1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/errno.h> 23 #include <linux/fs.h> 24 #include <linux/genhd.h> 25 #include <linux/hdreg.h> 26 #include <linux/idr.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/timer.h> 43 #include <linux/types.h> 44 #include <linux/io-64-nonatomic-lo-hi.h> 45 #include <asm/unaligned.h> 46 47 #include "nvme.h" 48 49 #define NVME_Q_DEPTH 1024 50 #define NVME_AQ_DEPTH 256 51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 53 54 /* 55 * We handle AEN commands ourselves and don't even let the 56 * block layer know about them. 57 */ 58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 59 60 static int use_threaded_interrupts; 61 module_param(use_threaded_interrupts, int, 0); 62 63 static bool use_cmb_sqes = true; 64 module_param(use_cmb_sqes, bool, 0644); 65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 66 67 static struct workqueue_struct *nvme_workq; 68 69 struct nvme_dev; 70 struct nvme_queue; 71 72 static int nvme_reset(struct nvme_dev *dev); 73 static void nvme_process_cq(struct nvme_queue *nvmeq); 74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 75 76 /* 77 * Represents an NVM Express device. Each nvme_dev is a PCI function. 78 */ 79 struct nvme_dev { 80 struct nvme_queue **queues; 81 struct blk_mq_tag_set tagset; 82 struct blk_mq_tag_set admin_tagset; 83 u32 __iomem *dbs; 84 struct device *dev; 85 struct dma_pool *prp_page_pool; 86 struct dma_pool *prp_small_pool; 87 unsigned queue_count; 88 unsigned online_queues; 89 unsigned max_qid; 90 int q_depth; 91 u32 db_stride; 92 void __iomem *bar; 93 struct work_struct reset_work; 94 struct work_struct remove_work; 95 struct timer_list watchdog_timer; 96 struct mutex shutdown_lock; 97 bool subsystem; 98 void __iomem *cmb; 99 dma_addr_t cmb_dma_addr; 100 u64 cmb_size; 101 u32 cmbsz; 102 struct nvme_ctrl ctrl; 103 struct completion ioq_wait; 104 }; 105 106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 107 { 108 return container_of(ctrl, struct nvme_dev, ctrl); 109 } 110 111 /* 112 * An NVM Express queue. Each device has at least two (one for admin 113 * commands and one for I/O commands). 114 */ 115 struct nvme_queue { 116 struct device *q_dmadev; 117 struct nvme_dev *dev; 118 char irqname[24]; /* nvme4294967295-65535\0 */ 119 spinlock_t q_lock; 120 struct nvme_command *sq_cmds; 121 struct nvme_command __iomem *sq_cmds_io; 122 volatile struct nvme_completion *cqes; 123 struct blk_mq_tags **tags; 124 dma_addr_t sq_dma_addr; 125 dma_addr_t cq_dma_addr; 126 u32 __iomem *q_db; 127 u16 q_depth; 128 s16 cq_vector; 129 u16 sq_tail; 130 u16 cq_head; 131 u16 qid; 132 u8 cq_phase; 133 u8 cqe_seen; 134 }; 135 136 /* 137 * The nvme_iod describes the data in an I/O, including the list of PRP 138 * entries. You can't see it in this data structure because C doesn't let 139 * me express that. Use nvme_init_iod to ensure there's enough space 140 * allocated to store the PRP list. 141 */ 142 struct nvme_iod { 143 struct nvme_queue *nvmeq; 144 int aborted; 145 int npages; /* In the PRP list. 0 means small pool in use */ 146 int nents; /* Used in scatterlist */ 147 int length; /* Of data, in bytes */ 148 dma_addr_t first_dma; 149 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 150 struct scatterlist *sg; 151 struct scatterlist inline_sg[0]; 152 }; 153 154 /* 155 * Check we didin't inadvertently grow the command struct 156 */ 157 static inline void _nvme_check_size(void) 158 { 159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 171 } 172 173 /* 174 * Max size of iod being embedded in the request payload 175 */ 176 #define NVME_INT_PAGES 2 177 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 178 179 /* 180 * Will slightly overestimate the number of pages needed. This is OK 181 * as it only leads to a small amount of wasted memory for the lifetime of 182 * the I/O. 183 */ 184 static int nvme_npages(unsigned size, struct nvme_dev *dev) 185 { 186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 187 dev->ctrl.page_size); 188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 189 } 190 191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 192 unsigned int size, unsigned int nseg) 193 { 194 return sizeof(__le64 *) * nvme_npages(size, dev) + 195 sizeof(struct scatterlist) * nseg; 196 } 197 198 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 199 { 200 return sizeof(struct nvme_iod) + 201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 202 } 203 204 static int nvmeq_irq(struct nvme_queue *nvmeq) 205 { 206 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); 207 } 208 209 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 210 unsigned int hctx_idx) 211 { 212 struct nvme_dev *dev = data; 213 struct nvme_queue *nvmeq = dev->queues[0]; 214 215 WARN_ON(hctx_idx != 0); 216 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 217 WARN_ON(nvmeq->tags); 218 219 hctx->driver_data = nvmeq; 220 nvmeq->tags = &dev->admin_tagset.tags[0]; 221 return 0; 222 } 223 224 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 225 { 226 struct nvme_queue *nvmeq = hctx->driver_data; 227 228 nvmeq->tags = NULL; 229 } 230 231 static int nvme_admin_init_request(void *data, struct request *req, 232 unsigned int hctx_idx, unsigned int rq_idx, 233 unsigned int numa_node) 234 { 235 struct nvme_dev *dev = data; 236 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 237 struct nvme_queue *nvmeq = dev->queues[0]; 238 239 BUG_ON(!nvmeq); 240 iod->nvmeq = nvmeq; 241 return 0; 242 } 243 244 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 245 unsigned int hctx_idx) 246 { 247 struct nvme_dev *dev = data; 248 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 249 250 if (!nvmeq->tags) 251 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 252 253 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 254 hctx->driver_data = nvmeq; 255 return 0; 256 } 257 258 static int nvme_init_request(void *data, struct request *req, 259 unsigned int hctx_idx, unsigned int rq_idx, 260 unsigned int numa_node) 261 { 262 struct nvme_dev *dev = data; 263 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 264 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 265 266 BUG_ON(!nvmeq); 267 iod->nvmeq = nvmeq; 268 return 0; 269 } 270 271 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 272 { 273 struct nvme_dev *dev = set->driver_data; 274 275 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 276 } 277 278 /** 279 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 280 * @nvmeq: The queue to use 281 * @cmd: The command to send 282 * 283 * Safe to use from interrupt context 284 */ 285 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 286 struct nvme_command *cmd) 287 { 288 u16 tail = nvmeq->sq_tail; 289 290 if (nvmeq->sq_cmds_io) 291 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 292 else 293 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 294 295 if (++tail == nvmeq->q_depth) 296 tail = 0; 297 writel(tail, nvmeq->q_db); 298 nvmeq->sq_tail = tail; 299 } 300 301 static __le64 **iod_list(struct request *req) 302 { 303 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 304 return (__le64 **)(iod->sg + req->nr_phys_segments); 305 } 306 307 static int nvme_init_iod(struct request *rq, unsigned size, 308 struct nvme_dev *dev) 309 { 310 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 311 int nseg = rq->nr_phys_segments; 312 313 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 314 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 315 if (!iod->sg) 316 return BLK_MQ_RQ_QUEUE_BUSY; 317 } else { 318 iod->sg = iod->inline_sg; 319 } 320 321 iod->aborted = 0; 322 iod->npages = -1; 323 iod->nents = 0; 324 iod->length = size; 325 326 if (!(rq->cmd_flags & REQ_DONTPREP)) { 327 rq->retries = 0; 328 rq->cmd_flags |= REQ_DONTPREP; 329 } 330 return 0; 331 } 332 333 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 334 { 335 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 336 const int last_prp = dev->ctrl.page_size / 8 - 1; 337 int i; 338 __le64 **list = iod_list(req); 339 dma_addr_t prp_dma = iod->first_dma; 340 341 nvme_cleanup_cmd(req); 342 343 if (iod->npages == 0) 344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 345 for (i = 0; i < iod->npages; i++) { 346 __le64 *prp_list = list[i]; 347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 349 prp_dma = next_prp_dma; 350 } 351 352 if (iod->sg != iod->inline_sg) 353 kfree(iod->sg); 354 } 355 356 #ifdef CONFIG_BLK_DEV_INTEGRITY 357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 358 { 359 if (be32_to_cpu(pi->ref_tag) == v) 360 pi->ref_tag = cpu_to_be32(p); 361 } 362 363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 364 { 365 if (be32_to_cpu(pi->ref_tag) == p) 366 pi->ref_tag = cpu_to_be32(v); 367 } 368 369 /** 370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 371 * 372 * The virtual start sector is the one that was originally submitted by the 373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 374 * start sector may be different. Remap protection information to match the 375 * physical LBA on writes, and back to the original seed on reads. 376 * 377 * Type 0 and 3 do not have a ref tag, so no remapping required. 378 */ 379 static void nvme_dif_remap(struct request *req, 380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 381 { 382 struct nvme_ns *ns = req->rq_disk->private_data; 383 struct bio_integrity_payload *bip; 384 struct t10_pi_tuple *pi; 385 void *p, *pmap; 386 u32 i, nlb, ts, phys, virt; 387 388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 389 return; 390 391 bip = bio_integrity(req->bio); 392 if (!bip) 393 return; 394 395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 396 397 p = pmap; 398 virt = bip_get_seed(bip); 399 phys = nvme_block_nr(ns, blk_rq_pos(req)); 400 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 401 ts = ns->disk->queue->integrity.tuple_size; 402 403 for (i = 0; i < nlb; i++, virt++, phys++) { 404 pi = (struct t10_pi_tuple *)p; 405 dif_swap(phys, virt, pi); 406 p += ts; 407 } 408 kunmap_atomic(pmap); 409 } 410 #else /* CONFIG_BLK_DEV_INTEGRITY */ 411 static void nvme_dif_remap(struct request *req, 412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 413 { 414 } 415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 416 { 417 } 418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 419 { 420 } 421 #endif 422 423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, 424 int total_len) 425 { 426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 427 struct dma_pool *pool; 428 int length = total_len; 429 struct scatterlist *sg = iod->sg; 430 int dma_len = sg_dma_len(sg); 431 u64 dma_addr = sg_dma_address(sg); 432 u32 page_size = dev->ctrl.page_size; 433 int offset = dma_addr & (page_size - 1); 434 __le64 *prp_list; 435 __le64 **list = iod_list(req); 436 dma_addr_t prp_dma; 437 int nprps, i; 438 439 length -= (page_size - offset); 440 if (length <= 0) 441 return true; 442 443 dma_len -= (page_size - offset); 444 if (dma_len) { 445 dma_addr += (page_size - offset); 446 } else { 447 sg = sg_next(sg); 448 dma_addr = sg_dma_address(sg); 449 dma_len = sg_dma_len(sg); 450 } 451 452 if (length <= page_size) { 453 iod->first_dma = dma_addr; 454 return true; 455 } 456 457 nprps = DIV_ROUND_UP(length, page_size); 458 if (nprps <= (256 / 8)) { 459 pool = dev->prp_small_pool; 460 iod->npages = 0; 461 } else { 462 pool = dev->prp_page_pool; 463 iod->npages = 1; 464 } 465 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 467 if (!prp_list) { 468 iod->first_dma = dma_addr; 469 iod->npages = -1; 470 return false; 471 } 472 list[0] = prp_list; 473 iod->first_dma = prp_dma; 474 i = 0; 475 for (;;) { 476 if (i == page_size >> 3) { 477 __le64 *old_prp_list = prp_list; 478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 479 if (!prp_list) 480 return false; 481 list[iod->npages++] = prp_list; 482 prp_list[0] = old_prp_list[i - 1]; 483 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 484 i = 1; 485 } 486 prp_list[i++] = cpu_to_le64(dma_addr); 487 dma_len -= page_size; 488 dma_addr += page_size; 489 length -= page_size; 490 if (length <= 0) 491 break; 492 if (dma_len > 0) 493 continue; 494 BUG_ON(dma_len < 0); 495 sg = sg_next(sg); 496 dma_addr = sg_dma_address(sg); 497 dma_len = sg_dma_len(sg); 498 } 499 500 return true; 501 } 502 503 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 504 unsigned size, struct nvme_command *cmnd) 505 { 506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 507 struct request_queue *q = req->q; 508 enum dma_data_direction dma_dir = rq_data_dir(req) ? 509 DMA_TO_DEVICE : DMA_FROM_DEVICE; 510 int ret = BLK_MQ_RQ_QUEUE_ERROR; 511 512 sg_init_table(iod->sg, req->nr_phys_segments); 513 iod->nents = blk_rq_map_sg(q, req, iod->sg); 514 if (!iod->nents) 515 goto out; 516 517 ret = BLK_MQ_RQ_QUEUE_BUSY; 518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 519 DMA_ATTR_NO_WARN)) 520 goto out; 521 522 if (!nvme_setup_prps(dev, req, size)) 523 goto out_unmap; 524 525 ret = BLK_MQ_RQ_QUEUE_ERROR; 526 if (blk_integrity_rq(req)) { 527 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 528 goto out_unmap; 529 530 sg_init_table(&iod->meta_sg, 1); 531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 532 goto out_unmap; 533 534 if (rq_data_dir(req)) 535 nvme_dif_remap(req, nvme_dif_prep); 536 537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 538 goto out_unmap; 539 } 540 541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 543 if (blk_integrity_rq(req)) 544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 545 return BLK_MQ_RQ_QUEUE_OK; 546 547 out_unmap: 548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 549 out: 550 return ret; 551 } 552 553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 554 { 555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 556 enum dma_data_direction dma_dir = rq_data_dir(req) ? 557 DMA_TO_DEVICE : DMA_FROM_DEVICE; 558 559 if (iod->nents) { 560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 561 if (blk_integrity_rq(req)) { 562 if (!rq_data_dir(req)) 563 nvme_dif_remap(req, nvme_dif_complete); 564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 565 } 566 } 567 568 nvme_free_iod(dev, req); 569 } 570 571 /* 572 * NOTE: ns is NULL when called on the admin queue. 573 */ 574 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 575 const struct blk_mq_queue_data *bd) 576 { 577 struct nvme_ns *ns = hctx->queue->queuedata; 578 struct nvme_queue *nvmeq = hctx->driver_data; 579 struct nvme_dev *dev = nvmeq->dev; 580 struct request *req = bd->rq; 581 struct nvme_command cmnd; 582 unsigned map_len; 583 int ret = BLK_MQ_RQ_QUEUE_OK; 584 585 /* 586 * If formated with metadata, require the block layer provide a buffer 587 * unless this namespace is formated such that the metadata can be 588 * stripped/generated by the controller with PRACT=1. 589 */ 590 if (ns && ns->ms && !blk_integrity_rq(req)) { 591 if (!(ns->pi_type && ns->ms == 8) && 592 req->cmd_type != REQ_TYPE_DRV_PRIV) { 593 blk_mq_end_request(req, -EFAULT); 594 return BLK_MQ_RQ_QUEUE_OK; 595 } 596 } 597 598 map_len = nvme_map_len(req); 599 ret = nvme_init_iod(req, map_len, dev); 600 if (ret) 601 return ret; 602 603 ret = nvme_setup_cmd(ns, req, &cmnd); 604 if (ret) 605 goto out; 606 607 if (req->nr_phys_segments) 608 ret = nvme_map_data(dev, req, map_len, &cmnd); 609 610 if (ret) 611 goto out; 612 613 cmnd.common.command_id = req->tag; 614 blk_mq_start_request(req); 615 616 spin_lock_irq(&nvmeq->q_lock); 617 if (unlikely(nvmeq->cq_vector < 0)) { 618 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) 619 ret = BLK_MQ_RQ_QUEUE_BUSY; 620 else 621 ret = BLK_MQ_RQ_QUEUE_ERROR; 622 spin_unlock_irq(&nvmeq->q_lock); 623 goto out; 624 } 625 __nvme_submit_cmd(nvmeq, &cmnd); 626 nvme_process_cq(nvmeq); 627 spin_unlock_irq(&nvmeq->q_lock); 628 return BLK_MQ_RQ_QUEUE_OK; 629 out: 630 nvme_free_iod(dev, req); 631 return ret; 632 } 633 634 static void nvme_complete_rq(struct request *req) 635 { 636 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 637 struct nvme_dev *dev = iod->nvmeq->dev; 638 int error = 0; 639 640 nvme_unmap_data(dev, req); 641 642 if (unlikely(req->errors)) { 643 if (nvme_req_needs_retry(req, req->errors)) { 644 req->retries++; 645 nvme_requeue_req(req); 646 return; 647 } 648 649 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 650 error = req->errors; 651 else 652 error = nvme_error_status(req->errors); 653 } 654 655 if (unlikely(iod->aborted)) { 656 dev_warn(dev->ctrl.device, 657 "completing aborted command with status: %04x\n", 658 req->errors); 659 } 660 661 blk_mq_end_request(req, error); 662 } 663 664 /* We read the CQE phase first to check if the rest of the entry is valid */ 665 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 666 u16 phase) 667 { 668 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 669 } 670 671 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 672 { 673 u16 head, phase; 674 675 head = nvmeq->cq_head; 676 phase = nvmeq->cq_phase; 677 678 while (nvme_cqe_valid(nvmeq, head, phase)) { 679 struct nvme_completion cqe = nvmeq->cqes[head]; 680 struct request *req; 681 682 if (++head == nvmeq->q_depth) { 683 head = 0; 684 phase = !phase; 685 } 686 687 if (tag && *tag == cqe.command_id) 688 *tag = -1; 689 690 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 691 dev_warn(nvmeq->dev->ctrl.device, 692 "invalid id %d completed on queue %d\n", 693 cqe.command_id, le16_to_cpu(cqe.sq_id)); 694 continue; 695 } 696 697 /* 698 * AEN requests are special as they don't time out and can 699 * survive any kind of queue freeze and often don't respond to 700 * aborts. We don't even bother to allocate a struct request 701 * for them but rather special case them here. 702 */ 703 if (unlikely(nvmeq->qid == 0 && 704 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 705 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe); 706 continue; 707 } 708 709 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 710 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) 711 memcpy(req->special, &cqe, sizeof(cqe)); 712 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 713 714 } 715 716 /* If the controller ignores the cq head doorbell and continuously 717 * writes to the queue, it is theoretically possible to wrap around 718 * the queue twice and mistakenly return IRQ_NONE. Linux only 719 * requires that 0.1% of your interrupts are handled, so this isn't 720 * a big problem. 721 */ 722 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 723 return; 724 725 if (likely(nvmeq->cq_vector >= 0)) 726 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 727 nvmeq->cq_head = head; 728 nvmeq->cq_phase = phase; 729 730 nvmeq->cqe_seen = 1; 731 } 732 733 static void nvme_process_cq(struct nvme_queue *nvmeq) 734 { 735 __nvme_process_cq(nvmeq, NULL); 736 } 737 738 static irqreturn_t nvme_irq(int irq, void *data) 739 { 740 irqreturn_t result; 741 struct nvme_queue *nvmeq = data; 742 spin_lock(&nvmeq->q_lock); 743 nvme_process_cq(nvmeq); 744 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 745 nvmeq->cqe_seen = 0; 746 spin_unlock(&nvmeq->q_lock); 747 return result; 748 } 749 750 static irqreturn_t nvme_irq_check(int irq, void *data) 751 { 752 struct nvme_queue *nvmeq = data; 753 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 754 return IRQ_WAKE_THREAD; 755 return IRQ_NONE; 756 } 757 758 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 759 { 760 struct nvme_queue *nvmeq = hctx->driver_data; 761 762 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 763 spin_lock_irq(&nvmeq->q_lock); 764 __nvme_process_cq(nvmeq, &tag); 765 spin_unlock_irq(&nvmeq->q_lock); 766 767 if (tag == -1) 768 return 1; 769 } 770 771 return 0; 772 } 773 774 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 775 { 776 struct nvme_dev *dev = to_nvme_dev(ctrl); 777 struct nvme_queue *nvmeq = dev->queues[0]; 778 struct nvme_command c; 779 780 memset(&c, 0, sizeof(c)); 781 c.common.opcode = nvme_admin_async_event; 782 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 783 784 spin_lock_irq(&nvmeq->q_lock); 785 __nvme_submit_cmd(nvmeq, &c); 786 spin_unlock_irq(&nvmeq->q_lock); 787 } 788 789 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 790 { 791 struct nvme_command c; 792 793 memset(&c, 0, sizeof(c)); 794 c.delete_queue.opcode = opcode; 795 c.delete_queue.qid = cpu_to_le16(id); 796 797 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 798 } 799 800 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 801 struct nvme_queue *nvmeq) 802 { 803 struct nvme_command c; 804 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 805 806 /* 807 * Note: we (ab)use the fact the the prp fields survive if no data 808 * is attached to the request. 809 */ 810 memset(&c, 0, sizeof(c)); 811 c.create_cq.opcode = nvme_admin_create_cq; 812 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 813 c.create_cq.cqid = cpu_to_le16(qid); 814 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 815 c.create_cq.cq_flags = cpu_to_le16(flags); 816 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 817 818 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 819 } 820 821 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 822 struct nvme_queue *nvmeq) 823 { 824 struct nvme_command c; 825 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 826 827 /* 828 * Note: we (ab)use the fact the the prp fields survive if no data 829 * is attached to the request. 830 */ 831 memset(&c, 0, sizeof(c)); 832 c.create_sq.opcode = nvme_admin_create_sq; 833 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 834 c.create_sq.sqid = cpu_to_le16(qid); 835 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 836 c.create_sq.sq_flags = cpu_to_le16(flags); 837 c.create_sq.cqid = cpu_to_le16(qid); 838 839 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 840 } 841 842 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 843 { 844 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 845 } 846 847 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 848 { 849 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 850 } 851 852 static void abort_endio(struct request *req, int error) 853 { 854 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 855 struct nvme_queue *nvmeq = iod->nvmeq; 856 u16 status = req->errors; 857 858 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 859 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 860 blk_mq_free_request(req); 861 } 862 863 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 864 { 865 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 866 struct nvme_queue *nvmeq = iod->nvmeq; 867 struct nvme_dev *dev = nvmeq->dev; 868 struct request *abort_req; 869 struct nvme_command cmd; 870 871 /* 872 * Shutdown immediately if controller times out while starting. The 873 * reset work will see the pci device disabled when it gets the forced 874 * cancellation error. All outstanding requests are completed on 875 * shutdown, so we return BLK_EH_HANDLED. 876 */ 877 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 878 dev_warn(dev->ctrl.device, 879 "I/O %d QID %d timeout, disable controller\n", 880 req->tag, nvmeq->qid); 881 nvme_dev_disable(dev, false); 882 req->errors = NVME_SC_CANCELLED; 883 return BLK_EH_HANDLED; 884 } 885 886 /* 887 * Shutdown the controller immediately and schedule a reset if the 888 * command was already aborted once before and still hasn't been 889 * returned to the driver, or if this is the admin queue. 890 */ 891 if (!nvmeq->qid || iod->aborted) { 892 dev_warn(dev->ctrl.device, 893 "I/O %d QID %d timeout, reset controller\n", 894 req->tag, nvmeq->qid); 895 nvme_dev_disable(dev, false); 896 queue_work(nvme_workq, &dev->reset_work); 897 898 /* 899 * Mark the request as handled, since the inline shutdown 900 * forces all outstanding requests to complete. 901 */ 902 req->errors = NVME_SC_CANCELLED; 903 return BLK_EH_HANDLED; 904 } 905 906 iod->aborted = 1; 907 908 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 909 atomic_inc(&dev->ctrl.abort_limit); 910 return BLK_EH_RESET_TIMER; 911 } 912 913 memset(&cmd, 0, sizeof(cmd)); 914 cmd.abort.opcode = nvme_admin_abort_cmd; 915 cmd.abort.cid = req->tag; 916 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 917 918 dev_warn(nvmeq->dev->ctrl.device, 919 "I/O %d QID %d timeout, aborting\n", 920 req->tag, nvmeq->qid); 921 922 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 923 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 924 if (IS_ERR(abort_req)) { 925 atomic_inc(&dev->ctrl.abort_limit); 926 return BLK_EH_RESET_TIMER; 927 } 928 929 abort_req->timeout = ADMIN_TIMEOUT; 930 abort_req->end_io_data = NULL; 931 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 932 933 /* 934 * The aborted req will be completed on receiving the abort req. 935 * We enable the timer again. If hit twice, it'll cause a device reset, 936 * as the device then is in a faulty state. 937 */ 938 return BLK_EH_RESET_TIMER; 939 } 940 941 static void nvme_free_queue(struct nvme_queue *nvmeq) 942 { 943 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 944 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 945 if (nvmeq->sq_cmds) 946 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 947 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 948 kfree(nvmeq); 949 } 950 951 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 952 { 953 int i; 954 955 for (i = dev->queue_count - 1; i >= lowest; i--) { 956 struct nvme_queue *nvmeq = dev->queues[i]; 957 dev->queue_count--; 958 dev->queues[i] = NULL; 959 nvme_free_queue(nvmeq); 960 } 961 } 962 963 /** 964 * nvme_suspend_queue - put queue into suspended state 965 * @nvmeq - queue to suspend 966 */ 967 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 968 { 969 int vector; 970 971 spin_lock_irq(&nvmeq->q_lock); 972 if (nvmeq->cq_vector == -1) { 973 spin_unlock_irq(&nvmeq->q_lock); 974 return 1; 975 } 976 vector = nvmeq_irq(nvmeq); 977 nvmeq->dev->online_queues--; 978 nvmeq->cq_vector = -1; 979 spin_unlock_irq(&nvmeq->q_lock); 980 981 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 982 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 983 984 free_irq(vector, nvmeq); 985 986 return 0; 987 } 988 989 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 990 { 991 struct nvme_queue *nvmeq = dev->queues[0]; 992 993 if (!nvmeq) 994 return; 995 if (nvme_suspend_queue(nvmeq)) 996 return; 997 998 if (shutdown) 999 nvme_shutdown_ctrl(&dev->ctrl); 1000 else 1001 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 1002 dev->bar + NVME_REG_CAP)); 1003 1004 spin_lock_irq(&nvmeq->q_lock); 1005 nvme_process_cq(nvmeq); 1006 spin_unlock_irq(&nvmeq->q_lock); 1007 } 1008 1009 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1010 int entry_size) 1011 { 1012 int q_depth = dev->q_depth; 1013 unsigned q_size_aligned = roundup(q_depth * entry_size, 1014 dev->ctrl.page_size); 1015 1016 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1017 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1018 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1019 q_depth = div_u64(mem_per_q, entry_size); 1020 1021 /* 1022 * Ensure the reduced q_depth is above some threshold where it 1023 * would be better to map queues in system memory with the 1024 * original depth 1025 */ 1026 if (q_depth < 64) 1027 return -ENOMEM; 1028 } 1029 1030 return q_depth; 1031 } 1032 1033 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1034 int qid, int depth) 1035 { 1036 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1037 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1038 dev->ctrl.page_size); 1039 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1040 nvmeq->sq_cmds_io = dev->cmb + offset; 1041 } else { 1042 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1043 &nvmeq->sq_dma_addr, GFP_KERNEL); 1044 if (!nvmeq->sq_cmds) 1045 return -ENOMEM; 1046 } 1047 1048 return 0; 1049 } 1050 1051 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1052 int depth) 1053 { 1054 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1055 if (!nvmeq) 1056 return NULL; 1057 1058 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1059 &nvmeq->cq_dma_addr, GFP_KERNEL); 1060 if (!nvmeq->cqes) 1061 goto free_nvmeq; 1062 1063 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1064 goto free_cqdma; 1065 1066 nvmeq->q_dmadev = dev->dev; 1067 nvmeq->dev = dev; 1068 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1069 dev->ctrl.instance, qid); 1070 spin_lock_init(&nvmeq->q_lock); 1071 nvmeq->cq_head = 0; 1072 nvmeq->cq_phase = 1; 1073 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1074 nvmeq->q_depth = depth; 1075 nvmeq->qid = qid; 1076 nvmeq->cq_vector = -1; 1077 dev->queues[qid] = nvmeq; 1078 dev->queue_count++; 1079 1080 return nvmeq; 1081 1082 free_cqdma: 1083 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1084 nvmeq->cq_dma_addr); 1085 free_nvmeq: 1086 kfree(nvmeq); 1087 return NULL; 1088 } 1089 1090 static int queue_request_irq(struct nvme_queue *nvmeq) 1091 { 1092 if (use_threaded_interrupts) 1093 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, 1094 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); 1095 else 1096 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, 1097 nvmeq->irqname, nvmeq); 1098 } 1099 1100 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1101 { 1102 struct nvme_dev *dev = nvmeq->dev; 1103 1104 spin_lock_irq(&nvmeq->q_lock); 1105 nvmeq->sq_tail = 0; 1106 nvmeq->cq_head = 0; 1107 nvmeq->cq_phase = 1; 1108 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1109 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1110 dev->online_queues++; 1111 spin_unlock_irq(&nvmeq->q_lock); 1112 } 1113 1114 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1115 { 1116 struct nvme_dev *dev = nvmeq->dev; 1117 int result; 1118 1119 nvmeq->cq_vector = qid - 1; 1120 result = adapter_alloc_cq(dev, qid, nvmeq); 1121 if (result < 0) 1122 return result; 1123 1124 result = adapter_alloc_sq(dev, qid, nvmeq); 1125 if (result < 0) 1126 goto release_cq; 1127 1128 result = queue_request_irq(nvmeq); 1129 if (result < 0) 1130 goto release_sq; 1131 1132 nvme_init_queue(nvmeq, qid); 1133 return result; 1134 1135 release_sq: 1136 adapter_delete_sq(dev, qid); 1137 release_cq: 1138 adapter_delete_cq(dev, qid); 1139 return result; 1140 } 1141 1142 static struct blk_mq_ops nvme_mq_admin_ops = { 1143 .queue_rq = nvme_queue_rq, 1144 .complete = nvme_complete_rq, 1145 .init_hctx = nvme_admin_init_hctx, 1146 .exit_hctx = nvme_admin_exit_hctx, 1147 .init_request = nvme_admin_init_request, 1148 .timeout = nvme_timeout, 1149 }; 1150 1151 static struct blk_mq_ops nvme_mq_ops = { 1152 .queue_rq = nvme_queue_rq, 1153 .complete = nvme_complete_rq, 1154 .init_hctx = nvme_init_hctx, 1155 .init_request = nvme_init_request, 1156 .map_queues = nvme_pci_map_queues, 1157 .timeout = nvme_timeout, 1158 .poll = nvme_poll, 1159 }; 1160 1161 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1162 { 1163 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1164 /* 1165 * If the controller was reset during removal, it's possible 1166 * user requests may be waiting on a stopped queue. Start the 1167 * queue to flush these to completion. 1168 */ 1169 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1170 blk_cleanup_queue(dev->ctrl.admin_q); 1171 blk_mq_free_tag_set(&dev->admin_tagset); 1172 } 1173 } 1174 1175 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1176 { 1177 if (!dev->ctrl.admin_q) { 1178 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1179 dev->admin_tagset.nr_hw_queues = 1; 1180 1181 /* 1182 * Subtract one to leave an empty queue entry for 'Full Queue' 1183 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1184 */ 1185 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1186 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1187 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1188 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1189 dev->admin_tagset.driver_data = dev; 1190 1191 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1192 return -ENOMEM; 1193 1194 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1195 if (IS_ERR(dev->ctrl.admin_q)) { 1196 blk_mq_free_tag_set(&dev->admin_tagset); 1197 return -ENOMEM; 1198 } 1199 if (!blk_get_queue(dev->ctrl.admin_q)) { 1200 nvme_dev_remove_admin(dev); 1201 dev->ctrl.admin_q = NULL; 1202 return -ENODEV; 1203 } 1204 } else 1205 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1206 1207 return 0; 1208 } 1209 1210 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1211 { 1212 int result; 1213 u32 aqa; 1214 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1215 struct nvme_queue *nvmeq; 1216 1217 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ? 1218 NVME_CAP_NSSRC(cap) : 0; 1219 1220 if (dev->subsystem && 1221 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1222 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1223 1224 result = nvme_disable_ctrl(&dev->ctrl, cap); 1225 if (result < 0) 1226 return result; 1227 1228 nvmeq = dev->queues[0]; 1229 if (!nvmeq) { 1230 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1231 if (!nvmeq) 1232 return -ENOMEM; 1233 } 1234 1235 aqa = nvmeq->q_depth - 1; 1236 aqa |= aqa << 16; 1237 1238 writel(aqa, dev->bar + NVME_REG_AQA); 1239 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1240 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1241 1242 result = nvme_enable_ctrl(&dev->ctrl, cap); 1243 if (result) 1244 goto free_nvmeq; 1245 1246 nvmeq->cq_vector = 0; 1247 result = queue_request_irq(nvmeq); 1248 if (result) { 1249 nvmeq->cq_vector = -1; 1250 goto free_nvmeq; 1251 } 1252 1253 return result; 1254 1255 free_nvmeq: 1256 nvme_free_queues(dev, 0); 1257 return result; 1258 } 1259 1260 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1261 { 1262 1263 /* If true, indicates loss of adapter communication, possibly by a 1264 * NVMe Subsystem reset. 1265 */ 1266 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1267 1268 /* If there is a reset ongoing, we shouldn't reset again. */ 1269 if (work_busy(&dev->reset_work)) 1270 return false; 1271 1272 /* We shouldn't reset unless the controller is on fatal error state 1273 * _or_ if we lost the communication with it. 1274 */ 1275 if (!(csts & NVME_CSTS_CFS) && !nssro) 1276 return false; 1277 1278 /* If PCI error recovery process is happening, we cannot reset or 1279 * the recovery mechanism will surely fail. 1280 */ 1281 if (pci_channel_offline(to_pci_dev(dev->dev))) 1282 return false; 1283 1284 return true; 1285 } 1286 1287 static void nvme_watchdog_timer(unsigned long data) 1288 { 1289 struct nvme_dev *dev = (struct nvme_dev *)data; 1290 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1291 1292 /* Skip controllers under certain specific conditions. */ 1293 if (nvme_should_reset(dev, csts)) { 1294 if (queue_work(nvme_workq, &dev->reset_work)) 1295 dev_warn(dev->dev, 1296 "Failed status: 0x%x, reset controller.\n", 1297 csts); 1298 return; 1299 } 1300 1301 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1302 } 1303 1304 static int nvme_create_io_queues(struct nvme_dev *dev) 1305 { 1306 unsigned i, max; 1307 int ret = 0; 1308 1309 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1310 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1311 ret = -ENOMEM; 1312 break; 1313 } 1314 } 1315 1316 max = min(dev->max_qid, dev->queue_count - 1); 1317 for (i = dev->online_queues; i <= max; i++) { 1318 ret = nvme_create_queue(dev->queues[i], i); 1319 if (ret) { 1320 nvme_free_queues(dev, i); 1321 break; 1322 } 1323 } 1324 1325 /* 1326 * Ignore failing Create SQ/CQ commands, we can continue with less 1327 * than the desired aount of queues, and even a controller without 1328 * I/O queues an still be used to issue admin commands. This might 1329 * be useful to upgrade a buggy firmware for example. 1330 */ 1331 return ret >= 0 ? 0 : ret; 1332 } 1333 1334 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1335 { 1336 u64 szu, size, offset; 1337 u32 cmbloc; 1338 resource_size_t bar_size; 1339 struct pci_dev *pdev = to_pci_dev(dev->dev); 1340 void __iomem *cmb; 1341 dma_addr_t dma_addr; 1342 1343 if (!use_cmb_sqes) 1344 return NULL; 1345 1346 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1347 if (!(NVME_CMB_SZ(dev->cmbsz))) 1348 return NULL; 1349 1350 cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1351 1352 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1353 size = szu * NVME_CMB_SZ(dev->cmbsz); 1354 offset = szu * NVME_CMB_OFST(cmbloc); 1355 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); 1356 1357 if (offset > bar_size) 1358 return NULL; 1359 1360 /* 1361 * Controllers may support a CMB size larger than their BAR, 1362 * for example, due to being behind a bridge. Reduce the CMB to 1363 * the reported size of the BAR 1364 */ 1365 if (size > bar_size - offset) 1366 size = bar_size - offset; 1367 1368 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; 1369 cmb = ioremap_wc(dma_addr, size); 1370 if (!cmb) 1371 return NULL; 1372 1373 dev->cmb_dma_addr = dma_addr; 1374 dev->cmb_size = size; 1375 return cmb; 1376 } 1377 1378 static inline void nvme_release_cmb(struct nvme_dev *dev) 1379 { 1380 if (dev->cmb) { 1381 iounmap(dev->cmb); 1382 dev->cmb = NULL; 1383 } 1384 } 1385 1386 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1387 { 1388 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1389 } 1390 1391 static int nvme_setup_io_queues(struct nvme_dev *dev) 1392 { 1393 struct nvme_queue *adminq = dev->queues[0]; 1394 struct pci_dev *pdev = to_pci_dev(dev->dev); 1395 int result, nr_io_queues, size; 1396 1397 nr_io_queues = num_online_cpus(); 1398 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1399 if (result < 0) 1400 return result; 1401 1402 if (nr_io_queues == 0) 1403 return 0; 1404 1405 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1406 result = nvme_cmb_qdepth(dev, nr_io_queues, 1407 sizeof(struct nvme_command)); 1408 if (result > 0) 1409 dev->q_depth = result; 1410 else 1411 nvme_release_cmb(dev); 1412 } 1413 1414 size = db_bar_size(dev, nr_io_queues); 1415 if (size > 8192) { 1416 iounmap(dev->bar); 1417 do { 1418 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1419 if (dev->bar) 1420 break; 1421 if (!--nr_io_queues) 1422 return -ENOMEM; 1423 size = db_bar_size(dev, nr_io_queues); 1424 } while (1); 1425 dev->dbs = dev->bar + 4096; 1426 adminq->q_db = dev->dbs; 1427 } 1428 1429 /* Deregister the admin queue's interrupt */ 1430 free_irq(pci_irq_vector(pdev, 0), adminq); 1431 1432 /* 1433 * If we enable msix early due to not intx, disable it again before 1434 * setting up the full range we need. 1435 */ 1436 pci_free_irq_vectors(pdev); 1437 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1438 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1439 if (nr_io_queues <= 0) 1440 return -EIO; 1441 dev->max_qid = nr_io_queues; 1442 1443 /* 1444 * Should investigate if there's a performance win from allocating 1445 * more queues than interrupt vectors; it might allow the submission 1446 * path to scale better, even if the receive path is limited by the 1447 * number of interrupts. 1448 */ 1449 1450 result = queue_request_irq(adminq); 1451 if (result) { 1452 adminq->cq_vector = -1; 1453 goto free_queues; 1454 } 1455 return nvme_create_io_queues(dev); 1456 1457 free_queues: 1458 nvme_free_queues(dev, 1); 1459 return result; 1460 } 1461 1462 static void nvme_del_queue_end(struct request *req, int error) 1463 { 1464 struct nvme_queue *nvmeq = req->end_io_data; 1465 1466 blk_mq_free_request(req); 1467 complete(&nvmeq->dev->ioq_wait); 1468 } 1469 1470 static void nvme_del_cq_end(struct request *req, int error) 1471 { 1472 struct nvme_queue *nvmeq = req->end_io_data; 1473 1474 if (!error) { 1475 unsigned long flags; 1476 1477 /* 1478 * We might be called with the AQ q_lock held 1479 * and the I/O queue q_lock should always 1480 * nest inside the AQ one. 1481 */ 1482 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1483 SINGLE_DEPTH_NESTING); 1484 nvme_process_cq(nvmeq); 1485 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1486 } 1487 1488 nvme_del_queue_end(req, error); 1489 } 1490 1491 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1492 { 1493 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1494 struct request *req; 1495 struct nvme_command cmd; 1496 1497 memset(&cmd, 0, sizeof(cmd)); 1498 cmd.delete_queue.opcode = opcode; 1499 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1500 1501 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1502 if (IS_ERR(req)) 1503 return PTR_ERR(req); 1504 1505 req->timeout = ADMIN_TIMEOUT; 1506 req->end_io_data = nvmeq; 1507 1508 blk_execute_rq_nowait(q, NULL, req, false, 1509 opcode == nvme_admin_delete_cq ? 1510 nvme_del_cq_end : nvme_del_queue_end); 1511 return 0; 1512 } 1513 1514 static void nvme_disable_io_queues(struct nvme_dev *dev) 1515 { 1516 int pass, queues = dev->online_queues - 1; 1517 unsigned long timeout; 1518 u8 opcode = nvme_admin_delete_sq; 1519 1520 for (pass = 0; pass < 2; pass++) { 1521 int sent = 0, i = queues; 1522 1523 reinit_completion(&dev->ioq_wait); 1524 retry: 1525 timeout = ADMIN_TIMEOUT; 1526 for (; i > 0; i--, sent++) 1527 if (nvme_delete_queue(dev->queues[i], opcode)) 1528 break; 1529 1530 while (sent--) { 1531 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1532 if (timeout == 0) 1533 return; 1534 if (i) 1535 goto retry; 1536 } 1537 opcode = nvme_admin_delete_cq; 1538 } 1539 } 1540 1541 /* 1542 * Return: error value if an error occurred setting up the queues or calling 1543 * Identify Device. 0 if these succeeded, even if adding some of the 1544 * namespaces failed. At the moment, these failures are silent. TBD which 1545 * failures should be reported. 1546 */ 1547 static int nvme_dev_add(struct nvme_dev *dev) 1548 { 1549 if (!dev->ctrl.tagset) { 1550 dev->tagset.ops = &nvme_mq_ops; 1551 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1552 dev->tagset.timeout = NVME_IO_TIMEOUT; 1553 dev->tagset.numa_node = dev_to_node(dev->dev); 1554 dev->tagset.queue_depth = 1555 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1556 dev->tagset.cmd_size = nvme_cmd_size(dev); 1557 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1558 dev->tagset.driver_data = dev; 1559 1560 if (blk_mq_alloc_tag_set(&dev->tagset)) 1561 return 0; 1562 dev->ctrl.tagset = &dev->tagset; 1563 } else { 1564 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1565 1566 /* Free previously allocated queues that are no longer usable */ 1567 nvme_free_queues(dev, dev->online_queues); 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int nvme_pci_enable(struct nvme_dev *dev) 1574 { 1575 u64 cap; 1576 int result = -ENOMEM; 1577 struct pci_dev *pdev = to_pci_dev(dev->dev); 1578 1579 if (pci_enable_device_mem(pdev)) 1580 return result; 1581 1582 pci_set_master(pdev); 1583 1584 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1585 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1586 goto disable; 1587 1588 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1589 result = -ENODEV; 1590 goto disable; 1591 } 1592 1593 /* 1594 * Some devices and/or platforms don't advertise or work with INTx 1595 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1596 * adjust this later. 1597 */ 1598 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1599 if (result < 0) 1600 return result; 1601 1602 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1603 1604 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1605 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1606 dev->dbs = dev->bar + 4096; 1607 1608 /* 1609 * Temporary fix for the Apple controller found in the MacBook8,1 and 1610 * some MacBook7,1 to avoid controller resets and data loss. 1611 */ 1612 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1613 dev->q_depth = 2; 1614 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1615 "queue depth=%u to work around controller resets\n", 1616 dev->q_depth); 1617 } 1618 1619 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2)) 1620 dev->cmb = nvme_map_cmb(dev); 1621 1622 pci_enable_pcie_error_reporting(pdev); 1623 pci_save_state(pdev); 1624 return 0; 1625 1626 disable: 1627 pci_disable_device(pdev); 1628 return result; 1629 } 1630 1631 static void nvme_dev_unmap(struct nvme_dev *dev) 1632 { 1633 if (dev->bar) 1634 iounmap(dev->bar); 1635 pci_release_mem_regions(to_pci_dev(dev->dev)); 1636 } 1637 1638 static void nvme_pci_disable(struct nvme_dev *dev) 1639 { 1640 struct pci_dev *pdev = to_pci_dev(dev->dev); 1641 1642 pci_free_irq_vectors(pdev); 1643 1644 if (pci_is_enabled(pdev)) { 1645 pci_disable_pcie_error_reporting(pdev); 1646 pci_disable_device(pdev); 1647 } 1648 } 1649 1650 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1651 { 1652 int i; 1653 u32 csts = -1; 1654 1655 del_timer_sync(&dev->watchdog_timer); 1656 1657 mutex_lock(&dev->shutdown_lock); 1658 if (pci_is_enabled(to_pci_dev(dev->dev))) { 1659 nvme_stop_queues(&dev->ctrl); 1660 csts = readl(dev->bar + NVME_REG_CSTS); 1661 } 1662 1663 for (i = dev->queue_count - 1; i > 0; i--) 1664 nvme_suspend_queue(dev->queues[i]); 1665 1666 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1667 /* A device might become IO incapable very soon during 1668 * probe, before the admin queue is configured. Thus, 1669 * queue_count can be 0 here. 1670 */ 1671 if (dev->queue_count) 1672 nvme_suspend_queue(dev->queues[0]); 1673 } else { 1674 nvme_disable_io_queues(dev); 1675 nvme_disable_admin_queue(dev, shutdown); 1676 } 1677 nvme_pci_disable(dev); 1678 1679 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1680 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1681 mutex_unlock(&dev->shutdown_lock); 1682 } 1683 1684 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1685 { 1686 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1687 PAGE_SIZE, PAGE_SIZE, 0); 1688 if (!dev->prp_page_pool) 1689 return -ENOMEM; 1690 1691 /* Optimisation for I/Os between 4k and 128k */ 1692 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1693 256, 256, 0); 1694 if (!dev->prp_small_pool) { 1695 dma_pool_destroy(dev->prp_page_pool); 1696 return -ENOMEM; 1697 } 1698 return 0; 1699 } 1700 1701 static void nvme_release_prp_pools(struct nvme_dev *dev) 1702 { 1703 dma_pool_destroy(dev->prp_page_pool); 1704 dma_pool_destroy(dev->prp_small_pool); 1705 } 1706 1707 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1708 { 1709 struct nvme_dev *dev = to_nvme_dev(ctrl); 1710 1711 put_device(dev->dev); 1712 if (dev->tagset.tags) 1713 blk_mq_free_tag_set(&dev->tagset); 1714 if (dev->ctrl.admin_q) 1715 blk_put_queue(dev->ctrl.admin_q); 1716 kfree(dev->queues); 1717 kfree(dev); 1718 } 1719 1720 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1721 { 1722 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1723 1724 kref_get(&dev->ctrl.kref); 1725 nvme_dev_disable(dev, false); 1726 if (!schedule_work(&dev->remove_work)) 1727 nvme_put_ctrl(&dev->ctrl); 1728 } 1729 1730 static void nvme_reset_work(struct work_struct *work) 1731 { 1732 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1733 int result = -ENODEV; 1734 1735 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1736 goto out; 1737 1738 /* 1739 * If we're called to reset a live controller first shut it down before 1740 * moving on. 1741 */ 1742 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1743 nvme_dev_disable(dev, false); 1744 1745 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1746 goto out; 1747 1748 result = nvme_pci_enable(dev); 1749 if (result) 1750 goto out; 1751 1752 result = nvme_configure_admin_queue(dev); 1753 if (result) 1754 goto out; 1755 1756 nvme_init_queue(dev->queues[0], 0); 1757 result = nvme_alloc_admin_tags(dev); 1758 if (result) 1759 goto out; 1760 1761 result = nvme_init_identify(&dev->ctrl); 1762 if (result) 1763 goto out; 1764 1765 result = nvme_setup_io_queues(dev); 1766 if (result) 1767 goto out; 1768 1769 /* 1770 * A controller that can not execute IO typically requires user 1771 * intervention to correct. For such degraded controllers, the driver 1772 * should not submit commands the user did not request, so skip 1773 * registering for asynchronous event notification on this condition. 1774 */ 1775 if (dev->online_queues > 1) 1776 nvme_queue_async_events(&dev->ctrl); 1777 1778 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1779 1780 /* 1781 * Keep the controller around but remove all namespaces if we don't have 1782 * any working I/O queue. 1783 */ 1784 if (dev->online_queues < 2) { 1785 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1786 nvme_kill_queues(&dev->ctrl); 1787 nvme_remove_namespaces(&dev->ctrl); 1788 } else { 1789 nvme_start_queues(&dev->ctrl); 1790 nvme_dev_add(dev); 1791 } 1792 1793 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1794 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1795 goto out; 1796 } 1797 1798 if (dev->online_queues > 1) 1799 nvme_queue_scan(&dev->ctrl); 1800 return; 1801 1802 out: 1803 nvme_remove_dead_ctrl(dev, result); 1804 } 1805 1806 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1807 { 1808 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1809 struct pci_dev *pdev = to_pci_dev(dev->dev); 1810 1811 nvme_kill_queues(&dev->ctrl); 1812 if (pci_get_drvdata(pdev)) 1813 device_release_driver(&pdev->dev); 1814 nvme_put_ctrl(&dev->ctrl); 1815 } 1816 1817 static int nvme_reset(struct nvme_dev *dev) 1818 { 1819 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1820 return -ENODEV; 1821 1822 if (!queue_work(nvme_workq, &dev->reset_work)) 1823 return -EBUSY; 1824 1825 flush_work(&dev->reset_work); 1826 return 0; 1827 } 1828 1829 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1830 { 1831 *val = readl(to_nvme_dev(ctrl)->bar + off); 1832 return 0; 1833 } 1834 1835 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1836 { 1837 writel(val, to_nvme_dev(ctrl)->bar + off); 1838 return 0; 1839 } 1840 1841 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1842 { 1843 *val = readq(to_nvme_dev(ctrl)->bar + off); 1844 return 0; 1845 } 1846 1847 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1848 { 1849 return nvme_reset(to_nvme_dev(ctrl)); 1850 } 1851 1852 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1853 .name = "pcie", 1854 .module = THIS_MODULE, 1855 .reg_read32 = nvme_pci_reg_read32, 1856 .reg_write32 = nvme_pci_reg_write32, 1857 .reg_read64 = nvme_pci_reg_read64, 1858 .reset_ctrl = nvme_pci_reset_ctrl, 1859 .free_ctrl = nvme_pci_free_ctrl, 1860 .submit_async_event = nvme_pci_submit_async_event, 1861 }; 1862 1863 static int nvme_dev_map(struct nvme_dev *dev) 1864 { 1865 struct pci_dev *pdev = to_pci_dev(dev->dev); 1866 1867 if (pci_request_mem_regions(pdev, "nvme")) 1868 return -ENODEV; 1869 1870 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1871 if (!dev->bar) 1872 goto release; 1873 1874 return 0; 1875 release: 1876 pci_release_mem_regions(pdev); 1877 return -ENODEV; 1878 } 1879 1880 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1881 { 1882 int node, result = -ENOMEM; 1883 struct nvme_dev *dev; 1884 1885 node = dev_to_node(&pdev->dev); 1886 if (node == NUMA_NO_NODE) 1887 set_dev_node(&pdev->dev, first_memory_node); 1888 1889 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 1890 if (!dev) 1891 return -ENOMEM; 1892 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 1893 GFP_KERNEL, node); 1894 if (!dev->queues) 1895 goto free; 1896 1897 dev->dev = get_device(&pdev->dev); 1898 pci_set_drvdata(pdev, dev); 1899 1900 result = nvme_dev_map(dev); 1901 if (result) 1902 goto free; 1903 1904 INIT_WORK(&dev->reset_work, nvme_reset_work); 1905 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 1906 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 1907 (unsigned long)dev); 1908 mutex_init(&dev->shutdown_lock); 1909 init_completion(&dev->ioq_wait); 1910 1911 result = nvme_setup_prp_pools(dev); 1912 if (result) 1913 goto put_pci; 1914 1915 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 1916 id->driver_data); 1917 if (result) 1918 goto release_pools; 1919 1920 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 1921 1922 queue_work(nvme_workq, &dev->reset_work); 1923 return 0; 1924 1925 release_pools: 1926 nvme_release_prp_pools(dev); 1927 put_pci: 1928 put_device(dev->dev); 1929 nvme_dev_unmap(dev); 1930 free: 1931 kfree(dev->queues); 1932 kfree(dev); 1933 return result; 1934 } 1935 1936 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 1937 { 1938 struct nvme_dev *dev = pci_get_drvdata(pdev); 1939 1940 if (prepare) 1941 nvme_dev_disable(dev, false); 1942 else 1943 queue_work(nvme_workq, &dev->reset_work); 1944 } 1945 1946 static void nvme_shutdown(struct pci_dev *pdev) 1947 { 1948 struct nvme_dev *dev = pci_get_drvdata(pdev); 1949 nvme_dev_disable(dev, true); 1950 } 1951 1952 /* 1953 * The driver's remove may be called on a device in a partially initialized 1954 * state. This function must not have any dependencies on the device state in 1955 * order to proceed. 1956 */ 1957 static void nvme_remove(struct pci_dev *pdev) 1958 { 1959 struct nvme_dev *dev = pci_get_drvdata(pdev); 1960 1961 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1962 1963 pci_set_drvdata(pdev, NULL); 1964 1965 if (!pci_device_is_present(pdev)) 1966 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 1967 1968 flush_work(&dev->reset_work); 1969 nvme_uninit_ctrl(&dev->ctrl); 1970 nvme_dev_disable(dev, true); 1971 nvme_dev_remove_admin(dev); 1972 nvme_free_queues(dev, 0); 1973 nvme_release_cmb(dev); 1974 nvme_release_prp_pools(dev); 1975 nvme_dev_unmap(dev); 1976 nvme_put_ctrl(&dev->ctrl); 1977 } 1978 1979 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 1980 { 1981 int ret = 0; 1982 1983 if (numvfs == 0) { 1984 if (pci_vfs_assigned(pdev)) { 1985 dev_warn(&pdev->dev, 1986 "Cannot disable SR-IOV VFs while assigned\n"); 1987 return -EPERM; 1988 } 1989 pci_disable_sriov(pdev); 1990 return 0; 1991 } 1992 1993 ret = pci_enable_sriov(pdev, numvfs); 1994 return ret ? ret : numvfs; 1995 } 1996 1997 #ifdef CONFIG_PM_SLEEP 1998 static int nvme_suspend(struct device *dev) 1999 { 2000 struct pci_dev *pdev = to_pci_dev(dev); 2001 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2002 2003 nvme_dev_disable(ndev, true); 2004 return 0; 2005 } 2006 2007 static int nvme_resume(struct device *dev) 2008 { 2009 struct pci_dev *pdev = to_pci_dev(dev); 2010 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2011 2012 queue_work(nvme_workq, &ndev->reset_work); 2013 return 0; 2014 } 2015 #endif 2016 2017 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2018 2019 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2020 pci_channel_state_t state) 2021 { 2022 struct nvme_dev *dev = pci_get_drvdata(pdev); 2023 2024 /* 2025 * A frozen channel requires a reset. When detected, this method will 2026 * shutdown the controller to quiesce. The controller will be restarted 2027 * after the slot reset through driver's slot_reset callback. 2028 */ 2029 switch (state) { 2030 case pci_channel_io_normal: 2031 return PCI_ERS_RESULT_CAN_RECOVER; 2032 case pci_channel_io_frozen: 2033 dev_warn(dev->ctrl.device, 2034 "frozen state error detected, reset controller\n"); 2035 nvme_dev_disable(dev, false); 2036 return PCI_ERS_RESULT_NEED_RESET; 2037 case pci_channel_io_perm_failure: 2038 dev_warn(dev->ctrl.device, 2039 "failure state error detected, request disconnect\n"); 2040 return PCI_ERS_RESULT_DISCONNECT; 2041 } 2042 return PCI_ERS_RESULT_NEED_RESET; 2043 } 2044 2045 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2046 { 2047 struct nvme_dev *dev = pci_get_drvdata(pdev); 2048 2049 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2050 pci_restore_state(pdev); 2051 queue_work(nvme_workq, &dev->reset_work); 2052 return PCI_ERS_RESULT_RECOVERED; 2053 } 2054 2055 static void nvme_error_resume(struct pci_dev *pdev) 2056 { 2057 pci_cleanup_aer_uncorrect_error_status(pdev); 2058 } 2059 2060 static const struct pci_error_handlers nvme_err_handler = { 2061 .error_detected = nvme_error_detected, 2062 .slot_reset = nvme_slot_reset, 2063 .resume = nvme_error_resume, 2064 .reset_notify = nvme_reset_notify, 2065 }; 2066 2067 /* Move to pci_ids.h later */ 2068 #define PCI_CLASS_STORAGE_EXPRESS 0x010802 2069 2070 static const struct pci_device_id nvme_id_table[] = { 2071 { PCI_VDEVICE(INTEL, 0x0953), 2072 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2073 NVME_QUIRK_DISCARD_ZEROES, }, 2074 { PCI_VDEVICE(INTEL, 0x0a53), 2075 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2076 NVME_QUIRK_DISCARD_ZEROES, }, 2077 { PCI_VDEVICE(INTEL, 0x0a54), 2078 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2079 NVME_QUIRK_DISCARD_ZEROES, }, 2080 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2081 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2082 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2083 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2084 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2085 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2086 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2087 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2088 { 0, } 2089 }; 2090 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2091 2092 static struct pci_driver nvme_driver = { 2093 .name = "nvme", 2094 .id_table = nvme_id_table, 2095 .probe = nvme_probe, 2096 .remove = nvme_remove, 2097 .shutdown = nvme_shutdown, 2098 .driver = { 2099 .pm = &nvme_dev_pm_ops, 2100 }, 2101 .sriov_configure = nvme_pci_sriov_configure, 2102 .err_handler = &nvme_err_handler, 2103 }; 2104 2105 static int __init nvme_init(void) 2106 { 2107 int result; 2108 2109 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2110 if (!nvme_workq) 2111 return -ENOMEM; 2112 2113 result = pci_register_driver(&nvme_driver); 2114 if (result) 2115 destroy_workqueue(nvme_workq); 2116 return result; 2117 } 2118 2119 static void __exit nvme_exit(void) 2120 { 2121 pci_unregister_driver(&nvme_driver); 2122 destroy_workqueue(nvme_workq); 2123 _nvme_check_size(); 2124 } 2125 2126 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2127 MODULE_LICENSE("GPL"); 2128 MODULE_VERSION("1.0"); 2129 module_init(nvme_init); 2130 module_exit(nvme_exit); 2131