1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/errno.h> 23 #include <linux/fs.h> 24 #include <linux/genhd.h> 25 #include <linux/hdreg.h> 26 #include <linux/idr.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/timer.h> 43 #include <linux/types.h> 44 #include <linux/io-64-nonatomic-lo-hi.h> 45 #include <asm/unaligned.h> 46 47 #include "nvme.h" 48 49 #define NVME_Q_DEPTH 1024 50 #define NVME_AQ_DEPTH 256 51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 53 54 /* 55 * We handle AEN commands ourselves and don't even let the 56 * block layer know about them. 57 */ 58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 59 60 static int use_threaded_interrupts; 61 module_param(use_threaded_interrupts, int, 0); 62 63 static bool use_cmb_sqes = true; 64 module_param(use_cmb_sqes, bool, 0644); 65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 66 67 static struct workqueue_struct *nvme_workq; 68 69 struct nvme_dev; 70 struct nvme_queue; 71 72 static int nvme_reset(struct nvme_dev *dev); 73 static void nvme_process_cq(struct nvme_queue *nvmeq); 74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 75 76 /* 77 * Represents an NVM Express device. Each nvme_dev is a PCI function. 78 */ 79 struct nvme_dev { 80 struct nvme_queue **queues; 81 struct blk_mq_tag_set tagset; 82 struct blk_mq_tag_set admin_tagset; 83 u32 __iomem *dbs; 84 struct device *dev; 85 struct dma_pool *prp_page_pool; 86 struct dma_pool *prp_small_pool; 87 unsigned queue_count; 88 unsigned online_queues; 89 unsigned max_qid; 90 int q_depth; 91 u32 db_stride; 92 void __iomem *bar; 93 struct work_struct reset_work; 94 struct work_struct remove_work; 95 struct timer_list watchdog_timer; 96 struct mutex shutdown_lock; 97 bool subsystem; 98 void __iomem *cmb; 99 dma_addr_t cmb_dma_addr; 100 u64 cmb_size; 101 u32 cmbsz; 102 u32 cmbloc; 103 struct nvme_ctrl ctrl; 104 struct completion ioq_wait; 105 }; 106 107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 108 { 109 return container_of(ctrl, struct nvme_dev, ctrl); 110 } 111 112 /* 113 * An NVM Express queue. Each device has at least two (one for admin 114 * commands and one for I/O commands). 115 */ 116 struct nvme_queue { 117 struct device *q_dmadev; 118 struct nvme_dev *dev; 119 char irqname[24]; /* nvme4294967295-65535\0 */ 120 spinlock_t q_lock; 121 struct nvme_command *sq_cmds; 122 struct nvme_command __iomem *sq_cmds_io; 123 volatile struct nvme_completion *cqes; 124 struct blk_mq_tags **tags; 125 dma_addr_t sq_dma_addr; 126 dma_addr_t cq_dma_addr; 127 u32 __iomem *q_db; 128 u16 q_depth; 129 s16 cq_vector; 130 u16 sq_tail; 131 u16 cq_head; 132 u16 qid; 133 u8 cq_phase; 134 u8 cqe_seen; 135 }; 136 137 /* 138 * The nvme_iod describes the data in an I/O, including the list of PRP 139 * entries. You can't see it in this data structure because C doesn't let 140 * me express that. Use nvme_init_iod to ensure there's enough space 141 * allocated to store the PRP list. 142 */ 143 struct nvme_iod { 144 struct nvme_request req; 145 struct nvme_queue *nvmeq; 146 int aborted; 147 int npages; /* In the PRP list. 0 means small pool in use */ 148 int nents; /* Used in scatterlist */ 149 int length; /* Of data, in bytes */ 150 dma_addr_t first_dma; 151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 152 struct scatterlist *sg; 153 struct scatterlist inline_sg[0]; 154 }; 155 156 /* 157 * Check we didin't inadvertently grow the command struct 158 */ 159 static inline void _nvme_check_size(void) 160 { 161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 173 } 174 175 /* 176 * Max size of iod being embedded in the request payload 177 */ 178 #define NVME_INT_PAGES 2 179 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 180 181 /* 182 * Will slightly overestimate the number of pages needed. This is OK 183 * as it only leads to a small amount of wasted memory for the lifetime of 184 * the I/O. 185 */ 186 static int nvme_npages(unsigned size, struct nvme_dev *dev) 187 { 188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 189 dev->ctrl.page_size); 190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 191 } 192 193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 194 unsigned int size, unsigned int nseg) 195 { 196 return sizeof(__le64 *) * nvme_npages(size, dev) + 197 sizeof(struct scatterlist) * nseg; 198 } 199 200 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 201 { 202 return sizeof(struct nvme_iod) + 203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 204 } 205 206 static int nvmeq_irq(struct nvme_queue *nvmeq) 207 { 208 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); 209 } 210 211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 212 unsigned int hctx_idx) 213 { 214 struct nvme_dev *dev = data; 215 struct nvme_queue *nvmeq = dev->queues[0]; 216 217 WARN_ON(hctx_idx != 0); 218 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 219 WARN_ON(nvmeq->tags); 220 221 hctx->driver_data = nvmeq; 222 nvmeq->tags = &dev->admin_tagset.tags[0]; 223 return 0; 224 } 225 226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 227 { 228 struct nvme_queue *nvmeq = hctx->driver_data; 229 230 nvmeq->tags = NULL; 231 } 232 233 static int nvme_admin_init_request(void *data, struct request *req, 234 unsigned int hctx_idx, unsigned int rq_idx, 235 unsigned int numa_node) 236 { 237 struct nvme_dev *dev = data; 238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 239 struct nvme_queue *nvmeq = dev->queues[0]; 240 241 BUG_ON(!nvmeq); 242 iod->nvmeq = nvmeq; 243 return 0; 244 } 245 246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 247 unsigned int hctx_idx) 248 { 249 struct nvme_dev *dev = data; 250 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 251 252 if (!nvmeq->tags) 253 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 254 255 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 256 hctx->driver_data = nvmeq; 257 return 0; 258 } 259 260 static int nvme_init_request(void *data, struct request *req, 261 unsigned int hctx_idx, unsigned int rq_idx, 262 unsigned int numa_node) 263 { 264 struct nvme_dev *dev = data; 265 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 267 268 BUG_ON(!nvmeq); 269 iod->nvmeq = nvmeq; 270 return 0; 271 } 272 273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 274 { 275 struct nvme_dev *dev = set->driver_data; 276 277 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 278 } 279 280 /** 281 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 282 * @nvmeq: The queue to use 283 * @cmd: The command to send 284 * 285 * Safe to use from interrupt context 286 */ 287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 288 struct nvme_command *cmd) 289 { 290 u16 tail = nvmeq->sq_tail; 291 292 if (nvmeq->sq_cmds_io) 293 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 294 else 295 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 296 297 if (++tail == nvmeq->q_depth) 298 tail = 0; 299 writel(tail, nvmeq->q_db); 300 nvmeq->sq_tail = tail; 301 } 302 303 static __le64 **iod_list(struct request *req) 304 { 305 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 306 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 307 } 308 309 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev) 310 { 311 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 312 int nseg = blk_rq_nr_phys_segments(rq); 313 unsigned int size = blk_rq_payload_bytes(rq); 314 315 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 316 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 317 if (!iod->sg) 318 return BLK_MQ_RQ_QUEUE_BUSY; 319 } else { 320 iod->sg = iod->inline_sg; 321 } 322 323 iod->aborted = 0; 324 iod->npages = -1; 325 iod->nents = 0; 326 iod->length = size; 327 328 if (!(rq->rq_flags & RQF_DONTPREP)) { 329 rq->retries = 0; 330 rq->rq_flags |= RQF_DONTPREP; 331 } 332 return BLK_MQ_RQ_QUEUE_OK; 333 } 334 335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 336 { 337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 338 const int last_prp = dev->ctrl.page_size / 8 - 1; 339 int i; 340 __le64 **list = iod_list(req); 341 dma_addr_t prp_dma = iod->first_dma; 342 343 if (iod->npages == 0) 344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 345 for (i = 0; i < iod->npages; i++) { 346 __le64 *prp_list = list[i]; 347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 349 prp_dma = next_prp_dma; 350 } 351 352 if (iod->sg != iod->inline_sg) 353 kfree(iod->sg); 354 } 355 356 #ifdef CONFIG_BLK_DEV_INTEGRITY 357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 358 { 359 if (be32_to_cpu(pi->ref_tag) == v) 360 pi->ref_tag = cpu_to_be32(p); 361 } 362 363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 364 { 365 if (be32_to_cpu(pi->ref_tag) == p) 366 pi->ref_tag = cpu_to_be32(v); 367 } 368 369 /** 370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 371 * 372 * The virtual start sector is the one that was originally submitted by the 373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 374 * start sector may be different. Remap protection information to match the 375 * physical LBA on writes, and back to the original seed on reads. 376 * 377 * Type 0 and 3 do not have a ref tag, so no remapping required. 378 */ 379 static void nvme_dif_remap(struct request *req, 380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 381 { 382 struct nvme_ns *ns = req->rq_disk->private_data; 383 struct bio_integrity_payload *bip; 384 struct t10_pi_tuple *pi; 385 void *p, *pmap; 386 u32 i, nlb, ts, phys, virt; 387 388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 389 return; 390 391 bip = bio_integrity(req->bio); 392 if (!bip) 393 return; 394 395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 396 397 p = pmap; 398 virt = bip_get_seed(bip); 399 phys = nvme_block_nr(ns, blk_rq_pos(req)); 400 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 401 ts = ns->disk->queue->integrity.tuple_size; 402 403 for (i = 0; i < nlb; i++, virt++, phys++) { 404 pi = (struct t10_pi_tuple *)p; 405 dif_swap(phys, virt, pi); 406 p += ts; 407 } 408 kunmap_atomic(pmap); 409 } 410 #else /* CONFIG_BLK_DEV_INTEGRITY */ 411 static void nvme_dif_remap(struct request *req, 412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 413 { 414 } 415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 416 { 417 } 418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 419 { 420 } 421 #endif 422 423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req) 424 { 425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 426 struct dma_pool *pool; 427 int length = blk_rq_payload_bytes(req); 428 struct scatterlist *sg = iod->sg; 429 int dma_len = sg_dma_len(sg); 430 u64 dma_addr = sg_dma_address(sg); 431 u32 page_size = dev->ctrl.page_size; 432 int offset = dma_addr & (page_size - 1); 433 __le64 *prp_list; 434 __le64 **list = iod_list(req); 435 dma_addr_t prp_dma; 436 int nprps, i; 437 438 length -= (page_size - offset); 439 if (length <= 0) 440 return true; 441 442 dma_len -= (page_size - offset); 443 if (dma_len) { 444 dma_addr += (page_size - offset); 445 } else { 446 sg = sg_next(sg); 447 dma_addr = sg_dma_address(sg); 448 dma_len = sg_dma_len(sg); 449 } 450 451 if (length <= page_size) { 452 iod->first_dma = dma_addr; 453 return true; 454 } 455 456 nprps = DIV_ROUND_UP(length, page_size); 457 if (nprps <= (256 / 8)) { 458 pool = dev->prp_small_pool; 459 iod->npages = 0; 460 } else { 461 pool = dev->prp_page_pool; 462 iod->npages = 1; 463 } 464 465 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 466 if (!prp_list) { 467 iod->first_dma = dma_addr; 468 iod->npages = -1; 469 return false; 470 } 471 list[0] = prp_list; 472 iod->first_dma = prp_dma; 473 i = 0; 474 for (;;) { 475 if (i == page_size >> 3) { 476 __le64 *old_prp_list = prp_list; 477 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 478 if (!prp_list) 479 return false; 480 list[iod->npages++] = prp_list; 481 prp_list[0] = old_prp_list[i - 1]; 482 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 483 i = 1; 484 } 485 prp_list[i++] = cpu_to_le64(dma_addr); 486 dma_len -= page_size; 487 dma_addr += page_size; 488 length -= page_size; 489 if (length <= 0) 490 break; 491 if (dma_len > 0) 492 continue; 493 BUG_ON(dma_len < 0); 494 sg = sg_next(sg); 495 dma_addr = sg_dma_address(sg); 496 dma_len = sg_dma_len(sg); 497 } 498 499 return true; 500 } 501 502 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 503 struct nvme_command *cmnd) 504 { 505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 506 struct request_queue *q = req->q; 507 enum dma_data_direction dma_dir = rq_data_dir(req) ? 508 DMA_TO_DEVICE : DMA_FROM_DEVICE; 509 int ret = BLK_MQ_RQ_QUEUE_ERROR; 510 511 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 512 iod->nents = blk_rq_map_sg(q, req, iod->sg); 513 if (!iod->nents) 514 goto out; 515 516 ret = BLK_MQ_RQ_QUEUE_BUSY; 517 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 518 DMA_ATTR_NO_WARN)) 519 goto out; 520 521 if (!nvme_setup_prps(dev, req)) 522 goto out_unmap; 523 524 ret = BLK_MQ_RQ_QUEUE_ERROR; 525 if (blk_integrity_rq(req)) { 526 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 527 goto out_unmap; 528 529 sg_init_table(&iod->meta_sg, 1); 530 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 531 goto out_unmap; 532 533 if (rq_data_dir(req)) 534 nvme_dif_remap(req, nvme_dif_prep); 535 536 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 537 goto out_unmap; 538 } 539 540 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 541 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 542 if (blk_integrity_rq(req)) 543 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 544 return BLK_MQ_RQ_QUEUE_OK; 545 546 out_unmap: 547 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 548 out: 549 return ret; 550 } 551 552 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 553 { 554 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 555 enum dma_data_direction dma_dir = rq_data_dir(req) ? 556 DMA_TO_DEVICE : DMA_FROM_DEVICE; 557 558 if (iod->nents) { 559 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 560 if (blk_integrity_rq(req)) { 561 if (!rq_data_dir(req)) 562 nvme_dif_remap(req, nvme_dif_complete); 563 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 564 } 565 } 566 567 nvme_cleanup_cmd(req); 568 nvme_free_iod(dev, req); 569 } 570 571 /* 572 * NOTE: ns is NULL when called on the admin queue. 573 */ 574 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 575 const struct blk_mq_queue_data *bd) 576 { 577 struct nvme_ns *ns = hctx->queue->queuedata; 578 struct nvme_queue *nvmeq = hctx->driver_data; 579 struct nvme_dev *dev = nvmeq->dev; 580 struct request *req = bd->rq; 581 struct nvme_command cmnd; 582 int ret = BLK_MQ_RQ_QUEUE_OK; 583 584 /* 585 * If formated with metadata, require the block layer provide a buffer 586 * unless this namespace is formated such that the metadata can be 587 * stripped/generated by the controller with PRACT=1. 588 */ 589 if (ns && ns->ms && !blk_integrity_rq(req)) { 590 if (!(ns->pi_type && ns->ms == 8) && 591 req->cmd_type != REQ_TYPE_DRV_PRIV) { 592 blk_mq_end_request(req, -EFAULT); 593 return BLK_MQ_RQ_QUEUE_OK; 594 } 595 } 596 597 ret = nvme_setup_cmd(ns, req, &cmnd); 598 if (ret != BLK_MQ_RQ_QUEUE_OK) 599 return ret; 600 601 ret = nvme_init_iod(req, dev); 602 if (ret != BLK_MQ_RQ_QUEUE_OK) 603 goto out_free_cmd; 604 605 if (blk_rq_nr_phys_segments(req)) 606 ret = nvme_map_data(dev, req, &cmnd); 607 608 if (ret != BLK_MQ_RQ_QUEUE_OK) 609 goto out_cleanup_iod; 610 611 blk_mq_start_request(req); 612 613 spin_lock_irq(&nvmeq->q_lock); 614 if (unlikely(nvmeq->cq_vector < 0)) { 615 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) 616 ret = BLK_MQ_RQ_QUEUE_BUSY; 617 else 618 ret = BLK_MQ_RQ_QUEUE_ERROR; 619 spin_unlock_irq(&nvmeq->q_lock); 620 goto out_cleanup_iod; 621 } 622 __nvme_submit_cmd(nvmeq, &cmnd); 623 nvme_process_cq(nvmeq); 624 spin_unlock_irq(&nvmeq->q_lock); 625 return BLK_MQ_RQ_QUEUE_OK; 626 out_cleanup_iod: 627 nvme_free_iod(dev, req); 628 out_free_cmd: 629 nvme_cleanup_cmd(req); 630 return ret; 631 } 632 633 static void nvme_complete_rq(struct request *req) 634 { 635 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 636 struct nvme_dev *dev = iod->nvmeq->dev; 637 int error = 0; 638 639 nvme_unmap_data(dev, req); 640 641 if (unlikely(req->errors)) { 642 if (nvme_req_needs_retry(req, req->errors)) { 643 req->retries++; 644 nvme_requeue_req(req); 645 return; 646 } 647 648 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 649 error = req->errors; 650 else 651 error = nvme_error_status(req->errors); 652 } 653 654 if (unlikely(iod->aborted)) { 655 dev_warn(dev->ctrl.device, 656 "completing aborted command with status: %04x\n", 657 req->errors); 658 } 659 660 blk_mq_end_request(req, error); 661 } 662 663 /* We read the CQE phase first to check if the rest of the entry is valid */ 664 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 665 u16 phase) 666 { 667 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 668 } 669 670 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 671 { 672 u16 head, phase; 673 674 head = nvmeq->cq_head; 675 phase = nvmeq->cq_phase; 676 677 while (nvme_cqe_valid(nvmeq, head, phase)) { 678 struct nvme_completion cqe = nvmeq->cqes[head]; 679 struct request *req; 680 681 if (++head == nvmeq->q_depth) { 682 head = 0; 683 phase = !phase; 684 } 685 686 if (tag && *tag == cqe.command_id) 687 *tag = -1; 688 689 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 690 dev_warn(nvmeq->dev->ctrl.device, 691 "invalid id %d completed on queue %d\n", 692 cqe.command_id, le16_to_cpu(cqe.sq_id)); 693 continue; 694 } 695 696 /* 697 * AEN requests are special as they don't time out and can 698 * survive any kind of queue freeze and often don't respond to 699 * aborts. We don't even bother to allocate a struct request 700 * for them but rather special case them here. 701 */ 702 if (unlikely(nvmeq->qid == 0 && 703 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 704 nvme_complete_async_event(&nvmeq->dev->ctrl, 705 cqe.status, &cqe.result); 706 continue; 707 } 708 709 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 710 nvme_req(req)->result = cqe.result; 711 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 712 } 713 714 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 715 return; 716 717 if (likely(nvmeq->cq_vector >= 0)) 718 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 719 nvmeq->cq_head = head; 720 nvmeq->cq_phase = phase; 721 722 nvmeq->cqe_seen = 1; 723 } 724 725 static void nvme_process_cq(struct nvme_queue *nvmeq) 726 { 727 __nvme_process_cq(nvmeq, NULL); 728 } 729 730 static irqreturn_t nvme_irq(int irq, void *data) 731 { 732 irqreturn_t result; 733 struct nvme_queue *nvmeq = data; 734 spin_lock(&nvmeq->q_lock); 735 nvme_process_cq(nvmeq); 736 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 737 nvmeq->cqe_seen = 0; 738 spin_unlock(&nvmeq->q_lock); 739 return result; 740 } 741 742 static irqreturn_t nvme_irq_check(int irq, void *data) 743 { 744 struct nvme_queue *nvmeq = data; 745 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 746 return IRQ_WAKE_THREAD; 747 return IRQ_NONE; 748 } 749 750 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 751 { 752 struct nvme_queue *nvmeq = hctx->driver_data; 753 754 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 755 spin_lock_irq(&nvmeq->q_lock); 756 __nvme_process_cq(nvmeq, &tag); 757 spin_unlock_irq(&nvmeq->q_lock); 758 759 if (tag == -1) 760 return 1; 761 } 762 763 return 0; 764 } 765 766 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 767 { 768 struct nvme_dev *dev = to_nvme_dev(ctrl); 769 struct nvme_queue *nvmeq = dev->queues[0]; 770 struct nvme_command c; 771 772 memset(&c, 0, sizeof(c)); 773 c.common.opcode = nvme_admin_async_event; 774 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 775 776 spin_lock_irq(&nvmeq->q_lock); 777 __nvme_submit_cmd(nvmeq, &c); 778 spin_unlock_irq(&nvmeq->q_lock); 779 } 780 781 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 782 { 783 struct nvme_command c; 784 785 memset(&c, 0, sizeof(c)); 786 c.delete_queue.opcode = opcode; 787 c.delete_queue.qid = cpu_to_le16(id); 788 789 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 790 } 791 792 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 793 struct nvme_queue *nvmeq) 794 { 795 struct nvme_command c; 796 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 797 798 /* 799 * Note: we (ab)use the fact the the prp fields survive if no data 800 * is attached to the request. 801 */ 802 memset(&c, 0, sizeof(c)); 803 c.create_cq.opcode = nvme_admin_create_cq; 804 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 805 c.create_cq.cqid = cpu_to_le16(qid); 806 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 807 c.create_cq.cq_flags = cpu_to_le16(flags); 808 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 809 810 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 811 } 812 813 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 814 struct nvme_queue *nvmeq) 815 { 816 struct nvme_command c; 817 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 818 819 /* 820 * Note: we (ab)use the fact the the prp fields survive if no data 821 * is attached to the request. 822 */ 823 memset(&c, 0, sizeof(c)); 824 c.create_sq.opcode = nvme_admin_create_sq; 825 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 826 c.create_sq.sqid = cpu_to_le16(qid); 827 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 828 c.create_sq.sq_flags = cpu_to_le16(flags); 829 c.create_sq.cqid = cpu_to_le16(qid); 830 831 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 832 } 833 834 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 835 { 836 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 837 } 838 839 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 840 { 841 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 842 } 843 844 static void abort_endio(struct request *req, int error) 845 { 846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 847 struct nvme_queue *nvmeq = iod->nvmeq; 848 u16 status = req->errors; 849 850 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 851 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 852 blk_mq_free_request(req); 853 } 854 855 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 856 { 857 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 858 struct nvme_queue *nvmeq = iod->nvmeq; 859 struct nvme_dev *dev = nvmeq->dev; 860 struct request *abort_req; 861 struct nvme_command cmd; 862 863 /* 864 * Shutdown immediately if controller times out while starting. The 865 * reset work will see the pci device disabled when it gets the forced 866 * cancellation error. All outstanding requests are completed on 867 * shutdown, so we return BLK_EH_HANDLED. 868 */ 869 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 870 dev_warn(dev->ctrl.device, 871 "I/O %d QID %d timeout, disable controller\n", 872 req->tag, nvmeq->qid); 873 nvme_dev_disable(dev, false); 874 req->errors = NVME_SC_CANCELLED; 875 return BLK_EH_HANDLED; 876 } 877 878 /* 879 * Shutdown the controller immediately and schedule a reset if the 880 * command was already aborted once before and still hasn't been 881 * returned to the driver, or if this is the admin queue. 882 */ 883 if (!nvmeq->qid || iod->aborted) { 884 dev_warn(dev->ctrl.device, 885 "I/O %d QID %d timeout, reset controller\n", 886 req->tag, nvmeq->qid); 887 nvme_dev_disable(dev, false); 888 nvme_reset(dev); 889 890 /* 891 * Mark the request as handled, since the inline shutdown 892 * forces all outstanding requests to complete. 893 */ 894 req->errors = NVME_SC_CANCELLED; 895 return BLK_EH_HANDLED; 896 } 897 898 iod->aborted = 1; 899 900 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 901 atomic_inc(&dev->ctrl.abort_limit); 902 return BLK_EH_RESET_TIMER; 903 } 904 905 memset(&cmd, 0, sizeof(cmd)); 906 cmd.abort.opcode = nvme_admin_abort_cmd; 907 cmd.abort.cid = req->tag; 908 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 909 910 dev_warn(nvmeq->dev->ctrl.device, 911 "I/O %d QID %d timeout, aborting\n", 912 req->tag, nvmeq->qid); 913 914 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 915 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 916 if (IS_ERR(abort_req)) { 917 atomic_inc(&dev->ctrl.abort_limit); 918 return BLK_EH_RESET_TIMER; 919 } 920 921 abort_req->timeout = ADMIN_TIMEOUT; 922 abort_req->end_io_data = NULL; 923 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 924 925 /* 926 * The aborted req will be completed on receiving the abort req. 927 * We enable the timer again. If hit twice, it'll cause a device reset, 928 * as the device then is in a faulty state. 929 */ 930 return BLK_EH_RESET_TIMER; 931 } 932 933 static void nvme_free_queue(struct nvme_queue *nvmeq) 934 { 935 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 936 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 937 if (nvmeq->sq_cmds) 938 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 939 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 940 kfree(nvmeq); 941 } 942 943 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 944 { 945 int i; 946 947 for (i = dev->queue_count - 1; i >= lowest; i--) { 948 struct nvme_queue *nvmeq = dev->queues[i]; 949 dev->queue_count--; 950 dev->queues[i] = NULL; 951 nvme_free_queue(nvmeq); 952 } 953 } 954 955 /** 956 * nvme_suspend_queue - put queue into suspended state 957 * @nvmeq - queue to suspend 958 */ 959 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 960 { 961 int vector; 962 963 spin_lock_irq(&nvmeq->q_lock); 964 if (nvmeq->cq_vector == -1) { 965 spin_unlock_irq(&nvmeq->q_lock); 966 return 1; 967 } 968 vector = nvmeq_irq(nvmeq); 969 nvmeq->dev->online_queues--; 970 nvmeq->cq_vector = -1; 971 spin_unlock_irq(&nvmeq->q_lock); 972 973 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 974 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 975 976 free_irq(vector, nvmeq); 977 978 return 0; 979 } 980 981 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 982 { 983 struct nvme_queue *nvmeq = dev->queues[0]; 984 985 if (!nvmeq) 986 return; 987 if (nvme_suspend_queue(nvmeq)) 988 return; 989 990 if (shutdown) 991 nvme_shutdown_ctrl(&dev->ctrl); 992 else 993 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 994 dev->bar + NVME_REG_CAP)); 995 996 spin_lock_irq(&nvmeq->q_lock); 997 nvme_process_cq(nvmeq); 998 spin_unlock_irq(&nvmeq->q_lock); 999 } 1000 1001 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1002 int entry_size) 1003 { 1004 int q_depth = dev->q_depth; 1005 unsigned q_size_aligned = roundup(q_depth * entry_size, 1006 dev->ctrl.page_size); 1007 1008 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1009 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1010 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1011 q_depth = div_u64(mem_per_q, entry_size); 1012 1013 /* 1014 * Ensure the reduced q_depth is above some threshold where it 1015 * would be better to map queues in system memory with the 1016 * original depth 1017 */ 1018 if (q_depth < 64) 1019 return -ENOMEM; 1020 } 1021 1022 return q_depth; 1023 } 1024 1025 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1026 int qid, int depth) 1027 { 1028 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1029 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1030 dev->ctrl.page_size); 1031 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1032 nvmeq->sq_cmds_io = dev->cmb + offset; 1033 } else { 1034 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1035 &nvmeq->sq_dma_addr, GFP_KERNEL); 1036 if (!nvmeq->sq_cmds) 1037 return -ENOMEM; 1038 } 1039 1040 return 0; 1041 } 1042 1043 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1044 int depth) 1045 { 1046 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1047 if (!nvmeq) 1048 return NULL; 1049 1050 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1051 &nvmeq->cq_dma_addr, GFP_KERNEL); 1052 if (!nvmeq->cqes) 1053 goto free_nvmeq; 1054 1055 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1056 goto free_cqdma; 1057 1058 nvmeq->q_dmadev = dev->dev; 1059 nvmeq->dev = dev; 1060 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1061 dev->ctrl.instance, qid); 1062 spin_lock_init(&nvmeq->q_lock); 1063 nvmeq->cq_head = 0; 1064 nvmeq->cq_phase = 1; 1065 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1066 nvmeq->q_depth = depth; 1067 nvmeq->qid = qid; 1068 nvmeq->cq_vector = -1; 1069 dev->queues[qid] = nvmeq; 1070 dev->queue_count++; 1071 1072 return nvmeq; 1073 1074 free_cqdma: 1075 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1076 nvmeq->cq_dma_addr); 1077 free_nvmeq: 1078 kfree(nvmeq); 1079 return NULL; 1080 } 1081 1082 static int queue_request_irq(struct nvme_queue *nvmeq) 1083 { 1084 if (use_threaded_interrupts) 1085 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, 1086 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); 1087 else 1088 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, 1089 nvmeq->irqname, nvmeq); 1090 } 1091 1092 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1093 { 1094 struct nvme_dev *dev = nvmeq->dev; 1095 1096 spin_lock_irq(&nvmeq->q_lock); 1097 nvmeq->sq_tail = 0; 1098 nvmeq->cq_head = 0; 1099 nvmeq->cq_phase = 1; 1100 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1101 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1102 dev->online_queues++; 1103 spin_unlock_irq(&nvmeq->q_lock); 1104 } 1105 1106 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1107 { 1108 struct nvme_dev *dev = nvmeq->dev; 1109 int result; 1110 1111 nvmeq->cq_vector = qid - 1; 1112 result = adapter_alloc_cq(dev, qid, nvmeq); 1113 if (result < 0) 1114 return result; 1115 1116 result = adapter_alloc_sq(dev, qid, nvmeq); 1117 if (result < 0) 1118 goto release_cq; 1119 1120 result = queue_request_irq(nvmeq); 1121 if (result < 0) 1122 goto release_sq; 1123 1124 nvme_init_queue(nvmeq, qid); 1125 return result; 1126 1127 release_sq: 1128 adapter_delete_sq(dev, qid); 1129 release_cq: 1130 adapter_delete_cq(dev, qid); 1131 return result; 1132 } 1133 1134 static struct blk_mq_ops nvme_mq_admin_ops = { 1135 .queue_rq = nvme_queue_rq, 1136 .complete = nvme_complete_rq, 1137 .init_hctx = nvme_admin_init_hctx, 1138 .exit_hctx = nvme_admin_exit_hctx, 1139 .init_request = nvme_admin_init_request, 1140 .timeout = nvme_timeout, 1141 }; 1142 1143 static struct blk_mq_ops nvme_mq_ops = { 1144 .queue_rq = nvme_queue_rq, 1145 .complete = nvme_complete_rq, 1146 .init_hctx = nvme_init_hctx, 1147 .init_request = nvme_init_request, 1148 .map_queues = nvme_pci_map_queues, 1149 .timeout = nvme_timeout, 1150 .poll = nvme_poll, 1151 }; 1152 1153 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1154 { 1155 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1156 /* 1157 * If the controller was reset during removal, it's possible 1158 * user requests may be waiting on a stopped queue. Start the 1159 * queue to flush these to completion. 1160 */ 1161 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1162 blk_cleanup_queue(dev->ctrl.admin_q); 1163 blk_mq_free_tag_set(&dev->admin_tagset); 1164 } 1165 } 1166 1167 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1168 { 1169 if (!dev->ctrl.admin_q) { 1170 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1171 dev->admin_tagset.nr_hw_queues = 1; 1172 1173 /* 1174 * Subtract one to leave an empty queue entry for 'Full Queue' 1175 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1176 */ 1177 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1178 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1179 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1180 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1181 dev->admin_tagset.driver_data = dev; 1182 1183 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1184 return -ENOMEM; 1185 1186 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1187 if (IS_ERR(dev->ctrl.admin_q)) { 1188 blk_mq_free_tag_set(&dev->admin_tagset); 1189 return -ENOMEM; 1190 } 1191 if (!blk_get_queue(dev->ctrl.admin_q)) { 1192 nvme_dev_remove_admin(dev); 1193 dev->ctrl.admin_q = NULL; 1194 return -ENODEV; 1195 } 1196 } else 1197 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1198 1199 return 0; 1200 } 1201 1202 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1203 { 1204 int result; 1205 u32 aqa; 1206 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1207 struct nvme_queue *nvmeq; 1208 1209 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1210 NVME_CAP_NSSRC(cap) : 0; 1211 1212 if (dev->subsystem && 1213 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1214 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1215 1216 result = nvme_disable_ctrl(&dev->ctrl, cap); 1217 if (result < 0) 1218 return result; 1219 1220 nvmeq = dev->queues[0]; 1221 if (!nvmeq) { 1222 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1223 if (!nvmeq) 1224 return -ENOMEM; 1225 } 1226 1227 aqa = nvmeq->q_depth - 1; 1228 aqa |= aqa << 16; 1229 1230 writel(aqa, dev->bar + NVME_REG_AQA); 1231 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1232 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1233 1234 result = nvme_enable_ctrl(&dev->ctrl, cap); 1235 if (result) 1236 return result; 1237 1238 nvmeq->cq_vector = 0; 1239 result = queue_request_irq(nvmeq); 1240 if (result) { 1241 nvmeq->cq_vector = -1; 1242 return result; 1243 } 1244 1245 return result; 1246 } 1247 1248 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1249 { 1250 1251 /* If true, indicates loss of adapter communication, possibly by a 1252 * NVMe Subsystem reset. 1253 */ 1254 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1255 1256 /* If there is a reset ongoing, we shouldn't reset again. */ 1257 if (work_busy(&dev->reset_work)) 1258 return false; 1259 1260 /* We shouldn't reset unless the controller is on fatal error state 1261 * _or_ if we lost the communication with it. 1262 */ 1263 if (!(csts & NVME_CSTS_CFS) && !nssro) 1264 return false; 1265 1266 /* If PCI error recovery process is happening, we cannot reset or 1267 * the recovery mechanism will surely fail. 1268 */ 1269 if (pci_channel_offline(to_pci_dev(dev->dev))) 1270 return false; 1271 1272 return true; 1273 } 1274 1275 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1276 { 1277 /* Read a config register to help see what died. */ 1278 u16 pci_status; 1279 int result; 1280 1281 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1282 &pci_status); 1283 if (result == PCIBIOS_SUCCESSFUL) 1284 dev_warn(dev->dev, 1285 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1286 csts, pci_status); 1287 else 1288 dev_warn(dev->dev, 1289 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1290 csts, result); 1291 } 1292 1293 static void nvme_watchdog_timer(unsigned long data) 1294 { 1295 struct nvme_dev *dev = (struct nvme_dev *)data; 1296 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1297 1298 /* Skip controllers under certain specific conditions. */ 1299 if (nvme_should_reset(dev, csts)) { 1300 if (!nvme_reset(dev)) 1301 nvme_warn_reset(dev, csts); 1302 return; 1303 } 1304 1305 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1306 } 1307 1308 static int nvme_create_io_queues(struct nvme_dev *dev) 1309 { 1310 unsigned i, max; 1311 int ret = 0; 1312 1313 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1314 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1315 ret = -ENOMEM; 1316 break; 1317 } 1318 } 1319 1320 max = min(dev->max_qid, dev->queue_count - 1); 1321 for (i = dev->online_queues; i <= max; i++) { 1322 ret = nvme_create_queue(dev->queues[i], i); 1323 if (ret) 1324 break; 1325 } 1326 1327 /* 1328 * Ignore failing Create SQ/CQ commands, we can continue with less 1329 * than the desired aount of queues, and even a controller without 1330 * I/O queues an still be used to issue admin commands. This might 1331 * be useful to upgrade a buggy firmware for example. 1332 */ 1333 return ret >= 0 ? 0 : ret; 1334 } 1335 1336 static ssize_t nvme_cmb_show(struct device *dev, 1337 struct device_attribute *attr, 1338 char *buf) 1339 { 1340 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1341 1342 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1343 ndev->cmbloc, ndev->cmbsz); 1344 } 1345 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1346 1347 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1348 { 1349 u64 szu, size, offset; 1350 resource_size_t bar_size; 1351 struct pci_dev *pdev = to_pci_dev(dev->dev); 1352 void __iomem *cmb; 1353 dma_addr_t dma_addr; 1354 1355 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1356 if (!(NVME_CMB_SZ(dev->cmbsz))) 1357 return NULL; 1358 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1359 1360 if (!use_cmb_sqes) 1361 return NULL; 1362 1363 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1364 size = szu * NVME_CMB_SZ(dev->cmbsz); 1365 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1366 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1367 1368 if (offset > bar_size) 1369 return NULL; 1370 1371 /* 1372 * Controllers may support a CMB size larger than their BAR, 1373 * for example, due to being behind a bridge. Reduce the CMB to 1374 * the reported size of the BAR 1375 */ 1376 if (size > bar_size - offset) 1377 size = bar_size - offset; 1378 1379 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1380 cmb = ioremap_wc(dma_addr, size); 1381 if (!cmb) 1382 return NULL; 1383 1384 dev->cmb_dma_addr = dma_addr; 1385 dev->cmb_size = size; 1386 return cmb; 1387 } 1388 1389 static inline void nvme_release_cmb(struct nvme_dev *dev) 1390 { 1391 if (dev->cmb) { 1392 iounmap(dev->cmb); 1393 dev->cmb = NULL; 1394 } 1395 } 1396 1397 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1398 { 1399 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1400 } 1401 1402 static int nvme_setup_io_queues(struct nvme_dev *dev) 1403 { 1404 struct nvme_queue *adminq = dev->queues[0]; 1405 struct pci_dev *pdev = to_pci_dev(dev->dev); 1406 int result, nr_io_queues, size; 1407 1408 nr_io_queues = num_online_cpus(); 1409 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1410 if (result < 0) 1411 return result; 1412 1413 if (nr_io_queues == 0) 1414 return 0; 1415 1416 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1417 result = nvme_cmb_qdepth(dev, nr_io_queues, 1418 sizeof(struct nvme_command)); 1419 if (result > 0) 1420 dev->q_depth = result; 1421 else 1422 nvme_release_cmb(dev); 1423 } 1424 1425 size = db_bar_size(dev, nr_io_queues); 1426 if (size > 8192) { 1427 iounmap(dev->bar); 1428 do { 1429 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1430 if (dev->bar) 1431 break; 1432 if (!--nr_io_queues) 1433 return -ENOMEM; 1434 size = db_bar_size(dev, nr_io_queues); 1435 } while (1); 1436 dev->dbs = dev->bar + 4096; 1437 adminq->q_db = dev->dbs; 1438 } 1439 1440 /* Deregister the admin queue's interrupt */ 1441 free_irq(pci_irq_vector(pdev, 0), adminq); 1442 1443 /* 1444 * If we enable msix early due to not intx, disable it again before 1445 * setting up the full range we need. 1446 */ 1447 pci_free_irq_vectors(pdev); 1448 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1449 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1450 if (nr_io_queues <= 0) 1451 return -EIO; 1452 dev->max_qid = nr_io_queues; 1453 1454 /* 1455 * Should investigate if there's a performance win from allocating 1456 * more queues than interrupt vectors; it might allow the submission 1457 * path to scale better, even if the receive path is limited by the 1458 * number of interrupts. 1459 */ 1460 1461 result = queue_request_irq(adminq); 1462 if (result) { 1463 adminq->cq_vector = -1; 1464 return result; 1465 } 1466 return nvme_create_io_queues(dev); 1467 } 1468 1469 static void nvme_del_queue_end(struct request *req, int error) 1470 { 1471 struct nvme_queue *nvmeq = req->end_io_data; 1472 1473 blk_mq_free_request(req); 1474 complete(&nvmeq->dev->ioq_wait); 1475 } 1476 1477 static void nvme_del_cq_end(struct request *req, int error) 1478 { 1479 struct nvme_queue *nvmeq = req->end_io_data; 1480 1481 if (!error) { 1482 unsigned long flags; 1483 1484 /* 1485 * We might be called with the AQ q_lock held 1486 * and the I/O queue q_lock should always 1487 * nest inside the AQ one. 1488 */ 1489 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1490 SINGLE_DEPTH_NESTING); 1491 nvme_process_cq(nvmeq); 1492 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1493 } 1494 1495 nvme_del_queue_end(req, error); 1496 } 1497 1498 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1499 { 1500 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1501 struct request *req; 1502 struct nvme_command cmd; 1503 1504 memset(&cmd, 0, sizeof(cmd)); 1505 cmd.delete_queue.opcode = opcode; 1506 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1507 1508 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1509 if (IS_ERR(req)) 1510 return PTR_ERR(req); 1511 1512 req->timeout = ADMIN_TIMEOUT; 1513 req->end_io_data = nvmeq; 1514 1515 blk_execute_rq_nowait(q, NULL, req, false, 1516 opcode == nvme_admin_delete_cq ? 1517 nvme_del_cq_end : nvme_del_queue_end); 1518 return 0; 1519 } 1520 1521 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1522 { 1523 int pass; 1524 unsigned long timeout; 1525 u8 opcode = nvme_admin_delete_sq; 1526 1527 for (pass = 0; pass < 2; pass++) { 1528 int sent = 0, i = queues; 1529 1530 reinit_completion(&dev->ioq_wait); 1531 retry: 1532 timeout = ADMIN_TIMEOUT; 1533 for (; i > 0; i--, sent++) 1534 if (nvme_delete_queue(dev->queues[i], opcode)) 1535 break; 1536 1537 while (sent--) { 1538 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1539 if (timeout == 0) 1540 return; 1541 if (i) 1542 goto retry; 1543 } 1544 opcode = nvme_admin_delete_cq; 1545 } 1546 } 1547 1548 /* 1549 * Return: error value if an error occurred setting up the queues or calling 1550 * Identify Device. 0 if these succeeded, even if adding some of the 1551 * namespaces failed. At the moment, these failures are silent. TBD which 1552 * failures should be reported. 1553 */ 1554 static int nvme_dev_add(struct nvme_dev *dev) 1555 { 1556 if (!dev->ctrl.tagset) { 1557 dev->tagset.ops = &nvme_mq_ops; 1558 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1559 dev->tagset.timeout = NVME_IO_TIMEOUT; 1560 dev->tagset.numa_node = dev_to_node(dev->dev); 1561 dev->tagset.queue_depth = 1562 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1563 dev->tagset.cmd_size = nvme_cmd_size(dev); 1564 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1565 dev->tagset.driver_data = dev; 1566 1567 if (blk_mq_alloc_tag_set(&dev->tagset)) 1568 return 0; 1569 dev->ctrl.tagset = &dev->tagset; 1570 } else { 1571 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1572 1573 /* Free previously allocated queues that are no longer usable */ 1574 nvme_free_queues(dev, dev->online_queues); 1575 } 1576 1577 return 0; 1578 } 1579 1580 static int nvme_pci_enable(struct nvme_dev *dev) 1581 { 1582 u64 cap; 1583 int result = -ENOMEM; 1584 struct pci_dev *pdev = to_pci_dev(dev->dev); 1585 1586 if (pci_enable_device_mem(pdev)) 1587 return result; 1588 1589 pci_set_master(pdev); 1590 1591 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1592 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1593 goto disable; 1594 1595 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1596 result = -ENODEV; 1597 goto disable; 1598 } 1599 1600 /* 1601 * Some devices and/or platforms don't advertise or work with INTx 1602 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1603 * adjust this later. 1604 */ 1605 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1606 if (result < 0) 1607 return result; 1608 1609 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1610 1611 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1612 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1613 dev->dbs = dev->bar + 4096; 1614 1615 /* 1616 * Temporary fix for the Apple controller found in the MacBook8,1 and 1617 * some MacBook7,1 to avoid controller resets and data loss. 1618 */ 1619 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1620 dev->q_depth = 2; 1621 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1622 "queue depth=%u to work around controller resets\n", 1623 dev->q_depth); 1624 } 1625 1626 /* 1627 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1628 * populate sysfs if a CMB is implemented. Note that we add the 1629 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1630 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1631 * NULL as final argument to sysfs_add_file_to_group. 1632 */ 1633 1634 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1635 dev->cmb = nvme_map_cmb(dev); 1636 1637 if (dev->cmbsz) { 1638 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1639 &dev_attr_cmb.attr, NULL)) 1640 dev_warn(dev->dev, 1641 "failed to add sysfs attribute for CMB\n"); 1642 } 1643 } 1644 1645 pci_enable_pcie_error_reporting(pdev); 1646 pci_save_state(pdev); 1647 return 0; 1648 1649 disable: 1650 pci_disable_device(pdev); 1651 return result; 1652 } 1653 1654 static void nvme_dev_unmap(struct nvme_dev *dev) 1655 { 1656 if (dev->bar) 1657 iounmap(dev->bar); 1658 pci_release_mem_regions(to_pci_dev(dev->dev)); 1659 } 1660 1661 static void nvme_pci_disable(struct nvme_dev *dev) 1662 { 1663 struct pci_dev *pdev = to_pci_dev(dev->dev); 1664 1665 pci_free_irq_vectors(pdev); 1666 1667 if (pci_is_enabled(pdev)) { 1668 pci_disable_pcie_error_reporting(pdev); 1669 pci_disable_device(pdev); 1670 } 1671 } 1672 1673 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1674 { 1675 int i, queues; 1676 u32 csts = -1; 1677 1678 del_timer_sync(&dev->watchdog_timer); 1679 1680 mutex_lock(&dev->shutdown_lock); 1681 if (pci_is_enabled(to_pci_dev(dev->dev))) { 1682 nvme_stop_queues(&dev->ctrl); 1683 csts = readl(dev->bar + NVME_REG_CSTS); 1684 } 1685 1686 queues = dev->online_queues - 1; 1687 for (i = dev->queue_count - 1; i > 0; i--) 1688 nvme_suspend_queue(dev->queues[i]); 1689 1690 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1691 /* A device might become IO incapable very soon during 1692 * probe, before the admin queue is configured. Thus, 1693 * queue_count can be 0 here. 1694 */ 1695 if (dev->queue_count) 1696 nvme_suspend_queue(dev->queues[0]); 1697 } else { 1698 nvme_disable_io_queues(dev, queues); 1699 nvme_disable_admin_queue(dev, shutdown); 1700 } 1701 nvme_pci_disable(dev); 1702 1703 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1704 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1705 mutex_unlock(&dev->shutdown_lock); 1706 } 1707 1708 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1709 { 1710 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1711 PAGE_SIZE, PAGE_SIZE, 0); 1712 if (!dev->prp_page_pool) 1713 return -ENOMEM; 1714 1715 /* Optimisation for I/Os between 4k and 128k */ 1716 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1717 256, 256, 0); 1718 if (!dev->prp_small_pool) { 1719 dma_pool_destroy(dev->prp_page_pool); 1720 return -ENOMEM; 1721 } 1722 return 0; 1723 } 1724 1725 static void nvme_release_prp_pools(struct nvme_dev *dev) 1726 { 1727 dma_pool_destroy(dev->prp_page_pool); 1728 dma_pool_destroy(dev->prp_small_pool); 1729 } 1730 1731 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1732 { 1733 struct nvme_dev *dev = to_nvme_dev(ctrl); 1734 1735 put_device(dev->dev); 1736 if (dev->tagset.tags) 1737 blk_mq_free_tag_set(&dev->tagset); 1738 if (dev->ctrl.admin_q) 1739 blk_put_queue(dev->ctrl.admin_q); 1740 kfree(dev->queues); 1741 kfree(dev); 1742 } 1743 1744 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1745 { 1746 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1747 1748 kref_get(&dev->ctrl.kref); 1749 nvme_dev_disable(dev, false); 1750 if (!schedule_work(&dev->remove_work)) 1751 nvme_put_ctrl(&dev->ctrl); 1752 } 1753 1754 static void nvme_reset_work(struct work_struct *work) 1755 { 1756 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1757 int result = -ENODEV; 1758 1759 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1760 goto out; 1761 1762 /* 1763 * If we're called to reset a live controller first shut it down before 1764 * moving on. 1765 */ 1766 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1767 nvme_dev_disable(dev, false); 1768 1769 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1770 goto out; 1771 1772 result = nvme_pci_enable(dev); 1773 if (result) 1774 goto out; 1775 1776 result = nvme_configure_admin_queue(dev); 1777 if (result) 1778 goto out; 1779 1780 nvme_init_queue(dev->queues[0], 0); 1781 result = nvme_alloc_admin_tags(dev); 1782 if (result) 1783 goto out; 1784 1785 result = nvme_init_identify(&dev->ctrl); 1786 if (result) 1787 goto out; 1788 1789 result = nvme_setup_io_queues(dev); 1790 if (result) 1791 goto out; 1792 1793 /* 1794 * A controller that can not execute IO typically requires user 1795 * intervention to correct. For such degraded controllers, the driver 1796 * should not submit commands the user did not request, so skip 1797 * registering for asynchronous event notification on this condition. 1798 */ 1799 if (dev->online_queues > 1) 1800 nvme_queue_async_events(&dev->ctrl); 1801 1802 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1803 1804 /* 1805 * Keep the controller around but remove all namespaces if we don't have 1806 * any working I/O queue. 1807 */ 1808 if (dev->online_queues < 2) { 1809 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1810 nvme_kill_queues(&dev->ctrl); 1811 nvme_remove_namespaces(&dev->ctrl); 1812 } else { 1813 nvme_start_queues(&dev->ctrl); 1814 nvme_dev_add(dev); 1815 } 1816 1817 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1818 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1819 goto out; 1820 } 1821 1822 if (dev->online_queues > 1) 1823 nvme_queue_scan(&dev->ctrl); 1824 return; 1825 1826 out: 1827 nvme_remove_dead_ctrl(dev, result); 1828 } 1829 1830 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1831 { 1832 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1833 struct pci_dev *pdev = to_pci_dev(dev->dev); 1834 1835 nvme_kill_queues(&dev->ctrl); 1836 if (pci_get_drvdata(pdev)) 1837 device_release_driver(&pdev->dev); 1838 nvme_put_ctrl(&dev->ctrl); 1839 } 1840 1841 static int nvme_reset(struct nvme_dev *dev) 1842 { 1843 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1844 return -ENODEV; 1845 if (work_busy(&dev->reset_work)) 1846 return -ENODEV; 1847 if (!queue_work(nvme_workq, &dev->reset_work)) 1848 return -EBUSY; 1849 return 0; 1850 } 1851 1852 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1853 { 1854 *val = readl(to_nvme_dev(ctrl)->bar + off); 1855 return 0; 1856 } 1857 1858 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1859 { 1860 writel(val, to_nvme_dev(ctrl)->bar + off); 1861 return 0; 1862 } 1863 1864 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1865 { 1866 *val = readq(to_nvme_dev(ctrl)->bar + off); 1867 return 0; 1868 } 1869 1870 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1871 { 1872 struct nvme_dev *dev = to_nvme_dev(ctrl); 1873 int ret = nvme_reset(dev); 1874 1875 if (!ret) 1876 flush_work(&dev->reset_work); 1877 return ret; 1878 } 1879 1880 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1881 .name = "pcie", 1882 .module = THIS_MODULE, 1883 .reg_read32 = nvme_pci_reg_read32, 1884 .reg_write32 = nvme_pci_reg_write32, 1885 .reg_read64 = nvme_pci_reg_read64, 1886 .reset_ctrl = nvme_pci_reset_ctrl, 1887 .free_ctrl = nvme_pci_free_ctrl, 1888 .submit_async_event = nvme_pci_submit_async_event, 1889 }; 1890 1891 static int nvme_dev_map(struct nvme_dev *dev) 1892 { 1893 struct pci_dev *pdev = to_pci_dev(dev->dev); 1894 1895 if (pci_request_mem_regions(pdev, "nvme")) 1896 return -ENODEV; 1897 1898 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1899 if (!dev->bar) 1900 goto release; 1901 1902 return 0; 1903 release: 1904 pci_release_mem_regions(pdev); 1905 return -ENODEV; 1906 } 1907 1908 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1909 { 1910 int node, result = -ENOMEM; 1911 struct nvme_dev *dev; 1912 1913 node = dev_to_node(&pdev->dev); 1914 if (node == NUMA_NO_NODE) 1915 set_dev_node(&pdev->dev, first_memory_node); 1916 1917 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 1918 if (!dev) 1919 return -ENOMEM; 1920 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 1921 GFP_KERNEL, node); 1922 if (!dev->queues) 1923 goto free; 1924 1925 dev->dev = get_device(&pdev->dev); 1926 pci_set_drvdata(pdev, dev); 1927 1928 result = nvme_dev_map(dev); 1929 if (result) 1930 goto free; 1931 1932 INIT_WORK(&dev->reset_work, nvme_reset_work); 1933 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 1934 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 1935 (unsigned long)dev); 1936 mutex_init(&dev->shutdown_lock); 1937 init_completion(&dev->ioq_wait); 1938 1939 result = nvme_setup_prp_pools(dev); 1940 if (result) 1941 goto put_pci; 1942 1943 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 1944 id->driver_data); 1945 if (result) 1946 goto release_pools; 1947 1948 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 1949 1950 queue_work(nvme_workq, &dev->reset_work); 1951 return 0; 1952 1953 release_pools: 1954 nvme_release_prp_pools(dev); 1955 put_pci: 1956 put_device(dev->dev); 1957 nvme_dev_unmap(dev); 1958 free: 1959 kfree(dev->queues); 1960 kfree(dev); 1961 return result; 1962 } 1963 1964 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 1965 { 1966 struct nvme_dev *dev = pci_get_drvdata(pdev); 1967 1968 if (prepare) 1969 nvme_dev_disable(dev, false); 1970 else 1971 nvme_reset(dev); 1972 } 1973 1974 static void nvme_shutdown(struct pci_dev *pdev) 1975 { 1976 struct nvme_dev *dev = pci_get_drvdata(pdev); 1977 nvme_dev_disable(dev, true); 1978 } 1979 1980 /* 1981 * The driver's remove may be called on a device in a partially initialized 1982 * state. This function must not have any dependencies on the device state in 1983 * order to proceed. 1984 */ 1985 static void nvme_remove(struct pci_dev *pdev) 1986 { 1987 struct nvme_dev *dev = pci_get_drvdata(pdev); 1988 1989 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1990 1991 pci_set_drvdata(pdev, NULL); 1992 1993 if (!pci_device_is_present(pdev)) 1994 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 1995 1996 flush_work(&dev->reset_work); 1997 nvme_uninit_ctrl(&dev->ctrl); 1998 nvme_dev_disable(dev, true); 1999 nvme_dev_remove_admin(dev); 2000 nvme_free_queues(dev, 0); 2001 nvme_release_cmb(dev); 2002 nvme_release_prp_pools(dev); 2003 nvme_dev_unmap(dev); 2004 nvme_put_ctrl(&dev->ctrl); 2005 } 2006 2007 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2008 { 2009 int ret = 0; 2010 2011 if (numvfs == 0) { 2012 if (pci_vfs_assigned(pdev)) { 2013 dev_warn(&pdev->dev, 2014 "Cannot disable SR-IOV VFs while assigned\n"); 2015 return -EPERM; 2016 } 2017 pci_disable_sriov(pdev); 2018 return 0; 2019 } 2020 2021 ret = pci_enable_sriov(pdev, numvfs); 2022 return ret ? ret : numvfs; 2023 } 2024 2025 #ifdef CONFIG_PM_SLEEP 2026 static int nvme_suspend(struct device *dev) 2027 { 2028 struct pci_dev *pdev = to_pci_dev(dev); 2029 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2030 2031 nvme_dev_disable(ndev, true); 2032 return 0; 2033 } 2034 2035 static int nvme_resume(struct device *dev) 2036 { 2037 struct pci_dev *pdev = to_pci_dev(dev); 2038 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2039 2040 nvme_reset(ndev); 2041 return 0; 2042 } 2043 #endif 2044 2045 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2046 2047 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2048 pci_channel_state_t state) 2049 { 2050 struct nvme_dev *dev = pci_get_drvdata(pdev); 2051 2052 /* 2053 * A frozen channel requires a reset. When detected, this method will 2054 * shutdown the controller to quiesce. The controller will be restarted 2055 * after the slot reset through driver's slot_reset callback. 2056 */ 2057 switch (state) { 2058 case pci_channel_io_normal: 2059 return PCI_ERS_RESULT_CAN_RECOVER; 2060 case pci_channel_io_frozen: 2061 dev_warn(dev->ctrl.device, 2062 "frozen state error detected, reset controller\n"); 2063 nvme_dev_disable(dev, false); 2064 return PCI_ERS_RESULT_NEED_RESET; 2065 case pci_channel_io_perm_failure: 2066 dev_warn(dev->ctrl.device, 2067 "failure state error detected, request disconnect\n"); 2068 return PCI_ERS_RESULT_DISCONNECT; 2069 } 2070 return PCI_ERS_RESULT_NEED_RESET; 2071 } 2072 2073 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2074 { 2075 struct nvme_dev *dev = pci_get_drvdata(pdev); 2076 2077 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2078 pci_restore_state(pdev); 2079 nvme_reset(dev); 2080 return PCI_ERS_RESULT_RECOVERED; 2081 } 2082 2083 static void nvme_error_resume(struct pci_dev *pdev) 2084 { 2085 pci_cleanup_aer_uncorrect_error_status(pdev); 2086 } 2087 2088 static const struct pci_error_handlers nvme_err_handler = { 2089 .error_detected = nvme_error_detected, 2090 .slot_reset = nvme_slot_reset, 2091 .resume = nvme_error_resume, 2092 .reset_notify = nvme_reset_notify, 2093 }; 2094 2095 static const struct pci_device_id nvme_id_table[] = { 2096 { PCI_VDEVICE(INTEL, 0x0953), 2097 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2098 NVME_QUIRK_DISCARD_ZEROES, }, 2099 { PCI_VDEVICE(INTEL, 0x0a53), 2100 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2101 NVME_QUIRK_DISCARD_ZEROES, }, 2102 { PCI_VDEVICE(INTEL, 0x0a54), 2103 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2104 NVME_QUIRK_DISCARD_ZEROES, }, 2105 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2106 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2107 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2108 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2109 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2110 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2111 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2112 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2113 { 0, } 2114 }; 2115 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2116 2117 static struct pci_driver nvme_driver = { 2118 .name = "nvme", 2119 .id_table = nvme_id_table, 2120 .probe = nvme_probe, 2121 .remove = nvme_remove, 2122 .shutdown = nvme_shutdown, 2123 .driver = { 2124 .pm = &nvme_dev_pm_ops, 2125 }, 2126 .sriov_configure = nvme_pci_sriov_configure, 2127 .err_handler = &nvme_err_handler, 2128 }; 2129 2130 static int __init nvme_init(void) 2131 { 2132 int result; 2133 2134 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2135 if (!nvme_workq) 2136 return -ENOMEM; 2137 2138 result = pci_register_driver(&nvme_driver); 2139 if (result) 2140 destroy_workqueue(nvme_workq); 2141 return result; 2142 } 2143 2144 static void __exit nvme_exit(void) 2145 { 2146 pci_unregister_driver(&nvme_driver); 2147 destroy_workqueue(nvme_workq); 2148 _nvme_check_size(); 2149 } 2150 2151 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2152 MODULE_LICENSE("GPL"); 2153 MODULE_VERSION("1.0"); 2154 module_init(nvme_init); 2155 module_exit(nvme_exit); 2156