xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 842ed298)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29 
30 #include "trace.h"
31 #include "nvme.h"
32 
33 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
35 
36 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ	4096
43 #define NVME_MAX_SEGS	127
44 
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47 
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51 
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 		"Use SGLs when average request segment size is larger or equal to "
61 		"this size. Use 0 to disable SGLs.");
62 
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 	.set = io_queue_depth_set,
66 	.get = param_get_uint,
67 };
68 
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72 
73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 	unsigned int n;
76 	int ret;
77 
78 	ret = kstrtouint(val, 10, &n);
79 	if (ret != 0 || n > num_possible_cpus())
80 		return -EINVAL;
81 	return param_set_uint(val, kp);
82 }
83 
84 static const struct kernel_param_ops io_queue_count_ops = {
85 	.set = io_queue_count_set,
86 	.get = param_get_uint,
87 };
88 
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 	"Number of queues to use for writes. If not set, reads and writes "
93 	"will share a queue set.");
94 
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98 
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102 
103 struct nvme_dev;
104 struct nvme_queue;
105 
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108 
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113 	struct nvme_queue *queues;
114 	struct blk_mq_tag_set tagset;
115 	struct blk_mq_tag_set admin_tagset;
116 	u32 __iomem *dbs;
117 	struct device *dev;
118 	struct dma_pool *prp_page_pool;
119 	struct dma_pool *prp_small_pool;
120 	unsigned online_queues;
121 	unsigned max_qid;
122 	unsigned io_queues[HCTX_MAX_TYPES];
123 	unsigned int num_vecs;
124 	u32 q_depth;
125 	int io_sqes;
126 	u32 db_stride;
127 	void __iomem *bar;
128 	unsigned long bar_mapped_size;
129 	struct work_struct remove_work;
130 	struct mutex shutdown_lock;
131 	bool subsystem;
132 	u64 cmb_size;
133 	bool cmb_use_sqes;
134 	u32 cmbsz;
135 	u32 cmbloc;
136 	struct nvme_ctrl ctrl;
137 	u32 last_ps;
138 
139 	mempool_t *iod_mempool;
140 
141 	/* shadow doorbell buffer support: */
142 	u32 *dbbuf_dbs;
143 	dma_addr_t dbbuf_dbs_dma_addr;
144 	u32 *dbbuf_eis;
145 	dma_addr_t dbbuf_eis_dma_addr;
146 
147 	/* host memory buffer support: */
148 	u64 host_mem_size;
149 	u32 nr_host_mem_descs;
150 	dma_addr_t host_mem_descs_dma;
151 	struct nvme_host_mem_buf_desc *host_mem_descs;
152 	void **host_mem_desc_bufs;
153 	unsigned int nr_allocated_queues;
154 	unsigned int nr_write_queues;
155 	unsigned int nr_poll_queues;
156 };
157 
158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 	int ret;
161 	u32 n;
162 
163 	ret = kstrtou32(val, 10, &n);
164 	if (ret != 0 || n < 2)
165 		return -EINVAL;
166 
167 	return param_set_uint(val, kp);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	u32 *dbbuf_sq_db;
213 	u32 *dbbuf_cq_db;
214 	u32 *dbbuf_sq_ei;
215 	u32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226 	struct nvme_request req;
227 	struct nvme_queue *nvmeq;
228 	bool use_sgl;
229 	int aborted;
230 	int npages;		/* In the PRP list. 0 means small pool in use */
231 	int nents;		/* Used in scatterlist */
232 	dma_addr_t first_dma;
233 	unsigned int dma_len;	/* length of single DMA segment mapping */
234 	dma_addr_t meta_dma;
235 	struct scatterlist *sg;
236 };
237 
238 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
239 {
240 	return dev->nr_allocated_queues * 8 * dev->db_stride;
241 }
242 
243 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
244 {
245 	unsigned int mem_size = nvme_dbbuf_size(dev);
246 
247 	if (dev->dbbuf_dbs)
248 		return 0;
249 
250 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
251 					    &dev->dbbuf_dbs_dma_addr,
252 					    GFP_KERNEL);
253 	if (!dev->dbbuf_dbs)
254 		return -ENOMEM;
255 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
256 					    &dev->dbbuf_eis_dma_addr,
257 					    GFP_KERNEL);
258 	if (!dev->dbbuf_eis) {
259 		dma_free_coherent(dev->dev, mem_size,
260 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
261 		dev->dbbuf_dbs = NULL;
262 		return -ENOMEM;
263 	}
264 
265 	return 0;
266 }
267 
268 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
269 {
270 	unsigned int mem_size = nvme_dbbuf_size(dev);
271 
272 	if (dev->dbbuf_dbs) {
273 		dma_free_coherent(dev->dev, mem_size,
274 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
275 		dev->dbbuf_dbs = NULL;
276 	}
277 	if (dev->dbbuf_eis) {
278 		dma_free_coherent(dev->dev, mem_size,
279 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
280 		dev->dbbuf_eis = NULL;
281 	}
282 }
283 
284 static void nvme_dbbuf_init(struct nvme_dev *dev,
285 			    struct nvme_queue *nvmeq, int qid)
286 {
287 	if (!dev->dbbuf_dbs || !qid)
288 		return;
289 
290 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
291 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
293 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
294 }
295 
296 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
297 {
298 	if (!nvmeq->qid)
299 		return;
300 
301 	nvmeq->dbbuf_sq_db = NULL;
302 	nvmeq->dbbuf_cq_db = NULL;
303 	nvmeq->dbbuf_sq_ei = NULL;
304 	nvmeq->dbbuf_cq_ei = NULL;
305 }
306 
307 static void nvme_dbbuf_set(struct nvme_dev *dev)
308 {
309 	struct nvme_command c;
310 	unsigned int i;
311 
312 	if (!dev->dbbuf_dbs)
313 		return;
314 
315 	memset(&c, 0, sizeof(c));
316 	c.dbbuf.opcode = nvme_admin_dbbuf;
317 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
318 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
319 
320 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
321 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
322 		/* Free memory and continue on */
323 		nvme_dbbuf_dma_free(dev);
324 
325 		for (i = 1; i <= dev->online_queues; i++)
326 			nvme_dbbuf_free(&dev->queues[i]);
327 	}
328 }
329 
330 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
331 {
332 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
333 }
334 
335 /* Update dbbuf and return true if an MMIO is required */
336 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
337 					      volatile u32 *dbbuf_ei)
338 {
339 	if (dbbuf_db) {
340 		u16 old_value;
341 
342 		/*
343 		 * Ensure that the queue is written before updating
344 		 * the doorbell in memory
345 		 */
346 		wmb();
347 
348 		old_value = *dbbuf_db;
349 		*dbbuf_db = value;
350 
351 		/*
352 		 * Ensure that the doorbell is updated before reading the event
353 		 * index from memory.  The controller needs to provide similar
354 		 * ordering to ensure the envent index is updated before reading
355 		 * the doorbell.
356 		 */
357 		mb();
358 
359 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
360 			return false;
361 	}
362 
363 	return true;
364 }
365 
366 /*
367  * Will slightly overestimate the number of pages needed.  This is OK
368  * as it only leads to a small amount of wasted memory for the lifetime of
369  * the I/O.
370  */
371 static int nvme_pci_npages_prp(void)
372 {
373 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
374 				      NVME_CTRL_PAGE_SIZE);
375 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
376 }
377 
378 /*
379  * Calculates the number of pages needed for the SGL segments. For example a 4k
380  * page can accommodate 256 SGL descriptors.
381  */
382 static int nvme_pci_npages_sgl(void)
383 {
384 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
385 			PAGE_SIZE);
386 }
387 
388 static size_t nvme_pci_iod_alloc_size(void)
389 {
390 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
391 
392 	return sizeof(__le64 *) * npages +
393 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
394 }
395 
396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 				unsigned int hctx_idx)
398 {
399 	struct nvme_dev *dev = data;
400 	struct nvme_queue *nvmeq = &dev->queues[0];
401 
402 	WARN_ON(hctx_idx != 0);
403 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404 
405 	hctx->driver_data = nvmeq;
406 	return 0;
407 }
408 
409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 			  unsigned int hctx_idx)
411 {
412 	struct nvme_dev *dev = data;
413 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414 
415 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416 	hctx->driver_data = nvmeq;
417 	return 0;
418 }
419 
420 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
421 		unsigned int hctx_idx, unsigned int numa_node)
422 {
423 	struct nvme_dev *dev = set->driver_data;
424 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
426 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
427 
428 	BUG_ON(!nvmeq);
429 	iod->nvmeq = nvmeq;
430 
431 	nvme_req(req)->ctrl = &dev->ctrl;
432 	return 0;
433 }
434 
435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 	/* if we have more than 1 vec, admin queue offsets us by 1 */
438 	if (dev->num_vecs > 1)
439 		return 1;
440 
441 	return 0;
442 }
443 
444 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 	struct nvme_dev *dev = set->driver_data;
447 	int i, qoff, offset;
448 
449 	offset = queue_irq_offset(dev);
450 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 		struct blk_mq_queue_map *map = &set->map[i];
452 
453 		map->nr_queues = dev->io_queues[i];
454 		if (!map->nr_queues) {
455 			BUG_ON(i == HCTX_TYPE_DEFAULT);
456 			continue;
457 		}
458 
459 		/*
460 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 		 * affinity), so use the regular blk-mq cpu mapping
462 		 */
463 		map->queue_offset = qoff;
464 		if (i != HCTX_TYPE_POLL && offset)
465 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
466 		else
467 			blk_mq_map_queues(map);
468 		qoff += map->nr_queues;
469 		offset += map->nr_queues;
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  * Write sq tail if we are asked to, or if the next command would wrap.
477  */
478 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
479 {
480 	if (!write_sq) {
481 		u16 next_tail = nvmeq->sq_tail + 1;
482 
483 		if (next_tail == nvmeq->q_depth)
484 			next_tail = 0;
485 		if (next_tail != nvmeq->last_sq_tail)
486 			return;
487 	}
488 
489 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
490 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
491 		writel(nvmeq->sq_tail, nvmeq->q_db);
492 	nvmeq->last_sq_tail = nvmeq->sq_tail;
493 }
494 
495 /**
496  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
497  * @nvmeq: The queue to use
498  * @cmd: The command to send
499  * @write_sq: whether to write to the SQ doorbell
500  */
501 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
502 			    bool write_sq)
503 {
504 	spin_lock(&nvmeq->sq_lock);
505 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
506 	       cmd, sizeof(*cmd));
507 	if (++nvmeq->sq_tail == nvmeq->q_depth)
508 		nvmeq->sq_tail = 0;
509 	nvme_write_sq_db(nvmeq, write_sq);
510 	spin_unlock(&nvmeq->sq_lock);
511 }
512 
513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
514 {
515 	struct nvme_queue *nvmeq = hctx->driver_data;
516 
517 	spin_lock(&nvmeq->sq_lock);
518 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
519 		nvme_write_sq_db(nvmeq, true);
520 	spin_unlock(&nvmeq->sq_lock);
521 }
522 
523 static void **nvme_pci_iod_list(struct request *req)
524 {
525 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
527 }
528 
529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
530 {
531 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
532 	int nseg = blk_rq_nr_phys_segments(req);
533 	unsigned int avg_seg_size;
534 
535 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
536 
537 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
538 		return false;
539 	if (!iod->nvmeq->qid)
540 		return false;
541 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
542 		return false;
543 	return true;
544 }
545 
546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
547 {
548 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
549 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
550 	dma_addr_t dma_addr = iod->first_dma;
551 	int i;
552 
553 	for (i = 0; i < iod->npages; i++) {
554 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
555 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
556 
557 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
558 		dma_addr = next_dma_addr;
559 	}
560 
561 }
562 
563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
564 {
565 	const int last_sg = SGES_PER_PAGE - 1;
566 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567 	dma_addr_t dma_addr = iod->first_dma;
568 	int i;
569 
570 	for (i = 0; i < iod->npages; i++) {
571 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
573 
574 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575 		dma_addr = next_dma_addr;
576 	}
577 
578 }
579 
580 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
581 {
582 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 
584 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
585 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
586 				    rq_dma_dir(req));
587 	else
588 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
589 }
590 
591 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
592 {
593 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
594 
595 	if (iod->dma_len) {
596 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
597 			       rq_dma_dir(req));
598 		return;
599 	}
600 
601 	WARN_ON_ONCE(!iod->nents);
602 
603 	nvme_unmap_sg(dev, req);
604 	if (iod->npages == 0)
605 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
606 			      iod->first_dma);
607 	else if (iod->use_sgl)
608 		nvme_free_sgls(dev, req);
609 	else
610 		nvme_free_prps(dev, req);
611 	mempool_free(iod->sg, dev->iod_mempool);
612 }
613 
614 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
615 {
616 	int i;
617 	struct scatterlist *sg;
618 
619 	for_each_sg(sgl, sg, nents, i) {
620 		dma_addr_t phys = sg_phys(sg);
621 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
622 			"dma_address:%pad dma_length:%d\n",
623 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
624 			sg_dma_len(sg));
625 	}
626 }
627 
628 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
629 		struct request *req, struct nvme_rw_command *cmnd)
630 {
631 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
632 	struct dma_pool *pool;
633 	int length = blk_rq_payload_bytes(req);
634 	struct scatterlist *sg = iod->sg;
635 	int dma_len = sg_dma_len(sg);
636 	u64 dma_addr = sg_dma_address(sg);
637 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
638 	__le64 *prp_list;
639 	void **list = nvme_pci_iod_list(req);
640 	dma_addr_t prp_dma;
641 	int nprps, i;
642 
643 	length -= (NVME_CTRL_PAGE_SIZE - offset);
644 	if (length <= 0) {
645 		iod->first_dma = 0;
646 		goto done;
647 	}
648 
649 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
650 	if (dma_len) {
651 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
652 	} else {
653 		sg = sg_next(sg);
654 		dma_addr = sg_dma_address(sg);
655 		dma_len = sg_dma_len(sg);
656 	}
657 
658 	if (length <= NVME_CTRL_PAGE_SIZE) {
659 		iod->first_dma = dma_addr;
660 		goto done;
661 	}
662 
663 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
664 	if (nprps <= (256 / 8)) {
665 		pool = dev->prp_small_pool;
666 		iod->npages = 0;
667 	} else {
668 		pool = dev->prp_page_pool;
669 		iod->npages = 1;
670 	}
671 
672 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
673 	if (!prp_list) {
674 		iod->first_dma = dma_addr;
675 		iod->npages = -1;
676 		return BLK_STS_RESOURCE;
677 	}
678 	list[0] = prp_list;
679 	iod->first_dma = prp_dma;
680 	i = 0;
681 	for (;;) {
682 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
683 			__le64 *old_prp_list = prp_list;
684 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
685 			if (!prp_list)
686 				goto free_prps;
687 			list[iod->npages++] = prp_list;
688 			prp_list[0] = old_prp_list[i - 1];
689 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
690 			i = 1;
691 		}
692 		prp_list[i++] = cpu_to_le64(dma_addr);
693 		dma_len -= NVME_CTRL_PAGE_SIZE;
694 		dma_addr += NVME_CTRL_PAGE_SIZE;
695 		length -= NVME_CTRL_PAGE_SIZE;
696 		if (length <= 0)
697 			break;
698 		if (dma_len > 0)
699 			continue;
700 		if (unlikely(dma_len < 0))
701 			goto bad_sgl;
702 		sg = sg_next(sg);
703 		dma_addr = sg_dma_address(sg);
704 		dma_len = sg_dma_len(sg);
705 	}
706 done:
707 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
708 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
709 	return BLK_STS_OK;
710 free_prps:
711 	nvme_free_prps(dev, req);
712 	return BLK_STS_RESOURCE;
713 bad_sgl:
714 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
715 			"Invalid SGL for payload:%d nents:%d\n",
716 			blk_rq_payload_bytes(req), iod->nents);
717 	return BLK_STS_IOERR;
718 }
719 
720 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
721 		struct scatterlist *sg)
722 {
723 	sge->addr = cpu_to_le64(sg_dma_address(sg));
724 	sge->length = cpu_to_le32(sg_dma_len(sg));
725 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
726 }
727 
728 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
729 		dma_addr_t dma_addr, int entries)
730 {
731 	sge->addr = cpu_to_le64(dma_addr);
732 	if (entries < SGES_PER_PAGE) {
733 		sge->length = cpu_to_le32(entries * sizeof(*sge));
734 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
735 	} else {
736 		sge->length = cpu_to_le32(PAGE_SIZE);
737 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
738 	}
739 }
740 
741 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
742 		struct request *req, struct nvme_rw_command *cmd, int entries)
743 {
744 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
745 	struct dma_pool *pool;
746 	struct nvme_sgl_desc *sg_list;
747 	struct scatterlist *sg = iod->sg;
748 	dma_addr_t sgl_dma;
749 	int i = 0;
750 
751 	/* setting the transfer type as SGL */
752 	cmd->flags = NVME_CMD_SGL_METABUF;
753 
754 	if (entries == 1) {
755 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
756 		return BLK_STS_OK;
757 	}
758 
759 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
760 		pool = dev->prp_small_pool;
761 		iod->npages = 0;
762 	} else {
763 		pool = dev->prp_page_pool;
764 		iod->npages = 1;
765 	}
766 
767 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
768 	if (!sg_list) {
769 		iod->npages = -1;
770 		return BLK_STS_RESOURCE;
771 	}
772 
773 	nvme_pci_iod_list(req)[0] = sg_list;
774 	iod->first_dma = sgl_dma;
775 
776 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
777 
778 	do {
779 		if (i == SGES_PER_PAGE) {
780 			struct nvme_sgl_desc *old_sg_desc = sg_list;
781 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
782 
783 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
784 			if (!sg_list)
785 				goto free_sgls;
786 
787 			i = 0;
788 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
789 			sg_list[i++] = *link;
790 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
791 		}
792 
793 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
794 		sg = sg_next(sg);
795 	} while (--entries > 0);
796 
797 	return BLK_STS_OK;
798 free_sgls:
799 	nvme_free_sgls(dev, req);
800 	return BLK_STS_RESOURCE;
801 }
802 
803 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
804 		struct request *req, struct nvme_rw_command *cmnd,
805 		struct bio_vec *bv)
806 {
807 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
808 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
809 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
810 
811 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
812 	if (dma_mapping_error(dev->dev, iod->first_dma))
813 		return BLK_STS_RESOURCE;
814 	iod->dma_len = bv->bv_len;
815 
816 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
817 	if (bv->bv_len > first_prp_len)
818 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
819 	return BLK_STS_OK;
820 }
821 
822 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
823 		struct request *req, struct nvme_rw_command *cmnd,
824 		struct bio_vec *bv)
825 {
826 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
827 
828 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
829 	if (dma_mapping_error(dev->dev, iod->first_dma))
830 		return BLK_STS_RESOURCE;
831 	iod->dma_len = bv->bv_len;
832 
833 	cmnd->flags = NVME_CMD_SGL_METABUF;
834 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
835 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
836 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
837 	return BLK_STS_OK;
838 }
839 
840 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
841 		struct nvme_command *cmnd)
842 {
843 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
844 	blk_status_t ret = BLK_STS_RESOURCE;
845 	int nr_mapped;
846 
847 	if (blk_rq_nr_phys_segments(req) == 1) {
848 		struct bio_vec bv = req_bvec(req);
849 
850 		if (!is_pci_p2pdma_page(bv.bv_page)) {
851 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
852 				return nvme_setup_prp_simple(dev, req,
853 							     &cmnd->rw, &bv);
854 
855 			if (iod->nvmeq->qid &&
856 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
857 				return nvme_setup_sgl_simple(dev, req,
858 							     &cmnd->rw, &bv);
859 		}
860 	}
861 
862 	iod->dma_len = 0;
863 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
864 	if (!iod->sg)
865 		return BLK_STS_RESOURCE;
866 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
867 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
868 	if (!iod->nents)
869 		goto out_free_sg;
870 
871 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
872 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
873 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
874 	else
875 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
876 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
877 	if (!nr_mapped)
878 		goto out_free_sg;
879 
880 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
881 	if (iod->use_sgl)
882 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
883 	else
884 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
885 	if (ret != BLK_STS_OK)
886 		goto out_unmap_sg;
887 	return BLK_STS_OK;
888 
889 out_unmap_sg:
890 	nvme_unmap_sg(dev, req);
891 out_free_sg:
892 	mempool_free(iod->sg, dev->iod_mempool);
893 	return ret;
894 }
895 
896 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
897 		struct nvme_command *cmnd)
898 {
899 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
900 
901 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
902 			rq_dma_dir(req), 0);
903 	if (dma_mapping_error(dev->dev, iod->meta_dma))
904 		return BLK_STS_IOERR;
905 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
906 	return BLK_STS_OK;
907 }
908 
909 /*
910  * NOTE: ns is NULL when called on the admin queue.
911  */
912 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
913 			 const struct blk_mq_queue_data *bd)
914 {
915 	struct nvme_ns *ns = hctx->queue->queuedata;
916 	struct nvme_queue *nvmeq = hctx->driver_data;
917 	struct nvme_dev *dev = nvmeq->dev;
918 	struct request *req = bd->rq;
919 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
920 	struct nvme_command cmnd;
921 	blk_status_t ret;
922 
923 	iod->aborted = 0;
924 	iod->npages = -1;
925 	iod->nents = 0;
926 
927 	/*
928 	 * We should not need to do this, but we're still using this to
929 	 * ensure we can drain requests on a dying queue.
930 	 */
931 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
932 		return BLK_STS_IOERR;
933 
934 	ret = nvme_setup_cmd(ns, req, &cmnd);
935 	if (ret)
936 		return ret;
937 
938 	if (blk_rq_nr_phys_segments(req)) {
939 		ret = nvme_map_data(dev, req, &cmnd);
940 		if (ret)
941 			goto out_free_cmd;
942 	}
943 
944 	if (blk_integrity_rq(req)) {
945 		ret = nvme_map_metadata(dev, req, &cmnd);
946 		if (ret)
947 			goto out_unmap_data;
948 	}
949 
950 	blk_mq_start_request(req);
951 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
952 	return BLK_STS_OK;
953 out_unmap_data:
954 	nvme_unmap_data(dev, req);
955 out_free_cmd:
956 	nvme_cleanup_cmd(req);
957 	return ret;
958 }
959 
960 static void nvme_pci_complete_rq(struct request *req)
961 {
962 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
963 	struct nvme_dev *dev = iod->nvmeq->dev;
964 
965 	if (blk_integrity_rq(req))
966 		dma_unmap_page(dev->dev, iod->meta_dma,
967 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
968 	if (blk_rq_nr_phys_segments(req))
969 		nvme_unmap_data(dev, req);
970 	nvme_complete_rq(req);
971 }
972 
973 /* We read the CQE phase first to check if the rest of the entry is valid */
974 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
975 {
976 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
977 
978 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
979 }
980 
981 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
982 {
983 	u16 head = nvmeq->cq_head;
984 
985 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
986 					      nvmeq->dbbuf_cq_ei))
987 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
988 }
989 
990 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
991 {
992 	if (!nvmeq->qid)
993 		return nvmeq->dev->admin_tagset.tags[0];
994 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
995 }
996 
997 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
998 {
999 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1000 	__u16 command_id = READ_ONCE(cqe->command_id);
1001 	struct request *req;
1002 
1003 	/*
1004 	 * AEN requests are special as they don't time out and can
1005 	 * survive any kind of queue freeze and often don't respond to
1006 	 * aborts.  We don't even bother to allocate a struct request
1007 	 * for them but rather special case them here.
1008 	 */
1009 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1010 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1011 				cqe->status, &cqe->result);
1012 		return;
1013 	}
1014 
1015 	req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id);
1016 	if (unlikely(!req)) {
1017 		dev_warn(nvmeq->dev->ctrl.device,
1018 			"invalid id %d completed on queue %d\n",
1019 			command_id, le16_to_cpu(cqe->sq_id));
1020 		return;
1021 	}
1022 
1023 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1024 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1025 		nvme_pci_complete_rq(req);
1026 }
1027 
1028 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1029 {
1030 	u16 tmp = nvmeq->cq_head + 1;
1031 
1032 	if (tmp == nvmeq->q_depth) {
1033 		nvmeq->cq_head = 0;
1034 		nvmeq->cq_phase ^= 1;
1035 	} else {
1036 		nvmeq->cq_head = tmp;
1037 	}
1038 }
1039 
1040 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1041 {
1042 	int found = 0;
1043 
1044 	while (nvme_cqe_pending(nvmeq)) {
1045 		found++;
1046 		/*
1047 		 * load-load control dependency between phase and the rest of
1048 		 * the cqe requires a full read memory barrier
1049 		 */
1050 		dma_rmb();
1051 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1052 		nvme_update_cq_head(nvmeq);
1053 	}
1054 
1055 	if (found)
1056 		nvme_ring_cq_doorbell(nvmeq);
1057 	return found;
1058 }
1059 
1060 static irqreturn_t nvme_irq(int irq, void *data)
1061 {
1062 	struct nvme_queue *nvmeq = data;
1063 	irqreturn_t ret = IRQ_NONE;
1064 
1065 	/*
1066 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1067 	 * the irq handler, even if that was on another CPU.
1068 	 */
1069 	rmb();
1070 	if (nvme_process_cq(nvmeq))
1071 		ret = IRQ_HANDLED;
1072 	wmb();
1073 
1074 	return ret;
1075 }
1076 
1077 static irqreturn_t nvme_irq_check(int irq, void *data)
1078 {
1079 	struct nvme_queue *nvmeq = data;
1080 
1081 	if (nvme_cqe_pending(nvmeq))
1082 		return IRQ_WAKE_THREAD;
1083 	return IRQ_NONE;
1084 }
1085 
1086 /*
1087  * Poll for completions for any interrupt driven queue
1088  * Can be called from any context.
1089  */
1090 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1091 {
1092 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1093 
1094 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1095 
1096 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097 	nvme_process_cq(nvmeq);
1098 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1099 }
1100 
1101 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1102 {
1103 	struct nvme_queue *nvmeq = hctx->driver_data;
1104 	bool found;
1105 
1106 	if (!nvme_cqe_pending(nvmeq))
1107 		return 0;
1108 
1109 	spin_lock(&nvmeq->cq_poll_lock);
1110 	found = nvme_process_cq(nvmeq);
1111 	spin_unlock(&nvmeq->cq_poll_lock);
1112 
1113 	return found;
1114 }
1115 
1116 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1117 {
1118 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1119 	struct nvme_queue *nvmeq = &dev->queues[0];
1120 	struct nvme_command c;
1121 
1122 	memset(&c, 0, sizeof(c));
1123 	c.common.opcode = nvme_admin_async_event;
1124 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1125 	nvme_submit_cmd(nvmeq, &c, true);
1126 }
1127 
1128 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1129 {
1130 	struct nvme_command c;
1131 
1132 	memset(&c, 0, sizeof(c));
1133 	c.delete_queue.opcode = opcode;
1134 	c.delete_queue.qid = cpu_to_le16(id);
1135 
1136 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1137 }
1138 
1139 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1140 		struct nvme_queue *nvmeq, s16 vector)
1141 {
1142 	struct nvme_command c;
1143 	int flags = NVME_QUEUE_PHYS_CONTIG;
1144 
1145 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1146 		flags |= NVME_CQ_IRQ_ENABLED;
1147 
1148 	/*
1149 	 * Note: we (ab)use the fact that the prp fields survive if no data
1150 	 * is attached to the request.
1151 	 */
1152 	memset(&c, 0, sizeof(c));
1153 	c.create_cq.opcode = nvme_admin_create_cq;
1154 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1155 	c.create_cq.cqid = cpu_to_le16(qid);
1156 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1157 	c.create_cq.cq_flags = cpu_to_le16(flags);
1158 	c.create_cq.irq_vector = cpu_to_le16(vector);
1159 
1160 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1161 }
1162 
1163 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1164 						struct nvme_queue *nvmeq)
1165 {
1166 	struct nvme_ctrl *ctrl = &dev->ctrl;
1167 	struct nvme_command c;
1168 	int flags = NVME_QUEUE_PHYS_CONTIG;
1169 
1170 	/*
1171 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1172 	 * set. Since URGENT priority is zeroes, it makes all queues
1173 	 * URGENT.
1174 	 */
1175 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1176 		flags |= NVME_SQ_PRIO_MEDIUM;
1177 
1178 	/*
1179 	 * Note: we (ab)use the fact that the prp fields survive if no data
1180 	 * is attached to the request.
1181 	 */
1182 	memset(&c, 0, sizeof(c));
1183 	c.create_sq.opcode = nvme_admin_create_sq;
1184 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1185 	c.create_sq.sqid = cpu_to_le16(qid);
1186 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1187 	c.create_sq.sq_flags = cpu_to_le16(flags);
1188 	c.create_sq.cqid = cpu_to_le16(qid);
1189 
1190 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1191 }
1192 
1193 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1194 {
1195 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1196 }
1197 
1198 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1199 {
1200 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1201 }
1202 
1203 static void abort_endio(struct request *req, blk_status_t error)
1204 {
1205 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1206 	struct nvme_queue *nvmeq = iod->nvmeq;
1207 
1208 	dev_warn(nvmeq->dev->ctrl.device,
1209 		 "Abort status: 0x%x", nvme_req(req)->status);
1210 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1211 	blk_mq_free_request(req);
1212 }
1213 
1214 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1215 {
1216 	/* If true, indicates loss of adapter communication, possibly by a
1217 	 * NVMe Subsystem reset.
1218 	 */
1219 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1220 
1221 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1222 	switch (dev->ctrl.state) {
1223 	case NVME_CTRL_RESETTING:
1224 	case NVME_CTRL_CONNECTING:
1225 		return false;
1226 	default:
1227 		break;
1228 	}
1229 
1230 	/* We shouldn't reset unless the controller is on fatal error state
1231 	 * _or_ if we lost the communication with it.
1232 	 */
1233 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1234 		return false;
1235 
1236 	return true;
1237 }
1238 
1239 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1240 {
1241 	/* Read a config register to help see what died. */
1242 	u16 pci_status;
1243 	int result;
1244 
1245 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1246 				      &pci_status);
1247 	if (result == PCIBIOS_SUCCESSFUL)
1248 		dev_warn(dev->ctrl.device,
1249 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1250 			 csts, pci_status);
1251 	else
1252 		dev_warn(dev->ctrl.device,
1253 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1254 			 csts, result);
1255 }
1256 
1257 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1258 {
1259 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1260 	struct nvme_queue *nvmeq = iod->nvmeq;
1261 	struct nvme_dev *dev = nvmeq->dev;
1262 	struct request *abort_req;
1263 	struct nvme_command cmd;
1264 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1265 
1266 	/* If PCI error recovery process is happening, we cannot reset or
1267 	 * the recovery mechanism will surely fail.
1268 	 */
1269 	mb();
1270 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1271 		return BLK_EH_RESET_TIMER;
1272 
1273 	/*
1274 	 * Reset immediately if the controller is failed
1275 	 */
1276 	if (nvme_should_reset(dev, csts)) {
1277 		nvme_warn_reset(dev, csts);
1278 		nvme_dev_disable(dev, false);
1279 		nvme_reset_ctrl(&dev->ctrl);
1280 		return BLK_EH_DONE;
1281 	}
1282 
1283 	/*
1284 	 * Did we miss an interrupt?
1285 	 */
1286 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1287 		nvme_poll(req->mq_hctx);
1288 	else
1289 		nvme_poll_irqdisable(nvmeq);
1290 
1291 	if (blk_mq_request_completed(req)) {
1292 		dev_warn(dev->ctrl.device,
1293 			 "I/O %d QID %d timeout, completion polled\n",
1294 			 req->tag, nvmeq->qid);
1295 		return BLK_EH_DONE;
1296 	}
1297 
1298 	/*
1299 	 * Shutdown immediately if controller times out while starting. The
1300 	 * reset work will see the pci device disabled when it gets the forced
1301 	 * cancellation error. All outstanding requests are completed on
1302 	 * shutdown, so we return BLK_EH_DONE.
1303 	 */
1304 	switch (dev->ctrl.state) {
1305 	case NVME_CTRL_CONNECTING:
1306 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1307 		fallthrough;
1308 	case NVME_CTRL_DELETING:
1309 		dev_warn_ratelimited(dev->ctrl.device,
1310 			 "I/O %d QID %d timeout, disable controller\n",
1311 			 req->tag, nvmeq->qid);
1312 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1313 		nvme_dev_disable(dev, true);
1314 		return BLK_EH_DONE;
1315 	case NVME_CTRL_RESETTING:
1316 		return BLK_EH_RESET_TIMER;
1317 	default:
1318 		break;
1319 	}
1320 
1321 	/*
1322 	 * Shutdown the controller immediately and schedule a reset if the
1323 	 * command was already aborted once before and still hasn't been
1324 	 * returned to the driver, or if this is the admin queue.
1325 	 */
1326 	if (!nvmeq->qid || iod->aborted) {
1327 		dev_warn(dev->ctrl.device,
1328 			 "I/O %d QID %d timeout, reset controller\n",
1329 			 req->tag, nvmeq->qid);
1330 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1331 		nvme_dev_disable(dev, false);
1332 		nvme_reset_ctrl(&dev->ctrl);
1333 
1334 		return BLK_EH_DONE;
1335 	}
1336 
1337 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1338 		atomic_inc(&dev->ctrl.abort_limit);
1339 		return BLK_EH_RESET_TIMER;
1340 	}
1341 	iod->aborted = 1;
1342 
1343 	memset(&cmd, 0, sizeof(cmd));
1344 	cmd.abort.opcode = nvme_admin_abort_cmd;
1345 	cmd.abort.cid = req->tag;
1346 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1347 
1348 	dev_warn(nvmeq->dev->ctrl.device,
1349 		"I/O %d QID %d timeout, aborting\n",
1350 		 req->tag, nvmeq->qid);
1351 
1352 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1353 			BLK_MQ_REQ_NOWAIT);
1354 	if (IS_ERR(abort_req)) {
1355 		atomic_inc(&dev->ctrl.abort_limit);
1356 		return BLK_EH_RESET_TIMER;
1357 	}
1358 
1359 	abort_req->end_io_data = NULL;
1360 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1361 
1362 	/*
1363 	 * The aborted req will be completed on receiving the abort req.
1364 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1365 	 * as the device then is in a faulty state.
1366 	 */
1367 	return BLK_EH_RESET_TIMER;
1368 }
1369 
1370 static void nvme_free_queue(struct nvme_queue *nvmeq)
1371 {
1372 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1373 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1374 	if (!nvmeq->sq_cmds)
1375 		return;
1376 
1377 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1378 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1379 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1380 	} else {
1381 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1382 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1383 	}
1384 }
1385 
1386 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1387 {
1388 	int i;
1389 
1390 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1391 		dev->ctrl.queue_count--;
1392 		nvme_free_queue(&dev->queues[i]);
1393 	}
1394 }
1395 
1396 /**
1397  * nvme_suspend_queue - put queue into suspended state
1398  * @nvmeq: queue to suspend
1399  */
1400 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1401 {
1402 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1403 		return 1;
1404 
1405 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1406 	mb();
1407 
1408 	nvmeq->dev->online_queues--;
1409 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1410 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1411 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1412 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1413 	return 0;
1414 }
1415 
1416 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1417 {
1418 	int i;
1419 
1420 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1421 		nvme_suspend_queue(&dev->queues[i]);
1422 }
1423 
1424 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1425 {
1426 	struct nvme_queue *nvmeq = &dev->queues[0];
1427 
1428 	if (shutdown)
1429 		nvme_shutdown_ctrl(&dev->ctrl);
1430 	else
1431 		nvme_disable_ctrl(&dev->ctrl);
1432 
1433 	nvme_poll_irqdisable(nvmeq);
1434 }
1435 
1436 /*
1437  * Called only on a device that has been disabled and after all other threads
1438  * that can check this device's completion queues have synced, except
1439  * nvme_poll(). This is the last chance for the driver to see a natural
1440  * completion before nvme_cancel_request() terminates all incomplete requests.
1441  */
1442 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1443 {
1444 	int i;
1445 
1446 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1447 		spin_lock(&dev->queues[i].cq_poll_lock);
1448 		nvme_process_cq(&dev->queues[i]);
1449 		spin_unlock(&dev->queues[i].cq_poll_lock);
1450 	}
1451 }
1452 
1453 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1454 				int entry_size)
1455 {
1456 	int q_depth = dev->q_depth;
1457 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1458 					  NVME_CTRL_PAGE_SIZE);
1459 
1460 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1461 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1462 
1463 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1464 		q_depth = div_u64(mem_per_q, entry_size);
1465 
1466 		/*
1467 		 * Ensure the reduced q_depth is above some threshold where it
1468 		 * would be better to map queues in system memory with the
1469 		 * original depth
1470 		 */
1471 		if (q_depth < 64)
1472 			return -ENOMEM;
1473 	}
1474 
1475 	return q_depth;
1476 }
1477 
1478 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1479 				int qid)
1480 {
1481 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1482 
1483 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1484 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1485 		if (nvmeq->sq_cmds) {
1486 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1487 							nvmeq->sq_cmds);
1488 			if (nvmeq->sq_dma_addr) {
1489 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1490 				return 0;
1491 			}
1492 
1493 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1494 		}
1495 	}
1496 
1497 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1498 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1499 	if (!nvmeq->sq_cmds)
1500 		return -ENOMEM;
1501 	return 0;
1502 }
1503 
1504 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1505 {
1506 	struct nvme_queue *nvmeq = &dev->queues[qid];
1507 
1508 	if (dev->ctrl.queue_count > qid)
1509 		return 0;
1510 
1511 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1512 	nvmeq->q_depth = depth;
1513 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1514 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1515 	if (!nvmeq->cqes)
1516 		goto free_nvmeq;
1517 
1518 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1519 		goto free_cqdma;
1520 
1521 	nvmeq->dev = dev;
1522 	spin_lock_init(&nvmeq->sq_lock);
1523 	spin_lock_init(&nvmeq->cq_poll_lock);
1524 	nvmeq->cq_head = 0;
1525 	nvmeq->cq_phase = 1;
1526 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1527 	nvmeq->qid = qid;
1528 	dev->ctrl.queue_count++;
1529 
1530 	return 0;
1531 
1532  free_cqdma:
1533 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1534 			  nvmeq->cq_dma_addr);
1535  free_nvmeq:
1536 	return -ENOMEM;
1537 }
1538 
1539 static int queue_request_irq(struct nvme_queue *nvmeq)
1540 {
1541 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1542 	int nr = nvmeq->dev->ctrl.instance;
1543 
1544 	if (use_threaded_interrupts) {
1545 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1546 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1547 	} else {
1548 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1549 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1550 	}
1551 }
1552 
1553 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1554 {
1555 	struct nvme_dev *dev = nvmeq->dev;
1556 
1557 	nvmeq->sq_tail = 0;
1558 	nvmeq->last_sq_tail = 0;
1559 	nvmeq->cq_head = 0;
1560 	nvmeq->cq_phase = 1;
1561 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1562 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1563 	nvme_dbbuf_init(dev, nvmeq, qid);
1564 	dev->online_queues++;
1565 	wmb(); /* ensure the first interrupt sees the initialization */
1566 }
1567 
1568 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1569 {
1570 	struct nvme_dev *dev = nvmeq->dev;
1571 	int result;
1572 	u16 vector = 0;
1573 
1574 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1575 
1576 	/*
1577 	 * A queue's vector matches the queue identifier unless the controller
1578 	 * has only one vector available.
1579 	 */
1580 	if (!polled)
1581 		vector = dev->num_vecs == 1 ? 0 : qid;
1582 	else
1583 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1584 
1585 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1586 	if (result)
1587 		return result;
1588 
1589 	result = adapter_alloc_sq(dev, qid, nvmeq);
1590 	if (result < 0)
1591 		return result;
1592 	if (result)
1593 		goto release_cq;
1594 
1595 	nvmeq->cq_vector = vector;
1596 	nvme_init_queue(nvmeq, qid);
1597 
1598 	if (!polled) {
1599 		result = queue_request_irq(nvmeq);
1600 		if (result < 0)
1601 			goto release_sq;
1602 	}
1603 
1604 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1605 	return result;
1606 
1607 release_sq:
1608 	dev->online_queues--;
1609 	adapter_delete_sq(dev, qid);
1610 release_cq:
1611 	adapter_delete_cq(dev, qid);
1612 	return result;
1613 }
1614 
1615 static const struct blk_mq_ops nvme_mq_admin_ops = {
1616 	.queue_rq	= nvme_queue_rq,
1617 	.complete	= nvme_pci_complete_rq,
1618 	.init_hctx	= nvme_admin_init_hctx,
1619 	.init_request	= nvme_init_request,
1620 	.timeout	= nvme_timeout,
1621 };
1622 
1623 static const struct blk_mq_ops nvme_mq_ops = {
1624 	.queue_rq	= nvme_queue_rq,
1625 	.complete	= nvme_pci_complete_rq,
1626 	.commit_rqs	= nvme_commit_rqs,
1627 	.init_hctx	= nvme_init_hctx,
1628 	.init_request	= nvme_init_request,
1629 	.map_queues	= nvme_pci_map_queues,
1630 	.timeout	= nvme_timeout,
1631 	.poll		= nvme_poll,
1632 };
1633 
1634 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1635 {
1636 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1637 		/*
1638 		 * If the controller was reset during removal, it's possible
1639 		 * user requests may be waiting on a stopped queue. Start the
1640 		 * queue to flush these to completion.
1641 		 */
1642 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1643 		blk_cleanup_queue(dev->ctrl.admin_q);
1644 		blk_mq_free_tag_set(&dev->admin_tagset);
1645 	}
1646 }
1647 
1648 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1649 {
1650 	if (!dev->ctrl.admin_q) {
1651 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1652 		dev->admin_tagset.nr_hw_queues = 1;
1653 
1654 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1655 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1656 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1657 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1658 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1659 		dev->admin_tagset.driver_data = dev;
1660 
1661 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1662 			return -ENOMEM;
1663 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1664 
1665 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1666 		if (IS_ERR(dev->ctrl.admin_q)) {
1667 			blk_mq_free_tag_set(&dev->admin_tagset);
1668 			return -ENOMEM;
1669 		}
1670 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1671 			nvme_dev_remove_admin(dev);
1672 			dev->ctrl.admin_q = NULL;
1673 			return -ENODEV;
1674 		}
1675 	} else
1676 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1677 
1678 	return 0;
1679 }
1680 
1681 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1682 {
1683 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1684 }
1685 
1686 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1687 {
1688 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1689 
1690 	if (size <= dev->bar_mapped_size)
1691 		return 0;
1692 	if (size > pci_resource_len(pdev, 0))
1693 		return -ENOMEM;
1694 	if (dev->bar)
1695 		iounmap(dev->bar);
1696 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1697 	if (!dev->bar) {
1698 		dev->bar_mapped_size = 0;
1699 		return -ENOMEM;
1700 	}
1701 	dev->bar_mapped_size = size;
1702 	dev->dbs = dev->bar + NVME_REG_DBS;
1703 
1704 	return 0;
1705 }
1706 
1707 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1708 {
1709 	int result;
1710 	u32 aqa;
1711 	struct nvme_queue *nvmeq;
1712 
1713 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1714 	if (result < 0)
1715 		return result;
1716 
1717 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1718 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1719 
1720 	if (dev->subsystem &&
1721 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1722 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1723 
1724 	result = nvme_disable_ctrl(&dev->ctrl);
1725 	if (result < 0)
1726 		return result;
1727 
1728 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1729 	if (result)
1730 		return result;
1731 
1732 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1733 
1734 	nvmeq = &dev->queues[0];
1735 	aqa = nvmeq->q_depth - 1;
1736 	aqa |= aqa << 16;
1737 
1738 	writel(aqa, dev->bar + NVME_REG_AQA);
1739 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1740 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1741 
1742 	result = nvme_enable_ctrl(&dev->ctrl);
1743 	if (result)
1744 		return result;
1745 
1746 	nvmeq->cq_vector = 0;
1747 	nvme_init_queue(nvmeq, 0);
1748 	result = queue_request_irq(nvmeq);
1749 	if (result) {
1750 		dev->online_queues--;
1751 		return result;
1752 	}
1753 
1754 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1755 	return result;
1756 }
1757 
1758 static int nvme_create_io_queues(struct nvme_dev *dev)
1759 {
1760 	unsigned i, max, rw_queues;
1761 	int ret = 0;
1762 
1763 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1764 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1765 			ret = -ENOMEM;
1766 			break;
1767 		}
1768 	}
1769 
1770 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1771 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1772 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1773 				dev->io_queues[HCTX_TYPE_READ];
1774 	} else {
1775 		rw_queues = max;
1776 	}
1777 
1778 	for (i = dev->online_queues; i <= max; i++) {
1779 		bool polled = i > rw_queues;
1780 
1781 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1782 		if (ret)
1783 			break;
1784 	}
1785 
1786 	/*
1787 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1788 	 * than the desired amount of queues, and even a controller without
1789 	 * I/O queues can still be used to issue admin commands.  This might
1790 	 * be useful to upgrade a buggy firmware for example.
1791 	 */
1792 	return ret >= 0 ? 0 : ret;
1793 }
1794 
1795 static ssize_t nvme_cmb_show(struct device *dev,
1796 			     struct device_attribute *attr,
1797 			     char *buf)
1798 {
1799 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1800 
1801 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1802 		       ndev->cmbloc, ndev->cmbsz);
1803 }
1804 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1805 
1806 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1807 {
1808 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1809 
1810 	return 1ULL << (12 + 4 * szu);
1811 }
1812 
1813 static u32 nvme_cmb_size(struct nvme_dev *dev)
1814 {
1815 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1816 }
1817 
1818 static void nvme_map_cmb(struct nvme_dev *dev)
1819 {
1820 	u64 size, offset;
1821 	resource_size_t bar_size;
1822 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1823 	int bar;
1824 
1825 	if (dev->cmb_size)
1826 		return;
1827 
1828 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1829 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1830 
1831 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1832 	if (!dev->cmbsz)
1833 		return;
1834 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1835 
1836 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1837 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1838 	bar = NVME_CMB_BIR(dev->cmbloc);
1839 	bar_size = pci_resource_len(pdev, bar);
1840 
1841 	if (offset > bar_size)
1842 		return;
1843 
1844 	/*
1845 	 * Tell the controller about the host side address mapping the CMB,
1846 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1847 	 */
1848 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1849 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1850 			     (pci_bus_address(pdev, bar) + offset),
1851 			     dev->bar + NVME_REG_CMBMSC);
1852 	}
1853 
1854 	/*
1855 	 * Controllers may support a CMB size larger than their BAR,
1856 	 * for example, due to being behind a bridge. Reduce the CMB to
1857 	 * the reported size of the BAR
1858 	 */
1859 	if (size > bar_size - offset)
1860 		size = bar_size - offset;
1861 
1862 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1863 		dev_warn(dev->ctrl.device,
1864 			 "failed to register the CMB\n");
1865 		return;
1866 	}
1867 
1868 	dev->cmb_size = size;
1869 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1870 
1871 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1872 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1873 		pci_p2pmem_publish(pdev, true);
1874 
1875 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1876 				    &dev_attr_cmb.attr, NULL))
1877 		dev_warn(dev->ctrl.device,
1878 			 "failed to add sysfs attribute for CMB\n");
1879 }
1880 
1881 static inline void nvme_release_cmb(struct nvme_dev *dev)
1882 {
1883 	if (dev->cmb_size) {
1884 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1885 					     &dev_attr_cmb.attr, NULL);
1886 		dev->cmb_size = 0;
1887 	}
1888 }
1889 
1890 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1891 {
1892 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1893 	u64 dma_addr = dev->host_mem_descs_dma;
1894 	struct nvme_command c;
1895 	int ret;
1896 
1897 	memset(&c, 0, sizeof(c));
1898 	c.features.opcode	= nvme_admin_set_features;
1899 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1900 	c.features.dword11	= cpu_to_le32(bits);
1901 	c.features.dword12	= cpu_to_le32(host_mem_size);
1902 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1903 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1904 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1905 
1906 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1907 	if (ret) {
1908 		dev_warn(dev->ctrl.device,
1909 			 "failed to set host mem (err %d, flags %#x).\n",
1910 			 ret, bits);
1911 	}
1912 	return ret;
1913 }
1914 
1915 static void nvme_free_host_mem(struct nvme_dev *dev)
1916 {
1917 	int i;
1918 
1919 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1920 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1921 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1922 
1923 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1924 			       le64_to_cpu(desc->addr),
1925 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1926 	}
1927 
1928 	kfree(dev->host_mem_desc_bufs);
1929 	dev->host_mem_desc_bufs = NULL;
1930 	dma_free_coherent(dev->dev,
1931 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1932 			dev->host_mem_descs, dev->host_mem_descs_dma);
1933 	dev->host_mem_descs = NULL;
1934 	dev->nr_host_mem_descs = 0;
1935 }
1936 
1937 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1938 		u32 chunk_size)
1939 {
1940 	struct nvme_host_mem_buf_desc *descs;
1941 	u32 max_entries, len;
1942 	dma_addr_t descs_dma;
1943 	int i = 0;
1944 	void **bufs;
1945 	u64 size, tmp;
1946 
1947 	tmp = (preferred + chunk_size - 1);
1948 	do_div(tmp, chunk_size);
1949 	max_entries = tmp;
1950 
1951 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1952 		max_entries = dev->ctrl.hmmaxd;
1953 
1954 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1955 				   &descs_dma, GFP_KERNEL);
1956 	if (!descs)
1957 		goto out;
1958 
1959 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1960 	if (!bufs)
1961 		goto out_free_descs;
1962 
1963 	for (size = 0; size < preferred && i < max_entries; size += len) {
1964 		dma_addr_t dma_addr;
1965 
1966 		len = min_t(u64, chunk_size, preferred - size);
1967 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1968 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1969 		if (!bufs[i])
1970 			break;
1971 
1972 		descs[i].addr = cpu_to_le64(dma_addr);
1973 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1974 		i++;
1975 	}
1976 
1977 	if (!size)
1978 		goto out_free_bufs;
1979 
1980 	dev->nr_host_mem_descs = i;
1981 	dev->host_mem_size = size;
1982 	dev->host_mem_descs = descs;
1983 	dev->host_mem_descs_dma = descs_dma;
1984 	dev->host_mem_desc_bufs = bufs;
1985 	return 0;
1986 
1987 out_free_bufs:
1988 	while (--i >= 0) {
1989 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1990 
1991 		dma_free_attrs(dev->dev, size, bufs[i],
1992 			       le64_to_cpu(descs[i].addr),
1993 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1994 	}
1995 
1996 	kfree(bufs);
1997 out_free_descs:
1998 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1999 			descs_dma);
2000 out:
2001 	dev->host_mem_descs = NULL;
2002 	return -ENOMEM;
2003 }
2004 
2005 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2006 {
2007 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2008 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2009 	u64 chunk_size;
2010 
2011 	/* start big and work our way down */
2012 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2013 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2014 			if (!min || dev->host_mem_size >= min)
2015 				return 0;
2016 			nvme_free_host_mem(dev);
2017 		}
2018 	}
2019 
2020 	return -ENOMEM;
2021 }
2022 
2023 static int nvme_setup_host_mem(struct nvme_dev *dev)
2024 {
2025 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2026 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2027 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2028 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2029 	int ret;
2030 
2031 	preferred = min(preferred, max);
2032 	if (min > max) {
2033 		dev_warn(dev->ctrl.device,
2034 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2035 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2036 		nvme_free_host_mem(dev);
2037 		return 0;
2038 	}
2039 
2040 	/*
2041 	 * If we already have a buffer allocated check if we can reuse it.
2042 	 */
2043 	if (dev->host_mem_descs) {
2044 		if (dev->host_mem_size >= min)
2045 			enable_bits |= NVME_HOST_MEM_RETURN;
2046 		else
2047 			nvme_free_host_mem(dev);
2048 	}
2049 
2050 	if (!dev->host_mem_descs) {
2051 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2052 			dev_warn(dev->ctrl.device,
2053 				"failed to allocate host memory buffer.\n");
2054 			return 0; /* controller must work without HMB */
2055 		}
2056 
2057 		dev_info(dev->ctrl.device,
2058 			"allocated %lld MiB host memory buffer.\n",
2059 			dev->host_mem_size >> ilog2(SZ_1M));
2060 	}
2061 
2062 	ret = nvme_set_host_mem(dev, enable_bits);
2063 	if (ret)
2064 		nvme_free_host_mem(dev);
2065 	return ret;
2066 }
2067 
2068 /*
2069  * nirqs is the number of interrupts available for write and read
2070  * queues. The core already reserved an interrupt for the admin queue.
2071  */
2072 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2073 {
2074 	struct nvme_dev *dev = affd->priv;
2075 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2076 
2077 	/*
2078 	 * If there is no interrupt available for queues, ensure that
2079 	 * the default queue is set to 1. The affinity set size is
2080 	 * also set to one, but the irq core ignores it for this case.
2081 	 *
2082 	 * If only one interrupt is available or 'write_queue' == 0, combine
2083 	 * write and read queues.
2084 	 *
2085 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2086 	 * queue.
2087 	 */
2088 	if (!nrirqs) {
2089 		nrirqs = 1;
2090 		nr_read_queues = 0;
2091 	} else if (nrirqs == 1 || !nr_write_queues) {
2092 		nr_read_queues = 0;
2093 	} else if (nr_write_queues >= nrirqs) {
2094 		nr_read_queues = 1;
2095 	} else {
2096 		nr_read_queues = nrirqs - nr_write_queues;
2097 	}
2098 
2099 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2100 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2101 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2102 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2103 	affd->nr_sets = nr_read_queues ? 2 : 1;
2104 }
2105 
2106 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2107 {
2108 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2109 	struct irq_affinity affd = {
2110 		.pre_vectors	= 1,
2111 		.calc_sets	= nvme_calc_irq_sets,
2112 		.priv		= dev,
2113 	};
2114 	unsigned int irq_queues, poll_queues;
2115 
2116 	/*
2117 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2118 	 * left over for non-polled I/O.
2119 	 */
2120 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2121 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2122 
2123 	/*
2124 	 * Initialize for the single interrupt case, will be updated in
2125 	 * nvme_calc_irq_sets().
2126 	 */
2127 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2128 	dev->io_queues[HCTX_TYPE_READ] = 0;
2129 
2130 	/*
2131 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2132 	 * but some Apple controllers require all queues to use the first
2133 	 * vector.
2134 	 */
2135 	irq_queues = 1;
2136 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2137 		irq_queues += (nr_io_queues - poll_queues);
2138 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2139 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2140 }
2141 
2142 static void nvme_disable_io_queues(struct nvme_dev *dev)
2143 {
2144 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2145 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2146 }
2147 
2148 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2149 {
2150 	/*
2151 	 * If tags are shared with admin queue (Apple bug), then
2152 	 * make sure we only use one IO queue.
2153 	 */
2154 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2155 		return 1;
2156 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2157 }
2158 
2159 static int nvme_setup_io_queues(struct nvme_dev *dev)
2160 {
2161 	struct nvme_queue *adminq = &dev->queues[0];
2162 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2163 	unsigned int nr_io_queues;
2164 	unsigned long size;
2165 	int result;
2166 
2167 	/*
2168 	 * Sample the module parameters once at reset time so that we have
2169 	 * stable values to work with.
2170 	 */
2171 	dev->nr_write_queues = write_queues;
2172 	dev->nr_poll_queues = poll_queues;
2173 
2174 	nr_io_queues = dev->nr_allocated_queues - 1;
2175 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2176 	if (result < 0)
2177 		return result;
2178 
2179 	if (nr_io_queues == 0)
2180 		return 0;
2181 
2182 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2183 
2184 	if (dev->cmb_use_sqes) {
2185 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2186 				sizeof(struct nvme_command));
2187 		if (result > 0)
2188 			dev->q_depth = result;
2189 		else
2190 			dev->cmb_use_sqes = false;
2191 	}
2192 
2193 	do {
2194 		size = db_bar_size(dev, nr_io_queues);
2195 		result = nvme_remap_bar(dev, size);
2196 		if (!result)
2197 			break;
2198 		if (!--nr_io_queues)
2199 			return -ENOMEM;
2200 	} while (1);
2201 	adminq->q_db = dev->dbs;
2202 
2203  retry:
2204 	/* Deregister the admin queue's interrupt */
2205 	pci_free_irq(pdev, 0, adminq);
2206 
2207 	/*
2208 	 * If we enable msix early due to not intx, disable it again before
2209 	 * setting up the full range we need.
2210 	 */
2211 	pci_free_irq_vectors(pdev);
2212 
2213 	result = nvme_setup_irqs(dev, nr_io_queues);
2214 	if (result <= 0)
2215 		return -EIO;
2216 
2217 	dev->num_vecs = result;
2218 	result = max(result - 1, 1);
2219 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2220 
2221 	/*
2222 	 * Should investigate if there's a performance win from allocating
2223 	 * more queues than interrupt vectors; it might allow the submission
2224 	 * path to scale better, even if the receive path is limited by the
2225 	 * number of interrupts.
2226 	 */
2227 	result = queue_request_irq(adminq);
2228 	if (result)
2229 		return result;
2230 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2231 
2232 	result = nvme_create_io_queues(dev);
2233 	if (result || dev->online_queues < 2)
2234 		return result;
2235 
2236 	if (dev->online_queues - 1 < dev->max_qid) {
2237 		nr_io_queues = dev->online_queues - 1;
2238 		nvme_disable_io_queues(dev);
2239 		nvme_suspend_io_queues(dev);
2240 		goto retry;
2241 	}
2242 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2243 					dev->io_queues[HCTX_TYPE_DEFAULT],
2244 					dev->io_queues[HCTX_TYPE_READ],
2245 					dev->io_queues[HCTX_TYPE_POLL]);
2246 	return 0;
2247 }
2248 
2249 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2250 {
2251 	struct nvme_queue *nvmeq = req->end_io_data;
2252 
2253 	blk_mq_free_request(req);
2254 	complete(&nvmeq->delete_done);
2255 }
2256 
2257 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2258 {
2259 	struct nvme_queue *nvmeq = req->end_io_data;
2260 
2261 	if (error)
2262 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2263 
2264 	nvme_del_queue_end(req, error);
2265 }
2266 
2267 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2268 {
2269 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2270 	struct request *req;
2271 	struct nvme_command cmd;
2272 
2273 	memset(&cmd, 0, sizeof(cmd));
2274 	cmd.delete_queue.opcode = opcode;
2275 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2276 
2277 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2278 	if (IS_ERR(req))
2279 		return PTR_ERR(req);
2280 
2281 	req->end_io_data = nvmeq;
2282 
2283 	init_completion(&nvmeq->delete_done);
2284 	blk_execute_rq_nowait(q, NULL, req, false,
2285 			opcode == nvme_admin_delete_cq ?
2286 				nvme_del_cq_end : nvme_del_queue_end);
2287 	return 0;
2288 }
2289 
2290 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2291 {
2292 	int nr_queues = dev->online_queues - 1, sent = 0;
2293 	unsigned long timeout;
2294 
2295  retry:
2296 	timeout = NVME_ADMIN_TIMEOUT;
2297 	while (nr_queues > 0) {
2298 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2299 			break;
2300 		nr_queues--;
2301 		sent++;
2302 	}
2303 	while (sent) {
2304 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2305 
2306 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2307 				timeout);
2308 		if (timeout == 0)
2309 			return false;
2310 
2311 		sent--;
2312 		if (nr_queues)
2313 			goto retry;
2314 	}
2315 	return true;
2316 }
2317 
2318 static void nvme_dev_add(struct nvme_dev *dev)
2319 {
2320 	int ret;
2321 
2322 	if (!dev->ctrl.tagset) {
2323 		dev->tagset.ops = &nvme_mq_ops;
2324 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2325 		dev->tagset.nr_maps = 2; /* default + read */
2326 		if (dev->io_queues[HCTX_TYPE_POLL])
2327 			dev->tagset.nr_maps++;
2328 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2329 		dev->tagset.numa_node = dev->ctrl.numa_node;
2330 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2331 						BLK_MQ_MAX_DEPTH) - 1;
2332 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2333 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2334 		dev->tagset.driver_data = dev;
2335 
2336 		/*
2337 		 * Some Apple controllers requires tags to be unique
2338 		 * across admin and IO queue, so reserve the first 32
2339 		 * tags of the IO queue.
2340 		 */
2341 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2342 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2343 
2344 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2345 		if (ret) {
2346 			dev_warn(dev->ctrl.device,
2347 				"IO queues tagset allocation failed %d\n", ret);
2348 			return;
2349 		}
2350 		dev->ctrl.tagset = &dev->tagset;
2351 	} else {
2352 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2353 
2354 		/* Free previously allocated queues that are no longer usable */
2355 		nvme_free_queues(dev, dev->online_queues);
2356 	}
2357 
2358 	nvme_dbbuf_set(dev);
2359 }
2360 
2361 static int nvme_pci_enable(struct nvme_dev *dev)
2362 {
2363 	int result = -ENOMEM;
2364 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2365 
2366 	if (pci_enable_device_mem(pdev))
2367 		return result;
2368 
2369 	pci_set_master(pdev);
2370 
2371 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2372 		goto disable;
2373 
2374 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2375 		result = -ENODEV;
2376 		goto disable;
2377 	}
2378 
2379 	/*
2380 	 * Some devices and/or platforms don't advertise or work with INTx
2381 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2382 	 * adjust this later.
2383 	 */
2384 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2385 	if (result < 0)
2386 		return result;
2387 
2388 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2389 
2390 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2391 				io_queue_depth);
2392 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2393 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2394 	dev->dbs = dev->bar + 4096;
2395 
2396 	/*
2397 	 * Some Apple controllers require a non-standard SQE size.
2398 	 * Interestingly they also seem to ignore the CC:IOSQES register
2399 	 * so we don't bother updating it here.
2400 	 */
2401 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2402 		dev->io_sqes = 7;
2403 	else
2404 		dev->io_sqes = NVME_NVM_IOSQES;
2405 
2406 	/*
2407 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2408 	 * some MacBook7,1 to avoid controller resets and data loss.
2409 	 */
2410 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2411 		dev->q_depth = 2;
2412 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2413 			"set queue depth=%u to work around controller resets\n",
2414 			dev->q_depth);
2415 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2416 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2417 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2418 		dev->q_depth = 64;
2419 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2420                         "set queue depth=%u\n", dev->q_depth);
2421 	}
2422 
2423 	/*
2424 	 * Controllers with the shared tags quirk need the IO queue to be
2425 	 * big enough so that we get 32 tags for the admin queue
2426 	 */
2427 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2428 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2429 		dev->q_depth = NVME_AQ_DEPTH + 2;
2430 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2431 			 dev->q_depth);
2432 	}
2433 
2434 
2435 	nvme_map_cmb(dev);
2436 
2437 	pci_enable_pcie_error_reporting(pdev);
2438 	pci_save_state(pdev);
2439 	return 0;
2440 
2441  disable:
2442 	pci_disable_device(pdev);
2443 	return result;
2444 }
2445 
2446 static void nvme_dev_unmap(struct nvme_dev *dev)
2447 {
2448 	if (dev->bar)
2449 		iounmap(dev->bar);
2450 	pci_release_mem_regions(to_pci_dev(dev->dev));
2451 }
2452 
2453 static void nvme_pci_disable(struct nvme_dev *dev)
2454 {
2455 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2456 
2457 	pci_free_irq_vectors(pdev);
2458 
2459 	if (pci_is_enabled(pdev)) {
2460 		pci_disable_pcie_error_reporting(pdev);
2461 		pci_disable_device(pdev);
2462 	}
2463 }
2464 
2465 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2466 {
2467 	bool dead = true, freeze = false;
2468 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2469 
2470 	mutex_lock(&dev->shutdown_lock);
2471 	if (pci_is_enabled(pdev)) {
2472 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2473 
2474 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2475 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2476 			freeze = true;
2477 			nvme_start_freeze(&dev->ctrl);
2478 		}
2479 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2480 			pdev->error_state  != pci_channel_io_normal);
2481 	}
2482 
2483 	/*
2484 	 * Give the controller a chance to complete all entered requests if
2485 	 * doing a safe shutdown.
2486 	 */
2487 	if (!dead && shutdown && freeze)
2488 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2489 
2490 	nvme_stop_queues(&dev->ctrl);
2491 
2492 	if (!dead && dev->ctrl.queue_count > 0) {
2493 		nvme_disable_io_queues(dev);
2494 		nvme_disable_admin_queue(dev, shutdown);
2495 	}
2496 	nvme_suspend_io_queues(dev);
2497 	nvme_suspend_queue(&dev->queues[0]);
2498 	nvme_pci_disable(dev);
2499 	nvme_reap_pending_cqes(dev);
2500 
2501 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2502 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2503 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2504 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2505 
2506 	/*
2507 	 * The driver will not be starting up queues again if shutting down so
2508 	 * must flush all entered requests to their failed completion to avoid
2509 	 * deadlocking blk-mq hot-cpu notifier.
2510 	 */
2511 	if (shutdown) {
2512 		nvme_start_queues(&dev->ctrl);
2513 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2514 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2515 	}
2516 	mutex_unlock(&dev->shutdown_lock);
2517 }
2518 
2519 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2520 {
2521 	if (!nvme_wait_reset(&dev->ctrl))
2522 		return -EBUSY;
2523 	nvme_dev_disable(dev, shutdown);
2524 	return 0;
2525 }
2526 
2527 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2528 {
2529 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2530 						NVME_CTRL_PAGE_SIZE,
2531 						NVME_CTRL_PAGE_SIZE, 0);
2532 	if (!dev->prp_page_pool)
2533 		return -ENOMEM;
2534 
2535 	/* Optimisation for I/Os between 4k and 128k */
2536 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2537 						256, 256, 0);
2538 	if (!dev->prp_small_pool) {
2539 		dma_pool_destroy(dev->prp_page_pool);
2540 		return -ENOMEM;
2541 	}
2542 	return 0;
2543 }
2544 
2545 static void nvme_release_prp_pools(struct nvme_dev *dev)
2546 {
2547 	dma_pool_destroy(dev->prp_page_pool);
2548 	dma_pool_destroy(dev->prp_small_pool);
2549 }
2550 
2551 static void nvme_free_tagset(struct nvme_dev *dev)
2552 {
2553 	if (dev->tagset.tags)
2554 		blk_mq_free_tag_set(&dev->tagset);
2555 	dev->ctrl.tagset = NULL;
2556 }
2557 
2558 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2559 {
2560 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2561 
2562 	nvme_dbbuf_dma_free(dev);
2563 	nvme_free_tagset(dev);
2564 	if (dev->ctrl.admin_q)
2565 		blk_put_queue(dev->ctrl.admin_q);
2566 	free_opal_dev(dev->ctrl.opal_dev);
2567 	mempool_destroy(dev->iod_mempool);
2568 	put_device(dev->dev);
2569 	kfree(dev->queues);
2570 	kfree(dev);
2571 }
2572 
2573 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2574 {
2575 	/*
2576 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2577 	 * may be holding this pci_dev's device lock.
2578 	 */
2579 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2580 	nvme_get_ctrl(&dev->ctrl);
2581 	nvme_dev_disable(dev, false);
2582 	nvme_kill_queues(&dev->ctrl);
2583 	if (!queue_work(nvme_wq, &dev->remove_work))
2584 		nvme_put_ctrl(&dev->ctrl);
2585 }
2586 
2587 static void nvme_reset_work(struct work_struct *work)
2588 {
2589 	struct nvme_dev *dev =
2590 		container_of(work, struct nvme_dev, ctrl.reset_work);
2591 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2592 	int result;
2593 
2594 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2595 		result = -ENODEV;
2596 		goto out;
2597 	}
2598 
2599 	/*
2600 	 * If we're called to reset a live controller first shut it down before
2601 	 * moving on.
2602 	 */
2603 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2604 		nvme_dev_disable(dev, false);
2605 	nvme_sync_queues(&dev->ctrl);
2606 
2607 	mutex_lock(&dev->shutdown_lock);
2608 	result = nvme_pci_enable(dev);
2609 	if (result)
2610 		goto out_unlock;
2611 
2612 	result = nvme_pci_configure_admin_queue(dev);
2613 	if (result)
2614 		goto out_unlock;
2615 
2616 	result = nvme_alloc_admin_tags(dev);
2617 	if (result)
2618 		goto out_unlock;
2619 
2620 	/*
2621 	 * Limit the max command size to prevent iod->sg allocations going
2622 	 * over a single page.
2623 	 */
2624 	dev->ctrl.max_hw_sectors = min_t(u32,
2625 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2626 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2627 
2628 	/*
2629 	 * Don't limit the IOMMU merged segment size.
2630 	 */
2631 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2632 
2633 	mutex_unlock(&dev->shutdown_lock);
2634 
2635 	/*
2636 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2637 	 * initializing procedure here.
2638 	 */
2639 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2640 		dev_warn(dev->ctrl.device,
2641 			"failed to mark controller CONNECTING\n");
2642 		result = -EBUSY;
2643 		goto out;
2644 	}
2645 
2646 	/*
2647 	 * We do not support an SGL for metadata (yet), so we are limited to a
2648 	 * single integrity segment for the separate metadata pointer.
2649 	 */
2650 	dev->ctrl.max_integrity_segments = 1;
2651 
2652 	result = nvme_init_identify(&dev->ctrl);
2653 	if (result)
2654 		goto out;
2655 
2656 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2657 		if (!dev->ctrl.opal_dev)
2658 			dev->ctrl.opal_dev =
2659 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2660 		else if (was_suspend)
2661 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2662 	} else {
2663 		free_opal_dev(dev->ctrl.opal_dev);
2664 		dev->ctrl.opal_dev = NULL;
2665 	}
2666 
2667 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2668 		result = nvme_dbbuf_dma_alloc(dev);
2669 		if (result)
2670 			dev_warn(dev->dev,
2671 				 "unable to allocate dma for dbbuf\n");
2672 	}
2673 
2674 	if (dev->ctrl.hmpre) {
2675 		result = nvme_setup_host_mem(dev);
2676 		if (result < 0)
2677 			goto out;
2678 	}
2679 
2680 	result = nvme_setup_io_queues(dev);
2681 	if (result)
2682 		goto out;
2683 
2684 	/*
2685 	 * Keep the controller around but remove all namespaces if we don't have
2686 	 * any working I/O queue.
2687 	 */
2688 	if (dev->online_queues < 2) {
2689 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2690 		nvme_kill_queues(&dev->ctrl);
2691 		nvme_remove_namespaces(&dev->ctrl);
2692 		nvme_free_tagset(dev);
2693 	} else {
2694 		nvme_start_queues(&dev->ctrl);
2695 		nvme_wait_freeze(&dev->ctrl);
2696 		nvme_dev_add(dev);
2697 		nvme_unfreeze(&dev->ctrl);
2698 	}
2699 
2700 	/*
2701 	 * If only admin queue live, keep it to do further investigation or
2702 	 * recovery.
2703 	 */
2704 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2705 		dev_warn(dev->ctrl.device,
2706 			"failed to mark controller live state\n");
2707 		result = -ENODEV;
2708 		goto out;
2709 	}
2710 
2711 	nvme_start_ctrl(&dev->ctrl);
2712 	return;
2713 
2714  out_unlock:
2715 	mutex_unlock(&dev->shutdown_lock);
2716  out:
2717 	if (result)
2718 		dev_warn(dev->ctrl.device,
2719 			 "Removing after probe failure status: %d\n", result);
2720 	nvme_remove_dead_ctrl(dev);
2721 }
2722 
2723 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2724 {
2725 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2726 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2727 
2728 	if (pci_get_drvdata(pdev))
2729 		device_release_driver(&pdev->dev);
2730 	nvme_put_ctrl(&dev->ctrl);
2731 }
2732 
2733 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2734 {
2735 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2736 	return 0;
2737 }
2738 
2739 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2740 {
2741 	writel(val, to_nvme_dev(ctrl)->bar + off);
2742 	return 0;
2743 }
2744 
2745 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2746 {
2747 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2748 	return 0;
2749 }
2750 
2751 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2752 {
2753 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2754 
2755 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2756 }
2757 
2758 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2759 	.name			= "pcie",
2760 	.module			= THIS_MODULE,
2761 	.flags			= NVME_F_METADATA_SUPPORTED |
2762 				  NVME_F_PCI_P2PDMA,
2763 	.reg_read32		= nvme_pci_reg_read32,
2764 	.reg_write32		= nvme_pci_reg_write32,
2765 	.reg_read64		= nvme_pci_reg_read64,
2766 	.free_ctrl		= nvme_pci_free_ctrl,
2767 	.submit_async_event	= nvme_pci_submit_async_event,
2768 	.get_address		= nvme_pci_get_address,
2769 };
2770 
2771 static int nvme_dev_map(struct nvme_dev *dev)
2772 {
2773 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2774 
2775 	if (pci_request_mem_regions(pdev, "nvme"))
2776 		return -ENODEV;
2777 
2778 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2779 		goto release;
2780 
2781 	return 0;
2782   release:
2783 	pci_release_mem_regions(pdev);
2784 	return -ENODEV;
2785 }
2786 
2787 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2788 {
2789 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2790 		/*
2791 		 * Several Samsung devices seem to drop off the PCIe bus
2792 		 * randomly when APST is on and uses the deepest sleep state.
2793 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2794 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2795 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2796 		 * laptops.
2797 		 */
2798 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2799 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2800 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2801 			return NVME_QUIRK_NO_DEEPEST_PS;
2802 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2803 		/*
2804 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2805 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2806 		 * within few minutes after bootup on a Coffee Lake board -
2807 		 * ASUS PRIME Z370-A
2808 		 */
2809 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2810 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2811 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2812 			return NVME_QUIRK_NO_APST;
2813 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2814 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2815 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2816 		/*
2817 		 * Forcing to use host managed nvme power settings for
2818 		 * lowest idle power with quick resume latency on
2819 		 * Samsung and Toshiba SSDs based on suspend behavior
2820 		 * on Coffee Lake board for LENOVO C640
2821 		 */
2822 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2823 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2824 			return NVME_QUIRK_SIMPLE_SUSPEND;
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 #ifdef CONFIG_ACPI
2831 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2832 {
2833 	struct acpi_device *adev;
2834 	struct pci_dev *root;
2835 	acpi_handle handle;
2836 	acpi_status status;
2837 	u8 val;
2838 
2839 	/*
2840 	 * Look for _DSD property specifying that the storage device on the port
2841 	 * must use D3 to support deep platform power savings during
2842 	 * suspend-to-idle.
2843 	 */
2844 	root = pcie_find_root_port(dev);
2845 	if (!root)
2846 		return false;
2847 
2848 	adev = ACPI_COMPANION(&root->dev);
2849 	if (!adev)
2850 		return false;
2851 
2852 	/*
2853 	 * The property is defined in the PXSX device for South complex ports
2854 	 * and in the PEGP device for North complex ports.
2855 	 */
2856 	status = acpi_get_handle(adev->handle, "PXSX", &handle);
2857 	if (ACPI_FAILURE(status)) {
2858 		status = acpi_get_handle(adev->handle, "PEGP", &handle);
2859 		if (ACPI_FAILURE(status))
2860 			return false;
2861 	}
2862 
2863 	if (acpi_bus_get_device(handle, &adev))
2864 		return false;
2865 
2866 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2867 			&val))
2868 		return false;
2869 	return val == 1;
2870 }
2871 #else
2872 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2873 {
2874 	return false;
2875 }
2876 #endif /* CONFIG_ACPI */
2877 
2878 static void nvme_async_probe(void *data, async_cookie_t cookie)
2879 {
2880 	struct nvme_dev *dev = data;
2881 
2882 	flush_work(&dev->ctrl.reset_work);
2883 	flush_work(&dev->ctrl.scan_work);
2884 	nvme_put_ctrl(&dev->ctrl);
2885 }
2886 
2887 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2888 {
2889 	int node, result = -ENOMEM;
2890 	struct nvme_dev *dev;
2891 	unsigned long quirks = id->driver_data;
2892 	size_t alloc_size;
2893 
2894 	node = dev_to_node(&pdev->dev);
2895 	if (node == NUMA_NO_NODE)
2896 		set_dev_node(&pdev->dev, first_memory_node);
2897 
2898 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2899 	if (!dev)
2900 		return -ENOMEM;
2901 
2902 	dev->nr_write_queues = write_queues;
2903 	dev->nr_poll_queues = poll_queues;
2904 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2905 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2906 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2907 	if (!dev->queues)
2908 		goto free;
2909 
2910 	dev->dev = get_device(&pdev->dev);
2911 	pci_set_drvdata(pdev, dev);
2912 
2913 	result = nvme_dev_map(dev);
2914 	if (result)
2915 		goto put_pci;
2916 
2917 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2918 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2919 	mutex_init(&dev->shutdown_lock);
2920 
2921 	result = nvme_setup_prp_pools(dev);
2922 	if (result)
2923 		goto unmap;
2924 
2925 	quirks |= check_vendor_combination_bug(pdev);
2926 
2927 	if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2928 		/*
2929 		 * Some systems use a bios work around to ask for D3 on
2930 		 * platforms that support kernel managed suspend.
2931 		 */
2932 		dev_info(&pdev->dev,
2933 			 "platform quirk: setting simple suspend\n");
2934 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2935 	}
2936 
2937 	/*
2938 	 * Double check that our mempool alloc size will cover the biggest
2939 	 * command we support.
2940 	 */
2941 	alloc_size = nvme_pci_iod_alloc_size();
2942 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2943 
2944 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2945 						mempool_kfree,
2946 						(void *) alloc_size,
2947 						GFP_KERNEL, node);
2948 	if (!dev->iod_mempool) {
2949 		result = -ENOMEM;
2950 		goto release_pools;
2951 	}
2952 
2953 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2954 			quirks);
2955 	if (result)
2956 		goto release_mempool;
2957 
2958 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2959 
2960 	nvme_reset_ctrl(&dev->ctrl);
2961 	async_schedule(nvme_async_probe, dev);
2962 
2963 	return 0;
2964 
2965  release_mempool:
2966 	mempool_destroy(dev->iod_mempool);
2967  release_pools:
2968 	nvme_release_prp_pools(dev);
2969  unmap:
2970 	nvme_dev_unmap(dev);
2971  put_pci:
2972 	put_device(dev->dev);
2973  free:
2974 	kfree(dev->queues);
2975 	kfree(dev);
2976 	return result;
2977 }
2978 
2979 static void nvme_reset_prepare(struct pci_dev *pdev)
2980 {
2981 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2982 
2983 	/*
2984 	 * We don't need to check the return value from waiting for the reset
2985 	 * state as pci_dev device lock is held, making it impossible to race
2986 	 * with ->remove().
2987 	 */
2988 	nvme_disable_prepare_reset(dev, false);
2989 	nvme_sync_queues(&dev->ctrl);
2990 }
2991 
2992 static void nvme_reset_done(struct pci_dev *pdev)
2993 {
2994 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2995 
2996 	if (!nvme_try_sched_reset(&dev->ctrl))
2997 		flush_work(&dev->ctrl.reset_work);
2998 }
2999 
3000 static void nvme_shutdown(struct pci_dev *pdev)
3001 {
3002 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3003 
3004 	nvme_disable_prepare_reset(dev, true);
3005 }
3006 
3007 /*
3008  * The driver's remove may be called on a device in a partially initialized
3009  * state. This function must not have any dependencies on the device state in
3010  * order to proceed.
3011  */
3012 static void nvme_remove(struct pci_dev *pdev)
3013 {
3014 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3015 
3016 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3017 	pci_set_drvdata(pdev, NULL);
3018 
3019 	if (!pci_device_is_present(pdev)) {
3020 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3021 		nvme_dev_disable(dev, true);
3022 		nvme_dev_remove_admin(dev);
3023 	}
3024 
3025 	flush_work(&dev->ctrl.reset_work);
3026 	nvme_stop_ctrl(&dev->ctrl);
3027 	nvme_remove_namespaces(&dev->ctrl);
3028 	nvme_dev_disable(dev, true);
3029 	nvme_release_cmb(dev);
3030 	nvme_free_host_mem(dev);
3031 	nvme_dev_remove_admin(dev);
3032 	nvme_free_queues(dev, 0);
3033 	nvme_release_prp_pools(dev);
3034 	nvme_dev_unmap(dev);
3035 	nvme_uninit_ctrl(&dev->ctrl);
3036 }
3037 
3038 #ifdef CONFIG_PM_SLEEP
3039 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3040 {
3041 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3042 }
3043 
3044 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3045 {
3046 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3047 }
3048 
3049 static int nvme_resume(struct device *dev)
3050 {
3051 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3052 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3053 
3054 	if (ndev->last_ps == U32_MAX ||
3055 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3056 		return nvme_try_sched_reset(&ndev->ctrl);
3057 	return 0;
3058 }
3059 
3060 static int nvme_suspend(struct device *dev)
3061 {
3062 	struct pci_dev *pdev = to_pci_dev(dev);
3063 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3064 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3065 	int ret = -EBUSY;
3066 
3067 	ndev->last_ps = U32_MAX;
3068 
3069 	/*
3070 	 * The platform does not remove power for a kernel managed suspend so
3071 	 * use host managed nvme power settings for lowest idle power if
3072 	 * possible. This should have quicker resume latency than a full device
3073 	 * shutdown.  But if the firmware is involved after the suspend or the
3074 	 * device does not support any non-default power states, shut down the
3075 	 * device fully.
3076 	 *
3077 	 * If ASPM is not enabled for the device, shut down the device and allow
3078 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3079 	 * down, so as to allow the platform to achieve its minimum low-power
3080 	 * state (which may not be possible if the link is up).
3081 	 *
3082 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3083 	 * specification allows the device to access the host memory buffer in
3084 	 * host DRAM from all power states, but hosts will fail access to DRAM
3085 	 * during S3.
3086 	 */
3087 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3088 	    !pcie_aspm_enabled(pdev) ||
3089 	    ndev->nr_host_mem_descs ||
3090 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3091 		return nvme_disable_prepare_reset(ndev, true);
3092 
3093 	nvme_start_freeze(ctrl);
3094 	nvme_wait_freeze(ctrl);
3095 	nvme_sync_queues(ctrl);
3096 
3097 	if (ctrl->state != NVME_CTRL_LIVE)
3098 		goto unfreeze;
3099 
3100 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3101 	if (ret < 0)
3102 		goto unfreeze;
3103 
3104 	/*
3105 	 * A saved state prevents pci pm from generically controlling the
3106 	 * device's power. If we're using protocol specific settings, we don't
3107 	 * want pci interfering.
3108 	 */
3109 	pci_save_state(pdev);
3110 
3111 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3112 	if (ret < 0)
3113 		goto unfreeze;
3114 
3115 	if (ret) {
3116 		/* discard the saved state */
3117 		pci_load_saved_state(pdev, NULL);
3118 
3119 		/*
3120 		 * Clearing npss forces a controller reset on resume. The
3121 		 * correct value will be rediscovered then.
3122 		 */
3123 		ret = nvme_disable_prepare_reset(ndev, true);
3124 		ctrl->npss = 0;
3125 	}
3126 unfreeze:
3127 	nvme_unfreeze(ctrl);
3128 	return ret;
3129 }
3130 
3131 static int nvme_simple_suspend(struct device *dev)
3132 {
3133 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3134 
3135 	return nvme_disable_prepare_reset(ndev, true);
3136 }
3137 
3138 static int nvme_simple_resume(struct device *dev)
3139 {
3140 	struct pci_dev *pdev = to_pci_dev(dev);
3141 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3142 
3143 	return nvme_try_sched_reset(&ndev->ctrl);
3144 }
3145 
3146 static const struct dev_pm_ops nvme_dev_pm_ops = {
3147 	.suspend	= nvme_suspend,
3148 	.resume		= nvme_resume,
3149 	.freeze		= nvme_simple_suspend,
3150 	.thaw		= nvme_simple_resume,
3151 	.poweroff	= nvme_simple_suspend,
3152 	.restore	= nvme_simple_resume,
3153 };
3154 #endif /* CONFIG_PM_SLEEP */
3155 
3156 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3157 						pci_channel_state_t state)
3158 {
3159 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3160 
3161 	/*
3162 	 * A frozen channel requires a reset. When detected, this method will
3163 	 * shutdown the controller to quiesce. The controller will be restarted
3164 	 * after the slot reset through driver's slot_reset callback.
3165 	 */
3166 	switch (state) {
3167 	case pci_channel_io_normal:
3168 		return PCI_ERS_RESULT_CAN_RECOVER;
3169 	case pci_channel_io_frozen:
3170 		dev_warn(dev->ctrl.device,
3171 			"frozen state error detected, reset controller\n");
3172 		nvme_dev_disable(dev, false);
3173 		return PCI_ERS_RESULT_NEED_RESET;
3174 	case pci_channel_io_perm_failure:
3175 		dev_warn(dev->ctrl.device,
3176 			"failure state error detected, request disconnect\n");
3177 		return PCI_ERS_RESULT_DISCONNECT;
3178 	}
3179 	return PCI_ERS_RESULT_NEED_RESET;
3180 }
3181 
3182 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3183 {
3184 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3185 
3186 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3187 	pci_restore_state(pdev);
3188 	nvme_reset_ctrl(&dev->ctrl);
3189 	return PCI_ERS_RESULT_RECOVERED;
3190 }
3191 
3192 static void nvme_error_resume(struct pci_dev *pdev)
3193 {
3194 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3195 
3196 	flush_work(&dev->ctrl.reset_work);
3197 }
3198 
3199 static const struct pci_error_handlers nvme_err_handler = {
3200 	.error_detected	= nvme_error_detected,
3201 	.slot_reset	= nvme_slot_reset,
3202 	.resume		= nvme_error_resume,
3203 	.reset_prepare	= nvme_reset_prepare,
3204 	.reset_done	= nvme_reset_done,
3205 };
3206 
3207 static const struct pci_device_id nvme_id_table[] = {
3208 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3209 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3210 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3211 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3212 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3213 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3214 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3215 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3216 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3217 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3218 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3219 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3220 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3221 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3222 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3223 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3224 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3225 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3226 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3227 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3228 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3229 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3230 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3231 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3232 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3233 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3234 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3235 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3236 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3237 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3238 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3239 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3240 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3241 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3242 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3243 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3244 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3245 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3246 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3247 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3248 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3249 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3250 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3251 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3252 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3253 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3254 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3255 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3256 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3257 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3258 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3259 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3260 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3261 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3262 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3263 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3264 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3265 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3266 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3267 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3268 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3269 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3270 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3271 				NVME_QUIRK_128_BYTES_SQES |
3272 				NVME_QUIRK_SHARED_TAGS },
3273 
3274 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3275 	{ 0, }
3276 };
3277 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3278 
3279 static struct pci_driver nvme_driver = {
3280 	.name		= "nvme",
3281 	.id_table	= nvme_id_table,
3282 	.probe		= nvme_probe,
3283 	.remove		= nvme_remove,
3284 	.shutdown	= nvme_shutdown,
3285 #ifdef CONFIG_PM_SLEEP
3286 	.driver		= {
3287 		.pm	= &nvme_dev_pm_ops,
3288 	},
3289 #endif
3290 	.sriov_configure = pci_sriov_configure_simple,
3291 	.err_handler	= &nvme_err_handler,
3292 };
3293 
3294 static int __init nvme_init(void)
3295 {
3296 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3297 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3298 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3299 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3300 
3301 	return pci_register_driver(&nvme_driver);
3302 }
3303 
3304 static void __exit nvme_exit(void)
3305 {
3306 	pci_unregister_driver(&nvme_driver);
3307 	flush_workqueue(nvme_wq);
3308 }
3309 
3310 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3311 MODULE_LICENSE("GPL");
3312 MODULE_VERSION("1.0");
3313 module_init(nvme_init);
3314 module_exit(nvme_exit);
3315