvmeq_irq(nvmeq);
969 	nvmeq->dev->online_queues--;
970 	nvmeq->cq_vector = -1;
971 	spin_unlock_irq(&nvmeq->q_lock);
972 
973 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
974 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
975 
976 	free_irq(vector, nvmeq);
977 
978 	return 0;
979 }
980 
981 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
982 {
983 	struct nvme_queue *nvmeq = dev->queues[0];
984 
985 	if (!nvmeq)
986 		return;
987 	if (nvme_suspend_queue(nvmeq))
988 		return;
989 
990 	if (shutdown)
991 		nvme_shutdown_ctrl(&dev->ctrl);
992 	else
993 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
994 						dev->bar + NVME_REG_CAP));
995 
996 	spin_lock_irq(&nvmeq->q_lock);
997 	nvme_process_cq(nvmeq);
998 	spin_unlock_irq(&nvmeq->q_lock);
999 }
1000 
1001 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002 				int entry_size)
1003 {
1004 	int q_depth = dev->q_depth;
1005 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1006 					  dev->ctrl.page_size);
1007 
1008 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1009 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1010 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1011 		q_depth = div_u64(mem_per_q, entry_size);
1012 
1013 		/*
1014 		 * Ensure the reduced q_depth is above some threshold where it
1015 		 * would be better to map queues in system memory with the
1016 		 * original depth
1017 		 */
1018 		if (q_depth < 64)
1019 			return -ENOMEM;
1020 	}
1021 
1022 	return q_depth;
1023 }
1024 
1025 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026 				int qid, int depth)
1027 {
1028 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1029 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1030 						      dev->ctrl.page_size);
1031 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1032 		nvmeq->sq_cmds_io = dev->cmb + offset;
1033 	} else {
1034 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1035 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1036 		if (!nvmeq->sq_cmds)
1037 			return -ENOMEM;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1044 							int depth)
1045 {
1046 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1047 	if (!nvmeq)
1048 		return NULL;
1049 
1050 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1051 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1052 	if (!nvmeq->cqes)
1053 		goto free_nvmeq;
1054 
1055 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1056 		goto free_cqdma;
1057 
1058 	nvmeq->q_dmadev = dev->dev;
1059 	nvmeq->dev = dev;
1060 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1061 			dev->ctrl.instance, qid);
1062 	spin_lock_init(&nvmeq->q_lock);
1063 	nvmeq->cq_head = 0;
1064 	nvmeq->cq_phase = 1;
1065 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1066 	nvmeq->q_depth = depth;
1067 	nvmeq->qid = qid;
1068 	nvmeq->cq_vector = -1;
1069 	dev->queues[qid] = nvmeq;
1070 	dev->queue_count++;
1071 
1072 	return nvmeq;
1073 
1074  free_cqdma:
1075 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1076 							nvmeq->cq_dma_addr);
1077  free_nvmeq:
1078 	kfree(nvmeq);
1079 	return NULL;
1080 }
1081 
1082 static int queue_request_irq(struct nvme_queue *nvmeq)
1083 {
1084 	if (use_threaded_interrupts)
1085 		return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1086 				nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087 	else
1088 		return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1089 				nvmeq->irqname, nvmeq);
1090 }
1091 
1092 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1093 {
1094 	struct nvme_dev *dev = nvmeq->dev;
1095 
1096 	spin_lock_irq(&nvmeq->q_lock);
1097 	nvmeq->sq_tail = 0;
1098 	nvmeq->cq_head = 0;
1099 	nvmeq->cq_phase = 1;
1100 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1101 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1102 	dev->online_queues++;
1103 	spin_unlock_irq(&nvmeq->q_lock);
1104 }
1105 
1106 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107 {
1108 	struct nvme_dev *dev = nvmeq->dev;
1109 	int result;
1110 
1111 	nvmeq->cq_vector = qid - 1;
1112 	result = adapter_alloc_cq(dev, qid, nvmeq);
1113 	if (result < 0)
1114 		return result;
1115 
1116 	result = adapter_alloc_sq(dev, qid, nvmeq);
1117 	if (result < 0)
1118 		goto release_cq;
1119 
1120 	result = queue_request_irq(nvmeq);
1121 	if (result < 0)
1122 		goto release_sq;
1123 
1124 	nvme_init_queue(nvmeq, qid);
1125 	return result;
1126 
1127  release_sq:
1128 	adapter_delete_sq(dev, qid);
1129  release_cq:
1130 	adapter_delete_cq(dev, qid);
1131 	return result;
1132 }
1133 
1134 static struct blk_mq_ops nvme_mq_admin_ops = {
1135 	.queue_rq	= nvme_queue_rq,
1136 	.complete	= nvme_complete_rq,
1137 	.init_hctx	= nvme_admin_init_hctx,
1138 	.exit_hctx      = nvme_admin_exit_hctx,
1139 	.init_request	= nvme_admin_init_request,
1140 	.timeout	= nvme_timeout,
1141 };
1142 
1143 static struct blk_mq_ops nvme_mq_ops = {
1144 	.queue_rq	= nvme_queue_rq,
1145 	.complete	= nvme_complete_rq,
1146 	.init_hctx	= nvme_init_hctx,
1147 	.init_request	= nvme_init_request,
1148 	.map_queues	= nvme_pci_map_queues,
1149 	.timeout	= nvme_timeout,
1150 	.poll		= nvme_poll,
1151 };
1152 
1153 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154 {
1155 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1156 		/*
1157 		 * If the controller was reset during removal, it's possible
1158 		 * user requests may be waiting on a stopped queue. Start the
1159 		 * queue to flush these to completion.
1160 		 */
1161 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1162 		blk_cleanup_queue(dev->ctrl.admin_q);
1163 		blk_mq_free_tag_set(&dev->admin_tagset);
1164 	}
1165 }
1166 
1167 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168 {
1169 	if (!dev->ctrl.admin_q) {
1170 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1171 		dev->admin_tagset.nr_hw_queues = 1;
1172 
1173 		/*
1174 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1175 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176 		 */
1177 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1178 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1179 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1180 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1181 		dev->admin_tagset.driver_data = dev;
1182 
1183 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1184 			return -ENOMEM;
1185 
1186 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1187 		if (IS_ERR(dev->ctrl.admin_q)) {
1188 			blk_mq_free_tag_set(&dev->admin_tagset);
1189 			return -ENOMEM;
1190 		}
1191 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1192 			nvme_dev_remove_admin(dev);
1193 			dev->ctrl.admin_q = NULL;
1194 			return -ENODEV;
1195 		}
1196 	} else
1197 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1198 
1199 	return 0;
1200 }
1201 
1202 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1203 {
1204 	int result;
1205 	u32 aqa;
1206 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1207 	struct nvme_queue *nvmeq;
1208 
1209 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1210 						NVME_CAP_NSSRC(cap) : 0;
1211 
1212 	if (dev->subsystem &&
1213 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1214 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1215 
1216 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1217 	if (result < 0)
1218 		return result;
1219 
1220 	nvmeq = dev->queues[0];
1221 	if (!nvmeq) {
1222 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1223 		if (!nvmeq)
1224 			return -ENOMEM;
1225 	}
1226 
1227 	aqa = nvmeq->q_depth - 1;
1228 	aqa |= aqa << 16;
1229 
1230 	writel(aqa, dev->bar + NVME_REG_AQA);
1231 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1232 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1233 
1234 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1235 	if (result)
1236 		return result;
1237 
1238 	nvmeq->cq_vector = 0;
1239 	result = queue_request_irq(nvmeq);
1240 	if (result) {
1241 		nvmeq->cq_vector = -1;
1242 		return result;
1243 	}
1244 
1245 	return result;
1246 }
1247 
1248 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1249 {
1250 
1251 	/* If true, indicates loss of adapter communication, possibly by a
1252 	 * NVMe Subsystem reset.
1253 	 */
1254 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1255 
1256 	/* If there is a reset ongoing, we shouldn't reset again. */
1257 	if (work_busy(&dev->reset_work))
1258 		return false;
1259 
1260 	/* We shouldn't reset unless the controller is on fatal error state
1261 	 * _or_ if we lost the communication with it.
1262 	 */
1263 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1264 		return false;
1265 
1266 	/* If PCI error recovery process is happening, we cannot reset or
1267 	 * the recovery mechanism will surely fail.
1268 	 */
1269 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1270 		return false;
1271 
1272 	return true;
1273 }
1274 
1275 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1276 {
1277 	/* Read a config register to help see what died. */
1278 	u16 pci_status;
1279 	int result;
1280 
1281 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1282 				      &pci_status);
1283 	if (result == PCIBIOS_SUCCESSFUL)
1284 		dev_warn(dev->dev,
1285 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1286 			 csts, pci_status);
1287 	else
1288 		dev_warn(dev->dev,
1289 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1290 			 csts, result);
1291 }
1292 
1293 static void nvme_watchdog_timer(unsigned long data)
1294 {
1295 	struct nvme_dev *dev = (struct nvme_dev *)data;
1296 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1297 
1298 	/* Skip controllers under certain specific conditions. */
1299 	if (nvme_should_reset(dev, csts)) {
1300 		if (!nvme_reset(dev))
1301 			nvme_warn_reset(dev, csts);
1302 		return;
1303 	}
1304 
1305 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1306 }
1307 
1308 static int nvme_create_io_queues(struct nvme_dev *dev)
1309 {
1310 	unsigned i, max;
1311 	int ret = 0;
1312 
1313 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1314 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1315 			ret = -ENOMEM;
1316 			break;
1317 		}
1318 	}
1319 
1320 	max = min(dev->max_qid, dev->queue_count - 1);
1321 	for (i = dev->online_queues; i <= max; i++) {
1322 		ret = nvme_create_queue(dev->queues[i], i);
1323 		if (ret)
1324 			break;
1325 	}
1326 
1327 	/*
1328 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1329 	 * than the desired aount of queues, and even a controller without
1330 	 * I/O queues an still be used to issue admin commands.  This might
1331 	 * be useful to upgrade a buggy firmware for example.
1332 	 */
1333 	return ret >= 0 ? 0 : ret;
1334 }
1335 
1336 static ssize_t nvme_cmb_show(struct device *dev,
1337 			     struct device_attribute *attr,
1338 			     char *buf)
1339 {
1340 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1341 
1342 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1343 		       ndev->cmbloc, ndev->cmbsz);
1344 }
1345 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1346 
1347 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1348 {
1349 	u64 szu, size, offset;
1350 	resource_size_t bar_size;
1351 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1352 	void __iomem *cmb;
1353 	dma_addr_t dma_addr;
1354 
1355 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1356 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1357 		return NULL;
1358 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1359 
1360 	if (!use_cmb_sqes)
1361 		return NULL;
1362 
1363 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1364 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1365 	offset = szu * NVME_CMB_OFST(dev->cmbloc);
1366 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1367 
1368 	if (offset > bar_size)
1369 		return NULL;
1370 
1371 	/*
1372 	 * Controllers may support a CMB size larger than their BAR,
1373 	 * for example, due to being behind a bridge. Reduce the CMB to
1374 	 * the reported size of the BAR
1375 	 */
1376 	if (size > bar_size - offset)
1377 		size = bar_size - offset;
1378 
1379 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1380 	cmb = ioremap_wc(dma_addr, size);
1381 	if (!cmb)
1382 		return NULL;
1383 
1384 	dev->cmb_dma_addr = dma_addr;
1385 	dev->cmb_size = size;
1386 	return cmb;
1387 }
1388 
1389 static inline void nvme_release_cmb(struct nvme_dev *dev)
1390 {
1391 	if (dev->cmb) {
1392 		iounmap(dev->cmb);
1393 		dev->cmb = NULL;
1394 	}
1395 }
1396 
1397 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1398 {
1399 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1400 }
1401 
1402 static int nvme_setup_io_queues(struct nvme_dev *dev)
1403 {
1404 	struct nvme_queue *adminq = dev->queues[0];
1405 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1406 	int result, nr_io_queues, size;
1407 
1408 	nr_io_queues = num_online_cpus();
1409 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1410 	if (result < 0)
1411 		return result;
1412 
1413 	if (nr_io_queues == 0)
1414 		return 0;
1415 
1416 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1417 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1418 				sizeof(struct nvme_command));
1419 		if (result > 0)
1420 			dev->q_depth = result;
1421 		else
1422 			nvme_release_cmb(dev);
1423 	}
1424 
1425 	size = db_bar_size(dev, nr_io_queues);
1426 	if (size > 8192) {
1427 		iounmap(dev->bar);
1428 		do {
1429 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1430 			if (dev->bar)
1431 				break;
1432 			if (!--nr_io_queues)
1433 				return -ENOMEM;
1434 			size = db_bar_size(dev, nr_io_queues);
1435 		} while (1);
1436 		dev->dbs = dev->bar + 4096;
1437 		adminq->q_db = dev->dbs;
1438 	}
1439 
1440 	/* Deregister the admin queue's interrupt */
1441 	free_irq(pci_irq_vector(pdev, 0), adminq);
1442 
1443 	/*
1444 	 * If we enable msix early due to not intx, disable it again before
1445 	 * setting up the full range we need.
1446 	 */
1447 	pci_free_irq_vectors(pdev);
1448 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1449 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1450 	if (nr_io_queues <= 0)
1451 		return -EIO;
1452 	dev->max_qid = nr_io_queues;
1453 
1454 	/*
1455 	 * Should investigate if there's a performance win from allocating
1456 	 * more queues than interrupt vectors; it might allow the submission
1457 	 * path to scale better, even if the receive path is limited by the
1458 	 * number of interrupts.
1459 	 */
1460 
1461 	result = queue_request_irq(adminq);
1462 	if (result) {
1463 		adminq->cq_vector = -1;
1464 		return result;
1465 	}
1466 	return nvme_create_io_queues(dev);
1467 }
1468 
1469 static void nvme_del_queue_end(struct request *req, int error)
1470 {
1471 	struct nvme_queue *nvmeq = req->end_io_data;
1472 
1473 	blk_mq_free_request(req);
1474 	complete(&nvmeq->dev->ioq_wait);
1475 }
1476 
1477 static void nvme_del_cq_end(struct request *req, int error)
1478 {
1479 	struct nvme_queue *nvmeq = req->end_io_data;
1480 
1481 	if (!error) {
1482 		unsigned long flags;
1483 
1484 		/*
1485 		 * We might be called with the AQ q_lock held
1486 		 * and the I/O queue q_lock should always
1487 		 * nest inside the AQ one.
1488 		 */
1489 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1490 					SINGLE_DEPTH_NESTING);
1491 		nvme_process_cq(nvmeq);
1492 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1493 	}
1494 
1495 	nvme_del_queue_end(req, error);
1496 }
1497 
1498 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1499 {
1500 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1501 	struct request *req;
1502 	struct nvme_command cmd;
1503 
1504 	memset(&cmd, 0, sizeof(cmd));
1505 	cmd.delete_queue.opcode = opcode;
1506 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1507 
1508 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1509 	if (IS_ERR(req))
1510 		return PTR_ERR(req);
1511 
1512 	req->timeout = ADMIN_TIMEOUT;
1513 	req->end_io_data = nvmeq;
1514 
1515 	blk_execute_rq_nowait(q, NULL, req, false,
1516 			opcode == nvme_admin_delete_cq ?
1517 				nvme_del_cq_end : nvme_del_queue_end);
1518 	return 0;
1519 }
1520 
1521 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1522 {
1523 	int pass;
1524 	unsigned long timeout;
1525 	u8 opcode = nvme_admin_delete_sq;
1526 
1527 	for (pass = 0; pass < 2; pass++) {
1528 		int sent = 0, i = queues;
1529 
1530 		reinit_completion(&dev->ioq_wait);
1531  retry:
1532 		timeout = ADMIN_TIMEOUT;
1533 		for (; i > 0; i--, sent++)
1534 			if (nvme_delete_queue(dev->queues[i], opcode))
1535 				break;
1536 
1537 		while (sent--) {
1538 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1539 			if (timeout == 0)
1540 				return;
1541 			if (i)
1542 				goto retry;
1543 		}
1544 		opcode = nvme_admin_delete_cq;
1545 	}
1546 }
1547 
1548 /*
1549  * Return: error value if an error occurred setting up the queues or calling
1550  * Identify Device.  0 if these succeeded, even if adding some of the
1551  * namespaces failed.  At the moment, these failures are silent.  TBD which
1552  * failures should be reported.
1553  */
1554 static int nvme_dev_add(struct nvme_dev *dev)
1555 {
1556 	if (!dev->ctrl.tagset) {
1557 		dev->tagset.ops = &nvme_mq_ops;
1558 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1559 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1560 		dev->tagset.numa_node = dev_to_node(dev->dev);
1561 		dev->tagset.queue_depth =
1562 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1563 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1564 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1565 		dev->tagset.driver_data = dev;
1566 
1567 		if (blk_mq_alloc_tag_set(&dev->tagset))
1568 			return 0;
1569 		dev->ctrl.tagset = &dev->tagset;
1570 	} else {
1571 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1572 
1573 		/* Free previously allocated queues that are no longer usable */
1574 		nvme_free_queues(dev, dev->online_queues);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int nvme_pci_enable(struct nvme_dev *dev)
1581 {
1582 	u64 cap;
1583 	int result = -ENOMEM;
1584 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1585 
1586 	if (pci_enable_device_mem(pdev))
1587 		return result;
1588 
1589 	pci_set_master(pdev);
1590 
1591 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1592 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1593 		goto disable;
1594 
1595 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1596 		result = -ENODEV;
1597 		goto disable;
1598 	}
1599 
1600 	/*
1601 	 * Some devices and/or platforms don't advertise or work with INTx
1602 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1603 	 * adjust this later.
1604 	 */
1605 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1606 	if (result < 0)
1607 		return result;
1608 
1609 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1610 
1611 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1612 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1613 	dev->dbs = dev->bar + 4096;
1614 
1615 	/*
1616 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1617 	 * some MacBook7,1 to avoid controller resets and data loss.
1618 	 */
1619 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1620 		dev->q_depth = 2;
1621 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1622 			"queue depth=%u to work around controller resets\n",
1623 			dev->q_depth);
1624 	}
1625 
1626 	/*
1627 	 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1628 	 * populate sysfs if a CMB is implemented. Note that we add the
1629 	 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1630 	 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1631 	 * NULL as final argument to sysfs_add_file_to_group.
1632 	 */
1633 
1634 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1635 		dev->cmb = nvme_map_cmb(dev);
1636 
1637 		if (dev->cmbsz) {
1638 			if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1639 						    &dev_attr_cmb.attr, NULL))
1640 				dev_warn(dev->dev,
1641 					 "failed to add sysfs attribute for CMB\n");
1642 		}
1643 	}
1644 
1645 	pci_enable_pcie_error_reporting(pdev);
1646 	pci_save_state(pdev);
1647 	return 0;
1648 
1649  disable:
1650 	pci_disable_device(pdev);
1651 	return result;
1652 }
1653 
1654 static void nvme_dev_unmap(struct nvme_dev *dev)
1655 {
1656 	if (dev->bar)
1657 		iounmap(dev->bar);
1658 	pci_release_mem_regions(to_pci_dev(dev->dev));
1659 }
1660 
1661 static void nvme_pci_disable(struct nvme_dev *dev)
1662 {
1663 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1664 
1665 	pci_free_irq_vectors(pdev);
1666 
1667 	if (pci_is_enabled(pdev)) {
1668 		pci_disable_pcie_error_reporting(pdev);
1669 		pci_disable_device(pdev);
1670 	}
1671 }
1672 
1673 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1674 {
1675 	int i, queues;
1676 	u32 csts = -1;
1677 
1678 	del_timer_sync(&dev->watchdog_timer);
1679 
1680 	mutex_lock(&dev->shutdown_lock);
1681 	if (pci_is_enabled(to_pci_dev(dev->dev))) {
1682 		nvme_stop_queues(&dev->ctrl);
1683 		csts = readl(dev->bar + NVME_REG_CSTS);
1684 	}
1685 
1686 	queues = dev->online_queues - 1;
1687 	for (i = dev->queue_count - 1; i > 0; i--)
1688 		nvme_suspend_queue(dev->queues[i]);
1689 
1690 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1691 		/* A device might become IO incapable very soon during
1692 		 * probe, before the admin queue is configured. Thus,
1693 		 * queue_count can be 0 here.
1694 		 */
1695 		if (dev->queue_count)
1696 			nvme_suspend_queue(dev->queues[0]);
1697 	} else {
1698 		nvme_disable_io_queues(dev, queues);
1699 		nvme_disable_admin_queue(dev, shutdown);
1700 	}
1701 	nvme_pci_disable(dev);
1702 
1703 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1704 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1705 	mutex_unlock(&dev->shutdown_lock);
1706 }
1707 
1708 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1709 {
1710 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1711 						PAGE_SIZE, PAGE_SIZE, 0);
1712 	if (!dev->prp_page_pool)
1713 		return -ENOMEM;
1714 
1715 	/* Optimisation for I/Os between 4k and 128k */
1716 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1717 						256, 256, 0);
1718 	if (!dev->prp_small_pool) {
1719 		dma_pool_destroy(dev->prp_page_pool);
1720 		return -ENOMEM;
1721 	}
1722 	return 0;
1723 }
1724 
1725 static void nvme_release_prp_pools(struct nvme_dev *dev)
1726 {
1727 	dma_pool_destroy(dev->prp_page_pool);
1728 	dma_pool_destroy(dev->prp_small_pool);
1729 }
1730 
1731 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1732 {
1733 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1734 
1735 	put_device(dev->dev);
1736 	if (dev->tagset.tags)
1737 		blk_mq_free_tag_set(&dev->tagset);
1738 	if (dev->ctrl.admin_q)
1739 		blk_put_queue(dev->ctrl.admin_q);
1740 	kfree(dev->queues);
1741 	kfree(dev);
1742 }
1743 
1744 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1745 {
1746 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1747 
1748 	kref_get(&dev->ctrl.kref);
1749 	nvme_dev_disable(dev, false);
1750 	if (!schedule_work(&dev->remove_work))
1751 		nvme_put_ctrl(&dev->ctrl);
1752 }
1753 
1754 static void nvme_reset_work(struct work_struct *work)
1755 {
1756 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1757 	int result = -ENODEV;
1758 
1759 	if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1760 		goto out;
1761 
1762 	/*
1763 	 * If we're called to reset a live controller first shut it down before
1764 	 * moving on.
1765 	 */
1766 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1767 		nvme_dev_disable(dev, false);
1768 
1769 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1770 		goto out;
1771 
1772 	result = nvme_pci_enable(dev);
1773 	if (result)
1774 		goto out;
1775 
1776 	result = nvme_configure_admin_queue(dev);
1777 	if (result)
1778 		goto out;
1779 
1780 	nvme_init_queue(dev->queues[0], 0);
1781 	result = nvme_alloc_admin_tags(dev);
1782 	if (result)
1783 		goto out;
1784 
1785 	result = nvme_init_identify(&dev->ctrl);
1786 	if (result)
1787 		goto out;
1788 
1789 	result = nvme_setup_io_queues(dev);
1790 	if (result)
1791 		goto out;
1792 
1793 	/*
1794 	 * A controller that can not execute IO typically requires user
1795 	 * intervention to correct. For such degraded controllers, the driver
1796 	 * should not submit commands the user did not request, so skip
1797 	 * registering for asynchronous event notification on this condition.
1798 	 */
1799 	if (dev->online_queues > 1)
1800 		nvme_queue_async_events(&dev->ctrl);
1801 
1802 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1803 
1804 	/*
1805 	 * Keep the controller around but remove all namespaces if we don't have
1806 	 * any working I/O queue.
1807 	 */
1808 	if (dev->online_queues < 2) {
1809 		dev_warn(dev->ctrl.device, "IO queues not created\n");
1810 		nvme_kill_queues(&dev->ctrl);
1811 		nvme_remove_namespaces(&dev->ctrl);
1812 	} else {
1813 		nvme_start_queues(&dev->ctrl);
1814 		nvme_dev_add(dev);
1815 	}
1816 
1817 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1818 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1819 		goto out;
1820 	}
1821 
1822 	if (dev->online_queues > 1)
1823 		nvme_queue_scan(&dev->ctrl);
1824 	return;
1825 
1826  out:
1827 	nvme_remove_dead_ctrl(dev, result);
1828 }
1829 
1830 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1831 {
1832 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1833 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1834 
1835 	nvme_kill_queues(&dev->ctrl);
1836 	if (pci_get_drvdata(pdev))
1837 		device_release_driver(&pdev->dev);
1838 	nvme_put_ctrl(&dev->ctrl);
1839 }
1840 
1841 static int nvme_reset(struct nvme_dev *dev)
1842 {
1843 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1844 		return -ENODEV;
1845 	if (work_busy(&dev->reset_work))
1846 		return -ENODEV;
1847 	if (!queue_work(nvme_workq, &dev->reset_work))
1848 		return -EBUSY;
1849 	return 0;
1850 }
1851 
1852 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1853 {
1854 	*val = readl(to_nvme_dev(ctrl)->bar + off);
1855 	return 0;
1856 }
1857 
1858 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1859 {
1860 	writel(val, to_nvme_dev(ctrl)->bar + off);
1861 	return 0;
1862 }
1863 
1864 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1865 {
1866 	*val = readq(to_nvme_dev(ctrl)->bar + off);
1867 	return 0;
1868 }
1869 
1870 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1871 {
1872 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1873 	int ret = nvme_reset(dev);
1874 
1875 	if (!ret)
1876 		flush_work(&dev->reset_work);
1877 	return ret;
1878 }
1879 
1880 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1881 	.name			= "pcie",
1882 	.module			= THIS_MODULE,
1883 	.reg_read32		= nvme_pci_reg_read32,
1884 	.reg_write32		= nvme_pci_reg_write32,
1885 	.reg_read64		= nvme_pci_reg_read64,
1886 	.reset_ctrl		= nvme_pci_reset_ctrl,
1887 	.free_ctrl		= nvme_pci_free_ctrl,
1888 	.submit_async_event	= nvme_pci_submit_async_event,
1889 };
1890 
1891 static int nvme_dev_map(struct nvme_dev *dev)
1892 {
1893 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1894 
1895 	if (pci_request_mem_regions(pdev, "nvme"))
1896 		return -ENODEV;
1897 
1898 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1899 	if (!dev->bar)
1900 		goto release;
1901 
1902 	return 0;
1903   release:
1904 	pci_release_mem_regions(pdev);
1905 	return -ENODEV;
1906 }
1907 
1908 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1909 {
1910 	int node, result = -ENOMEM;
1911 	struct nvme_dev *dev;
1912 
1913 	node = dev_to_node(&pdev->dev);
1914 	if (node == NUMA_NO_NODE)
1915 		set_dev_node(&pdev->dev, first_memory_node);
1916 
1917 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1918 	if (!dev)
1919 		return -ENOMEM;
1920 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1921 							GFP_KERNEL, node);
1922 	if (!dev->queues)
1923 		goto free;
1924 
1925 	dev->dev = get_device(&pdev->dev);
1926 	pci_set_drvdata(pdev, dev);
1927 
1928 	result = nvme_dev_map(dev);
1929 	if (result)
1930 		goto free;
1931 
1932 	INIT_WORK(&dev->reset_work, nvme_reset_work);
1933 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1934 	setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1935 		(unsigned long)dev);
1936 	mutex_init(&dev->shutdown_lock);
1937 	init_completion(&dev->ioq_wait);
1938 
1939 	result = nvme_setup_prp_pools(dev);
1940 	if (result)
1941 		goto put_pci;
1942 
1943 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1944 			id->driver_data);
1945 	if (result)
1946 		goto release_pools;
1947 
1948 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1949 
1950 	queue_work(nvme_workq, &dev->reset_work);
1951 	return 0;
1952 
1953  release_pools:
1954 	nvme_release_prp_pools(dev);
1955  put_pci:
1956 	put_device(dev->dev);
1957 	nvme_dev_unmap(dev);
1958  free:
1959 	kfree(dev->queues);
1960 	kfree(dev);
1961 	return result;
1962 }
1963 
1964 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1965 {
1966 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1967 
1968 	if (prepare)
1969 		nvme_dev_disable(dev, false);
1970 	else
1971 		nvme_reset(dev);
1972 }
1973 
1974 static void nvme_shutdown(struct pci_dev *pdev)
1975 {
1976 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1977 	nvme_dev_disable(dev, true);
1978 }
1979 
1980 /*
1981  * The driver's remove may be called on a device in a partially initialized
1982  * state. This function must not have any dependencies on the device state in
1983  * order to proceed.
1984  */
1985 static void nvme_remove(struct pci_dev *pdev)
1986 {
1987 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1988 
1989 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1990 
1991 	pci_set_drvdata(pdev, NULL);
1992 
1993 	if (!pci_device_is_present(pdev))
1994 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1995 
1996 	flush_work(&dev->reset_work);
1997 	nvme_uninit_ctrl(&dev->ctrl);
1998 	nvme_dev_disable(dev, true);
1999 	nvme_dev_remove_admin(dev);
2000 	nvme_free_queues(dev, 0);
2001 	nvme_release_cmb(dev);
2002 	nvme_release_prp_pools(dev);
2003 	nvme_dev_unmap(dev);
2004 	nvme_put_ctrl(&dev->ctrl);
2005 }
2006 
2007 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2008 {
2009 	int ret = 0;
2010 
2011 	if (numvfs == 0) {
2012 		if (pci_vfs_assigned(pdev)) {
2013 			dev_warn(&pdev->dev,
2014 				"Cannot disable SR-IOV VFs while assigned\n");
2015 			return -EPERM;
2016 		}
2017 		pci_disable_sriov(pdev);
2018 		return 0;
2019 	}
2020 
2021 	ret = pci_enable_sriov(pdev, numvfs);
2022 	return ret ? ret : numvfs;
2023 }
2024 
2025 #ifdef CONFIG_PM_SLEEP
2026 static int nvme_suspend(struct device *dev)
2027 {
2028 	struct pci_dev *pdev = to_pci_dev(dev);
2029 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2030 
2031 	nvme_dev_disable(ndev, true);
2032 	return 0;
2033 }
2034 
2035 static int nvme_resume(struct device *dev)
2036 {
2037 	struct pci_dev *pdev = to_pci_dev(dev);
2038 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2039 
2040 	nvme_reset(ndev);
2041 	return 0;
2042 }
2043 #endif
2044 
2045 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2046 
2047 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2048 						pci_channel_state_t state)
2049 {
2050 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2051 
2052 	/*
2053 	 * A frozen channel requires a reset. When detected, this method will
2054 	 * shutdown the controller to quiesce. The controller will be restarted
2055 	 * after the slot reset through driver's slot_reset callback.
2056 	 */
2057 	switch (state) {
2058 	case pci_channel_io_normal:
2059 		return PCI_ERS_RESULT_CAN_RECOVER;
2060 	case pci_channel_io_frozen:
2061 		dev_warn(dev->ctrl.device,
2062 			"frozen state error detected, reset controller\n");
2063 		nvme_dev_disable(dev, false);
2064 		return PCI_ERS_RESULT_NEED_RESET;
2065 	case pci_channel_io_perm_failure:
2066 		dev_warn(dev->ctrl.device,
2067 			"failure state error detected, request disconnect\n");
2068 		return PCI_ERS_RESULT_DISCONNECT;
2069 	}
2070 	return PCI_ERS_RESULT_NEED_RESET;
2071 }
2072 
2073 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2074 {
2075 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2076 
2077 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2078 	pci_restore_state(pdev);
2079 	nvme_reset(dev);
2080 	return PCI_ERS_RESULT_RECOVERED;
2081 }
2082 
2083 static void nvme_error_resume(struct pci_dev *pdev)
2084 {
2085 	pci_cleanup_aer_uncorrect_error_status(pdev);
2086 }
2087 
2088 static const struct pci_error_handlers nvme_err_handler = {
2089 	.error_detected	= nvme_error_detected,
2090 	.slot_reset	= nvme_slot_reset,
2091 	.resume		= nvme_error_resume,
2092 	.reset_notify	= nvme_reset_notify,
2093 };
2094 
2095 static const struct pci_device_id nvme_id_table[] = {
2096 	{ PCI_VDEVICE(INTEL, 0x0953),
2097 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2098 				NVME_QUIRK_DISCARD_ZEROES, },
2099 	{ PCI_VDEVICE(INTEL, 0x0a53),
2100 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2101 				NVME_QUIRK_DISCARD_ZEROES, },
2102 	{ PCI_VDEVICE(INTEL, 0x0a54),
2103 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2104 				NVME_QUIRK_DISCARD_ZEROES, },
2105 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2106 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2107 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2108 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2109 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2110 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2111 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2112 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2113 	{ 0, }
2114 };
2115 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2116 
2117 static struct pci_driver nvme_driver = {
2118 	.name		= "nvme",
2119 	.id_table	= nvme_id_table,
2120 	.probe		= nvme_probe,
2121 	.remove		= nvme_remove,
2122 	.shutdown	= nvme_shutdown,
2123 	.driver		= {
2124 		.pm	= &nvme_dev_pm_ops,
2125 	},
2126 	.sriov_configure = nvme_pci_sriov_configure,
2127 	.err_handler	= &nvme_err_handler,
2128 };
2129 
2130 static int __init nvme_init(void)
2131 {
2132 	int result;
2133 
2134 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2135 	if (!nvme_workq)
2136 		return -ENOMEM;
2137 
2138 	result = pci_register_driver(&nvme_driver);
2139 	if (result)
2140 		destroy_workqueue(nvme_workq);
2141 	return result;
2142 }
2143 
2144 static void __exit nvme_exit(void)
2145 {
2146 	pci_unregister_driver(&nvme_driver);
2147 	destroy_workqueue(nvme_workq);
2148 	_nvme_check_size();
2149 }
2150 
2151 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2152 MODULE_LICENSE("GPL");
2153 MODULE_VERSION("1.0");
2154 module_init(nvme_init);
2155 module_exit(nvme_exit);
2156