xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 747f7a29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	4096
45 #define NVME_MAX_SEGS	127
46 
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49 
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53 
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58 
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 		"Use SGLs when average request segment size is larger or equal to "
63 		"this size. Use 0 to disable SGLs.");
64 
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 	.set = io_queue_depth_set,
70 	.get = param_get_uint,
71 };
72 
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76 
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79 	unsigned int n;
80 	int ret;
81 
82 	ret = kstrtouint(val, 10, &n);
83 	if (ret != 0 || n > num_possible_cpus())
84 		return -EINVAL;
85 	return param_set_uint(val, kp);
86 }
87 
88 static const struct kernel_param_ops io_queue_count_ops = {
89 	.set = io_queue_count_set,
90 	.get = param_get_uint,
91 };
92 
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 	"Number of queues to use for writes. If not set, reads and writes "
97 	"will share a queue set.");
98 
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102 
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106 
107 struct nvme_dev;
108 struct nvme_queue;
109 
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112 
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117 	struct nvme_queue *queues;
118 	struct blk_mq_tag_set tagset;
119 	struct blk_mq_tag_set admin_tagset;
120 	u32 __iomem *dbs;
121 	struct device *dev;
122 	struct dma_pool *prp_page_pool;
123 	struct dma_pool *prp_small_pool;
124 	unsigned online_queues;
125 	unsigned max_qid;
126 	unsigned io_queues[HCTX_MAX_TYPES];
127 	unsigned int num_vecs;
128 	u32 q_depth;
129 	int io_sqes;
130 	u32 db_stride;
131 	void __iomem *bar;
132 	unsigned long bar_mapped_size;
133 	struct work_struct remove_work;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 
162 	bool attrs_added;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	u32 *dbbuf_sq_db;
214 	u32 *dbbuf_cq_db;
215 	u32 *dbbuf_sq_ei;
216 	u32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227 	struct nvme_request req;
228 	struct nvme_command cmd;
229 	struct nvme_queue *nvmeq;
230 	bool use_sgl;
231 	int aborted;
232 	int npages;		/* In the PRP list. 0 means small pool in use */
233 	int nents;		/* Used in scatterlist */
234 	dma_addr_t first_dma;
235 	unsigned int dma_len;	/* length of single DMA segment mapping */
236 	dma_addr_t meta_dma;
237 	struct scatterlist *sg;
238 };
239 
240 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
241 {
242 	return dev->nr_allocated_queues * 8 * dev->db_stride;
243 }
244 
245 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
246 {
247 	unsigned int mem_size = nvme_dbbuf_size(dev);
248 
249 	if (dev->dbbuf_dbs) {
250 		/*
251 		 * Clear the dbbuf memory so the driver doesn't observe stale
252 		 * values from the previous instantiation.
253 		 */
254 		memset(dev->dbbuf_dbs, 0, mem_size);
255 		memset(dev->dbbuf_eis, 0, mem_size);
256 		return 0;
257 	}
258 
259 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 					    &dev->dbbuf_dbs_dma_addr,
261 					    GFP_KERNEL);
262 	if (!dev->dbbuf_dbs)
263 		return -ENOMEM;
264 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 					    &dev->dbbuf_eis_dma_addr,
266 					    GFP_KERNEL);
267 	if (!dev->dbbuf_eis) {
268 		dma_free_coherent(dev->dev, mem_size,
269 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
270 		dev->dbbuf_dbs = NULL;
271 		return -ENOMEM;
272 	}
273 
274 	return 0;
275 }
276 
277 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
278 {
279 	unsigned int mem_size = nvme_dbbuf_size(dev);
280 
281 	if (dev->dbbuf_dbs) {
282 		dma_free_coherent(dev->dev, mem_size,
283 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
284 		dev->dbbuf_dbs = NULL;
285 	}
286 	if (dev->dbbuf_eis) {
287 		dma_free_coherent(dev->dev, mem_size,
288 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
289 		dev->dbbuf_eis = NULL;
290 	}
291 }
292 
293 static void nvme_dbbuf_init(struct nvme_dev *dev,
294 			    struct nvme_queue *nvmeq, int qid)
295 {
296 	if (!dev->dbbuf_dbs || !qid)
297 		return;
298 
299 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
302 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
303 }
304 
305 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
306 {
307 	if (!nvmeq->qid)
308 		return;
309 
310 	nvmeq->dbbuf_sq_db = NULL;
311 	nvmeq->dbbuf_cq_db = NULL;
312 	nvmeq->dbbuf_sq_ei = NULL;
313 	nvmeq->dbbuf_cq_ei = NULL;
314 }
315 
316 static void nvme_dbbuf_set(struct nvme_dev *dev)
317 {
318 	struct nvme_command c = { };
319 	unsigned int i;
320 
321 	if (!dev->dbbuf_dbs)
322 		return;
323 
324 	c.dbbuf.opcode = nvme_admin_dbbuf;
325 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
326 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
327 
328 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
329 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
330 		/* Free memory and continue on */
331 		nvme_dbbuf_dma_free(dev);
332 
333 		for (i = 1; i <= dev->online_queues; i++)
334 			nvme_dbbuf_free(&dev->queues[i]);
335 	}
336 }
337 
338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
339 {
340 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
341 }
342 
343 /* Update dbbuf and return true if an MMIO is required */
344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
345 					      volatile u32 *dbbuf_ei)
346 {
347 	if (dbbuf_db) {
348 		u16 old_value;
349 
350 		/*
351 		 * Ensure that the queue is written before updating
352 		 * the doorbell in memory
353 		 */
354 		wmb();
355 
356 		old_value = *dbbuf_db;
357 		*dbbuf_db = value;
358 
359 		/*
360 		 * Ensure that the doorbell is updated before reading the event
361 		 * index from memory.  The controller needs to provide similar
362 		 * ordering to ensure the envent index is updated before reading
363 		 * the doorbell.
364 		 */
365 		mb();
366 
367 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
368 			return false;
369 	}
370 
371 	return true;
372 }
373 
374 /*
375  * Will slightly overestimate the number of pages needed.  This is OK
376  * as it only leads to a small amount of wasted memory for the lifetime of
377  * the I/O.
378  */
379 static int nvme_pci_npages_prp(void)
380 {
381 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
382 				      NVME_CTRL_PAGE_SIZE);
383 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
384 }
385 
386 /*
387  * Calculates the number of pages needed for the SGL segments. For example a 4k
388  * page can accommodate 256 SGL descriptors.
389  */
390 static int nvme_pci_npages_sgl(void)
391 {
392 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
393 			PAGE_SIZE);
394 }
395 
396 static size_t nvme_pci_iod_alloc_size(void)
397 {
398 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
399 
400 	return sizeof(__le64 *) * npages +
401 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
402 }
403 
404 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
405 				unsigned int hctx_idx)
406 {
407 	struct nvme_dev *dev = data;
408 	struct nvme_queue *nvmeq = &dev->queues[0];
409 
410 	WARN_ON(hctx_idx != 0);
411 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
412 
413 	hctx->driver_data = nvmeq;
414 	return 0;
415 }
416 
417 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
418 			  unsigned int hctx_idx)
419 {
420 	struct nvme_dev *dev = data;
421 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
422 
423 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
424 	hctx->driver_data = nvmeq;
425 	return 0;
426 }
427 
428 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
429 		struct request *req, unsigned int hctx_idx,
430 		unsigned int numa_node)
431 {
432 	struct nvme_dev *dev = set->driver_data;
433 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
434 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
435 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
436 
437 	BUG_ON(!nvmeq);
438 	iod->nvmeq = nvmeq;
439 
440 	nvme_req(req)->ctrl = &dev->ctrl;
441 	nvme_req(req)->cmd = &iod->cmd;
442 	return 0;
443 }
444 
445 static int queue_irq_offset(struct nvme_dev *dev)
446 {
447 	/* if we have more than 1 vec, admin queue offsets us by 1 */
448 	if (dev->num_vecs > 1)
449 		return 1;
450 
451 	return 0;
452 }
453 
454 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
455 {
456 	struct nvme_dev *dev = set->driver_data;
457 	int i, qoff, offset;
458 
459 	offset = queue_irq_offset(dev);
460 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
461 		struct blk_mq_queue_map *map = &set->map[i];
462 
463 		map->nr_queues = dev->io_queues[i];
464 		if (!map->nr_queues) {
465 			BUG_ON(i == HCTX_TYPE_DEFAULT);
466 			continue;
467 		}
468 
469 		/*
470 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
471 		 * affinity), so use the regular blk-mq cpu mapping
472 		 */
473 		map->queue_offset = qoff;
474 		if (i != HCTX_TYPE_POLL && offset)
475 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
476 		else
477 			blk_mq_map_queues(map);
478 		qoff += map->nr_queues;
479 		offset += map->nr_queues;
480 	}
481 
482 	return 0;
483 }
484 
485 /*
486  * Write sq tail if we are asked to, or if the next command would wrap.
487  */
488 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
489 {
490 	if (!write_sq) {
491 		u16 next_tail = nvmeq->sq_tail + 1;
492 
493 		if (next_tail == nvmeq->q_depth)
494 			next_tail = 0;
495 		if (next_tail != nvmeq->last_sq_tail)
496 			return;
497 	}
498 
499 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
500 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
501 		writel(nvmeq->sq_tail, nvmeq->q_db);
502 	nvmeq->last_sq_tail = nvmeq->sq_tail;
503 }
504 
505 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
506 				    struct nvme_command *cmd)
507 {
508 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
509 		absolute_pointer(cmd), sizeof(*cmd));
510 	if (++nvmeq->sq_tail == nvmeq->q_depth)
511 		nvmeq->sq_tail = 0;
512 }
513 
514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
515 {
516 	struct nvme_queue *nvmeq = hctx->driver_data;
517 
518 	spin_lock(&nvmeq->sq_lock);
519 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520 		nvme_write_sq_db(nvmeq, true);
521 	spin_unlock(&nvmeq->sq_lock);
522 }
523 
524 static void **nvme_pci_iod_list(struct request *req)
525 {
526 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
528 }
529 
530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
531 {
532 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533 	int nseg = blk_rq_nr_phys_segments(req);
534 	unsigned int avg_seg_size;
535 
536 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
537 
538 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
539 		return false;
540 	if (!iod->nvmeq->qid)
541 		return false;
542 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
543 		return false;
544 	return true;
545 }
546 
547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
548 {
549 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551 	dma_addr_t dma_addr = iod->first_dma;
552 	int i;
553 
554 	for (i = 0; i < iod->npages; i++) {
555 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
556 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
557 
558 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559 		dma_addr = next_dma_addr;
560 	}
561 }
562 
563 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
564 {
565 	const int last_sg = SGES_PER_PAGE - 1;
566 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
567 	dma_addr_t dma_addr = iod->first_dma;
568 	int i;
569 
570 	for (i = 0; i < iod->npages; i++) {
571 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
572 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
573 
574 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
575 		dma_addr = next_dma_addr;
576 	}
577 }
578 
579 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
580 {
581 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
582 
583 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
584 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
585 				    rq_dma_dir(req));
586 	else
587 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
588 }
589 
590 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
591 {
592 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
593 
594 	if (iod->dma_len) {
595 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
596 			       rq_dma_dir(req));
597 		return;
598 	}
599 
600 	WARN_ON_ONCE(!iod->nents);
601 
602 	nvme_unmap_sg(dev, req);
603 	if (iod->npages == 0)
604 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
605 			      iod->first_dma);
606 	else if (iod->use_sgl)
607 		nvme_free_sgls(dev, req);
608 	else
609 		nvme_free_prps(dev, req);
610 	mempool_free(iod->sg, dev->iod_mempool);
611 }
612 
613 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
614 {
615 	int i;
616 	struct scatterlist *sg;
617 
618 	for_each_sg(sgl, sg, nents, i) {
619 		dma_addr_t phys = sg_phys(sg);
620 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
621 			"dma_address:%pad dma_length:%d\n",
622 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
623 			sg_dma_len(sg));
624 	}
625 }
626 
627 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
628 		struct request *req, struct nvme_rw_command *cmnd)
629 {
630 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
631 	struct dma_pool *pool;
632 	int length = blk_rq_payload_bytes(req);
633 	struct scatterlist *sg = iod->sg;
634 	int dma_len = sg_dma_len(sg);
635 	u64 dma_addr = sg_dma_address(sg);
636 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
637 	__le64 *prp_list;
638 	void **list = nvme_pci_iod_list(req);
639 	dma_addr_t prp_dma;
640 	int nprps, i;
641 
642 	length -= (NVME_CTRL_PAGE_SIZE - offset);
643 	if (length <= 0) {
644 		iod->first_dma = 0;
645 		goto done;
646 	}
647 
648 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
649 	if (dma_len) {
650 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
651 	} else {
652 		sg = sg_next(sg);
653 		dma_addr = sg_dma_address(sg);
654 		dma_len = sg_dma_len(sg);
655 	}
656 
657 	if (length <= NVME_CTRL_PAGE_SIZE) {
658 		iod->first_dma = dma_addr;
659 		goto done;
660 	}
661 
662 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
663 	if (nprps <= (256 / 8)) {
664 		pool = dev->prp_small_pool;
665 		iod->npages = 0;
666 	} else {
667 		pool = dev->prp_page_pool;
668 		iod->npages = 1;
669 	}
670 
671 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
672 	if (!prp_list) {
673 		iod->npages = -1;
674 		return BLK_STS_RESOURCE;
675 	}
676 	list[0] = prp_list;
677 	iod->first_dma = prp_dma;
678 	i = 0;
679 	for (;;) {
680 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
681 			__le64 *old_prp_list = prp_list;
682 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
683 			if (!prp_list)
684 				goto free_prps;
685 			list[iod->npages++] = prp_list;
686 			prp_list[0] = old_prp_list[i - 1];
687 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
688 			i = 1;
689 		}
690 		prp_list[i++] = cpu_to_le64(dma_addr);
691 		dma_len -= NVME_CTRL_PAGE_SIZE;
692 		dma_addr += NVME_CTRL_PAGE_SIZE;
693 		length -= NVME_CTRL_PAGE_SIZE;
694 		if (length <= 0)
695 			break;
696 		if (dma_len > 0)
697 			continue;
698 		if (unlikely(dma_len < 0))
699 			goto bad_sgl;
700 		sg = sg_next(sg);
701 		dma_addr = sg_dma_address(sg);
702 		dma_len = sg_dma_len(sg);
703 	}
704 done:
705 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
706 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
707 	return BLK_STS_OK;
708 free_prps:
709 	nvme_free_prps(dev, req);
710 	return BLK_STS_RESOURCE;
711 bad_sgl:
712 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
713 			"Invalid SGL for payload:%d nents:%d\n",
714 			blk_rq_payload_bytes(req), iod->nents);
715 	return BLK_STS_IOERR;
716 }
717 
718 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
719 		struct scatterlist *sg)
720 {
721 	sge->addr = cpu_to_le64(sg_dma_address(sg));
722 	sge->length = cpu_to_le32(sg_dma_len(sg));
723 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
724 }
725 
726 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
727 		dma_addr_t dma_addr, int entries)
728 {
729 	sge->addr = cpu_to_le64(dma_addr);
730 	if (entries < SGES_PER_PAGE) {
731 		sge->length = cpu_to_le32(entries * sizeof(*sge));
732 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
733 	} else {
734 		sge->length = cpu_to_le32(PAGE_SIZE);
735 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
736 	}
737 }
738 
739 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
740 		struct request *req, struct nvme_rw_command *cmd, int entries)
741 {
742 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
743 	struct dma_pool *pool;
744 	struct nvme_sgl_desc *sg_list;
745 	struct scatterlist *sg = iod->sg;
746 	dma_addr_t sgl_dma;
747 	int i = 0;
748 
749 	/* setting the transfer type as SGL */
750 	cmd->flags = NVME_CMD_SGL_METABUF;
751 
752 	if (entries == 1) {
753 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
754 		return BLK_STS_OK;
755 	}
756 
757 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
758 		pool = dev->prp_small_pool;
759 		iod->npages = 0;
760 	} else {
761 		pool = dev->prp_page_pool;
762 		iod->npages = 1;
763 	}
764 
765 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
766 	if (!sg_list) {
767 		iod->npages = -1;
768 		return BLK_STS_RESOURCE;
769 	}
770 
771 	nvme_pci_iod_list(req)[0] = sg_list;
772 	iod->first_dma = sgl_dma;
773 
774 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
775 
776 	do {
777 		if (i == SGES_PER_PAGE) {
778 			struct nvme_sgl_desc *old_sg_desc = sg_list;
779 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
780 
781 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
782 			if (!sg_list)
783 				goto free_sgls;
784 
785 			i = 0;
786 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
787 			sg_list[i++] = *link;
788 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
789 		}
790 
791 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
792 		sg = sg_next(sg);
793 	} while (--entries > 0);
794 
795 	return BLK_STS_OK;
796 free_sgls:
797 	nvme_free_sgls(dev, req);
798 	return BLK_STS_RESOURCE;
799 }
800 
801 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
802 		struct request *req, struct nvme_rw_command *cmnd,
803 		struct bio_vec *bv)
804 {
805 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
806 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
807 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
808 
809 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
810 	if (dma_mapping_error(dev->dev, iod->first_dma))
811 		return BLK_STS_RESOURCE;
812 	iod->dma_len = bv->bv_len;
813 
814 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
815 	if (bv->bv_len > first_prp_len)
816 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
817 	return BLK_STS_OK;
818 }
819 
820 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
821 		struct request *req, struct nvme_rw_command *cmnd,
822 		struct bio_vec *bv)
823 {
824 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
825 
826 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
827 	if (dma_mapping_error(dev->dev, iod->first_dma))
828 		return BLK_STS_RESOURCE;
829 	iod->dma_len = bv->bv_len;
830 
831 	cmnd->flags = NVME_CMD_SGL_METABUF;
832 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
833 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
834 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
835 	return BLK_STS_OK;
836 }
837 
838 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
839 		struct nvme_command *cmnd)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 	blk_status_t ret = BLK_STS_RESOURCE;
843 	int nr_mapped;
844 
845 	if (blk_rq_nr_phys_segments(req) == 1) {
846 		struct bio_vec bv = req_bvec(req);
847 
848 		if (!is_pci_p2pdma_page(bv.bv_page)) {
849 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
850 				return nvme_setup_prp_simple(dev, req,
851 							     &cmnd->rw, &bv);
852 
853 			if (iod->nvmeq->qid && sgl_threshold &&
854 			    nvme_ctrl_sgl_supported(&dev->ctrl))
855 				return nvme_setup_sgl_simple(dev, req,
856 							     &cmnd->rw, &bv);
857 		}
858 	}
859 
860 	iod->dma_len = 0;
861 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
862 	if (!iod->sg)
863 		return BLK_STS_RESOURCE;
864 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
865 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
866 	if (!iod->nents)
867 		goto out_free_sg;
868 
869 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
870 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
871 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
872 	else
873 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
874 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
875 	if (!nr_mapped)
876 		goto out_free_sg;
877 
878 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
879 	if (iod->use_sgl)
880 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
881 	else
882 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
883 	if (ret != BLK_STS_OK)
884 		goto out_unmap_sg;
885 	return BLK_STS_OK;
886 
887 out_unmap_sg:
888 	nvme_unmap_sg(dev, req);
889 out_free_sg:
890 	mempool_free(iod->sg, dev->iod_mempool);
891 	return ret;
892 }
893 
894 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
895 		struct nvme_command *cmnd)
896 {
897 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
898 
899 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
900 			rq_dma_dir(req), 0);
901 	if (dma_mapping_error(dev->dev, iod->meta_dma))
902 		return BLK_STS_IOERR;
903 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
904 	return BLK_STS_OK;
905 }
906 
907 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
908 {
909 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
910 	blk_status_t ret;
911 
912 	iod->aborted = 0;
913 	iod->npages = -1;
914 	iod->nents = 0;
915 
916 	ret = nvme_setup_cmd(req->q->queuedata, req);
917 	if (ret)
918 		return ret;
919 
920 	if (blk_rq_nr_phys_segments(req)) {
921 		ret = nvme_map_data(dev, req, &iod->cmd);
922 		if (ret)
923 			goto out_free_cmd;
924 	}
925 
926 	if (blk_integrity_rq(req)) {
927 		ret = nvme_map_metadata(dev, req, &iod->cmd);
928 		if (ret)
929 			goto out_unmap_data;
930 	}
931 
932 	blk_mq_start_request(req);
933 	return BLK_STS_OK;
934 out_unmap_data:
935 	nvme_unmap_data(dev, req);
936 out_free_cmd:
937 	nvme_cleanup_cmd(req);
938 	return ret;
939 }
940 
941 /*
942  * NOTE: ns is NULL when called on the admin queue.
943  */
944 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
945 			 const struct blk_mq_queue_data *bd)
946 {
947 	struct nvme_queue *nvmeq = hctx->driver_data;
948 	struct nvme_dev *dev = nvmeq->dev;
949 	struct request *req = bd->rq;
950 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
951 	blk_status_t ret;
952 
953 	/*
954 	 * We should not need to do this, but we're still using this to
955 	 * ensure we can drain requests on a dying queue.
956 	 */
957 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
958 		return BLK_STS_IOERR;
959 
960 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
961 		return nvme_fail_nonready_command(&dev->ctrl, req);
962 
963 	ret = nvme_prep_rq(dev, req);
964 	if (unlikely(ret))
965 		return ret;
966 	spin_lock(&nvmeq->sq_lock);
967 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
968 	nvme_write_sq_db(nvmeq, bd->last);
969 	spin_unlock(&nvmeq->sq_lock);
970 	return BLK_STS_OK;
971 }
972 
973 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
974 {
975 	spin_lock(&nvmeq->sq_lock);
976 	while (!rq_list_empty(*rqlist)) {
977 		struct request *req = rq_list_pop(rqlist);
978 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
979 
980 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
981 	}
982 	nvme_write_sq_db(nvmeq, true);
983 	spin_unlock(&nvmeq->sq_lock);
984 }
985 
986 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
987 {
988 	/*
989 	 * We should not need to do this, but we're still using this to
990 	 * ensure we can drain requests on a dying queue.
991 	 */
992 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
993 		return false;
994 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
995 		return false;
996 
997 	req->mq_hctx->tags->rqs[req->tag] = req;
998 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
999 }
1000 
1001 static void nvme_queue_rqs(struct request **rqlist)
1002 {
1003 	struct request *req, *next, *prev = NULL;
1004 	struct request *requeue_list = NULL;
1005 
1006 	rq_list_for_each_safe(rqlist, req, next) {
1007 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1008 
1009 		if (!nvme_prep_rq_batch(nvmeq, req)) {
1010 			/* detach 'req' and add to remainder list */
1011 			rq_list_move(rqlist, &requeue_list, req, prev);
1012 
1013 			req = prev;
1014 			if (!req)
1015 				continue;
1016 		}
1017 
1018 		if (!next || req->mq_hctx != next->mq_hctx) {
1019 			/* detach rest of list, and submit */
1020 			req->rq_next = NULL;
1021 			nvme_submit_cmds(nvmeq, rqlist);
1022 			*rqlist = next;
1023 			prev = NULL;
1024 		} else
1025 			prev = req;
1026 	}
1027 
1028 	*rqlist = requeue_list;
1029 }
1030 
1031 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1032 {
1033 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1034 	struct nvme_dev *dev = iod->nvmeq->dev;
1035 
1036 	if (blk_integrity_rq(req))
1037 		dma_unmap_page(dev->dev, iod->meta_dma,
1038 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1039 	if (blk_rq_nr_phys_segments(req))
1040 		nvme_unmap_data(dev, req);
1041 }
1042 
1043 static void nvme_pci_complete_rq(struct request *req)
1044 {
1045 	nvme_pci_unmap_rq(req);
1046 	nvme_complete_rq(req);
1047 }
1048 
1049 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1050 {
1051 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1052 }
1053 
1054 /* We read the CQE phase first to check if the rest of the entry is valid */
1055 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1056 {
1057 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1058 
1059 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1060 }
1061 
1062 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1063 {
1064 	u16 head = nvmeq->cq_head;
1065 
1066 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1067 					      nvmeq->dbbuf_cq_ei))
1068 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1069 }
1070 
1071 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1072 {
1073 	if (!nvmeq->qid)
1074 		return nvmeq->dev->admin_tagset.tags[0];
1075 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1076 }
1077 
1078 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1079 				   struct io_comp_batch *iob, u16 idx)
1080 {
1081 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1082 	__u16 command_id = READ_ONCE(cqe->command_id);
1083 	struct request *req;
1084 
1085 	/*
1086 	 * AEN requests are special as they don't time out and can
1087 	 * survive any kind of queue freeze and often don't respond to
1088 	 * aborts.  We don't even bother to allocate a struct request
1089 	 * for them but rather special case them here.
1090 	 */
1091 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1092 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1093 				cqe->status, &cqe->result);
1094 		return;
1095 	}
1096 
1097 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1098 	if (unlikely(!req)) {
1099 		dev_warn(nvmeq->dev->ctrl.device,
1100 			"invalid id %d completed on queue %d\n",
1101 			command_id, le16_to_cpu(cqe->sq_id));
1102 		return;
1103 	}
1104 
1105 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1106 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1107 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1108 					nvme_pci_complete_batch))
1109 		nvme_pci_complete_rq(req);
1110 }
1111 
1112 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1113 {
1114 	u32 tmp = nvmeq->cq_head + 1;
1115 
1116 	if (tmp == nvmeq->q_depth) {
1117 		nvmeq->cq_head = 0;
1118 		nvmeq->cq_phase ^= 1;
1119 	} else {
1120 		nvmeq->cq_head = tmp;
1121 	}
1122 }
1123 
1124 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1125 			       struct io_comp_batch *iob)
1126 {
1127 	int found = 0;
1128 
1129 	while (nvme_cqe_pending(nvmeq)) {
1130 		found++;
1131 		/*
1132 		 * load-load control dependency between phase and the rest of
1133 		 * the cqe requires a full read memory barrier
1134 		 */
1135 		dma_rmb();
1136 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1137 		nvme_update_cq_head(nvmeq);
1138 	}
1139 
1140 	if (found)
1141 		nvme_ring_cq_doorbell(nvmeq);
1142 	return found;
1143 }
1144 
1145 static irqreturn_t nvme_irq(int irq, void *data)
1146 {
1147 	struct nvme_queue *nvmeq = data;
1148 	DEFINE_IO_COMP_BATCH(iob);
1149 
1150 	if (nvme_poll_cq(nvmeq, &iob)) {
1151 		if (!rq_list_empty(iob.req_list))
1152 			nvme_pci_complete_batch(&iob);
1153 		return IRQ_HANDLED;
1154 	}
1155 	return IRQ_NONE;
1156 }
1157 
1158 static irqreturn_t nvme_irq_check(int irq, void *data)
1159 {
1160 	struct nvme_queue *nvmeq = data;
1161 
1162 	if (nvme_cqe_pending(nvmeq))
1163 		return IRQ_WAKE_THREAD;
1164 	return IRQ_NONE;
1165 }
1166 
1167 /*
1168  * Poll for completions for any interrupt driven queue
1169  * Can be called from any context.
1170  */
1171 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1172 {
1173 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1174 
1175 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1176 
1177 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1178 	nvme_poll_cq(nvmeq, NULL);
1179 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1180 }
1181 
1182 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1183 {
1184 	struct nvme_queue *nvmeq = hctx->driver_data;
1185 	bool found;
1186 
1187 	if (!nvme_cqe_pending(nvmeq))
1188 		return 0;
1189 
1190 	spin_lock(&nvmeq->cq_poll_lock);
1191 	found = nvme_poll_cq(nvmeq, iob);
1192 	spin_unlock(&nvmeq->cq_poll_lock);
1193 
1194 	return found;
1195 }
1196 
1197 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1198 {
1199 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1200 	struct nvme_queue *nvmeq = &dev->queues[0];
1201 	struct nvme_command c = { };
1202 
1203 	c.common.opcode = nvme_admin_async_event;
1204 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1205 
1206 	spin_lock(&nvmeq->sq_lock);
1207 	nvme_sq_copy_cmd(nvmeq, &c);
1208 	nvme_write_sq_db(nvmeq, true);
1209 	spin_unlock(&nvmeq->sq_lock);
1210 }
1211 
1212 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1213 {
1214 	struct nvme_command c = { };
1215 
1216 	c.delete_queue.opcode = opcode;
1217 	c.delete_queue.qid = cpu_to_le16(id);
1218 
1219 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1220 }
1221 
1222 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1223 		struct nvme_queue *nvmeq, s16 vector)
1224 {
1225 	struct nvme_command c = { };
1226 	int flags = NVME_QUEUE_PHYS_CONTIG;
1227 
1228 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1229 		flags |= NVME_CQ_IRQ_ENABLED;
1230 
1231 	/*
1232 	 * Note: we (ab)use the fact that the prp fields survive if no data
1233 	 * is attached to the request.
1234 	 */
1235 	c.create_cq.opcode = nvme_admin_create_cq;
1236 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1237 	c.create_cq.cqid = cpu_to_le16(qid);
1238 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1239 	c.create_cq.cq_flags = cpu_to_le16(flags);
1240 	c.create_cq.irq_vector = cpu_to_le16(vector);
1241 
1242 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1243 }
1244 
1245 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1246 						struct nvme_queue *nvmeq)
1247 {
1248 	struct nvme_ctrl *ctrl = &dev->ctrl;
1249 	struct nvme_command c = { };
1250 	int flags = NVME_QUEUE_PHYS_CONTIG;
1251 
1252 	/*
1253 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1254 	 * set. Since URGENT priority is zeroes, it makes all queues
1255 	 * URGENT.
1256 	 */
1257 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1258 		flags |= NVME_SQ_PRIO_MEDIUM;
1259 
1260 	/*
1261 	 * Note: we (ab)use the fact that the prp fields survive if no data
1262 	 * is attached to the request.
1263 	 */
1264 	c.create_sq.opcode = nvme_admin_create_sq;
1265 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1266 	c.create_sq.sqid = cpu_to_le16(qid);
1267 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1268 	c.create_sq.sq_flags = cpu_to_le16(flags);
1269 	c.create_sq.cqid = cpu_to_le16(qid);
1270 
1271 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1272 }
1273 
1274 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1275 {
1276 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1277 }
1278 
1279 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1280 {
1281 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1282 }
1283 
1284 static void abort_endio(struct request *req, blk_status_t error)
1285 {
1286 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1287 	struct nvme_queue *nvmeq = iod->nvmeq;
1288 
1289 	dev_warn(nvmeq->dev->ctrl.device,
1290 		 "Abort status: 0x%x", nvme_req(req)->status);
1291 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1292 	blk_mq_free_request(req);
1293 }
1294 
1295 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1296 {
1297 	/* If true, indicates loss of adapter communication, possibly by a
1298 	 * NVMe Subsystem reset.
1299 	 */
1300 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1301 
1302 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1303 	switch (dev->ctrl.state) {
1304 	case NVME_CTRL_RESETTING:
1305 	case NVME_CTRL_CONNECTING:
1306 		return false;
1307 	default:
1308 		break;
1309 	}
1310 
1311 	/* We shouldn't reset unless the controller is on fatal error state
1312 	 * _or_ if we lost the communication with it.
1313 	 */
1314 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1315 		return false;
1316 
1317 	return true;
1318 }
1319 
1320 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1321 {
1322 	/* Read a config register to help see what died. */
1323 	u16 pci_status;
1324 	int result;
1325 
1326 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1327 				      &pci_status);
1328 	if (result == PCIBIOS_SUCCESSFUL)
1329 		dev_warn(dev->ctrl.device,
1330 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1331 			 csts, pci_status);
1332 	else
1333 		dev_warn(dev->ctrl.device,
1334 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1335 			 csts, result);
1336 
1337 	if (csts != ~0)
1338 		return;
1339 
1340 	dev_warn(dev->ctrl.device,
1341 		 "Does your device have a faulty power saving mode enabled?\n");
1342 	dev_warn(dev->ctrl.device,
1343 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1344 }
1345 
1346 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1347 {
1348 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1349 	struct nvme_queue *nvmeq = iod->nvmeq;
1350 	struct nvme_dev *dev = nvmeq->dev;
1351 	struct request *abort_req;
1352 	struct nvme_command cmd = { };
1353 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1354 
1355 	/* If PCI error recovery process is happening, we cannot reset or
1356 	 * the recovery mechanism will surely fail.
1357 	 */
1358 	mb();
1359 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1360 		return BLK_EH_RESET_TIMER;
1361 
1362 	/*
1363 	 * Reset immediately if the controller is failed
1364 	 */
1365 	if (nvme_should_reset(dev, csts)) {
1366 		nvme_warn_reset(dev, csts);
1367 		nvme_dev_disable(dev, false);
1368 		nvme_reset_ctrl(&dev->ctrl);
1369 		return BLK_EH_DONE;
1370 	}
1371 
1372 	/*
1373 	 * Did we miss an interrupt?
1374 	 */
1375 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1376 		nvme_poll(req->mq_hctx, NULL);
1377 	else
1378 		nvme_poll_irqdisable(nvmeq);
1379 
1380 	if (blk_mq_request_completed(req)) {
1381 		dev_warn(dev->ctrl.device,
1382 			 "I/O %d QID %d timeout, completion polled\n",
1383 			 req->tag, nvmeq->qid);
1384 		return BLK_EH_DONE;
1385 	}
1386 
1387 	/*
1388 	 * Shutdown immediately if controller times out while starting. The
1389 	 * reset work will see the pci device disabled when it gets the forced
1390 	 * cancellation error. All outstanding requests are completed on
1391 	 * shutdown, so we return BLK_EH_DONE.
1392 	 */
1393 	switch (dev->ctrl.state) {
1394 	case NVME_CTRL_CONNECTING:
1395 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1396 		fallthrough;
1397 	case NVME_CTRL_DELETING:
1398 		dev_warn_ratelimited(dev->ctrl.device,
1399 			 "I/O %d QID %d timeout, disable controller\n",
1400 			 req->tag, nvmeq->qid);
1401 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1402 		nvme_dev_disable(dev, true);
1403 		return BLK_EH_DONE;
1404 	case NVME_CTRL_RESETTING:
1405 		return BLK_EH_RESET_TIMER;
1406 	default:
1407 		break;
1408 	}
1409 
1410 	/*
1411 	 * Shutdown the controller immediately and schedule a reset if the
1412 	 * command was already aborted once before and still hasn't been
1413 	 * returned to the driver, or if this is the admin queue.
1414 	 */
1415 	if (!nvmeq->qid || iod->aborted) {
1416 		dev_warn(dev->ctrl.device,
1417 			 "I/O %d QID %d timeout, reset controller\n",
1418 			 req->tag, nvmeq->qid);
1419 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1420 		nvme_dev_disable(dev, false);
1421 		nvme_reset_ctrl(&dev->ctrl);
1422 
1423 		return BLK_EH_DONE;
1424 	}
1425 
1426 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1427 		atomic_inc(&dev->ctrl.abort_limit);
1428 		return BLK_EH_RESET_TIMER;
1429 	}
1430 	iod->aborted = 1;
1431 
1432 	cmd.abort.opcode = nvme_admin_abort_cmd;
1433 	cmd.abort.cid = nvme_cid(req);
1434 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1435 
1436 	dev_warn(nvmeq->dev->ctrl.device,
1437 		"I/O %d (%s) QID %d timeout, aborting\n",
1438 		 req->tag,
1439 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1440 		 nvmeq->qid);
1441 
1442 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1443 					 BLK_MQ_REQ_NOWAIT);
1444 	if (IS_ERR(abort_req)) {
1445 		atomic_inc(&dev->ctrl.abort_limit);
1446 		return BLK_EH_RESET_TIMER;
1447 	}
1448 	nvme_init_request(abort_req, &cmd);
1449 
1450 	abort_req->end_io = abort_endio;
1451 	abort_req->end_io_data = NULL;
1452 	abort_req->rq_flags |= RQF_QUIET;
1453 	blk_execute_rq_nowait(abort_req, false);
1454 
1455 	/*
1456 	 * The aborted req will be completed on receiving the abort req.
1457 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1458 	 * as the device then is in a faulty state.
1459 	 */
1460 	return BLK_EH_RESET_TIMER;
1461 }
1462 
1463 static void nvme_free_queue(struct nvme_queue *nvmeq)
1464 {
1465 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1466 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1467 	if (!nvmeq->sq_cmds)
1468 		return;
1469 
1470 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1471 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1472 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1473 	} else {
1474 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1475 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1476 	}
1477 }
1478 
1479 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1480 {
1481 	int i;
1482 
1483 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1484 		dev->ctrl.queue_count--;
1485 		nvme_free_queue(&dev->queues[i]);
1486 	}
1487 }
1488 
1489 /**
1490  * nvme_suspend_queue - put queue into suspended state
1491  * @nvmeq: queue to suspend
1492  */
1493 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1494 {
1495 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1496 		return 1;
1497 
1498 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1499 	mb();
1500 
1501 	nvmeq->dev->online_queues--;
1502 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1503 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1504 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1505 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1506 	return 0;
1507 }
1508 
1509 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1510 {
1511 	int i;
1512 
1513 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1514 		nvme_suspend_queue(&dev->queues[i]);
1515 }
1516 
1517 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1518 {
1519 	struct nvme_queue *nvmeq = &dev->queues[0];
1520 
1521 	if (shutdown)
1522 		nvme_shutdown_ctrl(&dev->ctrl);
1523 	else
1524 		nvme_disable_ctrl(&dev->ctrl);
1525 
1526 	nvme_poll_irqdisable(nvmeq);
1527 }
1528 
1529 /*
1530  * Called only on a device that has been disabled and after all other threads
1531  * that can check this device's completion queues have synced, except
1532  * nvme_poll(). This is the last chance for the driver to see a natural
1533  * completion before nvme_cancel_request() terminates all incomplete requests.
1534  */
1535 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1536 {
1537 	int i;
1538 
1539 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1540 		spin_lock(&dev->queues[i].cq_poll_lock);
1541 		nvme_poll_cq(&dev->queues[i], NULL);
1542 		spin_unlock(&dev->queues[i].cq_poll_lock);
1543 	}
1544 }
1545 
1546 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1547 				int entry_size)
1548 {
1549 	int q_depth = dev->q_depth;
1550 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1551 					  NVME_CTRL_PAGE_SIZE);
1552 
1553 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1554 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1555 
1556 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1557 		q_depth = div_u64(mem_per_q, entry_size);
1558 
1559 		/*
1560 		 * Ensure the reduced q_depth is above some threshold where it
1561 		 * would be better to map queues in system memory with the
1562 		 * original depth
1563 		 */
1564 		if (q_depth < 64)
1565 			return -ENOMEM;
1566 	}
1567 
1568 	return q_depth;
1569 }
1570 
1571 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1572 				int qid)
1573 {
1574 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1575 
1576 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1577 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1578 		if (nvmeq->sq_cmds) {
1579 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1580 							nvmeq->sq_cmds);
1581 			if (nvmeq->sq_dma_addr) {
1582 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1583 				return 0;
1584 			}
1585 
1586 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1587 		}
1588 	}
1589 
1590 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1591 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1592 	if (!nvmeq->sq_cmds)
1593 		return -ENOMEM;
1594 	return 0;
1595 }
1596 
1597 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1598 {
1599 	struct nvme_queue *nvmeq = &dev->queues[qid];
1600 
1601 	if (dev->ctrl.queue_count > qid)
1602 		return 0;
1603 
1604 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1605 	nvmeq->q_depth = depth;
1606 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1607 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1608 	if (!nvmeq->cqes)
1609 		goto free_nvmeq;
1610 
1611 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1612 		goto free_cqdma;
1613 
1614 	nvmeq->dev = dev;
1615 	spin_lock_init(&nvmeq->sq_lock);
1616 	spin_lock_init(&nvmeq->cq_poll_lock);
1617 	nvmeq->cq_head = 0;
1618 	nvmeq->cq_phase = 1;
1619 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1620 	nvmeq->qid = qid;
1621 	dev->ctrl.queue_count++;
1622 
1623 	return 0;
1624 
1625  free_cqdma:
1626 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1627 			  nvmeq->cq_dma_addr);
1628  free_nvmeq:
1629 	return -ENOMEM;
1630 }
1631 
1632 static int queue_request_irq(struct nvme_queue *nvmeq)
1633 {
1634 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1635 	int nr = nvmeq->dev->ctrl.instance;
1636 
1637 	if (use_threaded_interrupts) {
1638 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1639 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1640 	} else {
1641 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1642 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1643 	}
1644 }
1645 
1646 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1647 {
1648 	struct nvme_dev *dev = nvmeq->dev;
1649 
1650 	nvmeq->sq_tail = 0;
1651 	nvmeq->last_sq_tail = 0;
1652 	nvmeq->cq_head = 0;
1653 	nvmeq->cq_phase = 1;
1654 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1655 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1656 	nvme_dbbuf_init(dev, nvmeq, qid);
1657 	dev->online_queues++;
1658 	wmb(); /* ensure the first interrupt sees the initialization */
1659 }
1660 
1661 /*
1662  * Try getting shutdown_lock while setting up IO queues.
1663  */
1664 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1665 {
1666 	/*
1667 	 * Give up if the lock is being held by nvme_dev_disable.
1668 	 */
1669 	if (!mutex_trylock(&dev->shutdown_lock))
1670 		return -ENODEV;
1671 
1672 	/*
1673 	 * Controller is in wrong state, fail early.
1674 	 */
1675 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1676 		mutex_unlock(&dev->shutdown_lock);
1677 		return -ENODEV;
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1684 {
1685 	struct nvme_dev *dev = nvmeq->dev;
1686 	int result;
1687 	u16 vector = 0;
1688 
1689 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1690 
1691 	/*
1692 	 * A queue's vector matches the queue identifier unless the controller
1693 	 * has only one vector available.
1694 	 */
1695 	if (!polled)
1696 		vector = dev->num_vecs == 1 ? 0 : qid;
1697 	else
1698 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1699 
1700 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1701 	if (result)
1702 		return result;
1703 
1704 	result = adapter_alloc_sq(dev, qid, nvmeq);
1705 	if (result < 0)
1706 		return result;
1707 	if (result)
1708 		goto release_cq;
1709 
1710 	nvmeq->cq_vector = vector;
1711 
1712 	result = nvme_setup_io_queues_trylock(dev);
1713 	if (result)
1714 		return result;
1715 	nvme_init_queue(nvmeq, qid);
1716 	if (!polled) {
1717 		result = queue_request_irq(nvmeq);
1718 		if (result < 0)
1719 			goto release_sq;
1720 	}
1721 
1722 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1723 	mutex_unlock(&dev->shutdown_lock);
1724 	return result;
1725 
1726 release_sq:
1727 	dev->online_queues--;
1728 	mutex_unlock(&dev->shutdown_lock);
1729 	adapter_delete_sq(dev, qid);
1730 release_cq:
1731 	adapter_delete_cq(dev, qid);
1732 	return result;
1733 }
1734 
1735 static const struct blk_mq_ops nvme_mq_admin_ops = {
1736 	.queue_rq	= nvme_queue_rq,
1737 	.complete	= nvme_pci_complete_rq,
1738 	.init_hctx	= nvme_admin_init_hctx,
1739 	.init_request	= nvme_pci_init_request,
1740 	.timeout	= nvme_timeout,
1741 };
1742 
1743 static const struct blk_mq_ops nvme_mq_ops = {
1744 	.queue_rq	= nvme_queue_rq,
1745 	.queue_rqs	= nvme_queue_rqs,
1746 	.complete	= nvme_pci_complete_rq,
1747 	.commit_rqs	= nvme_commit_rqs,
1748 	.init_hctx	= nvme_init_hctx,
1749 	.init_request	= nvme_pci_init_request,
1750 	.map_queues	= nvme_pci_map_queues,
1751 	.timeout	= nvme_timeout,
1752 	.poll		= nvme_poll,
1753 };
1754 
1755 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1756 {
1757 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1758 		/*
1759 		 * If the controller was reset during removal, it's possible
1760 		 * user requests may be waiting on a stopped queue. Start the
1761 		 * queue to flush these to completion.
1762 		 */
1763 		nvme_start_admin_queue(&dev->ctrl);
1764 		blk_mq_destroy_queue(dev->ctrl.admin_q);
1765 		blk_mq_free_tag_set(&dev->admin_tagset);
1766 	}
1767 }
1768 
1769 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1770 {
1771 	struct blk_mq_tag_set *set = &dev->admin_tagset;
1772 
1773 	set->ops = &nvme_mq_admin_ops;
1774 	set->nr_hw_queues = 1;
1775 
1776 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1777 	set->timeout = NVME_ADMIN_TIMEOUT;
1778 	set->numa_node = dev->ctrl.numa_node;
1779 	set->cmd_size = sizeof(struct nvme_iod);
1780 	set->flags = BLK_MQ_F_NO_SCHED;
1781 	set->driver_data = dev;
1782 
1783 	if (blk_mq_alloc_tag_set(set))
1784 		return -ENOMEM;
1785 	dev->ctrl.admin_tagset = set;
1786 
1787 	dev->ctrl.admin_q = blk_mq_init_queue(set);
1788 	if (IS_ERR(dev->ctrl.admin_q)) {
1789 		blk_mq_free_tag_set(set);
1790 		dev->ctrl.admin_q = NULL;
1791 		return -ENOMEM;
1792 	}
1793 	if (!blk_get_queue(dev->ctrl.admin_q)) {
1794 		nvme_dev_remove_admin(dev);
1795 		dev->ctrl.admin_q = NULL;
1796 		return -ENODEV;
1797 	}
1798 	return 0;
1799 }
1800 
1801 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1802 {
1803 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1804 }
1805 
1806 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1807 {
1808 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1809 
1810 	if (size <= dev->bar_mapped_size)
1811 		return 0;
1812 	if (size > pci_resource_len(pdev, 0))
1813 		return -ENOMEM;
1814 	if (dev->bar)
1815 		iounmap(dev->bar);
1816 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1817 	if (!dev->bar) {
1818 		dev->bar_mapped_size = 0;
1819 		return -ENOMEM;
1820 	}
1821 	dev->bar_mapped_size = size;
1822 	dev->dbs = dev->bar + NVME_REG_DBS;
1823 
1824 	return 0;
1825 }
1826 
1827 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1828 {
1829 	int result;
1830 	u32 aqa;
1831 	struct nvme_queue *nvmeq;
1832 
1833 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1834 	if (result < 0)
1835 		return result;
1836 
1837 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1838 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1839 
1840 	if (dev->subsystem &&
1841 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1842 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1843 
1844 	result = nvme_disable_ctrl(&dev->ctrl);
1845 	if (result < 0)
1846 		return result;
1847 
1848 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1849 	if (result)
1850 		return result;
1851 
1852 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1853 
1854 	nvmeq = &dev->queues[0];
1855 	aqa = nvmeq->q_depth - 1;
1856 	aqa |= aqa << 16;
1857 
1858 	writel(aqa, dev->bar + NVME_REG_AQA);
1859 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1860 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1861 
1862 	result = nvme_enable_ctrl(&dev->ctrl);
1863 	if (result)
1864 		return result;
1865 
1866 	nvmeq->cq_vector = 0;
1867 	nvme_init_queue(nvmeq, 0);
1868 	result = queue_request_irq(nvmeq);
1869 	if (result) {
1870 		dev->online_queues--;
1871 		return result;
1872 	}
1873 
1874 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1875 	return result;
1876 }
1877 
1878 static int nvme_create_io_queues(struct nvme_dev *dev)
1879 {
1880 	unsigned i, max, rw_queues;
1881 	int ret = 0;
1882 
1883 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1884 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1885 			ret = -ENOMEM;
1886 			break;
1887 		}
1888 	}
1889 
1890 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1891 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1892 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1893 				dev->io_queues[HCTX_TYPE_READ];
1894 	} else {
1895 		rw_queues = max;
1896 	}
1897 
1898 	for (i = dev->online_queues; i <= max; i++) {
1899 		bool polled = i > rw_queues;
1900 
1901 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1902 		if (ret)
1903 			break;
1904 	}
1905 
1906 	/*
1907 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1908 	 * than the desired amount of queues, and even a controller without
1909 	 * I/O queues can still be used to issue admin commands.  This might
1910 	 * be useful to upgrade a buggy firmware for example.
1911 	 */
1912 	return ret >= 0 ? 0 : ret;
1913 }
1914 
1915 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1916 {
1917 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1918 
1919 	return 1ULL << (12 + 4 * szu);
1920 }
1921 
1922 static u32 nvme_cmb_size(struct nvme_dev *dev)
1923 {
1924 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1925 }
1926 
1927 static void nvme_map_cmb(struct nvme_dev *dev)
1928 {
1929 	u64 size, offset;
1930 	resource_size_t bar_size;
1931 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1932 	int bar;
1933 
1934 	if (dev->cmb_size)
1935 		return;
1936 
1937 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1938 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1939 
1940 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1941 	if (!dev->cmbsz)
1942 		return;
1943 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1944 
1945 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1946 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1947 	bar = NVME_CMB_BIR(dev->cmbloc);
1948 	bar_size = pci_resource_len(pdev, bar);
1949 
1950 	if (offset > bar_size)
1951 		return;
1952 
1953 	/*
1954 	 * Tell the controller about the host side address mapping the CMB,
1955 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1956 	 */
1957 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1958 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1959 			     (pci_bus_address(pdev, bar) + offset),
1960 			     dev->bar + NVME_REG_CMBMSC);
1961 	}
1962 
1963 	/*
1964 	 * Controllers may support a CMB size larger than their BAR,
1965 	 * for example, due to being behind a bridge. Reduce the CMB to
1966 	 * the reported size of the BAR
1967 	 */
1968 	if (size > bar_size - offset)
1969 		size = bar_size - offset;
1970 
1971 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1972 		dev_warn(dev->ctrl.device,
1973 			 "failed to register the CMB\n");
1974 		return;
1975 	}
1976 
1977 	dev->cmb_size = size;
1978 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1979 
1980 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1981 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1982 		pci_p2pmem_publish(pdev, true);
1983 }
1984 
1985 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1986 {
1987 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1988 	u64 dma_addr = dev->host_mem_descs_dma;
1989 	struct nvme_command c = { };
1990 	int ret;
1991 
1992 	c.features.opcode	= nvme_admin_set_features;
1993 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1994 	c.features.dword11	= cpu_to_le32(bits);
1995 	c.features.dword12	= cpu_to_le32(host_mem_size);
1996 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1997 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1998 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1999 
2000 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2001 	if (ret) {
2002 		dev_warn(dev->ctrl.device,
2003 			 "failed to set host mem (err %d, flags %#x).\n",
2004 			 ret, bits);
2005 	} else
2006 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2007 
2008 	return ret;
2009 }
2010 
2011 static void nvme_free_host_mem(struct nvme_dev *dev)
2012 {
2013 	int i;
2014 
2015 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2016 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2017 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2018 
2019 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2020 			       le64_to_cpu(desc->addr),
2021 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2022 	}
2023 
2024 	kfree(dev->host_mem_desc_bufs);
2025 	dev->host_mem_desc_bufs = NULL;
2026 	dma_free_coherent(dev->dev,
2027 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2028 			dev->host_mem_descs, dev->host_mem_descs_dma);
2029 	dev->host_mem_descs = NULL;
2030 	dev->nr_host_mem_descs = 0;
2031 }
2032 
2033 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2034 		u32 chunk_size)
2035 {
2036 	struct nvme_host_mem_buf_desc *descs;
2037 	u32 max_entries, len;
2038 	dma_addr_t descs_dma;
2039 	int i = 0;
2040 	void **bufs;
2041 	u64 size, tmp;
2042 
2043 	tmp = (preferred + chunk_size - 1);
2044 	do_div(tmp, chunk_size);
2045 	max_entries = tmp;
2046 
2047 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2048 		max_entries = dev->ctrl.hmmaxd;
2049 
2050 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2051 				   &descs_dma, GFP_KERNEL);
2052 	if (!descs)
2053 		goto out;
2054 
2055 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2056 	if (!bufs)
2057 		goto out_free_descs;
2058 
2059 	for (size = 0; size < preferred && i < max_entries; size += len) {
2060 		dma_addr_t dma_addr;
2061 
2062 		len = min_t(u64, chunk_size, preferred - size);
2063 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2064 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2065 		if (!bufs[i])
2066 			break;
2067 
2068 		descs[i].addr = cpu_to_le64(dma_addr);
2069 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2070 		i++;
2071 	}
2072 
2073 	if (!size)
2074 		goto out_free_bufs;
2075 
2076 	dev->nr_host_mem_descs = i;
2077 	dev->host_mem_size = size;
2078 	dev->host_mem_descs = descs;
2079 	dev->host_mem_descs_dma = descs_dma;
2080 	dev->host_mem_desc_bufs = bufs;
2081 	return 0;
2082 
2083 out_free_bufs:
2084 	while (--i >= 0) {
2085 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2086 
2087 		dma_free_attrs(dev->dev, size, bufs[i],
2088 			       le64_to_cpu(descs[i].addr),
2089 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2090 	}
2091 
2092 	kfree(bufs);
2093 out_free_descs:
2094 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2095 			descs_dma);
2096 out:
2097 	dev->host_mem_descs = NULL;
2098 	return -ENOMEM;
2099 }
2100 
2101 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2102 {
2103 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2104 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2105 	u64 chunk_size;
2106 
2107 	/* start big and work our way down */
2108 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2109 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2110 			if (!min || dev->host_mem_size >= min)
2111 				return 0;
2112 			nvme_free_host_mem(dev);
2113 		}
2114 	}
2115 
2116 	return -ENOMEM;
2117 }
2118 
2119 static int nvme_setup_host_mem(struct nvme_dev *dev)
2120 {
2121 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2122 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2123 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2124 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2125 	int ret;
2126 
2127 	preferred = min(preferred, max);
2128 	if (min > max) {
2129 		dev_warn(dev->ctrl.device,
2130 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2131 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2132 		nvme_free_host_mem(dev);
2133 		return 0;
2134 	}
2135 
2136 	/*
2137 	 * If we already have a buffer allocated check if we can reuse it.
2138 	 */
2139 	if (dev->host_mem_descs) {
2140 		if (dev->host_mem_size >= min)
2141 			enable_bits |= NVME_HOST_MEM_RETURN;
2142 		else
2143 			nvme_free_host_mem(dev);
2144 	}
2145 
2146 	if (!dev->host_mem_descs) {
2147 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2148 			dev_warn(dev->ctrl.device,
2149 				"failed to allocate host memory buffer.\n");
2150 			return 0; /* controller must work without HMB */
2151 		}
2152 
2153 		dev_info(dev->ctrl.device,
2154 			"allocated %lld MiB host memory buffer.\n",
2155 			dev->host_mem_size >> ilog2(SZ_1M));
2156 	}
2157 
2158 	ret = nvme_set_host_mem(dev, enable_bits);
2159 	if (ret)
2160 		nvme_free_host_mem(dev);
2161 	return ret;
2162 }
2163 
2164 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2165 		char *buf)
2166 {
2167 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2168 
2169 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2170 		       ndev->cmbloc, ndev->cmbsz);
2171 }
2172 static DEVICE_ATTR_RO(cmb);
2173 
2174 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2175 		char *buf)
2176 {
2177 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2178 
2179 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2180 }
2181 static DEVICE_ATTR_RO(cmbloc);
2182 
2183 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2184 		char *buf)
2185 {
2186 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2187 
2188 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2189 }
2190 static DEVICE_ATTR_RO(cmbsz);
2191 
2192 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2193 			char *buf)
2194 {
2195 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2196 
2197 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2198 }
2199 
2200 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2201 			 const char *buf, size_t count)
2202 {
2203 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2204 	bool new;
2205 	int ret;
2206 
2207 	if (strtobool(buf, &new) < 0)
2208 		return -EINVAL;
2209 
2210 	if (new == ndev->hmb)
2211 		return count;
2212 
2213 	if (new) {
2214 		ret = nvme_setup_host_mem(ndev);
2215 	} else {
2216 		ret = nvme_set_host_mem(ndev, 0);
2217 		if (!ret)
2218 			nvme_free_host_mem(ndev);
2219 	}
2220 
2221 	if (ret < 0)
2222 		return ret;
2223 
2224 	return count;
2225 }
2226 static DEVICE_ATTR_RW(hmb);
2227 
2228 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2229 		struct attribute *a, int n)
2230 {
2231 	struct nvme_ctrl *ctrl =
2232 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2233 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2234 
2235 	if (a == &dev_attr_cmb.attr ||
2236 	    a == &dev_attr_cmbloc.attr ||
2237 	    a == &dev_attr_cmbsz.attr) {
2238 	    	if (!dev->cmbsz)
2239 			return 0;
2240 	}
2241 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2242 		return 0;
2243 
2244 	return a->mode;
2245 }
2246 
2247 static struct attribute *nvme_pci_attrs[] = {
2248 	&dev_attr_cmb.attr,
2249 	&dev_attr_cmbloc.attr,
2250 	&dev_attr_cmbsz.attr,
2251 	&dev_attr_hmb.attr,
2252 	NULL,
2253 };
2254 
2255 static const struct attribute_group nvme_pci_attr_group = {
2256 	.attrs		= nvme_pci_attrs,
2257 	.is_visible	= nvme_pci_attrs_are_visible,
2258 };
2259 
2260 /*
2261  * nirqs is the number of interrupts available for write and read
2262  * queues. The core already reserved an interrupt for the admin queue.
2263  */
2264 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2265 {
2266 	struct nvme_dev *dev = affd->priv;
2267 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2268 
2269 	/*
2270 	 * If there is no interrupt available for queues, ensure that
2271 	 * the default queue is set to 1. The affinity set size is
2272 	 * also set to one, but the irq core ignores it for this case.
2273 	 *
2274 	 * If only one interrupt is available or 'write_queue' == 0, combine
2275 	 * write and read queues.
2276 	 *
2277 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2278 	 * queue.
2279 	 */
2280 	if (!nrirqs) {
2281 		nrirqs = 1;
2282 		nr_read_queues = 0;
2283 	} else if (nrirqs == 1 || !nr_write_queues) {
2284 		nr_read_queues = 0;
2285 	} else if (nr_write_queues >= nrirqs) {
2286 		nr_read_queues = 1;
2287 	} else {
2288 		nr_read_queues = nrirqs - nr_write_queues;
2289 	}
2290 
2291 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2292 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2293 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2294 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2295 	affd->nr_sets = nr_read_queues ? 2 : 1;
2296 }
2297 
2298 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2299 {
2300 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2301 	struct irq_affinity affd = {
2302 		.pre_vectors	= 1,
2303 		.calc_sets	= nvme_calc_irq_sets,
2304 		.priv		= dev,
2305 	};
2306 	unsigned int irq_queues, poll_queues;
2307 
2308 	/*
2309 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2310 	 * left over for non-polled I/O.
2311 	 */
2312 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2313 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2314 
2315 	/*
2316 	 * Initialize for the single interrupt case, will be updated in
2317 	 * nvme_calc_irq_sets().
2318 	 */
2319 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2320 	dev->io_queues[HCTX_TYPE_READ] = 0;
2321 
2322 	/*
2323 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2324 	 * but some Apple controllers require all queues to use the first
2325 	 * vector.
2326 	 */
2327 	irq_queues = 1;
2328 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2329 		irq_queues += (nr_io_queues - poll_queues);
2330 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2331 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2332 }
2333 
2334 static void nvme_disable_io_queues(struct nvme_dev *dev)
2335 {
2336 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2337 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2338 }
2339 
2340 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2341 {
2342 	/*
2343 	 * If tags are shared with admin queue (Apple bug), then
2344 	 * make sure we only use one IO queue.
2345 	 */
2346 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2347 		return 1;
2348 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2349 }
2350 
2351 static int nvme_setup_io_queues(struct nvme_dev *dev)
2352 {
2353 	struct nvme_queue *adminq = &dev->queues[0];
2354 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2355 	unsigned int nr_io_queues;
2356 	unsigned long size;
2357 	int result;
2358 
2359 	/*
2360 	 * Sample the module parameters once at reset time so that we have
2361 	 * stable values to work with.
2362 	 */
2363 	dev->nr_write_queues = write_queues;
2364 	dev->nr_poll_queues = poll_queues;
2365 
2366 	nr_io_queues = dev->nr_allocated_queues - 1;
2367 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2368 	if (result < 0)
2369 		return result;
2370 
2371 	if (nr_io_queues == 0)
2372 		return 0;
2373 
2374 	/*
2375 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2376 	 * from set to unset. If there is a window to it is truely freed,
2377 	 * pci_free_irq_vectors() jumping into this window will crash.
2378 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2379 	 * nvme_dev_disable() path.
2380 	 */
2381 	result = nvme_setup_io_queues_trylock(dev);
2382 	if (result)
2383 		return result;
2384 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2385 		pci_free_irq(pdev, 0, adminq);
2386 
2387 	if (dev->cmb_use_sqes) {
2388 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2389 				sizeof(struct nvme_command));
2390 		if (result > 0)
2391 			dev->q_depth = result;
2392 		else
2393 			dev->cmb_use_sqes = false;
2394 	}
2395 
2396 	do {
2397 		size = db_bar_size(dev, nr_io_queues);
2398 		result = nvme_remap_bar(dev, size);
2399 		if (!result)
2400 			break;
2401 		if (!--nr_io_queues) {
2402 			result = -ENOMEM;
2403 			goto out_unlock;
2404 		}
2405 	} while (1);
2406 	adminq->q_db = dev->dbs;
2407 
2408  retry:
2409 	/* Deregister the admin queue's interrupt */
2410 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2411 		pci_free_irq(pdev, 0, adminq);
2412 
2413 	/*
2414 	 * If we enable msix early due to not intx, disable it again before
2415 	 * setting up the full range we need.
2416 	 */
2417 	pci_free_irq_vectors(pdev);
2418 
2419 	result = nvme_setup_irqs(dev, nr_io_queues);
2420 	if (result <= 0) {
2421 		result = -EIO;
2422 		goto out_unlock;
2423 	}
2424 
2425 	dev->num_vecs = result;
2426 	result = max(result - 1, 1);
2427 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2428 
2429 	/*
2430 	 * Should investigate if there's a performance win from allocating
2431 	 * more queues than interrupt vectors; it might allow the submission
2432 	 * path to scale better, even if the receive path is limited by the
2433 	 * number of interrupts.
2434 	 */
2435 	result = queue_request_irq(adminq);
2436 	if (result)
2437 		goto out_unlock;
2438 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2439 	mutex_unlock(&dev->shutdown_lock);
2440 
2441 	result = nvme_create_io_queues(dev);
2442 	if (result || dev->online_queues < 2)
2443 		return result;
2444 
2445 	if (dev->online_queues - 1 < dev->max_qid) {
2446 		nr_io_queues = dev->online_queues - 1;
2447 		nvme_disable_io_queues(dev);
2448 		result = nvme_setup_io_queues_trylock(dev);
2449 		if (result)
2450 			return result;
2451 		nvme_suspend_io_queues(dev);
2452 		goto retry;
2453 	}
2454 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2455 					dev->io_queues[HCTX_TYPE_DEFAULT],
2456 					dev->io_queues[HCTX_TYPE_READ],
2457 					dev->io_queues[HCTX_TYPE_POLL]);
2458 	return 0;
2459 out_unlock:
2460 	mutex_unlock(&dev->shutdown_lock);
2461 	return result;
2462 }
2463 
2464 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2465 {
2466 	struct nvme_queue *nvmeq = req->end_io_data;
2467 
2468 	blk_mq_free_request(req);
2469 	complete(&nvmeq->delete_done);
2470 }
2471 
2472 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2473 {
2474 	struct nvme_queue *nvmeq = req->end_io_data;
2475 
2476 	if (error)
2477 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2478 
2479 	nvme_del_queue_end(req, error);
2480 }
2481 
2482 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2483 {
2484 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2485 	struct request *req;
2486 	struct nvme_command cmd = { };
2487 
2488 	cmd.delete_queue.opcode = opcode;
2489 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2490 
2491 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2492 	if (IS_ERR(req))
2493 		return PTR_ERR(req);
2494 	nvme_init_request(req, &cmd);
2495 
2496 	if (opcode == nvme_admin_delete_cq)
2497 		req->end_io = nvme_del_cq_end;
2498 	else
2499 		req->end_io = nvme_del_queue_end;
2500 	req->end_io_data = nvmeq;
2501 
2502 	init_completion(&nvmeq->delete_done);
2503 	req->rq_flags |= RQF_QUIET;
2504 	blk_execute_rq_nowait(req, false);
2505 	return 0;
2506 }
2507 
2508 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2509 {
2510 	int nr_queues = dev->online_queues - 1, sent = 0;
2511 	unsigned long timeout;
2512 
2513  retry:
2514 	timeout = NVME_ADMIN_TIMEOUT;
2515 	while (nr_queues > 0) {
2516 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2517 			break;
2518 		nr_queues--;
2519 		sent++;
2520 	}
2521 	while (sent) {
2522 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2523 
2524 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2525 				timeout);
2526 		if (timeout == 0)
2527 			return false;
2528 
2529 		sent--;
2530 		if (nr_queues)
2531 			goto retry;
2532 	}
2533 	return true;
2534 }
2535 
2536 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2537 {
2538 	struct blk_mq_tag_set * set = &dev->tagset;
2539 	int ret;
2540 
2541 	set->ops = &nvme_mq_ops;
2542 	set->nr_hw_queues = dev->online_queues - 1;
2543 	set->nr_maps = 2; /* default + read */
2544 	if (dev->io_queues[HCTX_TYPE_POLL])
2545 		set->nr_maps++;
2546 	set->timeout = NVME_IO_TIMEOUT;
2547 	set->numa_node = dev->ctrl.numa_node;
2548 	set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2549 	set->cmd_size = sizeof(struct nvme_iod);
2550 	set->flags = BLK_MQ_F_SHOULD_MERGE;
2551 	set->driver_data = dev;
2552 
2553 	/*
2554 	 * Some Apple controllers requires tags to be unique
2555 	 * across admin and IO queue, so reserve the first 32
2556 	 * tags of the IO queue.
2557 	 */
2558 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2559 		set->reserved_tags = NVME_AQ_DEPTH;
2560 
2561 	ret = blk_mq_alloc_tag_set(set);
2562 	if (ret) {
2563 		dev_warn(dev->ctrl.device,
2564 			"IO queues tagset allocation failed %d\n", ret);
2565 		return;
2566 	}
2567 	dev->ctrl.tagset = set;
2568 }
2569 
2570 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2571 {
2572 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2573 	/* free previously allocated queues that are no longer usable */
2574 	nvme_free_queues(dev, dev->online_queues);
2575 }
2576 
2577 static int nvme_pci_enable(struct nvme_dev *dev)
2578 {
2579 	int result = -ENOMEM;
2580 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2581 	int dma_address_bits = 64;
2582 
2583 	if (pci_enable_device_mem(pdev))
2584 		return result;
2585 
2586 	pci_set_master(pdev);
2587 
2588 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2589 		dma_address_bits = 48;
2590 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2591 		goto disable;
2592 
2593 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2594 		result = -ENODEV;
2595 		goto disable;
2596 	}
2597 
2598 	/*
2599 	 * Some devices and/or platforms don't advertise or work with INTx
2600 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2601 	 * adjust this later.
2602 	 */
2603 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2604 	if (result < 0)
2605 		return result;
2606 
2607 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2608 
2609 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2610 				io_queue_depth);
2611 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2612 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2613 	dev->dbs = dev->bar + 4096;
2614 
2615 	/*
2616 	 * Some Apple controllers require a non-standard SQE size.
2617 	 * Interestingly they also seem to ignore the CC:IOSQES register
2618 	 * so we don't bother updating it here.
2619 	 */
2620 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2621 		dev->io_sqes = 7;
2622 	else
2623 		dev->io_sqes = NVME_NVM_IOSQES;
2624 
2625 	/*
2626 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2627 	 * some MacBook7,1 to avoid controller resets and data loss.
2628 	 */
2629 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2630 		dev->q_depth = 2;
2631 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2632 			"set queue depth=%u to work around controller resets\n",
2633 			dev->q_depth);
2634 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2635 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2636 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2637 		dev->q_depth = 64;
2638 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2639                         "set queue depth=%u\n", dev->q_depth);
2640 	}
2641 
2642 	/*
2643 	 * Controllers with the shared tags quirk need the IO queue to be
2644 	 * big enough so that we get 32 tags for the admin queue
2645 	 */
2646 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2647 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2648 		dev->q_depth = NVME_AQ_DEPTH + 2;
2649 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2650 			 dev->q_depth);
2651 	}
2652 
2653 
2654 	nvme_map_cmb(dev);
2655 
2656 	pci_enable_pcie_error_reporting(pdev);
2657 	pci_save_state(pdev);
2658 	return 0;
2659 
2660  disable:
2661 	pci_disable_device(pdev);
2662 	return result;
2663 }
2664 
2665 static void nvme_dev_unmap(struct nvme_dev *dev)
2666 {
2667 	if (dev->bar)
2668 		iounmap(dev->bar);
2669 	pci_release_mem_regions(to_pci_dev(dev->dev));
2670 }
2671 
2672 static void nvme_pci_disable(struct nvme_dev *dev)
2673 {
2674 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2675 
2676 	pci_free_irq_vectors(pdev);
2677 
2678 	if (pci_is_enabled(pdev)) {
2679 		pci_disable_pcie_error_reporting(pdev);
2680 		pci_disable_device(pdev);
2681 	}
2682 }
2683 
2684 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2685 {
2686 	bool dead = true, freeze = false;
2687 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2688 
2689 	mutex_lock(&dev->shutdown_lock);
2690 	if (pci_is_enabled(pdev)) {
2691 		u32 csts;
2692 
2693 		if (pci_device_is_present(pdev))
2694 			csts = readl(dev->bar + NVME_REG_CSTS);
2695 		else
2696 			csts = ~0;
2697 
2698 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2699 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2700 			freeze = true;
2701 			nvme_start_freeze(&dev->ctrl);
2702 		}
2703 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2704 			pdev->error_state  != pci_channel_io_normal);
2705 	}
2706 
2707 	/*
2708 	 * Give the controller a chance to complete all entered requests if
2709 	 * doing a safe shutdown.
2710 	 */
2711 	if (!dead && shutdown && freeze)
2712 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2713 
2714 	nvme_stop_queues(&dev->ctrl);
2715 
2716 	if (!dead && dev->ctrl.queue_count > 0) {
2717 		nvme_disable_io_queues(dev);
2718 		nvme_disable_admin_queue(dev, shutdown);
2719 	}
2720 	nvme_suspend_io_queues(dev);
2721 	nvme_suspend_queue(&dev->queues[0]);
2722 	nvme_pci_disable(dev);
2723 	nvme_reap_pending_cqes(dev);
2724 
2725 	nvme_cancel_tagset(&dev->ctrl);
2726 	nvme_cancel_admin_tagset(&dev->ctrl);
2727 
2728 	/*
2729 	 * The driver will not be starting up queues again if shutting down so
2730 	 * must flush all entered requests to their failed completion to avoid
2731 	 * deadlocking blk-mq hot-cpu notifier.
2732 	 */
2733 	if (shutdown) {
2734 		nvme_start_queues(&dev->ctrl);
2735 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2736 			nvme_start_admin_queue(&dev->ctrl);
2737 	}
2738 	mutex_unlock(&dev->shutdown_lock);
2739 }
2740 
2741 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2742 {
2743 	if (!nvme_wait_reset(&dev->ctrl))
2744 		return -EBUSY;
2745 	nvme_dev_disable(dev, shutdown);
2746 	return 0;
2747 }
2748 
2749 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2750 {
2751 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2752 						NVME_CTRL_PAGE_SIZE,
2753 						NVME_CTRL_PAGE_SIZE, 0);
2754 	if (!dev->prp_page_pool)
2755 		return -ENOMEM;
2756 
2757 	/* Optimisation for I/Os between 4k and 128k */
2758 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2759 						256, 256, 0);
2760 	if (!dev->prp_small_pool) {
2761 		dma_pool_destroy(dev->prp_page_pool);
2762 		return -ENOMEM;
2763 	}
2764 	return 0;
2765 }
2766 
2767 static void nvme_release_prp_pools(struct nvme_dev *dev)
2768 {
2769 	dma_pool_destroy(dev->prp_page_pool);
2770 	dma_pool_destroy(dev->prp_small_pool);
2771 }
2772 
2773 static void nvme_free_tagset(struct nvme_dev *dev)
2774 {
2775 	if (dev->tagset.tags)
2776 		blk_mq_free_tag_set(&dev->tagset);
2777 	dev->ctrl.tagset = NULL;
2778 }
2779 
2780 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2781 {
2782 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2783 
2784 	nvme_dbbuf_dma_free(dev);
2785 	nvme_free_tagset(dev);
2786 	if (dev->ctrl.admin_q)
2787 		blk_put_queue(dev->ctrl.admin_q);
2788 	free_opal_dev(dev->ctrl.opal_dev);
2789 	mempool_destroy(dev->iod_mempool);
2790 	put_device(dev->dev);
2791 	kfree(dev->queues);
2792 	kfree(dev);
2793 }
2794 
2795 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2796 {
2797 	/*
2798 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2799 	 * may be holding this pci_dev's device lock.
2800 	 */
2801 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2802 	nvme_get_ctrl(&dev->ctrl);
2803 	nvme_dev_disable(dev, false);
2804 	nvme_kill_queues(&dev->ctrl);
2805 	if (!queue_work(nvme_wq, &dev->remove_work))
2806 		nvme_put_ctrl(&dev->ctrl);
2807 }
2808 
2809 static void nvme_reset_work(struct work_struct *work)
2810 {
2811 	struct nvme_dev *dev =
2812 		container_of(work, struct nvme_dev, ctrl.reset_work);
2813 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2814 	int result;
2815 
2816 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2817 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2818 			 dev->ctrl.state);
2819 		result = -ENODEV;
2820 		goto out;
2821 	}
2822 
2823 	/*
2824 	 * If we're called to reset a live controller first shut it down before
2825 	 * moving on.
2826 	 */
2827 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2828 		nvme_dev_disable(dev, false);
2829 	nvme_sync_queues(&dev->ctrl);
2830 
2831 	mutex_lock(&dev->shutdown_lock);
2832 	result = nvme_pci_enable(dev);
2833 	if (result)
2834 		goto out_unlock;
2835 
2836 	result = nvme_pci_configure_admin_queue(dev);
2837 	if (result)
2838 		goto out_unlock;
2839 
2840 	if (!dev->ctrl.admin_q) {
2841 		result = nvme_pci_alloc_admin_tag_set(dev);
2842 		if (result)
2843 			goto out_unlock;
2844 	} else {
2845 		nvme_start_admin_queue(&dev->ctrl);
2846 	}
2847 
2848 	/*
2849 	 * Limit the max command size to prevent iod->sg allocations going
2850 	 * over a single page.
2851 	 */
2852 	dev->ctrl.max_hw_sectors = min_t(u32,
2853 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2854 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2855 
2856 	/*
2857 	 * Don't limit the IOMMU merged segment size.
2858 	 */
2859 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2860 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2861 
2862 	mutex_unlock(&dev->shutdown_lock);
2863 
2864 	/*
2865 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2866 	 * initializing procedure here.
2867 	 */
2868 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2869 		dev_warn(dev->ctrl.device,
2870 			"failed to mark controller CONNECTING\n");
2871 		result = -EBUSY;
2872 		goto out;
2873 	}
2874 
2875 	/*
2876 	 * We do not support an SGL for metadata (yet), so we are limited to a
2877 	 * single integrity segment for the separate metadata pointer.
2878 	 */
2879 	dev->ctrl.max_integrity_segments = 1;
2880 
2881 	result = nvme_init_ctrl_finish(&dev->ctrl);
2882 	if (result)
2883 		goto out;
2884 
2885 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2886 		if (!dev->ctrl.opal_dev)
2887 			dev->ctrl.opal_dev =
2888 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2889 		else if (was_suspend)
2890 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2891 	} else {
2892 		free_opal_dev(dev->ctrl.opal_dev);
2893 		dev->ctrl.opal_dev = NULL;
2894 	}
2895 
2896 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2897 		result = nvme_dbbuf_dma_alloc(dev);
2898 		if (result)
2899 			dev_warn(dev->dev,
2900 				 "unable to allocate dma for dbbuf\n");
2901 	}
2902 
2903 	if (dev->ctrl.hmpre) {
2904 		result = nvme_setup_host_mem(dev);
2905 		if (result < 0)
2906 			goto out;
2907 	}
2908 
2909 	result = nvme_setup_io_queues(dev);
2910 	if (result)
2911 		goto out;
2912 
2913 	/*
2914 	 * Keep the controller around but remove all namespaces if we don't have
2915 	 * any working I/O queue.
2916 	 */
2917 	if (dev->online_queues < 2) {
2918 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2919 		nvme_kill_queues(&dev->ctrl);
2920 		nvme_remove_namespaces(&dev->ctrl);
2921 		nvme_free_tagset(dev);
2922 	} else {
2923 		nvme_start_queues(&dev->ctrl);
2924 		nvme_wait_freeze(&dev->ctrl);
2925 		if (!dev->ctrl.tagset)
2926 			nvme_pci_alloc_tag_set(dev);
2927 		else
2928 			nvme_pci_update_nr_queues(dev);
2929 		nvme_dbbuf_set(dev);
2930 		nvme_unfreeze(&dev->ctrl);
2931 	}
2932 
2933 	/*
2934 	 * If only admin queue live, keep it to do further investigation or
2935 	 * recovery.
2936 	 */
2937 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2938 		dev_warn(dev->ctrl.device,
2939 			"failed to mark controller live state\n");
2940 		result = -ENODEV;
2941 		goto out;
2942 	}
2943 
2944 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2945 			&nvme_pci_attr_group))
2946 		dev->attrs_added = true;
2947 
2948 	nvme_start_ctrl(&dev->ctrl);
2949 	return;
2950 
2951  out_unlock:
2952 	mutex_unlock(&dev->shutdown_lock);
2953  out:
2954 	if (result)
2955 		dev_warn(dev->ctrl.device,
2956 			 "Removing after probe failure status: %d\n", result);
2957 	nvme_remove_dead_ctrl(dev);
2958 }
2959 
2960 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2961 {
2962 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2963 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2964 
2965 	if (pci_get_drvdata(pdev))
2966 		device_release_driver(&pdev->dev);
2967 	nvme_put_ctrl(&dev->ctrl);
2968 }
2969 
2970 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2971 {
2972 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2973 	return 0;
2974 }
2975 
2976 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2977 {
2978 	writel(val, to_nvme_dev(ctrl)->bar + off);
2979 	return 0;
2980 }
2981 
2982 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2983 {
2984 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2985 	return 0;
2986 }
2987 
2988 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2989 {
2990 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2991 
2992 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2993 }
2994 
2995 
2996 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2997 {
2998 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2999 	struct nvme_subsystem *subsys = ctrl->subsys;
3000 
3001 	dev_err(ctrl->device,
3002 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3003 		pdev->vendor, pdev->device,
3004 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3005 		subsys->model, nvme_strlen(subsys->firmware_rev,
3006 					   sizeof(subsys->firmware_rev)),
3007 		subsys->firmware_rev);
3008 }
3009 
3010 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3011 	.name			= "pcie",
3012 	.module			= THIS_MODULE,
3013 	.flags			= NVME_F_METADATA_SUPPORTED |
3014 				  NVME_F_PCI_P2PDMA,
3015 	.reg_read32		= nvme_pci_reg_read32,
3016 	.reg_write32		= nvme_pci_reg_write32,
3017 	.reg_read64		= nvme_pci_reg_read64,
3018 	.free_ctrl		= nvme_pci_free_ctrl,
3019 	.submit_async_event	= nvme_pci_submit_async_event,
3020 	.get_address		= nvme_pci_get_address,
3021 	.print_device_info	= nvme_pci_print_device_info,
3022 };
3023 
3024 static int nvme_dev_map(struct nvme_dev *dev)
3025 {
3026 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3027 
3028 	if (pci_request_mem_regions(pdev, "nvme"))
3029 		return -ENODEV;
3030 
3031 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3032 		goto release;
3033 
3034 	return 0;
3035   release:
3036 	pci_release_mem_regions(pdev);
3037 	return -ENODEV;
3038 }
3039 
3040 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3041 {
3042 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3043 		/*
3044 		 * Several Samsung devices seem to drop off the PCIe bus
3045 		 * randomly when APST is on and uses the deepest sleep state.
3046 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3047 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3048 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3049 		 * laptops.
3050 		 */
3051 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3052 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3053 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3054 			return NVME_QUIRK_NO_DEEPEST_PS;
3055 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3056 		/*
3057 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3058 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3059 		 * within few minutes after bootup on a Coffee Lake board -
3060 		 * ASUS PRIME Z370-A
3061 		 */
3062 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3063 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3064 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3065 			return NVME_QUIRK_NO_APST;
3066 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3067 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3068 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3069 		/*
3070 		 * Forcing to use host managed nvme power settings for
3071 		 * lowest idle power with quick resume latency on
3072 		 * Samsung and Toshiba SSDs based on suspend behavior
3073 		 * on Coffee Lake board for LENOVO C640
3074 		 */
3075 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3076 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3077 			return NVME_QUIRK_SIMPLE_SUSPEND;
3078 	}
3079 
3080 	return 0;
3081 }
3082 
3083 static void nvme_async_probe(void *data, async_cookie_t cookie)
3084 {
3085 	struct nvme_dev *dev = data;
3086 
3087 	flush_work(&dev->ctrl.reset_work);
3088 	flush_work(&dev->ctrl.scan_work);
3089 	nvme_put_ctrl(&dev->ctrl);
3090 }
3091 
3092 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3093 {
3094 	int node, result = -ENOMEM;
3095 	struct nvme_dev *dev;
3096 	unsigned long quirks = id->driver_data;
3097 	size_t alloc_size;
3098 
3099 	node = dev_to_node(&pdev->dev);
3100 	if (node == NUMA_NO_NODE)
3101 		set_dev_node(&pdev->dev, first_memory_node);
3102 
3103 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3104 	if (!dev)
3105 		return -ENOMEM;
3106 
3107 	dev->nr_write_queues = write_queues;
3108 	dev->nr_poll_queues = poll_queues;
3109 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3110 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3111 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3112 	if (!dev->queues)
3113 		goto free;
3114 
3115 	dev->dev = get_device(&pdev->dev);
3116 	pci_set_drvdata(pdev, dev);
3117 
3118 	result = nvme_dev_map(dev);
3119 	if (result)
3120 		goto put_pci;
3121 
3122 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3123 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3124 	mutex_init(&dev->shutdown_lock);
3125 
3126 	result = nvme_setup_prp_pools(dev);
3127 	if (result)
3128 		goto unmap;
3129 
3130 	quirks |= check_vendor_combination_bug(pdev);
3131 
3132 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3133 		/*
3134 		 * Some systems use a bios work around to ask for D3 on
3135 		 * platforms that support kernel managed suspend.
3136 		 */
3137 		dev_info(&pdev->dev,
3138 			 "platform quirk: setting simple suspend\n");
3139 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3140 	}
3141 
3142 	/*
3143 	 * Double check that our mempool alloc size will cover the biggest
3144 	 * command we support.
3145 	 */
3146 	alloc_size = nvme_pci_iod_alloc_size();
3147 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3148 
3149 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3150 						mempool_kfree,
3151 						(void *) alloc_size,
3152 						GFP_KERNEL, node);
3153 	if (!dev->iod_mempool) {
3154 		result = -ENOMEM;
3155 		goto release_pools;
3156 	}
3157 
3158 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3159 			quirks);
3160 	if (result)
3161 		goto release_mempool;
3162 
3163 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3164 
3165 	nvme_reset_ctrl(&dev->ctrl);
3166 	async_schedule(nvme_async_probe, dev);
3167 
3168 	return 0;
3169 
3170  release_mempool:
3171 	mempool_destroy(dev->iod_mempool);
3172  release_pools:
3173 	nvme_release_prp_pools(dev);
3174  unmap:
3175 	nvme_dev_unmap(dev);
3176  put_pci:
3177 	put_device(dev->dev);
3178  free:
3179 	kfree(dev->queues);
3180 	kfree(dev);
3181 	return result;
3182 }
3183 
3184 static void nvme_reset_prepare(struct pci_dev *pdev)
3185 {
3186 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3187 
3188 	/*
3189 	 * We don't need to check the return value from waiting for the reset
3190 	 * state as pci_dev device lock is held, making it impossible to race
3191 	 * with ->remove().
3192 	 */
3193 	nvme_disable_prepare_reset(dev, false);
3194 	nvme_sync_queues(&dev->ctrl);
3195 }
3196 
3197 static void nvme_reset_done(struct pci_dev *pdev)
3198 {
3199 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3200 
3201 	if (!nvme_try_sched_reset(&dev->ctrl))
3202 		flush_work(&dev->ctrl.reset_work);
3203 }
3204 
3205 static void nvme_shutdown(struct pci_dev *pdev)
3206 {
3207 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3208 
3209 	nvme_disable_prepare_reset(dev, true);
3210 }
3211 
3212 static void nvme_remove_attrs(struct nvme_dev *dev)
3213 {
3214 	if (dev->attrs_added)
3215 		sysfs_remove_group(&dev->ctrl.device->kobj,
3216 				   &nvme_pci_attr_group);
3217 }
3218 
3219 /*
3220  * The driver's remove may be called on a device in a partially initialized
3221  * state. This function must not have any dependencies on the device state in
3222  * order to proceed.
3223  */
3224 static void nvme_remove(struct pci_dev *pdev)
3225 {
3226 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3227 
3228 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3229 	pci_set_drvdata(pdev, NULL);
3230 
3231 	if (!pci_device_is_present(pdev)) {
3232 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3233 		nvme_dev_disable(dev, true);
3234 	}
3235 
3236 	flush_work(&dev->ctrl.reset_work);
3237 	nvme_stop_ctrl(&dev->ctrl);
3238 	nvme_remove_namespaces(&dev->ctrl);
3239 	nvme_dev_disable(dev, true);
3240 	nvme_remove_attrs(dev);
3241 	nvme_free_host_mem(dev);
3242 	nvme_dev_remove_admin(dev);
3243 	nvme_free_queues(dev, 0);
3244 	nvme_release_prp_pools(dev);
3245 	nvme_dev_unmap(dev);
3246 	nvme_uninit_ctrl(&dev->ctrl);
3247 }
3248 
3249 #ifdef CONFIG_PM_SLEEP
3250 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3251 {
3252 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3253 }
3254 
3255 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3256 {
3257 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3258 }
3259 
3260 static int nvme_resume(struct device *dev)
3261 {
3262 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3263 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3264 
3265 	if (ndev->last_ps == U32_MAX ||
3266 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3267 		goto reset;
3268 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3269 		goto reset;
3270 
3271 	return 0;
3272 reset:
3273 	return nvme_try_sched_reset(ctrl);
3274 }
3275 
3276 static int nvme_suspend(struct device *dev)
3277 {
3278 	struct pci_dev *pdev = to_pci_dev(dev);
3279 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3280 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3281 	int ret = -EBUSY;
3282 
3283 	ndev->last_ps = U32_MAX;
3284 
3285 	/*
3286 	 * The platform does not remove power for a kernel managed suspend so
3287 	 * use host managed nvme power settings for lowest idle power if
3288 	 * possible. This should have quicker resume latency than a full device
3289 	 * shutdown.  But if the firmware is involved after the suspend or the
3290 	 * device does not support any non-default power states, shut down the
3291 	 * device fully.
3292 	 *
3293 	 * If ASPM is not enabled for the device, shut down the device and allow
3294 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3295 	 * down, so as to allow the platform to achieve its minimum low-power
3296 	 * state (which may not be possible if the link is up).
3297 	 */
3298 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3299 	    !pcie_aspm_enabled(pdev) ||
3300 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3301 		return nvme_disable_prepare_reset(ndev, true);
3302 
3303 	nvme_start_freeze(ctrl);
3304 	nvme_wait_freeze(ctrl);
3305 	nvme_sync_queues(ctrl);
3306 
3307 	if (ctrl->state != NVME_CTRL_LIVE)
3308 		goto unfreeze;
3309 
3310 	/*
3311 	 * Host memory access may not be successful in a system suspend state,
3312 	 * but the specification allows the controller to access memory in a
3313 	 * non-operational power state.
3314 	 */
3315 	if (ndev->hmb) {
3316 		ret = nvme_set_host_mem(ndev, 0);
3317 		if (ret < 0)
3318 			goto unfreeze;
3319 	}
3320 
3321 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3322 	if (ret < 0)
3323 		goto unfreeze;
3324 
3325 	/*
3326 	 * A saved state prevents pci pm from generically controlling the
3327 	 * device's power. If we're using protocol specific settings, we don't
3328 	 * want pci interfering.
3329 	 */
3330 	pci_save_state(pdev);
3331 
3332 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3333 	if (ret < 0)
3334 		goto unfreeze;
3335 
3336 	if (ret) {
3337 		/* discard the saved state */
3338 		pci_load_saved_state(pdev, NULL);
3339 
3340 		/*
3341 		 * Clearing npss forces a controller reset on resume. The
3342 		 * correct value will be rediscovered then.
3343 		 */
3344 		ret = nvme_disable_prepare_reset(ndev, true);
3345 		ctrl->npss = 0;
3346 	}
3347 unfreeze:
3348 	nvme_unfreeze(ctrl);
3349 	return ret;
3350 }
3351 
3352 static int nvme_simple_suspend(struct device *dev)
3353 {
3354 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3355 
3356 	return nvme_disable_prepare_reset(ndev, true);
3357 }
3358 
3359 static int nvme_simple_resume(struct device *dev)
3360 {
3361 	struct pci_dev *pdev = to_pci_dev(dev);
3362 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3363 
3364 	return nvme_try_sched_reset(&ndev->ctrl);
3365 }
3366 
3367 static const struct dev_pm_ops nvme_dev_pm_ops = {
3368 	.suspend	= nvme_suspend,
3369 	.resume		= nvme_resume,
3370 	.freeze		= nvme_simple_suspend,
3371 	.thaw		= nvme_simple_resume,
3372 	.poweroff	= nvme_simple_suspend,
3373 	.restore	= nvme_simple_resume,
3374 };
3375 #endif /* CONFIG_PM_SLEEP */
3376 
3377 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3378 						pci_channel_state_t state)
3379 {
3380 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3381 
3382 	/*
3383 	 * A frozen channel requires a reset. When detected, this method will
3384 	 * shutdown the controller to quiesce. The controller will be restarted
3385 	 * after the slot reset through driver's slot_reset callback.
3386 	 */
3387 	switch (state) {
3388 	case pci_channel_io_normal:
3389 		return PCI_ERS_RESULT_CAN_RECOVER;
3390 	case pci_channel_io_frozen:
3391 		dev_warn(dev->ctrl.device,
3392 			"frozen state error detected, reset controller\n");
3393 		nvme_dev_disable(dev, false);
3394 		return PCI_ERS_RESULT_NEED_RESET;
3395 	case pci_channel_io_perm_failure:
3396 		dev_warn(dev->ctrl.device,
3397 			"failure state error detected, request disconnect\n");
3398 		return PCI_ERS_RESULT_DISCONNECT;
3399 	}
3400 	return PCI_ERS_RESULT_NEED_RESET;
3401 }
3402 
3403 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3404 {
3405 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3406 
3407 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3408 	pci_restore_state(pdev);
3409 	nvme_reset_ctrl(&dev->ctrl);
3410 	return PCI_ERS_RESULT_RECOVERED;
3411 }
3412 
3413 static void nvme_error_resume(struct pci_dev *pdev)
3414 {
3415 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3416 
3417 	flush_work(&dev->ctrl.reset_work);
3418 }
3419 
3420 static const struct pci_error_handlers nvme_err_handler = {
3421 	.error_detected	= nvme_error_detected,
3422 	.slot_reset	= nvme_slot_reset,
3423 	.resume		= nvme_error_resume,
3424 	.reset_prepare	= nvme_reset_prepare,
3425 	.reset_done	= nvme_reset_done,
3426 };
3427 
3428 static const struct pci_device_id nvme_id_table[] = {
3429 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3430 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3431 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3432 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3433 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3434 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3435 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3436 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3437 				NVME_QUIRK_DEALLOCATE_ZEROES |
3438 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3439 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3440 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3441 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3442 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3443 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3444 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3445 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3446 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3447 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3448 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3449 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3450 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3451 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3452 				NVME_QUIRK_BOGUS_NID, },
3453 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3454 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3455 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3456 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3457 				NVME_QUIRK_BOGUS_NID, },
3458 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3459 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3460 				NVME_QUIRK_NO_NS_DESC_LIST, },
3461 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3462 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3463 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3464 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3465 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3466 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3467 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3468 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3469 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3470 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3471 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3472 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3473 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3474 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3475 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3476 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3477 				NVME_QUIRK_BOGUS_NID, },
3478 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3479 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3480 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3481 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3482 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3483 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3484 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3485 				NVME_QUIRK_BOGUS_NID, },
3486 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3487 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3488 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3489 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3490 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3491 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3492 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3493 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3494 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3495 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3496 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3497 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3498 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3499 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3500 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3501 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3502 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3503 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3504 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3505 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3506 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3507 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3508 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3509 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3510 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3511 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3512 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3513 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3514 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3515 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3516 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3517 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3518 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3519 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3520 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3521 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3522 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3523 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3524 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3525 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3526 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3527 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3528 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3529 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3530 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3531 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3532 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3533 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3534 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3535 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3536 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3537 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3538 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3539 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3540 				NVME_QUIRK_128_BYTES_SQES |
3541 				NVME_QUIRK_SHARED_TAGS |
3542 				NVME_QUIRK_SKIP_CID_GEN },
3543 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3544 	{ 0, }
3545 };
3546 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3547 
3548 static struct pci_driver nvme_driver = {
3549 	.name		= "nvme",
3550 	.id_table	= nvme_id_table,
3551 	.probe		= nvme_probe,
3552 	.remove		= nvme_remove,
3553 	.shutdown	= nvme_shutdown,
3554 #ifdef CONFIG_PM_SLEEP
3555 	.driver		= {
3556 		.pm	= &nvme_dev_pm_ops,
3557 	},
3558 #endif
3559 	.sriov_configure = pci_sriov_configure_simple,
3560 	.err_handler	= &nvme_err_handler,
3561 };
3562 
3563 static int __init nvme_init(void)
3564 {
3565 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3566 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3567 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3568 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3569 
3570 	return pci_register_driver(&nvme_driver);
3571 }
3572 
3573 static void __exit nvme_exit(void)
3574 {
3575 	pci_unregister_driver(&nvme_driver);
3576 	flush_workqueue(nvme_wq);
3577 }
3578 
3579 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3580 MODULE_LICENSE("GPL");
3581 MODULE_VERSION("1.0");
3582 module_init(nvme_init);
3583 module_exit(nvme_exit);
3584