xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 6dfcd296)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 
47 #include "nvme.h"
48 
49 #define NVME_Q_DEPTH		1024
50 #define NVME_AQ_DEPTH		256
51 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
52 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
53 
54 /*
55  * We handle AEN commands ourselves and don't even let the
56  * block layer know about them.
57  */
58 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
59 
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62 
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66 
67 static struct workqueue_struct *nvme_workq;
68 
69 struct nvme_dev;
70 struct nvme_queue;
71 
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75 
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80 	struct nvme_queue **queues;
81 	struct blk_mq_tag_set tagset;
82 	struct blk_mq_tag_set admin_tagset;
83 	u32 __iomem *dbs;
84 	struct device *dev;
85 	struct dma_pool *prp_page_pool;
86 	struct dma_pool *prp_small_pool;
87 	unsigned queue_count;
88 	unsigned online_queues;
89 	unsigned max_qid;
90 	int q_depth;
91 	u32 db_stride;
92 	void __iomem *bar;
93 	struct work_struct reset_work;
94 	struct work_struct remove_work;
95 	struct timer_list watchdog_timer;
96 	struct mutex shutdown_lock;
97 	bool subsystem;
98 	void __iomem *cmb;
99 	dma_addr_t cmb_dma_addr;
100 	u64 cmb_size;
101 	u32 cmbsz;
102 	struct nvme_ctrl ctrl;
103 	struct completion ioq_wait;
104 };
105 
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108 	return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110 
111 /*
112  * An NVM Express queue.  Each device has at least two (one for admin
113  * commands and one for I/O commands).
114  */
115 struct nvme_queue {
116 	struct device *q_dmadev;
117 	struct nvme_dev *dev;
118 	char irqname[24];	/* nvme4294967295-65535\0 */
119 	spinlock_t q_lock;
120 	struct nvme_command *sq_cmds;
121 	struct nvme_command __iomem *sq_cmds_io;
122 	volatile struct nvme_completion *cqes;
123 	struct blk_mq_tags **tags;
124 	dma_addr_t sq_dma_addr;
125 	dma_addr_t cq_dma_addr;
126 	u32 __iomem *q_db;
127 	u16 q_depth;
128 	s16 cq_vector;
129 	u16 sq_tail;
130 	u16 cq_head;
131 	u16 qid;
132 	u8 cq_phase;
133 	u8 cqe_seen;
134 };
135 
136 /*
137  * The nvme_iod describes the data in an I/O, including the list of PRP
138  * entries.  You can't see it in this data structure because C doesn't let
139  * me express that.  Use nvme_init_iod to ensure there's enough space
140  * allocated to store the PRP list.
141  */
142 struct nvme_iod {
143 	struct nvme_queue *nvmeq;
144 	int aborted;
145 	int npages;		/* In the PRP list. 0 means small pool in use */
146 	int nents;		/* Used in scatterlist */
147 	int length;		/* Of data, in bytes */
148 	dma_addr_t first_dma;
149 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150 	struct scatterlist *sg;
151 	struct scatterlist inline_sg[0];
152 };
153 
154 /*
155  * Check we didin't inadvertently grow the command struct
156  */
157 static inline void _nvme_check_size(void)
158 {
159 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172 
173 /*
174  * Max size of iod being embedded in the request payload
175  */
176 #define NVME_INT_PAGES		2
177 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
178 
179 /*
180  * Will slightly overestimate the number of pages needed.  This is OK
181  * as it only leads to a small amount of wasted memory for the lifetime of
182  * the I/O.
183  */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 				      dev->ctrl.page_size);
188 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190 
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 		unsigned int size, unsigned int nseg)
193 {
194 	return sizeof(__le64 *) * nvme_npages(size, dev) +
195 			sizeof(struct scatterlist) * nseg;
196 }
197 
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200 	return sizeof(struct nvme_iod) +
201 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203 
204 static int nvmeq_irq(struct nvme_queue *nvmeq)
205 {
206 	return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
207 }
208 
209 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
210 				unsigned int hctx_idx)
211 {
212 	struct nvme_dev *dev = data;
213 	struct nvme_queue *nvmeq = dev->queues[0];
214 
215 	WARN_ON(hctx_idx != 0);
216 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
217 	WARN_ON(nvmeq->tags);
218 
219 	hctx->driver_data = nvmeq;
220 	nvmeq->tags = &dev->admin_tagset.tags[0];
221 	return 0;
222 }
223 
224 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
225 {
226 	struct nvme_queue *nvmeq = hctx->driver_data;
227 
228 	nvmeq->tags = NULL;
229 }
230 
231 static int nvme_admin_init_request(void *data, struct request *req,
232 				unsigned int hctx_idx, unsigned int rq_idx,
233 				unsigned int numa_node)
234 {
235 	struct nvme_dev *dev = data;
236 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
237 	struct nvme_queue *nvmeq = dev->queues[0];
238 
239 	BUG_ON(!nvmeq);
240 	iod->nvmeq = nvmeq;
241 	return 0;
242 }
243 
244 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
245 			  unsigned int hctx_idx)
246 {
247 	struct nvme_dev *dev = data;
248 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
249 
250 	if (!nvmeq->tags)
251 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
252 
253 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
254 	hctx->driver_data = nvmeq;
255 	return 0;
256 }
257 
258 static int nvme_init_request(void *data, struct request *req,
259 				unsigned int hctx_idx, unsigned int rq_idx,
260 				unsigned int numa_node)
261 {
262 	struct nvme_dev *dev = data;
263 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
264 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
265 
266 	BUG_ON(!nvmeq);
267 	iod->nvmeq = nvmeq;
268 	return 0;
269 }
270 
271 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
272 {
273 	struct nvme_dev *dev = set->driver_data;
274 
275 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
276 }
277 
278 /**
279  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
280  * @nvmeq: The queue to use
281  * @cmd: The command to send
282  *
283  * Safe to use from interrupt context
284  */
285 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
286 						struct nvme_command *cmd)
287 {
288 	u16 tail = nvmeq->sq_tail;
289 
290 	if (nvmeq->sq_cmds_io)
291 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
292 	else
293 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
294 
295 	if (++tail == nvmeq->q_depth)
296 		tail = 0;
297 	writel(tail, nvmeq->q_db);
298 	nvmeq->sq_tail = tail;
299 }
300 
301 static __le64 **iod_list(struct request *req)
302 {
303 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
304 	return (__le64 **)(iod->sg + req->nr_phys_segments);
305 }
306 
307 static int nvme_init_iod(struct request *rq, unsigned size,
308 		struct nvme_dev *dev)
309 {
310 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
311 	int nseg = rq->nr_phys_segments;
312 
313 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
314 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
315 		if (!iod->sg)
316 			return BLK_MQ_RQ_QUEUE_BUSY;
317 	} else {
318 		iod->sg = iod->inline_sg;
319 	}
320 
321 	iod->aborted = 0;
322 	iod->npages = -1;
323 	iod->nents = 0;
324 	iod->length = size;
325 
326 	if (!(rq->cmd_flags & REQ_DONTPREP)) {
327 		rq->retries = 0;
328 		rq->cmd_flags |= REQ_DONTPREP;
329 	}
330 	return 0;
331 }
332 
333 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
334 {
335 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
336 	const int last_prp = dev->ctrl.page_size / 8 - 1;
337 	int i;
338 	__le64 **list = iod_list(req);
339 	dma_addr_t prp_dma = iod->first_dma;
340 
341 	nvme_cleanup_cmd(req);
342 
343 	if (iod->npages == 0)
344 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
345 	for (i = 0; i < iod->npages; i++) {
346 		__le64 *prp_list = list[i];
347 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
348 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
349 		prp_dma = next_prp_dma;
350 	}
351 
352 	if (iod->sg != iod->inline_sg)
353 		kfree(iod->sg);
354 }
355 
356 #ifdef CONFIG_BLK_DEV_INTEGRITY
357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
358 {
359 	if (be32_to_cpu(pi->ref_tag) == v)
360 		pi->ref_tag = cpu_to_be32(p);
361 }
362 
363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
364 {
365 	if (be32_to_cpu(pi->ref_tag) == p)
366 		pi->ref_tag = cpu_to_be32(v);
367 }
368 
369 /**
370  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
371  *
372  * The virtual start sector is the one that was originally submitted by the
373  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
374  * start sector may be different. Remap protection information to match the
375  * physical LBA on writes, and back to the original seed on reads.
376  *
377  * Type 0 and 3 do not have a ref tag, so no remapping required.
378  */
379 static void nvme_dif_remap(struct request *req,
380 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
381 {
382 	struct nvme_ns *ns = req->rq_disk->private_data;
383 	struct bio_integrity_payload *bip;
384 	struct t10_pi_tuple *pi;
385 	void *p, *pmap;
386 	u32 i, nlb, ts, phys, virt;
387 
388 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
389 		return;
390 
391 	bip = bio_integrity(req->bio);
392 	if (!bip)
393 		return;
394 
395 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
396 
397 	p = pmap;
398 	virt = bip_get_seed(bip);
399 	phys = nvme_block_nr(ns, blk_rq_pos(req));
400 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
401 	ts = ns->disk->queue->integrity.tuple_size;
402 
403 	for (i = 0; i < nlb; i++, virt++, phys++) {
404 		pi = (struct t10_pi_tuple *)p;
405 		dif_swap(phys, virt, pi);
406 		p += ts;
407 	}
408 	kunmap_atomic(pmap);
409 }
410 #else /* CONFIG_BLK_DEV_INTEGRITY */
411 static void nvme_dif_remap(struct request *req,
412 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
413 {
414 }
415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
416 {
417 }
418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
419 {
420 }
421 #endif
422 
423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
424 		int total_len)
425 {
426 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 	struct dma_pool *pool;
428 	int length = total_len;
429 	struct scatterlist *sg = iod->sg;
430 	int dma_len = sg_dma_len(sg);
431 	u64 dma_addr = sg_dma_address(sg);
432 	u32 page_size = dev->ctrl.page_size;
433 	int offset = dma_addr & (page_size - 1);
434 	__le64 *prp_list;
435 	__le64 **list = iod_list(req);
436 	dma_addr_t prp_dma;
437 	int nprps, i;
438 
439 	length -= (page_size - offset);
440 	if (length <= 0)
441 		return true;
442 
443 	dma_len -= (page_size - offset);
444 	if (dma_len) {
445 		dma_addr += (page_size - offset);
446 	} else {
447 		sg = sg_next(sg);
448 		dma_addr = sg_dma_address(sg);
449 		dma_len = sg_dma_len(sg);
450 	}
451 
452 	if (length <= page_size) {
453 		iod->first_dma = dma_addr;
454 		return true;
455 	}
456 
457 	nprps = DIV_ROUND_UP(length, page_size);
458 	if (nprps <= (256 / 8)) {
459 		pool = dev->prp_small_pool;
460 		iod->npages = 0;
461 	} else {
462 		pool = dev->prp_page_pool;
463 		iod->npages = 1;
464 	}
465 
466 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 	if (!prp_list) {
468 		iod->first_dma = dma_addr;
469 		iod->npages = -1;
470 		return false;
471 	}
472 	list[0] = prp_list;
473 	iod->first_dma = prp_dma;
474 	i = 0;
475 	for (;;) {
476 		if (i == page_size >> 3) {
477 			__le64 *old_prp_list = prp_list;
478 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479 			if (!prp_list)
480 				return false;
481 			list[iod->npages++] = prp_list;
482 			prp_list[0] = old_prp_list[i - 1];
483 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 			i = 1;
485 		}
486 		prp_list[i++] = cpu_to_le64(dma_addr);
487 		dma_len -= page_size;
488 		dma_addr += page_size;
489 		length -= page_size;
490 		if (length <= 0)
491 			break;
492 		if (dma_len > 0)
493 			continue;
494 		BUG_ON(dma_len < 0);
495 		sg = sg_next(sg);
496 		dma_addr = sg_dma_address(sg);
497 		dma_len = sg_dma_len(sg);
498 	}
499 
500 	return true;
501 }
502 
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504 		unsigned size, struct nvme_command *cmnd)
505 {
506 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 	struct request_queue *q = req->q;
508 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
511 
512 	sg_init_table(iod->sg, req->nr_phys_segments);
513 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 	if (!iod->nents)
515 		goto out;
516 
517 	ret = BLK_MQ_RQ_QUEUE_BUSY;
518 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519 				DMA_ATTR_NO_WARN))
520 		goto out;
521 
522 	if (!nvme_setup_prps(dev, req, size))
523 		goto out_unmap;
524 
525 	ret = BLK_MQ_RQ_QUEUE_ERROR;
526 	if (blk_integrity_rq(req)) {
527 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528 			goto out_unmap;
529 
530 		sg_init_table(&iod->meta_sg, 1);
531 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
532 			goto out_unmap;
533 
534 		if (rq_data_dir(req))
535 			nvme_dif_remap(req, nvme_dif_prep);
536 
537 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
538 			goto out_unmap;
539 	}
540 
541 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
543 	if (blk_integrity_rq(req))
544 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
545 	return BLK_MQ_RQ_QUEUE_OK;
546 
547 out_unmap:
548 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549 out:
550 	return ret;
551 }
552 
553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
554 {
555 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
556 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
557 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
558 
559 	if (iod->nents) {
560 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561 		if (blk_integrity_rq(req)) {
562 			if (!rq_data_dir(req))
563 				nvme_dif_remap(req, nvme_dif_complete);
564 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
565 		}
566 	}
567 
568 	nvme_free_iod(dev, req);
569 }
570 
571 /*
572  * NOTE: ns is NULL when called on the admin queue.
573  */
574 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
575 			 const struct blk_mq_queue_data *bd)
576 {
577 	struct nvme_ns *ns = hctx->queue->queuedata;
578 	struct nvme_queue *nvmeq = hctx->driver_data;
579 	struct nvme_dev *dev = nvmeq->dev;
580 	struct request *req = bd->rq;
581 	struct nvme_command cmnd;
582 	unsigned map_len;
583 	int ret = BLK_MQ_RQ_QUEUE_OK;
584 
585 	/*
586 	 * If formated with metadata, require the block layer provide a buffer
587 	 * unless this namespace is formated such that the metadata can be
588 	 * stripped/generated by the controller with PRACT=1.
589 	 */
590 	if (ns && ns->ms && !blk_integrity_rq(req)) {
591 		if (!(ns->pi_type && ns->ms == 8) &&
592 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
593 			blk_mq_end_request(req, -EFAULT);
594 			return BLK_MQ_RQ_QUEUE_OK;
595 		}
596 	}
597 
598 	map_len = nvme_map_len(req);
599 	ret = nvme_init_iod(req, map_len, dev);
600 	if (ret)
601 		return ret;
602 
603 	ret = nvme_setup_cmd(ns, req, &cmnd);
604 	if (ret)
605 		goto out;
606 
607 	if (req->nr_phys_segments)
608 		ret = nvme_map_data(dev, req, map_len, &cmnd);
609 
610 	if (ret)
611 		goto out;
612 
613 	cmnd.common.command_id = req->tag;
614 	blk_mq_start_request(req);
615 
616 	spin_lock_irq(&nvmeq->q_lock);
617 	if (unlikely(nvmeq->cq_vector < 0)) {
618 		if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
619 			ret = BLK_MQ_RQ_QUEUE_BUSY;
620 		else
621 			ret = BLK_MQ_RQ_QUEUE_ERROR;
622 		spin_unlock_irq(&nvmeq->q_lock);
623 		goto out;
624 	}
625 	__nvme_submit_cmd(nvmeq, &cmnd);
626 	nvme_process_cq(nvmeq);
627 	spin_unlock_irq(&nvmeq->q_lock);
628 	return BLK_MQ_RQ_QUEUE_OK;
629 out:
630 	nvme_free_iod(dev, req);
631 	return ret;
632 }
633 
634 static void nvme_complete_rq(struct request *req)
635 {
636 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
637 	struct nvme_dev *dev = iod->nvmeq->dev;
638 	int error = 0;
639 
640 	nvme_unmap_data(dev, req);
641 
642 	if (unlikely(req->errors)) {
643 		if (nvme_req_needs_retry(req, req->errors)) {
644 			req->retries++;
645 			nvme_requeue_req(req);
646 			return;
647 		}
648 
649 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
650 			error = req->errors;
651 		else
652 			error = nvme_error_status(req->errors);
653 	}
654 
655 	if (unlikely(iod->aborted)) {
656 		dev_warn(dev->ctrl.device,
657 			"completing aborted command with status: %04x\n",
658 			req->errors);
659 	}
660 
661 	blk_mq_end_request(req, error);
662 }
663 
664 /* We read the CQE phase first to check if the rest of the entry is valid */
665 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
666 		u16 phase)
667 {
668 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
669 }
670 
671 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
672 {
673 	u16 head, phase;
674 
675 	head = nvmeq->cq_head;
676 	phase = nvmeq->cq_phase;
677 
678 	while (nvme_cqe_valid(nvmeq, head, phase)) {
679 		struct nvme_completion cqe = nvmeq->cqes[head];
680 		struct request *req;
681 
682 		if (++head == nvmeq->q_depth) {
683 			head = 0;
684 			phase = !phase;
685 		}
686 
687 		if (tag && *tag == cqe.command_id)
688 			*tag = -1;
689 
690 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
691 			dev_warn(nvmeq->dev->ctrl.device,
692 				"invalid id %d completed on queue %d\n",
693 				cqe.command_id, le16_to_cpu(cqe.sq_id));
694 			continue;
695 		}
696 
697 		/*
698 		 * AEN requests are special as they don't time out and can
699 		 * survive any kind of queue freeze and often don't respond to
700 		 * aborts.  We don't even bother to allocate a struct request
701 		 * for them but rather special case them here.
702 		 */
703 		if (unlikely(nvmeq->qid == 0 &&
704 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
705 			nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
706 			continue;
707 		}
708 
709 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
710 		if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
711 			memcpy(req->special, &cqe, sizeof(cqe));
712 		blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
713 
714 	}
715 
716 	/* If the controller ignores the cq head doorbell and continuously
717 	 * writes to the queue, it is theoretically possible to wrap around
718 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
719 	 * requires that 0.1% of your interrupts are handled, so this isn't
720 	 * a big problem.
721 	 */
722 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
723 		return;
724 
725 	if (likely(nvmeq->cq_vector >= 0))
726 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
727 	nvmeq->cq_head = head;
728 	nvmeq->cq_phase = phase;
729 
730 	nvmeq->cqe_seen = 1;
731 }
732 
733 static void nvme_process_cq(struct nvme_queue *nvmeq)
734 {
735 	__nvme_process_cq(nvmeq, NULL);
736 }
737 
738 static irqreturn_t nvme_irq(int irq, void *data)
739 {
740 	irqreturn_t result;
741 	struct nvme_queue *nvmeq = data;
742 	spin_lock(&nvmeq->q_lock);
743 	nvme_process_cq(nvmeq);
744 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
745 	nvmeq->cqe_seen = 0;
746 	spin_unlock(&nvmeq->q_lock);
747 	return result;
748 }
749 
750 static irqreturn_t nvme_irq_check(int irq, void *data)
751 {
752 	struct nvme_queue *nvmeq = data;
753 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
754 		return IRQ_WAKE_THREAD;
755 	return IRQ_NONE;
756 }
757 
758 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
759 {
760 	struct nvme_queue *nvmeq = hctx->driver_data;
761 
762 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
763 		spin_lock_irq(&nvmeq->q_lock);
764 		__nvme_process_cq(nvmeq, &tag);
765 		spin_unlock_irq(&nvmeq->q_lock);
766 
767 		if (tag == -1)
768 			return 1;
769 	}
770 
771 	return 0;
772 }
773 
774 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
775 {
776 	struct nvme_dev *dev = to_nvme_dev(ctrl);
777 	struct nvme_queue *nvmeq = dev->queues[0];
778 	struct nvme_command c;
779 
780 	memset(&c, 0, sizeof(c));
781 	c.common.opcode = nvme_admin_async_event;
782 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
783 
784 	spin_lock_irq(&nvmeq->q_lock);
785 	__nvme_submit_cmd(nvmeq, &c);
786 	spin_unlock_irq(&nvmeq->q_lock);
787 }
788 
789 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
790 {
791 	struct nvme_command c;
792 
793 	memset(&c, 0, sizeof(c));
794 	c.delete_queue.opcode = opcode;
795 	c.delete_queue.qid = cpu_to_le16(id);
796 
797 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
798 }
799 
800 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
801 						struct nvme_queue *nvmeq)
802 {
803 	struct nvme_command c;
804 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
805 
806 	/*
807 	 * Note: we (ab)use the fact the the prp fields survive if no data
808 	 * is attached to the request.
809 	 */
810 	memset(&c, 0, sizeof(c));
811 	c.create_cq.opcode = nvme_admin_create_cq;
812 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
813 	c.create_cq.cqid = cpu_to_le16(qid);
814 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
815 	c.create_cq.cq_flags = cpu_to_le16(flags);
816 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
817 
818 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
819 }
820 
821 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
822 						struct nvme_queue *nvmeq)
823 {
824 	struct nvme_command c;
825 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
826 
827 	/*
828 	 * Note: we (ab)use the fact the the prp fields survive if no data
829 	 * is attached to the request.
830 	 */
831 	memset(&c, 0, sizeof(c));
832 	c.create_sq.opcode = nvme_admin_create_sq;
833 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
834 	c.create_sq.sqid = cpu_to_le16(qid);
835 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
836 	c.create_sq.sq_flags = cpu_to_le16(flags);
837 	c.create_sq.cqid = cpu_to_le16(qid);
838 
839 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
840 }
841 
842 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
843 {
844 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
845 }
846 
847 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
848 {
849 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
850 }
851 
852 static void abort_endio(struct request *req, int error)
853 {
854 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
855 	struct nvme_queue *nvmeq = iod->nvmeq;
856 	u16 status = req->errors;
857 
858 	dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
859 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
860 	blk_mq_free_request(req);
861 }
862 
863 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
864 {
865 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
866 	struct nvme_queue *nvmeq = iod->nvmeq;
867 	struct nvme_dev *dev = nvmeq->dev;
868 	struct request *abort_req;
869 	struct nvme_command cmd;
870 
871 	/*
872 	 * Shutdown immediately if controller times out while starting. The
873 	 * reset work will see the pci device disabled when it gets the forced
874 	 * cancellation error. All outstanding requests are completed on
875 	 * shutdown, so we return BLK_EH_HANDLED.
876 	 */
877 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
878 		dev_warn(dev->ctrl.device,
879 			 "I/O %d QID %d timeout, disable controller\n",
880 			 req->tag, nvmeq->qid);
881 		nvme_dev_disable(dev, false);
882 		req->errors = NVME_SC_CANCELLED;
883 		return BLK_EH_HANDLED;
884 	}
885 
886 	/*
887  	 * Shutdown the controller immediately and schedule a reset if the
888  	 * command was already aborted once before and still hasn't been
889  	 * returned to the driver, or if this is the admin queue.
890 	 */
891 	if (!nvmeq->qid || iod->aborted) {
892 		dev_warn(dev->ctrl.device,
893 			 "I/O %d QID %d timeout, reset controller\n",
894 			 req->tag, nvmeq->qid);
895 		nvme_dev_disable(dev, false);
896 		queue_work(nvme_workq, &dev->reset_work);
897 
898 		/*
899 		 * Mark the request as handled, since the inline shutdown
900 		 * forces all outstanding requests to complete.
901 		 */
902 		req->errors = NVME_SC_CANCELLED;
903 		return BLK_EH_HANDLED;
904 	}
905 
906 	iod->aborted = 1;
907 
908 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
909 		atomic_inc(&dev->ctrl.abort_limit);
910 		return BLK_EH_RESET_TIMER;
911 	}
912 
913 	memset(&cmd, 0, sizeof(cmd));
914 	cmd.abort.opcode = nvme_admin_abort_cmd;
915 	cmd.abort.cid = req->tag;
916 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
917 
918 	dev_warn(nvmeq->dev->ctrl.device,
919 		"I/O %d QID %d timeout, aborting\n",
920 		 req->tag, nvmeq->qid);
921 
922 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
923 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
924 	if (IS_ERR(abort_req)) {
925 		atomic_inc(&dev->ctrl.abort_limit);
926 		return BLK_EH_RESET_TIMER;
927 	}
928 
929 	abort_req->timeout = ADMIN_TIMEOUT;
930 	abort_req->end_io_data = NULL;
931 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
932 
933 	/*
934 	 * The aborted req will be completed on receiving the abort req.
935 	 * We enable the timer again. If hit twice, it'll cause a device reset,
936 	 * as the device then is in a faulty state.
937 	 */
938 	return BLK_EH_RESET_TIMER;
939 }
940 
941 static void nvme_free_queue(struct nvme_queue *nvmeq)
942 {
943 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
944 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
945 	if (nvmeq->sq_cmds)
946 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
947 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
948 	kfree(nvmeq);
949 }
950 
951 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
952 {
953 	int i;
954 
955 	for (i = dev->queue_count - 1; i >= lowest; i--) {
956 		struct nvme_queue *nvmeq = dev->queues[i];
957 		dev->queue_count--;
958 		dev->queues[i] = NULL;
959 		nvme_free_queue(nvmeq);
960 	}
961 }
962 
963 /**
964  * nvme_suspend_queue - put queue into suspended state
965  * @nvmeq - queue to suspend
966  */
967 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
968 {
969 	int vector;
970 
971 	spin_lock_irq(&nvmeq->q_lock);
972 	if (nvmeq->cq_vector == -1) {
973 		spin_unlock_irq(&nvmeq->q_lock);
974 		return 1;
975 	}
976 	vector = nvmeq_irq(nvmeq);
977 	nvmeq->dev->online_queues--;
978 	nvmeq->cq_vector = -1;
979 	spin_unlock_irq(&nvmeq->q_lock);
980 
981 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
982 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
983 
984 	free_irq(vector, nvmeq);
985 
986 	return 0;
987 }
988 
989 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
990 {
991 	struct nvme_queue *nvmeq = dev->queues[0];
992 
993 	if (!nvmeq)
994 		return;
995 	if (nvme_suspend_queue(nvmeq))
996 		return;
997 
998 	if (shutdown)
999 		nvme_shutdown_ctrl(&dev->ctrl);
1000 	else
1001 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1002 						dev->bar + NVME_REG_CAP));
1003 
1004 	spin_lock_irq(&nvmeq->q_lock);
1005 	nvme_process_cq(nvmeq);
1006 	spin_unlock_irq(&nvmeq->q_lock);
1007 }
1008 
1009 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1010 				int entry_size)
1011 {
1012 	int q_depth = dev->q_depth;
1013 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1014 					  dev->ctrl.page_size);
1015 
1016 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1017 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1018 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1019 		q_depth = div_u64(mem_per_q, entry_size);
1020 
1021 		/*
1022 		 * Ensure the reduced q_depth is above some threshold where it
1023 		 * would be better to map queues in system memory with the
1024 		 * original depth
1025 		 */
1026 		if (q_depth < 64)
1027 			return -ENOMEM;
1028 	}
1029 
1030 	return q_depth;
1031 }
1032 
1033 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1034 				int qid, int depth)
1035 {
1036 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1037 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1038 						      dev->ctrl.page_size);
1039 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1040 		nvmeq->sq_cmds_io = dev->cmb + offset;
1041 	} else {
1042 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1043 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1044 		if (!nvmeq->sq_cmds)
1045 			return -ENOMEM;
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1052 							int depth)
1053 {
1054 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1055 	if (!nvmeq)
1056 		return NULL;
1057 
1058 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1059 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1060 	if (!nvmeq->cqes)
1061 		goto free_nvmeq;
1062 
1063 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1064 		goto free_cqdma;
1065 
1066 	nvmeq->q_dmadev = dev->dev;
1067 	nvmeq->dev = dev;
1068 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1069 			dev->ctrl.instance, qid);
1070 	spin_lock_init(&nvmeq->q_lock);
1071 	nvmeq->cq_head = 0;
1072 	nvmeq->cq_phase = 1;
1073 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1074 	nvmeq->q_depth = depth;
1075 	nvmeq->qid = qid;
1076 	nvmeq->cq_vector = -1;
1077 	dev->queues[qid] = nvmeq;
1078 	dev->queue_count++;
1079 
1080 	return nvmeq;
1081 
1082  free_cqdma:
1083 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1084 							nvmeq->cq_dma_addr);
1085  free_nvmeq:
1086 	kfree(nvmeq);
1087 	return NULL;
1088 }
1089 
1090 static int queue_request_irq(struct nvme_queue *nvmeq)
1091 {
1092 	if (use_threaded_interrupts)
1093 		return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1094 				nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1095 	else
1096 		return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1097 				nvmeq->irqname, nvmeq);
1098 }
1099 
1100 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1101 {
1102 	struct nvme_dev *dev = nvmeq->dev;
1103 
1104 	spin_lock_irq(&nvmeq->q_lock);
1105 	nvmeq->sq_tail = 0;
1106 	nvmeq->cq_head = 0;
1107 	nvmeq->cq_phase = 1;
1108 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1109 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1110 	dev->online_queues++;
1111 	spin_unlock_irq(&nvmeq->q_lock);
1112 }
1113 
1114 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1115 {
1116 	struct nvme_dev *dev = nvmeq->dev;
1117 	int result;
1118 
1119 	nvmeq->cq_vector = qid - 1;
1120 	result = adapter_alloc_cq(dev, qid, nvmeq);
1121 	if (result < 0)
1122 		return result;
1123 
1124 	result = adapter_alloc_sq(dev, qid, nvmeq);
1125 	if (result < 0)
1126 		goto release_cq;
1127 
1128 	result = queue_request_irq(nvmeq);
1129 	if (result < 0)
1130 		goto release_sq;
1131 
1132 	nvme_init_queue(nvmeq, qid);
1133 	return result;
1134 
1135  release_sq:
1136 	adapter_delete_sq(dev, qid);
1137  release_cq:
1138 	adapter_delete_cq(dev, qid);
1139 	return result;
1140 }
1141 
1142 static struct blk_mq_ops nvme_mq_admin_ops = {
1143 	.queue_rq	= nvme_queue_rq,
1144 	.complete	= nvme_complete_rq,
1145 	.init_hctx	= nvme_admin_init_hctx,
1146 	.exit_hctx      = nvme_admin_exit_hctx,
1147 	.init_request	= nvme_admin_init_request,
1148 	.timeout	= nvme_timeout,
1149 };
1150 
1151 static struct blk_mq_ops nvme_mq_ops = {
1152 	.queue_rq	= nvme_queue_rq,
1153 	.complete	= nvme_complete_rq,
1154 	.init_hctx	= nvme_init_hctx,
1155 	.init_request	= nvme_init_request,
1156 	.map_queues	= nvme_pci_map_queues,
1157 	.timeout	= nvme_timeout,
1158 	.poll		= nvme_poll,
1159 };
1160 
1161 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1162 {
1163 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1164 		/*
1165 		 * If the controller was reset during removal, it's possible
1166 		 * user requests may be waiting on a stopped queue. Start the
1167 		 * queue to flush these to completion.
1168 		 */
1169 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1170 		blk_cleanup_queue(dev->ctrl.admin_q);
1171 		blk_mq_free_tag_set(&dev->admin_tagset);
1172 	}
1173 }
1174 
1175 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1176 {
1177 	if (!dev->ctrl.admin_q) {
1178 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1179 		dev->admin_tagset.nr_hw_queues = 1;
1180 
1181 		/*
1182 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1183 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1184 		 */
1185 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1186 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1187 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1188 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1189 		dev->admin_tagset.driver_data = dev;
1190 
1191 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1192 			return -ENOMEM;
1193 
1194 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1195 		if (IS_ERR(dev->ctrl.admin_q)) {
1196 			blk_mq_free_tag_set(&dev->admin_tagset);
1197 			return -ENOMEM;
1198 		}
1199 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1200 			nvme_dev_remove_admin(dev);
1201 			dev->ctrl.admin_q = NULL;
1202 			return -ENODEV;
1203 		}
1204 	} else
1205 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1206 
1207 	return 0;
1208 }
1209 
1210 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1211 {
1212 	int result;
1213 	u32 aqa;
1214 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1215 	struct nvme_queue *nvmeq;
1216 
1217 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1218 						NVME_CAP_NSSRC(cap) : 0;
1219 
1220 	if (dev->subsystem &&
1221 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1222 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1223 
1224 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1225 	if (result < 0)
1226 		return result;
1227 
1228 	nvmeq = dev->queues[0];
1229 	if (!nvmeq) {
1230 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1231 		if (!nvmeq)
1232 			return -ENOMEM;
1233 	}
1234 
1235 	aqa = nvmeq->q_depth - 1;
1236 	aqa |= aqa << 16;
1237 
1238 	writel(aqa, dev->bar + NVME_REG_AQA);
1239 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1240 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1241 
1242 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1243 	if (result)
1244 		goto free_nvmeq;
1245 
1246 	nvmeq->cq_vector = 0;
1247 	result = queue_request_irq(nvmeq);
1248 	if (result) {
1249 		nvmeq->cq_vector = -1;
1250 		goto free_nvmeq;
1251 	}
1252 
1253 	return result;
1254 
1255  free_nvmeq:
1256 	nvme_free_queues(dev, 0);
1257 	return result;
1258 }
1259 
1260 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1261 {
1262 
1263 	/* If true, indicates loss of adapter communication, possibly by a
1264 	 * NVMe Subsystem reset.
1265 	 */
1266 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1267 
1268 	/* If there is a reset ongoing, we shouldn't reset again. */
1269 	if (work_busy(&dev->reset_work))
1270 		return false;
1271 
1272 	/* We shouldn't reset unless the controller is on fatal error state
1273 	 * _or_ if we lost the communication with it.
1274 	 */
1275 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1276 		return false;
1277 
1278 	/* If PCI error recovery process is happening, we cannot reset or
1279 	 * the recovery mechanism will surely fail.
1280 	 */
1281 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1282 		return false;
1283 
1284 	return true;
1285 }
1286 
1287 static void nvme_watchdog_timer(unsigned long data)
1288 {
1289 	struct nvme_dev *dev = (struct nvme_dev *)data;
1290 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1291 
1292 	/* Skip controllers under certain specific conditions. */
1293 	if (nvme_should_reset(dev, csts)) {
1294 		if (queue_work(nvme_workq, &dev->reset_work))
1295 			dev_warn(dev->dev,
1296 				"Failed status: 0x%x, reset controller.\n",
1297 				csts);
1298 		return;
1299 	}
1300 
1301 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1302 }
1303 
1304 static int nvme_create_io_queues(struct nvme_dev *dev)
1305 {
1306 	unsigned i, max;
1307 	int ret = 0;
1308 
1309 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1310 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1311 			ret = -ENOMEM;
1312 			break;
1313 		}
1314 	}
1315 
1316 	max = min(dev->max_qid, dev->queue_count - 1);
1317 	for (i = dev->online_queues; i <= max; i++) {
1318 		ret = nvme_create_queue(dev->queues[i], i);
1319 		if (ret) {
1320 			nvme_free_queues(dev, i);
1321 			break;
1322 		}
1323 	}
1324 
1325 	/*
1326 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1327 	 * than the desired aount of queues, and even a controller without
1328 	 * I/O queues an still be used to issue admin commands.  This might
1329 	 * be useful to upgrade a buggy firmware for example.
1330 	 */
1331 	return ret >= 0 ? 0 : ret;
1332 }
1333 
1334 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1335 {
1336 	u64 szu, size, offset;
1337 	u32 cmbloc;
1338 	resource_size_t bar_size;
1339 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1340 	void __iomem *cmb;
1341 	dma_addr_t dma_addr;
1342 
1343 	if (!use_cmb_sqes)
1344 		return NULL;
1345 
1346 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1347 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1348 		return NULL;
1349 
1350 	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1351 
1352 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1353 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1354 	offset = szu * NVME_CMB_OFST(cmbloc);
1355 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1356 
1357 	if (offset > bar_size)
1358 		return NULL;
1359 
1360 	/*
1361 	 * Controllers may support a CMB size larger than their BAR,
1362 	 * for example, due to being behind a bridge. Reduce the CMB to
1363 	 * the reported size of the BAR
1364 	 */
1365 	if (size > bar_size - offset)
1366 		size = bar_size - offset;
1367 
1368 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1369 	cmb = ioremap_wc(dma_addr, size);
1370 	if (!cmb)
1371 		return NULL;
1372 
1373 	dev->cmb_dma_addr = dma_addr;
1374 	dev->cmb_size = size;
1375 	return cmb;
1376 }
1377 
1378 static inline void nvme_release_cmb(struct nvme_dev *dev)
1379 {
1380 	if (dev->cmb) {
1381 		iounmap(dev->cmb);
1382 		dev->cmb = NULL;
1383 	}
1384 }
1385 
1386 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1387 {
1388 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1389 }
1390 
1391 static int nvme_setup_io_queues(struct nvme_dev *dev)
1392 {
1393 	struct nvme_queue *adminq = dev->queues[0];
1394 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1395 	int result, nr_io_queues, size;
1396 
1397 	nr_io_queues = num_online_cpus();
1398 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1399 	if (result < 0)
1400 		return result;
1401 
1402 	if (nr_io_queues == 0)
1403 		return 0;
1404 
1405 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1406 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1407 				sizeof(struct nvme_command));
1408 		if (result > 0)
1409 			dev->q_depth = result;
1410 		else
1411 			nvme_release_cmb(dev);
1412 	}
1413 
1414 	size = db_bar_size(dev, nr_io_queues);
1415 	if (size > 8192) {
1416 		iounmap(dev->bar);
1417 		do {
1418 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1419 			if (dev->bar)
1420 				break;
1421 			if (!--nr_io_queues)
1422 				return -ENOMEM;
1423 			size = db_bar_size(dev, nr_io_queues);
1424 		} while (1);
1425 		dev->dbs = dev->bar + 4096;
1426 		adminq->q_db = dev->dbs;
1427 	}
1428 
1429 	/* Deregister the admin queue's interrupt */
1430 	free_irq(pci_irq_vector(pdev, 0), adminq);
1431 
1432 	/*
1433 	 * If we enable msix early due to not intx, disable it again before
1434 	 * setting up the full range we need.
1435 	 */
1436 	pci_free_irq_vectors(pdev);
1437 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1438 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1439 	if (nr_io_queues <= 0)
1440 		return -EIO;
1441 	dev->max_qid = nr_io_queues;
1442 
1443 	/*
1444 	 * Should investigate if there's a performance win from allocating
1445 	 * more queues than interrupt vectors; it might allow the submission
1446 	 * path to scale better, even if the receive path is limited by the
1447 	 * number of interrupts.
1448 	 */
1449 
1450 	result = queue_request_irq(adminq);
1451 	if (result) {
1452 		adminq->cq_vector = -1;
1453 		goto free_queues;
1454 	}
1455 	return nvme_create_io_queues(dev);
1456 
1457  free_queues:
1458 	nvme_free_queues(dev, 1);
1459 	return result;
1460 }
1461 
1462 static void nvme_del_queue_end(struct request *req, int error)
1463 {
1464 	struct nvme_queue *nvmeq = req->end_io_data;
1465 
1466 	blk_mq_free_request(req);
1467 	complete(&nvmeq->dev->ioq_wait);
1468 }
1469 
1470 static void nvme_del_cq_end(struct request *req, int error)
1471 {
1472 	struct nvme_queue *nvmeq = req->end_io_data;
1473 
1474 	if (!error) {
1475 		unsigned long flags;
1476 
1477 		/*
1478 		 * We might be called with the AQ q_lock held
1479 		 * and the I/O queue q_lock should always
1480 		 * nest inside the AQ one.
1481 		 */
1482 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1483 					SINGLE_DEPTH_NESTING);
1484 		nvme_process_cq(nvmeq);
1485 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1486 	}
1487 
1488 	nvme_del_queue_end(req, error);
1489 }
1490 
1491 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1492 {
1493 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1494 	struct request *req;
1495 	struct nvme_command cmd;
1496 
1497 	memset(&cmd, 0, sizeof(cmd));
1498 	cmd.delete_queue.opcode = opcode;
1499 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1500 
1501 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1502 	if (IS_ERR(req))
1503 		return PTR_ERR(req);
1504 
1505 	req->timeout = ADMIN_TIMEOUT;
1506 	req->end_io_data = nvmeq;
1507 
1508 	blk_execute_rq_nowait(q, NULL, req, false,
1509 			opcode == nvme_admin_delete_cq ?
1510 				nvme_del_cq_end : nvme_del_queue_end);
1511 	return 0;
1512 }
1513 
1514 static void nvme_disable_io_queues(struct nvme_dev *dev)
1515 {
1516 	int pass, queues = dev->online_queues - 1;
1517 	unsigned long timeout;
1518 	u8 opcode = nvme_admin_delete_sq;
1519 
1520 	for (pass = 0; pass < 2; pass++) {
1521 		int sent = 0, i = queues;
1522 
1523 		reinit_completion(&dev->ioq_wait);
1524  retry:
1525 		timeout = ADMIN_TIMEOUT;
1526 		for (; i > 0; i--, sent++)
1527 			if (nvme_delete_queue(dev->queues[i], opcode))
1528 				break;
1529 
1530 		while (sent--) {
1531 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1532 			if (timeout == 0)
1533 				return;
1534 			if (i)
1535 				goto retry;
1536 		}
1537 		opcode = nvme_admin_delete_cq;
1538 	}
1539 }
1540 
1541 /*
1542  * Return: error value if an error occurred setting up the queues or calling
1543  * Identify Device.  0 if these succeeded, even if adding some of the
1544  * namespaces failed.  At the moment, these failures are silent.  TBD which
1545  * failures should be reported.
1546  */
1547 static int nvme_dev_add(struct nvme_dev *dev)
1548 {
1549 	if (!dev->ctrl.tagset) {
1550 		dev->tagset.ops = &nvme_mq_ops;
1551 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1552 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1553 		dev->tagset.numa_node = dev_to_node(dev->dev);
1554 		dev->tagset.queue_depth =
1555 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1556 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1557 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1558 		dev->tagset.driver_data = dev;
1559 
1560 		if (blk_mq_alloc_tag_set(&dev->tagset))
1561 			return 0;
1562 		dev->ctrl.tagset = &dev->tagset;
1563 	} else {
1564 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1565 
1566 		/* Free previously allocated queues that are no longer usable */
1567 		nvme_free_queues(dev, dev->online_queues);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static int nvme_pci_enable(struct nvme_dev *dev)
1574 {
1575 	u64 cap;
1576 	int result = -ENOMEM;
1577 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1578 
1579 	if (pci_enable_device_mem(pdev))
1580 		return result;
1581 
1582 	pci_set_master(pdev);
1583 
1584 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1585 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1586 		goto disable;
1587 
1588 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1589 		result = -ENODEV;
1590 		goto disable;
1591 	}
1592 
1593 	/*
1594 	 * Some devices and/or platforms don't advertise or work with INTx
1595 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1596 	 * adjust this later.
1597 	 */
1598 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1599 	if (result < 0)
1600 		return result;
1601 
1602 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1603 
1604 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1605 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1606 	dev->dbs = dev->bar + 4096;
1607 
1608 	/*
1609 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1610 	 * some MacBook7,1 to avoid controller resets and data loss.
1611 	 */
1612 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1613 		dev->q_depth = 2;
1614 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1615 			"queue depth=%u to work around controller resets\n",
1616 			dev->q_depth);
1617 	}
1618 
1619 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1620 		dev->cmb = nvme_map_cmb(dev);
1621 
1622 	pci_enable_pcie_error_reporting(pdev);
1623 	pci_save_state(pdev);
1624 	return 0;
1625 
1626  disable:
1627 	pci_disable_device(pdev);
1628 	return result;
1629 }
1630 
1631 static void nvme_dev_unmap(struct nvme_dev *dev)
1632 {
1633 	if (dev->bar)
1634 		iounmap(dev->bar);
1635 	pci_release_mem_regions(to_pci_dev(dev->dev));
1636 }
1637 
1638 static void nvme_pci_disable(struct nvme_dev *dev)
1639 {
1640 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1641 
1642 	pci_free_irq_vectors(pdev);
1643 
1644 	if (pci_is_enabled(pdev)) {
1645 		pci_disable_pcie_error_reporting(pdev);
1646 		pci_disable_device(pdev);
1647 	}
1648 }
1649 
1650 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1651 {
1652 	int i;
1653 	u32 csts = -1;
1654 
1655 	del_timer_sync(&dev->watchdog_timer);
1656 
1657 	mutex_lock(&dev->shutdown_lock);
1658 	if (pci_is_enabled(to_pci_dev(dev->dev))) {
1659 		nvme_stop_queues(&dev->ctrl);
1660 		csts = readl(dev->bar + NVME_REG_CSTS);
1661 	}
1662 
1663 	for (i = dev->queue_count - 1; i > 0; i--)
1664 		nvme_suspend_queue(dev->queues[i]);
1665 
1666 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1667 		/* A device might become IO incapable very soon during
1668 		 * probe, before the admin queue is configured. Thus,
1669 		 * queue_count can be 0 here.
1670 		 */
1671 		if (dev->queue_count)
1672 			nvme_suspend_queue(dev->queues[0]);
1673 	} else {
1674 		nvme_disable_io_queues(dev);
1675 		nvme_disable_admin_queue(dev, shutdown);
1676 	}
1677 	nvme_pci_disable(dev);
1678 
1679 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1680 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1681 	mutex_unlock(&dev->shutdown_lock);
1682 }
1683 
1684 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1685 {
1686 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1687 						PAGE_SIZE, PAGE_SIZE, 0);
1688 	if (!dev->prp_page_pool)
1689 		return -ENOMEM;
1690 
1691 	/* Optimisation for I/Os between 4k and 128k */
1692 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1693 						256, 256, 0);
1694 	if (!dev->prp_small_pool) {
1695 		dma_pool_destroy(dev->prp_page_pool);
1696 		return -ENOMEM;
1697 	}
1698 	return 0;
1699 }
1700 
1701 static void nvme_release_prp_pools(struct nvme_dev *dev)
1702 {
1703 	dma_pool_destroy(dev->prp_page_pool);
1704 	dma_pool_destroy(dev->prp_small_pool);
1705 }
1706 
1707 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1708 {
1709 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1710 
1711 	put_device(dev->dev);
1712 	if (dev->tagset.tags)
1713 		blk_mq_free_tag_set(&dev->tagset);
1714 	if (dev->ctrl.admin_q)
1715 		blk_put_queue(dev->ctrl.admin_q);
1716 	kfree(dev->queues);
1717 	kfree(dev);
1718 }
1719 
1720 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1721 {
1722 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1723 
1724 	kref_get(&dev->ctrl.kref);
1725 	nvme_dev_disable(dev, false);
1726 	if (!schedule_work(&dev->remove_work))
1727 		nvme_put_ctrl(&dev->ctrl);
1728 }
1729 
1730 static void nvme_reset_work(struct work_struct *work)
1731 {
1732 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1733 	int result = -ENODEV;
1734 
1735 	if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1736 		goto out;
1737 
1738 	/*
1739 	 * If we're called to reset a live controller first shut it down before
1740 	 * moving on.
1741 	 */
1742 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1743 		nvme_dev_disable(dev, false);
1744 
1745 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1746 		goto out;
1747 
1748 	result = nvme_pci_enable(dev);
1749 	if (result)
1750 		goto out;
1751 
1752 	result = nvme_configure_admin_queue(dev);
1753 	if (result)
1754 		goto out;
1755 
1756 	nvme_init_queue(dev->queues[0], 0);
1757 	result = nvme_alloc_admin_tags(dev);
1758 	if (result)
1759 		goto out;
1760 
1761 	result = nvme_init_identify(&dev->ctrl);
1762 	if (result)
1763 		goto out;
1764 
1765 	result = nvme_setup_io_queues(dev);
1766 	if (result)
1767 		goto out;
1768 
1769 	/*
1770 	 * A controller that can not execute IO typically requires user
1771 	 * intervention to correct. For such degraded controllers, the driver
1772 	 * should not submit commands the user did not request, so skip
1773 	 * registering for asynchronous event notification on this condition.
1774 	 */
1775 	if (dev->online_queues > 1)
1776 		nvme_queue_async_events(&dev->ctrl);
1777 
1778 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1779 
1780 	/*
1781 	 * Keep the controller around but remove all namespaces if we don't have
1782 	 * any working I/O queue.
1783 	 */
1784 	if (dev->online_queues < 2) {
1785 		dev_warn(dev->ctrl.device, "IO queues not created\n");
1786 		nvme_kill_queues(&dev->ctrl);
1787 		nvme_remove_namespaces(&dev->ctrl);
1788 	} else {
1789 		nvme_start_queues(&dev->ctrl);
1790 		nvme_dev_add(dev);
1791 	}
1792 
1793 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1794 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1795 		goto out;
1796 	}
1797 
1798 	if (dev->online_queues > 1)
1799 		nvme_queue_scan(&dev->ctrl);
1800 	return;
1801 
1802  out:
1803 	nvme_remove_dead_ctrl(dev, result);
1804 }
1805 
1806 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1807 {
1808 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1809 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1810 
1811 	nvme_kill_queues(&dev->ctrl);
1812 	if (pci_get_drvdata(pdev))
1813 		device_release_driver(&pdev->dev);
1814 	nvme_put_ctrl(&dev->ctrl);
1815 }
1816 
1817 static int nvme_reset(struct nvme_dev *dev)
1818 {
1819 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1820 		return -ENODEV;
1821 
1822 	if (!queue_work(nvme_workq, &dev->reset_work))
1823 		return -EBUSY;
1824 
1825 	flush_work(&dev->reset_work);
1826 	return 0;
1827 }
1828 
1829 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1830 {
1831 	*val = readl(to_nvme_dev(ctrl)->bar + off);
1832 	return 0;
1833 }
1834 
1835 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1836 {
1837 	writel(val, to_nvme_dev(ctrl)->bar + off);
1838 	return 0;
1839 }
1840 
1841 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1842 {
1843 	*val = readq(to_nvme_dev(ctrl)->bar + off);
1844 	return 0;
1845 }
1846 
1847 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1848 {
1849 	return nvme_reset(to_nvme_dev(ctrl));
1850 }
1851 
1852 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1853 	.name			= "pcie",
1854 	.module			= THIS_MODULE,
1855 	.reg_read32		= nvme_pci_reg_read32,
1856 	.reg_write32		= nvme_pci_reg_write32,
1857 	.reg_read64		= nvme_pci_reg_read64,
1858 	.reset_ctrl		= nvme_pci_reset_ctrl,
1859 	.free_ctrl		= nvme_pci_free_ctrl,
1860 	.submit_async_event	= nvme_pci_submit_async_event,
1861 };
1862 
1863 static int nvme_dev_map(struct nvme_dev *dev)
1864 {
1865 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1866 
1867 	if (pci_request_mem_regions(pdev, "nvme"))
1868 		return -ENODEV;
1869 
1870 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1871 	if (!dev->bar)
1872 		goto release;
1873 
1874        return 0;
1875   release:
1876        pci_release_mem_regions(pdev);
1877        return -ENODEV;
1878 }
1879 
1880 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1881 {
1882 	int node, result = -ENOMEM;
1883 	struct nvme_dev *dev;
1884 
1885 	node = dev_to_node(&pdev->dev);
1886 	if (node == NUMA_NO_NODE)
1887 		set_dev_node(&pdev->dev, first_memory_node);
1888 
1889 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1890 	if (!dev)
1891 		return -ENOMEM;
1892 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1893 							GFP_KERNEL, node);
1894 	if (!dev->queues)
1895 		goto free;
1896 
1897 	dev->dev = get_device(&pdev->dev);
1898 	pci_set_drvdata(pdev, dev);
1899 
1900 	result = nvme_dev_map(dev);
1901 	if (result)
1902 		goto free;
1903 
1904 	INIT_WORK(&dev->reset_work, nvme_reset_work);
1905 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1906 	setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1907 		(unsigned long)dev);
1908 	mutex_init(&dev->shutdown_lock);
1909 	init_completion(&dev->ioq_wait);
1910 
1911 	result = nvme_setup_prp_pools(dev);
1912 	if (result)
1913 		goto put_pci;
1914 
1915 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1916 			id->driver_data);
1917 	if (result)
1918 		goto release_pools;
1919 
1920 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1921 
1922 	queue_work(nvme_workq, &dev->reset_work);
1923 	return 0;
1924 
1925  release_pools:
1926 	nvme_release_prp_pools(dev);
1927  put_pci:
1928 	put_device(dev->dev);
1929 	nvme_dev_unmap(dev);
1930  free:
1931 	kfree(dev->queues);
1932 	kfree(dev);
1933 	return result;
1934 }
1935 
1936 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1937 {
1938 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1939 
1940 	if (prepare)
1941 		nvme_dev_disable(dev, false);
1942 	else
1943 		queue_work(nvme_workq, &dev->reset_work);
1944 }
1945 
1946 static void nvme_shutdown(struct pci_dev *pdev)
1947 {
1948 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1949 	nvme_dev_disable(dev, true);
1950 }
1951 
1952 /*
1953  * The driver's remove may be called on a device in a partially initialized
1954  * state. This function must not have any dependencies on the device state in
1955  * order to proceed.
1956  */
1957 static void nvme_remove(struct pci_dev *pdev)
1958 {
1959 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1960 
1961 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1962 
1963 	pci_set_drvdata(pdev, NULL);
1964 
1965 	if (!pci_device_is_present(pdev))
1966 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
1967 
1968 	flush_work(&dev->reset_work);
1969 	nvme_uninit_ctrl(&dev->ctrl);
1970 	nvme_dev_disable(dev, true);
1971 	nvme_dev_remove_admin(dev);
1972 	nvme_free_queues(dev, 0);
1973 	nvme_release_cmb(dev);
1974 	nvme_release_prp_pools(dev);
1975 	nvme_dev_unmap(dev);
1976 	nvme_put_ctrl(&dev->ctrl);
1977 }
1978 
1979 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
1980 {
1981 	int ret = 0;
1982 
1983 	if (numvfs == 0) {
1984 		if (pci_vfs_assigned(pdev)) {
1985 			dev_warn(&pdev->dev,
1986 				"Cannot disable SR-IOV VFs while assigned\n");
1987 			return -EPERM;
1988 		}
1989 		pci_disable_sriov(pdev);
1990 		return 0;
1991 	}
1992 
1993 	ret = pci_enable_sriov(pdev, numvfs);
1994 	return ret ? ret : numvfs;
1995 }
1996 
1997 #ifdef CONFIG_PM_SLEEP
1998 static int nvme_suspend(struct device *dev)
1999 {
2000 	struct pci_dev *pdev = to_pci_dev(dev);
2001 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2002 
2003 	nvme_dev_disable(ndev, true);
2004 	return 0;
2005 }
2006 
2007 static int nvme_resume(struct device *dev)
2008 {
2009 	struct pci_dev *pdev = to_pci_dev(dev);
2010 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2011 
2012 	queue_work(nvme_workq, &ndev->reset_work);
2013 	return 0;
2014 }
2015 #endif
2016 
2017 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2018 
2019 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2020 						pci_channel_state_t state)
2021 {
2022 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2023 
2024 	/*
2025 	 * A frozen channel requires a reset. When detected, this method will
2026 	 * shutdown the controller to quiesce. The controller will be restarted
2027 	 * after the slot reset through driver's slot_reset callback.
2028 	 */
2029 	switch (state) {
2030 	case pci_channel_io_normal:
2031 		return PCI_ERS_RESULT_CAN_RECOVER;
2032 	case pci_channel_io_frozen:
2033 		dev_warn(dev->ctrl.device,
2034 			"frozen state error detected, reset controller\n");
2035 		nvme_dev_disable(dev, false);
2036 		return PCI_ERS_RESULT_NEED_RESET;
2037 	case pci_channel_io_perm_failure:
2038 		dev_warn(dev->ctrl.device,
2039 			"failure state error detected, request disconnect\n");
2040 		return PCI_ERS_RESULT_DISCONNECT;
2041 	}
2042 	return PCI_ERS_RESULT_NEED_RESET;
2043 }
2044 
2045 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2046 {
2047 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2048 
2049 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2050 	pci_restore_state(pdev);
2051 	queue_work(nvme_workq, &dev->reset_work);
2052 	return PCI_ERS_RESULT_RECOVERED;
2053 }
2054 
2055 static void nvme_error_resume(struct pci_dev *pdev)
2056 {
2057 	pci_cleanup_aer_uncorrect_error_status(pdev);
2058 }
2059 
2060 static const struct pci_error_handlers nvme_err_handler = {
2061 	.error_detected	= nvme_error_detected,
2062 	.slot_reset	= nvme_slot_reset,
2063 	.resume		= nvme_error_resume,
2064 	.reset_notify	= nvme_reset_notify,
2065 };
2066 
2067 /* Move to pci_ids.h later */
2068 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
2069 
2070 static const struct pci_device_id nvme_id_table[] = {
2071 	{ PCI_VDEVICE(INTEL, 0x0953),
2072 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2073 				NVME_QUIRK_DISCARD_ZEROES, },
2074 	{ PCI_VDEVICE(INTEL, 0x0a53),
2075 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2076 				NVME_QUIRK_DISCARD_ZEROES, },
2077 	{ PCI_VDEVICE(INTEL, 0x0a54),
2078 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2079 				NVME_QUIRK_DISCARD_ZEROES, },
2080 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2081 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2082 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2083 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2084 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2085 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2086 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2087 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2088 	{ 0, }
2089 };
2090 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2091 
2092 static struct pci_driver nvme_driver = {
2093 	.name		= "nvme",
2094 	.id_table	= nvme_id_table,
2095 	.probe		= nvme_probe,
2096 	.remove		= nvme_remove,
2097 	.shutdown	= nvme_shutdown,
2098 	.driver		= {
2099 		.pm	= &nvme_dev_pm_ops,
2100 	},
2101 	.sriov_configure = nvme_pci_sriov_configure,
2102 	.err_handler	= &nvme_err_handler,
2103 };
2104 
2105 static int __init nvme_init(void)
2106 {
2107 	int result;
2108 
2109 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2110 	if (!nvme_workq)
2111 		return -ENOMEM;
2112 
2113 	result = pci_register_driver(&nvme_driver);
2114 	if (result)
2115 		destroy_workqueue(nvme_workq);
2116 	return result;
2117 }
2118 
2119 static void __exit nvme_exit(void)
2120 {
2121 	pci_unregister_driver(&nvme_driver);
2122 	destroy_workqueue(nvme_workq);
2123 	_nvme_check_size();
2124 }
2125 
2126 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2127 MODULE_LICENSE("GPL");
2128 MODULE_VERSION("1.0");
2129 module_init(nvme_init);
2130 module_exit(nvme_exit);
2131