xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 7a73b976)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	4096
45 #define NVME_MAX_SEGS	127
46 
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49 
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53 
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58 
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 		"Use SGLs when average request segment size is larger or equal to "
63 		"this size. Use 0 to disable SGLs.");
64 
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 	.set = io_queue_depth_set,
70 	.get = param_get_uint,
71 };
72 
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76 
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79 	unsigned int n;
80 	int ret;
81 
82 	ret = kstrtouint(val, 10, &n);
83 	if (ret != 0 || n > num_possible_cpus())
84 		return -EINVAL;
85 	return param_set_uint(val, kp);
86 }
87 
88 static const struct kernel_param_ops io_queue_count_ops = {
89 	.set = io_queue_count_set,
90 	.get = param_get_uint,
91 };
92 
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 	"Number of queues to use for writes. If not set, reads and writes "
97 	"will share a queue set.");
98 
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102 
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106 
107 struct nvme_dev;
108 struct nvme_queue;
109 
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112 
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117 	struct nvme_queue *queues;
118 	struct blk_mq_tag_set tagset;
119 	struct blk_mq_tag_set admin_tagset;
120 	u32 __iomem *dbs;
121 	struct device *dev;
122 	struct dma_pool *prp_page_pool;
123 	struct dma_pool *prp_small_pool;
124 	unsigned online_queues;
125 	unsigned max_qid;
126 	unsigned io_queues[HCTX_MAX_TYPES];
127 	unsigned int num_vecs;
128 	u32 q_depth;
129 	int io_sqes;
130 	u32 db_stride;
131 	void __iomem *bar;
132 	unsigned long bar_mapped_size;
133 	struct work_struct remove_work;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 
162 	bool attrs_added;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	u32 *dbbuf_sq_db;
214 	u32 *dbbuf_cq_db;
215 	u32 *dbbuf_sq_ei;
216 	u32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227 	struct nvme_request req;
228 	struct nvme_command cmd;
229 	bool use_sgl;
230 	bool aborted;
231 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
232 				   pool in use */
233 	unsigned int dma_len;	/* length of single DMA segment mapping */
234 	dma_addr_t first_dma;
235 	dma_addr_t meta_dma;
236 	struct sg_table sgt;
237 };
238 
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs) {
249 		/*
250 		 * Clear the dbbuf memory so the driver doesn't observe stale
251 		 * values from the previous instantiation.
252 		 */
253 		memset(dev->dbbuf_dbs, 0, mem_size);
254 		memset(dev->dbbuf_eis, 0, mem_size);
255 		return 0;
256 	}
257 
258 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259 					    &dev->dbbuf_dbs_dma_addr,
260 					    GFP_KERNEL);
261 	if (!dev->dbbuf_dbs)
262 		return -ENOMEM;
263 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264 					    &dev->dbbuf_eis_dma_addr,
265 					    GFP_KERNEL);
266 	if (!dev->dbbuf_eis) {
267 		dma_free_coherent(dev->dev, mem_size,
268 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269 		dev->dbbuf_dbs = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 
276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278 	unsigned int mem_size = nvme_dbbuf_size(dev);
279 
280 	if (dev->dbbuf_dbs) {
281 		dma_free_coherent(dev->dev, mem_size,
282 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283 		dev->dbbuf_dbs = NULL;
284 	}
285 	if (dev->dbbuf_eis) {
286 		dma_free_coherent(dev->dev, mem_size,
287 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288 		dev->dbbuf_eis = NULL;
289 	}
290 }
291 
292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293 			    struct nvme_queue *nvmeq, int qid)
294 {
295 	if (!dev->dbbuf_dbs || !qid)
296 		return;
297 
298 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303 
304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306 	if (!nvmeq->qid)
307 		return;
308 
309 	nvmeq->dbbuf_sq_db = NULL;
310 	nvmeq->dbbuf_cq_db = NULL;
311 	nvmeq->dbbuf_sq_ei = NULL;
312 	nvmeq->dbbuf_cq_ei = NULL;
313 }
314 
315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317 	struct nvme_command c = { };
318 	unsigned int i;
319 
320 	if (!dev->dbbuf_dbs)
321 		return;
322 
323 	c.dbbuf.opcode = nvme_admin_dbbuf;
324 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326 
327 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329 		/* Free memory and continue on */
330 		nvme_dbbuf_dma_free(dev);
331 
332 		for (i = 1; i <= dev->online_queues; i++)
333 			nvme_dbbuf_free(&dev->queues[i]);
334 	}
335 }
336 
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341 
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344 					      volatile u32 *dbbuf_ei)
345 {
346 	if (dbbuf_db) {
347 		u16 old_value;
348 
349 		/*
350 		 * Ensure that the queue is written before updating
351 		 * the doorbell in memory
352 		 */
353 		wmb();
354 
355 		old_value = *dbbuf_db;
356 		*dbbuf_db = value;
357 
358 		/*
359 		 * Ensure that the doorbell is updated before reading the event
360 		 * index from memory.  The controller needs to provide similar
361 		 * ordering to ensure the envent index is updated before reading
362 		 * the doorbell.
363 		 */
364 		mb();
365 
366 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 			return false;
368 	}
369 
370 	return true;
371 }
372 
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_pci_npages_prp(void)
379 {
380 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381 				      NVME_CTRL_PAGE_SIZE);
382 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384 
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(void)
390 {
391 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392 			PAGE_SIZE);
393 }
394 
395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398 
399 	return sizeof(__le64 *) * npages +
400 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402 
403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 				unsigned int hctx_idx)
405 {
406 	struct nvme_dev *dev = data;
407 	struct nvme_queue *nvmeq = &dev->queues[0];
408 
409 	WARN_ON(hctx_idx != 0);
410 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411 
412 	hctx->driver_data = nvmeq;
413 	return 0;
414 }
415 
416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417 			  unsigned int hctx_idx)
418 {
419 	struct nvme_dev *dev = data;
420 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421 
422 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423 	hctx->driver_data = nvmeq;
424 	return 0;
425 }
426 
427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
428 		struct request *req, unsigned int hctx_idx,
429 		unsigned int numa_node)
430 {
431 	struct nvme_dev *dev = set->driver_data;
432 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433 
434 	nvme_req(req)->ctrl = &dev->ctrl;
435 	nvme_req(req)->cmd = &iod->cmd;
436 	return 0;
437 }
438 
439 static int queue_irq_offset(struct nvme_dev *dev)
440 {
441 	/* if we have more than 1 vec, admin queue offsets us by 1 */
442 	if (dev->num_vecs > 1)
443 		return 1;
444 
445 	return 0;
446 }
447 
448 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
449 {
450 	struct nvme_dev *dev = set->driver_data;
451 	int i, qoff, offset;
452 
453 	offset = queue_irq_offset(dev);
454 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
455 		struct blk_mq_queue_map *map = &set->map[i];
456 
457 		map->nr_queues = dev->io_queues[i];
458 		if (!map->nr_queues) {
459 			BUG_ON(i == HCTX_TYPE_DEFAULT);
460 			continue;
461 		}
462 
463 		/*
464 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
465 		 * affinity), so use the regular blk-mq cpu mapping
466 		 */
467 		map->queue_offset = qoff;
468 		if (i != HCTX_TYPE_POLL && offset)
469 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
470 		else
471 			blk_mq_map_queues(map);
472 		qoff += map->nr_queues;
473 		offset += map->nr_queues;
474 	}
475 }
476 
477 /*
478  * Write sq tail if we are asked to, or if the next command would wrap.
479  */
480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
481 {
482 	if (!write_sq) {
483 		u16 next_tail = nvmeq->sq_tail + 1;
484 
485 		if (next_tail == nvmeq->q_depth)
486 			next_tail = 0;
487 		if (next_tail != nvmeq->last_sq_tail)
488 			return;
489 	}
490 
491 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
492 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
493 		writel(nvmeq->sq_tail, nvmeq->q_db);
494 	nvmeq->last_sq_tail = nvmeq->sq_tail;
495 }
496 
497 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
498 				    struct nvme_command *cmd)
499 {
500 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
501 		absolute_pointer(cmd), sizeof(*cmd));
502 	if (++nvmeq->sq_tail == nvmeq->q_depth)
503 		nvmeq->sq_tail = 0;
504 }
505 
506 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
507 {
508 	struct nvme_queue *nvmeq = hctx->driver_data;
509 
510 	spin_lock(&nvmeq->sq_lock);
511 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
512 		nvme_write_sq_db(nvmeq, true);
513 	spin_unlock(&nvmeq->sq_lock);
514 }
515 
516 static void **nvme_pci_iod_list(struct request *req)
517 {
518 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
519 	return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
520 }
521 
522 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
523 {
524 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
525 	int nseg = blk_rq_nr_phys_segments(req);
526 	unsigned int avg_seg_size;
527 
528 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
529 
530 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
531 		return false;
532 	if (!nvmeq->qid)
533 		return false;
534 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
535 		return false;
536 	return true;
537 }
538 
539 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
540 {
541 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 	dma_addr_t dma_addr = iod->first_dma;
544 	int i;
545 
546 	for (i = 0; i < iod->nr_allocations; i++) {
547 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
548 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
549 
550 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
551 		dma_addr = next_dma_addr;
552 	}
553 }
554 
555 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
556 {
557 	const int last_sg = SGES_PER_PAGE - 1;
558 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
559 	dma_addr_t dma_addr = iod->first_dma;
560 	int i;
561 
562 	for (i = 0; i < iod->nr_allocations; i++) {
563 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
564 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
565 
566 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
567 		dma_addr = next_dma_addr;
568 	}
569 }
570 
571 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
572 {
573 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
574 
575 	if (iod->dma_len) {
576 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
577 			       rq_dma_dir(req));
578 		return;
579 	}
580 
581 	WARN_ON_ONCE(!iod->sgt.nents);
582 
583 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
584 
585 	if (iod->nr_allocations == 0)
586 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
587 			      iod->first_dma);
588 	else if (iod->use_sgl)
589 		nvme_free_sgls(dev, req);
590 	else
591 		nvme_free_prps(dev, req);
592 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
593 }
594 
595 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
596 {
597 	int i;
598 	struct scatterlist *sg;
599 
600 	for_each_sg(sgl, sg, nents, i) {
601 		dma_addr_t phys = sg_phys(sg);
602 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
603 			"dma_address:%pad dma_length:%d\n",
604 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
605 			sg_dma_len(sg));
606 	}
607 }
608 
609 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
610 		struct request *req, struct nvme_rw_command *cmnd)
611 {
612 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
613 	struct dma_pool *pool;
614 	int length = blk_rq_payload_bytes(req);
615 	struct scatterlist *sg = iod->sgt.sgl;
616 	int dma_len = sg_dma_len(sg);
617 	u64 dma_addr = sg_dma_address(sg);
618 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
619 	__le64 *prp_list;
620 	void **list = nvme_pci_iod_list(req);
621 	dma_addr_t prp_dma;
622 	int nprps, i;
623 
624 	length -= (NVME_CTRL_PAGE_SIZE - offset);
625 	if (length <= 0) {
626 		iod->first_dma = 0;
627 		goto done;
628 	}
629 
630 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
631 	if (dma_len) {
632 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
633 	} else {
634 		sg = sg_next(sg);
635 		dma_addr = sg_dma_address(sg);
636 		dma_len = sg_dma_len(sg);
637 	}
638 
639 	if (length <= NVME_CTRL_PAGE_SIZE) {
640 		iod->first_dma = dma_addr;
641 		goto done;
642 	}
643 
644 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
645 	if (nprps <= (256 / 8)) {
646 		pool = dev->prp_small_pool;
647 		iod->nr_allocations = 0;
648 	} else {
649 		pool = dev->prp_page_pool;
650 		iod->nr_allocations = 1;
651 	}
652 
653 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
654 	if (!prp_list) {
655 		iod->nr_allocations = -1;
656 		return BLK_STS_RESOURCE;
657 	}
658 	list[0] = prp_list;
659 	iod->first_dma = prp_dma;
660 	i = 0;
661 	for (;;) {
662 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
663 			__le64 *old_prp_list = prp_list;
664 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
665 			if (!prp_list)
666 				goto free_prps;
667 			list[iod->nr_allocations++] = prp_list;
668 			prp_list[0] = old_prp_list[i - 1];
669 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
670 			i = 1;
671 		}
672 		prp_list[i++] = cpu_to_le64(dma_addr);
673 		dma_len -= NVME_CTRL_PAGE_SIZE;
674 		dma_addr += NVME_CTRL_PAGE_SIZE;
675 		length -= NVME_CTRL_PAGE_SIZE;
676 		if (length <= 0)
677 			break;
678 		if (dma_len > 0)
679 			continue;
680 		if (unlikely(dma_len < 0))
681 			goto bad_sgl;
682 		sg = sg_next(sg);
683 		dma_addr = sg_dma_address(sg);
684 		dma_len = sg_dma_len(sg);
685 	}
686 done:
687 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
688 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
689 	return BLK_STS_OK;
690 free_prps:
691 	nvme_free_prps(dev, req);
692 	return BLK_STS_RESOURCE;
693 bad_sgl:
694 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
695 			"Invalid SGL for payload:%d nents:%d\n",
696 			blk_rq_payload_bytes(req), iod->sgt.nents);
697 	return BLK_STS_IOERR;
698 }
699 
700 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
701 		struct scatterlist *sg)
702 {
703 	sge->addr = cpu_to_le64(sg_dma_address(sg));
704 	sge->length = cpu_to_le32(sg_dma_len(sg));
705 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
706 }
707 
708 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
709 		dma_addr_t dma_addr, int entries)
710 {
711 	sge->addr = cpu_to_le64(dma_addr);
712 	if (entries < SGES_PER_PAGE) {
713 		sge->length = cpu_to_le32(entries * sizeof(*sge));
714 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
715 	} else {
716 		sge->length = cpu_to_le32(PAGE_SIZE);
717 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
718 	}
719 }
720 
721 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
722 		struct request *req, struct nvme_rw_command *cmd)
723 {
724 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
725 	struct dma_pool *pool;
726 	struct nvme_sgl_desc *sg_list;
727 	struct scatterlist *sg = iod->sgt.sgl;
728 	unsigned int entries = iod->sgt.nents;
729 	dma_addr_t sgl_dma;
730 	int i = 0;
731 
732 	/* setting the transfer type as SGL */
733 	cmd->flags = NVME_CMD_SGL_METABUF;
734 
735 	if (entries == 1) {
736 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
737 		return BLK_STS_OK;
738 	}
739 
740 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
741 		pool = dev->prp_small_pool;
742 		iod->nr_allocations = 0;
743 	} else {
744 		pool = dev->prp_page_pool;
745 		iod->nr_allocations = 1;
746 	}
747 
748 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
749 	if (!sg_list) {
750 		iod->nr_allocations = -1;
751 		return BLK_STS_RESOURCE;
752 	}
753 
754 	nvme_pci_iod_list(req)[0] = sg_list;
755 	iod->first_dma = sgl_dma;
756 
757 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
758 
759 	do {
760 		if (i == SGES_PER_PAGE) {
761 			struct nvme_sgl_desc *old_sg_desc = sg_list;
762 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
763 
764 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
765 			if (!sg_list)
766 				goto free_sgls;
767 
768 			i = 0;
769 			nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
770 			sg_list[i++] = *link;
771 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
772 		}
773 
774 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
775 		sg = sg_next(sg);
776 	} while (--entries > 0);
777 
778 	return BLK_STS_OK;
779 free_sgls:
780 	nvme_free_sgls(dev, req);
781 	return BLK_STS_RESOURCE;
782 }
783 
784 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
785 		struct request *req, struct nvme_rw_command *cmnd,
786 		struct bio_vec *bv)
787 {
788 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
789 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
790 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
791 
792 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
793 	if (dma_mapping_error(dev->dev, iod->first_dma))
794 		return BLK_STS_RESOURCE;
795 	iod->dma_len = bv->bv_len;
796 
797 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
798 	if (bv->bv_len > first_prp_len)
799 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
800 	else
801 		cmnd->dptr.prp2 = 0;
802 	return BLK_STS_OK;
803 }
804 
805 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
806 		struct request *req, struct nvme_rw_command *cmnd,
807 		struct bio_vec *bv)
808 {
809 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
810 
811 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
812 	if (dma_mapping_error(dev->dev, iod->first_dma))
813 		return BLK_STS_RESOURCE;
814 	iod->dma_len = bv->bv_len;
815 
816 	cmnd->flags = NVME_CMD_SGL_METABUF;
817 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
818 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
819 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
820 	return BLK_STS_OK;
821 }
822 
823 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
824 		struct nvme_command *cmnd)
825 {
826 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
827 	blk_status_t ret = BLK_STS_RESOURCE;
828 	int rc;
829 
830 	if (blk_rq_nr_phys_segments(req) == 1) {
831 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
832 		struct bio_vec bv = req_bvec(req);
833 
834 		if (!is_pci_p2pdma_page(bv.bv_page)) {
835 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
836 				return nvme_setup_prp_simple(dev, req,
837 							     &cmnd->rw, &bv);
838 
839 			if (nvmeq->qid && sgl_threshold &&
840 			    nvme_ctrl_sgl_supported(&dev->ctrl))
841 				return nvme_setup_sgl_simple(dev, req,
842 							     &cmnd->rw, &bv);
843 		}
844 	}
845 
846 	iod->dma_len = 0;
847 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
848 	if (!iod->sgt.sgl)
849 		return BLK_STS_RESOURCE;
850 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
851 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
852 	if (!iod->sgt.orig_nents)
853 		goto out_free_sg;
854 
855 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
856 			     DMA_ATTR_NO_WARN);
857 	if (rc) {
858 		if (rc == -EREMOTEIO)
859 			ret = BLK_STS_TARGET;
860 		goto out_free_sg;
861 	}
862 
863 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
864 	if (iod->use_sgl)
865 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
866 	else
867 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
868 	if (ret != BLK_STS_OK)
869 		goto out_unmap_sg;
870 	return BLK_STS_OK;
871 
872 out_unmap_sg:
873 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
874 out_free_sg:
875 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
876 	return ret;
877 }
878 
879 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
880 		struct nvme_command *cmnd)
881 {
882 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
883 
884 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
885 			rq_dma_dir(req), 0);
886 	if (dma_mapping_error(dev->dev, iod->meta_dma))
887 		return BLK_STS_IOERR;
888 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
889 	return BLK_STS_OK;
890 }
891 
892 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
893 {
894 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
895 	blk_status_t ret;
896 
897 	iod->aborted = false;
898 	iod->nr_allocations = -1;
899 	iod->sgt.nents = 0;
900 
901 	ret = nvme_setup_cmd(req->q->queuedata, req);
902 	if (ret)
903 		return ret;
904 
905 	if (blk_rq_nr_phys_segments(req)) {
906 		ret = nvme_map_data(dev, req, &iod->cmd);
907 		if (ret)
908 			goto out_free_cmd;
909 	}
910 
911 	if (blk_integrity_rq(req)) {
912 		ret = nvme_map_metadata(dev, req, &iod->cmd);
913 		if (ret)
914 			goto out_unmap_data;
915 	}
916 
917 	blk_mq_start_request(req);
918 	return BLK_STS_OK;
919 out_unmap_data:
920 	nvme_unmap_data(dev, req);
921 out_free_cmd:
922 	nvme_cleanup_cmd(req);
923 	return ret;
924 }
925 
926 /*
927  * NOTE: ns is NULL when called on the admin queue.
928  */
929 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
930 			 const struct blk_mq_queue_data *bd)
931 {
932 	struct nvme_queue *nvmeq = hctx->driver_data;
933 	struct nvme_dev *dev = nvmeq->dev;
934 	struct request *req = bd->rq;
935 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
936 	blk_status_t ret;
937 
938 	/*
939 	 * We should not need to do this, but we're still using this to
940 	 * ensure we can drain requests on a dying queue.
941 	 */
942 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
943 		return BLK_STS_IOERR;
944 
945 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
946 		return nvme_fail_nonready_command(&dev->ctrl, req);
947 
948 	ret = nvme_prep_rq(dev, req);
949 	if (unlikely(ret))
950 		return ret;
951 	spin_lock(&nvmeq->sq_lock);
952 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
953 	nvme_write_sq_db(nvmeq, bd->last);
954 	spin_unlock(&nvmeq->sq_lock);
955 	return BLK_STS_OK;
956 }
957 
958 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
959 {
960 	spin_lock(&nvmeq->sq_lock);
961 	while (!rq_list_empty(*rqlist)) {
962 		struct request *req = rq_list_pop(rqlist);
963 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
964 
965 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
966 	}
967 	nvme_write_sq_db(nvmeq, true);
968 	spin_unlock(&nvmeq->sq_lock);
969 }
970 
971 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
972 {
973 	/*
974 	 * We should not need to do this, but we're still using this to
975 	 * ensure we can drain requests on a dying queue.
976 	 */
977 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
978 		return false;
979 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
980 		return false;
981 
982 	req->mq_hctx->tags->rqs[req->tag] = req;
983 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
984 }
985 
986 static void nvme_queue_rqs(struct request **rqlist)
987 {
988 	struct request *req, *next, *prev = NULL;
989 	struct request *requeue_list = NULL;
990 
991 	rq_list_for_each_safe(rqlist, req, next) {
992 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
993 
994 		if (!nvme_prep_rq_batch(nvmeq, req)) {
995 			/* detach 'req' and add to remainder list */
996 			rq_list_move(rqlist, &requeue_list, req, prev);
997 
998 			req = prev;
999 			if (!req)
1000 				continue;
1001 		}
1002 
1003 		if (!next || req->mq_hctx != next->mq_hctx) {
1004 			/* detach rest of list, and submit */
1005 			req->rq_next = NULL;
1006 			nvme_submit_cmds(nvmeq, rqlist);
1007 			*rqlist = next;
1008 			prev = NULL;
1009 		} else
1010 			prev = req;
1011 	}
1012 
1013 	*rqlist = requeue_list;
1014 }
1015 
1016 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1017 {
1018 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1019 	struct nvme_dev *dev = nvmeq->dev;
1020 
1021 	if (blk_integrity_rq(req)) {
1022 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1023 
1024 		dma_unmap_page(dev->dev, iod->meta_dma,
1025 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1026 	}
1027 
1028 	if (blk_rq_nr_phys_segments(req))
1029 		nvme_unmap_data(dev, req);
1030 }
1031 
1032 static void nvme_pci_complete_rq(struct request *req)
1033 {
1034 	nvme_pci_unmap_rq(req);
1035 	nvme_complete_rq(req);
1036 }
1037 
1038 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1039 {
1040 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1041 }
1042 
1043 /* We read the CQE phase first to check if the rest of the entry is valid */
1044 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1045 {
1046 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1047 
1048 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1049 }
1050 
1051 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1052 {
1053 	u16 head = nvmeq->cq_head;
1054 
1055 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1056 					      nvmeq->dbbuf_cq_ei))
1057 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1058 }
1059 
1060 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1061 {
1062 	if (!nvmeq->qid)
1063 		return nvmeq->dev->admin_tagset.tags[0];
1064 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1065 }
1066 
1067 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1068 				   struct io_comp_batch *iob, u16 idx)
1069 {
1070 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1071 	__u16 command_id = READ_ONCE(cqe->command_id);
1072 	struct request *req;
1073 
1074 	/*
1075 	 * AEN requests are special as they don't time out and can
1076 	 * survive any kind of queue freeze and often don't respond to
1077 	 * aborts.  We don't even bother to allocate a struct request
1078 	 * for them but rather special case them here.
1079 	 */
1080 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1081 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1082 				cqe->status, &cqe->result);
1083 		return;
1084 	}
1085 
1086 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1087 	if (unlikely(!req)) {
1088 		dev_warn(nvmeq->dev->ctrl.device,
1089 			"invalid id %d completed on queue %d\n",
1090 			command_id, le16_to_cpu(cqe->sq_id));
1091 		return;
1092 	}
1093 
1094 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1095 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1096 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1097 					nvme_pci_complete_batch))
1098 		nvme_pci_complete_rq(req);
1099 }
1100 
1101 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1102 {
1103 	u32 tmp = nvmeq->cq_head + 1;
1104 
1105 	if (tmp == nvmeq->q_depth) {
1106 		nvmeq->cq_head = 0;
1107 		nvmeq->cq_phase ^= 1;
1108 	} else {
1109 		nvmeq->cq_head = tmp;
1110 	}
1111 }
1112 
1113 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1114 			       struct io_comp_batch *iob)
1115 {
1116 	int found = 0;
1117 
1118 	while (nvme_cqe_pending(nvmeq)) {
1119 		found++;
1120 		/*
1121 		 * load-load control dependency between phase and the rest of
1122 		 * the cqe requires a full read memory barrier
1123 		 */
1124 		dma_rmb();
1125 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1126 		nvme_update_cq_head(nvmeq);
1127 	}
1128 
1129 	if (found)
1130 		nvme_ring_cq_doorbell(nvmeq);
1131 	return found;
1132 }
1133 
1134 static irqreturn_t nvme_irq(int irq, void *data)
1135 {
1136 	struct nvme_queue *nvmeq = data;
1137 	DEFINE_IO_COMP_BATCH(iob);
1138 
1139 	if (nvme_poll_cq(nvmeq, &iob)) {
1140 		if (!rq_list_empty(iob.req_list))
1141 			nvme_pci_complete_batch(&iob);
1142 		return IRQ_HANDLED;
1143 	}
1144 	return IRQ_NONE;
1145 }
1146 
1147 static irqreturn_t nvme_irq_check(int irq, void *data)
1148 {
1149 	struct nvme_queue *nvmeq = data;
1150 
1151 	if (nvme_cqe_pending(nvmeq))
1152 		return IRQ_WAKE_THREAD;
1153 	return IRQ_NONE;
1154 }
1155 
1156 /*
1157  * Poll for completions for any interrupt driven queue
1158  * Can be called from any context.
1159  */
1160 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1161 {
1162 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1163 
1164 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1165 
1166 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167 	nvme_poll_cq(nvmeq, NULL);
1168 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1169 }
1170 
1171 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1172 {
1173 	struct nvme_queue *nvmeq = hctx->driver_data;
1174 	bool found;
1175 
1176 	if (!nvme_cqe_pending(nvmeq))
1177 		return 0;
1178 
1179 	spin_lock(&nvmeq->cq_poll_lock);
1180 	found = nvme_poll_cq(nvmeq, iob);
1181 	spin_unlock(&nvmeq->cq_poll_lock);
1182 
1183 	return found;
1184 }
1185 
1186 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1187 {
1188 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1189 	struct nvme_queue *nvmeq = &dev->queues[0];
1190 	struct nvme_command c = { };
1191 
1192 	c.common.opcode = nvme_admin_async_event;
1193 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1194 
1195 	spin_lock(&nvmeq->sq_lock);
1196 	nvme_sq_copy_cmd(nvmeq, &c);
1197 	nvme_write_sq_db(nvmeq, true);
1198 	spin_unlock(&nvmeq->sq_lock);
1199 }
1200 
1201 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1202 {
1203 	struct nvme_command c = { };
1204 
1205 	c.delete_queue.opcode = opcode;
1206 	c.delete_queue.qid = cpu_to_le16(id);
1207 
1208 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1209 }
1210 
1211 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1212 		struct nvme_queue *nvmeq, s16 vector)
1213 {
1214 	struct nvme_command c = { };
1215 	int flags = NVME_QUEUE_PHYS_CONTIG;
1216 
1217 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1218 		flags |= NVME_CQ_IRQ_ENABLED;
1219 
1220 	/*
1221 	 * Note: we (ab)use the fact that the prp fields survive if no data
1222 	 * is attached to the request.
1223 	 */
1224 	c.create_cq.opcode = nvme_admin_create_cq;
1225 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1226 	c.create_cq.cqid = cpu_to_le16(qid);
1227 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1228 	c.create_cq.cq_flags = cpu_to_le16(flags);
1229 	c.create_cq.irq_vector = cpu_to_le16(vector);
1230 
1231 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1232 }
1233 
1234 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1235 						struct nvme_queue *nvmeq)
1236 {
1237 	struct nvme_ctrl *ctrl = &dev->ctrl;
1238 	struct nvme_command c = { };
1239 	int flags = NVME_QUEUE_PHYS_CONTIG;
1240 
1241 	/*
1242 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1243 	 * set. Since URGENT priority is zeroes, it makes all queues
1244 	 * URGENT.
1245 	 */
1246 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1247 		flags |= NVME_SQ_PRIO_MEDIUM;
1248 
1249 	/*
1250 	 * Note: we (ab)use the fact that the prp fields survive if no data
1251 	 * is attached to the request.
1252 	 */
1253 	c.create_sq.opcode = nvme_admin_create_sq;
1254 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1255 	c.create_sq.sqid = cpu_to_le16(qid);
1256 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1257 	c.create_sq.sq_flags = cpu_to_le16(flags);
1258 	c.create_sq.cqid = cpu_to_le16(qid);
1259 
1260 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1261 }
1262 
1263 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1264 {
1265 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1266 }
1267 
1268 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1269 {
1270 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1271 }
1272 
1273 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1274 {
1275 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1276 
1277 	dev_warn(nvmeq->dev->ctrl.device,
1278 		 "Abort status: 0x%x", nvme_req(req)->status);
1279 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1280 	blk_mq_free_request(req);
1281 	return RQ_END_IO_NONE;
1282 }
1283 
1284 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1285 {
1286 	/* If true, indicates loss of adapter communication, possibly by a
1287 	 * NVMe Subsystem reset.
1288 	 */
1289 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1290 
1291 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1292 	switch (dev->ctrl.state) {
1293 	case NVME_CTRL_RESETTING:
1294 	case NVME_CTRL_CONNECTING:
1295 		return false;
1296 	default:
1297 		break;
1298 	}
1299 
1300 	/* We shouldn't reset unless the controller is on fatal error state
1301 	 * _or_ if we lost the communication with it.
1302 	 */
1303 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1304 		return false;
1305 
1306 	return true;
1307 }
1308 
1309 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1310 {
1311 	/* Read a config register to help see what died. */
1312 	u16 pci_status;
1313 	int result;
1314 
1315 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1316 				      &pci_status);
1317 	if (result == PCIBIOS_SUCCESSFUL)
1318 		dev_warn(dev->ctrl.device,
1319 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1320 			 csts, pci_status);
1321 	else
1322 		dev_warn(dev->ctrl.device,
1323 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1324 			 csts, result);
1325 
1326 	if (csts != ~0)
1327 		return;
1328 
1329 	dev_warn(dev->ctrl.device,
1330 		 "Does your device have a faulty power saving mode enabled?\n");
1331 	dev_warn(dev->ctrl.device,
1332 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1333 }
1334 
1335 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1336 {
1337 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1338 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1339 	struct nvme_dev *dev = nvmeq->dev;
1340 	struct request *abort_req;
1341 	struct nvme_command cmd = { };
1342 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1343 
1344 	/* If PCI error recovery process is happening, we cannot reset or
1345 	 * the recovery mechanism will surely fail.
1346 	 */
1347 	mb();
1348 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1349 		return BLK_EH_RESET_TIMER;
1350 
1351 	/*
1352 	 * Reset immediately if the controller is failed
1353 	 */
1354 	if (nvme_should_reset(dev, csts)) {
1355 		nvme_warn_reset(dev, csts);
1356 		nvme_dev_disable(dev, false);
1357 		nvme_reset_ctrl(&dev->ctrl);
1358 		return BLK_EH_DONE;
1359 	}
1360 
1361 	/*
1362 	 * Did we miss an interrupt?
1363 	 */
1364 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1365 		nvme_poll(req->mq_hctx, NULL);
1366 	else
1367 		nvme_poll_irqdisable(nvmeq);
1368 
1369 	if (blk_mq_request_completed(req)) {
1370 		dev_warn(dev->ctrl.device,
1371 			 "I/O %d QID %d timeout, completion polled\n",
1372 			 req->tag, nvmeq->qid);
1373 		return BLK_EH_DONE;
1374 	}
1375 
1376 	/*
1377 	 * Shutdown immediately if controller times out while starting. The
1378 	 * reset work will see the pci device disabled when it gets the forced
1379 	 * cancellation error. All outstanding requests are completed on
1380 	 * shutdown, so we return BLK_EH_DONE.
1381 	 */
1382 	switch (dev->ctrl.state) {
1383 	case NVME_CTRL_CONNECTING:
1384 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1385 		fallthrough;
1386 	case NVME_CTRL_DELETING:
1387 		dev_warn_ratelimited(dev->ctrl.device,
1388 			 "I/O %d QID %d timeout, disable controller\n",
1389 			 req->tag, nvmeq->qid);
1390 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1391 		nvme_dev_disable(dev, true);
1392 		return BLK_EH_DONE;
1393 	case NVME_CTRL_RESETTING:
1394 		return BLK_EH_RESET_TIMER;
1395 	default:
1396 		break;
1397 	}
1398 
1399 	/*
1400 	 * Shutdown the controller immediately and schedule a reset if the
1401 	 * command was already aborted once before and still hasn't been
1402 	 * returned to the driver, or if this is the admin queue.
1403 	 */
1404 	if (!nvmeq->qid || iod->aborted) {
1405 		dev_warn(dev->ctrl.device,
1406 			 "I/O %d QID %d timeout, reset controller\n",
1407 			 req->tag, nvmeq->qid);
1408 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1409 		nvme_dev_disable(dev, false);
1410 		nvme_reset_ctrl(&dev->ctrl);
1411 
1412 		return BLK_EH_DONE;
1413 	}
1414 
1415 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1416 		atomic_inc(&dev->ctrl.abort_limit);
1417 		return BLK_EH_RESET_TIMER;
1418 	}
1419 	iod->aborted = true;
1420 
1421 	cmd.abort.opcode = nvme_admin_abort_cmd;
1422 	cmd.abort.cid = nvme_cid(req);
1423 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1424 
1425 	dev_warn(nvmeq->dev->ctrl.device,
1426 		"I/O %d (%s) QID %d timeout, aborting\n",
1427 		 req->tag,
1428 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1429 		 nvmeq->qid);
1430 
1431 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1432 					 BLK_MQ_REQ_NOWAIT);
1433 	if (IS_ERR(abort_req)) {
1434 		atomic_inc(&dev->ctrl.abort_limit);
1435 		return BLK_EH_RESET_TIMER;
1436 	}
1437 	nvme_init_request(abort_req, &cmd);
1438 
1439 	abort_req->end_io = abort_endio;
1440 	abort_req->end_io_data = NULL;
1441 	blk_execute_rq_nowait(abort_req, false);
1442 
1443 	/*
1444 	 * The aborted req will be completed on receiving the abort req.
1445 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1446 	 * as the device then is in a faulty state.
1447 	 */
1448 	return BLK_EH_RESET_TIMER;
1449 }
1450 
1451 static void nvme_free_queue(struct nvme_queue *nvmeq)
1452 {
1453 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1454 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1455 	if (!nvmeq->sq_cmds)
1456 		return;
1457 
1458 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1459 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1460 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1461 	} else {
1462 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1463 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1464 	}
1465 }
1466 
1467 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1468 {
1469 	int i;
1470 
1471 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1472 		dev->ctrl.queue_count--;
1473 		nvme_free_queue(&dev->queues[i]);
1474 	}
1475 }
1476 
1477 /**
1478  * nvme_suspend_queue - put queue into suspended state
1479  * @nvmeq: queue to suspend
1480  */
1481 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1482 {
1483 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1484 		return 1;
1485 
1486 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1487 	mb();
1488 
1489 	nvmeq->dev->online_queues--;
1490 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1491 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1492 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1493 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1494 	return 0;
1495 }
1496 
1497 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1498 {
1499 	int i;
1500 
1501 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1502 		nvme_suspend_queue(&dev->queues[i]);
1503 }
1504 
1505 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1506 {
1507 	struct nvme_queue *nvmeq = &dev->queues[0];
1508 
1509 	if (shutdown)
1510 		nvme_shutdown_ctrl(&dev->ctrl);
1511 	else
1512 		nvme_disable_ctrl(&dev->ctrl);
1513 
1514 	nvme_poll_irqdisable(nvmeq);
1515 }
1516 
1517 /*
1518  * Called only on a device that has been disabled and after all other threads
1519  * that can check this device's completion queues have synced, except
1520  * nvme_poll(). This is the last chance for the driver to see a natural
1521  * completion before nvme_cancel_request() terminates all incomplete requests.
1522  */
1523 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1524 {
1525 	int i;
1526 
1527 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1528 		spin_lock(&dev->queues[i].cq_poll_lock);
1529 		nvme_poll_cq(&dev->queues[i], NULL);
1530 		spin_unlock(&dev->queues[i].cq_poll_lock);
1531 	}
1532 }
1533 
1534 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1535 				int entry_size)
1536 {
1537 	int q_depth = dev->q_depth;
1538 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1539 					  NVME_CTRL_PAGE_SIZE);
1540 
1541 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1542 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1543 
1544 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1545 		q_depth = div_u64(mem_per_q, entry_size);
1546 
1547 		/*
1548 		 * Ensure the reduced q_depth is above some threshold where it
1549 		 * would be better to map queues in system memory with the
1550 		 * original depth
1551 		 */
1552 		if (q_depth < 64)
1553 			return -ENOMEM;
1554 	}
1555 
1556 	return q_depth;
1557 }
1558 
1559 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1560 				int qid)
1561 {
1562 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1563 
1564 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1565 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1566 		if (nvmeq->sq_cmds) {
1567 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1568 							nvmeq->sq_cmds);
1569 			if (nvmeq->sq_dma_addr) {
1570 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1571 				return 0;
1572 			}
1573 
1574 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1575 		}
1576 	}
1577 
1578 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1579 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1580 	if (!nvmeq->sq_cmds)
1581 		return -ENOMEM;
1582 	return 0;
1583 }
1584 
1585 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1586 {
1587 	struct nvme_queue *nvmeq = &dev->queues[qid];
1588 
1589 	if (dev->ctrl.queue_count > qid)
1590 		return 0;
1591 
1592 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1593 	nvmeq->q_depth = depth;
1594 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1595 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1596 	if (!nvmeq->cqes)
1597 		goto free_nvmeq;
1598 
1599 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1600 		goto free_cqdma;
1601 
1602 	nvmeq->dev = dev;
1603 	spin_lock_init(&nvmeq->sq_lock);
1604 	spin_lock_init(&nvmeq->cq_poll_lock);
1605 	nvmeq->cq_head = 0;
1606 	nvmeq->cq_phase = 1;
1607 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1608 	nvmeq->qid = qid;
1609 	dev->ctrl.queue_count++;
1610 
1611 	return 0;
1612 
1613  free_cqdma:
1614 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1615 			  nvmeq->cq_dma_addr);
1616  free_nvmeq:
1617 	return -ENOMEM;
1618 }
1619 
1620 static int queue_request_irq(struct nvme_queue *nvmeq)
1621 {
1622 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1623 	int nr = nvmeq->dev->ctrl.instance;
1624 
1625 	if (use_threaded_interrupts) {
1626 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1627 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1628 	} else {
1629 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1630 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1631 	}
1632 }
1633 
1634 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1635 {
1636 	struct nvme_dev *dev = nvmeq->dev;
1637 
1638 	nvmeq->sq_tail = 0;
1639 	nvmeq->last_sq_tail = 0;
1640 	nvmeq->cq_head = 0;
1641 	nvmeq->cq_phase = 1;
1642 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1643 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1644 	nvme_dbbuf_init(dev, nvmeq, qid);
1645 	dev->online_queues++;
1646 	wmb(); /* ensure the first interrupt sees the initialization */
1647 }
1648 
1649 /*
1650  * Try getting shutdown_lock while setting up IO queues.
1651  */
1652 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1653 {
1654 	/*
1655 	 * Give up if the lock is being held by nvme_dev_disable.
1656 	 */
1657 	if (!mutex_trylock(&dev->shutdown_lock))
1658 		return -ENODEV;
1659 
1660 	/*
1661 	 * Controller is in wrong state, fail early.
1662 	 */
1663 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1664 		mutex_unlock(&dev->shutdown_lock);
1665 		return -ENODEV;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1672 {
1673 	struct nvme_dev *dev = nvmeq->dev;
1674 	int result;
1675 	u16 vector = 0;
1676 
1677 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1678 
1679 	/*
1680 	 * A queue's vector matches the queue identifier unless the controller
1681 	 * has only one vector available.
1682 	 */
1683 	if (!polled)
1684 		vector = dev->num_vecs == 1 ? 0 : qid;
1685 	else
1686 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1687 
1688 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1689 	if (result)
1690 		return result;
1691 
1692 	result = adapter_alloc_sq(dev, qid, nvmeq);
1693 	if (result < 0)
1694 		return result;
1695 	if (result)
1696 		goto release_cq;
1697 
1698 	nvmeq->cq_vector = vector;
1699 
1700 	result = nvme_setup_io_queues_trylock(dev);
1701 	if (result)
1702 		return result;
1703 	nvme_init_queue(nvmeq, qid);
1704 	if (!polled) {
1705 		result = queue_request_irq(nvmeq);
1706 		if (result < 0)
1707 			goto release_sq;
1708 	}
1709 
1710 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1711 	mutex_unlock(&dev->shutdown_lock);
1712 	return result;
1713 
1714 release_sq:
1715 	dev->online_queues--;
1716 	mutex_unlock(&dev->shutdown_lock);
1717 	adapter_delete_sq(dev, qid);
1718 release_cq:
1719 	adapter_delete_cq(dev, qid);
1720 	return result;
1721 }
1722 
1723 static const struct blk_mq_ops nvme_mq_admin_ops = {
1724 	.queue_rq	= nvme_queue_rq,
1725 	.complete	= nvme_pci_complete_rq,
1726 	.init_hctx	= nvme_admin_init_hctx,
1727 	.init_request	= nvme_pci_init_request,
1728 	.timeout	= nvme_timeout,
1729 };
1730 
1731 static const struct blk_mq_ops nvme_mq_ops = {
1732 	.queue_rq	= nvme_queue_rq,
1733 	.queue_rqs	= nvme_queue_rqs,
1734 	.complete	= nvme_pci_complete_rq,
1735 	.commit_rqs	= nvme_commit_rqs,
1736 	.init_hctx	= nvme_init_hctx,
1737 	.init_request	= nvme_pci_init_request,
1738 	.map_queues	= nvme_pci_map_queues,
1739 	.timeout	= nvme_timeout,
1740 	.poll		= nvme_poll,
1741 };
1742 
1743 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1744 {
1745 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1746 		/*
1747 		 * If the controller was reset during removal, it's possible
1748 		 * user requests may be waiting on a stopped queue. Start the
1749 		 * queue to flush these to completion.
1750 		 */
1751 		nvme_start_admin_queue(&dev->ctrl);
1752 		blk_mq_destroy_queue(dev->ctrl.admin_q);
1753 		blk_mq_free_tag_set(&dev->admin_tagset);
1754 	}
1755 }
1756 
1757 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1758 {
1759 	struct blk_mq_tag_set *set = &dev->admin_tagset;
1760 
1761 	set->ops = &nvme_mq_admin_ops;
1762 	set->nr_hw_queues = 1;
1763 
1764 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1765 	set->timeout = NVME_ADMIN_TIMEOUT;
1766 	set->numa_node = dev->ctrl.numa_node;
1767 	set->cmd_size = sizeof(struct nvme_iod);
1768 	set->flags = BLK_MQ_F_NO_SCHED;
1769 	set->driver_data = dev;
1770 
1771 	if (blk_mq_alloc_tag_set(set))
1772 		return -ENOMEM;
1773 	dev->ctrl.admin_tagset = set;
1774 
1775 	dev->ctrl.admin_q = blk_mq_init_queue(set);
1776 	if (IS_ERR(dev->ctrl.admin_q)) {
1777 		blk_mq_free_tag_set(set);
1778 		dev->ctrl.admin_q = NULL;
1779 		return -ENOMEM;
1780 	}
1781 	if (!blk_get_queue(dev->ctrl.admin_q)) {
1782 		nvme_dev_remove_admin(dev);
1783 		dev->ctrl.admin_q = NULL;
1784 		return -ENODEV;
1785 	}
1786 	return 0;
1787 }
1788 
1789 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1790 {
1791 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1792 }
1793 
1794 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1795 {
1796 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1797 
1798 	if (size <= dev->bar_mapped_size)
1799 		return 0;
1800 	if (size > pci_resource_len(pdev, 0))
1801 		return -ENOMEM;
1802 	if (dev->bar)
1803 		iounmap(dev->bar);
1804 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1805 	if (!dev->bar) {
1806 		dev->bar_mapped_size = 0;
1807 		return -ENOMEM;
1808 	}
1809 	dev->bar_mapped_size = size;
1810 	dev->dbs = dev->bar + NVME_REG_DBS;
1811 
1812 	return 0;
1813 }
1814 
1815 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1816 {
1817 	int result;
1818 	u32 aqa;
1819 	struct nvme_queue *nvmeq;
1820 
1821 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1822 	if (result < 0)
1823 		return result;
1824 
1825 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1826 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1827 
1828 	if (dev->subsystem &&
1829 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1830 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1831 
1832 	result = nvme_disable_ctrl(&dev->ctrl);
1833 	if (result < 0)
1834 		return result;
1835 
1836 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1837 	if (result)
1838 		return result;
1839 
1840 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1841 
1842 	nvmeq = &dev->queues[0];
1843 	aqa = nvmeq->q_depth - 1;
1844 	aqa |= aqa << 16;
1845 
1846 	writel(aqa, dev->bar + NVME_REG_AQA);
1847 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1848 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1849 
1850 	result = nvme_enable_ctrl(&dev->ctrl);
1851 	if (result)
1852 		return result;
1853 
1854 	nvmeq->cq_vector = 0;
1855 	nvme_init_queue(nvmeq, 0);
1856 	result = queue_request_irq(nvmeq);
1857 	if (result) {
1858 		dev->online_queues--;
1859 		return result;
1860 	}
1861 
1862 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1863 	return result;
1864 }
1865 
1866 static int nvme_create_io_queues(struct nvme_dev *dev)
1867 {
1868 	unsigned i, max, rw_queues;
1869 	int ret = 0;
1870 
1871 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1872 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1873 			ret = -ENOMEM;
1874 			break;
1875 		}
1876 	}
1877 
1878 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1879 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1880 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1881 				dev->io_queues[HCTX_TYPE_READ];
1882 	} else {
1883 		rw_queues = max;
1884 	}
1885 
1886 	for (i = dev->online_queues; i <= max; i++) {
1887 		bool polled = i > rw_queues;
1888 
1889 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1890 		if (ret)
1891 			break;
1892 	}
1893 
1894 	/*
1895 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1896 	 * than the desired amount of queues, and even a controller without
1897 	 * I/O queues can still be used to issue admin commands.  This might
1898 	 * be useful to upgrade a buggy firmware for example.
1899 	 */
1900 	return ret >= 0 ? 0 : ret;
1901 }
1902 
1903 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1904 {
1905 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1906 
1907 	return 1ULL << (12 + 4 * szu);
1908 }
1909 
1910 static u32 nvme_cmb_size(struct nvme_dev *dev)
1911 {
1912 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1913 }
1914 
1915 static void nvme_map_cmb(struct nvme_dev *dev)
1916 {
1917 	u64 size, offset;
1918 	resource_size_t bar_size;
1919 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1920 	int bar;
1921 
1922 	if (dev->cmb_size)
1923 		return;
1924 
1925 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1926 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1927 
1928 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1929 	if (!dev->cmbsz)
1930 		return;
1931 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1932 
1933 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1934 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1935 	bar = NVME_CMB_BIR(dev->cmbloc);
1936 	bar_size = pci_resource_len(pdev, bar);
1937 
1938 	if (offset > bar_size)
1939 		return;
1940 
1941 	/*
1942 	 * Tell the controller about the host side address mapping the CMB,
1943 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1944 	 */
1945 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1946 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1947 			     (pci_bus_address(pdev, bar) + offset),
1948 			     dev->bar + NVME_REG_CMBMSC);
1949 	}
1950 
1951 	/*
1952 	 * Controllers may support a CMB size larger than their BAR,
1953 	 * for example, due to being behind a bridge. Reduce the CMB to
1954 	 * the reported size of the BAR
1955 	 */
1956 	if (size > bar_size - offset)
1957 		size = bar_size - offset;
1958 
1959 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1960 		dev_warn(dev->ctrl.device,
1961 			 "failed to register the CMB\n");
1962 		return;
1963 	}
1964 
1965 	dev->cmb_size = size;
1966 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1967 
1968 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1969 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1970 		pci_p2pmem_publish(pdev, true);
1971 }
1972 
1973 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1974 {
1975 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1976 	u64 dma_addr = dev->host_mem_descs_dma;
1977 	struct nvme_command c = { };
1978 	int ret;
1979 
1980 	c.features.opcode	= nvme_admin_set_features;
1981 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1982 	c.features.dword11	= cpu_to_le32(bits);
1983 	c.features.dword12	= cpu_to_le32(host_mem_size);
1984 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1985 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1986 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1987 
1988 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1989 	if (ret) {
1990 		dev_warn(dev->ctrl.device,
1991 			 "failed to set host mem (err %d, flags %#x).\n",
1992 			 ret, bits);
1993 	} else
1994 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1995 
1996 	return ret;
1997 }
1998 
1999 static void nvme_free_host_mem(struct nvme_dev *dev)
2000 {
2001 	int i;
2002 
2003 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2004 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2005 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2006 
2007 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2008 			       le64_to_cpu(desc->addr),
2009 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2010 	}
2011 
2012 	kfree(dev->host_mem_desc_bufs);
2013 	dev->host_mem_desc_bufs = NULL;
2014 	dma_free_coherent(dev->dev,
2015 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2016 			dev->host_mem_descs, dev->host_mem_descs_dma);
2017 	dev->host_mem_descs = NULL;
2018 	dev->nr_host_mem_descs = 0;
2019 }
2020 
2021 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2022 		u32 chunk_size)
2023 {
2024 	struct nvme_host_mem_buf_desc *descs;
2025 	u32 max_entries, len;
2026 	dma_addr_t descs_dma;
2027 	int i = 0;
2028 	void **bufs;
2029 	u64 size, tmp;
2030 
2031 	tmp = (preferred + chunk_size - 1);
2032 	do_div(tmp, chunk_size);
2033 	max_entries = tmp;
2034 
2035 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2036 		max_entries = dev->ctrl.hmmaxd;
2037 
2038 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2039 				   &descs_dma, GFP_KERNEL);
2040 	if (!descs)
2041 		goto out;
2042 
2043 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2044 	if (!bufs)
2045 		goto out_free_descs;
2046 
2047 	for (size = 0; size < preferred && i < max_entries; size += len) {
2048 		dma_addr_t dma_addr;
2049 
2050 		len = min_t(u64, chunk_size, preferred - size);
2051 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2052 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2053 		if (!bufs[i])
2054 			break;
2055 
2056 		descs[i].addr = cpu_to_le64(dma_addr);
2057 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2058 		i++;
2059 	}
2060 
2061 	if (!size)
2062 		goto out_free_bufs;
2063 
2064 	dev->nr_host_mem_descs = i;
2065 	dev->host_mem_size = size;
2066 	dev->host_mem_descs = descs;
2067 	dev->host_mem_descs_dma = descs_dma;
2068 	dev->host_mem_desc_bufs = bufs;
2069 	return 0;
2070 
2071 out_free_bufs:
2072 	while (--i >= 0) {
2073 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2074 
2075 		dma_free_attrs(dev->dev, size, bufs[i],
2076 			       le64_to_cpu(descs[i].addr),
2077 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2078 	}
2079 
2080 	kfree(bufs);
2081 out_free_descs:
2082 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2083 			descs_dma);
2084 out:
2085 	dev->host_mem_descs = NULL;
2086 	return -ENOMEM;
2087 }
2088 
2089 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2090 {
2091 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2092 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2093 	u64 chunk_size;
2094 
2095 	/* start big and work our way down */
2096 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2097 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2098 			if (!min || dev->host_mem_size >= min)
2099 				return 0;
2100 			nvme_free_host_mem(dev);
2101 		}
2102 	}
2103 
2104 	return -ENOMEM;
2105 }
2106 
2107 static int nvme_setup_host_mem(struct nvme_dev *dev)
2108 {
2109 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2110 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2111 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2112 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2113 	int ret;
2114 
2115 	preferred = min(preferred, max);
2116 	if (min > max) {
2117 		dev_warn(dev->ctrl.device,
2118 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2119 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2120 		nvme_free_host_mem(dev);
2121 		return 0;
2122 	}
2123 
2124 	/*
2125 	 * If we already have a buffer allocated check if we can reuse it.
2126 	 */
2127 	if (dev->host_mem_descs) {
2128 		if (dev->host_mem_size >= min)
2129 			enable_bits |= NVME_HOST_MEM_RETURN;
2130 		else
2131 			nvme_free_host_mem(dev);
2132 	}
2133 
2134 	if (!dev->host_mem_descs) {
2135 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2136 			dev_warn(dev->ctrl.device,
2137 				"failed to allocate host memory buffer.\n");
2138 			return 0; /* controller must work without HMB */
2139 		}
2140 
2141 		dev_info(dev->ctrl.device,
2142 			"allocated %lld MiB host memory buffer.\n",
2143 			dev->host_mem_size >> ilog2(SZ_1M));
2144 	}
2145 
2146 	ret = nvme_set_host_mem(dev, enable_bits);
2147 	if (ret)
2148 		nvme_free_host_mem(dev);
2149 	return ret;
2150 }
2151 
2152 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2153 		char *buf)
2154 {
2155 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2156 
2157 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2158 		       ndev->cmbloc, ndev->cmbsz);
2159 }
2160 static DEVICE_ATTR_RO(cmb);
2161 
2162 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2163 		char *buf)
2164 {
2165 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2166 
2167 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2168 }
2169 static DEVICE_ATTR_RO(cmbloc);
2170 
2171 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2172 		char *buf)
2173 {
2174 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2175 
2176 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2177 }
2178 static DEVICE_ATTR_RO(cmbsz);
2179 
2180 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2181 			char *buf)
2182 {
2183 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2184 
2185 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2186 }
2187 
2188 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2189 			 const char *buf, size_t count)
2190 {
2191 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2192 	bool new;
2193 	int ret;
2194 
2195 	if (strtobool(buf, &new) < 0)
2196 		return -EINVAL;
2197 
2198 	if (new == ndev->hmb)
2199 		return count;
2200 
2201 	if (new) {
2202 		ret = nvme_setup_host_mem(ndev);
2203 	} else {
2204 		ret = nvme_set_host_mem(ndev, 0);
2205 		if (!ret)
2206 			nvme_free_host_mem(ndev);
2207 	}
2208 
2209 	if (ret < 0)
2210 		return ret;
2211 
2212 	return count;
2213 }
2214 static DEVICE_ATTR_RW(hmb);
2215 
2216 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2217 		struct attribute *a, int n)
2218 {
2219 	struct nvme_ctrl *ctrl =
2220 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2221 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2222 
2223 	if (a == &dev_attr_cmb.attr ||
2224 	    a == &dev_attr_cmbloc.attr ||
2225 	    a == &dev_attr_cmbsz.attr) {
2226 	    	if (!dev->cmbsz)
2227 			return 0;
2228 	}
2229 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2230 		return 0;
2231 
2232 	return a->mode;
2233 }
2234 
2235 static struct attribute *nvme_pci_attrs[] = {
2236 	&dev_attr_cmb.attr,
2237 	&dev_attr_cmbloc.attr,
2238 	&dev_attr_cmbsz.attr,
2239 	&dev_attr_hmb.attr,
2240 	NULL,
2241 };
2242 
2243 static const struct attribute_group nvme_pci_attr_group = {
2244 	.attrs		= nvme_pci_attrs,
2245 	.is_visible	= nvme_pci_attrs_are_visible,
2246 };
2247 
2248 /*
2249  * nirqs is the number of interrupts available for write and read
2250  * queues. The core already reserved an interrupt for the admin queue.
2251  */
2252 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2253 {
2254 	struct nvme_dev *dev = affd->priv;
2255 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2256 
2257 	/*
2258 	 * If there is no interrupt available for queues, ensure that
2259 	 * the default queue is set to 1. The affinity set size is
2260 	 * also set to one, but the irq core ignores it for this case.
2261 	 *
2262 	 * If only one interrupt is available or 'write_queue' == 0, combine
2263 	 * write and read queues.
2264 	 *
2265 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2266 	 * queue.
2267 	 */
2268 	if (!nrirqs) {
2269 		nrirqs = 1;
2270 		nr_read_queues = 0;
2271 	} else if (nrirqs == 1 || !nr_write_queues) {
2272 		nr_read_queues = 0;
2273 	} else if (nr_write_queues >= nrirqs) {
2274 		nr_read_queues = 1;
2275 	} else {
2276 		nr_read_queues = nrirqs - nr_write_queues;
2277 	}
2278 
2279 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2280 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2281 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2282 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2283 	affd->nr_sets = nr_read_queues ? 2 : 1;
2284 }
2285 
2286 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2287 {
2288 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2289 	struct irq_affinity affd = {
2290 		.pre_vectors	= 1,
2291 		.calc_sets	= nvme_calc_irq_sets,
2292 		.priv		= dev,
2293 	};
2294 	unsigned int irq_queues, poll_queues;
2295 
2296 	/*
2297 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2298 	 * left over for non-polled I/O.
2299 	 */
2300 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2301 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2302 
2303 	/*
2304 	 * Initialize for the single interrupt case, will be updated in
2305 	 * nvme_calc_irq_sets().
2306 	 */
2307 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2308 	dev->io_queues[HCTX_TYPE_READ] = 0;
2309 
2310 	/*
2311 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2312 	 * but some Apple controllers require all queues to use the first
2313 	 * vector.
2314 	 */
2315 	irq_queues = 1;
2316 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2317 		irq_queues += (nr_io_queues - poll_queues);
2318 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2319 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2320 }
2321 
2322 static void nvme_disable_io_queues(struct nvme_dev *dev)
2323 {
2324 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2325 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2326 }
2327 
2328 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2329 {
2330 	/*
2331 	 * If tags are shared with admin queue (Apple bug), then
2332 	 * make sure we only use one IO queue.
2333 	 */
2334 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2335 		return 1;
2336 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2337 }
2338 
2339 static int nvme_setup_io_queues(struct nvme_dev *dev)
2340 {
2341 	struct nvme_queue *adminq = &dev->queues[0];
2342 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2343 	unsigned int nr_io_queues;
2344 	unsigned long size;
2345 	int result;
2346 
2347 	/*
2348 	 * Sample the module parameters once at reset time so that we have
2349 	 * stable values to work with.
2350 	 */
2351 	dev->nr_write_queues = write_queues;
2352 	dev->nr_poll_queues = poll_queues;
2353 
2354 	nr_io_queues = dev->nr_allocated_queues - 1;
2355 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2356 	if (result < 0)
2357 		return result;
2358 
2359 	if (nr_io_queues == 0)
2360 		return 0;
2361 
2362 	/*
2363 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2364 	 * from set to unset. If there is a window to it is truely freed,
2365 	 * pci_free_irq_vectors() jumping into this window will crash.
2366 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2367 	 * nvme_dev_disable() path.
2368 	 */
2369 	result = nvme_setup_io_queues_trylock(dev);
2370 	if (result)
2371 		return result;
2372 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2373 		pci_free_irq(pdev, 0, adminq);
2374 
2375 	if (dev->cmb_use_sqes) {
2376 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2377 				sizeof(struct nvme_command));
2378 		if (result > 0)
2379 			dev->q_depth = result;
2380 		else
2381 			dev->cmb_use_sqes = false;
2382 	}
2383 
2384 	do {
2385 		size = db_bar_size(dev, nr_io_queues);
2386 		result = nvme_remap_bar(dev, size);
2387 		if (!result)
2388 			break;
2389 		if (!--nr_io_queues) {
2390 			result = -ENOMEM;
2391 			goto out_unlock;
2392 		}
2393 	} while (1);
2394 	adminq->q_db = dev->dbs;
2395 
2396  retry:
2397 	/* Deregister the admin queue's interrupt */
2398 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2399 		pci_free_irq(pdev, 0, adminq);
2400 
2401 	/*
2402 	 * If we enable msix early due to not intx, disable it again before
2403 	 * setting up the full range we need.
2404 	 */
2405 	pci_free_irq_vectors(pdev);
2406 
2407 	result = nvme_setup_irqs(dev, nr_io_queues);
2408 	if (result <= 0) {
2409 		result = -EIO;
2410 		goto out_unlock;
2411 	}
2412 
2413 	dev->num_vecs = result;
2414 	result = max(result - 1, 1);
2415 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2416 
2417 	/*
2418 	 * Should investigate if there's a performance win from allocating
2419 	 * more queues than interrupt vectors; it might allow the submission
2420 	 * path to scale better, even if the receive path is limited by the
2421 	 * number of interrupts.
2422 	 */
2423 	result = queue_request_irq(adminq);
2424 	if (result)
2425 		goto out_unlock;
2426 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2427 	mutex_unlock(&dev->shutdown_lock);
2428 
2429 	result = nvme_create_io_queues(dev);
2430 	if (result || dev->online_queues < 2)
2431 		return result;
2432 
2433 	if (dev->online_queues - 1 < dev->max_qid) {
2434 		nr_io_queues = dev->online_queues - 1;
2435 		nvme_disable_io_queues(dev);
2436 		result = nvme_setup_io_queues_trylock(dev);
2437 		if (result)
2438 			return result;
2439 		nvme_suspend_io_queues(dev);
2440 		goto retry;
2441 	}
2442 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2443 					dev->io_queues[HCTX_TYPE_DEFAULT],
2444 					dev->io_queues[HCTX_TYPE_READ],
2445 					dev->io_queues[HCTX_TYPE_POLL]);
2446 	return 0;
2447 out_unlock:
2448 	mutex_unlock(&dev->shutdown_lock);
2449 	return result;
2450 }
2451 
2452 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2453 					     blk_status_t error)
2454 {
2455 	struct nvme_queue *nvmeq = req->end_io_data;
2456 
2457 	blk_mq_free_request(req);
2458 	complete(&nvmeq->delete_done);
2459 	return RQ_END_IO_NONE;
2460 }
2461 
2462 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2463 					  blk_status_t error)
2464 {
2465 	struct nvme_queue *nvmeq = req->end_io_data;
2466 
2467 	if (error)
2468 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2469 
2470 	return nvme_del_queue_end(req, error);
2471 }
2472 
2473 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2474 {
2475 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2476 	struct request *req;
2477 	struct nvme_command cmd = { };
2478 
2479 	cmd.delete_queue.opcode = opcode;
2480 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2481 
2482 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2483 	if (IS_ERR(req))
2484 		return PTR_ERR(req);
2485 	nvme_init_request(req, &cmd);
2486 
2487 	if (opcode == nvme_admin_delete_cq)
2488 		req->end_io = nvme_del_cq_end;
2489 	else
2490 		req->end_io = nvme_del_queue_end;
2491 	req->end_io_data = nvmeq;
2492 
2493 	init_completion(&nvmeq->delete_done);
2494 	blk_execute_rq_nowait(req, false);
2495 	return 0;
2496 }
2497 
2498 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2499 {
2500 	int nr_queues = dev->online_queues - 1, sent = 0;
2501 	unsigned long timeout;
2502 
2503  retry:
2504 	timeout = NVME_ADMIN_TIMEOUT;
2505 	while (nr_queues > 0) {
2506 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2507 			break;
2508 		nr_queues--;
2509 		sent++;
2510 	}
2511 	while (sent) {
2512 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2513 
2514 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2515 				timeout);
2516 		if (timeout == 0)
2517 			return false;
2518 
2519 		sent--;
2520 		if (nr_queues)
2521 			goto retry;
2522 	}
2523 	return true;
2524 }
2525 
2526 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2527 {
2528 	struct blk_mq_tag_set * set = &dev->tagset;
2529 	int ret;
2530 
2531 	set->ops = &nvme_mq_ops;
2532 	set->nr_hw_queues = dev->online_queues - 1;
2533 	set->nr_maps = 1;
2534 	if (dev->io_queues[HCTX_TYPE_READ])
2535 		set->nr_maps = 2;
2536 	if (dev->io_queues[HCTX_TYPE_POLL])
2537 		set->nr_maps = 3;
2538 	set->timeout = NVME_IO_TIMEOUT;
2539 	set->numa_node = dev->ctrl.numa_node;
2540 	set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2541 	set->cmd_size = sizeof(struct nvme_iod);
2542 	set->flags = BLK_MQ_F_SHOULD_MERGE;
2543 	set->driver_data = dev;
2544 
2545 	/*
2546 	 * Some Apple controllers requires tags to be unique
2547 	 * across admin and IO queue, so reserve the first 32
2548 	 * tags of the IO queue.
2549 	 */
2550 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2551 		set->reserved_tags = NVME_AQ_DEPTH;
2552 
2553 	ret = blk_mq_alloc_tag_set(set);
2554 	if (ret) {
2555 		dev_warn(dev->ctrl.device,
2556 			"IO queues tagset allocation failed %d\n", ret);
2557 		return;
2558 	}
2559 	dev->ctrl.tagset = set;
2560 }
2561 
2562 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2563 {
2564 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2565 	/* free previously allocated queues that are no longer usable */
2566 	nvme_free_queues(dev, dev->online_queues);
2567 }
2568 
2569 static int nvme_pci_enable(struct nvme_dev *dev)
2570 {
2571 	int result = -ENOMEM;
2572 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2573 	int dma_address_bits = 64;
2574 
2575 	if (pci_enable_device_mem(pdev))
2576 		return result;
2577 
2578 	pci_set_master(pdev);
2579 
2580 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2581 		dma_address_bits = 48;
2582 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2583 		goto disable;
2584 
2585 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2586 		result = -ENODEV;
2587 		goto disable;
2588 	}
2589 
2590 	/*
2591 	 * Some devices and/or platforms don't advertise or work with INTx
2592 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2593 	 * adjust this later.
2594 	 */
2595 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2596 	if (result < 0)
2597 		return result;
2598 
2599 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2600 
2601 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2602 				io_queue_depth);
2603 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2604 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2605 	dev->dbs = dev->bar + 4096;
2606 
2607 	/*
2608 	 * Some Apple controllers require a non-standard SQE size.
2609 	 * Interestingly they also seem to ignore the CC:IOSQES register
2610 	 * so we don't bother updating it here.
2611 	 */
2612 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2613 		dev->io_sqes = 7;
2614 	else
2615 		dev->io_sqes = NVME_NVM_IOSQES;
2616 
2617 	/*
2618 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2619 	 * some MacBook7,1 to avoid controller resets and data loss.
2620 	 */
2621 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2622 		dev->q_depth = 2;
2623 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2624 			"set queue depth=%u to work around controller resets\n",
2625 			dev->q_depth);
2626 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2627 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2628 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2629 		dev->q_depth = 64;
2630 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2631                         "set queue depth=%u\n", dev->q_depth);
2632 	}
2633 
2634 	/*
2635 	 * Controllers with the shared tags quirk need the IO queue to be
2636 	 * big enough so that we get 32 tags for the admin queue
2637 	 */
2638 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2639 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2640 		dev->q_depth = NVME_AQ_DEPTH + 2;
2641 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2642 			 dev->q_depth);
2643 	}
2644 
2645 
2646 	nvme_map_cmb(dev);
2647 
2648 	pci_enable_pcie_error_reporting(pdev);
2649 	pci_save_state(pdev);
2650 	return 0;
2651 
2652  disable:
2653 	pci_disable_device(pdev);
2654 	return result;
2655 }
2656 
2657 static void nvme_dev_unmap(struct nvme_dev *dev)
2658 {
2659 	if (dev->bar)
2660 		iounmap(dev->bar);
2661 	pci_release_mem_regions(to_pci_dev(dev->dev));
2662 }
2663 
2664 static void nvme_pci_disable(struct nvme_dev *dev)
2665 {
2666 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2667 
2668 	pci_free_irq_vectors(pdev);
2669 
2670 	if (pci_is_enabled(pdev)) {
2671 		pci_disable_pcie_error_reporting(pdev);
2672 		pci_disable_device(pdev);
2673 	}
2674 }
2675 
2676 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2677 {
2678 	bool dead = true, freeze = false;
2679 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2680 
2681 	mutex_lock(&dev->shutdown_lock);
2682 	if (pci_is_enabled(pdev)) {
2683 		u32 csts;
2684 
2685 		if (pci_device_is_present(pdev))
2686 			csts = readl(dev->bar + NVME_REG_CSTS);
2687 		else
2688 			csts = ~0;
2689 
2690 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2691 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2692 			freeze = true;
2693 			nvme_start_freeze(&dev->ctrl);
2694 		}
2695 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2696 			pdev->error_state  != pci_channel_io_normal);
2697 	}
2698 
2699 	/*
2700 	 * Give the controller a chance to complete all entered requests if
2701 	 * doing a safe shutdown.
2702 	 */
2703 	if (!dead && shutdown && freeze)
2704 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2705 
2706 	nvme_stop_queues(&dev->ctrl);
2707 
2708 	if (!dead && dev->ctrl.queue_count > 0) {
2709 		nvme_disable_io_queues(dev);
2710 		nvme_disable_admin_queue(dev, shutdown);
2711 	}
2712 	nvme_suspend_io_queues(dev);
2713 	nvme_suspend_queue(&dev->queues[0]);
2714 	nvme_pci_disable(dev);
2715 	nvme_reap_pending_cqes(dev);
2716 
2717 	nvme_cancel_tagset(&dev->ctrl);
2718 	nvme_cancel_admin_tagset(&dev->ctrl);
2719 
2720 	/*
2721 	 * The driver will not be starting up queues again if shutting down so
2722 	 * must flush all entered requests to their failed completion to avoid
2723 	 * deadlocking blk-mq hot-cpu notifier.
2724 	 */
2725 	if (shutdown) {
2726 		nvme_start_queues(&dev->ctrl);
2727 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2728 			nvme_start_admin_queue(&dev->ctrl);
2729 	}
2730 	mutex_unlock(&dev->shutdown_lock);
2731 }
2732 
2733 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2734 {
2735 	if (!nvme_wait_reset(&dev->ctrl))
2736 		return -EBUSY;
2737 	nvme_dev_disable(dev, shutdown);
2738 	return 0;
2739 }
2740 
2741 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2742 {
2743 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2744 						NVME_CTRL_PAGE_SIZE,
2745 						NVME_CTRL_PAGE_SIZE, 0);
2746 	if (!dev->prp_page_pool)
2747 		return -ENOMEM;
2748 
2749 	/* Optimisation for I/Os between 4k and 128k */
2750 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2751 						256, 256, 0);
2752 	if (!dev->prp_small_pool) {
2753 		dma_pool_destroy(dev->prp_page_pool);
2754 		return -ENOMEM;
2755 	}
2756 	return 0;
2757 }
2758 
2759 static void nvme_release_prp_pools(struct nvme_dev *dev)
2760 {
2761 	dma_pool_destroy(dev->prp_page_pool);
2762 	dma_pool_destroy(dev->prp_small_pool);
2763 }
2764 
2765 static void nvme_free_tagset(struct nvme_dev *dev)
2766 {
2767 	if (dev->tagset.tags)
2768 		blk_mq_free_tag_set(&dev->tagset);
2769 	dev->ctrl.tagset = NULL;
2770 }
2771 
2772 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2773 {
2774 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2775 
2776 	nvme_dbbuf_dma_free(dev);
2777 	nvme_free_tagset(dev);
2778 	if (dev->ctrl.admin_q)
2779 		blk_put_queue(dev->ctrl.admin_q);
2780 	free_opal_dev(dev->ctrl.opal_dev);
2781 	mempool_destroy(dev->iod_mempool);
2782 	put_device(dev->dev);
2783 	kfree(dev->queues);
2784 	kfree(dev);
2785 }
2786 
2787 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2788 {
2789 	/*
2790 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2791 	 * may be holding this pci_dev's device lock.
2792 	 */
2793 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2794 	nvme_get_ctrl(&dev->ctrl);
2795 	nvme_dev_disable(dev, false);
2796 	nvme_kill_queues(&dev->ctrl);
2797 	if (!queue_work(nvme_wq, &dev->remove_work))
2798 		nvme_put_ctrl(&dev->ctrl);
2799 }
2800 
2801 static void nvme_reset_work(struct work_struct *work)
2802 {
2803 	struct nvme_dev *dev =
2804 		container_of(work, struct nvme_dev, ctrl.reset_work);
2805 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2806 	int result;
2807 
2808 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2809 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2810 			 dev->ctrl.state);
2811 		result = -ENODEV;
2812 		goto out;
2813 	}
2814 
2815 	/*
2816 	 * If we're called to reset a live controller first shut it down before
2817 	 * moving on.
2818 	 */
2819 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2820 		nvme_dev_disable(dev, false);
2821 	nvme_sync_queues(&dev->ctrl);
2822 
2823 	mutex_lock(&dev->shutdown_lock);
2824 	result = nvme_pci_enable(dev);
2825 	if (result)
2826 		goto out_unlock;
2827 
2828 	result = nvme_pci_configure_admin_queue(dev);
2829 	if (result)
2830 		goto out_unlock;
2831 
2832 	if (!dev->ctrl.admin_q) {
2833 		result = nvme_pci_alloc_admin_tag_set(dev);
2834 		if (result)
2835 			goto out_unlock;
2836 	} else {
2837 		nvme_start_admin_queue(&dev->ctrl);
2838 	}
2839 
2840 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2841 
2842 	/*
2843 	 * Limit the max command size to prevent iod->sg allocations going
2844 	 * over a single page.
2845 	 */
2846 	dev->ctrl.max_hw_sectors = min_t(u32,
2847 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2848 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2849 
2850 	/*
2851 	 * Don't limit the IOMMU merged segment size.
2852 	 */
2853 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2854 
2855 	mutex_unlock(&dev->shutdown_lock);
2856 
2857 	/*
2858 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2859 	 * initializing procedure here.
2860 	 */
2861 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2862 		dev_warn(dev->ctrl.device,
2863 			"failed to mark controller CONNECTING\n");
2864 		result = -EBUSY;
2865 		goto out;
2866 	}
2867 
2868 	/*
2869 	 * We do not support an SGL for metadata (yet), so we are limited to a
2870 	 * single integrity segment for the separate metadata pointer.
2871 	 */
2872 	dev->ctrl.max_integrity_segments = 1;
2873 
2874 	result = nvme_init_ctrl_finish(&dev->ctrl);
2875 	if (result)
2876 		goto out;
2877 
2878 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2879 		if (!dev->ctrl.opal_dev)
2880 			dev->ctrl.opal_dev =
2881 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2882 		else if (was_suspend)
2883 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2884 	} else {
2885 		free_opal_dev(dev->ctrl.opal_dev);
2886 		dev->ctrl.opal_dev = NULL;
2887 	}
2888 
2889 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2890 		result = nvme_dbbuf_dma_alloc(dev);
2891 		if (result)
2892 			dev_warn(dev->dev,
2893 				 "unable to allocate dma for dbbuf\n");
2894 	}
2895 
2896 	if (dev->ctrl.hmpre) {
2897 		result = nvme_setup_host_mem(dev);
2898 		if (result < 0)
2899 			goto out;
2900 	}
2901 
2902 	result = nvme_setup_io_queues(dev);
2903 	if (result)
2904 		goto out;
2905 
2906 	/*
2907 	 * Keep the controller around but remove all namespaces if we don't have
2908 	 * any working I/O queue.
2909 	 */
2910 	if (dev->online_queues < 2) {
2911 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2912 		nvme_kill_queues(&dev->ctrl);
2913 		nvme_remove_namespaces(&dev->ctrl);
2914 		nvme_free_tagset(dev);
2915 	} else {
2916 		nvme_start_queues(&dev->ctrl);
2917 		nvme_wait_freeze(&dev->ctrl);
2918 		if (!dev->ctrl.tagset)
2919 			nvme_pci_alloc_tag_set(dev);
2920 		else
2921 			nvme_pci_update_nr_queues(dev);
2922 		nvme_dbbuf_set(dev);
2923 		nvme_unfreeze(&dev->ctrl);
2924 	}
2925 
2926 	/*
2927 	 * If only admin queue live, keep it to do further investigation or
2928 	 * recovery.
2929 	 */
2930 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2931 		dev_warn(dev->ctrl.device,
2932 			"failed to mark controller live state\n");
2933 		result = -ENODEV;
2934 		goto out;
2935 	}
2936 
2937 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2938 			&nvme_pci_attr_group))
2939 		dev->attrs_added = true;
2940 
2941 	nvme_start_ctrl(&dev->ctrl);
2942 	return;
2943 
2944  out_unlock:
2945 	mutex_unlock(&dev->shutdown_lock);
2946  out:
2947 	if (result)
2948 		dev_warn(dev->ctrl.device,
2949 			 "Removing after probe failure status: %d\n", result);
2950 	nvme_remove_dead_ctrl(dev);
2951 }
2952 
2953 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2954 {
2955 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2956 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2957 
2958 	if (pci_get_drvdata(pdev))
2959 		device_release_driver(&pdev->dev);
2960 	nvme_put_ctrl(&dev->ctrl);
2961 }
2962 
2963 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2964 {
2965 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2966 	return 0;
2967 }
2968 
2969 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2970 {
2971 	writel(val, to_nvme_dev(ctrl)->bar + off);
2972 	return 0;
2973 }
2974 
2975 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2976 {
2977 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2978 	return 0;
2979 }
2980 
2981 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2982 {
2983 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2984 
2985 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2986 }
2987 
2988 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2989 {
2990 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2991 	struct nvme_subsystem *subsys = ctrl->subsys;
2992 
2993 	dev_err(ctrl->device,
2994 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2995 		pdev->vendor, pdev->device,
2996 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2997 		subsys->model, nvme_strlen(subsys->firmware_rev,
2998 					   sizeof(subsys->firmware_rev)),
2999 		subsys->firmware_rev);
3000 }
3001 
3002 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3003 {
3004 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3005 
3006 	return dma_pci_p2pdma_supported(dev->dev);
3007 }
3008 
3009 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3010 	.name			= "pcie",
3011 	.module			= THIS_MODULE,
3012 	.flags			= NVME_F_METADATA_SUPPORTED,
3013 	.reg_read32		= nvme_pci_reg_read32,
3014 	.reg_write32		= nvme_pci_reg_write32,
3015 	.reg_read64		= nvme_pci_reg_read64,
3016 	.free_ctrl		= nvme_pci_free_ctrl,
3017 	.submit_async_event	= nvme_pci_submit_async_event,
3018 	.get_address		= nvme_pci_get_address,
3019 	.print_device_info	= nvme_pci_print_device_info,
3020 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3021 };
3022 
3023 static int nvme_dev_map(struct nvme_dev *dev)
3024 {
3025 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3026 
3027 	if (pci_request_mem_regions(pdev, "nvme"))
3028 		return -ENODEV;
3029 
3030 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3031 		goto release;
3032 
3033 	return 0;
3034   release:
3035 	pci_release_mem_regions(pdev);
3036 	return -ENODEV;
3037 }
3038 
3039 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3040 {
3041 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3042 		/*
3043 		 * Several Samsung devices seem to drop off the PCIe bus
3044 		 * randomly when APST is on and uses the deepest sleep state.
3045 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3046 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3047 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3048 		 * laptops.
3049 		 */
3050 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3051 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3052 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3053 			return NVME_QUIRK_NO_DEEPEST_PS;
3054 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3055 		/*
3056 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3057 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3058 		 * within few minutes after bootup on a Coffee Lake board -
3059 		 * ASUS PRIME Z370-A
3060 		 */
3061 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3062 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3063 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3064 			return NVME_QUIRK_NO_APST;
3065 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3066 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3067 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3068 		/*
3069 		 * Forcing to use host managed nvme power settings for
3070 		 * lowest idle power with quick resume latency on
3071 		 * Samsung and Toshiba SSDs based on suspend behavior
3072 		 * on Coffee Lake board for LENOVO C640
3073 		 */
3074 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3075 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3076 			return NVME_QUIRK_SIMPLE_SUSPEND;
3077 	}
3078 
3079 	return 0;
3080 }
3081 
3082 static void nvme_async_probe(void *data, async_cookie_t cookie)
3083 {
3084 	struct nvme_dev *dev = data;
3085 
3086 	flush_work(&dev->ctrl.reset_work);
3087 	flush_work(&dev->ctrl.scan_work);
3088 	nvme_put_ctrl(&dev->ctrl);
3089 }
3090 
3091 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3092 {
3093 	int node, result = -ENOMEM;
3094 	struct nvme_dev *dev;
3095 	unsigned long quirks = id->driver_data;
3096 	size_t alloc_size;
3097 
3098 	node = dev_to_node(&pdev->dev);
3099 	if (node == NUMA_NO_NODE)
3100 		set_dev_node(&pdev->dev, first_memory_node);
3101 
3102 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3103 	if (!dev)
3104 		return -ENOMEM;
3105 
3106 	dev->nr_write_queues = write_queues;
3107 	dev->nr_poll_queues = poll_queues;
3108 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3109 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3110 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3111 	if (!dev->queues)
3112 		goto free;
3113 
3114 	dev->dev = get_device(&pdev->dev);
3115 	pci_set_drvdata(pdev, dev);
3116 
3117 	result = nvme_dev_map(dev);
3118 	if (result)
3119 		goto put_pci;
3120 
3121 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3122 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3123 	mutex_init(&dev->shutdown_lock);
3124 
3125 	result = nvme_setup_prp_pools(dev);
3126 	if (result)
3127 		goto unmap;
3128 
3129 	quirks |= check_vendor_combination_bug(pdev);
3130 
3131 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3132 		/*
3133 		 * Some systems use a bios work around to ask for D3 on
3134 		 * platforms that support kernel managed suspend.
3135 		 */
3136 		dev_info(&pdev->dev,
3137 			 "platform quirk: setting simple suspend\n");
3138 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3139 	}
3140 
3141 	/*
3142 	 * Double check that our mempool alloc size will cover the biggest
3143 	 * command we support.
3144 	 */
3145 	alloc_size = nvme_pci_iod_alloc_size();
3146 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3147 
3148 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3149 						mempool_kfree,
3150 						(void *) alloc_size,
3151 						GFP_KERNEL, node);
3152 	if (!dev->iod_mempool) {
3153 		result = -ENOMEM;
3154 		goto release_pools;
3155 	}
3156 
3157 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3158 			quirks);
3159 	if (result)
3160 		goto release_mempool;
3161 
3162 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3163 
3164 	nvme_reset_ctrl(&dev->ctrl);
3165 	async_schedule(nvme_async_probe, dev);
3166 
3167 	return 0;
3168 
3169  release_mempool:
3170 	mempool_destroy(dev->iod_mempool);
3171  release_pools:
3172 	nvme_release_prp_pools(dev);
3173  unmap:
3174 	nvme_dev_unmap(dev);
3175  put_pci:
3176 	put_device(dev->dev);
3177  free:
3178 	kfree(dev->queues);
3179 	kfree(dev);
3180 	return result;
3181 }
3182 
3183 static void nvme_reset_prepare(struct pci_dev *pdev)
3184 {
3185 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3186 
3187 	/*
3188 	 * We don't need to check the return value from waiting for the reset
3189 	 * state as pci_dev device lock is held, making it impossible to race
3190 	 * with ->remove().
3191 	 */
3192 	nvme_disable_prepare_reset(dev, false);
3193 	nvme_sync_queues(&dev->ctrl);
3194 }
3195 
3196 static void nvme_reset_done(struct pci_dev *pdev)
3197 {
3198 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3199 
3200 	if (!nvme_try_sched_reset(&dev->ctrl))
3201 		flush_work(&dev->ctrl.reset_work);
3202 }
3203 
3204 static void nvme_shutdown(struct pci_dev *pdev)
3205 {
3206 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3207 
3208 	nvme_disable_prepare_reset(dev, true);
3209 }
3210 
3211 static void nvme_remove_attrs(struct nvme_dev *dev)
3212 {
3213 	if (dev->attrs_added)
3214 		sysfs_remove_group(&dev->ctrl.device->kobj,
3215 				   &nvme_pci_attr_group);
3216 }
3217 
3218 /*
3219  * The driver's remove may be called on a device in a partially initialized
3220  * state. This function must not have any dependencies on the device state in
3221  * order to proceed.
3222  */
3223 static void nvme_remove(struct pci_dev *pdev)
3224 {
3225 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3226 
3227 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3228 	pci_set_drvdata(pdev, NULL);
3229 
3230 	if (!pci_device_is_present(pdev)) {
3231 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3232 		nvme_dev_disable(dev, true);
3233 	}
3234 
3235 	flush_work(&dev->ctrl.reset_work);
3236 	nvme_stop_ctrl(&dev->ctrl);
3237 	nvme_remove_namespaces(&dev->ctrl);
3238 	nvme_dev_disable(dev, true);
3239 	nvme_remove_attrs(dev);
3240 	nvme_free_host_mem(dev);
3241 	nvme_dev_remove_admin(dev);
3242 	nvme_free_queues(dev, 0);
3243 	nvme_release_prp_pools(dev);
3244 	nvme_dev_unmap(dev);
3245 	nvme_uninit_ctrl(&dev->ctrl);
3246 }
3247 
3248 #ifdef CONFIG_PM_SLEEP
3249 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3250 {
3251 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3252 }
3253 
3254 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3255 {
3256 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3257 }
3258 
3259 static int nvme_resume(struct device *dev)
3260 {
3261 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3262 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3263 
3264 	if (ndev->last_ps == U32_MAX ||
3265 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3266 		goto reset;
3267 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3268 		goto reset;
3269 
3270 	return 0;
3271 reset:
3272 	return nvme_try_sched_reset(ctrl);
3273 }
3274 
3275 static int nvme_suspend(struct device *dev)
3276 {
3277 	struct pci_dev *pdev = to_pci_dev(dev);
3278 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3279 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3280 	int ret = -EBUSY;
3281 
3282 	ndev->last_ps = U32_MAX;
3283 
3284 	/*
3285 	 * The platform does not remove power for a kernel managed suspend so
3286 	 * use host managed nvme power settings for lowest idle power if
3287 	 * possible. This should have quicker resume latency than a full device
3288 	 * shutdown.  But if the firmware is involved after the suspend or the
3289 	 * device does not support any non-default power states, shut down the
3290 	 * device fully.
3291 	 *
3292 	 * If ASPM is not enabled for the device, shut down the device and allow
3293 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3294 	 * down, so as to allow the platform to achieve its minimum low-power
3295 	 * state (which may not be possible if the link is up).
3296 	 */
3297 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3298 	    !pcie_aspm_enabled(pdev) ||
3299 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3300 		return nvme_disable_prepare_reset(ndev, true);
3301 
3302 	nvme_start_freeze(ctrl);
3303 	nvme_wait_freeze(ctrl);
3304 	nvme_sync_queues(ctrl);
3305 
3306 	if (ctrl->state != NVME_CTRL_LIVE)
3307 		goto unfreeze;
3308 
3309 	/*
3310 	 * Host memory access may not be successful in a system suspend state,
3311 	 * but the specification allows the controller to access memory in a
3312 	 * non-operational power state.
3313 	 */
3314 	if (ndev->hmb) {
3315 		ret = nvme_set_host_mem(ndev, 0);
3316 		if (ret < 0)
3317 			goto unfreeze;
3318 	}
3319 
3320 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3321 	if (ret < 0)
3322 		goto unfreeze;
3323 
3324 	/*
3325 	 * A saved state prevents pci pm from generically controlling the
3326 	 * device's power. If we're using protocol specific settings, we don't
3327 	 * want pci interfering.
3328 	 */
3329 	pci_save_state(pdev);
3330 
3331 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3332 	if (ret < 0)
3333 		goto unfreeze;
3334 
3335 	if (ret) {
3336 		/* discard the saved state */
3337 		pci_load_saved_state(pdev, NULL);
3338 
3339 		/*
3340 		 * Clearing npss forces a controller reset on resume. The
3341 		 * correct value will be rediscovered then.
3342 		 */
3343 		ret = nvme_disable_prepare_reset(ndev, true);
3344 		ctrl->npss = 0;
3345 	}
3346 unfreeze:
3347 	nvme_unfreeze(ctrl);
3348 	return ret;
3349 }
3350 
3351 static int nvme_simple_suspend(struct device *dev)
3352 {
3353 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3354 
3355 	return nvme_disable_prepare_reset(ndev, true);
3356 }
3357 
3358 static int nvme_simple_resume(struct device *dev)
3359 {
3360 	struct pci_dev *pdev = to_pci_dev(dev);
3361 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3362 
3363 	return nvme_try_sched_reset(&ndev->ctrl);
3364 }
3365 
3366 static const struct dev_pm_ops nvme_dev_pm_ops = {
3367 	.suspend	= nvme_suspend,
3368 	.resume		= nvme_resume,
3369 	.freeze		= nvme_simple_suspend,
3370 	.thaw		= nvme_simple_resume,
3371 	.poweroff	= nvme_simple_suspend,
3372 	.restore	= nvme_simple_resume,
3373 };
3374 #endif /* CONFIG_PM_SLEEP */
3375 
3376 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3377 						pci_channel_state_t state)
3378 {
3379 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3380 
3381 	/*
3382 	 * A frozen channel requires a reset. When detected, this method will
3383 	 * shutdown the controller to quiesce. The controller will be restarted
3384 	 * after the slot reset through driver's slot_reset callback.
3385 	 */
3386 	switch (state) {
3387 	case pci_channel_io_normal:
3388 		return PCI_ERS_RESULT_CAN_RECOVER;
3389 	case pci_channel_io_frozen:
3390 		dev_warn(dev->ctrl.device,
3391 			"frozen state error detected, reset controller\n");
3392 		nvme_dev_disable(dev, false);
3393 		return PCI_ERS_RESULT_NEED_RESET;
3394 	case pci_channel_io_perm_failure:
3395 		dev_warn(dev->ctrl.device,
3396 			"failure state error detected, request disconnect\n");
3397 		return PCI_ERS_RESULT_DISCONNECT;
3398 	}
3399 	return PCI_ERS_RESULT_NEED_RESET;
3400 }
3401 
3402 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3403 {
3404 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3405 
3406 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3407 	pci_restore_state(pdev);
3408 	nvme_reset_ctrl(&dev->ctrl);
3409 	return PCI_ERS_RESULT_RECOVERED;
3410 }
3411 
3412 static void nvme_error_resume(struct pci_dev *pdev)
3413 {
3414 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3415 
3416 	flush_work(&dev->ctrl.reset_work);
3417 }
3418 
3419 static const struct pci_error_handlers nvme_err_handler = {
3420 	.error_detected	= nvme_error_detected,
3421 	.slot_reset	= nvme_slot_reset,
3422 	.resume		= nvme_error_resume,
3423 	.reset_prepare	= nvme_reset_prepare,
3424 	.reset_done	= nvme_reset_done,
3425 };
3426 
3427 static const struct pci_device_id nvme_id_table[] = {
3428 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3429 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3430 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3431 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3432 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3433 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3434 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3435 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3436 				NVME_QUIRK_DEALLOCATE_ZEROES |
3437 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3438 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3439 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3440 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3441 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3442 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3443 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3444 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3445 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3446 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3447 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3448 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3449 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3450 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3451 				NVME_QUIRK_BOGUS_NID, },
3452 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3453 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3454 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3455 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3456 				NVME_QUIRK_BOGUS_NID, },
3457 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3458 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3459 				NVME_QUIRK_NO_NS_DESC_LIST, },
3460 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3461 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3463 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3464 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3465 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3466 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3467 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3468 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3469 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3470 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3471 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3472 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3473 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3474 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3475 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3476 				NVME_QUIRK_BOGUS_NID, },
3477 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3478 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3479 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3480 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3481 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3482 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3483 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3484 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3485 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3486 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3487 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3488 				NVME_QUIRK_BOGUS_NID, },
3489 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3490 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3491 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3492 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3493 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3494 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3495 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3496 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3497 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3499 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3500 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3501 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3502 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3503 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3504 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3505 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3506 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3507 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3508 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3509 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3510 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3511 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3512 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3513 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3514 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3515 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3516 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3517 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3518 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3519 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3520 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3521 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3522 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3523 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3524 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3525 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3526 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3527 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3528 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3529 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3530 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3531 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3532 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3533 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3534 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3535 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3536 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3537 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3538 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3539 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3540 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3541 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3542 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3543 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3544 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3545 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3546 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3547 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3548 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3549 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3550 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3551 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3552 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3553 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3554 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3555 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3556 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3557 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3558 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3559 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3560 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3561 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3562 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3563 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3564 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3565 				NVME_QUIRK_128_BYTES_SQES |
3566 				NVME_QUIRK_SHARED_TAGS |
3567 				NVME_QUIRK_SKIP_CID_GEN },
3568 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3569 	{ 0, }
3570 };
3571 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3572 
3573 static struct pci_driver nvme_driver = {
3574 	.name		= "nvme",
3575 	.id_table	= nvme_id_table,
3576 	.probe		= nvme_probe,
3577 	.remove		= nvme_remove,
3578 	.shutdown	= nvme_shutdown,
3579 #ifdef CONFIG_PM_SLEEP
3580 	.driver		= {
3581 		.pm	= &nvme_dev_pm_ops,
3582 	},
3583 #endif
3584 	.sriov_configure = pci_sriov_configure_simple,
3585 	.err_handler	= &nvme_err_handler,
3586 };
3587 
3588 static int __init nvme_init(void)
3589 {
3590 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3591 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3592 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3593 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3594 	BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3595 		     S8_MAX);
3596 
3597 	return pci_register_driver(&nvme_driver);
3598 }
3599 
3600 static void __exit nvme_exit(void)
3601 {
3602 	pci_unregister_driver(&nvme_driver);
3603 	flush_workqueue(nvme_wq);
3604 }
3605 
3606 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3607 MODULE_LICENSE("GPL");
3608 MODULE_VERSION("1.0");
3609 module_init(nvme_init);
3610 module_exit(nvme_exit);
3611