xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	dma_addr_t host_mem_descs_dma;
157 	struct nvme_host_mem_buf_desc *host_mem_descs;
158 	void **host_mem_desc_bufs;
159 	unsigned int nr_allocated_queues;
160 	unsigned int nr_write_queues;
161 	unsigned int nr_poll_queues;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 union nvme_descriptor {
220 	struct nvme_sgl_desc	*sg_list;
221 	__le64			*prp_list;
222 };
223 
224 /*
225  * The nvme_iod describes the data in an I/O.
226  *
227  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228  * to the actual struct scatterlist.
229  */
230 struct nvme_iod {
231 	struct nvme_request req;
232 	struct nvme_command cmd;
233 	bool aborted;
234 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235 				   pool in use */
236 	unsigned int dma_len;	/* length of single DMA segment mapping */
237 	dma_addr_t first_dma;
238 	dma_addr_t meta_dma;
239 	struct sg_table sgt;
240 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242 
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245 	return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247 
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250 	unsigned int mem_size = nvme_dbbuf_size(dev);
251 
252 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 		return;
254 
255 	if (dev->dbbuf_dbs) {
256 		/*
257 		 * Clear the dbbuf memory so the driver doesn't observe stale
258 		 * values from the previous instantiation.
259 		 */
260 		memset(dev->dbbuf_dbs, 0, mem_size);
261 		memset(dev->dbbuf_eis, 0, mem_size);
262 		return;
263 	}
264 
265 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 					    &dev->dbbuf_dbs_dma_addr,
267 					    GFP_KERNEL);
268 	if (!dev->dbbuf_dbs)
269 		goto fail;
270 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_eis_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_eis)
274 		goto fail_free_dbbuf_dbs;
275 	return;
276 
277 fail_free_dbbuf_dbs:
278 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 			  dev->dbbuf_dbs_dma_addr);
280 	dev->dbbuf_dbs = NULL;
281 fail:
282 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284 
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287 	unsigned int mem_size = nvme_dbbuf_size(dev);
288 
289 	if (dev->dbbuf_dbs) {
290 		dma_free_coherent(dev->dev, mem_size,
291 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 		dev->dbbuf_dbs = NULL;
293 	}
294 	if (dev->dbbuf_eis) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 		dev->dbbuf_eis = NULL;
298 	}
299 }
300 
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 			    struct nvme_queue *nvmeq, int qid)
303 {
304 	if (!dev->dbbuf_dbs || !qid)
305 		return;
306 
307 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312 
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315 	if (!nvmeq->qid)
316 		return;
317 
318 	nvmeq->dbbuf_sq_db = NULL;
319 	nvmeq->dbbuf_cq_db = NULL;
320 	nvmeq->dbbuf_sq_ei = NULL;
321 	nvmeq->dbbuf_cq_ei = NULL;
322 }
323 
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 	struct nvme_command c = { };
327 	unsigned int i;
328 
329 	if (!dev->dbbuf_dbs)
330 		return;
331 
332 	c.dbbuf.opcode = nvme_admin_dbbuf;
333 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335 
336 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 		/* Free memory and continue on */
339 		nvme_dbbuf_dma_free(dev);
340 
341 		for (i = 1; i <= dev->online_queues; i++)
342 			nvme_dbbuf_free(&dev->queues[i]);
343 	}
344 }
345 
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350 
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 					      volatile __le32 *dbbuf_ei)
354 {
355 	if (dbbuf_db) {
356 		u16 old_value, event_idx;
357 
358 		/*
359 		 * Ensure that the queue is written before updating
360 		 * the doorbell in memory
361 		 */
362 		wmb();
363 
364 		old_value = le32_to_cpu(*dbbuf_db);
365 		*dbbuf_db = cpu_to_le32(value);
366 
367 		/*
368 		 * Ensure that the doorbell is updated before reading the event
369 		 * index from memory.  The controller needs to provide similar
370 		 * ordering to ensure the envent index is updated before reading
371 		 * the doorbell.
372 		 */
373 		mb();
374 
375 		event_idx = le32_to_cpu(*dbbuf_ei);
376 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377 			return false;
378 	}
379 
380 	return true;
381 }
382 
383 /*
384  * Will slightly overestimate the number of pages needed.  This is OK
385  * as it only leads to a small amount of wasted memory for the lifetime of
386  * the I/O.
387  */
388 static int nvme_pci_npages_prp(void)
389 {
390 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = to_nvme_dev(data);
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = to_nvme_dev(data);
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 		struct request *req, unsigned int hctx_idx,
421 		unsigned int numa_node)
422 {
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 
425 	nvme_req(req)->ctrl = set->driver_data;
426 	nvme_req(req)->cmd = &iod->cmd;
427 	return 0;
428 }
429 
430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 	/* if we have more than 1 vec, admin queue offsets us by 1 */
433 	if (dev->num_vecs > 1)
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442 	int i, qoff, offset;
443 
444 	offset = queue_irq_offset(dev);
445 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 		struct blk_mq_queue_map *map = &set->map[i];
447 
448 		map->nr_queues = dev->io_queues[i];
449 		if (!map->nr_queues) {
450 			BUG_ON(i == HCTX_TYPE_DEFAULT);
451 			continue;
452 		}
453 
454 		/*
455 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 		 * affinity), so use the regular blk-mq cpu mapping
457 		 */
458 		map->queue_offset = qoff;
459 		if (i != HCTX_TYPE_POLL && offset)
460 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 		else
462 			blk_mq_map_queues(map);
463 		qoff += map->nr_queues;
464 		offset += map->nr_queues;
465 	}
466 }
467 
468 /*
469  * Write sq tail if we are asked to, or if the next command would wrap.
470  */
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472 {
473 	if (!write_sq) {
474 		u16 next_tail = nvmeq->sq_tail + 1;
475 
476 		if (next_tail == nvmeq->q_depth)
477 			next_tail = 0;
478 		if (next_tail != nvmeq->last_sq_tail)
479 			return;
480 	}
481 
482 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484 		writel(nvmeq->sq_tail, nvmeq->q_db);
485 	nvmeq->last_sq_tail = nvmeq->sq_tail;
486 }
487 
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 				    struct nvme_command *cmd)
490 {
491 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 		absolute_pointer(cmd), sizeof(*cmd));
493 	if (++nvmeq->sq_tail == nvmeq->q_depth)
494 		nvmeq->sq_tail = 0;
495 }
496 
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498 {
499 	struct nvme_queue *nvmeq = hctx->driver_data;
500 
501 	spin_lock(&nvmeq->sq_lock);
502 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 		nvme_write_sq_db(nvmeq, true);
504 	spin_unlock(&nvmeq->sq_lock);
505 }
506 
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 				     int nseg)
509 {
510 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 	unsigned int avg_seg_size;
512 
513 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514 
515 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516 		return false;
517 	if (!nvmeq->qid)
518 		return false;
519 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 		return false;
521 	return true;
522 }
523 
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525 {
526 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 	dma_addr_t dma_addr = iod->first_dma;
529 	int i;
530 
531 	for (i = 0; i < iod->nr_allocations; i++) {
532 		__le64 *prp_list = iod->list[i].prp_list;
533 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534 
535 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536 		dma_addr = next_dma_addr;
537 	}
538 }
539 
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 
544 	if (iod->dma_len) {
545 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 			       rq_dma_dir(req));
547 		return;
548 	}
549 
550 	WARN_ON_ONCE(!iod->sgt.nents);
551 
552 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553 
554 	if (iod->nr_allocations == 0)
555 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556 			      iod->first_dma);
557 	else if (iod->nr_allocations == 1)
558 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559 			      iod->first_dma);
560 	else
561 		nvme_free_prps(dev, req);
562 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
563 }
564 
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566 {
567 	int i;
568 	struct scatterlist *sg;
569 
570 	for_each_sg(sgl, sg, nents, i) {
571 		dma_addr_t phys = sg_phys(sg);
572 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 			"dma_address:%pad dma_length:%d\n",
574 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 			sg_dma_len(sg));
576 	}
577 }
578 
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 		struct request *req, struct nvme_rw_command *cmnd)
581 {
582 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 	struct dma_pool *pool;
584 	int length = blk_rq_payload_bytes(req);
585 	struct scatterlist *sg = iod->sgt.sgl;
586 	int dma_len = sg_dma_len(sg);
587 	u64 dma_addr = sg_dma_address(sg);
588 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 	__le64 *prp_list;
590 	dma_addr_t prp_dma;
591 	int nprps, i;
592 
593 	length -= (NVME_CTRL_PAGE_SIZE - offset);
594 	if (length <= 0) {
595 		iod->first_dma = 0;
596 		goto done;
597 	}
598 
599 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 	if (dma_len) {
601 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 	} else {
603 		sg = sg_next(sg);
604 		dma_addr = sg_dma_address(sg);
605 		dma_len = sg_dma_len(sg);
606 	}
607 
608 	if (length <= NVME_CTRL_PAGE_SIZE) {
609 		iod->first_dma = dma_addr;
610 		goto done;
611 	}
612 
613 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 	if (nprps <= (256 / 8)) {
615 		pool = dev->prp_small_pool;
616 		iod->nr_allocations = 0;
617 	} else {
618 		pool = dev->prp_page_pool;
619 		iod->nr_allocations = 1;
620 	}
621 
622 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623 	if (!prp_list) {
624 		iod->nr_allocations = -1;
625 		return BLK_STS_RESOURCE;
626 	}
627 	iod->list[0].prp_list = prp_list;
628 	iod->first_dma = prp_dma;
629 	i = 0;
630 	for (;;) {
631 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 			__le64 *old_prp_list = prp_list;
633 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634 			if (!prp_list)
635 				goto free_prps;
636 			iod->list[iod->nr_allocations++].prp_list = prp_list;
637 			prp_list[0] = old_prp_list[i - 1];
638 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 			i = 1;
640 		}
641 		prp_list[i++] = cpu_to_le64(dma_addr);
642 		dma_len -= NVME_CTRL_PAGE_SIZE;
643 		dma_addr += NVME_CTRL_PAGE_SIZE;
644 		length -= NVME_CTRL_PAGE_SIZE;
645 		if (length <= 0)
646 			break;
647 		if (dma_len > 0)
648 			continue;
649 		if (unlikely(dma_len < 0))
650 			goto bad_sgl;
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 done:
656 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 	return BLK_STS_OK;
659 free_prps:
660 	nvme_free_prps(dev, req);
661 	return BLK_STS_RESOURCE;
662 bad_sgl:
663 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 			"Invalid SGL for payload:%d nents:%d\n",
665 			blk_rq_payload_bytes(req), iod->sgt.nents);
666 	return BLK_STS_IOERR;
667 }
668 
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 		struct scatterlist *sg)
671 {
672 	sge->addr = cpu_to_le64(sg_dma_address(sg));
673 	sge->length = cpu_to_le32(sg_dma_len(sg));
674 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676 
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 		dma_addr_t dma_addr, int entries)
679 {
680 	sge->addr = cpu_to_le64(dma_addr);
681 	sge->length = cpu_to_le32(entries * sizeof(*sge));
682 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683 }
684 
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 		struct request *req, struct nvme_rw_command *cmd)
687 {
688 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689 	struct dma_pool *pool;
690 	struct nvme_sgl_desc *sg_list;
691 	struct scatterlist *sg = iod->sgt.sgl;
692 	unsigned int entries = iod->sgt.nents;
693 	dma_addr_t sgl_dma;
694 	int i = 0;
695 
696 	/* setting the transfer type as SGL */
697 	cmd->flags = NVME_CMD_SGL_METABUF;
698 
699 	if (entries == 1) {
700 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701 		return BLK_STS_OK;
702 	}
703 
704 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 		pool = dev->prp_small_pool;
706 		iod->nr_allocations = 0;
707 	} else {
708 		pool = dev->prp_page_pool;
709 		iod->nr_allocations = 1;
710 	}
711 
712 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713 	if (!sg_list) {
714 		iod->nr_allocations = -1;
715 		return BLK_STS_RESOURCE;
716 	}
717 
718 	iod->list[0].sg_list = sg_list;
719 	iod->first_dma = sgl_dma;
720 
721 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722 	do {
723 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
724 		sg = sg_next(sg);
725 	} while (--entries > 0);
726 
727 	return BLK_STS_OK;
728 }
729 
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 		struct request *req, struct nvme_rw_command *cmnd,
732 		struct bio_vec *bv)
733 {
734 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737 
738 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 	if (dma_mapping_error(dev->dev, iod->first_dma))
740 		return BLK_STS_RESOURCE;
741 	iod->dma_len = bv->bv_len;
742 
743 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 	if (bv->bv_len > first_prp_len)
745 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 	else
747 		cmnd->dptr.prp2 = 0;
748 	return BLK_STS_OK;
749 }
750 
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 		struct request *req, struct nvme_rw_command *cmnd,
753 		struct bio_vec *bv)
754 {
755 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756 
757 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 	if (dma_mapping_error(dev->dev, iod->first_dma))
759 		return BLK_STS_RESOURCE;
760 	iod->dma_len = bv->bv_len;
761 
762 	cmnd->flags = NVME_CMD_SGL_METABUF;
763 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 	return BLK_STS_OK;
767 }
768 
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 		struct nvme_command *cmnd)
771 {
772 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 	blk_status_t ret = BLK_STS_RESOURCE;
774 	int rc;
775 
776 	if (blk_rq_nr_phys_segments(req) == 1) {
777 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 		struct bio_vec bv = req_bvec(req);
779 
780 		if (!is_pci_p2pdma_page(bv.bv_page)) {
781 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782 				return nvme_setup_prp_simple(dev, req,
783 							     &cmnd->rw, &bv);
784 
785 			if (nvmeq->qid && sgl_threshold &&
786 			    nvme_ctrl_sgl_supported(&dev->ctrl))
787 				return nvme_setup_sgl_simple(dev, req,
788 							     &cmnd->rw, &bv);
789 		}
790 	}
791 
792 	iod->dma_len = 0;
793 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
794 	if (!iod->sgt.sgl)
795 		return BLK_STS_RESOURCE;
796 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
797 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
798 	if (!iod->sgt.orig_nents)
799 		goto out_free_sg;
800 
801 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
802 			     DMA_ATTR_NO_WARN);
803 	if (rc) {
804 		if (rc == -EREMOTEIO)
805 			ret = BLK_STS_TARGET;
806 		goto out_free_sg;
807 	}
808 
809 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
810 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811 	else
812 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813 	if (ret != BLK_STS_OK)
814 		goto out_unmap_sg;
815 	return BLK_STS_OK;
816 
817 out_unmap_sg:
818 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
819 out_free_sg:
820 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
821 	return ret;
822 }
823 
824 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825 		struct nvme_command *cmnd)
826 {
827 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
828 
829 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830 			rq_dma_dir(req), 0);
831 	if (dma_mapping_error(dev->dev, iod->meta_dma))
832 		return BLK_STS_IOERR;
833 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834 	return BLK_STS_OK;
835 }
836 
837 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838 {
839 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 	blk_status_t ret;
841 
842 	iod->aborted = false;
843 	iod->nr_allocations = -1;
844 	iod->sgt.nents = 0;
845 
846 	ret = nvme_setup_cmd(req->q->queuedata, req);
847 	if (ret)
848 		return ret;
849 
850 	if (blk_rq_nr_phys_segments(req)) {
851 		ret = nvme_map_data(dev, req, &iod->cmd);
852 		if (ret)
853 			goto out_free_cmd;
854 	}
855 
856 	if (blk_integrity_rq(req)) {
857 		ret = nvme_map_metadata(dev, req, &iod->cmd);
858 		if (ret)
859 			goto out_unmap_data;
860 	}
861 
862 	nvme_start_request(req);
863 	return BLK_STS_OK;
864 out_unmap_data:
865 	nvme_unmap_data(dev, req);
866 out_free_cmd:
867 	nvme_cleanup_cmd(req);
868 	return ret;
869 }
870 
871 /*
872  * NOTE: ns is NULL when called on the admin queue.
873  */
874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875 			 const struct blk_mq_queue_data *bd)
876 {
877 	struct nvme_queue *nvmeq = hctx->driver_data;
878 	struct nvme_dev *dev = nvmeq->dev;
879 	struct request *req = bd->rq;
880 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881 	blk_status_t ret;
882 
883 	/*
884 	 * We should not need to do this, but we're still using this to
885 	 * ensure we can drain requests on a dying queue.
886 	 */
887 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888 		return BLK_STS_IOERR;
889 
890 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891 		return nvme_fail_nonready_command(&dev->ctrl, req);
892 
893 	ret = nvme_prep_rq(dev, req);
894 	if (unlikely(ret))
895 		return ret;
896 	spin_lock(&nvmeq->sq_lock);
897 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
898 	nvme_write_sq_db(nvmeq, bd->last);
899 	spin_unlock(&nvmeq->sq_lock);
900 	return BLK_STS_OK;
901 }
902 
903 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904 {
905 	spin_lock(&nvmeq->sq_lock);
906 	while (!rq_list_empty(*rqlist)) {
907 		struct request *req = rq_list_pop(rqlist);
908 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909 
910 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
911 	}
912 	nvme_write_sq_db(nvmeq, true);
913 	spin_unlock(&nvmeq->sq_lock);
914 }
915 
916 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917 {
918 	/*
919 	 * We should not need to do this, but we're still using this to
920 	 * ensure we can drain requests on a dying queue.
921 	 */
922 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923 		return false;
924 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925 		return false;
926 
927 	req->mq_hctx->tags->rqs[req->tag] = req;
928 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
929 }
930 
931 static void nvme_queue_rqs(struct request **rqlist)
932 {
933 	struct request *req, *next, *prev = NULL;
934 	struct request *requeue_list = NULL;
935 
936 	rq_list_for_each_safe(rqlist, req, next) {
937 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
938 
939 		if (!nvme_prep_rq_batch(nvmeq, req)) {
940 			/* detach 'req' and add to remainder list */
941 			rq_list_move(rqlist, &requeue_list, req, prev);
942 
943 			req = prev;
944 			if (!req)
945 				continue;
946 		}
947 
948 		if (!next || req->mq_hctx != next->mq_hctx) {
949 			/* detach rest of list, and submit */
950 			req->rq_next = NULL;
951 			nvme_submit_cmds(nvmeq, rqlist);
952 			*rqlist = next;
953 			prev = NULL;
954 		} else
955 			prev = req;
956 	}
957 
958 	*rqlist = requeue_list;
959 }
960 
961 static __always_inline void nvme_pci_unmap_rq(struct request *req)
962 {
963 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
964 	struct nvme_dev *dev = nvmeq->dev;
965 
966 	if (blk_integrity_rq(req)) {
967 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
968 
969 		dma_unmap_page(dev->dev, iod->meta_dma,
970 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
971 	}
972 
973 	if (blk_rq_nr_phys_segments(req))
974 		nvme_unmap_data(dev, req);
975 }
976 
977 static void nvme_pci_complete_rq(struct request *req)
978 {
979 	nvme_pci_unmap_rq(req);
980 	nvme_complete_rq(req);
981 }
982 
983 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
984 {
985 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
986 }
987 
988 /* We read the CQE phase first to check if the rest of the entry is valid */
989 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
990 {
991 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
992 
993 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
994 }
995 
996 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
997 {
998 	u16 head = nvmeq->cq_head;
999 
1000 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1001 					      nvmeq->dbbuf_cq_ei))
1002 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1003 }
1004 
1005 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1006 {
1007 	if (!nvmeq->qid)
1008 		return nvmeq->dev->admin_tagset.tags[0];
1009 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1010 }
1011 
1012 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1013 				   struct io_comp_batch *iob, u16 idx)
1014 {
1015 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1016 	__u16 command_id = READ_ONCE(cqe->command_id);
1017 	struct request *req;
1018 
1019 	/*
1020 	 * AEN requests are special as they don't time out and can
1021 	 * survive any kind of queue freeze and often don't respond to
1022 	 * aborts.  We don't even bother to allocate a struct request
1023 	 * for them but rather special case them here.
1024 	 */
1025 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1026 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1027 				cqe->status, &cqe->result);
1028 		return;
1029 	}
1030 
1031 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1032 	if (unlikely(!req)) {
1033 		dev_warn(nvmeq->dev->ctrl.device,
1034 			"invalid id %d completed on queue %d\n",
1035 			command_id, le16_to_cpu(cqe->sq_id));
1036 		return;
1037 	}
1038 
1039 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1040 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1041 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1042 					nvme_pci_complete_batch))
1043 		nvme_pci_complete_rq(req);
1044 }
1045 
1046 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1047 {
1048 	u32 tmp = nvmeq->cq_head + 1;
1049 
1050 	if (tmp == nvmeq->q_depth) {
1051 		nvmeq->cq_head = 0;
1052 		nvmeq->cq_phase ^= 1;
1053 	} else {
1054 		nvmeq->cq_head = tmp;
1055 	}
1056 }
1057 
1058 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1059 			       struct io_comp_batch *iob)
1060 {
1061 	int found = 0;
1062 
1063 	while (nvme_cqe_pending(nvmeq)) {
1064 		found++;
1065 		/*
1066 		 * load-load control dependency between phase and the rest of
1067 		 * the cqe requires a full read memory barrier
1068 		 */
1069 		dma_rmb();
1070 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1071 		nvme_update_cq_head(nvmeq);
1072 	}
1073 
1074 	if (found)
1075 		nvme_ring_cq_doorbell(nvmeq);
1076 	return found;
1077 }
1078 
1079 static irqreturn_t nvme_irq(int irq, void *data)
1080 {
1081 	struct nvme_queue *nvmeq = data;
1082 	DEFINE_IO_COMP_BATCH(iob);
1083 
1084 	if (nvme_poll_cq(nvmeq, &iob)) {
1085 		if (!rq_list_empty(iob.req_list))
1086 			nvme_pci_complete_batch(&iob);
1087 		return IRQ_HANDLED;
1088 	}
1089 	return IRQ_NONE;
1090 }
1091 
1092 static irqreturn_t nvme_irq_check(int irq, void *data)
1093 {
1094 	struct nvme_queue *nvmeq = data;
1095 
1096 	if (nvme_cqe_pending(nvmeq))
1097 		return IRQ_WAKE_THREAD;
1098 	return IRQ_NONE;
1099 }
1100 
1101 /*
1102  * Poll for completions for any interrupt driven queue
1103  * Can be called from any context.
1104  */
1105 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1106 {
1107 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1108 
1109 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1110 
1111 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1112 	nvme_poll_cq(nvmeq, NULL);
1113 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1114 }
1115 
1116 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1117 {
1118 	struct nvme_queue *nvmeq = hctx->driver_data;
1119 	bool found;
1120 
1121 	if (!nvme_cqe_pending(nvmeq))
1122 		return 0;
1123 
1124 	spin_lock(&nvmeq->cq_poll_lock);
1125 	found = nvme_poll_cq(nvmeq, iob);
1126 	spin_unlock(&nvmeq->cq_poll_lock);
1127 
1128 	return found;
1129 }
1130 
1131 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1132 {
1133 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1134 	struct nvme_queue *nvmeq = &dev->queues[0];
1135 	struct nvme_command c = { };
1136 
1137 	c.common.opcode = nvme_admin_async_event;
1138 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1139 
1140 	spin_lock(&nvmeq->sq_lock);
1141 	nvme_sq_copy_cmd(nvmeq, &c);
1142 	nvme_write_sq_db(nvmeq, true);
1143 	spin_unlock(&nvmeq->sq_lock);
1144 }
1145 
1146 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1147 {
1148 	struct nvme_command c = { };
1149 
1150 	c.delete_queue.opcode = opcode;
1151 	c.delete_queue.qid = cpu_to_le16(id);
1152 
1153 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1154 }
1155 
1156 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1157 		struct nvme_queue *nvmeq, s16 vector)
1158 {
1159 	struct nvme_command c = { };
1160 	int flags = NVME_QUEUE_PHYS_CONTIG;
1161 
1162 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1163 		flags |= NVME_CQ_IRQ_ENABLED;
1164 
1165 	/*
1166 	 * Note: we (ab)use the fact that the prp fields survive if no data
1167 	 * is attached to the request.
1168 	 */
1169 	c.create_cq.opcode = nvme_admin_create_cq;
1170 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1171 	c.create_cq.cqid = cpu_to_le16(qid);
1172 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1173 	c.create_cq.cq_flags = cpu_to_le16(flags);
1174 	c.create_cq.irq_vector = cpu_to_le16(vector);
1175 
1176 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1177 }
1178 
1179 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1180 						struct nvme_queue *nvmeq)
1181 {
1182 	struct nvme_ctrl *ctrl = &dev->ctrl;
1183 	struct nvme_command c = { };
1184 	int flags = NVME_QUEUE_PHYS_CONTIG;
1185 
1186 	/*
1187 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1188 	 * set. Since URGENT priority is zeroes, it makes all queues
1189 	 * URGENT.
1190 	 */
1191 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1192 		flags |= NVME_SQ_PRIO_MEDIUM;
1193 
1194 	/*
1195 	 * Note: we (ab)use the fact that the prp fields survive if no data
1196 	 * is attached to the request.
1197 	 */
1198 	c.create_sq.opcode = nvme_admin_create_sq;
1199 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200 	c.create_sq.sqid = cpu_to_le16(qid);
1201 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202 	c.create_sq.sq_flags = cpu_to_le16(flags);
1203 	c.create_sq.cqid = cpu_to_le16(qid);
1204 
1205 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207 
1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209 {
1210 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211 }
1212 
1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214 {
1215 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216 }
1217 
1218 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1219 {
1220 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1221 
1222 	dev_warn(nvmeq->dev->ctrl.device,
1223 		 "Abort status: 0x%x", nvme_req(req)->status);
1224 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1225 	blk_mq_free_request(req);
1226 	return RQ_END_IO_NONE;
1227 }
1228 
1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231 	/* If true, indicates loss of adapter communication, possibly by a
1232 	 * NVMe Subsystem reset.
1233 	 */
1234 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1235 
1236 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1237 	switch (dev->ctrl.state) {
1238 	case NVME_CTRL_RESETTING:
1239 	case NVME_CTRL_CONNECTING:
1240 		return false;
1241 	default:
1242 		break;
1243 	}
1244 
1245 	/* We shouldn't reset unless the controller is on fatal error state
1246 	 * _or_ if we lost the communication with it.
1247 	 */
1248 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1255 {
1256 	/* Read a config register to help see what died. */
1257 	u16 pci_status;
1258 	int result;
1259 
1260 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1261 				      &pci_status);
1262 	if (result == PCIBIOS_SUCCESSFUL)
1263 		dev_warn(dev->ctrl.device,
1264 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1265 			 csts, pci_status);
1266 	else
1267 		dev_warn(dev->ctrl.device,
1268 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1269 			 csts, result);
1270 
1271 	if (csts != ~0)
1272 		return;
1273 
1274 	dev_warn(dev->ctrl.device,
1275 		 "Does your device have a faulty power saving mode enabled?\n");
1276 	dev_warn(dev->ctrl.device,
1277 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1278 }
1279 
1280 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1281 {
1282 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1283 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1284 	struct nvme_dev *dev = nvmeq->dev;
1285 	struct request *abort_req;
1286 	struct nvme_command cmd = { };
1287 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1288 
1289 	/* If PCI error recovery process is happening, we cannot reset or
1290 	 * the recovery mechanism will surely fail.
1291 	 */
1292 	mb();
1293 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1294 		return BLK_EH_RESET_TIMER;
1295 
1296 	/*
1297 	 * Reset immediately if the controller is failed
1298 	 */
1299 	if (nvme_should_reset(dev, csts)) {
1300 		nvme_warn_reset(dev, csts);
1301 		nvme_dev_disable(dev, false);
1302 		nvme_reset_ctrl(&dev->ctrl);
1303 		return BLK_EH_DONE;
1304 	}
1305 
1306 	/*
1307 	 * Did we miss an interrupt?
1308 	 */
1309 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1310 		nvme_poll(req->mq_hctx, NULL);
1311 	else
1312 		nvme_poll_irqdisable(nvmeq);
1313 
1314 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1315 		dev_warn(dev->ctrl.device,
1316 			 "I/O %d QID %d timeout, completion polled\n",
1317 			 req->tag, nvmeq->qid);
1318 		return BLK_EH_DONE;
1319 	}
1320 
1321 	/*
1322 	 * Shutdown immediately if controller times out while starting. The
1323 	 * reset work will see the pci device disabled when it gets the forced
1324 	 * cancellation error. All outstanding requests are completed on
1325 	 * shutdown, so we return BLK_EH_DONE.
1326 	 */
1327 	switch (dev->ctrl.state) {
1328 	case NVME_CTRL_CONNECTING:
1329 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1330 		fallthrough;
1331 	case NVME_CTRL_DELETING:
1332 		dev_warn_ratelimited(dev->ctrl.device,
1333 			 "I/O %d QID %d timeout, disable controller\n",
1334 			 req->tag, nvmeq->qid);
1335 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1336 		nvme_dev_disable(dev, true);
1337 		return BLK_EH_DONE;
1338 	case NVME_CTRL_RESETTING:
1339 		return BLK_EH_RESET_TIMER;
1340 	default:
1341 		break;
1342 	}
1343 
1344 	/*
1345 	 * Shutdown the controller immediately and schedule a reset if the
1346 	 * command was already aborted once before and still hasn't been
1347 	 * returned to the driver, or if this is the admin queue.
1348 	 */
1349 	if (!nvmeq->qid || iod->aborted) {
1350 		dev_warn(dev->ctrl.device,
1351 			 "I/O %d QID %d timeout, reset controller\n",
1352 			 req->tag, nvmeq->qid);
1353 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1354 		nvme_dev_disable(dev, false);
1355 		nvme_reset_ctrl(&dev->ctrl);
1356 
1357 		return BLK_EH_DONE;
1358 	}
1359 
1360 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1361 		atomic_inc(&dev->ctrl.abort_limit);
1362 		return BLK_EH_RESET_TIMER;
1363 	}
1364 	iod->aborted = true;
1365 
1366 	cmd.abort.opcode = nvme_admin_abort_cmd;
1367 	cmd.abort.cid = nvme_cid(req);
1368 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1369 
1370 	dev_warn(nvmeq->dev->ctrl.device,
1371 		"I/O %d (%s) QID %d timeout, aborting\n",
1372 		 req->tag,
1373 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1374 		 nvmeq->qid);
1375 
1376 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1377 					 BLK_MQ_REQ_NOWAIT);
1378 	if (IS_ERR(abort_req)) {
1379 		atomic_inc(&dev->ctrl.abort_limit);
1380 		return BLK_EH_RESET_TIMER;
1381 	}
1382 	nvme_init_request(abort_req, &cmd);
1383 
1384 	abort_req->end_io = abort_endio;
1385 	abort_req->end_io_data = NULL;
1386 	blk_execute_rq_nowait(abort_req, false);
1387 
1388 	/*
1389 	 * The aborted req will be completed on receiving the abort req.
1390 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1391 	 * as the device then is in a faulty state.
1392 	 */
1393 	return BLK_EH_RESET_TIMER;
1394 }
1395 
1396 static void nvme_free_queue(struct nvme_queue *nvmeq)
1397 {
1398 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1399 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1400 	if (!nvmeq->sq_cmds)
1401 		return;
1402 
1403 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1404 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1405 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1406 	} else {
1407 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1408 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1409 	}
1410 }
1411 
1412 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1413 {
1414 	int i;
1415 
1416 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1417 		dev->ctrl.queue_count--;
1418 		nvme_free_queue(&dev->queues[i]);
1419 	}
1420 }
1421 
1422 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1423 {
1424 	struct nvme_queue *nvmeq = &dev->queues[qid];
1425 
1426 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1427 		return;
1428 
1429 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1430 	mb();
1431 
1432 	nvmeq->dev->online_queues--;
1433 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1434 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1435 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1436 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1437 }
1438 
1439 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1440 {
1441 	int i;
1442 
1443 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1444 		nvme_suspend_queue(dev, i);
1445 }
1446 
1447 /*
1448  * Called only on a device that has been disabled and after all other threads
1449  * that can check this device's completion queues have synced, except
1450  * nvme_poll(). This is the last chance for the driver to see a natural
1451  * completion before nvme_cancel_request() terminates all incomplete requests.
1452  */
1453 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1454 {
1455 	int i;
1456 
1457 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1458 		spin_lock(&dev->queues[i].cq_poll_lock);
1459 		nvme_poll_cq(&dev->queues[i], NULL);
1460 		spin_unlock(&dev->queues[i].cq_poll_lock);
1461 	}
1462 }
1463 
1464 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1465 				int entry_size)
1466 {
1467 	int q_depth = dev->q_depth;
1468 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1469 					  NVME_CTRL_PAGE_SIZE);
1470 
1471 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1472 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1473 
1474 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1475 		q_depth = div_u64(mem_per_q, entry_size);
1476 
1477 		/*
1478 		 * Ensure the reduced q_depth is above some threshold where it
1479 		 * would be better to map queues in system memory with the
1480 		 * original depth
1481 		 */
1482 		if (q_depth < 64)
1483 			return -ENOMEM;
1484 	}
1485 
1486 	return q_depth;
1487 }
1488 
1489 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1490 				int qid)
1491 {
1492 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1493 
1494 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1495 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1496 		if (nvmeq->sq_cmds) {
1497 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1498 							nvmeq->sq_cmds);
1499 			if (nvmeq->sq_dma_addr) {
1500 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1501 				return 0;
1502 			}
1503 
1504 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1505 		}
1506 	}
1507 
1508 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1509 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1510 	if (!nvmeq->sq_cmds)
1511 		return -ENOMEM;
1512 	return 0;
1513 }
1514 
1515 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1516 {
1517 	struct nvme_queue *nvmeq = &dev->queues[qid];
1518 
1519 	if (dev->ctrl.queue_count > qid)
1520 		return 0;
1521 
1522 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1523 	nvmeq->q_depth = depth;
1524 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1525 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1526 	if (!nvmeq->cqes)
1527 		goto free_nvmeq;
1528 
1529 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1530 		goto free_cqdma;
1531 
1532 	nvmeq->dev = dev;
1533 	spin_lock_init(&nvmeq->sq_lock);
1534 	spin_lock_init(&nvmeq->cq_poll_lock);
1535 	nvmeq->cq_head = 0;
1536 	nvmeq->cq_phase = 1;
1537 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1538 	nvmeq->qid = qid;
1539 	dev->ctrl.queue_count++;
1540 
1541 	return 0;
1542 
1543  free_cqdma:
1544 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1545 			  nvmeq->cq_dma_addr);
1546  free_nvmeq:
1547 	return -ENOMEM;
1548 }
1549 
1550 static int queue_request_irq(struct nvme_queue *nvmeq)
1551 {
1552 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1553 	int nr = nvmeq->dev->ctrl.instance;
1554 
1555 	if (use_threaded_interrupts) {
1556 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1557 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1558 	} else {
1559 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1560 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1561 	}
1562 }
1563 
1564 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1565 {
1566 	struct nvme_dev *dev = nvmeq->dev;
1567 
1568 	nvmeq->sq_tail = 0;
1569 	nvmeq->last_sq_tail = 0;
1570 	nvmeq->cq_head = 0;
1571 	nvmeq->cq_phase = 1;
1572 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1573 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1574 	nvme_dbbuf_init(dev, nvmeq, qid);
1575 	dev->online_queues++;
1576 	wmb(); /* ensure the first interrupt sees the initialization */
1577 }
1578 
1579 /*
1580  * Try getting shutdown_lock while setting up IO queues.
1581  */
1582 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1583 {
1584 	/*
1585 	 * Give up if the lock is being held by nvme_dev_disable.
1586 	 */
1587 	if (!mutex_trylock(&dev->shutdown_lock))
1588 		return -ENODEV;
1589 
1590 	/*
1591 	 * Controller is in wrong state, fail early.
1592 	 */
1593 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1594 		mutex_unlock(&dev->shutdown_lock);
1595 		return -ENODEV;
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1602 {
1603 	struct nvme_dev *dev = nvmeq->dev;
1604 	int result;
1605 	u16 vector = 0;
1606 
1607 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1608 
1609 	/*
1610 	 * A queue's vector matches the queue identifier unless the controller
1611 	 * has only one vector available.
1612 	 */
1613 	if (!polled)
1614 		vector = dev->num_vecs == 1 ? 0 : qid;
1615 	else
1616 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1617 
1618 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1619 	if (result)
1620 		return result;
1621 
1622 	result = adapter_alloc_sq(dev, qid, nvmeq);
1623 	if (result < 0)
1624 		return result;
1625 	if (result)
1626 		goto release_cq;
1627 
1628 	nvmeq->cq_vector = vector;
1629 
1630 	result = nvme_setup_io_queues_trylock(dev);
1631 	if (result)
1632 		return result;
1633 	nvme_init_queue(nvmeq, qid);
1634 	if (!polled) {
1635 		result = queue_request_irq(nvmeq);
1636 		if (result < 0)
1637 			goto release_sq;
1638 	}
1639 
1640 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1641 	mutex_unlock(&dev->shutdown_lock);
1642 	return result;
1643 
1644 release_sq:
1645 	dev->online_queues--;
1646 	mutex_unlock(&dev->shutdown_lock);
1647 	adapter_delete_sq(dev, qid);
1648 release_cq:
1649 	adapter_delete_cq(dev, qid);
1650 	return result;
1651 }
1652 
1653 static const struct blk_mq_ops nvme_mq_admin_ops = {
1654 	.queue_rq	= nvme_queue_rq,
1655 	.complete	= nvme_pci_complete_rq,
1656 	.init_hctx	= nvme_admin_init_hctx,
1657 	.init_request	= nvme_pci_init_request,
1658 	.timeout	= nvme_timeout,
1659 };
1660 
1661 static const struct blk_mq_ops nvme_mq_ops = {
1662 	.queue_rq	= nvme_queue_rq,
1663 	.queue_rqs	= nvme_queue_rqs,
1664 	.complete	= nvme_pci_complete_rq,
1665 	.commit_rqs	= nvme_commit_rqs,
1666 	.init_hctx	= nvme_init_hctx,
1667 	.init_request	= nvme_pci_init_request,
1668 	.map_queues	= nvme_pci_map_queues,
1669 	.timeout	= nvme_timeout,
1670 	.poll		= nvme_poll,
1671 };
1672 
1673 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1674 {
1675 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1676 		/*
1677 		 * If the controller was reset during removal, it's possible
1678 		 * user requests may be waiting on a stopped queue. Start the
1679 		 * queue to flush these to completion.
1680 		 */
1681 		nvme_unquiesce_admin_queue(&dev->ctrl);
1682 		nvme_remove_admin_tag_set(&dev->ctrl);
1683 	}
1684 }
1685 
1686 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1687 {
1688 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1689 }
1690 
1691 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1692 {
1693 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1694 
1695 	if (size <= dev->bar_mapped_size)
1696 		return 0;
1697 	if (size > pci_resource_len(pdev, 0))
1698 		return -ENOMEM;
1699 	if (dev->bar)
1700 		iounmap(dev->bar);
1701 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1702 	if (!dev->bar) {
1703 		dev->bar_mapped_size = 0;
1704 		return -ENOMEM;
1705 	}
1706 	dev->bar_mapped_size = size;
1707 	dev->dbs = dev->bar + NVME_REG_DBS;
1708 
1709 	return 0;
1710 }
1711 
1712 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1713 {
1714 	int result;
1715 	u32 aqa;
1716 	struct nvme_queue *nvmeq;
1717 
1718 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1719 	if (result < 0)
1720 		return result;
1721 
1722 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1723 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1724 
1725 	if (dev->subsystem &&
1726 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1727 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1728 
1729 	/*
1730 	 * If the device has been passed off to us in an enabled state, just
1731 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1732 	 * notification bits', but doing so may cause the device to complete
1733 	 * commands to the admin queue ... and we don't know what memory that
1734 	 * might be pointing at!
1735 	 */
1736 	result = nvme_disable_ctrl(&dev->ctrl, false);
1737 	if (result < 0)
1738 		return result;
1739 
1740 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1741 	if (result)
1742 		return result;
1743 
1744 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1745 
1746 	nvmeq = &dev->queues[0];
1747 	aqa = nvmeq->q_depth - 1;
1748 	aqa |= aqa << 16;
1749 
1750 	writel(aqa, dev->bar + NVME_REG_AQA);
1751 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1752 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1753 
1754 	result = nvme_enable_ctrl(&dev->ctrl);
1755 	if (result)
1756 		return result;
1757 
1758 	nvmeq->cq_vector = 0;
1759 	nvme_init_queue(nvmeq, 0);
1760 	result = queue_request_irq(nvmeq);
1761 	if (result) {
1762 		dev->online_queues--;
1763 		return result;
1764 	}
1765 
1766 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1767 	return result;
1768 }
1769 
1770 static int nvme_create_io_queues(struct nvme_dev *dev)
1771 {
1772 	unsigned i, max, rw_queues;
1773 	int ret = 0;
1774 
1775 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1776 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1777 			ret = -ENOMEM;
1778 			break;
1779 		}
1780 	}
1781 
1782 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1783 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1784 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1785 				dev->io_queues[HCTX_TYPE_READ];
1786 	} else {
1787 		rw_queues = max;
1788 	}
1789 
1790 	for (i = dev->online_queues; i <= max; i++) {
1791 		bool polled = i > rw_queues;
1792 
1793 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1794 		if (ret)
1795 			break;
1796 	}
1797 
1798 	/*
1799 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1800 	 * than the desired amount of queues, and even a controller without
1801 	 * I/O queues can still be used to issue admin commands.  This might
1802 	 * be useful to upgrade a buggy firmware for example.
1803 	 */
1804 	return ret >= 0 ? 0 : ret;
1805 }
1806 
1807 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1808 {
1809 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1810 
1811 	return 1ULL << (12 + 4 * szu);
1812 }
1813 
1814 static u32 nvme_cmb_size(struct nvme_dev *dev)
1815 {
1816 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1817 }
1818 
1819 static void nvme_map_cmb(struct nvme_dev *dev)
1820 {
1821 	u64 size, offset;
1822 	resource_size_t bar_size;
1823 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1824 	int bar;
1825 
1826 	if (dev->cmb_size)
1827 		return;
1828 
1829 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1830 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1831 
1832 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1833 	if (!dev->cmbsz)
1834 		return;
1835 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1836 
1837 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1838 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1839 	bar = NVME_CMB_BIR(dev->cmbloc);
1840 	bar_size = pci_resource_len(pdev, bar);
1841 
1842 	if (offset > bar_size)
1843 		return;
1844 
1845 	/*
1846 	 * Tell the controller about the host side address mapping the CMB,
1847 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1848 	 */
1849 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1850 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1851 			     (pci_bus_address(pdev, bar) + offset),
1852 			     dev->bar + NVME_REG_CMBMSC);
1853 	}
1854 
1855 	/*
1856 	 * Controllers may support a CMB size larger than their BAR,
1857 	 * for example, due to being behind a bridge. Reduce the CMB to
1858 	 * the reported size of the BAR
1859 	 */
1860 	if (size > bar_size - offset)
1861 		size = bar_size - offset;
1862 
1863 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1864 		dev_warn(dev->ctrl.device,
1865 			 "failed to register the CMB\n");
1866 		return;
1867 	}
1868 
1869 	dev->cmb_size = size;
1870 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1871 
1872 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1873 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1874 		pci_p2pmem_publish(pdev, true);
1875 
1876 	nvme_update_attrs(dev);
1877 }
1878 
1879 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1880 {
1881 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1882 	u64 dma_addr = dev->host_mem_descs_dma;
1883 	struct nvme_command c = { };
1884 	int ret;
1885 
1886 	c.features.opcode	= nvme_admin_set_features;
1887 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1888 	c.features.dword11	= cpu_to_le32(bits);
1889 	c.features.dword12	= cpu_to_le32(host_mem_size);
1890 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1891 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1892 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1893 
1894 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1895 	if (ret) {
1896 		dev_warn(dev->ctrl.device,
1897 			 "failed to set host mem (err %d, flags %#x).\n",
1898 			 ret, bits);
1899 	} else
1900 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1901 
1902 	return ret;
1903 }
1904 
1905 static void nvme_free_host_mem(struct nvme_dev *dev)
1906 {
1907 	int i;
1908 
1909 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1910 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1911 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1912 
1913 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1914 			       le64_to_cpu(desc->addr),
1915 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1916 	}
1917 
1918 	kfree(dev->host_mem_desc_bufs);
1919 	dev->host_mem_desc_bufs = NULL;
1920 	dma_free_coherent(dev->dev,
1921 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1922 			dev->host_mem_descs, dev->host_mem_descs_dma);
1923 	dev->host_mem_descs = NULL;
1924 	dev->nr_host_mem_descs = 0;
1925 }
1926 
1927 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1928 		u32 chunk_size)
1929 {
1930 	struct nvme_host_mem_buf_desc *descs;
1931 	u32 max_entries, len;
1932 	dma_addr_t descs_dma;
1933 	int i = 0;
1934 	void **bufs;
1935 	u64 size, tmp;
1936 
1937 	tmp = (preferred + chunk_size - 1);
1938 	do_div(tmp, chunk_size);
1939 	max_entries = tmp;
1940 
1941 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1942 		max_entries = dev->ctrl.hmmaxd;
1943 
1944 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1945 				   &descs_dma, GFP_KERNEL);
1946 	if (!descs)
1947 		goto out;
1948 
1949 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1950 	if (!bufs)
1951 		goto out_free_descs;
1952 
1953 	for (size = 0; size < preferred && i < max_entries; size += len) {
1954 		dma_addr_t dma_addr;
1955 
1956 		len = min_t(u64, chunk_size, preferred - size);
1957 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1958 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1959 		if (!bufs[i])
1960 			break;
1961 
1962 		descs[i].addr = cpu_to_le64(dma_addr);
1963 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1964 		i++;
1965 	}
1966 
1967 	if (!size)
1968 		goto out_free_bufs;
1969 
1970 	dev->nr_host_mem_descs = i;
1971 	dev->host_mem_size = size;
1972 	dev->host_mem_descs = descs;
1973 	dev->host_mem_descs_dma = descs_dma;
1974 	dev->host_mem_desc_bufs = bufs;
1975 	return 0;
1976 
1977 out_free_bufs:
1978 	while (--i >= 0) {
1979 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1980 
1981 		dma_free_attrs(dev->dev, size, bufs[i],
1982 			       le64_to_cpu(descs[i].addr),
1983 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1984 	}
1985 
1986 	kfree(bufs);
1987 out_free_descs:
1988 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1989 			descs_dma);
1990 out:
1991 	dev->host_mem_descs = NULL;
1992 	return -ENOMEM;
1993 }
1994 
1995 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1996 {
1997 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1998 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1999 	u64 chunk_size;
2000 
2001 	/* start big and work our way down */
2002 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2003 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2004 			if (!min || dev->host_mem_size >= min)
2005 				return 0;
2006 			nvme_free_host_mem(dev);
2007 		}
2008 	}
2009 
2010 	return -ENOMEM;
2011 }
2012 
2013 static int nvme_setup_host_mem(struct nvme_dev *dev)
2014 {
2015 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2016 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2017 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2018 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2019 	int ret;
2020 
2021 	if (!dev->ctrl.hmpre)
2022 		return 0;
2023 
2024 	preferred = min(preferred, max);
2025 	if (min > max) {
2026 		dev_warn(dev->ctrl.device,
2027 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2028 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2029 		nvme_free_host_mem(dev);
2030 		return 0;
2031 	}
2032 
2033 	/*
2034 	 * If we already have a buffer allocated check if we can reuse it.
2035 	 */
2036 	if (dev->host_mem_descs) {
2037 		if (dev->host_mem_size >= min)
2038 			enable_bits |= NVME_HOST_MEM_RETURN;
2039 		else
2040 			nvme_free_host_mem(dev);
2041 	}
2042 
2043 	if (!dev->host_mem_descs) {
2044 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2045 			dev_warn(dev->ctrl.device,
2046 				"failed to allocate host memory buffer.\n");
2047 			return 0; /* controller must work without HMB */
2048 		}
2049 
2050 		dev_info(dev->ctrl.device,
2051 			"allocated %lld MiB host memory buffer.\n",
2052 			dev->host_mem_size >> ilog2(SZ_1M));
2053 	}
2054 
2055 	ret = nvme_set_host_mem(dev, enable_bits);
2056 	if (ret)
2057 		nvme_free_host_mem(dev);
2058 	return ret;
2059 }
2060 
2061 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2062 		char *buf)
2063 {
2064 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2065 
2066 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2067 		       ndev->cmbloc, ndev->cmbsz);
2068 }
2069 static DEVICE_ATTR_RO(cmb);
2070 
2071 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2072 		char *buf)
2073 {
2074 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2075 
2076 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2077 }
2078 static DEVICE_ATTR_RO(cmbloc);
2079 
2080 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2081 		char *buf)
2082 {
2083 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2084 
2085 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2086 }
2087 static DEVICE_ATTR_RO(cmbsz);
2088 
2089 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2090 			char *buf)
2091 {
2092 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2093 
2094 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2095 }
2096 
2097 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2098 			 const char *buf, size_t count)
2099 {
2100 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2101 	bool new;
2102 	int ret;
2103 
2104 	if (kstrtobool(buf, &new) < 0)
2105 		return -EINVAL;
2106 
2107 	if (new == ndev->hmb)
2108 		return count;
2109 
2110 	if (new) {
2111 		ret = nvme_setup_host_mem(ndev);
2112 	} else {
2113 		ret = nvme_set_host_mem(ndev, 0);
2114 		if (!ret)
2115 			nvme_free_host_mem(ndev);
2116 	}
2117 
2118 	if (ret < 0)
2119 		return ret;
2120 
2121 	return count;
2122 }
2123 static DEVICE_ATTR_RW(hmb);
2124 
2125 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2126 		struct attribute *a, int n)
2127 {
2128 	struct nvme_ctrl *ctrl =
2129 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2130 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2131 
2132 	if (a == &dev_attr_cmb.attr ||
2133 	    a == &dev_attr_cmbloc.attr ||
2134 	    a == &dev_attr_cmbsz.attr) {
2135 	    	if (!dev->cmbsz)
2136 			return 0;
2137 	}
2138 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2139 		return 0;
2140 
2141 	return a->mode;
2142 }
2143 
2144 static struct attribute *nvme_pci_attrs[] = {
2145 	&dev_attr_cmb.attr,
2146 	&dev_attr_cmbloc.attr,
2147 	&dev_attr_cmbsz.attr,
2148 	&dev_attr_hmb.attr,
2149 	NULL,
2150 };
2151 
2152 static const struct attribute_group nvme_pci_dev_attrs_group = {
2153 	.attrs		= nvme_pci_attrs,
2154 	.is_visible	= nvme_pci_attrs_are_visible,
2155 };
2156 
2157 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2158 	&nvme_dev_attrs_group,
2159 	&nvme_pci_dev_attrs_group,
2160 	NULL,
2161 };
2162 
2163 static void nvme_update_attrs(struct nvme_dev *dev)
2164 {
2165 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2166 }
2167 
2168 /*
2169  * nirqs is the number of interrupts available for write and read
2170  * queues. The core already reserved an interrupt for the admin queue.
2171  */
2172 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2173 {
2174 	struct nvme_dev *dev = affd->priv;
2175 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2176 
2177 	/*
2178 	 * If there is no interrupt available for queues, ensure that
2179 	 * the default queue is set to 1. The affinity set size is
2180 	 * also set to one, but the irq core ignores it for this case.
2181 	 *
2182 	 * If only one interrupt is available or 'write_queue' == 0, combine
2183 	 * write and read queues.
2184 	 *
2185 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2186 	 * queue.
2187 	 */
2188 	if (!nrirqs) {
2189 		nrirqs = 1;
2190 		nr_read_queues = 0;
2191 	} else if (nrirqs == 1 || !nr_write_queues) {
2192 		nr_read_queues = 0;
2193 	} else if (nr_write_queues >= nrirqs) {
2194 		nr_read_queues = 1;
2195 	} else {
2196 		nr_read_queues = nrirqs - nr_write_queues;
2197 	}
2198 
2199 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2200 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2201 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2202 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2203 	affd->nr_sets = nr_read_queues ? 2 : 1;
2204 }
2205 
2206 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2207 {
2208 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2209 	struct irq_affinity affd = {
2210 		.pre_vectors	= 1,
2211 		.calc_sets	= nvme_calc_irq_sets,
2212 		.priv		= dev,
2213 	};
2214 	unsigned int irq_queues, poll_queues;
2215 
2216 	/*
2217 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2218 	 * left over for non-polled I/O.
2219 	 */
2220 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2221 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2222 
2223 	/*
2224 	 * Initialize for the single interrupt case, will be updated in
2225 	 * nvme_calc_irq_sets().
2226 	 */
2227 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2228 	dev->io_queues[HCTX_TYPE_READ] = 0;
2229 
2230 	/*
2231 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2232 	 * but some Apple controllers require all queues to use the first
2233 	 * vector.
2234 	 */
2235 	irq_queues = 1;
2236 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2237 		irq_queues += (nr_io_queues - poll_queues);
2238 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2239 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2240 }
2241 
2242 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2243 {
2244 	/*
2245 	 * If tags are shared with admin queue (Apple bug), then
2246 	 * make sure we only use one IO queue.
2247 	 */
2248 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2249 		return 1;
2250 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2251 }
2252 
2253 static int nvme_setup_io_queues(struct nvme_dev *dev)
2254 {
2255 	struct nvme_queue *adminq = &dev->queues[0];
2256 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2257 	unsigned int nr_io_queues;
2258 	unsigned long size;
2259 	int result;
2260 
2261 	/*
2262 	 * Sample the module parameters once at reset time so that we have
2263 	 * stable values to work with.
2264 	 */
2265 	dev->nr_write_queues = write_queues;
2266 	dev->nr_poll_queues = poll_queues;
2267 
2268 	nr_io_queues = dev->nr_allocated_queues - 1;
2269 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2270 	if (result < 0)
2271 		return result;
2272 
2273 	if (nr_io_queues == 0)
2274 		return 0;
2275 
2276 	/*
2277 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2278 	 * from set to unset. If there is a window to it is truely freed,
2279 	 * pci_free_irq_vectors() jumping into this window will crash.
2280 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2281 	 * nvme_dev_disable() path.
2282 	 */
2283 	result = nvme_setup_io_queues_trylock(dev);
2284 	if (result)
2285 		return result;
2286 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2287 		pci_free_irq(pdev, 0, adminq);
2288 
2289 	if (dev->cmb_use_sqes) {
2290 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2291 				sizeof(struct nvme_command));
2292 		if (result > 0) {
2293 			dev->q_depth = result;
2294 			dev->ctrl.sqsize = result - 1;
2295 		} else {
2296 			dev->cmb_use_sqes = false;
2297 		}
2298 	}
2299 
2300 	do {
2301 		size = db_bar_size(dev, nr_io_queues);
2302 		result = nvme_remap_bar(dev, size);
2303 		if (!result)
2304 			break;
2305 		if (!--nr_io_queues) {
2306 			result = -ENOMEM;
2307 			goto out_unlock;
2308 		}
2309 	} while (1);
2310 	adminq->q_db = dev->dbs;
2311 
2312  retry:
2313 	/* Deregister the admin queue's interrupt */
2314 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2315 		pci_free_irq(pdev, 0, adminq);
2316 
2317 	/*
2318 	 * If we enable msix early due to not intx, disable it again before
2319 	 * setting up the full range we need.
2320 	 */
2321 	pci_free_irq_vectors(pdev);
2322 
2323 	result = nvme_setup_irqs(dev, nr_io_queues);
2324 	if (result <= 0) {
2325 		result = -EIO;
2326 		goto out_unlock;
2327 	}
2328 
2329 	dev->num_vecs = result;
2330 	result = max(result - 1, 1);
2331 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2332 
2333 	/*
2334 	 * Should investigate if there's a performance win from allocating
2335 	 * more queues than interrupt vectors; it might allow the submission
2336 	 * path to scale better, even if the receive path is limited by the
2337 	 * number of interrupts.
2338 	 */
2339 	result = queue_request_irq(adminq);
2340 	if (result)
2341 		goto out_unlock;
2342 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2343 	mutex_unlock(&dev->shutdown_lock);
2344 
2345 	result = nvme_create_io_queues(dev);
2346 	if (result || dev->online_queues < 2)
2347 		return result;
2348 
2349 	if (dev->online_queues - 1 < dev->max_qid) {
2350 		nr_io_queues = dev->online_queues - 1;
2351 		nvme_delete_io_queues(dev);
2352 		result = nvme_setup_io_queues_trylock(dev);
2353 		if (result)
2354 			return result;
2355 		nvme_suspend_io_queues(dev);
2356 		goto retry;
2357 	}
2358 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2359 					dev->io_queues[HCTX_TYPE_DEFAULT],
2360 					dev->io_queues[HCTX_TYPE_READ],
2361 					dev->io_queues[HCTX_TYPE_POLL]);
2362 	return 0;
2363 out_unlock:
2364 	mutex_unlock(&dev->shutdown_lock);
2365 	return result;
2366 }
2367 
2368 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2369 					     blk_status_t error)
2370 {
2371 	struct nvme_queue *nvmeq = req->end_io_data;
2372 
2373 	blk_mq_free_request(req);
2374 	complete(&nvmeq->delete_done);
2375 	return RQ_END_IO_NONE;
2376 }
2377 
2378 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2379 					  blk_status_t error)
2380 {
2381 	struct nvme_queue *nvmeq = req->end_io_data;
2382 
2383 	if (error)
2384 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2385 
2386 	return nvme_del_queue_end(req, error);
2387 }
2388 
2389 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2390 {
2391 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2392 	struct request *req;
2393 	struct nvme_command cmd = { };
2394 
2395 	cmd.delete_queue.opcode = opcode;
2396 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2397 
2398 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2399 	if (IS_ERR(req))
2400 		return PTR_ERR(req);
2401 	nvme_init_request(req, &cmd);
2402 
2403 	if (opcode == nvme_admin_delete_cq)
2404 		req->end_io = nvme_del_cq_end;
2405 	else
2406 		req->end_io = nvme_del_queue_end;
2407 	req->end_io_data = nvmeq;
2408 
2409 	init_completion(&nvmeq->delete_done);
2410 	blk_execute_rq_nowait(req, false);
2411 	return 0;
2412 }
2413 
2414 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2415 {
2416 	int nr_queues = dev->online_queues - 1, sent = 0;
2417 	unsigned long timeout;
2418 
2419  retry:
2420 	timeout = NVME_ADMIN_TIMEOUT;
2421 	while (nr_queues > 0) {
2422 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2423 			break;
2424 		nr_queues--;
2425 		sent++;
2426 	}
2427 	while (sent) {
2428 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2429 
2430 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2431 				timeout);
2432 		if (timeout == 0)
2433 			return false;
2434 
2435 		sent--;
2436 		if (nr_queues)
2437 			goto retry;
2438 	}
2439 	return true;
2440 }
2441 
2442 static void nvme_delete_io_queues(struct nvme_dev *dev)
2443 {
2444 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2445 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2446 }
2447 
2448 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2449 {
2450 	if (dev->io_queues[HCTX_TYPE_POLL])
2451 		return 3;
2452 	if (dev->io_queues[HCTX_TYPE_READ])
2453 		return 2;
2454 	return 1;
2455 }
2456 
2457 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2458 {
2459 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2460 	/* free previously allocated queues that are no longer usable */
2461 	nvme_free_queues(dev, dev->online_queues);
2462 }
2463 
2464 static int nvme_pci_enable(struct nvme_dev *dev)
2465 {
2466 	int result = -ENOMEM;
2467 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2468 
2469 	if (pci_enable_device_mem(pdev))
2470 		return result;
2471 
2472 	pci_set_master(pdev);
2473 
2474 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2475 		result = -ENODEV;
2476 		goto disable;
2477 	}
2478 
2479 	/*
2480 	 * Some devices and/or platforms don't advertise or work with INTx
2481 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2482 	 * adjust this later.
2483 	 */
2484 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2485 	if (result < 0)
2486 		goto disable;
2487 
2488 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2489 
2490 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2491 				io_queue_depth);
2492 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2493 	dev->dbs = dev->bar + 4096;
2494 
2495 	/*
2496 	 * Some Apple controllers require a non-standard SQE size.
2497 	 * Interestingly they also seem to ignore the CC:IOSQES register
2498 	 * so we don't bother updating it here.
2499 	 */
2500 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2501 		dev->io_sqes = 7;
2502 	else
2503 		dev->io_sqes = NVME_NVM_IOSQES;
2504 
2505 	/*
2506 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2507 	 * some MacBook7,1 to avoid controller resets and data loss.
2508 	 */
2509 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2510 		dev->q_depth = 2;
2511 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2512 			"set queue depth=%u to work around controller resets\n",
2513 			dev->q_depth);
2514 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2515 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2516 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2517 		dev->q_depth = 64;
2518 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2519                         "set queue depth=%u\n", dev->q_depth);
2520 	}
2521 
2522 	/*
2523 	 * Controllers with the shared tags quirk need the IO queue to be
2524 	 * big enough so that we get 32 tags for the admin queue
2525 	 */
2526 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2527 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2528 		dev->q_depth = NVME_AQ_DEPTH + 2;
2529 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2530 			 dev->q_depth);
2531 	}
2532 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2533 
2534 	nvme_map_cmb(dev);
2535 
2536 	pci_save_state(pdev);
2537 
2538 	result = nvme_pci_configure_admin_queue(dev);
2539 	if (result)
2540 		goto free_irq;
2541 	return result;
2542 
2543  free_irq:
2544 	pci_free_irq_vectors(pdev);
2545  disable:
2546 	pci_disable_device(pdev);
2547 	return result;
2548 }
2549 
2550 static void nvme_dev_unmap(struct nvme_dev *dev)
2551 {
2552 	if (dev->bar)
2553 		iounmap(dev->bar);
2554 	pci_release_mem_regions(to_pci_dev(dev->dev));
2555 }
2556 
2557 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2558 {
2559 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2560 	u32 csts;
2561 
2562 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2563 		return true;
2564 	if (pdev->error_state != pci_channel_io_normal)
2565 		return true;
2566 
2567 	csts = readl(dev->bar + NVME_REG_CSTS);
2568 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2569 }
2570 
2571 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2572 {
2573 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2574 	bool dead;
2575 
2576 	mutex_lock(&dev->shutdown_lock);
2577 	dead = nvme_pci_ctrl_is_dead(dev);
2578 	if (dev->ctrl.state == NVME_CTRL_LIVE ||
2579 	    dev->ctrl.state == NVME_CTRL_RESETTING) {
2580 		if (pci_is_enabled(pdev))
2581 			nvme_start_freeze(&dev->ctrl);
2582 		/*
2583 		 * Give the controller a chance to complete all entered requests
2584 		 * if doing a safe shutdown.
2585 		 */
2586 		if (!dead && shutdown)
2587 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2588 	}
2589 
2590 	nvme_quiesce_io_queues(&dev->ctrl);
2591 
2592 	if (!dead && dev->ctrl.queue_count > 0) {
2593 		nvme_delete_io_queues(dev);
2594 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2595 		nvme_poll_irqdisable(&dev->queues[0]);
2596 	}
2597 	nvme_suspend_io_queues(dev);
2598 	nvme_suspend_queue(dev, 0);
2599 	pci_free_irq_vectors(pdev);
2600 	if (pci_is_enabled(pdev))
2601 		pci_disable_device(pdev);
2602 	nvme_reap_pending_cqes(dev);
2603 
2604 	nvme_cancel_tagset(&dev->ctrl);
2605 	nvme_cancel_admin_tagset(&dev->ctrl);
2606 
2607 	/*
2608 	 * The driver will not be starting up queues again if shutting down so
2609 	 * must flush all entered requests to their failed completion to avoid
2610 	 * deadlocking blk-mq hot-cpu notifier.
2611 	 */
2612 	if (shutdown) {
2613 		nvme_unquiesce_io_queues(&dev->ctrl);
2614 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2615 			nvme_unquiesce_admin_queue(&dev->ctrl);
2616 	}
2617 	mutex_unlock(&dev->shutdown_lock);
2618 }
2619 
2620 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2621 {
2622 	if (!nvme_wait_reset(&dev->ctrl))
2623 		return -EBUSY;
2624 	nvme_dev_disable(dev, shutdown);
2625 	return 0;
2626 }
2627 
2628 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2629 {
2630 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2631 						NVME_CTRL_PAGE_SIZE,
2632 						NVME_CTRL_PAGE_SIZE, 0);
2633 	if (!dev->prp_page_pool)
2634 		return -ENOMEM;
2635 
2636 	/* Optimisation for I/Os between 4k and 128k */
2637 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2638 						256, 256, 0);
2639 	if (!dev->prp_small_pool) {
2640 		dma_pool_destroy(dev->prp_page_pool);
2641 		return -ENOMEM;
2642 	}
2643 	return 0;
2644 }
2645 
2646 static void nvme_release_prp_pools(struct nvme_dev *dev)
2647 {
2648 	dma_pool_destroy(dev->prp_page_pool);
2649 	dma_pool_destroy(dev->prp_small_pool);
2650 }
2651 
2652 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2653 {
2654 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2655 
2656 	dev->iod_mempool = mempool_create_node(1,
2657 			mempool_kmalloc, mempool_kfree,
2658 			(void *)alloc_size, GFP_KERNEL,
2659 			dev_to_node(dev->dev));
2660 	if (!dev->iod_mempool)
2661 		return -ENOMEM;
2662 	return 0;
2663 }
2664 
2665 static void nvme_free_tagset(struct nvme_dev *dev)
2666 {
2667 	if (dev->tagset.tags)
2668 		nvme_remove_io_tag_set(&dev->ctrl);
2669 	dev->ctrl.tagset = NULL;
2670 }
2671 
2672 /* pairs with nvme_pci_alloc_dev */
2673 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2674 {
2675 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2676 
2677 	nvme_free_tagset(dev);
2678 	put_device(dev->dev);
2679 	kfree(dev->queues);
2680 	kfree(dev);
2681 }
2682 
2683 static void nvme_reset_work(struct work_struct *work)
2684 {
2685 	struct nvme_dev *dev =
2686 		container_of(work, struct nvme_dev, ctrl.reset_work);
2687 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2688 	int result;
2689 
2690 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2691 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2692 			 dev->ctrl.state);
2693 		return;
2694 	}
2695 
2696 	/*
2697 	 * If we're called to reset a live controller first shut it down before
2698 	 * moving on.
2699 	 */
2700 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2701 		nvme_dev_disable(dev, false);
2702 	nvme_sync_queues(&dev->ctrl);
2703 
2704 	mutex_lock(&dev->shutdown_lock);
2705 	result = nvme_pci_enable(dev);
2706 	if (result)
2707 		goto out_unlock;
2708 	nvme_unquiesce_admin_queue(&dev->ctrl);
2709 	mutex_unlock(&dev->shutdown_lock);
2710 
2711 	/*
2712 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2713 	 * initializing procedure here.
2714 	 */
2715 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2716 		dev_warn(dev->ctrl.device,
2717 			"failed to mark controller CONNECTING\n");
2718 		result = -EBUSY;
2719 		goto out;
2720 	}
2721 
2722 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2723 	if (result)
2724 		goto out;
2725 
2726 	nvme_dbbuf_dma_alloc(dev);
2727 
2728 	result = nvme_setup_host_mem(dev);
2729 	if (result < 0)
2730 		goto out;
2731 
2732 	result = nvme_setup_io_queues(dev);
2733 	if (result)
2734 		goto out;
2735 
2736 	/*
2737 	 * Freeze and update the number of I/O queues as thos might have
2738 	 * changed.  If there are no I/O queues left after this reset, keep the
2739 	 * controller around but remove all namespaces.
2740 	 */
2741 	if (dev->online_queues > 1) {
2742 		nvme_unquiesce_io_queues(&dev->ctrl);
2743 		nvme_wait_freeze(&dev->ctrl);
2744 		nvme_pci_update_nr_queues(dev);
2745 		nvme_dbbuf_set(dev);
2746 		nvme_unfreeze(&dev->ctrl);
2747 	} else {
2748 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2749 		nvme_mark_namespaces_dead(&dev->ctrl);
2750 		nvme_unquiesce_io_queues(&dev->ctrl);
2751 		nvme_remove_namespaces(&dev->ctrl);
2752 		nvme_free_tagset(dev);
2753 	}
2754 
2755 	/*
2756 	 * If only admin queue live, keep it to do further investigation or
2757 	 * recovery.
2758 	 */
2759 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2760 		dev_warn(dev->ctrl.device,
2761 			"failed to mark controller live state\n");
2762 		result = -ENODEV;
2763 		goto out;
2764 	}
2765 
2766 	nvme_start_ctrl(&dev->ctrl);
2767 	return;
2768 
2769  out_unlock:
2770 	mutex_unlock(&dev->shutdown_lock);
2771  out:
2772 	/*
2773 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2774 	 * may be holding this pci_dev's device lock.
2775 	 */
2776 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2777 		 result);
2778 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2779 	nvme_dev_disable(dev, true);
2780 	nvme_mark_namespaces_dead(&dev->ctrl);
2781 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2782 }
2783 
2784 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2785 {
2786 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2787 	return 0;
2788 }
2789 
2790 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2791 {
2792 	writel(val, to_nvme_dev(ctrl)->bar + off);
2793 	return 0;
2794 }
2795 
2796 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2797 {
2798 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2799 	return 0;
2800 }
2801 
2802 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2803 {
2804 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2805 
2806 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2807 }
2808 
2809 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2810 {
2811 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2812 	struct nvme_subsystem *subsys = ctrl->subsys;
2813 
2814 	dev_err(ctrl->device,
2815 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2816 		pdev->vendor, pdev->device,
2817 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2818 		subsys->model, nvme_strlen(subsys->firmware_rev,
2819 					   sizeof(subsys->firmware_rev)),
2820 		subsys->firmware_rev);
2821 }
2822 
2823 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2824 {
2825 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2826 
2827 	return dma_pci_p2pdma_supported(dev->dev);
2828 }
2829 
2830 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2831 	.name			= "pcie",
2832 	.module			= THIS_MODULE,
2833 	.flags			= NVME_F_METADATA_SUPPORTED,
2834 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2835 	.reg_read32		= nvme_pci_reg_read32,
2836 	.reg_write32		= nvme_pci_reg_write32,
2837 	.reg_read64		= nvme_pci_reg_read64,
2838 	.free_ctrl		= nvme_pci_free_ctrl,
2839 	.submit_async_event	= nvme_pci_submit_async_event,
2840 	.get_address		= nvme_pci_get_address,
2841 	.print_device_info	= nvme_pci_print_device_info,
2842 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2843 };
2844 
2845 static int nvme_dev_map(struct nvme_dev *dev)
2846 {
2847 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2848 
2849 	if (pci_request_mem_regions(pdev, "nvme"))
2850 		return -ENODEV;
2851 
2852 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2853 		goto release;
2854 
2855 	return 0;
2856   release:
2857 	pci_release_mem_regions(pdev);
2858 	return -ENODEV;
2859 }
2860 
2861 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2862 {
2863 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2864 		/*
2865 		 * Several Samsung devices seem to drop off the PCIe bus
2866 		 * randomly when APST is on and uses the deepest sleep state.
2867 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2868 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2869 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2870 		 * laptops.
2871 		 */
2872 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2873 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2874 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2875 			return NVME_QUIRK_NO_DEEPEST_PS;
2876 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2877 		/*
2878 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2879 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2880 		 * within few minutes after bootup on a Coffee Lake board -
2881 		 * ASUS PRIME Z370-A
2882 		 */
2883 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2884 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2885 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2886 			return NVME_QUIRK_NO_APST;
2887 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2888 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2889 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2890 		/*
2891 		 * Forcing to use host managed nvme power settings for
2892 		 * lowest idle power with quick resume latency on
2893 		 * Samsung and Toshiba SSDs based on suspend behavior
2894 		 * on Coffee Lake board for LENOVO C640
2895 		 */
2896 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2897 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2898 			return NVME_QUIRK_SIMPLE_SUSPEND;
2899 	}
2900 
2901 	return 0;
2902 }
2903 
2904 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2905 		const struct pci_device_id *id)
2906 {
2907 	unsigned long quirks = id->driver_data;
2908 	int node = dev_to_node(&pdev->dev);
2909 	struct nvme_dev *dev;
2910 	int ret = -ENOMEM;
2911 
2912 	if (node == NUMA_NO_NODE)
2913 		set_dev_node(&pdev->dev, first_memory_node);
2914 
2915 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2916 	if (!dev)
2917 		return ERR_PTR(-ENOMEM);
2918 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2919 	mutex_init(&dev->shutdown_lock);
2920 
2921 	dev->nr_write_queues = write_queues;
2922 	dev->nr_poll_queues = poll_queues;
2923 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2924 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2925 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2926 	if (!dev->queues)
2927 		goto out_free_dev;
2928 
2929 	dev->dev = get_device(&pdev->dev);
2930 
2931 	quirks |= check_vendor_combination_bug(pdev);
2932 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2933 		/*
2934 		 * Some systems use a bios work around to ask for D3 on
2935 		 * platforms that support kernel managed suspend.
2936 		 */
2937 		dev_info(&pdev->dev,
2938 			 "platform quirk: setting simple suspend\n");
2939 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2940 	}
2941 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2942 			     quirks);
2943 	if (ret)
2944 		goto out_put_device;
2945 
2946 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2947 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2948 	else
2949 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2950 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2951 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2952 
2953 	/*
2954 	 * Limit the max command size to prevent iod->sg allocations going
2955 	 * over a single page.
2956 	 */
2957 	dev->ctrl.max_hw_sectors = min_t(u32,
2958 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2959 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2960 
2961 	/*
2962 	 * There is no support for SGLs for metadata (yet), so we are limited to
2963 	 * a single integrity segment for the separate metadata pointer.
2964 	 */
2965 	dev->ctrl.max_integrity_segments = 1;
2966 	return dev;
2967 
2968 out_put_device:
2969 	put_device(dev->dev);
2970 	kfree(dev->queues);
2971 out_free_dev:
2972 	kfree(dev);
2973 	return ERR_PTR(ret);
2974 }
2975 
2976 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2977 {
2978 	struct nvme_dev *dev;
2979 	int result = -ENOMEM;
2980 
2981 	dev = nvme_pci_alloc_dev(pdev, id);
2982 	if (IS_ERR(dev))
2983 		return PTR_ERR(dev);
2984 
2985 	result = nvme_dev_map(dev);
2986 	if (result)
2987 		goto out_uninit_ctrl;
2988 
2989 	result = nvme_setup_prp_pools(dev);
2990 	if (result)
2991 		goto out_dev_unmap;
2992 
2993 	result = nvme_pci_alloc_iod_mempool(dev);
2994 	if (result)
2995 		goto out_release_prp_pools;
2996 
2997 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2998 
2999 	result = nvme_pci_enable(dev);
3000 	if (result)
3001 		goto out_release_iod_mempool;
3002 
3003 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3004 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3005 	if (result)
3006 		goto out_disable;
3007 
3008 	/*
3009 	 * Mark the controller as connecting before sending admin commands to
3010 	 * allow the timeout handler to do the right thing.
3011 	 */
3012 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3013 		dev_warn(dev->ctrl.device,
3014 			"failed to mark controller CONNECTING\n");
3015 		result = -EBUSY;
3016 		goto out_disable;
3017 	}
3018 
3019 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3020 	if (result)
3021 		goto out_disable;
3022 
3023 	nvme_dbbuf_dma_alloc(dev);
3024 
3025 	result = nvme_setup_host_mem(dev);
3026 	if (result < 0)
3027 		goto out_disable;
3028 
3029 	result = nvme_setup_io_queues(dev);
3030 	if (result)
3031 		goto out_disable;
3032 
3033 	if (dev->online_queues > 1) {
3034 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3035 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3036 		nvme_dbbuf_set(dev);
3037 	}
3038 
3039 	if (!dev->ctrl.tagset)
3040 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3041 
3042 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3043 		dev_warn(dev->ctrl.device,
3044 			"failed to mark controller live state\n");
3045 		result = -ENODEV;
3046 		goto out_disable;
3047 	}
3048 
3049 	pci_set_drvdata(pdev, dev);
3050 
3051 	nvme_start_ctrl(&dev->ctrl);
3052 	nvme_put_ctrl(&dev->ctrl);
3053 	flush_work(&dev->ctrl.scan_work);
3054 	return 0;
3055 
3056 out_disable:
3057 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3058 	nvme_dev_disable(dev, true);
3059 	nvme_free_host_mem(dev);
3060 	nvme_dev_remove_admin(dev);
3061 	nvme_dbbuf_dma_free(dev);
3062 	nvme_free_queues(dev, 0);
3063 out_release_iod_mempool:
3064 	mempool_destroy(dev->iod_mempool);
3065 out_release_prp_pools:
3066 	nvme_release_prp_pools(dev);
3067 out_dev_unmap:
3068 	nvme_dev_unmap(dev);
3069 out_uninit_ctrl:
3070 	nvme_uninit_ctrl(&dev->ctrl);
3071 	nvme_put_ctrl(&dev->ctrl);
3072 	return result;
3073 }
3074 
3075 static void nvme_reset_prepare(struct pci_dev *pdev)
3076 {
3077 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3078 
3079 	/*
3080 	 * We don't need to check the return value from waiting for the reset
3081 	 * state as pci_dev device lock is held, making it impossible to race
3082 	 * with ->remove().
3083 	 */
3084 	nvme_disable_prepare_reset(dev, false);
3085 	nvme_sync_queues(&dev->ctrl);
3086 }
3087 
3088 static void nvme_reset_done(struct pci_dev *pdev)
3089 {
3090 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3091 
3092 	if (!nvme_try_sched_reset(&dev->ctrl))
3093 		flush_work(&dev->ctrl.reset_work);
3094 }
3095 
3096 static void nvme_shutdown(struct pci_dev *pdev)
3097 {
3098 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3099 
3100 	nvme_disable_prepare_reset(dev, true);
3101 }
3102 
3103 /*
3104  * The driver's remove may be called on a device in a partially initialized
3105  * state. This function must not have any dependencies on the device state in
3106  * order to proceed.
3107  */
3108 static void nvme_remove(struct pci_dev *pdev)
3109 {
3110 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3111 
3112 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3113 	pci_set_drvdata(pdev, NULL);
3114 
3115 	if (!pci_device_is_present(pdev)) {
3116 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3117 		nvme_dev_disable(dev, true);
3118 	}
3119 
3120 	flush_work(&dev->ctrl.reset_work);
3121 	nvme_stop_ctrl(&dev->ctrl);
3122 	nvme_remove_namespaces(&dev->ctrl);
3123 	nvme_dev_disable(dev, true);
3124 	nvme_free_host_mem(dev);
3125 	nvme_dev_remove_admin(dev);
3126 	nvme_dbbuf_dma_free(dev);
3127 	nvme_free_queues(dev, 0);
3128 	mempool_destroy(dev->iod_mempool);
3129 	nvme_release_prp_pools(dev);
3130 	nvme_dev_unmap(dev);
3131 	nvme_uninit_ctrl(&dev->ctrl);
3132 }
3133 
3134 #ifdef CONFIG_PM_SLEEP
3135 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3136 {
3137 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3138 }
3139 
3140 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3141 {
3142 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3143 }
3144 
3145 static int nvme_resume(struct device *dev)
3146 {
3147 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3148 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3149 
3150 	if (ndev->last_ps == U32_MAX ||
3151 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3152 		goto reset;
3153 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3154 		goto reset;
3155 
3156 	return 0;
3157 reset:
3158 	return nvme_try_sched_reset(ctrl);
3159 }
3160 
3161 static int nvme_suspend(struct device *dev)
3162 {
3163 	struct pci_dev *pdev = to_pci_dev(dev);
3164 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3165 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3166 	int ret = -EBUSY;
3167 
3168 	ndev->last_ps = U32_MAX;
3169 
3170 	/*
3171 	 * The platform does not remove power for a kernel managed suspend so
3172 	 * use host managed nvme power settings for lowest idle power if
3173 	 * possible. This should have quicker resume latency than a full device
3174 	 * shutdown.  But if the firmware is involved after the suspend or the
3175 	 * device does not support any non-default power states, shut down the
3176 	 * device fully.
3177 	 *
3178 	 * If ASPM is not enabled for the device, shut down the device and allow
3179 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3180 	 * down, so as to allow the platform to achieve its minimum low-power
3181 	 * state (which may not be possible if the link is up).
3182 	 */
3183 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3184 	    !pcie_aspm_enabled(pdev) ||
3185 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3186 		return nvme_disable_prepare_reset(ndev, true);
3187 
3188 	nvme_start_freeze(ctrl);
3189 	nvme_wait_freeze(ctrl);
3190 	nvme_sync_queues(ctrl);
3191 
3192 	if (ctrl->state != NVME_CTRL_LIVE)
3193 		goto unfreeze;
3194 
3195 	/*
3196 	 * Host memory access may not be successful in a system suspend state,
3197 	 * but the specification allows the controller to access memory in a
3198 	 * non-operational power state.
3199 	 */
3200 	if (ndev->hmb) {
3201 		ret = nvme_set_host_mem(ndev, 0);
3202 		if (ret < 0)
3203 			goto unfreeze;
3204 	}
3205 
3206 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3207 	if (ret < 0)
3208 		goto unfreeze;
3209 
3210 	/*
3211 	 * A saved state prevents pci pm from generically controlling the
3212 	 * device's power. If we're using protocol specific settings, we don't
3213 	 * want pci interfering.
3214 	 */
3215 	pci_save_state(pdev);
3216 
3217 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3218 	if (ret < 0)
3219 		goto unfreeze;
3220 
3221 	if (ret) {
3222 		/* discard the saved state */
3223 		pci_load_saved_state(pdev, NULL);
3224 
3225 		/*
3226 		 * Clearing npss forces a controller reset on resume. The
3227 		 * correct value will be rediscovered then.
3228 		 */
3229 		ret = nvme_disable_prepare_reset(ndev, true);
3230 		ctrl->npss = 0;
3231 	}
3232 unfreeze:
3233 	nvme_unfreeze(ctrl);
3234 	return ret;
3235 }
3236 
3237 static int nvme_simple_suspend(struct device *dev)
3238 {
3239 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3240 
3241 	return nvme_disable_prepare_reset(ndev, true);
3242 }
3243 
3244 static int nvme_simple_resume(struct device *dev)
3245 {
3246 	struct pci_dev *pdev = to_pci_dev(dev);
3247 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3248 
3249 	return nvme_try_sched_reset(&ndev->ctrl);
3250 }
3251 
3252 static const struct dev_pm_ops nvme_dev_pm_ops = {
3253 	.suspend	= nvme_suspend,
3254 	.resume		= nvme_resume,
3255 	.freeze		= nvme_simple_suspend,
3256 	.thaw		= nvme_simple_resume,
3257 	.poweroff	= nvme_simple_suspend,
3258 	.restore	= nvme_simple_resume,
3259 };
3260 #endif /* CONFIG_PM_SLEEP */
3261 
3262 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3263 						pci_channel_state_t state)
3264 {
3265 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3266 
3267 	/*
3268 	 * A frozen channel requires a reset. When detected, this method will
3269 	 * shutdown the controller to quiesce. The controller will be restarted
3270 	 * after the slot reset through driver's slot_reset callback.
3271 	 */
3272 	switch (state) {
3273 	case pci_channel_io_normal:
3274 		return PCI_ERS_RESULT_CAN_RECOVER;
3275 	case pci_channel_io_frozen:
3276 		dev_warn(dev->ctrl.device,
3277 			"frozen state error detected, reset controller\n");
3278 		nvme_dev_disable(dev, false);
3279 		return PCI_ERS_RESULT_NEED_RESET;
3280 	case pci_channel_io_perm_failure:
3281 		dev_warn(dev->ctrl.device,
3282 			"failure state error detected, request disconnect\n");
3283 		return PCI_ERS_RESULT_DISCONNECT;
3284 	}
3285 	return PCI_ERS_RESULT_NEED_RESET;
3286 }
3287 
3288 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3289 {
3290 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3291 
3292 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3293 	pci_restore_state(pdev);
3294 	nvme_reset_ctrl(&dev->ctrl);
3295 	return PCI_ERS_RESULT_RECOVERED;
3296 }
3297 
3298 static void nvme_error_resume(struct pci_dev *pdev)
3299 {
3300 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3301 
3302 	flush_work(&dev->ctrl.reset_work);
3303 }
3304 
3305 static const struct pci_error_handlers nvme_err_handler = {
3306 	.error_detected	= nvme_error_detected,
3307 	.slot_reset	= nvme_slot_reset,
3308 	.resume		= nvme_error_resume,
3309 	.reset_prepare	= nvme_reset_prepare,
3310 	.reset_done	= nvme_reset_done,
3311 };
3312 
3313 static const struct pci_device_id nvme_id_table[] = {
3314 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3315 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3316 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3317 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3318 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3319 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3320 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3321 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3322 				NVME_QUIRK_DEALLOCATE_ZEROES |
3323 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3324 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3325 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3326 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3327 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3328 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3329 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3330 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3331 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3332 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3333 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3334 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3335 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3336 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3337 				NVME_QUIRK_BOGUS_NID, },
3338 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3339 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3340 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3341 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3342 				NVME_QUIRK_BOGUS_NID, },
3343 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3344 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3345 				NVME_QUIRK_NO_NS_DESC_LIST, },
3346 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3347 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3348 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3349 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3350 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3351 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3352 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3353 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3354 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3355 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3356 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3357 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3358 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3359 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3360 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3361 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3362 				NVME_QUIRK_BOGUS_NID, },
3363 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3364 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3365 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3366 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3367 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3368 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3369 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3370 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3371 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3372 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3373 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3374 				NVME_QUIRK_BOGUS_NID, },
3375 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3376 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3377 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3378 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3379 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3380 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3381 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3382 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3383 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3384 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3385 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3386 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3387 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3388 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3389 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3390 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3391 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3392 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3393 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3394 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3395 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3396 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3397 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3398 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3399 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3400 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3401 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3402 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3403 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3404 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3405 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3406 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3407 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3408 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3409 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3410 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3411 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3412 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3413 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3414 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3415 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3416 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3417 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3418 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3419 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3420 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3421 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3422 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3423 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3424 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3425 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3426 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3427 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3428 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3429 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3430 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3431 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3432 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3433 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3434 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3435 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3436 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3437 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3438 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3439 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3440 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3441 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3442 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3443 		.driver_data = NVME_QUIRK_BOGUS_NID |
3444 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3445 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3446 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3447 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3448 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3449 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3450 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3451 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3452 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3453 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3454 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3455 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3456 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3457 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3458 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3459 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3460 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3461 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3462 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3463 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3464 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3465 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3466 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3467 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3468 				NVME_QUIRK_128_BYTES_SQES |
3469 				NVME_QUIRK_SHARED_TAGS |
3470 				NVME_QUIRK_SKIP_CID_GEN |
3471 				NVME_QUIRK_IDENTIFY_CNS },
3472 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3473 	{ 0, }
3474 };
3475 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3476 
3477 static struct pci_driver nvme_driver = {
3478 	.name		= "nvme",
3479 	.id_table	= nvme_id_table,
3480 	.probe		= nvme_probe,
3481 	.remove		= nvme_remove,
3482 	.shutdown	= nvme_shutdown,
3483 	.driver		= {
3484 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3485 #ifdef CONFIG_PM_SLEEP
3486 		.pm		= &nvme_dev_pm_ops,
3487 #endif
3488 	},
3489 	.sriov_configure = pci_sriov_configure_simple,
3490 	.err_handler	= &nvme_err_handler,
3491 };
3492 
3493 static int __init nvme_init(void)
3494 {
3495 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3496 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3497 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3498 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3499 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3500 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3501 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3502 
3503 	return pci_register_driver(&nvme_driver);
3504 }
3505 
3506 static void __exit nvme_exit(void)
3507 {
3508 	pci_unregister_driver(&nvme_driver);
3509 	flush_workqueue(nvme_wq);
3510 }
3511 
3512 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3513 MODULE_LICENSE("GPL");
3514 MODULE_VERSION("1.0");
3515 module_init(nvme_init);
3516 module_exit(nvme_exit);
3517