1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/aer.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/once.h> 20 #include <linux/pci.h> 21 #include <linux/suspend.h> 22 #include <linux/t10-pi.h> 23 #include <linux/types.h> 24 #include <linux/io-64-nonatomic-lo-hi.h> 25 #include <linux/sed-opal.h> 26 #include <linux/pci-p2pdma.h> 27 28 #include "trace.h" 29 #include "nvme.h" 30 31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 33 34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 35 36 /* 37 * These can be higher, but we need to ensure that any command doesn't 38 * require an sg allocation that needs more than a page of data. 39 */ 40 #define NVME_MAX_KB_SZ 4096 41 #define NVME_MAX_SEGS 127 42 43 static int use_threaded_interrupts; 44 module_param(use_threaded_interrupts, int, 0); 45 46 static bool use_cmb_sqes = true; 47 module_param(use_cmb_sqes, bool, 0444); 48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 49 50 static unsigned int max_host_mem_size_mb = 128; 51 module_param(max_host_mem_size_mb, uint, 0444); 52 MODULE_PARM_DESC(max_host_mem_size_mb, 53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 54 55 static unsigned int sgl_threshold = SZ_32K; 56 module_param(sgl_threshold, uint, 0644); 57 MODULE_PARM_DESC(sgl_threshold, 58 "Use SGLs when average request segment size is larger or equal to " 59 "this size. Use 0 to disable SGLs."); 60 61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 62 static const struct kernel_param_ops io_queue_depth_ops = { 63 .set = io_queue_depth_set, 64 .get = param_get_int, 65 }; 66 67 static int io_queue_depth = 1024; 68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 70 71 static unsigned int write_queues; 72 module_param(write_queues, uint, 0644); 73 MODULE_PARM_DESC(write_queues, 74 "Number of queues to use for writes. If not set, reads and writes " 75 "will share a queue set."); 76 77 static unsigned int poll_queues; 78 module_param(poll_queues, uint, 0644); 79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 80 81 struct nvme_dev; 82 struct nvme_queue; 83 84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 86 87 /* 88 * Represents an NVM Express device. Each nvme_dev is a PCI function. 89 */ 90 struct nvme_dev { 91 struct nvme_queue *queues; 92 struct blk_mq_tag_set tagset; 93 struct blk_mq_tag_set admin_tagset; 94 u32 __iomem *dbs; 95 struct device *dev; 96 struct dma_pool *prp_page_pool; 97 struct dma_pool *prp_small_pool; 98 unsigned online_queues; 99 unsigned max_qid; 100 unsigned io_queues[HCTX_MAX_TYPES]; 101 unsigned int num_vecs; 102 int q_depth; 103 int io_sqes; 104 u32 db_stride; 105 void __iomem *bar; 106 unsigned long bar_mapped_size; 107 struct work_struct remove_work; 108 struct mutex shutdown_lock; 109 bool subsystem; 110 u64 cmb_size; 111 bool cmb_use_sqes; 112 u32 cmbsz; 113 u32 cmbloc; 114 struct nvme_ctrl ctrl; 115 u32 last_ps; 116 117 mempool_t *iod_mempool; 118 119 /* shadow doorbell buffer support: */ 120 u32 *dbbuf_dbs; 121 dma_addr_t dbbuf_dbs_dma_addr; 122 u32 *dbbuf_eis; 123 dma_addr_t dbbuf_eis_dma_addr; 124 125 /* host memory buffer support: */ 126 u64 host_mem_size; 127 u32 nr_host_mem_descs; 128 dma_addr_t host_mem_descs_dma; 129 struct nvme_host_mem_buf_desc *host_mem_descs; 130 void **host_mem_desc_bufs; 131 }; 132 133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 134 { 135 int n = 0, ret; 136 137 ret = kstrtoint(val, 10, &n); 138 if (ret != 0 || n < 2) 139 return -EINVAL; 140 141 return param_set_int(val, kp); 142 } 143 144 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 145 { 146 return qid * 2 * stride; 147 } 148 149 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 150 { 151 return (qid * 2 + 1) * stride; 152 } 153 154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 155 { 156 return container_of(ctrl, struct nvme_dev, ctrl); 157 } 158 159 /* 160 * An NVM Express queue. Each device has at least two (one for admin 161 * commands and one for I/O commands). 162 */ 163 struct nvme_queue { 164 struct nvme_dev *dev; 165 spinlock_t sq_lock; 166 void *sq_cmds; 167 /* only used for poll queues: */ 168 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 169 volatile struct nvme_completion *cqes; 170 dma_addr_t sq_dma_addr; 171 dma_addr_t cq_dma_addr; 172 u32 __iomem *q_db; 173 u16 q_depth; 174 u16 cq_vector; 175 u16 sq_tail; 176 u16 last_sq_tail; 177 u16 cq_head; 178 u16 qid; 179 u8 cq_phase; 180 u8 sqes; 181 unsigned long flags; 182 #define NVMEQ_ENABLED 0 183 #define NVMEQ_SQ_CMB 1 184 #define NVMEQ_DELETE_ERROR 2 185 #define NVMEQ_POLLED 3 186 u32 *dbbuf_sq_db; 187 u32 *dbbuf_cq_db; 188 u32 *dbbuf_sq_ei; 189 u32 *dbbuf_cq_ei; 190 struct completion delete_done; 191 }; 192 193 /* 194 * The nvme_iod describes the data in an I/O. 195 * 196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 197 * to the actual struct scatterlist. 198 */ 199 struct nvme_iod { 200 struct nvme_request req; 201 struct nvme_queue *nvmeq; 202 bool use_sgl; 203 int aborted; 204 int npages; /* In the PRP list. 0 means small pool in use */ 205 int nents; /* Used in scatterlist */ 206 dma_addr_t first_dma; 207 unsigned int dma_len; /* length of single DMA segment mapping */ 208 dma_addr_t meta_dma; 209 struct scatterlist *sg; 210 }; 211 212 static unsigned int max_io_queues(void) 213 { 214 return num_possible_cpus() + write_queues + poll_queues; 215 } 216 217 static unsigned int max_queue_count(void) 218 { 219 /* IO queues + admin queue */ 220 return 1 + max_io_queues(); 221 } 222 223 static inline unsigned int nvme_dbbuf_size(u32 stride) 224 { 225 return (max_queue_count() * 8 * stride); 226 } 227 228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 229 { 230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 231 232 if (dev->dbbuf_dbs) 233 return 0; 234 235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 236 &dev->dbbuf_dbs_dma_addr, 237 GFP_KERNEL); 238 if (!dev->dbbuf_dbs) 239 return -ENOMEM; 240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 241 &dev->dbbuf_eis_dma_addr, 242 GFP_KERNEL); 243 if (!dev->dbbuf_eis) { 244 dma_free_coherent(dev->dev, mem_size, 245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 246 dev->dbbuf_dbs = NULL; 247 return -ENOMEM; 248 } 249 250 return 0; 251 } 252 253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 254 { 255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 256 257 if (dev->dbbuf_dbs) { 258 dma_free_coherent(dev->dev, mem_size, 259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 260 dev->dbbuf_dbs = NULL; 261 } 262 if (dev->dbbuf_eis) { 263 dma_free_coherent(dev->dev, mem_size, 264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 265 dev->dbbuf_eis = NULL; 266 } 267 } 268 269 static void nvme_dbbuf_init(struct nvme_dev *dev, 270 struct nvme_queue *nvmeq, int qid) 271 { 272 if (!dev->dbbuf_dbs || !qid) 273 return; 274 275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 279 } 280 281 static void nvme_dbbuf_set(struct nvme_dev *dev) 282 { 283 struct nvme_command c; 284 285 if (!dev->dbbuf_dbs) 286 return; 287 288 memset(&c, 0, sizeof(c)); 289 c.dbbuf.opcode = nvme_admin_dbbuf; 290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 292 293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 295 /* Free memory and continue on */ 296 nvme_dbbuf_dma_free(dev); 297 } 298 } 299 300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 301 { 302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 303 } 304 305 /* Update dbbuf and return true if an MMIO is required */ 306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 307 volatile u32 *dbbuf_ei) 308 { 309 if (dbbuf_db) { 310 u16 old_value; 311 312 /* 313 * Ensure that the queue is written before updating 314 * the doorbell in memory 315 */ 316 wmb(); 317 318 old_value = *dbbuf_db; 319 *dbbuf_db = value; 320 321 /* 322 * Ensure that the doorbell is updated before reading the event 323 * index from memory. The controller needs to provide similar 324 * ordering to ensure the envent index is updated before reading 325 * the doorbell. 326 */ 327 mb(); 328 329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 330 return false; 331 } 332 333 return true; 334 } 335 336 /* 337 * Will slightly overestimate the number of pages needed. This is OK 338 * as it only leads to a small amount of wasted memory for the lifetime of 339 * the I/O. 340 */ 341 static int nvme_npages(unsigned size, struct nvme_dev *dev) 342 { 343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 344 dev->ctrl.page_size); 345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 346 } 347 348 /* 349 * Calculates the number of pages needed for the SGL segments. For example a 4k 350 * page can accommodate 256 SGL descriptors. 351 */ 352 static int nvme_pci_npages_sgl(unsigned int num_seg) 353 { 354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); 355 } 356 357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, 358 unsigned int size, unsigned int nseg, bool use_sgl) 359 { 360 size_t alloc_size; 361 362 if (use_sgl) 363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); 364 else 365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); 366 367 return alloc_size + sizeof(struct scatterlist) * nseg; 368 } 369 370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 371 unsigned int hctx_idx) 372 { 373 struct nvme_dev *dev = data; 374 struct nvme_queue *nvmeq = &dev->queues[0]; 375 376 WARN_ON(hctx_idx != 0); 377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 378 379 hctx->driver_data = nvmeq; 380 return 0; 381 } 382 383 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 384 unsigned int hctx_idx) 385 { 386 struct nvme_dev *dev = data; 387 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 388 389 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 390 hctx->driver_data = nvmeq; 391 return 0; 392 } 393 394 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 395 unsigned int hctx_idx, unsigned int numa_node) 396 { 397 struct nvme_dev *dev = set->driver_data; 398 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 399 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 400 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 401 402 BUG_ON(!nvmeq); 403 iod->nvmeq = nvmeq; 404 405 nvme_req(req)->ctrl = &dev->ctrl; 406 return 0; 407 } 408 409 static int queue_irq_offset(struct nvme_dev *dev) 410 { 411 /* if we have more than 1 vec, admin queue offsets us by 1 */ 412 if (dev->num_vecs > 1) 413 return 1; 414 415 return 0; 416 } 417 418 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 419 { 420 struct nvme_dev *dev = set->driver_data; 421 int i, qoff, offset; 422 423 offset = queue_irq_offset(dev); 424 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 425 struct blk_mq_queue_map *map = &set->map[i]; 426 427 map->nr_queues = dev->io_queues[i]; 428 if (!map->nr_queues) { 429 BUG_ON(i == HCTX_TYPE_DEFAULT); 430 continue; 431 } 432 433 /* 434 * The poll queue(s) doesn't have an IRQ (and hence IRQ 435 * affinity), so use the regular blk-mq cpu mapping 436 */ 437 map->queue_offset = qoff; 438 if (i != HCTX_TYPE_POLL && offset) 439 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 440 else 441 blk_mq_map_queues(map); 442 qoff += map->nr_queues; 443 offset += map->nr_queues; 444 } 445 446 return 0; 447 } 448 449 /* 450 * Write sq tail if we are asked to, or if the next command would wrap. 451 */ 452 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 453 { 454 if (!write_sq) { 455 u16 next_tail = nvmeq->sq_tail + 1; 456 457 if (next_tail == nvmeq->q_depth) 458 next_tail = 0; 459 if (next_tail != nvmeq->last_sq_tail) 460 return; 461 } 462 463 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 464 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 465 writel(nvmeq->sq_tail, nvmeq->q_db); 466 nvmeq->last_sq_tail = nvmeq->sq_tail; 467 } 468 469 /** 470 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 471 * @nvmeq: The queue to use 472 * @cmd: The command to send 473 * @write_sq: whether to write to the SQ doorbell 474 */ 475 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 476 bool write_sq) 477 { 478 spin_lock(&nvmeq->sq_lock); 479 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 480 cmd, sizeof(*cmd)); 481 if (++nvmeq->sq_tail == nvmeq->q_depth) 482 nvmeq->sq_tail = 0; 483 nvme_write_sq_db(nvmeq, write_sq); 484 spin_unlock(&nvmeq->sq_lock); 485 } 486 487 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 488 { 489 struct nvme_queue *nvmeq = hctx->driver_data; 490 491 spin_lock(&nvmeq->sq_lock); 492 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 493 nvme_write_sq_db(nvmeq, true); 494 spin_unlock(&nvmeq->sq_lock); 495 } 496 497 static void **nvme_pci_iod_list(struct request *req) 498 { 499 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 500 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 501 } 502 503 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 504 { 505 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 506 int nseg = blk_rq_nr_phys_segments(req); 507 unsigned int avg_seg_size; 508 509 if (nseg == 0) 510 return false; 511 512 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 513 514 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 515 return false; 516 if (!iod->nvmeq->qid) 517 return false; 518 if (!sgl_threshold || avg_seg_size < sgl_threshold) 519 return false; 520 return true; 521 } 522 523 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 524 { 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 526 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; 527 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 528 int i; 529 530 if (iod->dma_len) { 531 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, 532 rq_dma_dir(req)); 533 return; 534 } 535 536 WARN_ON_ONCE(!iod->nents); 537 538 if (is_pci_p2pdma_page(sg_page(iod->sg))) 539 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 540 rq_dma_dir(req)); 541 else 542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 543 544 545 if (iod->npages == 0) 546 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 547 dma_addr); 548 549 for (i = 0; i < iod->npages; i++) { 550 void *addr = nvme_pci_iod_list(req)[i]; 551 552 if (iod->use_sgl) { 553 struct nvme_sgl_desc *sg_list = addr; 554 555 next_dma_addr = 556 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 557 } else { 558 __le64 *prp_list = addr; 559 560 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 561 } 562 563 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 564 dma_addr = next_dma_addr; 565 } 566 567 mempool_free(iod->sg, dev->iod_mempool); 568 } 569 570 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 571 { 572 int i; 573 struct scatterlist *sg; 574 575 for_each_sg(sgl, sg, nents, i) { 576 dma_addr_t phys = sg_phys(sg); 577 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 578 "dma_address:%pad dma_length:%d\n", 579 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 580 sg_dma_len(sg)); 581 } 582 } 583 584 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 585 struct request *req, struct nvme_rw_command *cmnd) 586 { 587 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 588 struct dma_pool *pool; 589 int length = blk_rq_payload_bytes(req); 590 struct scatterlist *sg = iod->sg; 591 int dma_len = sg_dma_len(sg); 592 u64 dma_addr = sg_dma_address(sg); 593 u32 page_size = dev->ctrl.page_size; 594 int offset = dma_addr & (page_size - 1); 595 __le64 *prp_list; 596 void **list = nvme_pci_iod_list(req); 597 dma_addr_t prp_dma; 598 int nprps, i; 599 600 length -= (page_size - offset); 601 if (length <= 0) { 602 iod->first_dma = 0; 603 goto done; 604 } 605 606 dma_len -= (page_size - offset); 607 if (dma_len) { 608 dma_addr += (page_size - offset); 609 } else { 610 sg = sg_next(sg); 611 dma_addr = sg_dma_address(sg); 612 dma_len = sg_dma_len(sg); 613 } 614 615 if (length <= page_size) { 616 iod->first_dma = dma_addr; 617 goto done; 618 } 619 620 nprps = DIV_ROUND_UP(length, page_size); 621 if (nprps <= (256 / 8)) { 622 pool = dev->prp_small_pool; 623 iod->npages = 0; 624 } else { 625 pool = dev->prp_page_pool; 626 iod->npages = 1; 627 } 628 629 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 630 if (!prp_list) { 631 iod->first_dma = dma_addr; 632 iod->npages = -1; 633 return BLK_STS_RESOURCE; 634 } 635 list[0] = prp_list; 636 iod->first_dma = prp_dma; 637 i = 0; 638 for (;;) { 639 if (i == page_size >> 3) { 640 __le64 *old_prp_list = prp_list; 641 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 642 if (!prp_list) 643 return BLK_STS_RESOURCE; 644 list[iod->npages++] = prp_list; 645 prp_list[0] = old_prp_list[i - 1]; 646 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 647 i = 1; 648 } 649 prp_list[i++] = cpu_to_le64(dma_addr); 650 dma_len -= page_size; 651 dma_addr += page_size; 652 length -= page_size; 653 if (length <= 0) 654 break; 655 if (dma_len > 0) 656 continue; 657 if (unlikely(dma_len < 0)) 658 goto bad_sgl; 659 sg = sg_next(sg); 660 dma_addr = sg_dma_address(sg); 661 dma_len = sg_dma_len(sg); 662 } 663 664 done: 665 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 666 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 667 668 return BLK_STS_OK; 669 670 bad_sgl: 671 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 672 "Invalid SGL for payload:%d nents:%d\n", 673 blk_rq_payload_bytes(req), iod->nents); 674 return BLK_STS_IOERR; 675 } 676 677 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 678 struct scatterlist *sg) 679 { 680 sge->addr = cpu_to_le64(sg_dma_address(sg)); 681 sge->length = cpu_to_le32(sg_dma_len(sg)); 682 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 683 } 684 685 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 686 dma_addr_t dma_addr, int entries) 687 { 688 sge->addr = cpu_to_le64(dma_addr); 689 if (entries < SGES_PER_PAGE) { 690 sge->length = cpu_to_le32(entries * sizeof(*sge)); 691 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 692 } else { 693 sge->length = cpu_to_le32(PAGE_SIZE); 694 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 695 } 696 } 697 698 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 699 struct request *req, struct nvme_rw_command *cmd, int entries) 700 { 701 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 702 struct dma_pool *pool; 703 struct nvme_sgl_desc *sg_list; 704 struct scatterlist *sg = iod->sg; 705 dma_addr_t sgl_dma; 706 int i = 0; 707 708 /* setting the transfer type as SGL */ 709 cmd->flags = NVME_CMD_SGL_METABUF; 710 711 if (entries == 1) { 712 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 713 return BLK_STS_OK; 714 } 715 716 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 717 pool = dev->prp_small_pool; 718 iod->npages = 0; 719 } else { 720 pool = dev->prp_page_pool; 721 iod->npages = 1; 722 } 723 724 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 725 if (!sg_list) { 726 iod->npages = -1; 727 return BLK_STS_RESOURCE; 728 } 729 730 nvme_pci_iod_list(req)[0] = sg_list; 731 iod->first_dma = sgl_dma; 732 733 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 734 735 do { 736 if (i == SGES_PER_PAGE) { 737 struct nvme_sgl_desc *old_sg_desc = sg_list; 738 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 739 740 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 741 if (!sg_list) 742 return BLK_STS_RESOURCE; 743 744 i = 0; 745 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 746 sg_list[i++] = *link; 747 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 748 } 749 750 nvme_pci_sgl_set_data(&sg_list[i++], sg); 751 sg = sg_next(sg); 752 } while (--entries > 0); 753 754 return BLK_STS_OK; 755 } 756 757 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 758 struct request *req, struct nvme_rw_command *cmnd, 759 struct bio_vec *bv) 760 { 761 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 762 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1); 763 unsigned int first_prp_len = dev->ctrl.page_size - offset; 764 765 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 766 if (dma_mapping_error(dev->dev, iod->first_dma)) 767 return BLK_STS_RESOURCE; 768 iod->dma_len = bv->bv_len; 769 770 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 771 if (bv->bv_len > first_prp_len) 772 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 773 return 0; 774 } 775 776 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 777 struct request *req, struct nvme_rw_command *cmnd, 778 struct bio_vec *bv) 779 { 780 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 781 782 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 783 if (dma_mapping_error(dev->dev, iod->first_dma)) 784 return BLK_STS_RESOURCE; 785 iod->dma_len = bv->bv_len; 786 787 cmnd->flags = NVME_CMD_SGL_METABUF; 788 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 789 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 790 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 791 return 0; 792 } 793 794 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 795 struct nvme_command *cmnd) 796 { 797 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 798 blk_status_t ret = BLK_STS_RESOURCE; 799 int nr_mapped; 800 801 if (blk_rq_nr_phys_segments(req) == 1) { 802 struct bio_vec bv = req_bvec(req); 803 804 if (!is_pci_p2pdma_page(bv.bv_page)) { 805 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2) 806 return nvme_setup_prp_simple(dev, req, 807 &cmnd->rw, &bv); 808 809 if (iod->nvmeq->qid && 810 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 811 return nvme_setup_sgl_simple(dev, req, 812 &cmnd->rw, &bv); 813 } 814 } 815 816 iod->dma_len = 0; 817 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 818 if (!iod->sg) 819 return BLK_STS_RESOURCE; 820 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 821 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 822 if (!iod->nents) 823 goto out; 824 825 if (is_pci_p2pdma_page(sg_page(iod->sg))) 826 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 827 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 828 else 829 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 830 rq_dma_dir(req), DMA_ATTR_NO_WARN); 831 if (!nr_mapped) 832 goto out; 833 834 iod->use_sgl = nvme_pci_use_sgls(dev, req); 835 if (iod->use_sgl) 836 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 837 else 838 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 839 out: 840 if (ret != BLK_STS_OK) 841 nvme_unmap_data(dev, req); 842 return ret; 843 } 844 845 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 846 struct nvme_command *cmnd) 847 { 848 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 849 850 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 851 rq_dma_dir(req), 0); 852 if (dma_mapping_error(dev->dev, iod->meta_dma)) 853 return BLK_STS_IOERR; 854 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 855 return 0; 856 } 857 858 /* 859 * NOTE: ns is NULL when called on the admin queue. 860 */ 861 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 862 const struct blk_mq_queue_data *bd) 863 { 864 struct nvme_ns *ns = hctx->queue->queuedata; 865 struct nvme_queue *nvmeq = hctx->driver_data; 866 struct nvme_dev *dev = nvmeq->dev; 867 struct request *req = bd->rq; 868 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 869 struct nvme_command cmnd; 870 blk_status_t ret; 871 872 iod->aborted = 0; 873 iod->npages = -1; 874 iod->nents = 0; 875 876 /* 877 * We should not need to do this, but we're still using this to 878 * ensure we can drain requests on a dying queue. 879 */ 880 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 881 return BLK_STS_IOERR; 882 883 ret = nvme_setup_cmd(ns, req, &cmnd); 884 if (ret) 885 return ret; 886 887 if (blk_rq_nr_phys_segments(req)) { 888 ret = nvme_map_data(dev, req, &cmnd); 889 if (ret) 890 goto out_free_cmd; 891 } 892 893 if (blk_integrity_rq(req)) { 894 ret = nvme_map_metadata(dev, req, &cmnd); 895 if (ret) 896 goto out_unmap_data; 897 } 898 899 blk_mq_start_request(req); 900 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 901 return BLK_STS_OK; 902 out_unmap_data: 903 nvme_unmap_data(dev, req); 904 out_free_cmd: 905 nvme_cleanup_cmd(req); 906 return ret; 907 } 908 909 static void nvme_pci_complete_rq(struct request *req) 910 { 911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 912 struct nvme_dev *dev = iod->nvmeq->dev; 913 914 if (blk_integrity_rq(req)) 915 dma_unmap_page(dev->dev, iod->meta_dma, 916 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 917 if (blk_rq_nr_phys_segments(req)) 918 nvme_unmap_data(dev, req); 919 nvme_complete_rq(req); 920 } 921 922 /* We read the CQE phase first to check if the rest of the entry is valid */ 923 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 924 { 925 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == 926 nvmeq->cq_phase; 927 } 928 929 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 930 { 931 u16 head = nvmeq->cq_head; 932 933 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 934 nvmeq->dbbuf_cq_ei)) 935 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 936 } 937 938 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 939 { 940 if (!nvmeq->qid) 941 return nvmeq->dev->admin_tagset.tags[0]; 942 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 943 } 944 945 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 946 { 947 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; 948 struct request *req; 949 950 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 951 dev_warn(nvmeq->dev->ctrl.device, 952 "invalid id %d completed on queue %d\n", 953 cqe->command_id, le16_to_cpu(cqe->sq_id)); 954 return; 955 } 956 957 /* 958 * AEN requests are special as they don't time out and can 959 * survive any kind of queue freeze and often don't respond to 960 * aborts. We don't even bother to allocate a struct request 961 * for them but rather special case them here. 962 */ 963 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { 964 nvme_complete_async_event(&nvmeq->dev->ctrl, 965 cqe->status, &cqe->result); 966 return; 967 } 968 969 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); 970 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 971 nvme_end_request(req, cqe->status, cqe->result); 972 } 973 974 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 975 { 976 u16 tmp = nvmeq->cq_head + 1; 977 978 if (tmp == nvmeq->q_depth) { 979 nvmeq->cq_head = 0; 980 nvmeq->cq_phase ^= 1; 981 } else { 982 nvmeq->cq_head = tmp; 983 } 984 } 985 986 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 987 { 988 int found = 0; 989 990 while (nvme_cqe_pending(nvmeq)) { 991 found++; 992 /* 993 * load-load control dependency between phase and the rest of 994 * the cqe requires a full read memory barrier 995 */ 996 dma_rmb(); 997 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 998 nvme_update_cq_head(nvmeq); 999 } 1000 1001 if (found) 1002 nvme_ring_cq_doorbell(nvmeq); 1003 return found; 1004 } 1005 1006 static irqreturn_t nvme_irq(int irq, void *data) 1007 { 1008 struct nvme_queue *nvmeq = data; 1009 irqreturn_t ret = IRQ_NONE; 1010 1011 /* 1012 * The rmb/wmb pair ensures we see all updates from a previous run of 1013 * the irq handler, even if that was on another CPU. 1014 */ 1015 rmb(); 1016 if (nvme_process_cq(nvmeq)) 1017 ret = IRQ_HANDLED; 1018 wmb(); 1019 1020 return ret; 1021 } 1022 1023 static irqreturn_t nvme_irq_check(int irq, void *data) 1024 { 1025 struct nvme_queue *nvmeq = data; 1026 if (nvme_cqe_pending(nvmeq)) 1027 return IRQ_WAKE_THREAD; 1028 return IRQ_NONE; 1029 } 1030 1031 /* 1032 * Poll for completions for any interrupt driven queue 1033 * Can be called from any context. 1034 */ 1035 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1036 { 1037 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1038 1039 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1040 1041 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1042 nvme_process_cq(nvmeq); 1043 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1044 } 1045 1046 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1047 { 1048 struct nvme_queue *nvmeq = hctx->driver_data; 1049 bool found; 1050 1051 if (!nvme_cqe_pending(nvmeq)) 1052 return 0; 1053 1054 spin_lock(&nvmeq->cq_poll_lock); 1055 found = nvme_process_cq(nvmeq); 1056 spin_unlock(&nvmeq->cq_poll_lock); 1057 1058 return found; 1059 } 1060 1061 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1062 { 1063 struct nvme_dev *dev = to_nvme_dev(ctrl); 1064 struct nvme_queue *nvmeq = &dev->queues[0]; 1065 struct nvme_command c; 1066 1067 memset(&c, 0, sizeof(c)); 1068 c.common.opcode = nvme_admin_async_event; 1069 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1070 nvme_submit_cmd(nvmeq, &c, true); 1071 } 1072 1073 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1074 { 1075 struct nvme_command c; 1076 1077 memset(&c, 0, sizeof(c)); 1078 c.delete_queue.opcode = opcode; 1079 c.delete_queue.qid = cpu_to_le16(id); 1080 1081 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1082 } 1083 1084 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1085 struct nvme_queue *nvmeq, s16 vector) 1086 { 1087 struct nvme_command c; 1088 int flags = NVME_QUEUE_PHYS_CONTIG; 1089 1090 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1091 flags |= NVME_CQ_IRQ_ENABLED; 1092 1093 /* 1094 * Note: we (ab)use the fact that the prp fields survive if no data 1095 * is attached to the request. 1096 */ 1097 memset(&c, 0, sizeof(c)); 1098 c.create_cq.opcode = nvme_admin_create_cq; 1099 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1100 c.create_cq.cqid = cpu_to_le16(qid); 1101 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1102 c.create_cq.cq_flags = cpu_to_le16(flags); 1103 c.create_cq.irq_vector = cpu_to_le16(vector); 1104 1105 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1106 } 1107 1108 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1109 struct nvme_queue *nvmeq) 1110 { 1111 struct nvme_ctrl *ctrl = &dev->ctrl; 1112 struct nvme_command c; 1113 int flags = NVME_QUEUE_PHYS_CONTIG; 1114 1115 /* 1116 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1117 * set. Since URGENT priority is zeroes, it makes all queues 1118 * URGENT. 1119 */ 1120 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1121 flags |= NVME_SQ_PRIO_MEDIUM; 1122 1123 /* 1124 * Note: we (ab)use the fact that the prp fields survive if no data 1125 * is attached to the request. 1126 */ 1127 memset(&c, 0, sizeof(c)); 1128 c.create_sq.opcode = nvme_admin_create_sq; 1129 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1130 c.create_sq.sqid = cpu_to_le16(qid); 1131 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1132 c.create_sq.sq_flags = cpu_to_le16(flags); 1133 c.create_sq.cqid = cpu_to_le16(qid); 1134 1135 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1136 } 1137 1138 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1139 { 1140 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1141 } 1142 1143 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1144 { 1145 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1146 } 1147 1148 static void abort_endio(struct request *req, blk_status_t error) 1149 { 1150 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1151 struct nvme_queue *nvmeq = iod->nvmeq; 1152 1153 dev_warn(nvmeq->dev->ctrl.device, 1154 "Abort status: 0x%x", nvme_req(req)->status); 1155 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1156 blk_mq_free_request(req); 1157 } 1158 1159 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1160 { 1161 1162 /* If true, indicates loss of adapter communication, possibly by a 1163 * NVMe Subsystem reset. 1164 */ 1165 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1166 1167 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1168 switch (dev->ctrl.state) { 1169 case NVME_CTRL_RESETTING: 1170 case NVME_CTRL_CONNECTING: 1171 return false; 1172 default: 1173 break; 1174 } 1175 1176 /* We shouldn't reset unless the controller is on fatal error state 1177 * _or_ if we lost the communication with it. 1178 */ 1179 if (!(csts & NVME_CSTS_CFS) && !nssro) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1186 { 1187 /* Read a config register to help see what died. */ 1188 u16 pci_status; 1189 int result; 1190 1191 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1192 &pci_status); 1193 if (result == PCIBIOS_SUCCESSFUL) 1194 dev_warn(dev->ctrl.device, 1195 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1196 csts, pci_status); 1197 else 1198 dev_warn(dev->ctrl.device, 1199 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1200 csts, result); 1201 } 1202 1203 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1204 { 1205 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1206 struct nvme_queue *nvmeq = iod->nvmeq; 1207 struct nvme_dev *dev = nvmeq->dev; 1208 struct request *abort_req; 1209 struct nvme_command cmd; 1210 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1211 1212 /* If PCI error recovery process is happening, we cannot reset or 1213 * the recovery mechanism will surely fail. 1214 */ 1215 mb(); 1216 if (pci_channel_offline(to_pci_dev(dev->dev))) 1217 return BLK_EH_RESET_TIMER; 1218 1219 /* 1220 * Reset immediately if the controller is failed 1221 */ 1222 if (nvme_should_reset(dev, csts)) { 1223 nvme_warn_reset(dev, csts); 1224 nvme_dev_disable(dev, false); 1225 nvme_reset_ctrl(&dev->ctrl); 1226 return BLK_EH_DONE; 1227 } 1228 1229 /* 1230 * Did we miss an interrupt? 1231 */ 1232 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1233 nvme_poll(req->mq_hctx); 1234 else 1235 nvme_poll_irqdisable(nvmeq); 1236 1237 if (blk_mq_request_completed(req)) { 1238 dev_warn(dev->ctrl.device, 1239 "I/O %d QID %d timeout, completion polled\n", 1240 req->tag, nvmeq->qid); 1241 return BLK_EH_DONE; 1242 } 1243 1244 /* 1245 * Shutdown immediately if controller times out while starting. The 1246 * reset work will see the pci device disabled when it gets the forced 1247 * cancellation error. All outstanding requests are completed on 1248 * shutdown, so we return BLK_EH_DONE. 1249 */ 1250 switch (dev->ctrl.state) { 1251 case NVME_CTRL_CONNECTING: 1252 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1253 /* fall through */ 1254 case NVME_CTRL_DELETING: 1255 dev_warn_ratelimited(dev->ctrl.device, 1256 "I/O %d QID %d timeout, disable controller\n", 1257 req->tag, nvmeq->qid); 1258 nvme_dev_disable(dev, true); 1259 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1260 return BLK_EH_DONE; 1261 case NVME_CTRL_RESETTING: 1262 return BLK_EH_RESET_TIMER; 1263 default: 1264 break; 1265 } 1266 1267 /* 1268 * Shutdown the controller immediately and schedule a reset if the 1269 * command was already aborted once before and still hasn't been 1270 * returned to the driver, or if this is the admin queue. 1271 */ 1272 if (!nvmeq->qid || iod->aborted) { 1273 dev_warn(dev->ctrl.device, 1274 "I/O %d QID %d timeout, reset controller\n", 1275 req->tag, nvmeq->qid); 1276 nvme_dev_disable(dev, false); 1277 nvme_reset_ctrl(&dev->ctrl); 1278 1279 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1280 return BLK_EH_DONE; 1281 } 1282 1283 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1284 atomic_inc(&dev->ctrl.abort_limit); 1285 return BLK_EH_RESET_TIMER; 1286 } 1287 iod->aborted = 1; 1288 1289 memset(&cmd, 0, sizeof(cmd)); 1290 cmd.abort.opcode = nvme_admin_abort_cmd; 1291 cmd.abort.cid = req->tag; 1292 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1293 1294 dev_warn(nvmeq->dev->ctrl.device, 1295 "I/O %d QID %d timeout, aborting\n", 1296 req->tag, nvmeq->qid); 1297 1298 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1299 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1300 if (IS_ERR(abort_req)) { 1301 atomic_inc(&dev->ctrl.abort_limit); 1302 return BLK_EH_RESET_TIMER; 1303 } 1304 1305 abort_req->timeout = ADMIN_TIMEOUT; 1306 abort_req->end_io_data = NULL; 1307 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1308 1309 /* 1310 * The aborted req will be completed on receiving the abort req. 1311 * We enable the timer again. If hit twice, it'll cause a device reset, 1312 * as the device then is in a faulty state. 1313 */ 1314 return BLK_EH_RESET_TIMER; 1315 } 1316 1317 static void nvme_free_queue(struct nvme_queue *nvmeq) 1318 { 1319 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1320 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1321 if (!nvmeq->sq_cmds) 1322 return; 1323 1324 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1325 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1326 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1327 } else { 1328 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1329 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1330 } 1331 } 1332 1333 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1334 { 1335 int i; 1336 1337 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1338 dev->ctrl.queue_count--; 1339 nvme_free_queue(&dev->queues[i]); 1340 } 1341 } 1342 1343 /** 1344 * nvme_suspend_queue - put queue into suspended state 1345 * @nvmeq: queue to suspend 1346 */ 1347 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1348 { 1349 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1350 return 1; 1351 1352 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1353 mb(); 1354 1355 nvmeq->dev->online_queues--; 1356 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1357 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1358 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1359 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1360 return 0; 1361 } 1362 1363 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1364 { 1365 int i; 1366 1367 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1368 nvme_suspend_queue(&dev->queues[i]); 1369 } 1370 1371 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1372 { 1373 struct nvme_queue *nvmeq = &dev->queues[0]; 1374 1375 if (shutdown) 1376 nvme_shutdown_ctrl(&dev->ctrl); 1377 else 1378 nvme_disable_ctrl(&dev->ctrl); 1379 1380 nvme_poll_irqdisable(nvmeq); 1381 } 1382 1383 /* 1384 * Called only on a device that has been disabled and after all other threads 1385 * that can check this device's completion queues have synced, except 1386 * nvme_poll(). This is the last chance for the driver to see a natural 1387 * completion before nvme_cancel_request() terminates all incomplete requests. 1388 */ 1389 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1390 { 1391 int i; 1392 1393 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1394 spin_lock(&dev->queues[i].cq_poll_lock); 1395 nvme_process_cq(&dev->queues[i]); 1396 spin_unlock(&dev->queues[i].cq_poll_lock); 1397 } 1398 } 1399 1400 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1401 int entry_size) 1402 { 1403 int q_depth = dev->q_depth; 1404 unsigned q_size_aligned = roundup(q_depth * entry_size, 1405 dev->ctrl.page_size); 1406 1407 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1408 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1409 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1410 q_depth = div_u64(mem_per_q, entry_size); 1411 1412 /* 1413 * Ensure the reduced q_depth is above some threshold where it 1414 * would be better to map queues in system memory with the 1415 * original depth 1416 */ 1417 if (q_depth < 64) 1418 return -ENOMEM; 1419 } 1420 1421 return q_depth; 1422 } 1423 1424 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1425 int qid) 1426 { 1427 struct pci_dev *pdev = to_pci_dev(dev->dev); 1428 1429 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1430 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1431 if (nvmeq->sq_cmds) { 1432 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1433 nvmeq->sq_cmds); 1434 if (nvmeq->sq_dma_addr) { 1435 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1436 return 0; 1437 } 1438 1439 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1440 } 1441 } 1442 1443 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1444 &nvmeq->sq_dma_addr, GFP_KERNEL); 1445 if (!nvmeq->sq_cmds) 1446 return -ENOMEM; 1447 return 0; 1448 } 1449 1450 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1451 { 1452 struct nvme_queue *nvmeq = &dev->queues[qid]; 1453 1454 if (dev->ctrl.queue_count > qid) 1455 return 0; 1456 1457 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1458 nvmeq->q_depth = depth; 1459 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1460 &nvmeq->cq_dma_addr, GFP_KERNEL); 1461 if (!nvmeq->cqes) 1462 goto free_nvmeq; 1463 1464 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1465 goto free_cqdma; 1466 1467 nvmeq->dev = dev; 1468 spin_lock_init(&nvmeq->sq_lock); 1469 spin_lock_init(&nvmeq->cq_poll_lock); 1470 nvmeq->cq_head = 0; 1471 nvmeq->cq_phase = 1; 1472 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1473 nvmeq->qid = qid; 1474 dev->ctrl.queue_count++; 1475 1476 return 0; 1477 1478 free_cqdma: 1479 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1480 nvmeq->cq_dma_addr); 1481 free_nvmeq: 1482 return -ENOMEM; 1483 } 1484 1485 static int queue_request_irq(struct nvme_queue *nvmeq) 1486 { 1487 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1488 int nr = nvmeq->dev->ctrl.instance; 1489 1490 if (use_threaded_interrupts) { 1491 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1492 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1493 } else { 1494 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1495 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1496 } 1497 } 1498 1499 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1500 { 1501 struct nvme_dev *dev = nvmeq->dev; 1502 1503 nvmeq->sq_tail = 0; 1504 nvmeq->last_sq_tail = 0; 1505 nvmeq->cq_head = 0; 1506 nvmeq->cq_phase = 1; 1507 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1508 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1509 nvme_dbbuf_init(dev, nvmeq, qid); 1510 dev->online_queues++; 1511 wmb(); /* ensure the first interrupt sees the initialization */ 1512 } 1513 1514 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1515 { 1516 struct nvme_dev *dev = nvmeq->dev; 1517 int result; 1518 u16 vector = 0; 1519 1520 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1521 1522 /* 1523 * A queue's vector matches the queue identifier unless the controller 1524 * has only one vector available. 1525 */ 1526 if (!polled) 1527 vector = dev->num_vecs == 1 ? 0 : qid; 1528 else 1529 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1530 1531 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1532 if (result) 1533 return result; 1534 1535 result = adapter_alloc_sq(dev, qid, nvmeq); 1536 if (result < 0) 1537 return result; 1538 if (result) 1539 goto release_cq; 1540 1541 nvmeq->cq_vector = vector; 1542 nvme_init_queue(nvmeq, qid); 1543 1544 if (!polled) { 1545 result = queue_request_irq(nvmeq); 1546 if (result < 0) 1547 goto release_sq; 1548 } 1549 1550 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1551 return result; 1552 1553 release_sq: 1554 dev->online_queues--; 1555 adapter_delete_sq(dev, qid); 1556 release_cq: 1557 adapter_delete_cq(dev, qid); 1558 return result; 1559 } 1560 1561 static const struct blk_mq_ops nvme_mq_admin_ops = { 1562 .queue_rq = nvme_queue_rq, 1563 .complete = nvme_pci_complete_rq, 1564 .init_hctx = nvme_admin_init_hctx, 1565 .init_request = nvme_init_request, 1566 .timeout = nvme_timeout, 1567 }; 1568 1569 static const struct blk_mq_ops nvme_mq_ops = { 1570 .queue_rq = nvme_queue_rq, 1571 .complete = nvme_pci_complete_rq, 1572 .commit_rqs = nvme_commit_rqs, 1573 .init_hctx = nvme_init_hctx, 1574 .init_request = nvme_init_request, 1575 .map_queues = nvme_pci_map_queues, 1576 .timeout = nvme_timeout, 1577 .poll = nvme_poll, 1578 }; 1579 1580 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1581 { 1582 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1583 /* 1584 * If the controller was reset during removal, it's possible 1585 * user requests may be waiting on a stopped queue. Start the 1586 * queue to flush these to completion. 1587 */ 1588 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1589 blk_cleanup_queue(dev->ctrl.admin_q); 1590 blk_mq_free_tag_set(&dev->admin_tagset); 1591 } 1592 } 1593 1594 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1595 { 1596 if (!dev->ctrl.admin_q) { 1597 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1598 dev->admin_tagset.nr_hw_queues = 1; 1599 1600 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1601 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1602 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1603 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1604 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1605 dev->admin_tagset.driver_data = dev; 1606 1607 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1608 return -ENOMEM; 1609 dev->ctrl.admin_tagset = &dev->admin_tagset; 1610 1611 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1612 if (IS_ERR(dev->ctrl.admin_q)) { 1613 blk_mq_free_tag_set(&dev->admin_tagset); 1614 return -ENOMEM; 1615 } 1616 if (!blk_get_queue(dev->ctrl.admin_q)) { 1617 nvme_dev_remove_admin(dev); 1618 dev->ctrl.admin_q = NULL; 1619 return -ENODEV; 1620 } 1621 } else 1622 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1623 1624 return 0; 1625 } 1626 1627 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1628 { 1629 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1630 } 1631 1632 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1633 { 1634 struct pci_dev *pdev = to_pci_dev(dev->dev); 1635 1636 if (size <= dev->bar_mapped_size) 1637 return 0; 1638 if (size > pci_resource_len(pdev, 0)) 1639 return -ENOMEM; 1640 if (dev->bar) 1641 iounmap(dev->bar); 1642 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1643 if (!dev->bar) { 1644 dev->bar_mapped_size = 0; 1645 return -ENOMEM; 1646 } 1647 dev->bar_mapped_size = size; 1648 dev->dbs = dev->bar + NVME_REG_DBS; 1649 1650 return 0; 1651 } 1652 1653 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1654 { 1655 int result; 1656 u32 aqa; 1657 struct nvme_queue *nvmeq; 1658 1659 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1660 if (result < 0) 1661 return result; 1662 1663 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1664 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1665 1666 if (dev->subsystem && 1667 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1668 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1669 1670 result = nvme_disable_ctrl(&dev->ctrl); 1671 if (result < 0) 1672 return result; 1673 1674 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1675 if (result) 1676 return result; 1677 1678 nvmeq = &dev->queues[0]; 1679 aqa = nvmeq->q_depth - 1; 1680 aqa |= aqa << 16; 1681 1682 writel(aqa, dev->bar + NVME_REG_AQA); 1683 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1684 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1685 1686 result = nvme_enable_ctrl(&dev->ctrl); 1687 if (result) 1688 return result; 1689 1690 nvmeq->cq_vector = 0; 1691 nvme_init_queue(nvmeq, 0); 1692 result = queue_request_irq(nvmeq); 1693 if (result) { 1694 dev->online_queues--; 1695 return result; 1696 } 1697 1698 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1699 return result; 1700 } 1701 1702 static int nvme_create_io_queues(struct nvme_dev *dev) 1703 { 1704 unsigned i, max, rw_queues; 1705 int ret = 0; 1706 1707 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1708 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1709 ret = -ENOMEM; 1710 break; 1711 } 1712 } 1713 1714 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1715 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1716 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1717 dev->io_queues[HCTX_TYPE_READ]; 1718 } else { 1719 rw_queues = max; 1720 } 1721 1722 for (i = dev->online_queues; i <= max; i++) { 1723 bool polled = i > rw_queues; 1724 1725 ret = nvme_create_queue(&dev->queues[i], i, polled); 1726 if (ret) 1727 break; 1728 } 1729 1730 /* 1731 * Ignore failing Create SQ/CQ commands, we can continue with less 1732 * than the desired amount of queues, and even a controller without 1733 * I/O queues can still be used to issue admin commands. This might 1734 * be useful to upgrade a buggy firmware for example. 1735 */ 1736 return ret >= 0 ? 0 : ret; 1737 } 1738 1739 static ssize_t nvme_cmb_show(struct device *dev, 1740 struct device_attribute *attr, 1741 char *buf) 1742 { 1743 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1744 1745 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1746 ndev->cmbloc, ndev->cmbsz); 1747 } 1748 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1749 1750 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1751 { 1752 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1753 1754 return 1ULL << (12 + 4 * szu); 1755 } 1756 1757 static u32 nvme_cmb_size(struct nvme_dev *dev) 1758 { 1759 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1760 } 1761 1762 static void nvme_map_cmb(struct nvme_dev *dev) 1763 { 1764 u64 size, offset; 1765 resource_size_t bar_size; 1766 struct pci_dev *pdev = to_pci_dev(dev->dev); 1767 int bar; 1768 1769 if (dev->cmb_size) 1770 return; 1771 1772 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1773 if (!dev->cmbsz) 1774 return; 1775 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1776 1777 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1778 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1779 bar = NVME_CMB_BIR(dev->cmbloc); 1780 bar_size = pci_resource_len(pdev, bar); 1781 1782 if (offset > bar_size) 1783 return; 1784 1785 /* 1786 * Controllers may support a CMB size larger than their BAR, 1787 * for example, due to being behind a bridge. Reduce the CMB to 1788 * the reported size of the BAR 1789 */ 1790 if (size > bar_size - offset) 1791 size = bar_size - offset; 1792 1793 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1794 dev_warn(dev->ctrl.device, 1795 "failed to register the CMB\n"); 1796 return; 1797 } 1798 1799 dev->cmb_size = size; 1800 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1801 1802 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1803 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1804 pci_p2pmem_publish(pdev, true); 1805 1806 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1807 &dev_attr_cmb.attr, NULL)) 1808 dev_warn(dev->ctrl.device, 1809 "failed to add sysfs attribute for CMB\n"); 1810 } 1811 1812 static inline void nvme_release_cmb(struct nvme_dev *dev) 1813 { 1814 if (dev->cmb_size) { 1815 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1816 &dev_attr_cmb.attr, NULL); 1817 dev->cmb_size = 0; 1818 } 1819 } 1820 1821 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1822 { 1823 u64 dma_addr = dev->host_mem_descs_dma; 1824 struct nvme_command c; 1825 int ret; 1826 1827 memset(&c, 0, sizeof(c)); 1828 c.features.opcode = nvme_admin_set_features; 1829 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1830 c.features.dword11 = cpu_to_le32(bits); 1831 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1832 ilog2(dev->ctrl.page_size)); 1833 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1834 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1835 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1836 1837 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1838 if (ret) { 1839 dev_warn(dev->ctrl.device, 1840 "failed to set host mem (err %d, flags %#x).\n", 1841 ret, bits); 1842 } 1843 return ret; 1844 } 1845 1846 static void nvme_free_host_mem(struct nvme_dev *dev) 1847 { 1848 int i; 1849 1850 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1851 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1852 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1853 1854 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1855 le64_to_cpu(desc->addr), 1856 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1857 } 1858 1859 kfree(dev->host_mem_desc_bufs); 1860 dev->host_mem_desc_bufs = NULL; 1861 dma_free_coherent(dev->dev, 1862 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1863 dev->host_mem_descs, dev->host_mem_descs_dma); 1864 dev->host_mem_descs = NULL; 1865 dev->nr_host_mem_descs = 0; 1866 } 1867 1868 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1869 u32 chunk_size) 1870 { 1871 struct nvme_host_mem_buf_desc *descs; 1872 u32 max_entries, len; 1873 dma_addr_t descs_dma; 1874 int i = 0; 1875 void **bufs; 1876 u64 size, tmp; 1877 1878 tmp = (preferred + chunk_size - 1); 1879 do_div(tmp, chunk_size); 1880 max_entries = tmp; 1881 1882 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1883 max_entries = dev->ctrl.hmmaxd; 1884 1885 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1886 &descs_dma, GFP_KERNEL); 1887 if (!descs) 1888 goto out; 1889 1890 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1891 if (!bufs) 1892 goto out_free_descs; 1893 1894 for (size = 0; size < preferred && i < max_entries; size += len) { 1895 dma_addr_t dma_addr; 1896 1897 len = min_t(u64, chunk_size, preferred - size); 1898 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1899 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1900 if (!bufs[i]) 1901 break; 1902 1903 descs[i].addr = cpu_to_le64(dma_addr); 1904 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1905 i++; 1906 } 1907 1908 if (!size) 1909 goto out_free_bufs; 1910 1911 dev->nr_host_mem_descs = i; 1912 dev->host_mem_size = size; 1913 dev->host_mem_descs = descs; 1914 dev->host_mem_descs_dma = descs_dma; 1915 dev->host_mem_desc_bufs = bufs; 1916 return 0; 1917 1918 out_free_bufs: 1919 while (--i >= 0) { 1920 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1921 1922 dma_free_attrs(dev->dev, size, bufs[i], 1923 le64_to_cpu(descs[i].addr), 1924 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1925 } 1926 1927 kfree(bufs); 1928 out_free_descs: 1929 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1930 descs_dma); 1931 out: 1932 dev->host_mem_descs = NULL; 1933 return -ENOMEM; 1934 } 1935 1936 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1937 { 1938 u32 chunk_size; 1939 1940 /* start big and work our way down */ 1941 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1942 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1943 chunk_size /= 2) { 1944 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1945 if (!min || dev->host_mem_size >= min) 1946 return 0; 1947 nvme_free_host_mem(dev); 1948 } 1949 } 1950 1951 return -ENOMEM; 1952 } 1953 1954 static int nvme_setup_host_mem(struct nvme_dev *dev) 1955 { 1956 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1957 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1958 u64 min = (u64)dev->ctrl.hmmin * 4096; 1959 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1960 int ret; 1961 1962 preferred = min(preferred, max); 1963 if (min > max) { 1964 dev_warn(dev->ctrl.device, 1965 "min host memory (%lld MiB) above limit (%d MiB).\n", 1966 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1967 nvme_free_host_mem(dev); 1968 return 0; 1969 } 1970 1971 /* 1972 * If we already have a buffer allocated check if we can reuse it. 1973 */ 1974 if (dev->host_mem_descs) { 1975 if (dev->host_mem_size >= min) 1976 enable_bits |= NVME_HOST_MEM_RETURN; 1977 else 1978 nvme_free_host_mem(dev); 1979 } 1980 1981 if (!dev->host_mem_descs) { 1982 if (nvme_alloc_host_mem(dev, min, preferred)) { 1983 dev_warn(dev->ctrl.device, 1984 "failed to allocate host memory buffer.\n"); 1985 return 0; /* controller must work without HMB */ 1986 } 1987 1988 dev_info(dev->ctrl.device, 1989 "allocated %lld MiB host memory buffer.\n", 1990 dev->host_mem_size >> ilog2(SZ_1M)); 1991 } 1992 1993 ret = nvme_set_host_mem(dev, enable_bits); 1994 if (ret) 1995 nvme_free_host_mem(dev); 1996 return ret; 1997 } 1998 1999 /* 2000 * nirqs is the number of interrupts available for write and read 2001 * queues. The core already reserved an interrupt for the admin queue. 2002 */ 2003 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2004 { 2005 struct nvme_dev *dev = affd->priv; 2006 unsigned int nr_read_queues; 2007 2008 /* 2009 * If there is no interupt available for queues, ensure that 2010 * the default queue is set to 1. The affinity set size is 2011 * also set to one, but the irq core ignores it for this case. 2012 * 2013 * If only one interrupt is available or 'write_queue' == 0, combine 2014 * write and read queues. 2015 * 2016 * If 'write_queues' > 0, ensure it leaves room for at least one read 2017 * queue. 2018 */ 2019 if (!nrirqs) { 2020 nrirqs = 1; 2021 nr_read_queues = 0; 2022 } else if (nrirqs == 1 || !write_queues) { 2023 nr_read_queues = 0; 2024 } else if (write_queues >= nrirqs) { 2025 nr_read_queues = 1; 2026 } else { 2027 nr_read_queues = nrirqs - write_queues; 2028 } 2029 2030 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2031 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2032 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2033 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2034 affd->nr_sets = nr_read_queues ? 2 : 1; 2035 } 2036 2037 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2038 { 2039 struct pci_dev *pdev = to_pci_dev(dev->dev); 2040 struct irq_affinity affd = { 2041 .pre_vectors = 1, 2042 .calc_sets = nvme_calc_irq_sets, 2043 .priv = dev, 2044 }; 2045 unsigned int irq_queues, this_p_queues; 2046 2047 /* 2048 * Poll queues don't need interrupts, but we need at least one IO 2049 * queue left over for non-polled IO. 2050 */ 2051 this_p_queues = poll_queues; 2052 if (this_p_queues >= nr_io_queues) { 2053 this_p_queues = nr_io_queues - 1; 2054 irq_queues = 1; 2055 } else { 2056 irq_queues = nr_io_queues - this_p_queues + 1; 2057 } 2058 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; 2059 2060 /* Initialize for the single interrupt case */ 2061 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2062 dev->io_queues[HCTX_TYPE_READ] = 0; 2063 2064 /* 2065 * Some Apple controllers require all queues to use the 2066 * first vector. 2067 */ 2068 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR) 2069 irq_queues = 1; 2070 2071 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2072 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2073 } 2074 2075 static void nvme_disable_io_queues(struct nvme_dev *dev) 2076 { 2077 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2078 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2079 } 2080 2081 static int nvme_setup_io_queues(struct nvme_dev *dev) 2082 { 2083 struct nvme_queue *adminq = &dev->queues[0]; 2084 struct pci_dev *pdev = to_pci_dev(dev->dev); 2085 int result, nr_io_queues; 2086 unsigned long size; 2087 2088 nr_io_queues = max_io_queues(); 2089 2090 /* 2091 * If tags are shared with admin queue (Apple bug), then 2092 * make sure we only use one IO queue. 2093 */ 2094 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2095 nr_io_queues = 1; 2096 2097 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2098 if (result < 0) 2099 return result; 2100 2101 if (nr_io_queues == 0) 2102 return 0; 2103 2104 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2105 2106 if (dev->cmb_use_sqes) { 2107 result = nvme_cmb_qdepth(dev, nr_io_queues, 2108 sizeof(struct nvme_command)); 2109 if (result > 0) 2110 dev->q_depth = result; 2111 else 2112 dev->cmb_use_sqes = false; 2113 } 2114 2115 do { 2116 size = db_bar_size(dev, nr_io_queues); 2117 result = nvme_remap_bar(dev, size); 2118 if (!result) 2119 break; 2120 if (!--nr_io_queues) 2121 return -ENOMEM; 2122 } while (1); 2123 adminq->q_db = dev->dbs; 2124 2125 retry: 2126 /* Deregister the admin queue's interrupt */ 2127 pci_free_irq(pdev, 0, adminq); 2128 2129 /* 2130 * If we enable msix early due to not intx, disable it again before 2131 * setting up the full range we need. 2132 */ 2133 pci_free_irq_vectors(pdev); 2134 2135 result = nvme_setup_irqs(dev, nr_io_queues); 2136 if (result <= 0) 2137 return -EIO; 2138 2139 dev->num_vecs = result; 2140 result = max(result - 1, 1); 2141 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2142 2143 /* 2144 * Should investigate if there's a performance win from allocating 2145 * more queues than interrupt vectors; it might allow the submission 2146 * path to scale better, even if the receive path is limited by the 2147 * number of interrupts. 2148 */ 2149 result = queue_request_irq(adminq); 2150 if (result) 2151 return result; 2152 set_bit(NVMEQ_ENABLED, &adminq->flags); 2153 2154 result = nvme_create_io_queues(dev); 2155 if (result || dev->online_queues < 2) 2156 return result; 2157 2158 if (dev->online_queues - 1 < dev->max_qid) { 2159 nr_io_queues = dev->online_queues - 1; 2160 nvme_disable_io_queues(dev); 2161 nvme_suspend_io_queues(dev); 2162 goto retry; 2163 } 2164 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2165 dev->io_queues[HCTX_TYPE_DEFAULT], 2166 dev->io_queues[HCTX_TYPE_READ], 2167 dev->io_queues[HCTX_TYPE_POLL]); 2168 return 0; 2169 } 2170 2171 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2172 { 2173 struct nvme_queue *nvmeq = req->end_io_data; 2174 2175 blk_mq_free_request(req); 2176 complete(&nvmeq->delete_done); 2177 } 2178 2179 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2180 { 2181 struct nvme_queue *nvmeq = req->end_io_data; 2182 2183 if (error) 2184 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2185 2186 nvme_del_queue_end(req, error); 2187 } 2188 2189 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2190 { 2191 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2192 struct request *req; 2193 struct nvme_command cmd; 2194 2195 memset(&cmd, 0, sizeof(cmd)); 2196 cmd.delete_queue.opcode = opcode; 2197 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2198 2199 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2200 if (IS_ERR(req)) 2201 return PTR_ERR(req); 2202 2203 req->timeout = ADMIN_TIMEOUT; 2204 req->end_io_data = nvmeq; 2205 2206 init_completion(&nvmeq->delete_done); 2207 blk_execute_rq_nowait(q, NULL, req, false, 2208 opcode == nvme_admin_delete_cq ? 2209 nvme_del_cq_end : nvme_del_queue_end); 2210 return 0; 2211 } 2212 2213 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2214 { 2215 int nr_queues = dev->online_queues - 1, sent = 0; 2216 unsigned long timeout; 2217 2218 retry: 2219 timeout = ADMIN_TIMEOUT; 2220 while (nr_queues > 0) { 2221 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2222 break; 2223 nr_queues--; 2224 sent++; 2225 } 2226 while (sent) { 2227 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2228 2229 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2230 timeout); 2231 if (timeout == 0) 2232 return false; 2233 2234 sent--; 2235 if (nr_queues) 2236 goto retry; 2237 } 2238 return true; 2239 } 2240 2241 static void nvme_dev_add(struct nvme_dev *dev) 2242 { 2243 int ret; 2244 2245 if (!dev->ctrl.tagset) { 2246 dev->tagset.ops = &nvme_mq_ops; 2247 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2248 dev->tagset.nr_maps = 2; /* default + read */ 2249 if (dev->io_queues[HCTX_TYPE_POLL]) 2250 dev->tagset.nr_maps++; 2251 dev->tagset.timeout = NVME_IO_TIMEOUT; 2252 dev->tagset.numa_node = dev_to_node(dev->dev); 2253 dev->tagset.queue_depth = 2254 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2255 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2256 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2257 dev->tagset.driver_data = dev; 2258 2259 /* 2260 * Some Apple controllers requires tags to be unique 2261 * across admin and IO queue, so reserve the first 32 2262 * tags of the IO queue. 2263 */ 2264 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2265 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2266 2267 ret = blk_mq_alloc_tag_set(&dev->tagset); 2268 if (ret) { 2269 dev_warn(dev->ctrl.device, 2270 "IO queues tagset allocation failed %d\n", ret); 2271 return; 2272 } 2273 dev->ctrl.tagset = &dev->tagset; 2274 } else { 2275 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2276 2277 /* Free previously allocated queues that are no longer usable */ 2278 nvme_free_queues(dev, dev->online_queues); 2279 } 2280 2281 nvme_dbbuf_set(dev); 2282 } 2283 2284 static int nvme_pci_enable(struct nvme_dev *dev) 2285 { 2286 int result = -ENOMEM; 2287 struct pci_dev *pdev = to_pci_dev(dev->dev); 2288 2289 if (pci_enable_device_mem(pdev)) 2290 return result; 2291 2292 pci_set_master(pdev); 2293 2294 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2295 goto disable; 2296 2297 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2298 result = -ENODEV; 2299 goto disable; 2300 } 2301 2302 /* 2303 * Some devices and/or platforms don't advertise or work with INTx 2304 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2305 * adjust this later. 2306 */ 2307 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2308 if (result < 0) 2309 return result; 2310 2311 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2312 2313 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2314 io_queue_depth); 2315 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2316 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2317 dev->dbs = dev->bar + 4096; 2318 2319 /* 2320 * Some Apple controllers require a non-standard SQE size. 2321 * Interestingly they also seem to ignore the CC:IOSQES register 2322 * so we don't bother updating it here. 2323 */ 2324 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2325 dev->io_sqes = 7; 2326 else 2327 dev->io_sqes = NVME_NVM_IOSQES; 2328 2329 /* 2330 * Temporary fix for the Apple controller found in the MacBook8,1 and 2331 * some MacBook7,1 to avoid controller resets and data loss. 2332 */ 2333 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2334 dev->q_depth = 2; 2335 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2336 "set queue depth=%u to work around controller resets\n", 2337 dev->q_depth); 2338 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2339 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2340 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2341 dev->q_depth = 64; 2342 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2343 "set queue depth=%u\n", dev->q_depth); 2344 } 2345 2346 /* 2347 * Controllers with the shared tags quirk need the IO queue to be 2348 * big enough so that we get 32 tags for the admin queue 2349 */ 2350 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2351 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2352 dev->q_depth = NVME_AQ_DEPTH + 2; 2353 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2354 dev->q_depth); 2355 } 2356 2357 2358 nvme_map_cmb(dev); 2359 2360 pci_enable_pcie_error_reporting(pdev); 2361 pci_save_state(pdev); 2362 return 0; 2363 2364 disable: 2365 pci_disable_device(pdev); 2366 return result; 2367 } 2368 2369 static void nvme_dev_unmap(struct nvme_dev *dev) 2370 { 2371 if (dev->bar) 2372 iounmap(dev->bar); 2373 pci_release_mem_regions(to_pci_dev(dev->dev)); 2374 } 2375 2376 static void nvme_pci_disable(struct nvme_dev *dev) 2377 { 2378 struct pci_dev *pdev = to_pci_dev(dev->dev); 2379 2380 pci_free_irq_vectors(pdev); 2381 2382 if (pci_is_enabled(pdev)) { 2383 pci_disable_pcie_error_reporting(pdev); 2384 pci_disable_device(pdev); 2385 } 2386 } 2387 2388 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2389 { 2390 bool dead = true, freeze = false; 2391 struct pci_dev *pdev = to_pci_dev(dev->dev); 2392 2393 mutex_lock(&dev->shutdown_lock); 2394 if (pci_is_enabled(pdev)) { 2395 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2396 2397 if (dev->ctrl.state == NVME_CTRL_LIVE || 2398 dev->ctrl.state == NVME_CTRL_RESETTING) { 2399 freeze = true; 2400 nvme_start_freeze(&dev->ctrl); 2401 } 2402 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2403 pdev->error_state != pci_channel_io_normal); 2404 } 2405 2406 /* 2407 * Give the controller a chance to complete all entered requests if 2408 * doing a safe shutdown. 2409 */ 2410 if (!dead && shutdown && freeze) 2411 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2412 2413 nvme_stop_queues(&dev->ctrl); 2414 2415 if (!dead && dev->ctrl.queue_count > 0) { 2416 nvme_disable_io_queues(dev); 2417 nvme_disable_admin_queue(dev, shutdown); 2418 } 2419 nvme_suspend_io_queues(dev); 2420 nvme_suspend_queue(&dev->queues[0]); 2421 nvme_pci_disable(dev); 2422 nvme_reap_pending_cqes(dev); 2423 2424 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2425 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2426 blk_mq_tagset_wait_completed_request(&dev->tagset); 2427 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2428 2429 /* 2430 * The driver will not be starting up queues again if shutting down so 2431 * must flush all entered requests to their failed completion to avoid 2432 * deadlocking blk-mq hot-cpu notifier. 2433 */ 2434 if (shutdown) { 2435 nvme_start_queues(&dev->ctrl); 2436 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2437 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2438 } 2439 mutex_unlock(&dev->shutdown_lock); 2440 } 2441 2442 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2443 { 2444 if (!nvme_wait_reset(&dev->ctrl)) 2445 return -EBUSY; 2446 nvme_dev_disable(dev, shutdown); 2447 return 0; 2448 } 2449 2450 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2451 { 2452 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2453 PAGE_SIZE, PAGE_SIZE, 0); 2454 if (!dev->prp_page_pool) 2455 return -ENOMEM; 2456 2457 /* Optimisation for I/Os between 4k and 128k */ 2458 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2459 256, 256, 0); 2460 if (!dev->prp_small_pool) { 2461 dma_pool_destroy(dev->prp_page_pool); 2462 return -ENOMEM; 2463 } 2464 return 0; 2465 } 2466 2467 static void nvme_release_prp_pools(struct nvme_dev *dev) 2468 { 2469 dma_pool_destroy(dev->prp_page_pool); 2470 dma_pool_destroy(dev->prp_small_pool); 2471 } 2472 2473 static void nvme_free_tagset(struct nvme_dev *dev) 2474 { 2475 if (dev->tagset.tags) 2476 blk_mq_free_tag_set(&dev->tagset); 2477 dev->ctrl.tagset = NULL; 2478 } 2479 2480 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2481 { 2482 struct nvme_dev *dev = to_nvme_dev(ctrl); 2483 2484 nvme_dbbuf_dma_free(dev); 2485 nvme_free_tagset(dev); 2486 if (dev->ctrl.admin_q) 2487 blk_put_queue(dev->ctrl.admin_q); 2488 free_opal_dev(dev->ctrl.opal_dev); 2489 mempool_destroy(dev->iod_mempool); 2490 put_device(dev->dev); 2491 kfree(dev->queues); 2492 kfree(dev); 2493 } 2494 2495 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2496 { 2497 /* 2498 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2499 * may be holding this pci_dev's device lock. 2500 */ 2501 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2502 nvme_get_ctrl(&dev->ctrl); 2503 nvme_dev_disable(dev, false); 2504 nvme_kill_queues(&dev->ctrl); 2505 if (!queue_work(nvme_wq, &dev->remove_work)) 2506 nvme_put_ctrl(&dev->ctrl); 2507 } 2508 2509 static void nvme_reset_work(struct work_struct *work) 2510 { 2511 struct nvme_dev *dev = 2512 container_of(work, struct nvme_dev, ctrl.reset_work); 2513 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2514 int result; 2515 2516 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2517 result = -ENODEV; 2518 goto out; 2519 } 2520 2521 /* 2522 * If we're called to reset a live controller first shut it down before 2523 * moving on. 2524 */ 2525 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2526 nvme_dev_disable(dev, false); 2527 nvme_sync_queues(&dev->ctrl); 2528 2529 mutex_lock(&dev->shutdown_lock); 2530 result = nvme_pci_enable(dev); 2531 if (result) 2532 goto out_unlock; 2533 2534 result = nvme_pci_configure_admin_queue(dev); 2535 if (result) 2536 goto out_unlock; 2537 2538 result = nvme_alloc_admin_tags(dev); 2539 if (result) 2540 goto out_unlock; 2541 2542 /* 2543 * Limit the max command size to prevent iod->sg allocations going 2544 * over a single page. 2545 */ 2546 dev->ctrl.max_hw_sectors = min_t(u32, 2547 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2548 dev->ctrl.max_segments = NVME_MAX_SEGS; 2549 2550 /* 2551 * Don't limit the IOMMU merged segment size. 2552 */ 2553 dma_set_max_seg_size(dev->dev, 0xffffffff); 2554 2555 mutex_unlock(&dev->shutdown_lock); 2556 2557 /* 2558 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2559 * initializing procedure here. 2560 */ 2561 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2562 dev_warn(dev->ctrl.device, 2563 "failed to mark controller CONNECTING\n"); 2564 result = -EBUSY; 2565 goto out; 2566 } 2567 2568 result = nvme_init_identify(&dev->ctrl); 2569 if (result) 2570 goto out; 2571 2572 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2573 if (!dev->ctrl.opal_dev) 2574 dev->ctrl.opal_dev = 2575 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2576 else if (was_suspend) 2577 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2578 } else { 2579 free_opal_dev(dev->ctrl.opal_dev); 2580 dev->ctrl.opal_dev = NULL; 2581 } 2582 2583 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2584 result = nvme_dbbuf_dma_alloc(dev); 2585 if (result) 2586 dev_warn(dev->dev, 2587 "unable to allocate dma for dbbuf\n"); 2588 } 2589 2590 if (dev->ctrl.hmpre) { 2591 result = nvme_setup_host_mem(dev); 2592 if (result < 0) 2593 goto out; 2594 } 2595 2596 result = nvme_setup_io_queues(dev); 2597 if (result) 2598 goto out; 2599 2600 /* 2601 * Keep the controller around but remove all namespaces if we don't have 2602 * any working I/O queue. 2603 */ 2604 if (dev->online_queues < 2) { 2605 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2606 nvme_kill_queues(&dev->ctrl); 2607 nvme_remove_namespaces(&dev->ctrl); 2608 nvme_free_tagset(dev); 2609 } else { 2610 nvme_start_queues(&dev->ctrl); 2611 nvme_wait_freeze(&dev->ctrl); 2612 nvme_dev_add(dev); 2613 nvme_unfreeze(&dev->ctrl); 2614 } 2615 2616 /* 2617 * If only admin queue live, keep it to do further investigation or 2618 * recovery. 2619 */ 2620 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2621 dev_warn(dev->ctrl.device, 2622 "failed to mark controller live state\n"); 2623 result = -ENODEV; 2624 goto out; 2625 } 2626 2627 nvme_start_ctrl(&dev->ctrl); 2628 return; 2629 2630 out_unlock: 2631 mutex_unlock(&dev->shutdown_lock); 2632 out: 2633 if (result) 2634 dev_warn(dev->ctrl.device, 2635 "Removing after probe failure status: %d\n", result); 2636 nvme_remove_dead_ctrl(dev); 2637 } 2638 2639 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2640 { 2641 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2642 struct pci_dev *pdev = to_pci_dev(dev->dev); 2643 2644 if (pci_get_drvdata(pdev)) 2645 device_release_driver(&pdev->dev); 2646 nvme_put_ctrl(&dev->ctrl); 2647 } 2648 2649 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2650 { 2651 *val = readl(to_nvme_dev(ctrl)->bar + off); 2652 return 0; 2653 } 2654 2655 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2656 { 2657 writel(val, to_nvme_dev(ctrl)->bar + off); 2658 return 0; 2659 } 2660 2661 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2662 { 2663 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2664 return 0; 2665 } 2666 2667 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2668 { 2669 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2670 2671 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2672 } 2673 2674 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2675 .name = "pcie", 2676 .module = THIS_MODULE, 2677 .flags = NVME_F_METADATA_SUPPORTED | 2678 NVME_F_PCI_P2PDMA, 2679 .reg_read32 = nvme_pci_reg_read32, 2680 .reg_write32 = nvme_pci_reg_write32, 2681 .reg_read64 = nvme_pci_reg_read64, 2682 .free_ctrl = nvme_pci_free_ctrl, 2683 .submit_async_event = nvme_pci_submit_async_event, 2684 .get_address = nvme_pci_get_address, 2685 }; 2686 2687 static int nvme_dev_map(struct nvme_dev *dev) 2688 { 2689 struct pci_dev *pdev = to_pci_dev(dev->dev); 2690 2691 if (pci_request_mem_regions(pdev, "nvme")) 2692 return -ENODEV; 2693 2694 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2695 goto release; 2696 2697 return 0; 2698 release: 2699 pci_release_mem_regions(pdev); 2700 return -ENODEV; 2701 } 2702 2703 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2704 { 2705 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2706 /* 2707 * Several Samsung devices seem to drop off the PCIe bus 2708 * randomly when APST is on and uses the deepest sleep state. 2709 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2710 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2711 * 950 PRO 256GB", but it seems to be restricted to two Dell 2712 * laptops. 2713 */ 2714 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2715 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2716 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2717 return NVME_QUIRK_NO_DEEPEST_PS; 2718 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2719 /* 2720 * Samsung SSD 960 EVO drops off the PCIe bus after system 2721 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2722 * within few minutes after bootup on a Coffee Lake board - 2723 * ASUS PRIME Z370-A 2724 */ 2725 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2726 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2727 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2728 return NVME_QUIRK_NO_APST; 2729 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2730 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2731 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2732 /* 2733 * Forcing to use host managed nvme power settings for 2734 * lowest idle power with quick resume latency on 2735 * Samsung and Toshiba SSDs based on suspend behavior 2736 * on Coffee Lake board for LENOVO C640 2737 */ 2738 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2739 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2740 return NVME_QUIRK_SIMPLE_SUSPEND; 2741 } 2742 2743 return 0; 2744 } 2745 2746 static void nvme_async_probe(void *data, async_cookie_t cookie) 2747 { 2748 struct nvme_dev *dev = data; 2749 2750 flush_work(&dev->ctrl.reset_work); 2751 flush_work(&dev->ctrl.scan_work); 2752 nvme_put_ctrl(&dev->ctrl); 2753 } 2754 2755 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2756 { 2757 int node, result = -ENOMEM; 2758 struct nvme_dev *dev; 2759 unsigned long quirks = id->driver_data; 2760 size_t alloc_size; 2761 2762 node = dev_to_node(&pdev->dev); 2763 if (node == NUMA_NO_NODE) 2764 set_dev_node(&pdev->dev, first_memory_node); 2765 2766 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2767 if (!dev) 2768 return -ENOMEM; 2769 2770 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue), 2771 GFP_KERNEL, node); 2772 if (!dev->queues) 2773 goto free; 2774 2775 dev->dev = get_device(&pdev->dev); 2776 pci_set_drvdata(pdev, dev); 2777 2778 result = nvme_dev_map(dev); 2779 if (result) 2780 goto put_pci; 2781 2782 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2783 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2784 mutex_init(&dev->shutdown_lock); 2785 2786 result = nvme_setup_prp_pools(dev); 2787 if (result) 2788 goto unmap; 2789 2790 quirks |= check_vendor_combination_bug(pdev); 2791 2792 /* 2793 * Double check that our mempool alloc size will cover the biggest 2794 * command we support. 2795 */ 2796 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, 2797 NVME_MAX_SEGS, true); 2798 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2799 2800 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2801 mempool_kfree, 2802 (void *) alloc_size, 2803 GFP_KERNEL, node); 2804 if (!dev->iod_mempool) { 2805 result = -ENOMEM; 2806 goto release_pools; 2807 } 2808 2809 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2810 quirks); 2811 if (result) 2812 goto release_mempool; 2813 2814 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2815 2816 nvme_reset_ctrl(&dev->ctrl); 2817 async_schedule(nvme_async_probe, dev); 2818 2819 return 0; 2820 2821 release_mempool: 2822 mempool_destroy(dev->iod_mempool); 2823 release_pools: 2824 nvme_release_prp_pools(dev); 2825 unmap: 2826 nvme_dev_unmap(dev); 2827 put_pci: 2828 put_device(dev->dev); 2829 free: 2830 kfree(dev->queues); 2831 kfree(dev); 2832 return result; 2833 } 2834 2835 static void nvme_reset_prepare(struct pci_dev *pdev) 2836 { 2837 struct nvme_dev *dev = pci_get_drvdata(pdev); 2838 2839 /* 2840 * We don't need to check the return value from waiting for the reset 2841 * state as pci_dev device lock is held, making it impossible to race 2842 * with ->remove(). 2843 */ 2844 nvme_disable_prepare_reset(dev, false); 2845 nvme_sync_queues(&dev->ctrl); 2846 } 2847 2848 static void nvme_reset_done(struct pci_dev *pdev) 2849 { 2850 struct nvme_dev *dev = pci_get_drvdata(pdev); 2851 2852 if (!nvme_try_sched_reset(&dev->ctrl)) 2853 flush_work(&dev->ctrl.reset_work); 2854 } 2855 2856 static void nvme_shutdown(struct pci_dev *pdev) 2857 { 2858 struct nvme_dev *dev = pci_get_drvdata(pdev); 2859 nvme_disable_prepare_reset(dev, true); 2860 } 2861 2862 /* 2863 * The driver's remove may be called on a device in a partially initialized 2864 * state. This function must not have any dependencies on the device state in 2865 * order to proceed. 2866 */ 2867 static void nvme_remove(struct pci_dev *pdev) 2868 { 2869 struct nvme_dev *dev = pci_get_drvdata(pdev); 2870 2871 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2872 pci_set_drvdata(pdev, NULL); 2873 2874 if (!pci_device_is_present(pdev)) { 2875 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2876 nvme_dev_disable(dev, true); 2877 nvme_dev_remove_admin(dev); 2878 } 2879 2880 flush_work(&dev->ctrl.reset_work); 2881 nvme_stop_ctrl(&dev->ctrl); 2882 nvme_remove_namespaces(&dev->ctrl); 2883 nvme_dev_disable(dev, true); 2884 nvme_release_cmb(dev); 2885 nvme_free_host_mem(dev); 2886 nvme_dev_remove_admin(dev); 2887 nvme_free_queues(dev, 0); 2888 nvme_release_prp_pools(dev); 2889 nvme_dev_unmap(dev); 2890 nvme_uninit_ctrl(&dev->ctrl); 2891 } 2892 2893 #ifdef CONFIG_PM_SLEEP 2894 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2895 { 2896 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2897 } 2898 2899 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 2900 { 2901 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 2902 } 2903 2904 static int nvme_resume(struct device *dev) 2905 { 2906 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2907 struct nvme_ctrl *ctrl = &ndev->ctrl; 2908 2909 if (ndev->last_ps == U32_MAX || 2910 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 2911 return nvme_try_sched_reset(&ndev->ctrl); 2912 return 0; 2913 } 2914 2915 static int nvme_suspend(struct device *dev) 2916 { 2917 struct pci_dev *pdev = to_pci_dev(dev); 2918 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2919 struct nvme_ctrl *ctrl = &ndev->ctrl; 2920 int ret = -EBUSY; 2921 2922 ndev->last_ps = U32_MAX; 2923 2924 /* 2925 * The platform does not remove power for a kernel managed suspend so 2926 * use host managed nvme power settings for lowest idle power if 2927 * possible. This should have quicker resume latency than a full device 2928 * shutdown. But if the firmware is involved after the suspend or the 2929 * device does not support any non-default power states, shut down the 2930 * device fully. 2931 * 2932 * If ASPM is not enabled for the device, shut down the device and allow 2933 * the PCI bus layer to put it into D3 in order to take the PCIe link 2934 * down, so as to allow the platform to achieve its minimum low-power 2935 * state (which may not be possible if the link is up). 2936 */ 2937 if (pm_suspend_via_firmware() || !ctrl->npss || 2938 !pcie_aspm_enabled(pdev) || 2939 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 2940 return nvme_disable_prepare_reset(ndev, true); 2941 2942 nvme_start_freeze(ctrl); 2943 nvme_wait_freeze(ctrl); 2944 nvme_sync_queues(ctrl); 2945 2946 if (ctrl->state != NVME_CTRL_LIVE) 2947 goto unfreeze; 2948 2949 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 2950 if (ret < 0) 2951 goto unfreeze; 2952 2953 /* 2954 * A saved state prevents pci pm from generically controlling the 2955 * device's power. If we're using protocol specific settings, we don't 2956 * want pci interfering. 2957 */ 2958 pci_save_state(pdev); 2959 2960 ret = nvme_set_power_state(ctrl, ctrl->npss); 2961 if (ret < 0) 2962 goto unfreeze; 2963 2964 if (ret) { 2965 /* discard the saved state */ 2966 pci_load_saved_state(pdev, NULL); 2967 2968 /* 2969 * Clearing npss forces a controller reset on resume. The 2970 * correct value will be rediscovered then. 2971 */ 2972 ret = nvme_disable_prepare_reset(ndev, true); 2973 ctrl->npss = 0; 2974 } 2975 unfreeze: 2976 nvme_unfreeze(ctrl); 2977 return ret; 2978 } 2979 2980 static int nvme_simple_suspend(struct device *dev) 2981 { 2982 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2983 return nvme_disable_prepare_reset(ndev, true); 2984 } 2985 2986 static int nvme_simple_resume(struct device *dev) 2987 { 2988 struct pci_dev *pdev = to_pci_dev(dev); 2989 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2990 2991 return nvme_try_sched_reset(&ndev->ctrl); 2992 } 2993 2994 static const struct dev_pm_ops nvme_dev_pm_ops = { 2995 .suspend = nvme_suspend, 2996 .resume = nvme_resume, 2997 .freeze = nvme_simple_suspend, 2998 .thaw = nvme_simple_resume, 2999 .poweroff = nvme_simple_suspend, 3000 .restore = nvme_simple_resume, 3001 }; 3002 #endif /* CONFIG_PM_SLEEP */ 3003 3004 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3005 pci_channel_state_t state) 3006 { 3007 struct nvme_dev *dev = pci_get_drvdata(pdev); 3008 3009 /* 3010 * A frozen channel requires a reset. When detected, this method will 3011 * shutdown the controller to quiesce. The controller will be restarted 3012 * after the slot reset through driver's slot_reset callback. 3013 */ 3014 switch (state) { 3015 case pci_channel_io_normal: 3016 return PCI_ERS_RESULT_CAN_RECOVER; 3017 case pci_channel_io_frozen: 3018 dev_warn(dev->ctrl.device, 3019 "frozen state error detected, reset controller\n"); 3020 nvme_dev_disable(dev, false); 3021 return PCI_ERS_RESULT_NEED_RESET; 3022 case pci_channel_io_perm_failure: 3023 dev_warn(dev->ctrl.device, 3024 "failure state error detected, request disconnect\n"); 3025 return PCI_ERS_RESULT_DISCONNECT; 3026 } 3027 return PCI_ERS_RESULT_NEED_RESET; 3028 } 3029 3030 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3031 { 3032 struct nvme_dev *dev = pci_get_drvdata(pdev); 3033 3034 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3035 pci_restore_state(pdev); 3036 nvme_reset_ctrl(&dev->ctrl); 3037 return PCI_ERS_RESULT_RECOVERED; 3038 } 3039 3040 static void nvme_error_resume(struct pci_dev *pdev) 3041 { 3042 struct nvme_dev *dev = pci_get_drvdata(pdev); 3043 3044 flush_work(&dev->ctrl.reset_work); 3045 } 3046 3047 static const struct pci_error_handlers nvme_err_handler = { 3048 .error_detected = nvme_error_detected, 3049 .slot_reset = nvme_slot_reset, 3050 .resume = nvme_error_resume, 3051 .reset_prepare = nvme_reset_prepare, 3052 .reset_done = nvme_reset_done, 3053 }; 3054 3055 static const struct pci_device_id nvme_id_table[] = { 3056 { PCI_VDEVICE(INTEL, 0x0953), 3057 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3058 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3059 { PCI_VDEVICE(INTEL, 0x0a53), 3060 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3061 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3062 { PCI_VDEVICE(INTEL, 0x0a54), 3063 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3064 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3065 { PCI_VDEVICE(INTEL, 0x0a55), 3066 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3067 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3068 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3069 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3070 NVME_QUIRK_MEDIUM_PRIO_SQ | 3071 NVME_QUIRK_NO_TEMP_THRESH_CHANGE }, 3072 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3073 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3074 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3075 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3076 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3077 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3078 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3079 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3080 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3081 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3082 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3083 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3084 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3085 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3086 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3087 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3088 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3089 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3090 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3091 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3092 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3093 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3094 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3095 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3096 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3097 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3098 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3099 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3100 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3101 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3102 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3103 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3104 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3105 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3106 NVME_QUIRK_128_BYTES_SQES | 3107 NVME_QUIRK_SHARED_TAGS }, 3108 { 0, } 3109 }; 3110 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3111 3112 static struct pci_driver nvme_driver = { 3113 .name = "nvme", 3114 .id_table = nvme_id_table, 3115 .probe = nvme_probe, 3116 .remove = nvme_remove, 3117 .shutdown = nvme_shutdown, 3118 #ifdef CONFIG_PM_SLEEP 3119 .driver = { 3120 .pm = &nvme_dev_pm_ops, 3121 }, 3122 #endif 3123 .sriov_configure = pci_sriov_configure_simple, 3124 .err_handler = &nvme_err_handler, 3125 }; 3126 3127 static int __init nvme_init(void) 3128 { 3129 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3130 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3131 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3132 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3133 3134 write_queues = min(write_queues, num_possible_cpus()); 3135 poll_queues = min(poll_queues, num_possible_cpus()); 3136 return pci_register_driver(&nvme_driver); 3137 } 3138 3139 static void __exit nvme_exit(void) 3140 { 3141 pci_unregister_driver(&nvme_driver); 3142 flush_workqueue(nvme_wq); 3143 } 3144 3145 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3146 MODULE_LICENSE("GPL"); 3147 MODULE_VERSION("1.0"); 3148 module_init(nvme_init); 3149 module_exit(nvme_exit); 3150