xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 80d0624d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	dma_addr_t host_mem_descs_dma;
157 	struct nvme_host_mem_buf_desc *host_mem_descs;
158 	void **host_mem_desc_bufs;
159 	unsigned int nr_allocated_queues;
160 	unsigned int nr_write_queues;
161 	unsigned int nr_poll_queues;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 union nvme_descriptor {
220 	struct nvme_sgl_desc	*sg_list;
221 	__le64			*prp_list;
222 };
223 
224 /*
225  * The nvme_iod describes the data in an I/O.
226  *
227  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228  * to the actual struct scatterlist.
229  */
230 struct nvme_iod {
231 	struct nvme_request req;
232 	struct nvme_command cmd;
233 	bool aborted;
234 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235 				   pool in use */
236 	unsigned int dma_len;	/* length of single DMA segment mapping */
237 	dma_addr_t first_dma;
238 	dma_addr_t meta_dma;
239 	struct sg_table sgt;
240 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242 
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245 	return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247 
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250 	unsigned int mem_size = nvme_dbbuf_size(dev);
251 
252 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 		return;
254 
255 	if (dev->dbbuf_dbs) {
256 		/*
257 		 * Clear the dbbuf memory so the driver doesn't observe stale
258 		 * values from the previous instantiation.
259 		 */
260 		memset(dev->dbbuf_dbs, 0, mem_size);
261 		memset(dev->dbbuf_eis, 0, mem_size);
262 		return;
263 	}
264 
265 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 					    &dev->dbbuf_dbs_dma_addr,
267 					    GFP_KERNEL);
268 	if (!dev->dbbuf_dbs)
269 		goto fail;
270 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_eis_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_eis)
274 		goto fail_free_dbbuf_dbs;
275 	return;
276 
277 fail_free_dbbuf_dbs:
278 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 			  dev->dbbuf_dbs_dma_addr);
280 	dev->dbbuf_dbs = NULL;
281 fail:
282 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284 
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287 	unsigned int mem_size = nvme_dbbuf_size(dev);
288 
289 	if (dev->dbbuf_dbs) {
290 		dma_free_coherent(dev->dev, mem_size,
291 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 		dev->dbbuf_dbs = NULL;
293 	}
294 	if (dev->dbbuf_eis) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 		dev->dbbuf_eis = NULL;
298 	}
299 }
300 
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 			    struct nvme_queue *nvmeq, int qid)
303 {
304 	if (!dev->dbbuf_dbs || !qid)
305 		return;
306 
307 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312 
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315 	if (!nvmeq->qid)
316 		return;
317 
318 	nvmeq->dbbuf_sq_db = NULL;
319 	nvmeq->dbbuf_cq_db = NULL;
320 	nvmeq->dbbuf_sq_ei = NULL;
321 	nvmeq->dbbuf_cq_ei = NULL;
322 }
323 
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 	struct nvme_command c = { };
327 	unsigned int i;
328 
329 	if (!dev->dbbuf_dbs)
330 		return;
331 
332 	c.dbbuf.opcode = nvme_admin_dbbuf;
333 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335 
336 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 		/* Free memory and continue on */
339 		nvme_dbbuf_dma_free(dev);
340 
341 		for (i = 1; i <= dev->online_queues; i++)
342 			nvme_dbbuf_free(&dev->queues[i]);
343 	}
344 }
345 
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350 
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 					      volatile __le32 *dbbuf_ei)
354 {
355 	if (dbbuf_db) {
356 		u16 old_value, event_idx;
357 
358 		/*
359 		 * Ensure that the queue is written before updating
360 		 * the doorbell in memory
361 		 */
362 		wmb();
363 
364 		old_value = le32_to_cpu(*dbbuf_db);
365 		*dbbuf_db = cpu_to_le32(value);
366 
367 		/*
368 		 * Ensure that the doorbell is updated before reading the event
369 		 * index from memory.  The controller needs to provide similar
370 		 * ordering to ensure the envent index is updated before reading
371 		 * the doorbell.
372 		 */
373 		mb();
374 
375 		event_idx = le32_to_cpu(*dbbuf_ei);
376 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377 			return false;
378 	}
379 
380 	return true;
381 }
382 
383 /*
384  * Will slightly overestimate the number of pages needed.  This is OK
385  * as it only leads to a small amount of wasted memory for the lifetime of
386  * the I/O.
387  */
388 static int nvme_pci_npages_prp(void)
389 {
390 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = to_nvme_dev(data);
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = to_nvme_dev(data);
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 		struct request *req, unsigned int hctx_idx,
421 		unsigned int numa_node)
422 {
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 
425 	nvme_req(req)->ctrl = set->driver_data;
426 	nvme_req(req)->cmd = &iod->cmd;
427 	return 0;
428 }
429 
430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 	/* if we have more than 1 vec, admin queue offsets us by 1 */
433 	if (dev->num_vecs > 1)
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442 	int i, qoff, offset;
443 
444 	offset = queue_irq_offset(dev);
445 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 		struct blk_mq_queue_map *map = &set->map[i];
447 
448 		map->nr_queues = dev->io_queues[i];
449 		if (!map->nr_queues) {
450 			BUG_ON(i == HCTX_TYPE_DEFAULT);
451 			continue;
452 		}
453 
454 		/*
455 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 		 * affinity), so use the regular blk-mq cpu mapping
457 		 */
458 		map->queue_offset = qoff;
459 		if (i != HCTX_TYPE_POLL && offset)
460 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 		else
462 			blk_mq_map_queues(map);
463 		qoff += map->nr_queues;
464 		offset += map->nr_queues;
465 	}
466 }
467 
468 /*
469  * Write sq tail if we are asked to, or if the next command would wrap.
470  */
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472 {
473 	if (!write_sq) {
474 		u16 next_tail = nvmeq->sq_tail + 1;
475 
476 		if (next_tail == nvmeq->q_depth)
477 			next_tail = 0;
478 		if (next_tail != nvmeq->last_sq_tail)
479 			return;
480 	}
481 
482 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484 		writel(nvmeq->sq_tail, nvmeq->q_db);
485 	nvmeq->last_sq_tail = nvmeq->sq_tail;
486 }
487 
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 				    struct nvme_command *cmd)
490 {
491 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 		absolute_pointer(cmd), sizeof(*cmd));
493 	if (++nvmeq->sq_tail == nvmeq->q_depth)
494 		nvmeq->sq_tail = 0;
495 }
496 
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498 {
499 	struct nvme_queue *nvmeq = hctx->driver_data;
500 
501 	spin_lock(&nvmeq->sq_lock);
502 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 		nvme_write_sq_db(nvmeq, true);
504 	spin_unlock(&nvmeq->sq_lock);
505 }
506 
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 				     int nseg)
509 {
510 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 	unsigned int avg_seg_size;
512 
513 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514 
515 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516 		return false;
517 	if (!nvmeq->qid)
518 		return false;
519 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 		return false;
521 	return true;
522 }
523 
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525 {
526 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 	dma_addr_t dma_addr = iod->first_dma;
529 	int i;
530 
531 	for (i = 0; i < iod->nr_allocations; i++) {
532 		__le64 *prp_list = iod->list[i].prp_list;
533 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534 
535 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536 		dma_addr = next_dma_addr;
537 	}
538 }
539 
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 
544 	if (iod->dma_len) {
545 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 			       rq_dma_dir(req));
547 		return;
548 	}
549 
550 	WARN_ON_ONCE(!iod->sgt.nents);
551 
552 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553 
554 	if (iod->nr_allocations == 0)
555 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556 			      iod->first_dma);
557 	else if (iod->nr_allocations == 1)
558 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559 			      iod->first_dma);
560 	else
561 		nvme_free_prps(dev, req);
562 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
563 }
564 
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566 {
567 	int i;
568 	struct scatterlist *sg;
569 
570 	for_each_sg(sgl, sg, nents, i) {
571 		dma_addr_t phys = sg_phys(sg);
572 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 			"dma_address:%pad dma_length:%d\n",
574 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 			sg_dma_len(sg));
576 	}
577 }
578 
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 		struct request *req, struct nvme_rw_command *cmnd)
581 {
582 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 	struct dma_pool *pool;
584 	int length = blk_rq_payload_bytes(req);
585 	struct scatterlist *sg = iod->sgt.sgl;
586 	int dma_len = sg_dma_len(sg);
587 	u64 dma_addr = sg_dma_address(sg);
588 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 	__le64 *prp_list;
590 	dma_addr_t prp_dma;
591 	int nprps, i;
592 
593 	length -= (NVME_CTRL_PAGE_SIZE - offset);
594 	if (length <= 0) {
595 		iod->first_dma = 0;
596 		goto done;
597 	}
598 
599 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 	if (dma_len) {
601 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 	} else {
603 		sg = sg_next(sg);
604 		dma_addr = sg_dma_address(sg);
605 		dma_len = sg_dma_len(sg);
606 	}
607 
608 	if (length <= NVME_CTRL_PAGE_SIZE) {
609 		iod->first_dma = dma_addr;
610 		goto done;
611 	}
612 
613 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 	if (nprps <= (256 / 8)) {
615 		pool = dev->prp_small_pool;
616 		iod->nr_allocations = 0;
617 	} else {
618 		pool = dev->prp_page_pool;
619 		iod->nr_allocations = 1;
620 	}
621 
622 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623 	if (!prp_list) {
624 		iod->nr_allocations = -1;
625 		return BLK_STS_RESOURCE;
626 	}
627 	iod->list[0].prp_list = prp_list;
628 	iod->first_dma = prp_dma;
629 	i = 0;
630 	for (;;) {
631 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 			__le64 *old_prp_list = prp_list;
633 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634 			if (!prp_list)
635 				goto free_prps;
636 			iod->list[iod->nr_allocations++].prp_list = prp_list;
637 			prp_list[0] = old_prp_list[i - 1];
638 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 			i = 1;
640 		}
641 		prp_list[i++] = cpu_to_le64(dma_addr);
642 		dma_len -= NVME_CTRL_PAGE_SIZE;
643 		dma_addr += NVME_CTRL_PAGE_SIZE;
644 		length -= NVME_CTRL_PAGE_SIZE;
645 		if (length <= 0)
646 			break;
647 		if (dma_len > 0)
648 			continue;
649 		if (unlikely(dma_len < 0))
650 			goto bad_sgl;
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 done:
656 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 	return BLK_STS_OK;
659 free_prps:
660 	nvme_free_prps(dev, req);
661 	return BLK_STS_RESOURCE;
662 bad_sgl:
663 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 			"Invalid SGL for payload:%d nents:%d\n",
665 			blk_rq_payload_bytes(req), iod->sgt.nents);
666 	return BLK_STS_IOERR;
667 }
668 
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 		struct scatterlist *sg)
671 {
672 	sge->addr = cpu_to_le64(sg_dma_address(sg));
673 	sge->length = cpu_to_le32(sg_dma_len(sg));
674 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676 
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 		dma_addr_t dma_addr, int entries)
679 {
680 	sge->addr = cpu_to_le64(dma_addr);
681 	sge->length = cpu_to_le32(entries * sizeof(*sge));
682 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683 }
684 
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 		struct request *req, struct nvme_rw_command *cmd)
687 {
688 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689 	struct dma_pool *pool;
690 	struct nvme_sgl_desc *sg_list;
691 	struct scatterlist *sg = iod->sgt.sgl;
692 	unsigned int entries = iod->sgt.nents;
693 	dma_addr_t sgl_dma;
694 	int i = 0;
695 
696 	/* setting the transfer type as SGL */
697 	cmd->flags = NVME_CMD_SGL_METABUF;
698 
699 	if (entries == 1) {
700 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701 		return BLK_STS_OK;
702 	}
703 
704 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 		pool = dev->prp_small_pool;
706 		iod->nr_allocations = 0;
707 	} else {
708 		pool = dev->prp_page_pool;
709 		iod->nr_allocations = 1;
710 	}
711 
712 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713 	if (!sg_list) {
714 		iod->nr_allocations = -1;
715 		return BLK_STS_RESOURCE;
716 	}
717 
718 	iod->list[0].sg_list = sg_list;
719 	iod->first_dma = sgl_dma;
720 
721 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722 	do {
723 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
724 		sg = sg_next(sg);
725 	} while (--entries > 0);
726 
727 	return BLK_STS_OK;
728 }
729 
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 		struct request *req, struct nvme_rw_command *cmnd,
732 		struct bio_vec *bv)
733 {
734 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737 
738 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 	if (dma_mapping_error(dev->dev, iod->first_dma))
740 		return BLK_STS_RESOURCE;
741 	iod->dma_len = bv->bv_len;
742 
743 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 	if (bv->bv_len > first_prp_len)
745 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 	else
747 		cmnd->dptr.prp2 = 0;
748 	return BLK_STS_OK;
749 }
750 
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 		struct request *req, struct nvme_rw_command *cmnd,
753 		struct bio_vec *bv)
754 {
755 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756 
757 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 	if (dma_mapping_error(dev->dev, iod->first_dma))
759 		return BLK_STS_RESOURCE;
760 	iod->dma_len = bv->bv_len;
761 
762 	cmnd->flags = NVME_CMD_SGL_METABUF;
763 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 	return BLK_STS_OK;
767 }
768 
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 		struct nvme_command *cmnd)
771 {
772 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 	blk_status_t ret = BLK_STS_RESOURCE;
774 	int rc;
775 
776 	if (blk_rq_nr_phys_segments(req) == 1) {
777 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 		struct bio_vec bv = req_bvec(req);
779 
780 		if (!is_pci_p2pdma_page(bv.bv_page)) {
781 			if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
782 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
783 				return nvme_setup_prp_simple(dev, req,
784 							     &cmnd->rw, &bv);
785 
786 			if (nvmeq->qid && sgl_threshold &&
787 			    nvme_ctrl_sgl_supported(&dev->ctrl))
788 				return nvme_setup_sgl_simple(dev, req,
789 							     &cmnd->rw, &bv);
790 		}
791 	}
792 
793 	iod->dma_len = 0;
794 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
795 	if (!iod->sgt.sgl)
796 		return BLK_STS_RESOURCE;
797 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
798 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
799 	if (!iod->sgt.orig_nents)
800 		goto out_free_sg;
801 
802 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
803 			     DMA_ATTR_NO_WARN);
804 	if (rc) {
805 		if (rc == -EREMOTEIO)
806 			ret = BLK_STS_TARGET;
807 		goto out_free_sg;
808 	}
809 
810 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
811 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
812 	else
813 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
814 	if (ret != BLK_STS_OK)
815 		goto out_unmap_sg;
816 	return BLK_STS_OK;
817 
818 out_unmap_sg:
819 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
820 out_free_sg:
821 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
822 	return ret;
823 }
824 
825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
826 		struct nvme_command *cmnd)
827 {
828 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
829 	struct bio_vec bv = rq_integrity_vec(req);
830 
831 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
832 	if (dma_mapping_error(dev->dev, iod->meta_dma))
833 		return BLK_STS_IOERR;
834 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
835 	return BLK_STS_OK;
836 }
837 
838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
839 {
840 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 	blk_status_t ret;
842 
843 	iod->aborted = false;
844 	iod->nr_allocations = -1;
845 	iod->sgt.nents = 0;
846 
847 	ret = nvme_setup_cmd(req->q->queuedata, req);
848 	if (ret)
849 		return ret;
850 
851 	if (blk_rq_nr_phys_segments(req)) {
852 		ret = nvme_map_data(dev, req, &iod->cmd);
853 		if (ret)
854 			goto out_free_cmd;
855 	}
856 
857 	if (blk_integrity_rq(req)) {
858 		ret = nvme_map_metadata(dev, req, &iod->cmd);
859 		if (ret)
860 			goto out_unmap_data;
861 	}
862 
863 	nvme_start_request(req);
864 	return BLK_STS_OK;
865 out_unmap_data:
866 	if (blk_rq_nr_phys_segments(req))
867 		nvme_unmap_data(dev, req);
868 out_free_cmd:
869 	nvme_cleanup_cmd(req);
870 	return ret;
871 }
872 
873 /*
874  * NOTE: ns is NULL when called on the admin queue.
875  */
876 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
877 			 const struct blk_mq_queue_data *bd)
878 {
879 	struct nvme_queue *nvmeq = hctx->driver_data;
880 	struct nvme_dev *dev = nvmeq->dev;
881 	struct request *req = bd->rq;
882 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
883 	blk_status_t ret;
884 
885 	/*
886 	 * We should not need to do this, but we're still using this to
887 	 * ensure we can drain requests on a dying queue.
888 	 */
889 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
890 		return BLK_STS_IOERR;
891 
892 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
893 		return nvme_fail_nonready_command(&dev->ctrl, req);
894 
895 	ret = nvme_prep_rq(dev, req);
896 	if (unlikely(ret))
897 		return ret;
898 	spin_lock(&nvmeq->sq_lock);
899 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
900 	nvme_write_sq_db(nvmeq, bd->last);
901 	spin_unlock(&nvmeq->sq_lock);
902 	return BLK_STS_OK;
903 }
904 
905 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
906 {
907 	spin_lock(&nvmeq->sq_lock);
908 	while (!rq_list_empty(*rqlist)) {
909 		struct request *req = rq_list_pop(rqlist);
910 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911 
912 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
913 	}
914 	nvme_write_sq_db(nvmeq, true);
915 	spin_unlock(&nvmeq->sq_lock);
916 }
917 
918 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
919 {
920 	/*
921 	 * We should not need to do this, but we're still using this to
922 	 * ensure we can drain requests on a dying queue.
923 	 */
924 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
925 		return false;
926 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
927 		return false;
928 
929 	req->mq_hctx->tags->rqs[req->tag] = req;
930 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
931 }
932 
933 static void nvme_queue_rqs(struct request **rqlist)
934 {
935 	struct request *req, *next, *prev = NULL;
936 	struct request *requeue_list = NULL;
937 
938 	rq_list_for_each_safe(rqlist, req, next) {
939 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
940 
941 		if (!nvme_prep_rq_batch(nvmeq, req)) {
942 			/* detach 'req' and add to remainder list */
943 			rq_list_move(rqlist, &requeue_list, req, prev);
944 
945 			req = prev;
946 			if (!req)
947 				continue;
948 		}
949 
950 		if (!next || req->mq_hctx != next->mq_hctx) {
951 			/* detach rest of list, and submit */
952 			req->rq_next = NULL;
953 			nvme_submit_cmds(nvmeq, rqlist);
954 			*rqlist = next;
955 			prev = NULL;
956 		} else
957 			prev = req;
958 	}
959 
960 	*rqlist = requeue_list;
961 }
962 
963 static __always_inline void nvme_pci_unmap_rq(struct request *req)
964 {
965 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
966 	struct nvme_dev *dev = nvmeq->dev;
967 
968 	if (blk_integrity_rq(req)) {
969 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
970 
971 		dma_unmap_page(dev->dev, iod->meta_dma,
972 			       rq_integrity_vec(req).bv_len, rq_dma_dir(req));
973 	}
974 
975 	if (blk_rq_nr_phys_segments(req))
976 		nvme_unmap_data(dev, req);
977 }
978 
979 static void nvme_pci_complete_rq(struct request *req)
980 {
981 	nvme_pci_unmap_rq(req);
982 	nvme_complete_rq(req);
983 }
984 
985 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
986 {
987 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
988 }
989 
990 /* We read the CQE phase first to check if the rest of the entry is valid */
991 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
992 {
993 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
994 
995 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
996 }
997 
998 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
999 {
1000 	u16 head = nvmeq->cq_head;
1001 
1002 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1003 					      nvmeq->dbbuf_cq_ei))
1004 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1005 }
1006 
1007 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1008 {
1009 	if (!nvmeq->qid)
1010 		return nvmeq->dev->admin_tagset.tags[0];
1011 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1012 }
1013 
1014 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1015 				   struct io_comp_batch *iob, u16 idx)
1016 {
1017 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1018 	__u16 command_id = READ_ONCE(cqe->command_id);
1019 	struct request *req;
1020 
1021 	/*
1022 	 * AEN requests are special as they don't time out and can
1023 	 * survive any kind of queue freeze and often don't respond to
1024 	 * aborts.  We don't even bother to allocate a struct request
1025 	 * for them but rather special case them here.
1026 	 */
1027 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1028 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1029 				cqe->status, &cqe->result);
1030 		return;
1031 	}
1032 
1033 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1034 	if (unlikely(!req)) {
1035 		dev_warn(nvmeq->dev->ctrl.device,
1036 			"invalid id %d completed on queue %d\n",
1037 			command_id, le16_to_cpu(cqe->sq_id));
1038 		return;
1039 	}
1040 
1041 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1042 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1043 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1044 					nvme_pci_complete_batch))
1045 		nvme_pci_complete_rq(req);
1046 }
1047 
1048 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1049 {
1050 	u32 tmp = nvmeq->cq_head + 1;
1051 
1052 	if (tmp == nvmeq->q_depth) {
1053 		nvmeq->cq_head = 0;
1054 		nvmeq->cq_phase ^= 1;
1055 	} else {
1056 		nvmeq->cq_head = tmp;
1057 	}
1058 }
1059 
1060 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1061 			       struct io_comp_batch *iob)
1062 {
1063 	int found = 0;
1064 
1065 	while (nvme_cqe_pending(nvmeq)) {
1066 		found++;
1067 		/*
1068 		 * load-load control dependency between phase and the rest of
1069 		 * the cqe requires a full read memory barrier
1070 		 */
1071 		dma_rmb();
1072 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1073 		nvme_update_cq_head(nvmeq);
1074 	}
1075 
1076 	if (found)
1077 		nvme_ring_cq_doorbell(nvmeq);
1078 	return found;
1079 }
1080 
1081 static irqreturn_t nvme_irq(int irq, void *data)
1082 {
1083 	struct nvme_queue *nvmeq = data;
1084 	DEFINE_IO_COMP_BATCH(iob);
1085 
1086 	if (nvme_poll_cq(nvmeq, &iob)) {
1087 		if (!rq_list_empty(iob.req_list))
1088 			nvme_pci_complete_batch(&iob);
1089 		return IRQ_HANDLED;
1090 	}
1091 	return IRQ_NONE;
1092 }
1093 
1094 static irqreturn_t nvme_irq_check(int irq, void *data)
1095 {
1096 	struct nvme_queue *nvmeq = data;
1097 
1098 	if (nvme_cqe_pending(nvmeq))
1099 		return IRQ_WAKE_THREAD;
1100 	return IRQ_NONE;
1101 }
1102 
1103 /*
1104  * Poll for completions for any interrupt driven queue
1105  * Can be called from any context.
1106  */
1107 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1108 {
1109 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1110 
1111 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1112 
1113 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1114 	nvme_poll_cq(nvmeq, NULL);
1115 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1116 }
1117 
1118 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1119 {
1120 	struct nvme_queue *nvmeq = hctx->driver_data;
1121 	bool found;
1122 
1123 	if (!nvme_cqe_pending(nvmeq))
1124 		return 0;
1125 
1126 	spin_lock(&nvmeq->cq_poll_lock);
1127 	found = nvme_poll_cq(nvmeq, iob);
1128 	spin_unlock(&nvmeq->cq_poll_lock);
1129 
1130 	return found;
1131 }
1132 
1133 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1134 {
1135 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1136 	struct nvme_queue *nvmeq = &dev->queues[0];
1137 	struct nvme_command c = { };
1138 
1139 	c.common.opcode = nvme_admin_async_event;
1140 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1141 
1142 	spin_lock(&nvmeq->sq_lock);
1143 	nvme_sq_copy_cmd(nvmeq, &c);
1144 	nvme_write_sq_db(nvmeq, true);
1145 	spin_unlock(&nvmeq->sq_lock);
1146 }
1147 
1148 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1149 {
1150 	struct nvme_command c = { };
1151 
1152 	c.delete_queue.opcode = opcode;
1153 	c.delete_queue.qid = cpu_to_le16(id);
1154 
1155 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1156 }
1157 
1158 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1159 		struct nvme_queue *nvmeq, s16 vector)
1160 {
1161 	struct nvme_command c = { };
1162 	int flags = NVME_QUEUE_PHYS_CONTIG;
1163 
1164 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1165 		flags |= NVME_CQ_IRQ_ENABLED;
1166 
1167 	/*
1168 	 * Note: we (ab)use the fact that the prp fields survive if no data
1169 	 * is attached to the request.
1170 	 */
1171 	c.create_cq.opcode = nvme_admin_create_cq;
1172 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1173 	c.create_cq.cqid = cpu_to_le16(qid);
1174 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1175 	c.create_cq.cq_flags = cpu_to_le16(flags);
1176 	c.create_cq.irq_vector = cpu_to_le16(vector);
1177 
1178 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1179 }
1180 
1181 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1182 						struct nvme_queue *nvmeq)
1183 {
1184 	struct nvme_ctrl *ctrl = &dev->ctrl;
1185 	struct nvme_command c = { };
1186 	int flags = NVME_QUEUE_PHYS_CONTIG;
1187 
1188 	/*
1189 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1190 	 * set. Since URGENT priority is zeroes, it makes all queues
1191 	 * URGENT.
1192 	 */
1193 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1194 		flags |= NVME_SQ_PRIO_MEDIUM;
1195 
1196 	/*
1197 	 * Note: we (ab)use the fact that the prp fields survive if no data
1198 	 * is attached to the request.
1199 	 */
1200 	c.create_sq.opcode = nvme_admin_create_sq;
1201 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1202 	c.create_sq.sqid = cpu_to_le16(qid);
1203 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1204 	c.create_sq.sq_flags = cpu_to_le16(flags);
1205 	c.create_sq.cqid = cpu_to_le16(qid);
1206 
1207 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1208 }
1209 
1210 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1211 {
1212 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1213 }
1214 
1215 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1216 {
1217 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1218 }
1219 
1220 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1221 {
1222 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1223 
1224 	dev_warn(nvmeq->dev->ctrl.device,
1225 		 "Abort status: 0x%x", nvme_req(req)->status);
1226 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1227 	blk_mq_free_request(req);
1228 	return RQ_END_IO_NONE;
1229 }
1230 
1231 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1232 {
1233 	/* If true, indicates loss of adapter communication, possibly by a
1234 	 * NVMe Subsystem reset.
1235 	 */
1236 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1237 
1238 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1239 	switch (nvme_ctrl_state(&dev->ctrl)) {
1240 	case NVME_CTRL_RESETTING:
1241 	case NVME_CTRL_CONNECTING:
1242 		return false;
1243 	default:
1244 		break;
1245 	}
1246 
1247 	/* We shouldn't reset unless the controller is on fatal error state
1248 	 * _or_ if we lost the communication with it.
1249 	 */
1250 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1251 		return false;
1252 
1253 	return true;
1254 }
1255 
1256 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1257 {
1258 	/* Read a config register to help see what died. */
1259 	u16 pci_status;
1260 	int result;
1261 
1262 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1263 				      &pci_status);
1264 	if (result == PCIBIOS_SUCCESSFUL)
1265 		dev_warn(dev->ctrl.device,
1266 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1267 			 csts, pci_status);
1268 	else
1269 		dev_warn(dev->ctrl.device,
1270 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1271 			 csts, result);
1272 
1273 	if (csts != ~0)
1274 		return;
1275 
1276 	dev_warn(dev->ctrl.device,
1277 		 "Does your device have a faulty power saving mode enabled?\n");
1278 	dev_warn(dev->ctrl.device,
1279 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1280 }
1281 
1282 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1283 {
1284 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1285 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1286 	struct nvme_dev *dev = nvmeq->dev;
1287 	struct request *abort_req;
1288 	struct nvme_command cmd = { };
1289 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1290 
1291 	if (nvme_state_terminal(&dev->ctrl))
1292 		goto disable;
1293 
1294 	/* If PCI error recovery process is happening, we cannot reset or
1295 	 * the recovery mechanism will surely fail.
1296 	 */
1297 	mb();
1298 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1299 		return BLK_EH_RESET_TIMER;
1300 
1301 	/*
1302 	 * Reset immediately if the controller is failed
1303 	 */
1304 	if (nvme_should_reset(dev, csts)) {
1305 		nvme_warn_reset(dev, csts);
1306 		goto disable;
1307 	}
1308 
1309 	/*
1310 	 * Did we miss an interrupt?
1311 	 */
1312 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1313 		nvme_poll(req->mq_hctx, NULL);
1314 	else
1315 		nvme_poll_irqdisable(nvmeq);
1316 
1317 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1318 		dev_warn(dev->ctrl.device,
1319 			 "I/O %d QID %d timeout, completion polled\n",
1320 			 req->tag, nvmeq->qid);
1321 		return BLK_EH_DONE;
1322 	}
1323 
1324 	/*
1325 	 * Shutdown immediately if controller times out while starting. The
1326 	 * reset work will see the pci device disabled when it gets the forced
1327 	 * cancellation error. All outstanding requests are completed on
1328 	 * shutdown, so we return BLK_EH_DONE.
1329 	 */
1330 	switch (nvme_ctrl_state(&dev->ctrl)) {
1331 	case NVME_CTRL_CONNECTING:
1332 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1333 		fallthrough;
1334 	case NVME_CTRL_DELETING:
1335 		dev_warn_ratelimited(dev->ctrl.device,
1336 			 "I/O %d QID %d timeout, disable controller\n",
1337 			 req->tag, nvmeq->qid);
1338 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1339 		nvme_dev_disable(dev, true);
1340 		return BLK_EH_DONE;
1341 	case NVME_CTRL_RESETTING:
1342 		return BLK_EH_RESET_TIMER;
1343 	default:
1344 		break;
1345 	}
1346 
1347 	/*
1348 	 * Shutdown the controller immediately and schedule a reset if the
1349 	 * command was already aborted once before and still hasn't been
1350 	 * returned to the driver, or if this is the admin queue.
1351 	 */
1352 	if (!nvmeq->qid || iod->aborted) {
1353 		dev_warn(dev->ctrl.device,
1354 			 "I/O %d QID %d timeout, reset controller\n",
1355 			 req->tag, nvmeq->qid);
1356 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1357 		goto disable;
1358 	}
1359 
1360 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1361 		atomic_inc(&dev->ctrl.abort_limit);
1362 		return BLK_EH_RESET_TIMER;
1363 	}
1364 	iod->aborted = true;
1365 
1366 	cmd.abort.opcode = nvme_admin_abort_cmd;
1367 	cmd.abort.cid = nvme_cid(req);
1368 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1369 
1370 	dev_warn(nvmeq->dev->ctrl.device,
1371 		"I/O %d (%s) QID %d timeout, aborting\n",
1372 		 req->tag,
1373 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1374 		 nvmeq->qid);
1375 
1376 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1377 					 BLK_MQ_REQ_NOWAIT);
1378 	if (IS_ERR(abort_req)) {
1379 		atomic_inc(&dev->ctrl.abort_limit);
1380 		return BLK_EH_RESET_TIMER;
1381 	}
1382 	nvme_init_request(abort_req, &cmd);
1383 
1384 	abort_req->end_io = abort_endio;
1385 	abort_req->end_io_data = NULL;
1386 	blk_execute_rq_nowait(abort_req, false);
1387 
1388 	/*
1389 	 * The aborted req will be completed on receiving the abort req.
1390 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1391 	 * as the device then is in a faulty state.
1392 	 */
1393 	return BLK_EH_RESET_TIMER;
1394 
1395 disable:
1396 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1397 		if (nvme_state_terminal(&dev->ctrl))
1398 			nvme_dev_disable(dev, true);
1399 		return BLK_EH_DONE;
1400 	}
1401 
1402 	nvme_dev_disable(dev, false);
1403 	if (nvme_try_sched_reset(&dev->ctrl))
1404 		nvme_unquiesce_io_queues(&dev->ctrl);
1405 	return BLK_EH_DONE;
1406 }
1407 
1408 static void nvme_free_queue(struct nvme_queue *nvmeq)
1409 {
1410 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1411 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1412 	if (!nvmeq->sq_cmds)
1413 		return;
1414 
1415 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1416 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1417 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1418 	} else {
1419 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1420 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1421 	}
1422 }
1423 
1424 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1425 {
1426 	int i;
1427 
1428 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1429 		dev->ctrl.queue_count--;
1430 		nvme_free_queue(&dev->queues[i]);
1431 	}
1432 }
1433 
1434 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1435 {
1436 	struct nvme_queue *nvmeq = &dev->queues[qid];
1437 
1438 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1439 		return;
1440 
1441 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1442 	mb();
1443 
1444 	nvmeq->dev->online_queues--;
1445 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1446 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1447 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1448 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1449 }
1450 
1451 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1452 {
1453 	int i;
1454 
1455 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1456 		nvme_suspend_queue(dev, i);
1457 }
1458 
1459 /*
1460  * Called only on a device that has been disabled and after all other threads
1461  * that can check this device's completion queues have synced, except
1462  * nvme_poll(). This is the last chance for the driver to see a natural
1463  * completion before nvme_cancel_request() terminates all incomplete requests.
1464  */
1465 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1466 {
1467 	int i;
1468 
1469 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1470 		spin_lock(&dev->queues[i].cq_poll_lock);
1471 		nvme_poll_cq(&dev->queues[i], NULL);
1472 		spin_unlock(&dev->queues[i].cq_poll_lock);
1473 	}
1474 }
1475 
1476 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1477 				int entry_size)
1478 {
1479 	int q_depth = dev->q_depth;
1480 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1481 					  NVME_CTRL_PAGE_SIZE);
1482 
1483 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1484 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1485 
1486 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1487 		q_depth = div_u64(mem_per_q, entry_size);
1488 
1489 		/*
1490 		 * Ensure the reduced q_depth is above some threshold where it
1491 		 * would be better to map queues in system memory with the
1492 		 * original depth
1493 		 */
1494 		if (q_depth < 64)
1495 			return -ENOMEM;
1496 	}
1497 
1498 	return q_depth;
1499 }
1500 
1501 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1502 				int qid)
1503 {
1504 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1505 
1506 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1507 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1508 		if (nvmeq->sq_cmds) {
1509 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1510 							nvmeq->sq_cmds);
1511 			if (nvmeq->sq_dma_addr) {
1512 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1513 				return 0;
1514 			}
1515 
1516 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1517 		}
1518 	}
1519 
1520 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1521 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1522 	if (!nvmeq->sq_cmds)
1523 		return -ENOMEM;
1524 	return 0;
1525 }
1526 
1527 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1528 {
1529 	struct nvme_queue *nvmeq = &dev->queues[qid];
1530 
1531 	if (dev->ctrl.queue_count > qid)
1532 		return 0;
1533 
1534 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1535 	nvmeq->q_depth = depth;
1536 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1537 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1538 	if (!nvmeq->cqes)
1539 		goto free_nvmeq;
1540 
1541 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1542 		goto free_cqdma;
1543 
1544 	nvmeq->dev = dev;
1545 	spin_lock_init(&nvmeq->sq_lock);
1546 	spin_lock_init(&nvmeq->cq_poll_lock);
1547 	nvmeq->cq_head = 0;
1548 	nvmeq->cq_phase = 1;
1549 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1550 	nvmeq->qid = qid;
1551 	dev->ctrl.queue_count++;
1552 
1553 	return 0;
1554 
1555  free_cqdma:
1556 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1557 			  nvmeq->cq_dma_addr);
1558  free_nvmeq:
1559 	return -ENOMEM;
1560 }
1561 
1562 static int queue_request_irq(struct nvme_queue *nvmeq)
1563 {
1564 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1565 	int nr = nvmeq->dev->ctrl.instance;
1566 
1567 	if (use_threaded_interrupts) {
1568 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1569 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1570 	} else {
1571 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1572 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1573 	}
1574 }
1575 
1576 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1577 {
1578 	struct nvme_dev *dev = nvmeq->dev;
1579 
1580 	nvmeq->sq_tail = 0;
1581 	nvmeq->last_sq_tail = 0;
1582 	nvmeq->cq_head = 0;
1583 	nvmeq->cq_phase = 1;
1584 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1585 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1586 	nvme_dbbuf_init(dev, nvmeq, qid);
1587 	dev->online_queues++;
1588 	wmb(); /* ensure the first interrupt sees the initialization */
1589 }
1590 
1591 /*
1592  * Try getting shutdown_lock while setting up IO queues.
1593  */
1594 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1595 {
1596 	/*
1597 	 * Give up if the lock is being held by nvme_dev_disable.
1598 	 */
1599 	if (!mutex_trylock(&dev->shutdown_lock))
1600 		return -ENODEV;
1601 
1602 	/*
1603 	 * Controller is in wrong state, fail early.
1604 	 */
1605 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1606 		mutex_unlock(&dev->shutdown_lock);
1607 		return -ENODEV;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1614 {
1615 	struct nvme_dev *dev = nvmeq->dev;
1616 	int result;
1617 	u16 vector = 0;
1618 
1619 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1620 
1621 	/*
1622 	 * A queue's vector matches the queue identifier unless the controller
1623 	 * has only one vector available.
1624 	 */
1625 	if (!polled)
1626 		vector = dev->num_vecs == 1 ? 0 : qid;
1627 	else
1628 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1629 
1630 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1631 	if (result)
1632 		return result;
1633 
1634 	result = adapter_alloc_sq(dev, qid, nvmeq);
1635 	if (result < 0)
1636 		return result;
1637 	if (result)
1638 		goto release_cq;
1639 
1640 	nvmeq->cq_vector = vector;
1641 
1642 	result = nvme_setup_io_queues_trylock(dev);
1643 	if (result)
1644 		return result;
1645 	nvme_init_queue(nvmeq, qid);
1646 	if (!polled) {
1647 		result = queue_request_irq(nvmeq);
1648 		if (result < 0)
1649 			goto release_sq;
1650 	}
1651 
1652 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1653 	mutex_unlock(&dev->shutdown_lock);
1654 	return result;
1655 
1656 release_sq:
1657 	dev->online_queues--;
1658 	mutex_unlock(&dev->shutdown_lock);
1659 	adapter_delete_sq(dev, qid);
1660 release_cq:
1661 	adapter_delete_cq(dev, qid);
1662 	return result;
1663 }
1664 
1665 static const struct blk_mq_ops nvme_mq_admin_ops = {
1666 	.queue_rq	= nvme_queue_rq,
1667 	.complete	= nvme_pci_complete_rq,
1668 	.init_hctx	= nvme_admin_init_hctx,
1669 	.init_request	= nvme_pci_init_request,
1670 	.timeout	= nvme_timeout,
1671 };
1672 
1673 static const struct blk_mq_ops nvme_mq_ops = {
1674 	.queue_rq	= nvme_queue_rq,
1675 	.queue_rqs	= nvme_queue_rqs,
1676 	.complete	= nvme_pci_complete_rq,
1677 	.commit_rqs	= nvme_commit_rqs,
1678 	.init_hctx	= nvme_init_hctx,
1679 	.init_request	= nvme_pci_init_request,
1680 	.map_queues	= nvme_pci_map_queues,
1681 	.timeout	= nvme_timeout,
1682 	.poll		= nvme_poll,
1683 };
1684 
1685 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1686 {
1687 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1688 		/*
1689 		 * If the controller was reset during removal, it's possible
1690 		 * user requests may be waiting on a stopped queue. Start the
1691 		 * queue to flush these to completion.
1692 		 */
1693 		nvme_unquiesce_admin_queue(&dev->ctrl);
1694 		nvme_remove_admin_tag_set(&dev->ctrl);
1695 	}
1696 }
1697 
1698 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1699 {
1700 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1701 }
1702 
1703 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1704 {
1705 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1706 
1707 	if (size <= dev->bar_mapped_size)
1708 		return 0;
1709 	if (size > pci_resource_len(pdev, 0))
1710 		return -ENOMEM;
1711 	if (dev->bar)
1712 		iounmap(dev->bar);
1713 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1714 	if (!dev->bar) {
1715 		dev->bar_mapped_size = 0;
1716 		return -ENOMEM;
1717 	}
1718 	dev->bar_mapped_size = size;
1719 	dev->dbs = dev->bar + NVME_REG_DBS;
1720 
1721 	return 0;
1722 }
1723 
1724 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1725 {
1726 	int result;
1727 	u32 aqa;
1728 	struct nvme_queue *nvmeq;
1729 
1730 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1731 	if (result < 0)
1732 		return result;
1733 
1734 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1735 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1736 
1737 	if (dev->subsystem &&
1738 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1739 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1740 
1741 	/*
1742 	 * If the device has been passed off to us in an enabled state, just
1743 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1744 	 * notification bits', but doing so may cause the device to complete
1745 	 * commands to the admin queue ... and we don't know what memory that
1746 	 * might be pointing at!
1747 	 */
1748 	result = nvme_disable_ctrl(&dev->ctrl, false);
1749 	if (result < 0)
1750 		return result;
1751 
1752 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1753 	if (result)
1754 		return result;
1755 
1756 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1757 
1758 	nvmeq = &dev->queues[0];
1759 	aqa = nvmeq->q_depth - 1;
1760 	aqa |= aqa << 16;
1761 
1762 	writel(aqa, dev->bar + NVME_REG_AQA);
1763 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1764 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1765 
1766 	result = nvme_enable_ctrl(&dev->ctrl);
1767 	if (result)
1768 		return result;
1769 
1770 	nvmeq->cq_vector = 0;
1771 	nvme_init_queue(nvmeq, 0);
1772 	result = queue_request_irq(nvmeq);
1773 	if (result) {
1774 		dev->online_queues--;
1775 		return result;
1776 	}
1777 
1778 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1779 	return result;
1780 }
1781 
1782 static int nvme_create_io_queues(struct nvme_dev *dev)
1783 {
1784 	unsigned i, max, rw_queues;
1785 	int ret = 0;
1786 
1787 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1788 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1789 			ret = -ENOMEM;
1790 			break;
1791 		}
1792 	}
1793 
1794 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1795 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1796 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1797 				dev->io_queues[HCTX_TYPE_READ];
1798 	} else {
1799 		rw_queues = max;
1800 	}
1801 
1802 	for (i = dev->online_queues; i <= max; i++) {
1803 		bool polled = i > rw_queues;
1804 
1805 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1806 		if (ret)
1807 			break;
1808 	}
1809 
1810 	/*
1811 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1812 	 * than the desired amount of queues, and even a controller without
1813 	 * I/O queues can still be used to issue admin commands.  This might
1814 	 * be useful to upgrade a buggy firmware for example.
1815 	 */
1816 	return ret >= 0 ? 0 : ret;
1817 }
1818 
1819 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1820 {
1821 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1822 
1823 	return 1ULL << (12 + 4 * szu);
1824 }
1825 
1826 static u32 nvme_cmb_size(struct nvme_dev *dev)
1827 {
1828 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1829 }
1830 
1831 static void nvme_map_cmb(struct nvme_dev *dev)
1832 {
1833 	u64 size, offset;
1834 	resource_size_t bar_size;
1835 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1836 	int bar;
1837 
1838 	if (dev->cmb_size)
1839 		return;
1840 
1841 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1842 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1843 
1844 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1845 	if (!dev->cmbsz)
1846 		return;
1847 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1848 
1849 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1850 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1851 	bar = NVME_CMB_BIR(dev->cmbloc);
1852 	bar_size = pci_resource_len(pdev, bar);
1853 
1854 	if (offset > bar_size)
1855 		return;
1856 
1857 	/*
1858 	 * Tell the controller about the host side address mapping the CMB,
1859 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1860 	 */
1861 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1862 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1863 			     (pci_bus_address(pdev, bar) + offset),
1864 			     dev->bar + NVME_REG_CMBMSC);
1865 	}
1866 
1867 	/*
1868 	 * Controllers may support a CMB size larger than their BAR,
1869 	 * for example, due to being behind a bridge. Reduce the CMB to
1870 	 * the reported size of the BAR
1871 	 */
1872 	if (size > bar_size - offset)
1873 		size = bar_size - offset;
1874 
1875 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1876 		dev_warn(dev->ctrl.device,
1877 			 "failed to register the CMB\n");
1878 		return;
1879 	}
1880 
1881 	dev->cmb_size = size;
1882 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1883 
1884 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1885 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1886 		pci_p2pmem_publish(pdev, true);
1887 
1888 	nvme_update_attrs(dev);
1889 }
1890 
1891 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1892 {
1893 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1894 	u64 dma_addr = dev->host_mem_descs_dma;
1895 	struct nvme_command c = { };
1896 	int ret;
1897 
1898 	c.features.opcode	= nvme_admin_set_features;
1899 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1900 	c.features.dword11	= cpu_to_le32(bits);
1901 	c.features.dword12	= cpu_to_le32(host_mem_size);
1902 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1903 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1904 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1905 
1906 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1907 	if (ret) {
1908 		dev_warn(dev->ctrl.device,
1909 			 "failed to set host mem (err %d, flags %#x).\n",
1910 			 ret, bits);
1911 	} else
1912 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1913 
1914 	return ret;
1915 }
1916 
1917 static void nvme_free_host_mem(struct nvme_dev *dev)
1918 {
1919 	int i;
1920 
1921 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1922 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1923 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1924 
1925 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1926 			       le64_to_cpu(desc->addr),
1927 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1928 	}
1929 
1930 	kfree(dev->host_mem_desc_bufs);
1931 	dev->host_mem_desc_bufs = NULL;
1932 	dma_free_coherent(dev->dev,
1933 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1934 			dev->host_mem_descs, dev->host_mem_descs_dma);
1935 	dev->host_mem_descs = NULL;
1936 	dev->nr_host_mem_descs = 0;
1937 }
1938 
1939 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1940 		u32 chunk_size)
1941 {
1942 	struct nvme_host_mem_buf_desc *descs;
1943 	u32 max_entries, len;
1944 	dma_addr_t descs_dma;
1945 	int i = 0;
1946 	void **bufs;
1947 	u64 size, tmp;
1948 
1949 	tmp = (preferred + chunk_size - 1);
1950 	do_div(tmp, chunk_size);
1951 	max_entries = tmp;
1952 
1953 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1954 		max_entries = dev->ctrl.hmmaxd;
1955 
1956 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1957 				   &descs_dma, GFP_KERNEL);
1958 	if (!descs)
1959 		goto out;
1960 
1961 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1962 	if (!bufs)
1963 		goto out_free_descs;
1964 
1965 	for (size = 0; size < preferred && i < max_entries; size += len) {
1966 		dma_addr_t dma_addr;
1967 
1968 		len = min_t(u64, chunk_size, preferred - size);
1969 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1970 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1971 		if (!bufs[i])
1972 			break;
1973 
1974 		descs[i].addr = cpu_to_le64(dma_addr);
1975 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1976 		i++;
1977 	}
1978 
1979 	if (!size)
1980 		goto out_free_bufs;
1981 
1982 	dev->nr_host_mem_descs = i;
1983 	dev->host_mem_size = size;
1984 	dev->host_mem_descs = descs;
1985 	dev->host_mem_descs_dma = descs_dma;
1986 	dev->host_mem_desc_bufs = bufs;
1987 	return 0;
1988 
1989 out_free_bufs:
1990 	while (--i >= 0) {
1991 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1992 
1993 		dma_free_attrs(dev->dev, size, bufs[i],
1994 			       le64_to_cpu(descs[i].addr),
1995 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1996 	}
1997 
1998 	kfree(bufs);
1999 out_free_descs:
2000 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2001 			descs_dma);
2002 out:
2003 	dev->host_mem_descs = NULL;
2004 	return -ENOMEM;
2005 }
2006 
2007 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2008 {
2009 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2010 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2011 	u64 chunk_size;
2012 
2013 	/* start big and work our way down */
2014 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2015 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2016 			if (!min || dev->host_mem_size >= min)
2017 				return 0;
2018 			nvme_free_host_mem(dev);
2019 		}
2020 	}
2021 
2022 	return -ENOMEM;
2023 }
2024 
2025 static int nvme_setup_host_mem(struct nvme_dev *dev)
2026 {
2027 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2028 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2029 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2030 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2031 	int ret;
2032 
2033 	if (!dev->ctrl.hmpre)
2034 		return 0;
2035 
2036 	preferred = min(preferred, max);
2037 	if (min > max) {
2038 		dev_warn(dev->ctrl.device,
2039 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2040 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2041 		nvme_free_host_mem(dev);
2042 		return 0;
2043 	}
2044 
2045 	/*
2046 	 * If we already have a buffer allocated check if we can reuse it.
2047 	 */
2048 	if (dev->host_mem_descs) {
2049 		if (dev->host_mem_size >= min)
2050 			enable_bits |= NVME_HOST_MEM_RETURN;
2051 		else
2052 			nvme_free_host_mem(dev);
2053 	}
2054 
2055 	if (!dev->host_mem_descs) {
2056 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2057 			dev_warn(dev->ctrl.device,
2058 				"failed to allocate host memory buffer.\n");
2059 			return 0; /* controller must work without HMB */
2060 		}
2061 
2062 		dev_info(dev->ctrl.device,
2063 			"allocated %lld MiB host memory buffer.\n",
2064 			dev->host_mem_size >> ilog2(SZ_1M));
2065 	}
2066 
2067 	ret = nvme_set_host_mem(dev, enable_bits);
2068 	if (ret)
2069 		nvme_free_host_mem(dev);
2070 	return ret;
2071 }
2072 
2073 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2074 		char *buf)
2075 {
2076 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2077 
2078 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2079 		       ndev->cmbloc, ndev->cmbsz);
2080 }
2081 static DEVICE_ATTR_RO(cmb);
2082 
2083 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2084 		char *buf)
2085 {
2086 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2087 
2088 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2089 }
2090 static DEVICE_ATTR_RO(cmbloc);
2091 
2092 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2093 		char *buf)
2094 {
2095 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2096 
2097 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2098 }
2099 static DEVICE_ATTR_RO(cmbsz);
2100 
2101 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2102 			char *buf)
2103 {
2104 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2105 
2106 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2107 }
2108 
2109 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2110 			 const char *buf, size_t count)
2111 {
2112 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2113 	bool new;
2114 	int ret;
2115 
2116 	if (kstrtobool(buf, &new) < 0)
2117 		return -EINVAL;
2118 
2119 	if (new == ndev->hmb)
2120 		return count;
2121 
2122 	if (new) {
2123 		ret = nvme_setup_host_mem(ndev);
2124 	} else {
2125 		ret = nvme_set_host_mem(ndev, 0);
2126 		if (!ret)
2127 			nvme_free_host_mem(ndev);
2128 	}
2129 
2130 	if (ret < 0)
2131 		return ret;
2132 
2133 	return count;
2134 }
2135 static DEVICE_ATTR_RW(hmb);
2136 
2137 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2138 		struct attribute *a, int n)
2139 {
2140 	struct nvme_ctrl *ctrl =
2141 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2142 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2143 
2144 	if (a == &dev_attr_cmb.attr ||
2145 	    a == &dev_attr_cmbloc.attr ||
2146 	    a == &dev_attr_cmbsz.attr) {
2147 	    	if (!dev->cmbsz)
2148 			return 0;
2149 	}
2150 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2151 		return 0;
2152 
2153 	return a->mode;
2154 }
2155 
2156 static struct attribute *nvme_pci_attrs[] = {
2157 	&dev_attr_cmb.attr,
2158 	&dev_attr_cmbloc.attr,
2159 	&dev_attr_cmbsz.attr,
2160 	&dev_attr_hmb.attr,
2161 	NULL,
2162 };
2163 
2164 static const struct attribute_group nvme_pci_dev_attrs_group = {
2165 	.attrs		= nvme_pci_attrs,
2166 	.is_visible	= nvme_pci_attrs_are_visible,
2167 };
2168 
2169 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2170 	&nvme_dev_attrs_group,
2171 	&nvme_pci_dev_attrs_group,
2172 	NULL,
2173 };
2174 
2175 static void nvme_update_attrs(struct nvme_dev *dev)
2176 {
2177 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2178 }
2179 
2180 /*
2181  * nirqs is the number of interrupts available for write and read
2182  * queues. The core already reserved an interrupt for the admin queue.
2183  */
2184 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2185 {
2186 	struct nvme_dev *dev = affd->priv;
2187 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2188 
2189 	/*
2190 	 * If there is no interrupt available for queues, ensure that
2191 	 * the default queue is set to 1. The affinity set size is
2192 	 * also set to one, but the irq core ignores it for this case.
2193 	 *
2194 	 * If only one interrupt is available or 'write_queue' == 0, combine
2195 	 * write and read queues.
2196 	 *
2197 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2198 	 * queue.
2199 	 */
2200 	if (!nrirqs) {
2201 		nrirqs = 1;
2202 		nr_read_queues = 0;
2203 	} else if (nrirqs == 1 || !nr_write_queues) {
2204 		nr_read_queues = 0;
2205 	} else if (nr_write_queues >= nrirqs) {
2206 		nr_read_queues = 1;
2207 	} else {
2208 		nr_read_queues = nrirqs - nr_write_queues;
2209 	}
2210 
2211 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2212 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2213 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2214 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2215 	affd->nr_sets = nr_read_queues ? 2 : 1;
2216 }
2217 
2218 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2219 {
2220 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2221 	struct irq_affinity affd = {
2222 		.pre_vectors	= 1,
2223 		.calc_sets	= nvme_calc_irq_sets,
2224 		.priv		= dev,
2225 	};
2226 	unsigned int irq_queues, poll_queues;
2227 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2228 
2229 	/*
2230 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2231 	 * left over for non-polled I/O.
2232 	 */
2233 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2234 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2235 
2236 	/*
2237 	 * Initialize for the single interrupt case, will be updated in
2238 	 * nvme_calc_irq_sets().
2239 	 */
2240 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2241 	dev->io_queues[HCTX_TYPE_READ] = 0;
2242 
2243 	/*
2244 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2245 	 * but some Apple controllers require all queues to use the first
2246 	 * vector.
2247 	 */
2248 	irq_queues = 1;
2249 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2250 		irq_queues += (nr_io_queues - poll_queues);
2251 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2252 		flags &= ~PCI_IRQ_MSI;
2253 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2254 					      &affd);
2255 }
2256 
2257 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2258 {
2259 	/*
2260 	 * If tags are shared with admin queue (Apple bug), then
2261 	 * make sure we only use one IO queue.
2262 	 */
2263 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2264 		return 1;
2265 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2266 }
2267 
2268 static int nvme_setup_io_queues(struct nvme_dev *dev)
2269 {
2270 	struct nvme_queue *adminq = &dev->queues[0];
2271 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2272 	unsigned int nr_io_queues;
2273 	unsigned long size;
2274 	int result;
2275 
2276 	/*
2277 	 * Sample the module parameters once at reset time so that we have
2278 	 * stable values to work with.
2279 	 */
2280 	dev->nr_write_queues = write_queues;
2281 	dev->nr_poll_queues = poll_queues;
2282 
2283 	nr_io_queues = dev->nr_allocated_queues - 1;
2284 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2285 	if (result < 0)
2286 		return result;
2287 
2288 	if (nr_io_queues == 0)
2289 		return 0;
2290 
2291 	/*
2292 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2293 	 * from set to unset. If there is a window to it is truely freed,
2294 	 * pci_free_irq_vectors() jumping into this window will crash.
2295 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2296 	 * nvme_dev_disable() path.
2297 	 */
2298 	result = nvme_setup_io_queues_trylock(dev);
2299 	if (result)
2300 		return result;
2301 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2302 		pci_free_irq(pdev, 0, adminq);
2303 
2304 	if (dev->cmb_use_sqes) {
2305 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2306 				sizeof(struct nvme_command));
2307 		if (result > 0) {
2308 			dev->q_depth = result;
2309 			dev->ctrl.sqsize = result - 1;
2310 		} else {
2311 			dev->cmb_use_sqes = false;
2312 		}
2313 	}
2314 
2315 	do {
2316 		size = db_bar_size(dev, nr_io_queues);
2317 		result = nvme_remap_bar(dev, size);
2318 		if (!result)
2319 			break;
2320 		if (!--nr_io_queues) {
2321 			result = -ENOMEM;
2322 			goto out_unlock;
2323 		}
2324 	} while (1);
2325 	adminq->q_db = dev->dbs;
2326 
2327  retry:
2328 	/* Deregister the admin queue's interrupt */
2329 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2330 		pci_free_irq(pdev, 0, adminq);
2331 
2332 	/*
2333 	 * If we enable msix early due to not intx, disable it again before
2334 	 * setting up the full range we need.
2335 	 */
2336 	pci_free_irq_vectors(pdev);
2337 
2338 	result = nvme_setup_irqs(dev, nr_io_queues);
2339 	if (result <= 0) {
2340 		result = -EIO;
2341 		goto out_unlock;
2342 	}
2343 
2344 	dev->num_vecs = result;
2345 	result = max(result - 1, 1);
2346 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2347 
2348 	/*
2349 	 * Should investigate if there's a performance win from allocating
2350 	 * more queues than interrupt vectors; it might allow the submission
2351 	 * path to scale better, even if the receive path is limited by the
2352 	 * number of interrupts.
2353 	 */
2354 	result = queue_request_irq(adminq);
2355 	if (result)
2356 		goto out_unlock;
2357 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2358 	mutex_unlock(&dev->shutdown_lock);
2359 
2360 	result = nvme_create_io_queues(dev);
2361 	if (result || dev->online_queues < 2)
2362 		return result;
2363 
2364 	if (dev->online_queues - 1 < dev->max_qid) {
2365 		nr_io_queues = dev->online_queues - 1;
2366 		nvme_delete_io_queues(dev);
2367 		result = nvme_setup_io_queues_trylock(dev);
2368 		if (result)
2369 			return result;
2370 		nvme_suspend_io_queues(dev);
2371 		goto retry;
2372 	}
2373 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2374 					dev->io_queues[HCTX_TYPE_DEFAULT],
2375 					dev->io_queues[HCTX_TYPE_READ],
2376 					dev->io_queues[HCTX_TYPE_POLL]);
2377 	return 0;
2378 out_unlock:
2379 	mutex_unlock(&dev->shutdown_lock);
2380 	return result;
2381 }
2382 
2383 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2384 					     blk_status_t error)
2385 {
2386 	struct nvme_queue *nvmeq = req->end_io_data;
2387 
2388 	blk_mq_free_request(req);
2389 	complete(&nvmeq->delete_done);
2390 	return RQ_END_IO_NONE;
2391 }
2392 
2393 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2394 					  blk_status_t error)
2395 {
2396 	struct nvme_queue *nvmeq = req->end_io_data;
2397 
2398 	if (error)
2399 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2400 
2401 	return nvme_del_queue_end(req, error);
2402 }
2403 
2404 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2405 {
2406 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2407 	struct request *req;
2408 	struct nvme_command cmd = { };
2409 
2410 	cmd.delete_queue.opcode = opcode;
2411 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2412 
2413 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2414 	if (IS_ERR(req))
2415 		return PTR_ERR(req);
2416 	nvme_init_request(req, &cmd);
2417 
2418 	if (opcode == nvme_admin_delete_cq)
2419 		req->end_io = nvme_del_cq_end;
2420 	else
2421 		req->end_io = nvme_del_queue_end;
2422 	req->end_io_data = nvmeq;
2423 
2424 	init_completion(&nvmeq->delete_done);
2425 	blk_execute_rq_nowait(req, false);
2426 	return 0;
2427 }
2428 
2429 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2430 {
2431 	int nr_queues = dev->online_queues - 1, sent = 0;
2432 	unsigned long timeout;
2433 
2434  retry:
2435 	timeout = NVME_ADMIN_TIMEOUT;
2436 	while (nr_queues > 0) {
2437 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2438 			break;
2439 		nr_queues--;
2440 		sent++;
2441 	}
2442 	while (sent) {
2443 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2444 
2445 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2446 				timeout);
2447 		if (timeout == 0)
2448 			return false;
2449 
2450 		sent--;
2451 		if (nr_queues)
2452 			goto retry;
2453 	}
2454 	return true;
2455 }
2456 
2457 static void nvme_delete_io_queues(struct nvme_dev *dev)
2458 {
2459 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2460 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2461 }
2462 
2463 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2464 {
2465 	if (dev->io_queues[HCTX_TYPE_POLL])
2466 		return 3;
2467 	if (dev->io_queues[HCTX_TYPE_READ])
2468 		return 2;
2469 	return 1;
2470 }
2471 
2472 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2473 {
2474 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2475 	/* free previously allocated queues that are no longer usable */
2476 	nvme_free_queues(dev, dev->online_queues);
2477 }
2478 
2479 static int nvme_pci_enable(struct nvme_dev *dev)
2480 {
2481 	int result = -ENOMEM;
2482 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2483 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2484 
2485 	if (pci_enable_device_mem(pdev))
2486 		return result;
2487 
2488 	pci_set_master(pdev);
2489 
2490 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2491 		result = -ENODEV;
2492 		goto disable;
2493 	}
2494 
2495 	/*
2496 	 * Some devices and/or platforms don't advertise or work with INTx
2497 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2498 	 * adjust this later.
2499 	 */
2500 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2501 		flags &= ~PCI_IRQ_MSI;
2502 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2503 	if (result < 0)
2504 		goto disable;
2505 
2506 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2507 
2508 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2509 				io_queue_depth);
2510 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2511 	dev->dbs = dev->bar + 4096;
2512 
2513 	/*
2514 	 * Some Apple controllers require a non-standard SQE size.
2515 	 * Interestingly they also seem to ignore the CC:IOSQES register
2516 	 * so we don't bother updating it here.
2517 	 */
2518 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2519 		dev->io_sqes = 7;
2520 	else
2521 		dev->io_sqes = NVME_NVM_IOSQES;
2522 
2523 	/*
2524 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2525 	 * some MacBook7,1 to avoid controller resets and data loss.
2526 	 */
2527 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2528 		dev->q_depth = 2;
2529 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2530 			"set queue depth=%u to work around controller resets\n",
2531 			dev->q_depth);
2532 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2533 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2534 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2535 		dev->q_depth = 64;
2536 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2537                         "set queue depth=%u\n", dev->q_depth);
2538 	}
2539 
2540 	/*
2541 	 * Controllers with the shared tags quirk need the IO queue to be
2542 	 * big enough so that we get 32 tags for the admin queue
2543 	 */
2544 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2545 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2546 		dev->q_depth = NVME_AQ_DEPTH + 2;
2547 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2548 			 dev->q_depth);
2549 	}
2550 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2551 
2552 	nvme_map_cmb(dev);
2553 
2554 	pci_save_state(pdev);
2555 
2556 	result = nvme_pci_configure_admin_queue(dev);
2557 	if (result)
2558 		goto free_irq;
2559 	return result;
2560 
2561  free_irq:
2562 	pci_free_irq_vectors(pdev);
2563  disable:
2564 	pci_disable_device(pdev);
2565 	return result;
2566 }
2567 
2568 static void nvme_dev_unmap(struct nvme_dev *dev)
2569 {
2570 	if (dev->bar)
2571 		iounmap(dev->bar);
2572 	pci_release_mem_regions(to_pci_dev(dev->dev));
2573 }
2574 
2575 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2576 {
2577 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2578 	u32 csts;
2579 
2580 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2581 		return true;
2582 	if (pdev->error_state != pci_channel_io_normal)
2583 		return true;
2584 
2585 	csts = readl(dev->bar + NVME_REG_CSTS);
2586 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2587 }
2588 
2589 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2590 {
2591 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2592 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2593 	bool dead;
2594 
2595 	mutex_lock(&dev->shutdown_lock);
2596 	dead = nvme_pci_ctrl_is_dead(dev);
2597 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2598 		if (pci_is_enabled(pdev))
2599 			nvme_start_freeze(&dev->ctrl);
2600 		/*
2601 		 * Give the controller a chance to complete all entered requests
2602 		 * if doing a safe shutdown.
2603 		 */
2604 		if (!dead && shutdown)
2605 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2606 	}
2607 
2608 	nvme_quiesce_io_queues(&dev->ctrl);
2609 
2610 	if (!dead && dev->ctrl.queue_count > 0) {
2611 		nvme_delete_io_queues(dev);
2612 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2613 		nvme_poll_irqdisable(&dev->queues[0]);
2614 	}
2615 	nvme_suspend_io_queues(dev);
2616 	nvme_suspend_queue(dev, 0);
2617 	pci_free_irq_vectors(pdev);
2618 	if (pci_is_enabled(pdev))
2619 		pci_disable_device(pdev);
2620 	nvme_reap_pending_cqes(dev);
2621 
2622 	nvme_cancel_tagset(&dev->ctrl);
2623 	nvme_cancel_admin_tagset(&dev->ctrl);
2624 
2625 	/*
2626 	 * The driver will not be starting up queues again if shutting down so
2627 	 * must flush all entered requests to their failed completion to avoid
2628 	 * deadlocking blk-mq hot-cpu notifier.
2629 	 */
2630 	if (shutdown) {
2631 		nvme_unquiesce_io_queues(&dev->ctrl);
2632 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2633 			nvme_unquiesce_admin_queue(&dev->ctrl);
2634 	}
2635 	mutex_unlock(&dev->shutdown_lock);
2636 }
2637 
2638 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2639 {
2640 	if (!nvme_wait_reset(&dev->ctrl))
2641 		return -EBUSY;
2642 	nvme_dev_disable(dev, shutdown);
2643 	return 0;
2644 }
2645 
2646 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2647 {
2648 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2649 						NVME_CTRL_PAGE_SIZE,
2650 						NVME_CTRL_PAGE_SIZE, 0);
2651 	if (!dev->prp_page_pool)
2652 		return -ENOMEM;
2653 
2654 	/* Optimisation for I/Os between 4k and 128k */
2655 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2656 						256, 256, 0);
2657 	if (!dev->prp_small_pool) {
2658 		dma_pool_destroy(dev->prp_page_pool);
2659 		return -ENOMEM;
2660 	}
2661 	return 0;
2662 }
2663 
2664 static void nvme_release_prp_pools(struct nvme_dev *dev)
2665 {
2666 	dma_pool_destroy(dev->prp_page_pool);
2667 	dma_pool_destroy(dev->prp_small_pool);
2668 }
2669 
2670 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2671 {
2672 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2673 
2674 	dev->iod_mempool = mempool_create_node(1,
2675 			mempool_kmalloc, mempool_kfree,
2676 			(void *)alloc_size, GFP_KERNEL,
2677 			dev_to_node(dev->dev));
2678 	if (!dev->iod_mempool)
2679 		return -ENOMEM;
2680 	return 0;
2681 }
2682 
2683 static void nvme_free_tagset(struct nvme_dev *dev)
2684 {
2685 	if (dev->tagset.tags)
2686 		nvme_remove_io_tag_set(&dev->ctrl);
2687 	dev->ctrl.tagset = NULL;
2688 }
2689 
2690 /* pairs with nvme_pci_alloc_dev */
2691 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2692 {
2693 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2694 
2695 	nvme_free_tagset(dev);
2696 	put_device(dev->dev);
2697 	kfree(dev->queues);
2698 	kfree(dev);
2699 }
2700 
2701 static void nvme_reset_work(struct work_struct *work)
2702 {
2703 	struct nvme_dev *dev =
2704 		container_of(work, struct nvme_dev, ctrl.reset_work);
2705 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2706 	int result;
2707 
2708 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2709 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2710 			 dev->ctrl.state);
2711 		result = -ENODEV;
2712 		goto out;
2713 	}
2714 
2715 	/*
2716 	 * If we're called to reset a live controller first shut it down before
2717 	 * moving on.
2718 	 */
2719 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2720 		nvme_dev_disable(dev, false);
2721 	nvme_sync_queues(&dev->ctrl);
2722 
2723 	mutex_lock(&dev->shutdown_lock);
2724 	result = nvme_pci_enable(dev);
2725 	if (result)
2726 		goto out_unlock;
2727 	nvme_unquiesce_admin_queue(&dev->ctrl);
2728 	mutex_unlock(&dev->shutdown_lock);
2729 
2730 	/*
2731 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2732 	 * initializing procedure here.
2733 	 */
2734 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2735 		dev_warn(dev->ctrl.device,
2736 			"failed to mark controller CONNECTING\n");
2737 		result = -EBUSY;
2738 		goto out;
2739 	}
2740 
2741 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2742 	if (result)
2743 		goto out;
2744 
2745 	nvme_dbbuf_dma_alloc(dev);
2746 
2747 	result = nvme_setup_host_mem(dev);
2748 	if (result < 0)
2749 		goto out;
2750 
2751 	result = nvme_setup_io_queues(dev);
2752 	if (result)
2753 		goto out;
2754 
2755 	/*
2756 	 * Freeze and update the number of I/O queues as thos might have
2757 	 * changed.  If there are no I/O queues left after this reset, keep the
2758 	 * controller around but remove all namespaces.
2759 	 */
2760 	if (dev->online_queues > 1) {
2761 		nvme_unquiesce_io_queues(&dev->ctrl);
2762 		nvme_wait_freeze(&dev->ctrl);
2763 		nvme_pci_update_nr_queues(dev);
2764 		nvme_dbbuf_set(dev);
2765 		nvme_unfreeze(&dev->ctrl);
2766 	} else {
2767 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2768 		nvme_mark_namespaces_dead(&dev->ctrl);
2769 		nvme_unquiesce_io_queues(&dev->ctrl);
2770 		nvme_remove_namespaces(&dev->ctrl);
2771 		nvme_free_tagset(dev);
2772 	}
2773 
2774 	/*
2775 	 * If only admin queue live, keep it to do further investigation or
2776 	 * recovery.
2777 	 */
2778 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2779 		dev_warn(dev->ctrl.device,
2780 			"failed to mark controller live state\n");
2781 		result = -ENODEV;
2782 		goto out;
2783 	}
2784 
2785 	nvme_start_ctrl(&dev->ctrl);
2786 	return;
2787 
2788  out_unlock:
2789 	mutex_unlock(&dev->shutdown_lock);
2790  out:
2791 	/*
2792 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2793 	 * may be holding this pci_dev's device lock.
2794 	 */
2795 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2796 		 result);
2797 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2798 	nvme_dev_disable(dev, true);
2799 	nvme_sync_queues(&dev->ctrl);
2800 	nvme_mark_namespaces_dead(&dev->ctrl);
2801 	nvme_unquiesce_io_queues(&dev->ctrl);
2802 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2803 }
2804 
2805 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2806 {
2807 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2808 	return 0;
2809 }
2810 
2811 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2812 {
2813 	writel(val, to_nvme_dev(ctrl)->bar + off);
2814 	return 0;
2815 }
2816 
2817 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2818 {
2819 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2820 	return 0;
2821 }
2822 
2823 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2824 {
2825 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2826 
2827 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2828 }
2829 
2830 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2831 {
2832 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2833 	struct nvme_subsystem *subsys = ctrl->subsys;
2834 
2835 	dev_err(ctrl->device,
2836 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2837 		pdev->vendor, pdev->device,
2838 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2839 		subsys->model, nvme_strlen(subsys->firmware_rev,
2840 					   sizeof(subsys->firmware_rev)),
2841 		subsys->firmware_rev);
2842 }
2843 
2844 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2845 {
2846 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2847 
2848 	return dma_pci_p2pdma_supported(dev->dev);
2849 }
2850 
2851 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2852 	.name			= "pcie",
2853 	.module			= THIS_MODULE,
2854 	.flags			= NVME_F_METADATA_SUPPORTED,
2855 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2856 	.reg_read32		= nvme_pci_reg_read32,
2857 	.reg_write32		= nvme_pci_reg_write32,
2858 	.reg_read64		= nvme_pci_reg_read64,
2859 	.free_ctrl		= nvme_pci_free_ctrl,
2860 	.submit_async_event	= nvme_pci_submit_async_event,
2861 	.get_address		= nvme_pci_get_address,
2862 	.print_device_info	= nvme_pci_print_device_info,
2863 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2864 };
2865 
2866 static int nvme_dev_map(struct nvme_dev *dev)
2867 {
2868 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2869 
2870 	if (pci_request_mem_regions(pdev, "nvme"))
2871 		return -ENODEV;
2872 
2873 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2874 		goto release;
2875 
2876 	return 0;
2877   release:
2878 	pci_release_mem_regions(pdev);
2879 	return -ENODEV;
2880 }
2881 
2882 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2883 {
2884 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2885 		/*
2886 		 * Several Samsung devices seem to drop off the PCIe bus
2887 		 * randomly when APST is on and uses the deepest sleep state.
2888 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2889 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2890 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2891 		 * laptops.
2892 		 */
2893 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2894 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2895 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2896 			return NVME_QUIRK_NO_DEEPEST_PS;
2897 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2898 		/*
2899 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2900 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2901 		 * within few minutes after bootup on a Coffee Lake board -
2902 		 * ASUS PRIME Z370-A
2903 		 */
2904 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2905 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2906 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2907 			return NVME_QUIRK_NO_APST;
2908 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2909 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2910 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2911 		/*
2912 		 * Forcing to use host managed nvme power settings for
2913 		 * lowest idle power with quick resume latency on
2914 		 * Samsung and Toshiba SSDs based on suspend behavior
2915 		 * on Coffee Lake board for LENOVO C640
2916 		 */
2917 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2918 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2919 			return NVME_QUIRK_SIMPLE_SUSPEND;
2920 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2921 		   pdev->device == 0x500f)) {
2922 		/*
2923 		 * Exclude some Kingston NV1 and A2000 devices from
2924 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2925 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2926 		 */
2927 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2928 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2929 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2930 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2931 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2938 		const struct pci_device_id *id)
2939 {
2940 	unsigned long quirks = id->driver_data;
2941 	int node = dev_to_node(&pdev->dev);
2942 	struct nvme_dev *dev;
2943 	int ret = -ENOMEM;
2944 
2945 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2946 	if (!dev)
2947 		return ERR_PTR(-ENOMEM);
2948 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2949 	mutex_init(&dev->shutdown_lock);
2950 
2951 	dev->nr_write_queues = write_queues;
2952 	dev->nr_poll_queues = poll_queues;
2953 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2954 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2955 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2956 	if (!dev->queues)
2957 		goto out_free_dev;
2958 
2959 	dev->dev = get_device(&pdev->dev);
2960 
2961 	quirks |= check_vendor_combination_bug(pdev);
2962 	if (!noacpi &&
2963 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2964 	    acpi_storage_d3(&pdev->dev)) {
2965 		/*
2966 		 * Some systems use a bios work around to ask for D3 on
2967 		 * platforms that support kernel managed suspend.
2968 		 */
2969 		dev_info(&pdev->dev,
2970 			 "platform quirk: setting simple suspend\n");
2971 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2972 	}
2973 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2974 			     quirks);
2975 	if (ret)
2976 		goto out_put_device;
2977 
2978 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2979 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2980 	else
2981 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2982 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2983 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2984 
2985 	/*
2986 	 * Limit the max command size to prevent iod->sg allocations going
2987 	 * over a single page.
2988 	 */
2989 	dev->ctrl.max_hw_sectors = min_t(u32,
2990 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2991 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2992 
2993 	/*
2994 	 * There is no support for SGLs for metadata (yet), so we are limited to
2995 	 * a single integrity segment for the separate metadata pointer.
2996 	 */
2997 	dev->ctrl.max_integrity_segments = 1;
2998 	return dev;
2999 
3000 out_put_device:
3001 	put_device(dev->dev);
3002 	kfree(dev->queues);
3003 out_free_dev:
3004 	kfree(dev);
3005 	return ERR_PTR(ret);
3006 }
3007 
3008 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3009 {
3010 	struct nvme_dev *dev;
3011 	int result = -ENOMEM;
3012 
3013 	dev = nvme_pci_alloc_dev(pdev, id);
3014 	if (IS_ERR(dev))
3015 		return PTR_ERR(dev);
3016 
3017 	result = nvme_dev_map(dev);
3018 	if (result)
3019 		goto out_uninit_ctrl;
3020 
3021 	result = nvme_setup_prp_pools(dev);
3022 	if (result)
3023 		goto out_dev_unmap;
3024 
3025 	result = nvme_pci_alloc_iod_mempool(dev);
3026 	if (result)
3027 		goto out_release_prp_pools;
3028 
3029 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3030 
3031 	result = nvme_pci_enable(dev);
3032 	if (result)
3033 		goto out_release_iod_mempool;
3034 
3035 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3036 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3037 	if (result)
3038 		goto out_disable;
3039 
3040 	/*
3041 	 * Mark the controller as connecting before sending admin commands to
3042 	 * allow the timeout handler to do the right thing.
3043 	 */
3044 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3045 		dev_warn(dev->ctrl.device,
3046 			"failed to mark controller CONNECTING\n");
3047 		result = -EBUSY;
3048 		goto out_disable;
3049 	}
3050 
3051 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3052 	if (result)
3053 		goto out_disable;
3054 
3055 	nvme_dbbuf_dma_alloc(dev);
3056 
3057 	result = nvme_setup_host_mem(dev);
3058 	if (result < 0)
3059 		goto out_disable;
3060 
3061 	result = nvme_setup_io_queues(dev);
3062 	if (result)
3063 		goto out_disable;
3064 
3065 	if (dev->online_queues > 1) {
3066 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3067 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3068 		nvme_dbbuf_set(dev);
3069 	}
3070 
3071 	if (!dev->ctrl.tagset)
3072 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3073 
3074 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3075 		dev_warn(dev->ctrl.device,
3076 			"failed to mark controller live state\n");
3077 		result = -ENODEV;
3078 		goto out_disable;
3079 	}
3080 
3081 	pci_set_drvdata(pdev, dev);
3082 
3083 	nvme_start_ctrl(&dev->ctrl);
3084 	nvme_put_ctrl(&dev->ctrl);
3085 	flush_work(&dev->ctrl.scan_work);
3086 	return 0;
3087 
3088 out_disable:
3089 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3090 	nvme_dev_disable(dev, true);
3091 	nvme_free_host_mem(dev);
3092 	nvme_dev_remove_admin(dev);
3093 	nvme_dbbuf_dma_free(dev);
3094 	nvme_free_queues(dev, 0);
3095 out_release_iod_mempool:
3096 	mempool_destroy(dev->iod_mempool);
3097 out_release_prp_pools:
3098 	nvme_release_prp_pools(dev);
3099 out_dev_unmap:
3100 	nvme_dev_unmap(dev);
3101 out_uninit_ctrl:
3102 	nvme_uninit_ctrl(&dev->ctrl);
3103 	nvme_put_ctrl(&dev->ctrl);
3104 	return result;
3105 }
3106 
3107 static void nvme_reset_prepare(struct pci_dev *pdev)
3108 {
3109 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3110 
3111 	/*
3112 	 * We don't need to check the return value from waiting for the reset
3113 	 * state as pci_dev device lock is held, making it impossible to race
3114 	 * with ->remove().
3115 	 */
3116 	nvme_disable_prepare_reset(dev, false);
3117 	nvme_sync_queues(&dev->ctrl);
3118 }
3119 
3120 static void nvme_reset_done(struct pci_dev *pdev)
3121 {
3122 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3123 
3124 	if (!nvme_try_sched_reset(&dev->ctrl))
3125 		flush_work(&dev->ctrl.reset_work);
3126 }
3127 
3128 static void nvme_shutdown(struct pci_dev *pdev)
3129 {
3130 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3131 
3132 	nvme_disable_prepare_reset(dev, true);
3133 }
3134 
3135 /*
3136  * The driver's remove may be called on a device in a partially initialized
3137  * state. This function must not have any dependencies on the device state in
3138  * order to proceed.
3139  */
3140 static void nvme_remove(struct pci_dev *pdev)
3141 {
3142 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3143 
3144 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3145 	pci_set_drvdata(pdev, NULL);
3146 
3147 	if (!pci_device_is_present(pdev)) {
3148 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3149 		nvme_dev_disable(dev, true);
3150 	}
3151 
3152 	flush_work(&dev->ctrl.reset_work);
3153 	nvme_stop_ctrl(&dev->ctrl);
3154 	nvme_remove_namespaces(&dev->ctrl);
3155 	nvme_dev_disable(dev, true);
3156 	nvme_free_host_mem(dev);
3157 	nvme_dev_remove_admin(dev);
3158 	nvme_dbbuf_dma_free(dev);
3159 	nvme_free_queues(dev, 0);
3160 	mempool_destroy(dev->iod_mempool);
3161 	nvme_release_prp_pools(dev);
3162 	nvme_dev_unmap(dev);
3163 	nvme_uninit_ctrl(&dev->ctrl);
3164 }
3165 
3166 #ifdef CONFIG_PM_SLEEP
3167 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3168 {
3169 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3170 }
3171 
3172 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3173 {
3174 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3175 }
3176 
3177 static int nvme_resume(struct device *dev)
3178 {
3179 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3180 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3181 
3182 	if (ndev->last_ps == U32_MAX ||
3183 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3184 		goto reset;
3185 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3186 		goto reset;
3187 
3188 	return 0;
3189 reset:
3190 	return nvme_try_sched_reset(ctrl);
3191 }
3192 
3193 static int nvme_suspend(struct device *dev)
3194 {
3195 	struct pci_dev *pdev = to_pci_dev(dev);
3196 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3197 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3198 	int ret = -EBUSY;
3199 
3200 	ndev->last_ps = U32_MAX;
3201 
3202 	/*
3203 	 * The platform does not remove power for a kernel managed suspend so
3204 	 * use host managed nvme power settings for lowest idle power if
3205 	 * possible. This should have quicker resume latency than a full device
3206 	 * shutdown.  But if the firmware is involved after the suspend or the
3207 	 * device does not support any non-default power states, shut down the
3208 	 * device fully.
3209 	 *
3210 	 * If ASPM is not enabled for the device, shut down the device and allow
3211 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3212 	 * down, so as to allow the platform to achieve its minimum low-power
3213 	 * state (which may not be possible if the link is up).
3214 	 */
3215 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3216 	    !pcie_aspm_enabled(pdev) ||
3217 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3218 		return nvme_disable_prepare_reset(ndev, true);
3219 
3220 	nvme_start_freeze(ctrl);
3221 	nvme_wait_freeze(ctrl);
3222 	nvme_sync_queues(ctrl);
3223 
3224 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3225 		goto unfreeze;
3226 
3227 	/*
3228 	 * Host memory access may not be successful in a system suspend state,
3229 	 * but the specification allows the controller to access memory in a
3230 	 * non-operational power state.
3231 	 */
3232 	if (ndev->hmb) {
3233 		ret = nvme_set_host_mem(ndev, 0);
3234 		if (ret < 0)
3235 			goto unfreeze;
3236 	}
3237 
3238 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3239 	if (ret < 0)
3240 		goto unfreeze;
3241 
3242 	/*
3243 	 * A saved state prevents pci pm from generically controlling the
3244 	 * device's power. If we're using protocol specific settings, we don't
3245 	 * want pci interfering.
3246 	 */
3247 	pci_save_state(pdev);
3248 
3249 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3250 	if (ret < 0)
3251 		goto unfreeze;
3252 
3253 	if (ret) {
3254 		/* discard the saved state */
3255 		pci_load_saved_state(pdev, NULL);
3256 
3257 		/*
3258 		 * Clearing npss forces a controller reset on resume. The
3259 		 * correct value will be rediscovered then.
3260 		 */
3261 		ret = nvme_disable_prepare_reset(ndev, true);
3262 		ctrl->npss = 0;
3263 	}
3264 unfreeze:
3265 	nvme_unfreeze(ctrl);
3266 	return ret;
3267 }
3268 
3269 static int nvme_simple_suspend(struct device *dev)
3270 {
3271 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3272 
3273 	return nvme_disable_prepare_reset(ndev, true);
3274 }
3275 
3276 static int nvme_simple_resume(struct device *dev)
3277 {
3278 	struct pci_dev *pdev = to_pci_dev(dev);
3279 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3280 
3281 	return nvme_try_sched_reset(&ndev->ctrl);
3282 }
3283 
3284 static const struct dev_pm_ops nvme_dev_pm_ops = {
3285 	.suspend	= nvme_suspend,
3286 	.resume		= nvme_resume,
3287 	.freeze		= nvme_simple_suspend,
3288 	.thaw		= nvme_simple_resume,
3289 	.poweroff	= nvme_simple_suspend,
3290 	.restore	= nvme_simple_resume,
3291 };
3292 #endif /* CONFIG_PM_SLEEP */
3293 
3294 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3295 						pci_channel_state_t state)
3296 {
3297 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3298 
3299 	/*
3300 	 * A frozen channel requires a reset. When detected, this method will
3301 	 * shutdown the controller to quiesce. The controller will be restarted
3302 	 * after the slot reset through driver's slot_reset callback.
3303 	 */
3304 	switch (state) {
3305 	case pci_channel_io_normal:
3306 		return PCI_ERS_RESULT_CAN_RECOVER;
3307 	case pci_channel_io_frozen:
3308 		dev_warn(dev->ctrl.device,
3309 			"frozen state error detected, reset controller\n");
3310 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3311 			nvme_dev_disable(dev, true);
3312 			return PCI_ERS_RESULT_DISCONNECT;
3313 		}
3314 		nvme_dev_disable(dev, false);
3315 		return PCI_ERS_RESULT_NEED_RESET;
3316 	case pci_channel_io_perm_failure:
3317 		dev_warn(dev->ctrl.device,
3318 			"failure state error detected, request disconnect\n");
3319 		return PCI_ERS_RESULT_DISCONNECT;
3320 	}
3321 	return PCI_ERS_RESULT_NEED_RESET;
3322 }
3323 
3324 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3325 {
3326 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3327 
3328 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3329 	pci_restore_state(pdev);
3330 	if (!nvme_try_sched_reset(&dev->ctrl))
3331 		nvme_unquiesce_io_queues(&dev->ctrl);
3332 	return PCI_ERS_RESULT_RECOVERED;
3333 }
3334 
3335 static void nvme_error_resume(struct pci_dev *pdev)
3336 {
3337 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3338 
3339 	flush_work(&dev->ctrl.reset_work);
3340 }
3341 
3342 static const struct pci_error_handlers nvme_err_handler = {
3343 	.error_detected	= nvme_error_detected,
3344 	.slot_reset	= nvme_slot_reset,
3345 	.resume		= nvme_error_resume,
3346 	.reset_prepare	= nvme_reset_prepare,
3347 	.reset_done	= nvme_reset_done,
3348 };
3349 
3350 static const struct pci_device_id nvme_id_table[] = {
3351 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3352 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3353 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3354 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3355 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3356 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3357 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3358 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3359 				NVME_QUIRK_DEALLOCATE_ZEROES |
3360 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3361 				NVME_QUIRK_BOGUS_NID, },
3362 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3363 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3364 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3365 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3366 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3367 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3368 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3369 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3370 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3371 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3372 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3373 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3374 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3375 				NVME_QUIRK_BOGUS_NID, },
3376 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3377 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3378 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3379 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3380 				NVME_QUIRK_BOGUS_NID, },
3381 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3382 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3383 				NVME_QUIRK_BOGUS_NID, },
3384 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3385 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3386 				NVME_QUIRK_NO_NS_DESC_LIST, },
3387 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3388 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3389 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3390 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3391 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3392 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3393 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3394 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3395 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3396 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3397 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3398 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3399 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3400 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3401 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3402 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3403 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3404 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3405 				NVME_QUIRK_BOGUS_NID, },
3406 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3407 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3408 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3409 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3410 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3411 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3412 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3413 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3414 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3415 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3416 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3417 				NVME_QUIRK_BOGUS_NID, },
3418 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3419 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3420 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3421 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3422 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3423 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3424 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3425 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3426 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3427 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3428 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3429 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3430 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3431 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3432 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3433 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3434 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3435 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3436 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3437 				NVME_QUIRK_BOGUS_NID, },
3438 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3439 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3440 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3441 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3442 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3443 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3444 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3445 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3446 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3447 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3448 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3449 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3450 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3451 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3452 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3453 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3454 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3455 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3456 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3457 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3458 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3459 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3460 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3461 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3462 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3463 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3464 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3465 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3466 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3467 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3468 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3469 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3470 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3471 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3472 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3473 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3474 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3475 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3476 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3477 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3478 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3479 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3480 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3481 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3482 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3483 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3484 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3485 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3486 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3487 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3488 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3489 		.driver_data = NVME_QUIRK_BOGUS_NID |
3490 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3491 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3492 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3493 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3494 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3495 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3496 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3497 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3498 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3499 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3500 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3501 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3502 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3503 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3504 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3505 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3506 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3507 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3508 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3509 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3510 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3511 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3512 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3513 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3514 				NVME_QUIRK_128_BYTES_SQES |
3515 				NVME_QUIRK_SHARED_TAGS |
3516 				NVME_QUIRK_SKIP_CID_GEN |
3517 				NVME_QUIRK_IDENTIFY_CNS },
3518 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3519 	{ 0, }
3520 };
3521 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3522 
3523 static struct pci_driver nvme_driver = {
3524 	.name		= "nvme",
3525 	.id_table	= nvme_id_table,
3526 	.probe		= nvme_probe,
3527 	.remove		= nvme_remove,
3528 	.shutdown	= nvme_shutdown,
3529 	.driver		= {
3530 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3531 #ifdef CONFIG_PM_SLEEP
3532 		.pm		= &nvme_dev_pm_ops,
3533 #endif
3534 	},
3535 	.sriov_configure = pci_sriov_configure_simple,
3536 	.err_handler	= &nvme_err_handler,
3537 };
3538 
3539 static int __init nvme_init(void)
3540 {
3541 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3542 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3543 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3544 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3545 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3546 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3547 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3548 
3549 	return pci_register_driver(&nvme_driver);
3550 }
3551 
3552 static void __exit nvme_exit(void)
3553 {
3554 	pci_unregister_driver(&nvme_driver);
3555 	flush_workqueue(nvme_wq);
3556 }
3557 
3558 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3559 MODULE_LICENSE("GPL");
3560 MODULE_VERSION("1.0");
3561 module_init(nvme_init);
3562 module_exit(nvme_exit);
3563