1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/cpu.h> 20 #include <linux/delay.h> 21 #include <linux/errno.h> 22 #include <linux/fs.h> 23 #include <linux/genhd.h> 24 #include <linux/hdreg.h> 25 #include <linux/idr.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/kdev_t.h> 30 #include <linux/kernel.h> 31 #include <linux/mm.h> 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/mutex.h> 35 #include <linux/pci.h> 36 #include <linux/poison.h> 37 #include <linux/ptrace.h> 38 #include <linux/sched.h> 39 #include <linux/slab.h> 40 #include <linux/t10-pi.h> 41 #include <linux/timer.h> 42 #include <linux/types.h> 43 #include <linux/io-64-nonatomic-lo-hi.h> 44 #include <asm/unaligned.h> 45 46 #include "nvme.h" 47 48 #define NVME_Q_DEPTH 1024 49 #define NVME_AQ_DEPTH 256 50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 52 53 /* 54 * We handle AEN commands ourselves and don't even let the 55 * block layer know about them. 56 */ 57 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 58 59 static int use_threaded_interrupts; 60 module_param(use_threaded_interrupts, int, 0); 61 62 static bool use_cmb_sqes = true; 63 module_param(use_cmb_sqes, bool, 0644); 64 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 65 66 static struct workqueue_struct *nvme_workq; 67 68 struct nvme_dev; 69 struct nvme_queue; 70 71 static int nvme_reset(struct nvme_dev *dev); 72 static void nvme_process_cq(struct nvme_queue *nvmeq); 73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 74 75 /* 76 * Represents an NVM Express device. Each nvme_dev is a PCI function. 77 */ 78 struct nvme_dev { 79 struct nvme_queue **queues; 80 struct blk_mq_tag_set tagset; 81 struct blk_mq_tag_set admin_tagset; 82 u32 __iomem *dbs; 83 struct device *dev; 84 struct dma_pool *prp_page_pool; 85 struct dma_pool *prp_small_pool; 86 unsigned queue_count; 87 unsigned online_queues; 88 unsigned max_qid; 89 int q_depth; 90 u32 db_stride; 91 struct msix_entry *entry; 92 void __iomem *bar; 93 struct work_struct reset_work; 94 struct work_struct remove_work; 95 struct timer_list watchdog_timer; 96 struct mutex shutdown_lock; 97 bool subsystem; 98 void __iomem *cmb; 99 dma_addr_t cmb_dma_addr; 100 u64 cmb_size; 101 u32 cmbsz; 102 struct nvme_ctrl ctrl; 103 struct completion ioq_wait; 104 }; 105 106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 107 { 108 return container_of(ctrl, struct nvme_dev, ctrl); 109 } 110 111 /* 112 * An NVM Express queue. Each device has at least two (one for admin 113 * commands and one for I/O commands). 114 */ 115 struct nvme_queue { 116 struct device *q_dmadev; 117 struct nvme_dev *dev; 118 char irqname[24]; /* nvme4294967295-65535\0 */ 119 spinlock_t q_lock; 120 struct nvme_command *sq_cmds; 121 struct nvme_command __iomem *sq_cmds_io; 122 volatile struct nvme_completion *cqes; 123 struct blk_mq_tags **tags; 124 dma_addr_t sq_dma_addr; 125 dma_addr_t cq_dma_addr; 126 u32 __iomem *q_db; 127 u16 q_depth; 128 s16 cq_vector; 129 u16 sq_tail; 130 u16 cq_head; 131 u16 qid; 132 u8 cq_phase; 133 u8 cqe_seen; 134 }; 135 136 /* 137 * The nvme_iod describes the data in an I/O, including the list of PRP 138 * entries. You can't see it in this data structure because C doesn't let 139 * me express that. Use nvme_init_iod to ensure there's enough space 140 * allocated to store the PRP list. 141 */ 142 struct nvme_iod { 143 struct nvme_queue *nvmeq; 144 int aborted; 145 int npages; /* In the PRP list. 0 means small pool in use */ 146 int nents; /* Used in scatterlist */ 147 int length; /* Of data, in bytes */ 148 dma_addr_t first_dma; 149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 150 struct scatterlist *sg; 151 struct scatterlist inline_sg[0]; 152 }; 153 154 /* 155 * Check we didin't inadvertently grow the command struct 156 */ 157 static inline void _nvme_check_size(void) 158 { 159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 171 } 172 173 /* 174 * Max size of iod being embedded in the request payload 175 */ 176 #define NVME_INT_PAGES 2 177 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 178 179 /* 180 * Will slightly overestimate the number of pages needed. This is OK 181 * as it only leads to a small amount of wasted memory for the lifetime of 182 * the I/O. 183 */ 184 static int nvme_npages(unsigned size, struct nvme_dev *dev) 185 { 186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 187 dev->ctrl.page_size); 188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 189 } 190 191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 192 unsigned int size, unsigned int nseg) 193 { 194 return sizeof(__le64 *) * nvme_npages(size, dev) + 195 sizeof(struct scatterlist) * nseg; 196 } 197 198 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 199 { 200 return sizeof(struct nvme_iod) + 201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 202 } 203 204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 205 unsigned int hctx_idx) 206 { 207 struct nvme_dev *dev = data; 208 struct nvme_queue *nvmeq = dev->queues[0]; 209 210 WARN_ON(hctx_idx != 0); 211 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 212 WARN_ON(nvmeq->tags); 213 214 hctx->driver_data = nvmeq; 215 nvmeq->tags = &dev->admin_tagset.tags[0]; 216 return 0; 217 } 218 219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 220 { 221 struct nvme_queue *nvmeq = hctx->driver_data; 222 223 nvmeq->tags = NULL; 224 } 225 226 static int nvme_admin_init_request(void *data, struct request *req, 227 unsigned int hctx_idx, unsigned int rq_idx, 228 unsigned int numa_node) 229 { 230 struct nvme_dev *dev = data; 231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 232 struct nvme_queue *nvmeq = dev->queues[0]; 233 234 BUG_ON(!nvmeq); 235 iod->nvmeq = nvmeq; 236 return 0; 237 } 238 239 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 240 unsigned int hctx_idx) 241 { 242 struct nvme_dev *dev = data; 243 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 244 245 if (!nvmeq->tags) 246 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 247 248 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 249 hctx->driver_data = nvmeq; 250 return 0; 251 } 252 253 static int nvme_init_request(void *data, struct request *req, 254 unsigned int hctx_idx, unsigned int rq_idx, 255 unsigned int numa_node) 256 { 257 struct nvme_dev *dev = data; 258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 259 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 260 261 BUG_ON(!nvmeq); 262 iod->nvmeq = nvmeq; 263 return 0; 264 } 265 266 /** 267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 268 * @nvmeq: The queue to use 269 * @cmd: The command to send 270 * 271 * Safe to use from interrupt context 272 */ 273 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 274 struct nvme_command *cmd) 275 { 276 u16 tail = nvmeq->sq_tail; 277 278 if (nvmeq->sq_cmds_io) 279 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 280 else 281 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 282 283 if (++tail == nvmeq->q_depth) 284 tail = 0; 285 writel(tail, nvmeq->q_db); 286 nvmeq->sq_tail = tail; 287 } 288 289 static __le64 **iod_list(struct request *req) 290 { 291 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 292 return (__le64 **)(iod->sg + req->nr_phys_segments); 293 } 294 295 static int nvme_init_iod(struct request *rq, unsigned size, 296 struct nvme_dev *dev) 297 { 298 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 299 int nseg = rq->nr_phys_segments; 300 301 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 302 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 303 if (!iod->sg) 304 return BLK_MQ_RQ_QUEUE_BUSY; 305 } else { 306 iod->sg = iod->inline_sg; 307 } 308 309 iod->aborted = 0; 310 iod->npages = -1; 311 iod->nents = 0; 312 iod->length = size; 313 314 if (!(rq->cmd_flags & REQ_DONTPREP)) { 315 rq->retries = 0; 316 rq->cmd_flags |= REQ_DONTPREP; 317 } 318 return 0; 319 } 320 321 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 322 { 323 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 324 const int last_prp = dev->ctrl.page_size / 8 - 1; 325 int i; 326 __le64 **list = iod_list(req); 327 dma_addr_t prp_dma = iod->first_dma; 328 329 nvme_cleanup_cmd(req); 330 331 if (iod->npages == 0) 332 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 333 for (i = 0; i < iod->npages; i++) { 334 __le64 *prp_list = list[i]; 335 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 336 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 337 prp_dma = next_prp_dma; 338 } 339 340 if (iod->sg != iod->inline_sg) 341 kfree(iod->sg); 342 } 343 344 #ifdef CONFIG_BLK_DEV_INTEGRITY 345 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 346 { 347 if (be32_to_cpu(pi->ref_tag) == v) 348 pi->ref_tag = cpu_to_be32(p); 349 } 350 351 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 352 { 353 if (be32_to_cpu(pi->ref_tag) == p) 354 pi->ref_tag = cpu_to_be32(v); 355 } 356 357 /** 358 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 359 * 360 * The virtual start sector is the one that was originally submitted by the 361 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 362 * start sector may be different. Remap protection information to match the 363 * physical LBA on writes, and back to the original seed on reads. 364 * 365 * Type 0 and 3 do not have a ref tag, so no remapping required. 366 */ 367 static void nvme_dif_remap(struct request *req, 368 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 369 { 370 struct nvme_ns *ns = req->rq_disk->private_data; 371 struct bio_integrity_payload *bip; 372 struct t10_pi_tuple *pi; 373 void *p, *pmap; 374 u32 i, nlb, ts, phys, virt; 375 376 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 377 return; 378 379 bip = bio_integrity(req->bio); 380 if (!bip) 381 return; 382 383 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 384 385 p = pmap; 386 virt = bip_get_seed(bip); 387 phys = nvme_block_nr(ns, blk_rq_pos(req)); 388 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 389 ts = ns->disk->queue->integrity.tuple_size; 390 391 for (i = 0; i < nlb; i++, virt++, phys++) { 392 pi = (struct t10_pi_tuple *)p; 393 dif_swap(phys, virt, pi); 394 p += ts; 395 } 396 kunmap_atomic(pmap); 397 } 398 #else /* CONFIG_BLK_DEV_INTEGRITY */ 399 static void nvme_dif_remap(struct request *req, 400 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 401 { 402 } 403 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 404 { 405 } 406 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 407 { 408 } 409 #endif 410 411 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, 412 int total_len) 413 { 414 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 415 struct dma_pool *pool; 416 int length = total_len; 417 struct scatterlist *sg = iod->sg; 418 int dma_len = sg_dma_len(sg); 419 u64 dma_addr = sg_dma_address(sg); 420 u32 page_size = dev->ctrl.page_size; 421 int offset = dma_addr & (page_size - 1); 422 __le64 *prp_list; 423 __le64 **list = iod_list(req); 424 dma_addr_t prp_dma; 425 int nprps, i; 426 427 length -= (page_size - offset); 428 if (length <= 0) 429 return true; 430 431 dma_len -= (page_size - offset); 432 if (dma_len) { 433 dma_addr += (page_size - offset); 434 } else { 435 sg = sg_next(sg); 436 dma_addr = sg_dma_address(sg); 437 dma_len = sg_dma_len(sg); 438 } 439 440 if (length <= page_size) { 441 iod->first_dma = dma_addr; 442 return true; 443 } 444 445 nprps = DIV_ROUND_UP(length, page_size); 446 if (nprps <= (256 / 8)) { 447 pool = dev->prp_small_pool; 448 iod->npages = 0; 449 } else { 450 pool = dev->prp_page_pool; 451 iod->npages = 1; 452 } 453 454 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 455 if (!prp_list) { 456 iod->first_dma = dma_addr; 457 iod->npages = -1; 458 return false; 459 } 460 list[0] = prp_list; 461 iod->first_dma = prp_dma; 462 i = 0; 463 for (;;) { 464 if (i == page_size >> 3) { 465 __le64 *old_prp_list = prp_list; 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 467 if (!prp_list) 468 return false; 469 list[iod->npages++] = prp_list; 470 prp_list[0] = old_prp_list[i - 1]; 471 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 472 i = 1; 473 } 474 prp_list[i++] = cpu_to_le64(dma_addr); 475 dma_len -= page_size; 476 dma_addr += page_size; 477 length -= page_size; 478 if (length <= 0) 479 break; 480 if (dma_len > 0) 481 continue; 482 BUG_ON(dma_len < 0); 483 sg = sg_next(sg); 484 dma_addr = sg_dma_address(sg); 485 dma_len = sg_dma_len(sg); 486 } 487 488 return true; 489 } 490 491 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 492 unsigned size, struct nvme_command *cmnd) 493 { 494 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 495 struct request_queue *q = req->q; 496 enum dma_data_direction dma_dir = rq_data_dir(req) ? 497 DMA_TO_DEVICE : DMA_FROM_DEVICE; 498 int ret = BLK_MQ_RQ_QUEUE_ERROR; 499 500 sg_init_table(iod->sg, req->nr_phys_segments); 501 iod->nents = blk_rq_map_sg(q, req, iod->sg); 502 if (!iod->nents) 503 goto out; 504 505 ret = BLK_MQ_RQ_QUEUE_BUSY; 506 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir)) 507 goto out; 508 509 if (!nvme_setup_prps(dev, req, size)) 510 goto out_unmap; 511 512 ret = BLK_MQ_RQ_QUEUE_ERROR; 513 if (blk_integrity_rq(req)) { 514 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 515 goto out_unmap; 516 517 sg_init_table(&iod->meta_sg, 1); 518 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 519 goto out_unmap; 520 521 if (rq_data_dir(req)) 522 nvme_dif_remap(req, nvme_dif_prep); 523 524 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 525 goto out_unmap; 526 } 527 528 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 529 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 530 if (blk_integrity_rq(req)) 531 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 532 return BLK_MQ_RQ_QUEUE_OK; 533 534 out_unmap: 535 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 536 out: 537 return ret; 538 } 539 540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 541 { 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 543 enum dma_data_direction dma_dir = rq_data_dir(req) ? 544 DMA_TO_DEVICE : DMA_FROM_DEVICE; 545 546 if (iod->nents) { 547 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 548 if (blk_integrity_rq(req)) { 549 if (!rq_data_dir(req)) 550 nvme_dif_remap(req, nvme_dif_complete); 551 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 552 } 553 } 554 555 nvme_free_iod(dev, req); 556 } 557 558 /* 559 * NOTE: ns is NULL when called on the admin queue. 560 */ 561 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 562 const struct blk_mq_queue_data *bd) 563 { 564 struct nvme_ns *ns = hctx->queue->queuedata; 565 struct nvme_queue *nvmeq = hctx->driver_data; 566 struct nvme_dev *dev = nvmeq->dev; 567 struct request *req = bd->rq; 568 struct nvme_command cmnd; 569 unsigned map_len; 570 int ret = BLK_MQ_RQ_QUEUE_OK; 571 572 /* 573 * If formated with metadata, require the block layer provide a buffer 574 * unless this namespace is formated such that the metadata can be 575 * stripped/generated by the controller with PRACT=1. 576 */ 577 if (ns && ns->ms && !blk_integrity_rq(req)) { 578 if (!(ns->pi_type && ns->ms == 8) && 579 req->cmd_type != REQ_TYPE_DRV_PRIV) { 580 blk_mq_end_request(req, -EFAULT); 581 return BLK_MQ_RQ_QUEUE_OK; 582 } 583 } 584 585 map_len = nvme_map_len(req); 586 ret = nvme_init_iod(req, map_len, dev); 587 if (ret) 588 return ret; 589 590 ret = nvme_setup_cmd(ns, req, &cmnd); 591 if (ret) 592 goto out; 593 594 if (req->nr_phys_segments) 595 ret = nvme_map_data(dev, req, map_len, &cmnd); 596 597 if (ret) 598 goto out; 599 600 cmnd.common.command_id = req->tag; 601 blk_mq_start_request(req); 602 603 spin_lock_irq(&nvmeq->q_lock); 604 if (unlikely(nvmeq->cq_vector < 0)) { 605 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) 606 ret = BLK_MQ_RQ_QUEUE_BUSY; 607 else 608 ret = BLK_MQ_RQ_QUEUE_ERROR; 609 spin_unlock_irq(&nvmeq->q_lock); 610 goto out; 611 } 612 __nvme_submit_cmd(nvmeq, &cmnd); 613 nvme_process_cq(nvmeq); 614 spin_unlock_irq(&nvmeq->q_lock); 615 return BLK_MQ_RQ_QUEUE_OK; 616 out: 617 nvme_free_iod(dev, req); 618 return ret; 619 } 620 621 static void nvme_complete_rq(struct request *req) 622 { 623 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 624 struct nvme_dev *dev = iod->nvmeq->dev; 625 int error = 0; 626 627 nvme_unmap_data(dev, req); 628 629 if (unlikely(req->errors)) { 630 if (nvme_req_needs_retry(req, req->errors)) { 631 req->retries++; 632 nvme_requeue_req(req); 633 return; 634 } 635 636 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 637 error = req->errors; 638 else 639 error = nvme_error_status(req->errors); 640 } 641 642 if (unlikely(iod->aborted)) { 643 dev_warn(dev->ctrl.device, 644 "completing aborted command with status: %04x\n", 645 req->errors); 646 } 647 648 blk_mq_end_request(req, error); 649 } 650 651 /* We read the CQE phase first to check if the rest of the entry is valid */ 652 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 653 u16 phase) 654 { 655 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 656 } 657 658 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 659 { 660 u16 head, phase; 661 662 head = nvmeq->cq_head; 663 phase = nvmeq->cq_phase; 664 665 while (nvme_cqe_valid(nvmeq, head, phase)) { 666 struct nvme_completion cqe = nvmeq->cqes[head]; 667 struct request *req; 668 669 if (++head == nvmeq->q_depth) { 670 head = 0; 671 phase = !phase; 672 } 673 674 if (tag && *tag == cqe.command_id) 675 *tag = -1; 676 677 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 678 dev_warn(nvmeq->dev->ctrl.device, 679 "invalid id %d completed on queue %d\n", 680 cqe.command_id, le16_to_cpu(cqe.sq_id)); 681 continue; 682 } 683 684 /* 685 * AEN requests are special as they don't time out and can 686 * survive any kind of queue freeze and often don't respond to 687 * aborts. We don't even bother to allocate a struct request 688 * for them but rather special case them here. 689 */ 690 if (unlikely(nvmeq->qid == 0 && 691 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 692 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe); 693 continue; 694 } 695 696 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 697 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) 698 memcpy(req->special, &cqe, sizeof(cqe)); 699 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 700 701 } 702 703 /* If the controller ignores the cq head doorbell and continuously 704 * writes to the queue, it is theoretically possible to wrap around 705 * the queue twice and mistakenly return IRQ_NONE. Linux only 706 * requires that 0.1% of your interrupts are handled, so this isn't 707 * a big problem. 708 */ 709 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 710 return; 711 712 if (likely(nvmeq->cq_vector >= 0)) 713 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 714 nvmeq->cq_head = head; 715 nvmeq->cq_phase = phase; 716 717 nvmeq->cqe_seen = 1; 718 } 719 720 static void nvme_process_cq(struct nvme_queue *nvmeq) 721 { 722 __nvme_process_cq(nvmeq, NULL); 723 } 724 725 static irqreturn_t nvme_irq(int irq, void *data) 726 { 727 irqreturn_t result; 728 struct nvme_queue *nvmeq = data; 729 spin_lock(&nvmeq->q_lock); 730 nvme_process_cq(nvmeq); 731 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 732 nvmeq->cqe_seen = 0; 733 spin_unlock(&nvmeq->q_lock); 734 return result; 735 } 736 737 static irqreturn_t nvme_irq_check(int irq, void *data) 738 { 739 struct nvme_queue *nvmeq = data; 740 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 741 return IRQ_WAKE_THREAD; 742 return IRQ_NONE; 743 } 744 745 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 746 { 747 struct nvme_queue *nvmeq = hctx->driver_data; 748 749 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 750 spin_lock_irq(&nvmeq->q_lock); 751 __nvme_process_cq(nvmeq, &tag); 752 spin_unlock_irq(&nvmeq->q_lock); 753 754 if (tag == -1) 755 return 1; 756 } 757 758 return 0; 759 } 760 761 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 762 { 763 struct nvme_dev *dev = to_nvme_dev(ctrl); 764 struct nvme_queue *nvmeq = dev->queues[0]; 765 struct nvme_command c; 766 767 memset(&c, 0, sizeof(c)); 768 c.common.opcode = nvme_admin_async_event; 769 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 770 771 spin_lock_irq(&nvmeq->q_lock); 772 __nvme_submit_cmd(nvmeq, &c); 773 spin_unlock_irq(&nvmeq->q_lock); 774 } 775 776 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 777 { 778 struct nvme_command c; 779 780 memset(&c, 0, sizeof(c)); 781 c.delete_queue.opcode = opcode; 782 c.delete_queue.qid = cpu_to_le16(id); 783 784 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 785 } 786 787 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 788 struct nvme_queue *nvmeq) 789 { 790 struct nvme_command c; 791 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 792 793 /* 794 * Note: we (ab)use the fact the the prp fields survive if no data 795 * is attached to the request. 796 */ 797 memset(&c, 0, sizeof(c)); 798 c.create_cq.opcode = nvme_admin_create_cq; 799 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 800 c.create_cq.cqid = cpu_to_le16(qid); 801 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 802 c.create_cq.cq_flags = cpu_to_le16(flags); 803 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 804 805 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 806 } 807 808 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 809 struct nvme_queue *nvmeq) 810 { 811 struct nvme_command c; 812 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 813 814 /* 815 * Note: we (ab)use the fact the the prp fields survive if no data 816 * is attached to the request. 817 */ 818 memset(&c, 0, sizeof(c)); 819 c.create_sq.opcode = nvme_admin_create_sq; 820 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 821 c.create_sq.sqid = cpu_to_le16(qid); 822 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 823 c.create_sq.sq_flags = cpu_to_le16(flags); 824 c.create_sq.cqid = cpu_to_le16(qid); 825 826 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 827 } 828 829 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 830 { 831 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 832 } 833 834 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 835 { 836 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 837 } 838 839 static void abort_endio(struct request *req, int error) 840 { 841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 842 struct nvme_queue *nvmeq = iod->nvmeq; 843 u16 status = req->errors; 844 845 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 846 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 847 blk_mq_free_request(req); 848 } 849 850 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 851 { 852 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 853 struct nvme_queue *nvmeq = iod->nvmeq; 854 struct nvme_dev *dev = nvmeq->dev; 855 struct request *abort_req; 856 struct nvme_command cmd; 857 858 /* 859 * Shutdown immediately if controller times out while starting. The 860 * reset work will see the pci device disabled when it gets the forced 861 * cancellation error. All outstanding requests are completed on 862 * shutdown, so we return BLK_EH_HANDLED. 863 */ 864 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 865 dev_warn(dev->ctrl.device, 866 "I/O %d QID %d timeout, disable controller\n", 867 req->tag, nvmeq->qid); 868 nvme_dev_disable(dev, false); 869 req->errors = NVME_SC_CANCELLED; 870 return BLK_EH_HANDLED; 871 } 872 873 /* 874 * Shutdown the controller immediately and schedule a reset if the 875 * command was already aborted once before and still hasn't been 876 * returned to the driver, or if this is the admin queue. 877 */ 878 if (!nvmeq->qid || iod->aborted) { 879 dev_warn(dev->ctrl.device, 880 "I/O %d QID %d timeout, reset controller\n", 881 req->tag, nvmeq->qid); 882 nvme_dev_disable(dev, false); 883 queue_work(nvme_workq, &dev->reset_work); 884 885 /* 886 * Mark the request as handled, since the inline shutdown 887 * forces all outstanding requests to complete. 888 */ 889 req->errors = NVME_SC_CANCELLED; 890 return BLK_EH_HANDLED; 891 } 892 893 iod->aborted = 1; 894 895 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 896 atomic_inc(&dev->ctrl.abort_limit); 897 return BLK_EH_RESET_TIMER; 898 } 899 900 memset(&cmd, 0, sizeof(cmd)); 901 cmd.abort.opcode = nvme_admin_abort_cmd; 902 cmd.abort.cid = req->tag; 903 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 904 905 dev_warn(nvmeq->dev->ctrl.device, 906 "I/O %d QID %d timeout, aborting\n", 907 req->tag, nvmeq->qid); 908 909 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 910 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 911 if (IS_ERR(abort_req)) { 912 atomic_inc(&dev->ctrl.abort_limit); 913 return BLK_EH_RESET_TIMER; 914 } 915 916 abort_req->timeout = ADMIN_TIMEOUT; 917 abort_req->end_io_data = NULL; 918 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 919 920 /* 921 * The aborted req will be completed on receiving the abort req. 922 * We enable the timer again. If hit twice, it'll cause a device reset, 923 * as the device then is in a faulty state. 924 */ 925 return BLK_EH_RESET_TIMER; 926 } 927 928 static void nvme_free_queue(struct nvme_queue *nvmeq) 929 { 930 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 931 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 932 if (nvmeq->sq_cmds) 933 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 934 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 935 kfree(nvmeq); 936 } 937 938 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 939 { 940 int i; 941 942 for (i = dev->queue_count - 1; i >= lowest; i--) { 943 struct nvme_queue *nvmeq = dev->queues[i]; 944 dev->queue_count--; 945 dev->queues[i] = NULL; 946 nvme_free_queue(nvmeq); 947 } 948 } 949 950 /** 951 * nvme_suspend_queue - put queue into suspended state 952 * @nvmeq - queue to suspend 953 */ 954 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 955 { 956 int vector; 957 958 spin_lock_irq(&nvmeq->q_lock); 959 if (nvmeq->cq_vector == -1) { 960 spin_unlock_irq(&nvmeq->q_lock); 961 return 1; 962 } 963 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; 964 nvmeq->dev->online_queues--; 965 nvmeq->cq_vector = -1; 966 spin_unlock_irq(&nvmeq->q_lock); 967 968 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 969 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 970 971 irq_set_affinity_hint(vector, NULL); 972 free_irq(vector, nvmeq); 973 974 return 0; 975 } 976 977 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 978 { 979 struct nvme_queue *nvmeq = dev->queues[0]; 980 981 if (!nvmeq) 982 return; 983 if (nvme_suspend_queue(nvmeq)) 984 return; 985 986 if (shutdown) 987 nvme_shutdown_ctrl(&dev->ctrl); 988 else 989 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 990 dev->bar + NVME_REG_CAP)); 991 992 spin_lock_irq(&nvmeq->q_lock); 993 nvme_process_cq(nvmeq); 994 spin_unlock_irq(&nvmeq->q_lock); 995 } 996 997 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 998 int entry_size) 999 { 1000 int q_depth = dev->q_depth; 1001 unsigned q_size_aligned = roundup(q_depth * entry_size, 1002 dev->ctrl.page_size); 1003 1004 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1005 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1006 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1007 q_depth = div_u64(mem_per_q, entry_size); 1008 1009 /* 1010 * Ensure the reduced q_depth is above some threshold where it 1011 * would be better to map queues in system memory with the 1012 * original depth 1013 */ 1014 if (q_depth < 64) 1015 return -ENOMEM; 1016 } 1017 1018 return q_depth; 1019 } 1020 1021 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1022 int qid, int depth) 1023 { 1024 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1025 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1026 dev->ctrl.page_size); 1027 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1028 nvmeq->sq_cmds_io = dev->cmb + offset; 1029 } else { 1030 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1031 &nvmeq->sq_dma_addr, GFP_KERNEL); 1032 if (!nvmeq->sq_cmds) 1033 return -ENOMEM; 1034 } 1035 1036 return 0; 1037 } 1038 1039 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1040 int depth) 1041 { 1042 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1043 if (!nvmeq) 1044 return NULL; 1045 1046 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1047 &nvmeq->cq_dma_addr, GFP_KERNEL); 1048 if (!nvmeq->cqes) 1049 goto free_nvmeq; 1050 1051 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1052 goto free_cqdma; 1053 1054 nvmeq->q_dmadev = dev->dev; 1055 nvmeq->dev = dev; 1056 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1057 dev->ctrl.instance, qid); 1058 spin_lock_init(&nvmeq->q_lock); 1059 nvmeq->cq_head = 0; 1060 nvmeq->cq_phase = 1; 1061 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1062 nvmeq->q_depth = depth; 1063 nvmeq->qid = qid; 1064 nvmeq->cq_vector = -1; 1065 dev->queues[qid] = nvmeq; 1066 dev->queue_count++; 1067 1068 return nvmeq; 1069 1070 free_cqdma: 1071 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1072 nvmeq->cq_dma_addr); 1073 free_nvmeq: 1074 kfree(nvmeq); 1075 return NULL; 1076 } 1077 1078 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1079 const char *name) 1080 { 1081 if (use_threaded_interrupts) 1082 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, 1083 nvme_irq_check, nvme_irq, IRQF_SHARED, 1084 name, nvmeq); 1085 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, 1086 IRQF_SHARED, name, nvmeq); 1087 } 1088 1089 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1090 { 1091 struct nvme_dev *dev = nvmeq->dev; 1092 1093 spin_lock_irq(&nvmeq->q_lock); 1094 nvmeq->sq_tail = 0; 1095 nvmeq->cq_head = 0; 1096 nvmeq->cq_phase = 1; 1097 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1098 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1099 dev->online_queues++; 1100 spin_unlock_irq(&nvmeq->q_lock); 1101 } 1102 1103 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1104 { 1105 struct nvme_dev *dev = nvmeq->dev; 1106 int result; 1107 1108 nvmeq->cq_vector = qid - 1; 1109 result = adapter_alloc_cq(dev, qid, nvmeq); 1110 if (result < 0) 1111 return result; 1112 1113 result = adapter_alloc_sq(dev, qid, nvmeq); 1114 if (result < 0) 1115 goto release_cq; 1116 1117 result = queue_request_irq(dev, nvmeq, nvmeq->irqname); 1118 if (result < 0) 1119 goto release_sq; 1120 1121 nvme_init_queue(nvmeq, qid); 1122 return result; 1123 1124 release_sq: 1125 adapter_delete_sq(dev, qid); 1126 release_cq: 1127 adapter_delete_cq(dev, qid); 1128 return result; 1129 } 1130 1131 static struct blk_mq_ops nvme_mq_admin_ops = { 1132 .queue_rq = nvme_queue_rq, 1133 .complete = nvme_complete_rq, 1134 .map_queue = blk_mq_map_queue, 1135 .init_hctx = nvme_admin_init_hctx, 1136 .exit_hctx = nvme_admin_exit_hctx, 1137 .init_request = nvme_admin_init_request, 1138 .timeout = nvme_timeout, 1139 }; 1140 1141 static struct blk_mq_ops nvme_mq_ops = { 1142 .queue_rq = nvme_queue_rq, 1143 .complete = nvme_complete_rq, 1144 .map_queue = blk_mq_map_queue, 1145 .init_hctx = nvme_init_hctx, 1146 .init_request = nvme_init_request, 1147 .timeout = nvme_timeout, 1148 .poll = nvme_poll, 1149 }; 1150 1151 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1152 { 1153 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1154 /* 1155 * If the controller was reset during removal, it's possible 1156 * user requests may be waiting on a stopped queue. Start the 1157 * queue to flush these to completion. 1158 */ 1159 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1160 blk_cleanup_queue(dev->ctrl.admin_q); 1161 blk_mq_free_tag_set(&dev->admin_tagset); 1162 } 1163 } 1164 1165 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1166 { 1167 if (!dev->ctrl.admin_q) { 1168 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1169 dev->admin_tagset.nr_hw_queues = 1; 1170 1171 /* 1172 * Subtract one to leave an empty queue entry for 'Full Queue' 1173 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1174 */ 1175 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1176 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1177 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1178 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1179 dev->admin_tagset.driver_data = dev; 1180 1181 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1182 return -ENOMEM; 1183 1184 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1185 if (IS_ERR(dev->ctrl.admin_q)) { 1186 blk_mq_free_tag_set(&dev->admin_tagset); 1187 return -ENOMEM; 1188 } 1189 if (!blk_get_queue(dev->ctrl.admin_q)) { 1190 nvme_dev_remove_admin(dev); 1191 dev->ctrl.admin_q = NULL; 1192 return -ENODEV; 1193 } 1194 } else 1195 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1196 1197 return 0; 1198 } 1199 1200 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1201 { 1202 int result; 1203 u32 aqa; 1204 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1205 struct nvme_queue *nvmeq; 1206 1207 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ? 1208 NVME_CAP_NSSRC(cap) : 0; 1209 1210 if (dev->subsystem && 1211 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1212 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1213 1214 result = nvme_disable_ctrl(&dev->ctrl, cap); 1215 if (result < 0) 1216 return result; 1217 1218 nvmeq = dev->queues[0]; 1219 if (!nvmeq) { 1220 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1221 if (!nvmeq) 1222 return -ENOMEM; 1223 } 1224 1225 aqa = nvmeq->q_depth - 1; 1226 aqa |= aqa << 16; 1227 1228 writel(aqa, dev->bar + NVME_REG_AQA); 1229 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1230 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1231 1232 result = nvme_enable_ctrl(&dev->ctrl, cap); 1233 if (result) 1234 goto free_nvmeq; 1235 1236 nvmeq->cq_vector = 0; 1237 result = queue_request_irq(dev, nvmeq, nvmeq->irqname); 1238 if (result) { 1239 nvmeq->cq_vector = -1; 1240 goto free_nvmeq; 1241 } 1242 1243 return result; 1244 1245 free_nvmeq: 1246 nvme_free_queues(dev, 0); 1247 return result; 1248 } 1249 1250 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1251 { 1252 1253 /* If true, indicates loss of adapter communication, possibly by a 1254 * NVMe Subsystem reset. 1255 */ 1256 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1257 1258 /* If there is a reset ongoing, we shouldn't reset again. */ 1259 if (work_busy(&dev->reset_work)) 1260 return false; 1261 1262 /* We shouldn't reset unless the controller is on fatal error state 1263 * _or_ if we lost the communication with it. 1264 */ 1265 if (!(csts & NVME_CSTS_CFS) && !nssro) 1266 return false; 1267 1268 /* If PCI error recovery process is happening, we cannot reset or 1269 * the recovery mechanism will surely fail. 1270 */ 1271 if (pci_channel_offline(to_pci_dev(dev->dev))) 1272 return false; 1273 1274 return true; 1275 } 1276 1277 static void nvme_watchdog_timer(unsigned long data) 1278 { 1279 struct nvme_dev *dev = (struct nvme_dev *)data; 1280 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1281 1282 /* Skip controllers under certain specific conditions. */ 1283 if (nvme_should_reset(dev, csts)) { 1284 if (queue_work(nvme_workq, &dev->reset_work)) 1285 dev_warn(dev->dev, 1286 "Failed status: 0x%x, reset controller.\n", 1287 csts); 1288 return; 1289 } 1290 1291 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1292 } 1293 1294 static int nvme_create_io_queues(struct nvme_dev *dev) 1295 { 1296 unsigned i, max; 1297 int ret = 0; 1298 1299 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1300 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1301 ret = -ENOMEM; 1302 break; 1303 } 1304 } 1305 1306 max = min(dev->max_qid, dev->queue_count - 1); 1307 for (i = dev->online_queues; i <= max; i++) { 1308 ret = nvme_create_queue(dev->queues[i], i); 1309 if (ret) { 1310 nvme_free_queues(dev, i); 1311 break; 1312 } 1313 } 1314 1315 /* 1316 * Ignore failing Create SQ/CQ commands, we can continue with less 1317 * than the desired aount of queues, and even a controller without 1318 * I/O queues an still be used to issue admin commands. This might 1319 * be useful to upgrade a buggy firmware for example. 1320 */ 1321 return ret >= 0 ? 0 : ret; 1322 } 1323 1324 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1325 { 1326 u64 szu, size, offset; 1327 u32 cmbloc; 1328 resource_size_t bar_size; 1329 struct pci_dev *pdev = to_pci_dev(dev->dev); 1330 void __iomem *cmb; 1331 dma_addr_t dma_addr; 1332 1333 if (!use_cmb_sqes) 1334 return NULL; 1335 1336 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1337 if (!(NVME_CMB_SZ(dev->cmbsz))) 1338 return NULL; 1339 1340 cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1341 1342 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1343 size = szu * NVME_CMB_SZ(dev->cmbsz); 1344 offset = szu * NVME_CMB_OFST(cmbloc); 1345 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); 1346 1347 if (offset > bar_size) 1348 return NULL; 1349 1350 /* 1351 * Controllers may support a CMB size larger than their BAR, 1352 * for example, due to being behind a bridge. Reduce the CMB to 1353 * the reported size of the BAR 1354 */ 1355 if (size > bar_size - offset) 1356 size = bar_size - offset; 1357 1358 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; 1359 cmb = ioremap_wc(dma_addr, size); 1360 if (!cmb) 1361 return NULL; 1362 1363 dev->cmb_dma_addr = dma_addr; 1364 dev->cmb_size = size; 1365 return cmb; 1366 } 1367 1368 static inline void nvme_release_cmb(struct nvme_dev *dev) 1369 { 1370 if (dev->cmb) { 1371 iounmap(dev->cmb); 1372 dev->cmb = NULL; 1373 } 1374 } 1375 1376 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1377 { 1378 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1379 } 1380 1381 static int nvme_setup_io_queues(struct nvme_dev *dev) 1382 { 1383 struct nvme_queue *adminq = dev->queues[0]; 1384 struct pci_dev *pdev = to_pci_dev(dev->dev); 1385 int result, i, vecs, nr_io_queues, size; 1386 1387 nr_io_queues = num_online_cpus(); 1388 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1389 if (result < 0) 1390 return result; 1391 1392 if (nr_io_queues == 0) 1393 return 0; 1394 1395 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1396 result = nvme_cmb_qdepth(dev, nr_io_queues, 1397 sizeof(struct nvme_command)); 1398 if (result > 0) 1399 dev->q_depth = result; 1400 else 1401 nvme_release_cmb(dev); 1402 } 1403 1404 size = db_bar_size(dev, nr_io_queues); 1405 if (size > 8192) { 1406 iounmap(dev->bar); 1407 do { 1408 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1409 if (dev->bar) 1410 break; 1411 if (!--nr_io_queues) 1412 return -ENOMEM; 1413 size = db_bar_size(dev, nr_io_queues); 1414 } while (1); 1415 dev->dbs = dev->bar + 4096; 1416 adminq->q_db = dev->dbs; 1417 } 1418 1419 /* Deregister the admin queue's interrupt */ 1420 free_irq(dev->entry[0].vector, adminq); 1421 1422 /* 1423 * If we enable msix early due to not intx, disable it again before 1424 * setting up the full range we need. 1425 */ 1426 if (pdev->msi_enabled) 1427 pci_disable_msi(pdev); 1428 else if (pdev->msix_enabled) 1429 pci_disable_msix(pdev); 1430 1431 for (i = 0; i < nr_io_queues; i++) 1432 dev->entry[i].entry = i; 1433 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); 1434 if (vecs < 0) { 1435 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); 1436 if (vecs < 0) { 1437 vecs = 1; 1438 } else { 1439 for (i = 0; i < vecs; i++) 1440 dev->entry[i].vector = i + pdev->irq; 1441 } 1442 } 1443 1444 /* 1445 * Should investigate if there's a performance win from allocating 1446 * more queues than interrupt vectors; it might allow the submission 1447 * path to scale better, even if the receive path is limited by the 1448 * number of interrupts. 1449 */ 1450 nr_io_queues = vecs; 1451 dev->max_qid = nr_io_queues; 1452 1453 result = queue_request_irq(dev, adminq, adminq->irqname); 1454 if (result) { 1455 adminq->cq_vector = -1; 1456 goto free_queues; 1457 } 1458 return nvme_create_io_queues(dev); 1459 1460 free_queues: 1461 nvme_free_queues(dev, 1); 1462 return result; 1463 } 1464 1465 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl) 1466 { 1467 struct nvme_dev *dev = to_nvme_dev(ctrl); 1468 struct nvme_queue *nvmeq; 1469 int i; 1470 1471 for (i = 0; i < dev->online_queues; i++) { 1472 nvmeq = dev->queues[i]; 1473 1474 if (!nvmeq->tags || !(*nvmeq->tags)) 1475 continue; 1476 1477 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, 1478 blk_mq_tags_cpumask(*nvmeq->tags)); 1479 } 1480 } 1481 1482 static void nvme_del_queue_end(struct request *req, int error) 1483 { 1484 struct nvme_queue *nvmeq = req->end_io_data; 1485 1486 blk_mq_free_request(req); 1487 complete(&nvmeq->dev->ioq_wait); 1488 } 1489 1490 static void nvme_del_cq_end(struct request *req, int error) 1491 { 1492 struct nvme_queue *nvmeq = req->end_io_data; 1493 1494 if (!error) { 1495 unsigned long flags; 1496 1497 /* 1498 * We might be called with the AQ q_lock held 1499 * and the I/O queue q_lock should always 1500 * nest inside the AQ one. 1501 */ 1502 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1503 SINGLE_DEPTH_NESTING); 1504 nvme_process_cq(nvmeq); 1505 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1506 } 1507 1508 nvme_del_queue_end(req, error); 1509 } 1510 1511 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1512 { 1513 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1514 struct request *req; 1515 struct nvme_command cmd; 1516 1517 memset(&cmd, 0, sizeof(cmd)); 1518 cmd.delete_queue.opcode = opcode; 1519 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1520 1521 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1522 if (IS_ERR(req)) 1523 return PTR_ERR(req); 1524 1525 req->timeout = ADMIN_TIMEOUT; 1526 req->end_io_data = nvmeq; 1527 1528 blk_execute_rq_nowait(q, NULL, req, false, 1529 opcode == nvme_admin_delete_cq ? 1530 nvme_del_cq_end : nvme_del_queue_end); 1531 return 0; 1532 } 1533 1534 static void nvme_disable_io_queues(struct nvme_dev *dev) 1535 { 1536 int pass, queues = dev->online_queues - 1; 1537 unsigned long timeout; 1538 u8 opcode = nvme_admin_delete_sq; 1539 1540 for (pass = 0; pass < 2; pass++) { 1541 int sent = 0, i = queues; 1542 1543 reinit_completion(&dev->ioq_wait); 1544 retry: 1545 timeout = ADMIN_TIMEOUT; 1546 for (; i > 0; i--, sent++) 1547 if (nvme_delete_queue(dev->queues[i], opcode)) 1548 break; 1549 1550 while (sent--) { 1551 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1552 if (timeout == 0) 1553 return; 1554 if (i) 1555 goto retry; 1556 } 1557 opcode = nvme_admin_delete_cq; 1558 } 1559 } 1560 1561 /* 1562 * Return: error value if an error occurred setting up the queues or calling 1563 * Identify Device. 0 if these succeeded, even if adding some of the 1564 * namespaces failed. At the moment, these failures are silent. TBD which 1565 * failures should be reported. 1566 */ 1567 static int nvme_dev_add(struct nvme_dev *dev) 1568 { 1569 if (!dev->ctrl.tagset) { 1570 dev->tagset.ops = &nvme_mq_ops; 1571 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1572 dev->tagset.timeout = NVME_IO_TIMEOUT; 1573 dev->tagset.numa_node = dev_to_node(dev->dev); 1574 dev->tagset.queue_depth = 1575 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1576 dev->tagset.cmd_size = nvme_cmd_size(dev); 1577 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1578 dev->tagset.driver_data = dev; 1579 1580 if (blk_mq_alloc_tag_set(&dev->tagset)) 1581 return 0; 1582 dev->ctrl.tagset = &dev->tagset; 1583 } else { 1584 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1585 1586 /* Free previously allocated queues that are no longer usable */ 1587 nvme_free_queues(dev, dev->online_queues); 1588 } 1589 1590 return 0; 1591 } 1592 1593 static int nvme_pci_enable(struct nvme_dev *dev) 1594 { 1595 u64 cap; 1596 int result = -ENOMEM; 1597 struct pci_dev *pdev = to_pci_dev(dev->dev); 1598 1599 if (pci_enable_device_mem(pdev)) 1600 return result; 1601 1602 pci_set_master(pdev); 1603 1604 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1605 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1606 goto disable; 1607 1608 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1609 result = -ENODEV; 1610 goto disable; 1611 } 1612 1613 /* 1614 * Some devices and/or platforms don't advertise or work with INTx 1615 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1616 * adjust this later. 1617 */ 1618 if (pci_enable_msix(pdev, dev->entry, 1)) { 1619 pci_enable_msi(pdev); 1620 dev->entry[0].vector = pdev->irq; 1621 } 1622 1623 if (!dev->entry[0].vector) { 1624 result = -ENODEV; 1625 goto disable; 1626 } 1627 1628 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1629 1630 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1631 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1632 dev->dbs = dev->bar + 4096; 1633 1634 /* 1635 * Temporary fix for the Apple controller found in the MacBook8,1 and 1636 * some MacBook7,1 to avoid controller resets and data loss. 1637 */ 1638 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1639 dev->q_depth = 2; 1640 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1641 "queue depth=%u to work around controller resets\n", 1642 dev->q_depth); 1643 } 1644 1645 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2)) 1646 dev->cmb = nvme_map_cmb(dev); 1647 1648 pci_enable_pcie_error_reporting(pdev); 1649 pci_save_state(pdev); 1650 return 0; 1651 1652 disable: 1653 pci_disable_device(pdev); 1654 return result; 1655 } 1656 1657 static void nvme_dev_unmap(struct nvme_dev *dev) 1658 { 1659 if (dev->bar) 1660 iounmap(dev->bar); 1661 pci_release_mem_regions(to_pci_dev(dev->dev)); 1662 } 1663 1664 static void nvme_pci_disable(struct nvme_dev *dev) 1665 { 1666 struct pci_dev *pdev = to_pci_dev(dev->dev); 1667 1668 if (pdev->msi_enabled) 1669 pci_disable_msi(pdev); 1670 else if (pdev->msix_enabled) 1671 pci_disable_msix(pdev); 1672 1673 if (pci_is_enabled(pdev)) { 1674 pci_disable_pcie_error_reporting(pdev); 1675 pci_disable_device(pdev); 1676 } 1677 } 1678 1679 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1680 { 1681 int i; 1682 u32 csts = -1; 1683 1684 del_timer_sync(&dev->watchdog_timer); 1685 1686 mutex_lock(&dev->shutdown_lock); 1687 if (pci_is_enabled(to_pci_dev(dev->dev))) { 1688 nvme_stop_queues(&dev->ctrl); 1689 csts = readl(dev->bar + NVME_REG_CSTS); 1690 } 1691 1692 for (i = dev->queue_count - 1; i > 0; i--) 1693 nvme_suspend_queue(dev->queues[i]); 1694 1695 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1696 /* A device might become IO incapable very soon during 1697 * probe, before the admin queue is configured. Thus, 1698 * queue_count can be 0 here. 1699 */ 1700 if (dev->queue_count) 1701 nvme_suspend_queue(dev->queues[0]); 1702 } else { 1703 nvme_disable_io_queues(dev); 1704 nvme_disable_admin_queue(dev, shutdown); 1705 } 1706 nvme_pci_disable(dev); 1707 1708 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1709 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1710 mutex_unlock(&dev->shutdown_lock); 1711 } 1712 1713 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1714 { 1715 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1716 PAGE_SIZE, PAGE_SIZE, 0); 1717 if (!dev->prp_page_pool) 1718 return -ENOMEM; 1719 1720 /* Optimisation for I/Os between 4k and 128k */ 1721 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1722 256, 256, 0); 1723 if (!dev->prp_small_pool) { 1724 dma_pool_destroy(dev->prp_page_pool); 1725 return -ENOMEM; 1726 } 1727 return 0; 1728 } 1729 1730 static void nvme_release_prp_pools(struct nvme_dev *dev) 1731 { 1732 dma_pool_destroy(dev->prp_page_pool); 1733 dma_pool_destroy(dev->prp_small_pool); 1734 } 1735 1736 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1737 { 1738 struct nvme_dev *dev = to_nvme_dev(ctrl); 1739 1740 put_device(dev->dev); 1741 if (dev->tagset.tags) 1742 blk_mq_free_tag_set(&dev->tagset); 1743 if (dev->ctrl.admin_q) 1744 blk_put_queue(dev->ctrl.admin_q); 1745 kfree(dev->queues); 1746 kfree(dev->entry); 1747 kfree(dev); 1748 } 1749 1750 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1751 { 1752 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1753 1754 kref_get(&dev->ctrl.kref); 1755 nvme_dev_disable(dev, false); 1756 if (!schedule_work(&dev->remove_work)) 1757 nvme_put_ctrl(&dev->ctrl); 1758 } 1759 1760 static void nvme_reset_work(struct work_struct *work) 1761 { 1762 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1763 int result = -ENODEV; 1764 1765 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1766 goto out; 1767 1768 /* 1769 * If we're called to reset a live controller first shut it down before 1770 * moving on. 1771 */ 1772 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1773 nvme_dev_disable(dev, false); 1774 1775 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1776 goto out; 1777 1778 result = nvme_pci_enable(dev); 1779 if (result) 1780 goto out; 1781 1782 result = nvme_configure_admin_queue(dev); 1783 if (result) 1784 goto out; 1785 1786 nvme_init_queue(dev->queues[0], 0); 1787 result = nvme_alloc_admin_tags(dev); 1788 if (result) 1789 goto out; 1790 1791 result = nvme_init_identify(&dev->ctrl); 1792 if (result) 1793 goto out; 1794 1795 result = nvme_setup_io_queues(dev); 1796 if (result) 1797 goto out; 1798 1799 /* 1800 * A controller that can not execute IO typically requires user 1801 * intervention to correct. For such degraded controllers, the driver 1802 * should not submit commands the user did not request, so skip 1803 * registering for asynchronous event notification on this condition. 1804 */ 1805 if (dev->online_queues > 1) 1806 nvme_queue_async_events(&dev->ctrl); 1807 1808 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1809 1810 /* 1811 * Keep the controller around but remove all namespaces if we don't have 1812 * any working I/O queue. 1813 */ 1814 if (dev->online_queues < 2) { 1815 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1816 nvme_kill_queues(&dev->ctrl); 1817 nvme_remove_namespaces(&dev->ctrl); 1818 } else { 1819 nvme_start_queues(&dev->ctrl); 1820 nvme_dev_add(dev); 1821 } 1822 1823 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1824 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1825 goto out; 1826 } 1827 1828 if (dev->online_queues > 1) 1829 nvme_queue_scan(&dev->ctrl); 1830 return; 1831 1832 out: 1833 nvme_remove_dead_ctrl(dev, result); 1834 } 1835 1836 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1837 { 1838 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1839 struct pci_dev *pdev = to_pci_dev(dev->dev); 1840 1841 nvme_kill_queues(&dev->ctrl); 1842 if (pci_get_drvdata(pdev)) 1843 device_release_driver(&pdev->dev); 1844 nvme_put_ctrl(&dev->ctrl); 1845 } 1846 1847 static int nvme_reset(struct nvme_dev *dev) 1848 { 1849 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1850 return -ENODEV; 1851 1852 if (!queue_work(nvme_workq, &dev->reset_work)) 1853 return -EBUSY; 1854 1855 flush_work(&dev->reset_work); 1856 return 0; 1857 } 1858 1859 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1860 { 1861 *val = readl(to_nvme_dev(ctrl)->bar + off); 1862 return 0; 1863 } 1864 1865 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1866 { 1867 writel(val, to_nvme_dev(ctrl)->bar + off); 1868 return 0; 1869 } 1870 1871 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1872 { 1873 *val = readq(to_nvme_dev(ctrl)->bar + off); 1874 return 0; 1875 } 1876 1877 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1878 { 1879 return nvme_reset(to_nvme_dev(ctrl)); 1880 } 1881 1882 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1883 .name = "pcie", 1884 .module = THIS_MODULE, 1885 .reg_read32 = nvme_pci_reg_read32, 1886 .reg_write32 = nvme_pci_reg_write32, 1887 .reg_read64 = nvme_pci_reg_read64, 1888 .reset_ctrl = nvme_pci_reset_ctrl, 1889 .free_ctrl = nvme_pci_free_ctrl, 1890 .post_scan = nvme_pci_post_scan, 1891 .submit_async_event = nvme_pci_submit_async_event, 1892 }; 1893 1894 static int nvme_dev_map(struct nvme_dev *dev) 1895 { 1896 struct pci_dev *pdev = to_pci_dev(dev->dev); 1897 1898 if (pci_request_mem_regions(pdev, "nvme")) 1899 return -ENODEV; 1900 1901 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1902 if (!dev->bar) 1903 goto release; 1904 1905 return 0; 1906 release: 1907 pci_release_mem_regions(pdev); 1908 return -ENODEV; 1909 } 1910 1911 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1912 { 1913 int node, result = -ENOMEM; 1914 struct nvme_dev *dev; 1915 1916 node = dev_to_node(&pdev->dev); 1917 if (node == NUMA_NO_NODE) 1918 set_dev_node(&pdev->dev, first_memory_node); 1919 1920 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 1921 if (!dev) 1922 return -ENOMEM; 1923 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), 1924 GFP_KERNEL, node); 1925 if (!dev->entry) 1926 goto free; 1927 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 1928 GFP_KERNEL, node); 1929 if (!dev->queues) 1930 goto free; 1931 1932 dev->dev = get_device(&pdev->dev); 1933 pci_set_drvdata(pdev, dev); 1934 1935 result = nvme_dev_map(dev); 1936 if (result) 1937 goto free; 1938 1939 INIT_WORK(&dev->reset_work, nvme_reset_work); 1940 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 1941 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 1942 (unsigned long)dev); 1943 mutex_init(&dev->shutdown_lock); 1944 init_completion(&dev->ioq_wait); 1945 1946 result = nvme_setup_prp_pools(dev); 1947 if (result) 1948 goto put_pci; 1949 1950 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 1951 id->driver_data); 1952 if (result) 1953 goto release_pools; 1954 1955 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 1956 1957 queue_work(nvme_workq, &dev->reset_work); 1958 return 0; 1959 1960 release_pools: 1961 nvme_release_prp_pools(dev); 1962 put_pci: 1963 put_device(dev->dev); 1964 nvme_dev_unmap(dev); 1965 free: 1966 kfree(dev->queues); 1967 kfree(dev->entry); 1968 kfree(dev); 1969 return result; 1970 } 1971 1972 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 1973 { 1974 struct nvme_dev *dev = pci_get_drvdata(pdev); 1975 1976 if (prepare) 1977 nvme_dev_disable(dev, false); 1978 else 1979 queue_work(nvme_workq, &dev->reset_work); 1980 } 1981 1982 static void nvme_shutdown(struct pci_dev *pdev) 1983 { 1984 struct nvme_dev *dev = pci_get_drvdata(pdev); 1985 nvme_dev_disable(dev, true); 1986 } 1987 1988 /* 1989 * The driver's remove may be called on a device in a partially initialized 1990 * state. This function must not have any dependencies on the device state in 1991 * order to proceed. 1992 */ 1993 static void nvme_remove(struct pci_dev *pdev) 1994 { 1995 struct nvme_dev *dev = pci_get_drvdata(pdev); 1996 1997 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1998 1999 pci_set_drvdata(pdev, NULL); 2000 2001 if (!pci_device_is_present(pdev)) 2002 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2003 2004 flush_work(&dev->reset_work); 2005 nvme_uninit_ctrl(&dev->ctrl); 2006 nvme_dev_disable(dev, true); 2007 nvme_dev_remove_admin(dev); 2008 nvme_free_queues(dev, 0); 2009 nvme_release_cmb(dev); 2010 nvme_release_prp_pools(dev); 2011 nvme_dev_unmap(dev); 2012 nvme_put_ctrl(&dev->ctrl); 2013 } 2014 2015 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2016 { 2017 int ret = 0; 2018 2019 if (numvfs == 0) { 2020 if (pci_vfs_assigned(pdev)) { 2021 dev_warn(&pdev->dev, 2022 "Cannot disable SR-IOV VFs while assigned\n"); 2023 return -EPERM; 2024 } 2025 pci_disable_sriov(pdev); 2026 return 0; 2027 } 2028 2029 ret = pci_enable_sriov(pdev, numvfs); 2030 return ret ? ret : numvfs; 2031 } 2032 2033 #ifdef CONFIG_PM_SLEEP 2034 static int nvme_suspend(struct device *dev) 2035 { 2036 struct pci_dev *pdev = to_pci_dev(dev); 2037 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2038 2039 nvme_dev_disable(ndev, true); 2040 return 0; 2041 } 2042 2043 static int nvme_resume(struct device *dev) 2044 { 2045 struct pci_dev *pdev = to_pci_dev(dev); 2046 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2047 2048 queue_work(nvme_workq, &ndev->reset_work); 2049 return 0; 2050 } 2051 #endif 2052 2053 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2054 2055 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2056 pci_channel_state_t state) 2057 { 2058 struct nvme_dev *dev = pci_get_drvdata(pdev); 2059 2060 /* 2061 * A frozen channel requires a reset. When detected, this method will 2062 * shutdown the controller to quiesce. The controller will be restarted 2063 * after the slot reset through driver's slot_reset callback. 2064 */ 2065 switch (state) { 2066 case pci_channel_io_normal: 2067 return PCI_ERS_RESULT_CAN_RECOVER; 2068 case pci_channel_io_frozen: 2069 dev_warn(dev->ctrl.device, 2070 "frozen state error detected, reset controller\n"); 2071 nvme_dev_disable(dev, false); 2072 return PCI_ERS_RESULT_NEED_RESET; 2073 case pci_channel_io_perm_failure: 2074 dev_warn(dev->ctrl.device, 2075 "failure state error detected, request disconnect\n"); 2076 return PCI_ERS_RESULT_DISCONNECT; 2077 } 2078 return PCI_ERS_RESULT_NEED_RESET; 2079 } 2080 2081 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2082 { 2083 struct nvme_dev *dev = pci_get_drvdata(pdev); 2084 2085 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2086 pci_restore_state(pdev); 2087 queue_work(nvme_workq, &dev->reset_work); 2088 return PCI_ERS_RESULT_RECOVERED; 2089 } 2090 2091 static void nvme_error_resume(struct pci_dev *pdev) 2092 { 2093 pci_cleanup_aer_uncorrect_error_status(pdev); 2094 } 2095 2096 static const struct pci_error_handlers nvme_err_handler = { 2097 .error_detected = nvme_error_detected, 2098 .slot_reset = nvme_slot_reset, 2099 .resume = nvme_error_resume, 2100 .reset_notify = nvme_reset_notify, 2101 }; 2102 2103 /* Move to pci_ids.h later */ 2104 #define PCI_CLASS_STORAGE_EXPRESS 0x010802 2105 2106 static const struct pci_device_id nvme_id_table[] = { 2107 { PCI_VDEVICE(INTEL, 0x0953), 2108 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2109 NVME_QUIRK_DISCARD_ZEROES, }, 2110 { PCI_VDEVICE(INTEL, 0x0a53), 2111 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2112 NVME_QUIRK_DISCARD_ZEROES, }, 2113 { PCI_VDEVICE(INTEL, 0x0a54), 2114 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2115 NVME_QUIRK_DISCARD_ZEROES, }, 2116 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2117 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2118 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2119 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2120 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2121 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2122 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2123 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2124 { 0, } 2125 }; 2126 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2127 2128 static struct pci_driver nvme_driver = { 2129 .name = "nvme", 2130 .id_table = nvme_id_table, 2131 .probe = nvme_probe, 2132 .remove = nvme_remove, 2133 .shutdown = nvme_shutdown, 2134 .driver = { 2135 .pm = &nvme_dev_pm_ops, 2136 }, 2137 .sriov_configure = nvme_pci_sriov_configure, 2138 .err_handler = &nvme_err_handler, 2139 }; 2140 2141 static int __init nvme_init(void) 2142 { 2143 int result; 2144 2145 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2146 if (!nvme_workq) 2147 return -ENOMEM; 2148 2149 result = pci_register_driver(&nvme_driver); 2150 if (result) 2151 destroy_workqueue(nvme_workq); 2152 return result; 2153 } 2154 2155 static void __exit nvme_exit(void) 2156 { 2157 pci_unregister_driver(&nvme_driver); 2158 destroy_workqueue(nvme_workq); 2159 _nvme_check_size(); 2160 } 2161 2162 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2163 MODULE_LICENSE("GPL"); 2164 MODULE_VERSION("1.0"); 2165 module_init(nvme_init); 2166 module_exit(nvme_exit); 2167