xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 7fd8930f)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/pr.h>
43 #include <scsi/sg.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 
47 #include <uapi/linux/nvme_ioctl.h>
48 #include "nvme.h"
49 
50 #define NVME_MINORS		(1U << MINORBITS)
51 #define NVME_Q_DEPTH		1024
52 #define NVME_AQ_DEPTH		256
53 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
55 
56 unsigned char admin_timeout = 60;
57 module_param(admin_timeout, byte, 0644);
58 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
59 
60 unsigned char nvme_io_timeout = 30;
61 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
62 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
63 
64 unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
67 
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
70 
71 static int nvme_char_major;
72 module_param(nvme_char_major, int, 0);
73 
74 static int use_threaded_interrupts;
75 module_param(use_threaded_interrupts, int, 0);
76 
77 static bool use_cmb_sqes = true;
78 module_param(use_cmb_sqes, bool, 0644);
79 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
80 
81 static LIST_HEAD(dev_list);
82 static struct task_struct *nvme_thread;
83 static struct workqueue_struct *nvme_workq;
84 static wait_queue_head_t nvme_kthread_wait;
85 
86 static struct class *nvme_class;
87 
88 struct nvme_dev;
89 struct nvme_queue;
90 struct nvme_iod;
91 
92 static int __nvme_reset(struct nvme_dev *dev);
93 static int nvme_reset(struct nvme_dev *dev);
94 static void nvme_process_cq(struct nvme_queue *nvmeq);
95 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
96 static void nvme_dead_ctrl(struct nvme_dev *dev);
97 
98 struct async_cmd_info {
99 	struct kthread_work work;
100 	struct kthread_worker *worker;
101 	struct request *req;
102 	u32 result;
103 	int status;
104 	void *ctx;
105 };
106 
107 /*
108  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
109  */
110 struct nvme_dev {
111 	struct list_head node;
112 	struct nvme_queue **queues;
113 	struct blk_mq_tag_set tagset;
114 	struct blk_mq_tag_set admin_tagset;
115 	u32 __iomem *dbs;
116 	struct device *dev;
117 	struct dma_pool *prp_page_pool;
118 	struct dma_pool *prp_small_pool;
119 	unsigned queue_count;
120 	unsigned online_queues;
121 	unsigned max_qid;
122 	int q_depth;
123 	u32 db_stride;
124 	struct msix_entry *entry;
125 	void __iomem *bar;
126 	struct list_head namespaces;
127 	struct device *device;
128 	struct work_struct reset_work;
129 	struct work_struct probe_work;
130 	struct work_struct scan_work;
131 	bool subsystem;
132 	void __iomem *cmb;
133 	dma_addr_t cmb_dma_addr;
134 	u64 cmb_size;
135 	u32 cmbsz;
136 
137 	struct nvme_ctrl ctrl;
138 };
139 
140 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
141 {
142 	return container_of(ctrl, struct nvme_dev, ctrl);
143 }
144 
145 /*
146  * An NVM Express queue.  Each device has at least two (one for admin
147  * commands and one for I/O commands).
148  */
149 struct nvme_queue {
150 	struct device *q_dmadev;
151 	struct nvme_dev *dev;
152 	char irqname[24];	/* nvme4294967295-65535\0 */
153 	spinlock_t q_lock;
154 	struct nvme_command *sq_cmds;
155 	struct nvme_command __iomem *sq_cmds_io;
156 	volatile struct nvme_completion *cqes;
157 	struct blk_mq_tags **tags;
158 	dma_addr_t sq_dma_addr;
159 	dma_addr_t cq_dma_addr;
160 	u32 __iomem *q_db;
161 	u16 q_depth;
162 	s16 cq_vector;
163 	u16 sq_head;
164 	u16 sq_tail;
165 	u16 cq_head;
166 	u16 qid;
167 	u8 cq_phase;
168 	u8 cqe_seen;
169 	struct async_cmd_info cmdinfo;
170 };
171 
172 /*
173  * The nvme_iod describes the data in an I/O, including the list of PRP
174  * entries.  You can't see it in this data structure because C doesn't let
175  * me express that.  Use nvme_alloc_iod to ensure there's enough space
176  * allocated to store the PRP list.
177  */
178 struct nvme_iod {
179 	unsigned long private;	/* For the use of the submitter of the I/O */
180 	int npages;		/* In the PRP list. 0 means small pool in use */
181 	int offset;		/* Of PRP list */
182 	int nents;		/* Used in scatterlist */
183 	int length;		/* Of data, in bytes */
184 	dma_addr_t first_dma;
185 	struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
186 	struct scatterlist sg[0];
187 };
188 
189 /*
190  * Check we didin't inadvertently grow the command struct
191  */
192 static inline void _nvme_check_size(void)
193 {
194 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
195 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
196 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
197 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
198 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
199 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
200 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
201 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
202 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
203 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
204 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
205 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
206 }
207 
208 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
209 						struct nvme_completion *);
210 
211 struct nvme_cmd_info {
212 	nvme_completion_fn fn;
213 	void *ctx;
214 	int aborted;
215 	struct nvme_queue *nvmeq;
216 	struct nvme_iod iod[0];
217 };
218 
219 /*
220  * Max size of iod being embedded in the request payload
221  */
222 #define NVME_INT_PAGES		2
223 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
224 #define NVME_INT_MASK		0x01
225 
226 /*
227  * Will slightly overestimate the number of pages needed.  This is OK
228  * as it only leads to a small amount of wasted memory for the lifetime of
229  * the I/O.
230  */
231 static int nvme_npages(unsigned size, struct nvme_dev *dev)
232 {
233 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
234 				      dev->ctrl.page_size);
235 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
236 }
237 
238 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
239 {
240 	unsigned int ret = sizeof(struct nvme_cmd_info);
241 
242 	ret += sizeof(struct nvme_iod);
243 	ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
244 	ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
245 
246 	return ret;
247 }
248 
249 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
250 				unsigned int hctx_idx)
251 {
252 	struct nvme_dev *dev = data;
253 	struct nvme_queue *nvmeq = dev->queues[0];
254 
255 	WARN_ON(hctx_idx != 0);
256 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
257 	WARN_ON(nvmeq->tags);
258 
259 	hctx->driver_data = nvmeq;
260 	nvmeq->tags = &dev->admin_tagset.tags[0];
261 	return 0;
262 }
263 
264 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
265 {
266 	struct nvme_queue *nvmeq = hctx->driver_data;
267 
268 	nvmeq->tags = NULL;
269 }
270 
271 static int nvme_admin_init_request(void *data, struct request *req,
272 				unsigned int hctx_idx, unsigned int rq_idx,
273 				unsigned int numa_node)
274 {
275 	struct nvme_dev *dev = data;
276 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
277 	struct nvme_queue *nvmeq = dev->queues[0];
278 
279 	BUG_ON(!nvmeq);
280 	cmd->nvmeq = nvmeq;
281 	return 0;
282 }
283 
284 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
285 			  unsigned int hctx_idx)
286 {
287 	struct nvme_dev *dev = data;
288 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
289 
290 	if (!nvmeq->tags)
291 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
292 
293 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
294 	hctx->driver_data = nvmeq;
295 	return 0;
296 }
297 
298 static int nvme_init_request(void *data, struct request *req,
299 				unsigned int hctx_idx, unsigned int rq_idx,
300 				unsigned int numa_node)
301 {
302 	struct nvme_dev *dev = data;
303 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
304 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
305 
306 	BUG_ON(!nvmeq);
307 	cmd->nvmeq = nvmeq;
308 	return 0;
309 }
310 
311 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
312 				nvme_completion_fn handler)
313 {
314 	cmd->fn = handler;
315 	cmd->ctx = ctx;
316 	cmd->aborted = 0;
317 	blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
318 }
319 
320 static void *iod_get_private(struct nvme_iod *iod)
321 {
322 	return (void *) (iod->private & ~0x1UL);
323 }
324 
325 /*
326  * If bit 0 is set, the iod is embedded in the request payload.
327  */
328 static bool iod_should_kfree(struct nvme_iod *iod)
329 {
330 	return (iod->private & NVME_INT_MASK) == 0;
331 }
332 
333 /* Special values must be less than 0x1000 */
334 #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
335 #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
336 #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
337 #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
338 
339 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
340 						struct nvme_completion *cqe)
341 {
342 	if (ctx == CMD_CTX_CANCELLED)
343 		return;
344 	if (ctx == CMD_CTX_COMPLETED) {
345 		dev_warn(nvmeq->q_dmadev,
346 				"completed id %d twice on queue %d\n",
347 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
348 		return;
349 	}
350 	if (ctx == CMD_CTX_INVALID) {
351 		dev_warn(nvmeq->q_dmadev,
352 				"invalid id %d completed on queue %d\n",
353 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
354 		return;
355 	}
356 	dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
357 }
358 
359 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
360 {
361 	void *ctx;
362 
363 	if (fn)
364 		*fn = cmd->fn;
365 	ctx = cmd->ctx;
366 	cmd->fn = special_completion;
367 	cmd->ctx = CMD_CTX_CANCELLED;
368 	return ctx;
369 }
370 
371 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
372 						struct nvme_completion *cqe)
373 {
374 	u32 result = le32_to_cpup(&cqe->result);
375 	u16 status = le16_to_cpup(&cqe->status) >> 1;
376 
377 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
378 		++nvmeq->dev->ctrl.event_limit;
379 	if (status != NVME_SC_SUCCESS)
380 		return;
381 
382 	switch (result & 0xff07) {
383 	case NVME_AER_NOTICE_NS_CHANGED:
384 		dev_info(nvmeq->q_dmadev, "rescanning\n");
385 		schedule_work(&nvmeq->dev->scan_work);
386 	default:
387 		dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
388 	}
389 }
390 
391 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
392 						struct nvme_completion *cqe)
393 {
394 	struct request *req = ctx;
395 
396 	u16 status = le16_to_cpup(&cqe->status) >> 1;
397 	u32 result = le32_to_cpup(&cqe->result);
398 
399 	blk_mq_free_request(req);
400 
401 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
402 	++nvmeq->dev->ctrl.abort_limit;
403 }
404 
405 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
406 						struct nvme_completion *cqe)
407 {
408 	struct async_cmd_info *cmdinfo = ctx;
409 	cmdinfo->result = le32_to_cpup(&cqe->result);
410 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
411 	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
412 	blk_mq_free_request(cmdinfo->req);
413 }
414 
415 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
416 				  unsigned int tag)
417 {
418 	struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
419 
420 	return blk_mq_rq_to_pdu(req);
421 }
422 
423 /*
424  * Called with local interrupts disabled and the q_lock held.  May not sleep.
425  */
426 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
427 						nvme_completion_fn *fn)
428 {
429 	struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
430 	void *ctx;
431 	if (tag >= nvmeq->q_depth) {
432 		*fn = special_completion;
433 		return CMD_CTX_INVALID;
434 	}
435 	if (fn)
436 		*fn = cmd->fn;
437 	ctx = cmd->ctx;
438 	cmd->fn = special_completion;
439 	cmd->ctx = CMD_CTX_COMPLETED;
440 	return ctx;
441 }
442 
443 /**
444  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
445  * @nvmeq: The queue to use
446  * @cmd: The command to send
447  *
448  * Safe to use from interrupt context
449  */
450 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
451 						struct nvme_command *cmd)
452 {
453 	u16 tail = nvmeq->sq_tail;
454 
455 	if (nvmeq->sq_cmds_io)
456 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
457 	else
458 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
459 
460 	if (++tail == nvmeq->q_depth)
461 		tail = 0;
462 	writel(tail, nvmeq->q_db);
463 	nvmeq->sq_tail = tail;
464 }
465 
466 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
467 {
468 	unsigned long flags;
469 	spin_lock_irqsave(&nvmeq->q_lock, flags);
470 	__nvme_submit_cmd(nvmeq, cmd);
471 	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
472 }
473 
474 static __le64 **iod_list(struct nvme_iod *iod)
475 {
476 	return ((void *)iod) + iod->offset;
477 }
478 
479 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
480 			    unsigned nseg, unsigned long private)
481 {
482 	iod->private = private;
483 	iod->offset = offsetof(struct nvme_iod, sg[nseg]);
484 	iod->npages = -1;
485 	iod->length = nbytes;
486 	iod->nents = 0;
487 }
488 
489 static struct nvme_iod *
490 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
491 		 unsigned long priv, gfp_t gfp)
492 {
493 	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
494 				sizeof(__le64 *) * nvme_npages(bytes, dev) +
495 				sizeof(struct scatterlist) * nseg, gfp);
496 
497 	if (iod)
498 		iod_init(iod, bytes, nseg, priv);
499 
500 	return iod;
501 }
502 
503 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
504 			               gfp_t gfp)
505 {
506 	unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
507                                                 sizeof(struct nvme_dsm_range);
508 	struct nvme_iod *iod;
509 
510 	if (rq->nr_phys_segments <= NVME_INT_PAGES &&
511 	    size <= NVME_INT_BYTES(dev)) {
512 		struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
513 
514 		iod = cmd->iod;
515 		iod_init(iod, size, rq->nr_phys_segments,
516 				(unsigned long) rq | NVME_INT_MASK);
517 		return iod;
518 	}
519 
520 	return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
521 				(unsigned long) rq, gfp);
522 }
523 
524 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
525 {
526 	const int last_prp = dev->ctrl.page_size / 8 - 1;
527 	int i;
528 	__le64 **list = iod_list(iod);
529 	dma_addr_t prp_dma = iod->first_dma;
530 
531 	if (iod->npages == 0)
532 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
533 	for (i = 0; i < iod->npages; i++) {
534 		__le64 *prp_list = list[i];
535 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
536 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
537 		prp_dma = next_prp_dma;
538 	}
539 
540 	if (iod_should_kfree(iod))
541 		kfree(iod);
542 }
543 
544 #ifdef CONFIG_BLK_DEV_INTEGRITY
545 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
546 {
547 	if (be32_to_cpu(pi->ref_tag) == v)
548 		pi->ref_tag = cpu_to_be32(p);
549 }
550 
551 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
552 {
553 	if (be32_to_cpu(pi->ref_tag) == p)
554 		pi->ref_tag = cpu_to_be32(v);
555 }
556 
557 /**
558  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
559  *
560  * The virtual start sector is the one that was originally submitted by the
561  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
562  * start sector may be different. Remap protection information to match the
563  * physical LBA on writes, and back to the original seed on reads.
564  *
565  * Type 0 and 3 do not have a ref tag, so no remapping required.
566  */
567 static void nvme_dif_remap(struct request *req,
568 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
569 {
570 	struct nvme_ns *ns = req->rq_disk->private_data;
571 	struct bio_integrity_payload *bip;
572 	struct t10_pi_tuple *pi;
573 	void *p, *pmap;
574 	u32 i, nlb, ts, phys, virt;
575 
576 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
577 		return;
578 
579 	bip = bio_integrity(req->bio);
580 	if (!bip)
581 		return;
582 
583 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
584 
585 	p = pmap;
586 	virt = bip_get_seed(bip);
587 	phys = nvme_block_nr(ns, blk_rq_pos(req));
588 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
589 	ts = ns->disk->queue->integrity.tuple_size;
590 
591 	for (i = 0; i < nlb; i++, virt++, phys++) {
592 		pi = (struct t10_pi_tuple *)p;
593 		dif_swap(phys, virt, pi);
594 		p += ts;
595 	}
596 	kunmap_atomic(pmap);
597 }
598 #else /* CONFIG_BLK_DEV_INTEGRITY */
599 static void nvme_dif_remap(struct request *req,
600 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
601 {
602 }
603 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
604 {
605 }
606 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
607 {
608 }
609 #endif
610 
611 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
612 						struct nvme_completion *cqe)
613 {
614 	struct nvme_iod *iod = ctx;
615 	struct request *req = iod_get_private(iod);
616 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
617 	u16 status = le16_to_cpup(&cqe->status) >> 1;
618 	int error = 0;
619 
620 	if (unlikely(status)) {
621 		if (!(status & NVME_SC_DNR || blk_noretry_request(req))
622 		    && (jiffies - req->start_time) < req->timeout) {
623 			unsigned long flags;
624 
625 			nvme_unmap_data(nvmeq->dev, iod);
626 
627 			blk_mq_requeue_request(req);
628 			spin_lock_irqsave(req->q->queue_lock, flags);
629 			if (!blk_queue_stopped(req->q))
630 				blk_mq_kick_requeue_list(req->q);
631 			spin_unlock_irqrestore(req->q->queue_lock, flags);
632 			return;
633 		}
634 
635 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
636 			if (cmd_rq->ctx == CMD_CTX_CANCELLED)
637 				error = -EINTR;
638 			else
639 				error = status;
640 		} else {
641 			error = nvme_error_status(status);
642 		}
643 	}
644 
645 	if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
646 		u32 result = le32_to_cpup(&cqe->result);
647 		req->special = (void *)(uintptr_t)result;
648 	}
649 
650 	if (cmd_rq->aborted)
651 		dev_warn(nvmeq->dev->dev,
652 			"completing aborted command with status:%04x\n",
653 			error);
654 
655 	nvme_unmap_data(nvmeq->dev, iod);
656 	blk_mq_complete_request(req, error);
657 }
658 
659 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
660 		int total_len)
661 {
662 	struct dma_pool *pool;
663 	int length = total_len;
664 	struct scatterlist *sg = iod->sg;
665 	int dma_len = sg_dma_len(sg);
666 	u64 dma_addr = sg_dma_address(sg);
667 	u32 page_size = dev->ctrl.page_size;
668 	int offset = dma_addr & (page_size - 1);
669 	__le64 *prp_list;
670 	__le64 **list = iod_list(iod);
671 	dma_addr_t prp_dma;
672 	int nprps, i;
673 
674 	length -= (page_size - offset);
675 	if (length <= 0)
676 		return true;
677 
678 	dma_len -= (page_size - offset);
679 	if (dma_len) {
680 		dma_addr += (page_size - offset);
681 	} else {
682 		sg = sg_next(sg);
683 		dma_addr = sg_dma_address(sg);
684 		dma_len = sg_dma_len(sg);
685 	}
686 
687 	if (length <= page_size) {
688 		iod->first_dma = dma_addr;
689 		return true;
690 	}
691 
692 	nprps = DIV_ROUND_UP(length, page_size);
693 	if (nprps <= (256 / 8)) {
694 		pool = dev->prp_small_pool;
695 		iod->npages = 0;
696 	} else {
697 		pool = dev->prp_page_pool;
698 		iod->npages = 1;
699 	}
700 
701 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
702 	if (!prp_list) {
703 		iod->first_dma = dma_addr;
704 		iod->npages = -1;
705 		return false;
706 	}
707 	list[0] = prp_list;
708 	iod->first_dma = prp_dma;
709 	i = 0;
710 	for (;;) {
711 		if (i == page_size >> 3) {
712 			__le64 *old_prp_list = prp_list;
713 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
714 			if (!prp_list)
715 				return false;
716 			list[iod->npages++] = prp_list;
717 			prp_list[0] = old_prp_list[i - 1];
718 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
719 			i = 1;
720 		}
721 		prp_list[i++] = cpu_to_le64(dma_addr);
722 		dma_len -= page_size;
723 		dma_addr += page_size;
724 		length -= page_size;
725 		if (length <= 0)
726 			break;
727 		if (dma_len > 0)
728 			continue;
729 		BUG_ON(dma_len < 0);
730 		sg = sg_next(sg);
731 		dma_addr = sg_dma_address(sg);
732 		dma_len = sg_dma_len(sg);
733 	}
734 
735 	return true;
736 }
737 
738 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
739 		struct nvme_command *cmnd)
740 {
741 	struct request *req = iod_get_private(iod);
742 	struct request_queue *q = req->q;
743 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
744 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
745 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
746 
747 	sg_init_table(iod->sg, req->nr_phys_segments);
748 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
749 	if (!iod->nents)
750 		goto out;
751 
752 	ret = BLK_MQ_RQ_QUEUE_BUSY;
753 	if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
754 		goto out;
755 
756 	if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
757 		goto out_unmap;
758 
759 	ret = BLK_MQ_RQ_QUEUE_ERROR;
760 	if (blk_integrity_rq(req)) {
761 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
762 			goto out_unmap;
763 
764 		sg_init_table(iod->meta_sg, 1);
765 		if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
766 			goto out_unmap;
767 
768 		if (rq_data_dir(req))
769 			nvme_dif_remap(req, nvme_dif_prep);
770 
771 		if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
772 			goto out_unmap;
773 	}
774 
775 	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
776 	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
777 	if (blk_integrity_rq(req))
778 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
779 	return BLK_MQ_RQ_QUEUE_OK;
780 
781 out_unmap:
782 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
783 out:
784 	return ret;
785 }
786 
787 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
788 {
789 	struct request *req = iod_get_private(iod);
790 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
791 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
792 
793 	if (iod->nents) {
794 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
795 		if (blk_integrity_rq(req)) {
796 			if (!rq_data_dir(req))
797 				nvme_dif_remap(req, nvme_dif_complete);
798 			dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
799 		}
800 	}
801 
802 	nvme_free_iod(dev, iod);
803 }
804 
805 /*
806  * We reuse the small pool to allocate the 16-byte range here as it is not
807  * worth having a special pool for these or additional cases to handle freeing
808  * the iod.
809  */
810 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
811 		struct nvme_iod *iod, struct nvme_command *cmnd)
812 {
813 	struct request *req = iod_get_private(iod);
814 	struct nvme_dsm_range *range;
815 
816 	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
817 						&iod->first_dma);
818 	if (!range)
819 		return BLK_MQ_RQ_QUEUE_BUSY;
820 	iod_list(iod)[0] = (__le64 *)range;
821 	iod->npages = 0;
822 
823 	range->cattr = cpu_to_le32(0);
824 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
825 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
826 
827 	memset(cmnd, 0, sizeof(*cmnd));
828 	cmnd->dsm.opcode = nvme_cmd_dsm;
829 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
830 	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
831 	cmnd->dsm.nr = 0;
832 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
833 	return BLK_MQ_RQ_QUEUE_OK;
834 }
835 
836 /*
837  * NOTE: ns is NULL when called on the admin queue.
838  */
839 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
840 			 const struct blk_mq_queue_data *bd)
841 {
842 	struct nvme_ns *ns = hctx->queue->queuedata;
843 	struct nvme_queue *nvmeq = hctx->driver_data;
844 	struct nvme_dev *dev = nvmeq->dev;
845 	struct request *req = bd->rq;
846 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
847 	struct nvme_iod *iod;
848 	struct nvme_command cmnd;
849 	int ret = BLK_MQ_RQ_QUEUE_OK;
850 
851 	/*
852 	 * If formated with metadata, require the block layer provide a buffer
853 	 * unless this namespace is formated such that the metadata can be
854 	 * stripped/generated by the controller with PRACT=1.
855 	 */
856 	if (ns && ns->ms && !blk_integrity_rq(req)) {
857 		if (!(ns->pi_type && ns->ms == 8) &&
858 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
859 			blk_mq_complete_request(req, -EFAULT);
860 			return BLK_MQ_RQ_QUEUE_OK;
861 		}
862 	}
863 
864 	iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
865 	if (!iod)
866 		return BLK_MQ_RQ_QUEUE_BUSY;
867 
868 	if (req->cmd_flags & REQ_DISCARD) {
869 		ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
870 	} else {
871 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
872 			memcpy(&cmnd, req->cmd, sizeof(cmnd));
873 		else if (req->cmd_flags & REQ_FLUSH)
874 			nvme_setup_flush(ns, &cmnd);
875 		else
876 			nvme_setup_rw(ns, req, &cmnd);
877 
878 		if (req->nr_phys_segments)
879 			ret = nvme_map_data(dev, iod, &cmnd);
880 	}
881 
882 	if (ret)
883 		goto out;
884 
885 	cmnd.common.command_id = req->tag;
886 	nvme_set_info(cmd, iod, req_completion);
887 
888 	spin_lock_irq(&nvmeq->q_lock);
889 	__nvme_submit_cmd(nvmeq, &cmnd);
890 	nvme_process_cq(nvmeq);
891 	spin_unlock_irq(&nvmeq->q_lock);
892 	return BLK_MQ_RQ_QUEUE_OK;
893 out:
894 	nvme_free_iod(dev, iod);
895 	return ret;
896 }
897 
898 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
899 {
900 	u16 head, phase;
901 
902 	head = nvmeq->cq_head;
903 	phase = nvmeq->cq_phase;
904 
905 	for (;;) {
906 		void *ctx;
907 		nvme_completion_fn fn;
908 		struct nvme_completion cqe = nvmeq->cqes[head];
909 		if ((le16_to_cpu(cqe.status) & 1) != phase)
910 			break;
911 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
912 		if (++head == nvmeq->q_depth) {
913 			head = 0;
914 			phase = !phase;
915 		}
916 		if (tag && *tag == cqe.command_id)
917 			*tag = -1;
918 		ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
919 		fn(nvmeq, ctx, &cqe);
920 	}
921 
922 	/* If the controller ignores the cq head doorbell and continuously
923 	 * writes to the queue, it is theoretically possible to wrap around
924 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
925 	 * requires that 0.1% of your interrupts are handled, so this isn't
926 	 * a big problem.
927 	 */
928 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
929 		return;
930 
931 	if (likely(nvmeq->cq_vector >= 0))
932 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
933 	nvmeq->cq_head = head;
934 	nvmeq->cq_phase = phase;
935 
936 	nvmeq->cqe_seen = 1;
937 }
938 
939 static void nvme_process_cq(struct nvme_queue *nvmeq)
940 {
941 	__nvme_process_cq(nvmeq, NULL);
942 }
943 
944 static irqreturn_t nvme_irq(int irq, void *data)
945 {
946 	irqreturn_t result;
947 	struct nvme_queue *nvmeq = data;
948 	spin_lock(&nvmeq->q_lock);
949 	nvme_process_cq(nvmeq);
950 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
951 	nvmeq->cqe_seen = 0;
952 	spin_unlock(&nvmeq->q_lock);
953 	return result;
954 }
955 
956 static irqreturn_t nvme_irq_check(int irq, void *data)
957 {
958 	struct nvme_queue *nvmeq = data;
959 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
960 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
961 		return IRQ_NONE;
962 	return IRQ_WAKE_THREAD;
963 }
964 
965 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
966 {
967 	struct nvme_queue *nvmeq = hctx->driver_data;
968 
969 	if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
970 	    nvmeq->cq_phase) {
971 		spin_lock_irq(&nvmeq->q_lock);
972 		__nvme_process_cq(nvmeq, &tag);
973 		spin_unlock_irq(&nvmeq->q_lock);
974 
975 		if (tag == -1)
976 			return 1;
977 	}
978 
979 	return 0;
980 }
981 
982 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
983 {
984 	struct nvme_queue *nvmeq = dev->queues[0];
985 	struct nvme_command c;
986 	struct nvme_cmd_info *cmd_info;
987 	struct request *req;
988 
989 	req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
990 			BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
991 	if (IS_ERR(req))
992 		return PTR_ERR(req);
993 
994 	req->cmd_flags |= REQ_NO_TIMEOUT;
995 	cmd_info = blk_mq_rq_to_pdu(req);
996 	nvme_set_info(cmd_info, NULL, async_req_completion);
997 
998 	memset(&c, 0, sizeof(c));
999 	c.common.opcode = nvme_admin_async_event;
1000 	c.common.command_id = req->tag;
1001 
1002 	blk_mq_free_request(req);
1003 	__nvme_submit_cmd(nvmeq, &c);
1004 	return 0;
1005 }
1006 
1007 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1008 			struct nvme_command *cmd,
1009 			struct async_cmd_info *cmdinfo, unsigned timeout)
1010 {
1011 	struct nvme_queue *nvmeq = dev->queues[0];
1012 	struct request *req;
1013 	struct nvme_cmd_info *cmd_rq;
1014 
1015 	req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1016 	if (IS_ERR(req))
1017 		return PTR_ERR(req);
1018 
1019 	req->timeout = timeout;
1020 	cmd_rq = blk_mq_rq_to_pdu(req);
1021 	cmdinfo->req = req;
1022 	nvme_set_info(cmd_rq, cmdinfo, async_completion);
1023 	cmdinfo->status = -EINTR;
1024 
1025 	cmd->common.command_id = req->tag;
1026 
1027 	nvme_submit_cmd(nvmeq, cmd);
1028 	return 0;
1029 }
1030 
1031 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1032 {
1033 	struct nvme_command c;
1034 
1035 	memset(&c, 0, sizeof(c));
1036 	c.delete_queue.opcode = opcode;
1037 	c.delete_queue.qid = cpu_to_le16(id);
1038 
1039 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1040 }
1041 
1042 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1043 						struct nvme_queue *nvmeq)
1044 {
1045 	struct nvme_command c;
1046 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1047 
1048 	/*
1049 	 * Note: we (ab)use the fact the the prp fields survive if no data
1050 	 * is attached to the request.
1051 	 */
1052 	memset(&c, 0, sizeof(c));
1053 	c.create_cq.opcode = nvme_admin_create_cq;
1054 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1055 	c.create_cq.cqid = cpu_to_le16(qid);
1056 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1057 	c.create_cq.cq_flags = cpu_to_le16(flags);
1058 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1059 
1060 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1061 }
1062 
1063 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1064 						struct nvme_queue *nvmeq)
1065 {
1066 	struct nvme_command c;
1067 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1068 
1069 	/*
1070 	 * Note: we (ab)use the fact the the prp fields survive if no data
1071 	 * is attached to the request.
1072 	 */
1073 	memset(&c, 0, sizeof(c));
1074 	c.create_sq.opcode = nvme_admin_create_sq;
1075 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1076 	c.create_sq.sqid = cpu_to_le16(qid);
1077 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1078 	c.create_sq.sq_flags = cpu_to_le16(flags);
1079 	c.create_sq.cqid = cpu_to_le16(qid);
1080 
1081 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1082 }
1083 
1084 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1085 {
1086 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1087 }
1088 
1089 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1090 {
1091 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1092 }
1093 
1094 /**
1095  * nvme_abort_req - Attempt aborting a request
1096  *
1097  * Schedule controller reset if the command was already aborted once before and
1098  * still hasn't been returned to the driver, or if this is the admin queue.
1099  */
1100 static void nvme_abort_req(struct request *req)
1101 {
1102 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1103 	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1104 	struct nvme_dev *dev = nvmeq->dev;
1105 	struct request *abort_req;
1106 	struct nvme_cmd_info *abort_cmd;
1107 	struct nvme_command cmd;
1108 
1109 	if (!nvmeq->qid || cmd_rq->aborted) {
1110 		spin_lock(&dev_list_lock);
1111 		if (!__nvme_reset(dev)) {
1112 			dev_warn(dev->dev,
1113 				 "I/O %d QID %d timeout, reset controller\n",
1114 				 req->tag, nvmeq->qid);
1115 		}
1116 		spin_unlock(&dev_list_lock);
1117 		return;
1118 	}
1119 
1120 	if (!dev->ctrl.abort_limit)
1121 		return;
1122 
1123 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1124 			BLK_MQ_REQ_NOWAIT);
1125 	if (IS_ERR(abort_req))
1126 		return;
1127 
1128 	abort_cmd = blk_mq_rq_to_pdu(abort_req);
1129 	nvme_set_info(abort_cmd, abort_req, abort_completion);
1130 
1131 	memset(&cmd, 0, sizeof(cmd));
1132 	cmd.abort.opcode = nvme_admin_abort_cmd;
1133 	cmd.abort.cid = req->tag;
1134 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1135 	cmd.abort.command_id = abort_req->tag;
1136 
1137 	--dev->ctrl.abort_limit;
1138 	cmd_rq->aborted = 1;
1139 
1140 	dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1141 							nvmeq->qid);
1142 	nvme_submit_cmd(dev->queues[0], &cmd);
1143 }
1144 
1145 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1146 {
1147 	struct nvme_queue *nvmeq = data;
1148 	void *ctx;
1149 	nvme_completion_fn fn;
1150 	struct nvme_cmd_info *cmd;
1151 	struct nvme_completion cqe;
1152 
1153 	if (!blk_mq_request_started(req))
1154 		return;
1155 
1156 	cmd = blk_mq_rq_to_pdu(req);
1157 
1158 	if (cmd->ctx == CMD_CTX_CANCELLED)
1159 		return;
1160 
1161 	if (blk_queue_dying(req->q))
1162 		cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1163 	else
1164 		cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1165 
1166 
1167 	dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1168 						req->tag, nvmeq->qid);
1169 	ctx = cancel_cmd_info(cmd, &fn);
1170 	fn(nvmeq, ctx, &cqe);
1171 }
1172 
1173 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1174 {
1175 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1176 	struct nvme_queue *nvmeq = cmd->nvmeq;
1177 
1178 	dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1179 							nvmeq->qid);
1180 	spin_lock_irq(&nvmeq->q_lock);
1181 	nvme_abort_req(req);
1182 	spin_unlock_irq(&nvmeq->q_lock);
1183 
1184 	/*
1185 	 * The aborted req will be completed on receiving the abort req.
1186 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1187 	 * as the device then is in a faulty state.
1188 	 */
1189 	return BLK_EH_RESET_TIMER;
1190 }
1191 
1192 static void nvme_free_queue(struct nvme_queue *nvmeq)
1193 {
1194 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1195 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1196 	if (nvmeq->sq_cmds)
1197 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1198 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1199 	kfree(nvmeq);
1200 }
1201 
1202 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1203 {
1204 	int i;
1205 
1206 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1207 		struct nvme_queue *nvmeq = dev->queues[i];
1208 		dev->queue_count--;
1209 		dev->queues[i] = NULL;
1210 		nvme_free_queue(nvmeq);
1211 	}
1212 }
1213 
1214 /**
1215  * nvme_suspend_queue - put queue into suspended state
1216  * @nvmeq - queue to suspend
1217  */
1218 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1219 {
1220 	int vector;
1221 
1222 	spin_lock_irq(&nvmeq->q_lock);
1223 	if (nvmeq->cq_vector == -1) {
1224 		spin_unlock_irq(&nvmeq->q_lock);
1225 		return 1;
1226 	}
1227 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1228 	nvmeq->dev->online_queues--;
1229 	nvmeq->cq_vector = -1;
1230 	spin_unlock_irq(&nvmeq->q_lock);
1231 
1232 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1233 		blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1234 
1235 	irq_set_affinity_hint(vector, NULL);
1236 	free_irq(vector, nvmeq);
1237 
1238 	return 0;
1239 }
1240 
1241 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1242 {
1243 	spin_lock_irq(&nvmeq->q_lock);
1244 	if (nvmeq->tags && *nvmeq->tags)
1245 		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1246 	spin_unlock_irq(&nvmeq->q_lock);
1247 }
1248 
1249 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1250 {
1251 	struct nvme_queue *nvmeq = dev->queues[qid];
1252 
1253 	if (!nvmeq)
1254 		return;
1255 	if (nvme_suspend_queue(nvmeq))
1256 		return;
1257 
1258 	/* Don't tell the adapter to delete the admin queue.
1259 	 * Don't tell a removed adapter to delete IO queues. */
1260 	if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1261 		adapter_delete_sq(dev, qid);
1262 		adapter_delete_cq(dev, qid);
1263 	}
1264 
1265 	spin_lock_irq(&nvmeq->q_lock);
1266 	nvme_process_cq(nvmeq);
1267 	spin_unlock_irq(&nvmeq->q_lock);
1268 }
1269 
1270 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1271 				int entry_size)
1272 {
1273 	int q_depth = dev->q_depth;
1274 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1275 					  dev->ctrl.page_size);
1276 
1277 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1278 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1279 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1280 		q_depth = div_u64(mem_per_q, entry_size);
1281 
1282 		/*
1283 		 * Ensure the reduced q_depth is above some threshold where it
1284 		 * would be better to map queues in system memory with the
1285 		 * original depth
1286 		 */
1287 		if (q_depth < 64)
1288 			return -ENOMEM;
1289 	}
1290 
1291 	return q_depth;
1292 }
1293 
1294 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1295 				int qid, int depth)
1296 {
1297 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1298 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1299 						      dev->ctrl.page_size);
1300 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1301 		nvmeq->sq_cmds_io = dev->cmb + offset;
1302 	} else {
1303 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1304 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1305 		if (!nvmeq->sq_cmds)
1306 			return -ENOMEM;
1307 	}
1308 
1309 	return 0;
1310 }
1311 
1312 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1313 							int depth)
1314 {
1315 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1316 	if (!nvmeq)
1317 		return NULL;
1318 
1319 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1320 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1321 	if (!nvmeq->cqes)
1322 		goto free_nvmeq;
1323 
1324 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1325 		goto free_cqdma;
1326 
1327 	nvmeq->q_dmadev = dev->dev;
1328 	nvmeq->dev = dev;
1329 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1330 			dev->ctrl.instance, qid);
1331 	spin_lock_init(&nvmeq->q_lock);
1332 	nvmeq->cq_head = 0;
1333 	nvmeq->cq_phase = 1;
1334 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1335 	nvmeq->q_depth = depth;
1336 	nvmeq->qid = qid;
1337 	nvmeq->cq_vector = -1;
1338 	dev->queues[qid] = nvmeq;
1339 
1340 	/* make sure queue descriptor is set before queue count, for kthread */
1341 	mb();
1342 	dev->queue_count++;
1343 
1344 	return nvmeq;
1345 
1346  free_cqdma:
1347 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1348 							nvmeq->cq_dma_addr);
1349  free_nvmeq:
1350 	kfree(nvmeq);
1351 	return NULL;
1352 }
1353 
1354 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1355 							const char *name)
1356 {
1357 	if (use_threaded_interrupts)
1358 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1359 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1360 					name, nvmeq);
1361 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1362 				IRQF_SHARED, name, nvmeq);
1363 }
1364 
1365 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1366 {
1367 	struct nvme_dev *dev = nvmeq->dev;
1368 
1369 	spin_lock_irq(&nvmeq->q_lock);
1370 	nvmeq->sq_tail = 0;
1371 	nvmeq->cq_head = 0;
1372 	nvmeq->cq_phase = 1;
1373 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1374 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1375 	dev->online_queues++;
1376 	spin_unlock_irq(&nvmeq->q_lock);
1377 }
1378 
1379 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1380 {
1381 	struct nvme_dev *dev = nvmeq->dev;
1382 	int result;
1383 
1384 	nvmeq->cq_vector = qid - 1;
1385 	result = adapter_alloc_cq(dev, qid, nvmeq);
1386 	if (result < 0)
1387 		return result;
1388 
1389 	result = adapter_alloc_sq(dev, qid, nvmeq);
1390 	if (result < 0)
1391 		goto release_cq;
1392 
1393 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1394 	if (result < 0)
1395 		goto release_sq;
1396 
1397 	nvme_init_queue(nvmeq, qid);
1398 	return result;
1399 
1400  release_sq:
1401 	adapter_delete_sq(dev, qid);
1402  release_cq:
1403 	adapter_delete_cq(dev, qid);
1404 	return result;
1405 }
1406 
1407 static struct blk_mq_ops nvme_mq_admin_ops = {
1408 	.queue_rq	= nvme_queue_rq,
1409 	.map_queue	= blk_mq_map_queue,
1410 	.init_hctx	= nvme_admin_init_hctx,
1411 	.exit_hctx      = nvme_admin_exit_hctx,
1412 	.init_request	= nvme_admin_init_request,
1413 	.timeout	= nvme_timeout,
1414 };
1415 
1416 static struct blk_mq_ops nvme_mq_ops = {
1417 	.queue_rq	= nvme_queue_rq,
1418 	.map_queue	= blk_mq_map_queue,
1419 	.init_hctx	= nvme_init_hctx,
1420 	.init_request	= nvme_init_request,
1421 	.timeout	= nvme_timeout,
1422 	.poll		= nvme_poll,
1423 };
1424 
1425 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1426 {
1427 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1428 		blk_cleanup_queue(dev->ctrl.admin_q);
1429 		blk_mq_free_tag_set(&dev->admin_tagset);
1430 	}
1431 }
1432 
1433 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1434 {
1435 	if (!dev->ctrl.admin_q) {
1436 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1437 		dev->admin_tagset.nr_hw_queues = 1;
1438 		dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1439 		dev->admin_tagset.reserved_tags = 1;
1440 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1441 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1442 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1443 		dev->admin_tagset.driver_data = dev;
1444 
1445 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1446 			return -ENOMEM;
1447 
1448 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1449 		if (IS_ERR(dev->ctrl.admin_q)) {
1450 			blk_mq_free_tag_set(&dev->admin_tagset);
1451 			return -ENOMEM;
1452 		}
1453 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1454 			nvme_dev_remove_admin(dev);
1455 			dev->ctrl.admin_q = NULL;
1456 			return -ENODEV;
1457 		}
1458 	} else
1459 		blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1460 
1461 	return 0;
1462 }
1463 
1464 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1465 {
1466 	int result;
1467 	u32 aqa;
1468 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1469 	struct nvme_queue *nvmeq;
1470 
1471 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1472 						NVME_CAP_NSSRC(cap) : 0;
1473 
1474 	if (dev->subsystem &&
1475 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1476 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1477 
1478 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1479 	if (result < 0)
1480 		return result;
1481 
1482 	nvmeq = dev->queues[0];
1483 	if (!nvmeq) {
1484 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1485 		if (!nvmeq)
1486 			return -ENOMEM;
1487 	}
1488 
1489 	aqa = nvmeq->q_depth - 1;
1490 	aqa |= aqa << 16;
1491 
1492 	writel(aqa, dev->bar + NVME_REG_AQA);
1493 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1494 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1495 
1496 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1497 	if (result)
1498 		goto free_nvmeq;
1499 
1500 	nvmeq->cq_vector = 0;
1501 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1502 	if (result) {
1503 		nvmeq->cq_vector = -1;
1504 		goto free_nvmeq;
1505 	}
1506 
1507 	return result;
1508 
1509  free_nvmeq:
1510 	nvme_free_queues(dev, 0);
1511 	return result;
1512 }
1513 
1514 static int nvme_subsys_reset(struct nvme_dev *dev)
1515 {
1516 	if (!dev->subsystem)
1517 		return -ENOTTY;
1518 
1519 	writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */
1520 	return 0;
1521 }
1522 
1523 static int nvme_kthread(void *data)
1524 {
1525 	struct nvme_dev *dev, *next;
1526 
1527 	while (!kthread_should_stop()) {
1528 		set_current_state(TASK_INTERRUPTIBLE);
1529 		spin_lock(&dev_list_lock);
1530 		list_for_each_entry_safe(dev, next, &dev_list, node) {
1531 			int i;
1532 			u32 csts = readl(dev->bar + NVME_REG_CSTS);
1533 
1534 			if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1535 							csts & NVME_CSTS_CFS) {
1536 				if (!__nvme_reset(dev)) {
1537 					dev_warn(dev->dev,
1538 						"Failed status: %x, reset controller\n",
1539 						readl(dev->bar + NVME_REG_CSTS));
1540 				}
1541 				continue;
1542 			}
1543 			for (i = 0; i < dev->queue_count; i++) {
1544 				struct nvme_queue *nvmeq = dev->queues[i];
1545 				if (!nvmeq)
1546 					continue;
1547 				spin_lock_irq(&nvmeq->q_lock);
1548 				nvme_process_cq(nvmeq);
1549 
1550 				while (i == 0 && dev->ctrl.event_limit > 0) {
1551 					if (nvme_submit_async_admin_req(dev))
1552 						break;
1553 					dev->ctrl.event_limit--;
1554 				}
1555 				spin_unlock_irq(&nvmeq->q_lock);
1556 			}
1557 		}
1558 		spin_unlock(&dev_list_lock);
1559 		schedule_timeout(round_jiffies_relative(HZ));
1560 	}
1561 	return 0;
1562 }
1563 
1564 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
1565 {
1566 	struct nvme_ns *ns;
1567 	struct gendisk *disk;
1568 	int node = dev_to_node(dev->dev);
1569 
1570 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1571 	if (!ns)
1572 		return;
1573 
1574 	ns->queue = blk_mq_init_queue(&dev->tagset);
1575 	if (IS_ERR(ns->queue))
1576 		goto out_free_ns;
1577 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1578 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1579 	ns->ctrl = &dev->ctrl;
1580 	ns->queue->queuedata = ns;
1581 
1582 	disk = alloc_disk_node(0, node);
1583 	if (!disk)
1584 		goto out_free_queue;
1585 
1586 	kref_init(&ns->kref);
1587 	ns->ns_id = nsid;
1588 	ns->disk = disk;
1589 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1590 	list_add_tail(&ns->list, &dev->namespaces);
1591 
1592 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1593 	if (dev->ctrl.max_hw_sectors) {
1594 		blk_queue_max_hw_sectors(ns->queue, dev->ctrl.max_hw_sectors);
1595 		blk_queue_max_segments(ns->queue,
1596 			(dev->ctrl.max_hw_sectors / (dev->ctrl.page_size >> 9)) + 1);
1597 	}
1598 	if (dev->ctrl.stripe_size)
1599 		blk_queue_chunk_sectors(ns->queue, dev->ctrl.stripe_size >> 9);
1600 	if (dev->ctrl.vwc & NVME_CTRL_VWC_PRESENT)
1601 		blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1602 	blk_queue_virt_boundary(ns->queue, dev->ctrl.page_size - 1);
1603 
1604 	disk->major = nvme_major;
1605 	disk->first_minor = 0;
1606 	disk->fops = &nvme_fops;
1607 	disk->private_data = ns;
1608 	disk->queue = ns->queue;
1609 	disk->driverfs_dev = dev->device;
1610 	disk->flags = GENHD_FL_EXT_DEVT;
1611 	sprintf(disk->disk_name, "nvme%dn%d", dev->ctrl.instance, nsid);
1612 
1613 	/*
1614 	 * Initialize capacity to 0 until we establish the namespace format and
1615 	 * setup integrity extentions if necessary. The revalidate_disk after
1616 	 * add_disk allows the driver to register with integrity if the format
1617 	 * requires it.
1618 	 */
1619 	set_capacity(disk, 0);
1620 	if (nvme_revalidate_disk(ns->disk))
1621 		goto out_free_disk;
1622 
1623 	kref_get(&dev->ctrl.kref);
1624 	if (ns->type != NVME_NS_LIGHTNVM) {
1625 		add_disk(ns->disk);
1626 		if (ns->ms) {
1627 			struct block_device *bd = bdget_disk(ns->disk, 0);
1628 			if (!bd)
1629 				return;
1630 			if (blkdev_get(bd, FMODE_READ, NULL)) {
1631 				bdput(bd);
1632 				return;
1633 			}
1634 			blkdev_reread_part(bd);
1635 			blkdev_put(bd, FMODE_READ);
1636 		}
1637 	}
1638 	return;
1639  out_free_disk:
1640 	kfree(disk);
1641 	list_del(&ns->list);
1642  out_free_queue:
1643 	blk_cleanup_queue(ns->queue);
1644  out_free_ns:
1645 	kfree(ns);
1646 }
1647 
1648 /*
1649  * Create I/O queues.  Failing to create an I/O queue is not an issue,
1650  * we can continue with less than the desired amount of queues, and
1651  * even a controller without I/O queues an still be used to issue
1652  * admin commands.  This might be useful to upgrade a buggy firmware
1653  * for example.
1654  */
1655 static void nvme_create_io_queues(struct nvme_dev *dev)
1656 {
1657 	unsigned i;
1658 
1659 	for (i = dev->queue_count; i <= dev->max_qid; i++)
1660 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
1661 			break;
1662 
1663 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
1664 		if (nvme_create_queue(dev->queues[i], i)) {
1665 			nvme_free_queues(dev, i);
1666 			break;
1667 		}
1668 }
1669 
1670 static int set_queue_count(struct nvme_dev *dev, int count)
1671 {
1672 	int status;
1673 	u32 result;
1674 	u32 q_count = (count - 1) | ((count - 1) << 16);
1675 
1676 	status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
1677 								&result);
1678 	if (status < 0)
1679 		return status;
1680 	if (status > 0) {
1681 		dev_err(dev->dev, "Could not set queue count (%d)\n", status);
1682 		return 0;
1683 	}
1684 	return min(result & 0xffff, result >> 16) + 1;
1685 }
1686 
1687 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1688 {
1689 	u64 szu, size, offset;
1690 	u32 cmbloc;
1691 	resource_size_t bar_size;
1692 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1693 	void __iomem *cmb;
1694 	dma_addr_t dma_addr;
1695 
1696 	if (!use_cmb_sqes)
1697 		return NULL;
1698 
1699 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1700 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1701 		return NULL;
1702 
1703 	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1704 
1705 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1706 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1707 	offset = szu * NVME_CMB_OFST(cmbloc);
1708 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1709 
1710 	if (offset > bar_size)
1711 		return NULL;
1712 
1713 	/*
1714 	 * Controllers may support a CMB size larger than their BAR,
1715 	 * for example, due to being behind a bridge. Reduce the CMB to
1716 	 * the reported size of the BAR
1717 	 */
1718 	if (size > bar_size - offset)
1719 		size = bar_size - offset;
1720 
1721 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1722 	cmb = ioremap_wc(dma_addr, size);
1723 	if (!cmb)
1724 		return NULL;
1725 
1726 	dev->cmb_dma_addr = dma_addr;
1727 	dev->cmb_size = size;
1728 	return cmb;
1729 }
1730 
1731 static inline void nvme_release_cmb(struct nvme_dev *dev)
1732 {
1733 	if (dev->cmb) {
1734 		iounmap(dev->cmb);
1735 		dev->cmb = NULL;
1736 	}
1737 }
1738 
1739 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1740 {
1741 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1742 }
1743 
1744 static int nvme_setup_io_queues(struct nvme_dev *dev)
1745 {
1746 	struct nvme_queue *adminq = dev->queues[0];
1747 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1748 	int result, i, vecs, nr_io_queues, size;
1749 
1750 	nr_io_queues = num_possible_cpus();
1751 	result = set_queue_count(dev, nr_io_queues);
1752 	if (result <= 0)
1753 		return result;
1754 	if (result < nr_io_queues)
1755 		nr_io_queues = result;
1756 
1757 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1758 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1759 				sizeof(struct nvme_command));
1760 		if (result > 0)
1761 			dev->q_depth = result;
1762 		else
1763 			nvme_release_cmb(dev);
1764 	}
1765 
1766 	size = db_bar_size(dev, nr_io_queues);
1767 	if (size > 8192) {
1768 		iounmap(dev->bar);
1769 		do {
1770 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1771 			if (dev->bar)
1772 				break;
1773 			if (!--nr_io_queues)
1774 				return -ENOMEM;
1775 			size = db_bar_size(dev, nr_io_queues);
1776 		} while (1);
1777 		dev->dbs = dev->bar + 4096;
1778 		adminq->q_db = dev->dbs;
1779 	}
1780 
1781 	/* Deregister the admin queue's interrupt */
1782 	free_irq(dev->entry[0].vector, adminq);
1783 
1784 	/*
1785 	 * If we enable msix early due to not intx, disable it again before
1786 	 * setting up the full range we need.
1787 	 */
1788 	if (!pdev->irq)
1789 		pci_disable_msix(pdev);
1790 
1791 	for (i = 0; i < nr_io_queues; i++)
1792 		dev->entry[i].entry = i;
1793 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1794 	if (vecs < 0) {
1795 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1796 		if (vecs < 0) {
1797 			vecs = 1;
1798 		} else {
1799 			for (i = 0; i < vecs; i++)
1800 				dev->entry[i].vector = i + pdev->irq;
1801 		}
1802 	}
1803 
1804 	/*
1805 	 * Should investigate if there's a performance win from allocating
1806 	 * more queues than interrupt vectors; it might allow the submission
1807 	 * path to scale better, even if the receive path is limited by the
1808 	 * number of interrupts.
1809 	 */
1810 	nr_io_queues = vecs;
1811 	dev->max_qid = nr_io_queues;
1812 
1813 	result = queue_request_irq(dev, adminq, adminq->irqname);
1814 	if (result) {
1815 		adminq->cq_vector = -1;
1816 		goto free_queues;
1817 	}
1818 
1819 	/* Free previously allocated queues that are no longer usable */
1820 	nvme_free_queues(dev, nr_io_queues + 1);
1821 	nvme_create_io_queues(dev);
1822 
1823 	return 0;
1824 
1825  free_queues:
1826 	nvme_free_queues(dev, 1);
1827 	return result;
1828 }
1829 
1830 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1831 {
1832 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1833 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1834 
1835 	return nsa->ns_id - nsb->ns_id;
1836 }
1837 
1838 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
1839 {
1840 	struct nvme_ns *ns;
1841 
1842 	list_for_each_entry(ns, &dev->namespaces, list) {
1843 		if (ns->ns_id == nsid)
1844 			return ns;
1845 		if (ns->ns_id > nsid)
1846 			break;
1847 	}
1848 	return NULL;
1849 }
1850 
1851 static inline bool nvme_io_incapable(struct nvme_dev *dev)
1852 {
1853 	return (!dev->bar ||
1854 		readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_CFS ||
1855 		dev->online_queues < 2);
1856 }
1857 
1858 static void nvme_ns_remove(struct nvme_ns *ns)
1859 {
1860 	bool kill = nvme_io_incapable(to_nvme_dev(ns->ctrl)) &&
1861 			!blk_queue_dying(ns->queue);
1862 
1863 	if (kill)
1864 		blk_set_queue_dying(ns->queue);
1865 	if (ns->disk->flags & GENHD_FL_UP)
1866 		del_gendisk(ns->disk);
1867 	if (kill || !blk_queue_dying(ns->queue)) {
1868 		blk_mq_abort_requeue_list(ns->queue);
1869 		blk_cleanup_queue(ns->queue);
1870 	}
1871 	list_del_init(&ns->list);
1872 	nvme_put_ns(ns);
1873 }
1874 
1875 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
1876 {
1877 	struct nvme_ns *ns, *next;
1878 	unsigned i;
1879 
1880 	for (i = 1; i <= nn; i++) {
1881 		ns = nvme_find_ns(dev, i);
1882 		if (ns) {
1883 			if (revalidate_disk(ns->disk))
1884 				nvme_ns_remove(ns);
1885 		} else
1886 			nvme_alloc_ns(dev, i);
1887 	}
1888 	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1889 		if (ns->ns_id > nn)
1890 			nvme_ns_remove(ns);
1891 	}
1892 	list_sort(NULL, &dev->namespaces, ns_cmp);
1893 }
1894 
1895 static void nvme_set_irq_hints(struct nvme_dev *dev)
1896 {
1897 	struct nvme_queue *nvmeq;
1898 	int i;
1899 
1900 	for (i = 0; i < dev->online_queues; i++) {
1901 		nvmeq = dev->queues[i];
1902 
1903 		if (!nvmeq->tags || !(*nvmeq->tags))
1904 			continue;
1905 
1906 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1907 					blk_mq_tags_cpumask(*nvmeq->tags));
1908 	}
1909 }
1910 
1911 static void nvme_dev_scan(struct work_struct *work)
1912 {
1913 	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1914 	struct nvme_id_ctrl *ctrl;
1915 
1916 	if (!dev->tagset.tags)
1917 		return;
1918 	if (nvme_identify_ctrl(&dev->ctrl, &ctrl))
1919 		return;
1920 	nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
1921 	kfree(ctrl);
1922 	nvme_set_irq_hints(dev);
1923 }
1924 
1925 /*
1926  * Return: error value if an error occurred setting up the queues or calling
1927  * Identify Device.  0 if these succeeded, even if adding some of the
1928  * namespaces failed.  At the moment, these failures are silent.  TBD which
1929  * failures should be reported.
1930  */
1931 static int nvme_dev_add(struct nvme_dev *dev)
1932 {
1933 	int res;
1934 
1935 	res = nvme_init_identify(&dev->ctrl);
1936 	if (res)
1937 		return res;
1938 
1939 	if (!dev->tagset.tags) {
1940 		dev->tagset.ops = &nvme_mq_ops;
1941 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1942 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1943 		dev->tagset.numa_node = dev_to_node(dev->dev);
1944 		dev->tagset.queue_depth =
1945 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1946 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1947 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1948 		dev->tagset.driver_data = dev;
1949 
1950 		if (blk_mq_alloc_tag_set(&dev->tagset))
1951 			return 0;
1952 	}
1953 	schedule_work(&dev->scan_work);
1954 	return 0;
1955 }
1956 
1957 static int nvme_dev_map(struct nvme_dev *dev)
1958 {
1959 	u64 cap;
1960 	int bars, result = -ENOMEM;
1961 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1962 
1963 	if (pci_enable_device_mem(pdev))
1964 		return result;
1965 
1966 	dev->entry[0].vector = pdev->irq;
1967 	pci_set_master(pdev);
1968 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1969 	if (!bars)
1970 		goto disable_pci;
1971 
1972 	if (pci_request_selected_regions(pdev, bars, "nvme"))
1973 		goto disable_pci;
1974 
1975 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1976 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1977 		goto disable;
1978 
1979 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1980 	if (!dev->bar)
1981 		goto disable;
1982 
1983 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1984 		result = -ENODEV;
1985 		goto unmap;
1986 	}
1987 
1988 	/*
1989 	 * Some devices don't advertse INTx interrupts, pre-enable a single
1990 	 * MSIX vec for setup. We'll adjust this later.
1991 	 */
1992 	if (!pdev->irq) {
1993 		result = pci_enable_msix(pdev, dev->entry, 1);
1994 		if (result < 0)
1995 			goto unmap;
1996 	}
1997 
1998 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1999 
2000 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2001 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2002 	dev->dbs = dev->bar + 4096;
2003 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
2004 		dev->cmb = nvme_map_cmb(dev);
2005 
2006 	return 0;
2007 
2008  unmap:
2009 	iounmap(dev->bar);
2010 	dev->bar = NULL;
2011  disable:
2012 	pci_release_regions(pdev);
2013  disable_pci:
2014 	pci_disable_device(pdev);
2015 	return result;
2016 }
2017 
2018 static void nvme_dev_unmap(struct nvme_dev *dev)
2019 {
2020 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2021 
2022 	if (pdev->msi_enabled)
2023 		pci_disable_msi(pdev);
2024 	else if (pdev->msix_enabled)
2025 		pci_disable_msix(pdev);
2026 
2027 	if (dev->bar) {
2028 		iounmap(dev->bar);
2029 		dev->bar = NULL;
2030 		pci_release_regions(pdev);
2031 	}
2032 
2033 	if (pci_is_enabled(pdev))
2034 		pci_disable_device(pdev);
2035 }
2036 
2037 struct nvme_delq_ctx {
2038 	struct task_struct *waiter;
2039 	struct kthread_worker *worker;
2040 	atomic_t refcount;
2041 };
2042 
2043 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2044 {
2045 	dq->waiter = current;
2046 	mb();
2047 
2048 	for (;;) {
2049 		set_current_state(TASK_KILLABLE);
2050 		if (!atomic_read(&dq->refcount))
2051 			break;
2052 		if (!schedule_timeout(ADMIN_TIMEOUT) ||
2053 					fatal_signal_pending(current)) {
2054 			/*
2055 			 * Disable the controller first since we can't trust it
2056 			 * at this point, but leave the admin queue enabled
2057 			 * until all queue deletion requests are flushed.
2058 			 * FIXME: This may take a while if there are more h/w
2059 			 * queues than admin tags.
2060 			 */
2061 			set_current_state(TASK_RUNNING);
2062 			nvme_disable_ctrl(&dev->ctrl,
2063 				lo_hi_readq(dev->bar + NVME_REG_CAP));
2064 			nvme_clear_queue(dev->queues[0]);
2065 			flush_kthread_worker(dq->worker);
2066 			nvme_disable_queue(dev, 0);
2067 			return;
2068 		}
2069 	}
2070 	set_current_state(TASK_RUNNING);
2071 }
2072 
2073 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2074 {
2075 	atomic_dec(&dq->refcount);
2076 	if (dq->waiter)
2077 		wake_up_process(dq->waiter);
2078 }
2079 
2080 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2081 {
2082 	atomic_inc(&dq->refcount);
2083 	return dq;
2084 }
2085 
2086 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2087 {
2088 	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2089 	nvme_put_dq(dq);
2090 
2091 	spin_lock_irq(&nvmeq->q_lock);
2092 	nvme_process_cq(nvmeq);
2093 	spin_unlock_irq(&nvmeq->q_lock);
2094 }
2095 
2096 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2097 						kthread_work_func_t fn)
2098 {
2099 	struct nvme_command c;
2100 
2101 	memset(&c, 0, sizeof(c));
2102 	c.delete_queue.opcode = opcode;
2103 	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2104 
2105 	init_kthread_work(&nvmeq->cmdinfo.work, fn);
2106 	return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2107 								ADMIN_TIMEOUT);
2108 }
2109 
2110 static void nvme_del_cq_work_handler(struct kthread_work *work)
2111 {
2112 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2113 							cmdinfo.work);
2114 	nvme_del_queue_end(nvmeq);
2115 }
2116 
2117 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2118 {
2119 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2120 						nvme_del_cq_work_handler);
2121 }
2122 
2123 static void nvme_del_sq_work_handler(struct kthread_work *work)
2124 {
2125 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2126 							cmdinfo.work);
2127 	int status = nvmeq->cmdinfo.status;
2128 
2129 	if (!status)
2130 		status = nvme_delete_cq(nvmeq);
2131 	if (status)
2132 		nvme_del_queue_end(nvmeq);
2133 }
2134 
2135 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2136 {
2137 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2138 						nvme_del_sq_work_handler);
2139 }
2140 
2141 static void nvme_del_queue_start(struct kthread_work *work)
2142 {
2143 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2144 							cmdinfo.work);
2145 	if (nvme_delete_sq(nvmeq))
2146 		nvme_del_queue_end(nvmeq);
2147 }
2148 
2149 static void nvme_disable_io_queues(struct nvme_dev *dev)
2150 {
2151 	int i;
2152 	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2153 	struct nvme_delq_ctx dq;
2154 	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2155 					&worker, "nvme%d", dev->ctrl.instance);
2156 
2157 	if (IS_ERR(kworker_task)) {
2158 		dev_err(dev->dev,
2159 			"Failed to create queue del task\n");
2160 		for (i = dev->queue_count - 1; i > 0; i--)
2161 			nvme_disable_queue(dev, i);
2162 		return;
2163 	}
2164 
2165 	dq.waiter = NULL;
2166 	atomic_set(&dq.refcount, 0);
2167 	dq.worker = &worker;
2168 	for (i = dev->queue_count - 1; i > 0; i--) {
2169 		struct nvme_queue *nvmeq = dev->queues[i];
2170 
2171 		if (nvme_suspend_queue(nvmeq))
2172 			continue;
2173 		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2174 		nvmeq->cmdinfo.worker = dq.worker;
2175 		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2176 		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2177 	}
2178 	nvme_wait_dq(&dq, dev);
2179 	kthread_stop(kworker_task);
2180 }
2181 
2182 /*
2183 * Remove the node from the device list and check
2184 * for whether or not we need to stop the nvme_thread.
2185 */
2186 static void nvme_dev_list_remove(struct nvme_dev *dev)
2187 {
2188 	struct task_struct *tmp = NULL;
2189 
2190 	spin_lock(&dev_list_lock);
2191 	list_del_init(&dev->node);
2192 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2193 		tmp = nvme_thread;
2194 		nvme_thread = NULL;
2195 	}
2196 	spin_unlock(&dev_list_lock);
2197 
2198 	if (tmp)
2199 		kthread_stop(tmp);
2200 }
2201 
2202 static void nvme_freeze_queues(struct nvme_dev *dev)
2203 {
2204 	struct nvme_ns *ns;
2205 
2206 	list_for_each_entry(ns, &dev->namespaces, list) {
2207 		blk_mq_freeze_queue_start(ns->queue);
2208 
2209 		spin_lock_irq(ns->queue->queue_lock);
2210 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2211 		spin_unlock_irq(ns->queue->queue_lock);
2212 
2213 		blk_mq_cancel_requeue_work(ns->queue);
2214 		blk_mq_stop_hw_queues(ns->queue);
2215 	}
2216 }
2217 
2218 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2219 {
2220 	struct nvme_ns *ns;
2221 
2222 	list_for_each_entry(ns, &dev->namespaces, list) {
2223 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2224 		blk_mq_unfreeze_queue(ns->queue);
2225 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2226 		blk_mq_kick_requeue_list(ns->queue);
2227 	}
2228 }
2229 
2230 static void nvme_dev_shutdown(struct nvme_dev *dev)
2231 {
2232 	int i;
2233 	u32 csts = -1;
2234 
2235 	nvme_dev_list_remove(dev);
2236 
2237 	if (dev->bar) {
2238 		nvme_freeze_queues(dev);
2239 		csts = readl(dev->bar + NVME_REG_CSTS);
2240 	}
2241 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2242 		for (i = dev->queue_count - 1; i >= 0; i--) {
2243 			struct nvme_queue *nvmeq = dev->queues[i];
2244 			nvme_suspend_queue(nvmeq);
2245 		}
2246 	} else {
2247 		nvme_disable_io_queues(dev);
2248 		nvme_shutdown_ctrl(&dev->ctrl);
2249 		nvme_disable_queue(dev, 0);
2250 	}
2251 	nvme_dev_unmap(dev);
2252 
2253 	for (i = dev->queue_count - 1; i >= 0; i--)
2254 		nvme_clear_queue(dev->queues[i]);
2255 }
2256 
2257 static void nvme_dev_remove(struct nvme_dev *dev)
2258 {
2259 	struct nvme_ns *ns, *next;
2260 
2261 	list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2262 		nvme_ns_remove(ns);
2263 }
2264 
2265 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2266 {
2267 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2268 						PAGE_SIZE, PAGE_SIZE, 0);
2269 	if (!dev->prp_page_pool)
2270 		return -ENOMEM;
2271 
2272 	/* Optimisation for I/Os between 4k and 128k */
2273 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2274 						256, 256, 0);
2275 	if (!dev->prp_small_pool) {
2276 		dma_pool_destroy(dev->prp_page_pool);
2277 		return -ENOMEM;
2278 	}
2279 	return 0;
2280 }
2281 
2282 static void nvme_release_prp_pools(struct nvme_dev *dev)
2283 {
2284 	dma_pool_destroy(dev->prp_page_pool);
2285 	dma_pool_destroy(dev->prp_small_pool);
2286 }
2287 
2288 static DEFINE_IDA(nvme_instance_ida);
2289 
2290 static int nvme_set_instance(struct nvme_dev *dev)
2291 {
2292 	int instance, error;
2293 
2294 	do {
2295 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2296 			return -ENODEV;
2297 
2298 		spin_lock(&dev_list_lock);
2299 		error = ida_get_new(&nvme_instance_ida, &instance);
2300 		spin_unlock(&dev_list_lock);
2301 	} while (error == -EAGAIN);
2302 
2303 	if (error)
2304 		return -ENODEV;
2305 
2306 	dev->ctrl.instance = instance;
2307 	return 0;
2308 }
2309 
2310 static void nvme_release_instance(struct nvme_dev *dev)
2311 {
2312 	spin_lock(&dev_list_lock);
2313 	ida_remove(&nvme_instance_ida, dev->ctrl.instance);
2314 	spin_unlock(&dev_list_lock);
2315 }
2316 
2317 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2318 {
2319 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2320 
2321 	put_device(dev->dev);
2322 	put_device(dev->device);
2323 	nvme_release_instance(dev);
2324 	if (dev->tagset.tags)
2325 		blk_mq_free_tag_set(&dev->tagset);
2326 	if (dev->ctrl.admin_q)
2327 		blk_put_queue(dev->ctrl.admin_q);
2328 	kfree(dev->queues);
2329 	kfree(dev->entry);
2330 	kfree(dev);
2331 }
2332 
2333 static int nvme_dev_open(struct inode *inode, struct file *f)
2334 {
2335 	struct nvme_dev *dev;
2336 	int instance = iminor(inode);
2337 	int ret = -ENODEV;
2338 
2339 	spin_lock(&dev_list_lock);
2340 	list_for_each_entry(dev, &dev_list, node) {
2341 		if (dev->ctrl.instance == instance) {
2342 			if (!dev->ctrl.admin_q) {
2343 				ret = -EWOULDBLOCK;
2344 				break;
2345 			}
2346 			if (!kref_get_unless_zero(&dev->ctrl.kref))
2347 				break;
2348 			f->private_data = dev;
2349 			ret = 0;
2350 			break;
2351 		}
2352 	}
2353 	spin_unlock(&dev_list_lock);
2354 
2355 	return ret;
2356 }
2357 
2358 static int nvme_dev_release(struct inode *inode, struct file *f)
2359 {
2360 	struct nvme_dev *dev = f->private_data;
2361 	nvme_put_ctrl(&dev->ctrl);
2362 	return 0;
2363 }
2364 
2365 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2366 {
2367 	struct nvme_dev *dev = f->private_data;
2368 	struct nvme_ns *ns;
2369 
2370 	switch (cmd) {
2371 	case NVME_IOCTL_ADMIN_CMD:
2372 		return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg);
2373 	case NVME_IOCTL_IO_CMD:
2374 		if (list_empty(&dev->namespaces))
2375 			return -ENOTTY;
2376 		ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2377 		return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg);
2378 	case NVME_IOCTL_RESET:
2379 		dev_warn(dev->dev, "resetting controller\n");
2380 		return nvme_reset(dev);
2381 	case NVME_IOCTL_SUBSYS_RESET:
2382 		return nvme_subsys_reset(dev);
2383 	default:
2384 		return -ENOTTY;
2385 	}
2386 }
2387 
2388 static const struct file_operations nvme_dev_fops = {
2389 	.owner		= THIS_MODULE,
2390 	.open		= nvme_dev_open,
2391 	.release	= nvme_dev_release,
2392 	.unlocked_ioctl	= nvme_dev_ioctl,
2393 	.compat_ioctl	= nvme_dev_ioctl,
2394 };
2395 
2396 static void nvme_probe_work(struct work_struct *work)
2397 {
2398 	struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2399 	bool start_thread = false;
2400 	int result;
2401 
2402 	result = nvme_dev_map(dev);
2403 	if (result)
2404 		goto out;
2405 
2406 	result = nvme_configure_admin_queue(dev);
2407 	if (result)
2408 		goto unmap;
2409 
2410 	spin_lock(&dev_list_lock);
2411 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2412 		start_thread = true;
2413 		nvme_thread = NULL;
2414 	}
2415 	list_add(&dev->node, &dev_list);
2416 	spin_unlock(&dev_list_lock);
2417 
2418 	if (start_thread) {
2419 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2420 		wake_up_all(&nvme_kthread_wait);
2421 	} else
2422 		wait_event_killable(nvme_kthread_wait, nvme_thread);
2423 
2424 	if (IS_ERR_OR_NULL(nvme_thread)) {
2425 		result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2426 		goto disable;
2427 	}
2428 
2429 	nvme_init_queue(dev->queues[0], 0);
2430 	result = nvme_alloc_admin_tags(dev);
2431 	if (result)
2432 		goto disable;
2433 
2434 	result = nvme_setup_io_queues(dev);
2435 	if (result)
2436 		goto free_tags;
2437 
2438 	dev->ctrl.event_limit = 1;
2439 
2440 	/*
2441 	 * Keep the controller around but remove all namespaces if we don't have
2442 	 * any working I/O queue.
2443 	 */
2444 	if (dev->online_queues < 2) {
2445 		dev_warn(dev->dev, "IO queues not created\n");
2446 		nvme_dev_remove(dev);
2447 	} else {
2448 		nvme_unfreeze_queues(dev);
2449 		nvme_dev_add(dev);
2450 	}
2451 
2452 	return;
2453 
2454  free_tags:
2455 	nvme_dev_remove_admin(dev);
2456 	blk_put_queue(dev->ctrl.admin_q);
2457 	dev->ctrl.admin_q = NULL;
2458 	dev->queues[0]->tags = NULL;
2459  disable:
2460 	nvme_disable_queue(dev, 0);
2461 	nvme_dev_list_remove(dev);
2462  unmap:
2463 	nvme_dev_unmap(dev);
2464  out:
2465 	if (!work_busy(&dev->reset_work))
2466 		nvme_dead_ctrl(dev);
2467 }
2468 
2469 static int nvme_remove_dead_ctrl(void *arg)
2470 {
2471 	struct nvme_dev *dev = (struct nvme_dev *)arg;
2472 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2473 
2474 	if (pci_get_drvdata(pdev))
2475 		pci_stop_and_remove_bus_device_locked(pdev);
2476 	nvme_put_ctrl(&dev->ctrl);
2477 	return 0;
2478 }
2479 
2480 static void nvme_dead_ctrl(struct nvme_dev *dev)
2481 {
2482 	dev_warn(dev->dev, "Device failed to resume\n");
2483 	kref_get(&dev->ctrl.kref);
2484 	if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2485 						dev->ctrl.instance))) {
2486 		dev_err(dev->dev,
2487 			"Failed to start controller remove task\n");
2488 		nvme_put_ctrl(&dev->ctrl);
2489 	}
2490 }
2491 
2492 static void nvme_reset_work(struct work_struct *ws)
2493 {
2494 	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2495 	bool in_probe = work_busy(&dev->probe_work);
2496 
2497 	nvme_dev_shutdown(dev);
2498 
2499 	/* Synchronize with device probe so that work will see failure status
2500 	 * and exit gracefully without trying to schedule another reset */
2501 	flush_work(&dev->probe_work);
2502 
2503 	/* Fail this device if reset occured during probe to avoid
2504 	 * infinite initialization loops. */
2505 	if (in_probe) {
2506 		nvme_dead_ctrl(dev);
2507 		return;
2508 	}
2509 	/* Schedule device resume asynchronously so the reset work is available
2510 	 * to cleanup errors that may occur during reinitialization */
2511 	schedule_work(&dev->probe_work);
2512 }
2513 
2514 static int __nvme_reset(struct nvme_dev *dev)
2515 {
2516 	if (work_pending(&dev->reset_work))
2517 		return -EBUSY;
2518 	list_del_init(&dev->node);
2519 	queue_work(nvme_workq, &dev->reset_work);
2520 	return 0;
2521 }
2522 
2523 static int nvme_reset(struct nvme_dev *dev)
2524 {
2525 	int ret;
2526 
2527 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2528 		return -ENODEV;
2529 
2530 	spin_lock(&dev_list_lock);
2531 	ret = __nvme_reset(dev);
2532 	spin_unlock(&dev_list_lock);
2533 
2534 	if (!ret) {
2535 		flush_work(&dev->reset_work);
2536 		flush_work(&dev->probe_work);
2537 		return 0;
2538 	}
2539 
2540 	return ret;
2541 }
2542 
2543 static ssize_t nvme_sysfs_reset(struct device *dev,
2544 				struct device_attribute *attr, const char *buf,
2545 				size_t count)
2546 {
2547 	struct nvme_dev *ndev = dev_get_drvdata(dev);
2548 	int ret;
2549 
2550 	ret = nvme_reset(ndev);
2551 	if (ret < 0)
2552 		return ret;
2553 
2554 	return count;
2555 }
2556 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2557 
2558 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2559 {
2560 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2561 	return 0;
2562 }
2563 
2564 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2565 {
2566 	writel(val, to_nvme_dev(ctrl)->bar + off);
2567 	return 0;
2568 }
2569 
2570 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2571 {
2572 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2573 	return 0;
2574 }
2575 
2576 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2577 	.reg_read32		= nvme_pci_reg_read32,
2578 	.reg_write32		= nvme_pci_reg_write32,
2579 	.reg_read64		= nvme_pci_reg_read64,
2580 	.free_ctrl		= nvme_pci_free_ctrl,
2581 };
2582 
2583 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2584 {
2585 	int node, result = -ENOMEM;
2586 	struct nvme_dev *dev;
2587 
2588 	node = dev_to_node(&pdev->dev);
2589 	if (node == NUMA_NO_NODE)
2590 		set_dev_node(&pdev->dev, 0);
2591 
2592 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2593 	if (!dev)
2594 		return -ENOMEM;
2595 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2596 							GFP_KERNEL, node);
2597 	if (!dev->entry)
2598 		goto free;
2599 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2600 							GFP_KERNEL, node);
2601 	if (!dev->queues)
2602 		goto free;
2603 
2604 	INIT_LIST_HEAD(&dev->namespaces);
2605 	INIT_WORK(&dev->reset_work, nvme_reset_work);
2606 	dev->dev = get_device(&pdev->dev);
2607 	pci_set_drvdata(pdev, dev);
2608 
2609 	dev->ctrl.ops = &nvme_pci_ctrl_ops;
2610 	dev->ctrl.dev = dev->dev;
2611 	dev->ctrl.quirks = id->driver_data;
2612 
2613 	result = nvme_set_instance(dev);
2614 	if (result)
2615 		goto put_pci;
2616 
2617 	result = nvme_setup_prp_pools(dev);
2618 	if (result)
2619 		goto release;
2620 
2621 	kref_init(&dev->ctrl.kref);
2622 	dev->device = device_create(nvme_class, &pdev->dev,
2623 				MKDEV(nvme_char_major, dev->ctrl.instance),
2624 				dev, "nvme%d", dev->ctrl.instance);
2625 	if (IS_ERR(dev->device)) {
2626 		result = PTR_ERR(dev->device);
2627 		goto release_pools;
2628 	}
2629 	get_device(dev->device);
2630 	dev_set_drvdata(dev->device, dev);
2631 
2632 	result = device_create_file(dev->device, &dev_attr_reset_controller);
2633 	if (result)
2634 		goto put_dev;
2635 
2636 	INIT_LIST_HEAD(&dev->node);
2637 	INIT_WORK(&dev->scan_work, nvme_dev_scan);
2638 	INIT_WORK(&dev->probe_work, nvme_probe_work);
2639 	schedule_work(&dev->probe_work);
2640 	return 0;
2641 
2642  put_dev:
2643 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
2644 	put_device(dev->device);
2645  release_pools:
2646 	nvme_release_prp_pools(dev);
2647  release:
2648 	nvme_release_instance(dev);
2649  put_pci:
2650 	put_device(dev->dev);
2651  free:
2652 	kfree(dev->queues);
2653 	kfree(dev->entry);
2654 	kfree(dev);
2655 	return result;
2656 }
2657 
2658 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2659 {
2660 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2661 
2662 	if (prepare)
2663 		nvme_dev_shutdown(dev);
2664 	else
2665 		schedule_work(&dev->probe_work);
2666 }
2667 
2668 static void nvme_shutdown(struct pci_dev *pdev)
2669 {
2670 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2671 	nvme_dev_shutdown(dev);
2672 }
2673 
2674 static void nvme_remove(struct pci_dev *pdev)
2675 {
2676 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2677 
2678 	spin_lock(&dev_list_lock);
2679 	list_del_init(&dev->node);
2680 	spin_unlock(&dev_list_lock);
2681 
2682 	pci_set_drvdata(pdev, NULL);
2683 	flush_work(&dev->probe_work);
2684 	flush_work(&dev->reset_work);
2685 	flush_work(&dev->scan_work);
2686 	device_remove_file(dev->device, &dev_attr_reset_controller);
2687 	nvme_dev_remove(dev);
2688 	nvme_dev_shutdown(dev);
2689 	nvme_dev_remove_admin(dev);
2690 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
2691 	nvme_free_queues(dev, 0);
2692 	nvme_release_cmb(dev);
2693 	nvme_release_prp_pools(dev);
2694 	nvme_put_ctrl(&dev->ctrl);
2695 }
2696 
2697 /* These functions are yet to be implemented */
2698 #define nvme_error_detected NULL
2699 #define nvme_dump_registers NULL
2700 #define nvme_link_reset NULL
2701 #define nvme_slot_reset NULL
2702 #define nvme_error_resume NULL
2703 
2704 #ifdef CONFIG_PM_SLEEP
2705 static int nvme_suspend(struct device *dev)
2706 {
2707 	struct pci_dev *pdev = to_pci_dev(dev);
2708 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2709 
2710 	nvme_dev_shutdown(ndev);
2711 	return 0;
2712 }
2713 
2714 static int nvme_resume(struct device *dev)
2715 {
2716 	struct pci_dev *pdev = to_pci_dev(dev);
2717 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2718 
2719 	schedule_work(&ndev->probe_work);
2720 	return 0;
2721 }
2722 #endif
2723 
2724 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2725 
2726 static const struct pci_error_handlers nvme_err_handler = {
2727 	.error_detected	= nvme_error_detected,
2728 	.mmio_enabled	= nvme_dump_registers,
2729 	.link_reset	= nvme_link_reset,
2730 	.slot_reset	= nvme_slot_reset,
2731 	.resume		= nvme_error_resume,
2732 	.reset_notify	= nvme_reset_notify,
2733 };
2734 
2735 /* Move to pci_ids.h later */
2736 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
2737 
2738 static const struct pci_device_id nvme_id_table[] = {
2739 	{ PCI_VDEVICE(INTEL, 0x0953),
2740 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
2741 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2742 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2743 	{ 0, }
2744 };
2745 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2746 
2747 static struct pci_driver nvme_driver = {
2748 	.name		= "nvme",
2749 	.id_table	= nvme_id_table,
2750 	.probe		= nvme_probe,
2751 	.remove		= nvme_remove,
2752 	.shutdown	= nvme_shutdown,
2753 	.driver		= {
2754 		.pm	= &nvme_dev_pm_ops,
2755 	},
2756 	.err_handler	= &nvme_err_handler,
2757 };
2758 
2759 static int __init nvme_init(void)
2760 {
2761 	int result;
2762 
2763 	init_waitqueue_head(&nvme_kthread_wait);
2764 
2765 	nvme_workq = create_singlethread_workqueue("nvme");
2766 	if (!nvme_workq)
2767 		return -ENOMEM;
2768 
2769 	result = register_blkdev(nvme_major, "nvme");
2770 	if (result < 0)
2771 		goto kill_workq;
2772 	else if (result > 0)
2773 		nvme_major = result;
2774 
2775 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2776 							&nvme_dev_fops);
2777 	if (result < 0)
2778 		goto unregister_blkdev;
2779 	else if (result > 0)
2780 		nvme_char_major = result;
2781 
2782 	nvme_class = class_create(THIS_MODULE, "nvme");
2783 	if (IS_ERR(nvme_class)) {
2784 		result = PTR_ERR(nvme_class);
2785 		goto unregister_chrdev;
2786 	}
2787 
2788 	result = pci_register_driver(&nvme_driver);
2789 	if (result)
2790 		goto destroy_class;
2791 	return 0;
2792 
2793  destroy_class:
2794 	class_destroy(nvme_class);
2795  unregister_chrdev:
2796 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2797  unregister_blkdev:
2798 	unregister_blkdev(nvme_major, "nvme");
2799  kill_workq:
2800 	destroy_workqueue(nvme_workq);
2801 	return result;
2802 }
2803 
2804 static void __exit nvme_exit(void)
2805 {
2806 	pci_unregister_driver(&nvme_driver);
2807 	unregister_blkdev(nvme_major, "nvme");
2808 	destroy_workqueue(nvme_workq);
2809 	class_destroy(nvme_class);
2810 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2811 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2812 	_nvme_check_size();
2813 }
2814 
2815 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2816 MODULE_LICENSE("GPL");
2817 MODULE_VERSION("1.0");
2818 module_init(nvme_init);
2819 module_exit(nvme_exit);
2820