1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/aer.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/once.h> 20 #include <linux/pci.h> 21 #include <linux/suspend.h> 22 #include <linux/t10-pi.h> 23 #include <linux/types.h> 24 #include <linux/io-64-nonatomic-lo-hi.h> 25 #include <linux/sed-opal.h> 26 #include <linux/pci-p2pdma.h> 27 28 #include "trace.h" 29 #include "nvme.h" 30 31 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 32 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 33 34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 35 36 /* 37 * These can be higher, but we need to ensure that any command doesn't 38 * require an sg allocation that needs more than a page of data. 39 */ 40 #define NVME_MAX_KB_SZ 4096 41 #define NVME_MAX_SEGS 127 42 43 static int use_threaded_interrupts; 44 module_param(use_threaded_interrupts, int, 0); 45 46 static bool use_cmb_sqes = true; 47 module_param(use_cmb_sqes, bool, 0444); 48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 49 50 static unsigned int max_host_mem_size_mb = 128; 51 module_param(max_host_mem_size_mb, uint, 0444); 52 MODULE_PARM_DESC(max_host_mem_size_mb, 53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 54 55 static unsigned int sgl_threshold = SZ_32K; 56 module_param(sgl_threshold, uint, 0644); 57 MODULE_PARM_DESC(sgl_threshold, 58 "Use SGLs when average request segment size is larger or equal to " 59 "this size. Use 0 to disable SGLs."); 60 61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 62 static const struct kernel_param_ops io_queue_depth_ops = { 63 .set = io_queue_depth_set, 64 .get = param_get_int, 65 }; 66 67 static int io_queue_depth = 1024; 68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 70 71 static int write_queues; 72 module_param(write_queues, int, 0644); 73 MODULE_PARM_DESC(write_queues, 74 "Number of queues to use for writes. If not set, reads and writes " 75 "will share a queue set."); 76 77 static int poll_queues; 78 module_param(poll_queues, int, 0644); 79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 80 81 struct nvme_dev; 82 struct nvme_queue; 83 84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 86 87 /* 88 * Represents an NVM Express device. Each nvme_dev is a PCI function. 89 */ 90 struct nvme_dev { 91 struct nvme_queue *queues; 92 struct blk_mq_tag_set tagset; 93 struct blk_mq_tag_set admin_tagset; 94 u32 __iomem *dbs; 95 struct device *dev; 96 struct dma_pool *prp_page_pool; 97 struct dma_pool *prp_small_pool; 98 unsigned online_queues; 99 unsigned max_qid; 100 unsigned io_queues[HCTX_MAX_TYPES]; 101 unsigned int num_vecs; 102 int q_depth; 103 u32 db_stride; 104 void __iomem *bar; 105 unsigned long bar_mapped_size; 106 struct work_struct remove_work; 107 struct mutex shutdown_lock; 108 bool subsystem; 109 u64 cmb_size; 110 bool cmb_use_sqes; 111 u32 cmbsz; 112 u32 cmbloc; 113 struct nvme_ctrl ctrl; 114 u32 last_ps; 115 116 mempool_t *iod_mempool; 117 118 /* shadow doorbell buffer support: */ 119 u32 *dbbuf_dbs; 120 dma_addr_t dbbuf_dbs_dma_addr; 121 u32 *dbbuf_eis; 122 dma_addr_t dbbuf_eis_dma_addr; 123 124 /* host memory buffer support: */ 125 u64 host_mem_size; 126 u32 nr_host_mem_descs; 127 dma_addr_t host_mem_descs_dma; 128 struct nvme_host_mem_buf_desc *host_mem_descs; 129 void **host_mem_desc_bufs; 130 }; 131 132 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 133 { 134 int n = 0, ret; 135 136 ret = kstrtoint(val, 10, &n); 137 if (ret != 0 || n < 2) 138 return -EINVAL; 139 140 return param_set_int(val, kp); 141 } 142 143 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 144 { 145 return qid * 2 * stride; 146 } 147 148 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 149 { 150 return (qid * 2 + 1) * stride; 151 } 152 153 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 154 { 155 return container_of(ctrl, struct nvme_dev, ctrl); 156 } 157 158 /* 159 * An NVM Express queue. Each device has at least two (one for admin 160 * commands and one for I/O commands). 161 */ 162 struct nvme_queue { 163 struct nvme_dev *dev; 164 spinlock_t sq_lock; 165 struct nvme_command *sq_cmds; 166 /* only used for poll queues: */ 167 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 168 volatile struct nvme_completion *cqes; 169 struct blk_mq_tags **tags; 170 dma_addr_t sq_dma_addr; 171 dma_addr_t cq_dma_addr; 172 u32 __iomem *q_db; 173 u16 q_depth; 174 u16 cq_vector; 175 u16 sq_tail; 176 u16 last_sq_tail; 177 u16 cq_head; 178 u16 last_cq_head; 179 u16 qid; 180 u8 cq_phase; 181 unsigned long flags; 182 #define NVMEQ_ENABLED 0 183 #define NVMEQ_SQ_CMB 1 184 #define NVMEQ_DELETE_ERROR 2 185 #define NVMEQ_POLLED 3 186 u32 *dbbuf_sq_db; 187 u32 *dbbuf_cq_db; 188 u32 *dbbuf_sq_ei; 189 u32 *dbbuf_cq_ei; 190 struct completion delete_done; 191 }; 192 193 /* 194 * The nvme_iod describes the data in an I/O. 195 * 196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 197 * to the actual struct scatterlist. 198 */ 199 struct nvme_iod { 200 struct nvme_request req; 201 struct nvme_queue *nvmeq; 202 bool use_sgl; 203 int aborted; 204 int npages; /* In the PRP list. 0 means small pool in use */ 205 int nents; /* Used in scatterlist */ 206 dma_addr_t first_dma; 207 unsigned int dma_len; /* length of single DMA segment mapping */ 208 dma_addr_t meta_dma; 209 struct scatterlist *sg; 210 }; 211 212 static unsigned int max_io_queues(void) 213 { 214 return num_possible_cpus() + write_queues + poll_queues; 215 } 216 217 static unsigned int max_queue_count(void) 218 { 219 /* IO queues + admin queue */ 220 return 1 + max_io_queues(); 221 } 222 223 static inline unsigned int nvme_dbbuf_size(u32 stride) 224 { 225 return (max_queue_count() * 8 * stride); 226 } 227 228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 229 { 230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 231 232 if (dev->dbbuf_dbs) 233 return 0; 234 235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 236 &dev->dbbuf_dbs_dma_addr, 237 GFP_KERNEL); 238 if (!dev->dbbuf_dbs) 239 return -ENOMEM; 240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 241 &dev->dbbuf_eis_dma_addr, 242 GFP_KERNEL); 243 if (!dev->dbbuf_eis) { 244 dma_free_coherent(dev->dev, mem_size, 245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 246 dev->dbbuf_dbs = NULL; 247 return -ENOMEM; 248 } 249 250 return 0; 251 } 252 253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 254 { 255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 256 257 if (dev->dbbuf_dbs) { 258 dma_free_coherent(dev->dev, mem_size, 259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 260 dev->dbbuf_dbs = NULL; 261 } 262 if (dev->dbbuf_eis) { 263 dma_free_coherent(dev->dev, mem_size, 264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 265 dev->dbbuf_eis = NULL; 266 } 267 } 268 269 static void nvme_dbbuf_init(struct nvme_dev *dev, 270 struct nvme_queue *nvmeq, int qid) 271 { 272 if (!dev->dbbuf_dbs || !qid) 273 return; 274 275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 279 } 280 281 static void nvme_dbbuf_set(struct nvme_dev *dev) 282 { 283 struct nvme_command c; 284 285 if (!dev->dbbuf_dbs) 286 return; 287 288 memset(&c, 0, sizeof(c)); 289 c.dbbuf.opcode = nvme_admin_dbbuf; 290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 292 293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 295 /* Free memory and continue on */ 296 nvme_dbbuf_dma_free(dev); 297 } 298 } 299 300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 301 { 302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 303 } 304 305 /* Update dbbuf and return true if an MMIO is required */ 306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 307 volatile u32 *dbbuf_ei) 308 { 309 if (dbbuf_db) { 310 u16 old_value; 311 312 /* 313 * Ensure that the queue is written before updating 314 * the doorbell in memory 315 */ 316 wmb(); 317 318 old_value = *dbbuf_db; 319 *dbbuf_db = value; 320 321 /* 322 * Ensure that the doorbell is updated before reading the event 323 * index from memory. The controller needs to provide similar 324 * ordering to ensure the envent index is updated before reading 325 * the doorbell. 326 */ 327 mb(); 328 329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 330 return false; 331 } 332 333 return true; 334 } 335 336 /* 337 * Will slightly overestimate the number of pages needed. This is OK 338 * as it only leads to a small amount of wasted memory for the lifetime of 339 * the I/O. 340 */ 341 static int nvme_npages(unsigned size, struct nvme_dev *dev) 342 { 343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 344 dev->ctrl.page_size); 345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 346 } 347 348 /* 349 * Calculates the number of pages needed for the SGL segments. For example a 4k 350 * page can accommodate 256 SGL descriptors. 351 */ 352 static int nvme_pci_npages_sgl(unsigned int num_seg) 353 { 354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); 355 } 356 357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, 358 unsigned int size, unsigned int nseg, bool use_sgl) 359 { 360 size_t alloc_size; 361 362 if (use_sgl) 363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); 364 else 365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); 366 367 return alloc_size + sizeof(struct scatterlist) * nseg; 368 } 369 370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 371 unsigned int hctx_idx) 372 { 373 struct nvme_dev *dev = data; 374 struct nvme_queue *nvmeq = &dev->queues[0]; 375 376 WARN_ON(hctx_idx != 0); 377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 378 WARN_ON(nvmeq->tags); 379 380 hctx->driver_data = nvmeq; 381 nvmeq->tags = &dev->admin_tagset.tags[0]; 382 return 0; 383 } 384 385 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 386 { 387 struct nvme_queue *nvmeq = hctx->driver_data; 388 389 nvmeq->tags = NULL; 390 } 391 392 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 393 unsigned int hctx_idx) 394 { 395 struct nvme_dev *dev = data; 396 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 397 398 if (!nvmeq->tags) 399 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 400 401 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 402 hctx->driver_data = nvmeq; 403 return 0; 404 } 405 406 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 407 unsigned int hctx_idx, unsigned int numa_node) 408 { 409 struct nvme_dev *dev = set->driver_data; 410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 411 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 412 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 413 414 BUG_ON(!nvmeq); 415 iod->nvmeq = nvmeq; 416 417 nvme_req(req)->ctrl = &dev->ctrl; 418 return 0; 419 } 420 421 static int queue_irq_offset(struct nvme_dev *dev) 422 { 423 /* if we have more than 1 vec, admin queue offsets us by 1 */ 424 if (dev->num_vecs > 1) 425 return 1; 426 427 return 0; 428 } 429 430 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 431 { 432 struct nvme_dev *dev = set->driver_data; 433 int i, qoff, offset; 434 435 offset = queue_irq_offset(dev); 436 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 437 struct blk_mq_queue_map *map = &set->map[i]; 438 439 map->nr_queues = dev->io_queues[i]; 440 if (!map->nr_queues) { 441 BUG_ON(i == HCTX_TYPE_DEFAULT); 442 continue; 443 } 444 445 /* 446 * The poll queue(s) doesn't have an IRQ (and hence IRQ 447 * affinity), so use the regular blk-mq cpu mapping 448 */ 449 map->queue_offset = qoff; 450 if (i != HCTX_TYPE_POLL && offset) 451 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 452 else 453 blk_mq_map_queues(map); 454 qoff += map->nr_queues; 455 offset += map->nr_queues; 456 } 457 458 return 0; 459 } 460 461 /* 462 * Write sq tail if we are asked to, or if the next command would wrap. 463 */ 464 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 465 { 466 if (!write_sq) { 467 u16 next_tail = nvmeq->sq_tail + 1; 468 469 if (next_tail == nvmeq->q_depth) 470 next_tail = 0; 471 if (next_tail != nvmeq->last_sq_tail) 472 return; 473 } 474 475 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 476 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 477 writel(nvmeq->sq_tail, nvmeq->q_db); 478 nvmeq->last_sq_tail = nvmeq->sq_tail; 479 } 480 481 /** 482 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 483 * @nvmeq: The queue to use 484 * @cmd: The command to send 485 * @write_sq: whether to write to the SQ doorbell 486 */ 487 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 488 bool write_sq) 489 { 490 spin_lock(&nvmeq->sq_lock); 491 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd)); 492 if (++nvmeq->sq_tail == nvmeq->q_depth) 493 nvmeq->sq_tail = 0; 494 nvme_write_sq_db(nvmeq, write_sq); 495 spin_unlock(&nvmeq->sq_lock); 496 } 497 498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 499 { 500 struct nvme_queue *nvmeq = hctx->driver_data; 501 502 spin_lock(&nvmeq->sq_lock); 503 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 504 nvme_write_sq_db(nvmeq, true); 505 spin_unlock(&nvmeq->sq_lock); 506 } 507 508 static void **nvme_pci_iod_list(struct request *req) 509 { 510 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 511 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 512 } 513 514 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 515 { 516 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 517 int nseg = blk_rq_nr_phys_segments(req); 518 unsigned int avg_seg_size; 519 520 if (nseg == 0) 521 return false; 522 523 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 524 525 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 526 return false; 527 if (!iod->nvmeq->qid) 528 return false; 529 if (!sgl_threshold || avg_seg_size < sgl_threshold) 530 return false; 531 return true; 532 } 533 534 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 535 { 536 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 537 enum dma_data_direction dma_dir = rq_data_dir(req) ? 538 DMA_TO_DEVICE : DMA_FROM_DEVICE; 539 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; 540 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 541 int i; 542 543 if (iod->dma_len) { 544 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, dma_dir); 545 return; 546 } 547 548 WARN_ON_ONCE(!iod->nents); 549 550 /* P2PDMA requests do not need to be unmapped */ 551 if (!is_pci_p2pdma_page(sg_page(iod->sg))) 552 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 553 554 555 if (iod->npages == 0) 556 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 557 dma_addr); 558 559 for (i = 0; i < iod->npages; i++) { 560 void *addr = nvme_pci_iod_list(req)[i]; 561 562 if (iod->use_sgl) { 563 struct nvme_sgl_desc *sg_list = addr; 564 565 next_dma_addr = 566 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 567 } else { 568 __le64 *prp_list = addr; 569 570 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 571 } 572 573 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 574 dma_addr = next_dma_addr; 575 } 576 577 mempool_free(iod->sg, dev->iod_mempool); 578 } 579 580 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 581 { 582 int i; 583 struct scatterlist *sg; 584 585 for_each_sg(sgl, sg, nents, i) { 586 dma_addr_t phys = sg_phys(sg); 587 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 588 "dma_address:%pad dma_length:%d\n", 589 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 590 sg_dma_len(sg)); 591 } 592 } 593 594 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 595 struct request *req, struct nvme_rw_command *cmnd) 596 { 597 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 598 struct dma_pool *pool; 599 int length = blk_rq_payload_bytes(req); 600 struct scatterlist *sg = iod->sg; 601 int dma_len = sg_dma_len(sg); 602 u64 dma_addr = sg_dma_address(sg); 603 u32 page_size = dev->ctrl.page_size; 604 int offset = dma_addr & (page_size - 1); 605 __le64 *prp_list; 606 void **list = nvme_pci_iod_list(req); 607 dma_addr_t prp_dma; 608 int nprps, i; 609 610 length -= (page_size - offset); 611 if (length <= 0) { 612 iod->first_dma = 0; 613 goto done; 614 } 615 616 dma_len -= (page_size - offset); 617 if (dma_len) { 618 dma_addr += (page_size - offset); 619 } else { 620 sg = sg_next(sg); 621 dma_addr = sg_dma_address(sg); 622 dma_len = sg_dma_len(sg); 623 } 624 625 if (length <= page_size) { 626 iod->first_dma = dma_addr; 627 goto done; 628 } 629 630 nprps = DIV_ROUND_UP(length, page_size); 631 if (nprps <= (256 / 8)) { 632 pool = dev->prp_small_pool; 633 iod->npages = 0; 634 } else { 635 pool = dev->prp_page_pool; 636 iod->npages = 1; 637 } 638 639 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 640 if (!prp_list) { 641 iod->first_dma = dma_addr; 642 iod->npages = -1; 643 return BLK_STS_RESOURCE; 644 } 645 list[0] = prp_list; 646 iod->first_dma = prp_dma; 647 i = 0; 648 for (;;) { 649 if (i == page_size >> 3) { 650 __le64 *old_prp_list = prp_list; 651 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 652 if (!prp_list) 653 return BLK_STS_RESOURCE; 654 list[iod->npages++] = prp_list; 655 prp_list[0] = old_prp_list[i - 1]; 656 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 657 i = 1; 658 } 659 prp_list[i++] = cpu_to_le64(dma_addr); 660 dma_len -= page_size; 661 dma_addr += page_size; 662 length -= page_size; 663 if (length <= 0) 664 break; 665 if (dma_len > 0) 666 continue; 667 if (unlikely(dma_len < 0)) 668 goto bad_sgl; 669 sg = sg_next(sg); 670 dma_addr = sg_dma_address(sg); 671 dma_len = sg_dma_len(sg); 672 } 673 674 done: 675 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 676 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 677 678 return BLK_STS_OK; 679 680 bad_sgl: 681 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 682 "Invalid SGL for payload:%d nents:%d\n", 683 blk_rq_payload_bytes(req), iod->nents); 684 return BLK_STS_IOERR; 685 } 686 687 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 688 struct scatterlist *sg) 689 { 690 sge->addr = cpu_to_le64(sg_dma_address(sg)); 691 sge->length = cpu_to_le32(sg_dma_len(sg)); 692 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 693 } 694 695 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 696 dma_addr_t dma_addr, int entries) 697 { 698 sge->addr = cpu_to_le64(dma_addr); 699 if (entries < SGES_PER_PAGE) { 700 sge->length = cpu_to_le32(entries * sizeof(*sge)); 701 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 702 } else { 703 sge->length = cpu_to_le32(PAGE_SIZE); 704 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 705 } 706 } 707 708 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 709 struct request *req, struct nvme_rw_command *cmd, int entries) 710 { 711 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 712 struct dma_pool *pool; 713 struct nvme_sgl_desc *sg_list; 714 struct scatterlist *sg = iod->sg; 715 dma_addr_t sgl_dma; 716 int i = 0; 717 718 /* setting the transfer type as SGL */ 719 cmd->flags = NVME_CMD_SGL_METABUF; 720 721 if (entries == 1) { 722 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 723 return BLK_STS_OK; 724 } 725 726 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 727 pool = dev->prp_small_pool; 728 iod->npages = 0; 729 } else { 730 pool = dev->prp_page_pool; 731 iod->npages = 1; 732 } 733 734 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 735 if (!sg_list) { 736 iod->npages = -1; 737 return BLK_STS_RESOURCE; 738 } 739 740 nvme_pci_iod_list(req)[0] = sg_list; 741 iod->first_dma = sgl_dma; 742 743 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 744 745 do { 746 if (i == SGES_PER_PAGE) { 747 struct nvme_sgl_desc *old_sg_desc = sg_list; 748 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 749 750 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 751 if (!sg_list) 752 return BLK_STS_RESOURCE; 753 754 i = 0; 755 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 756 sg_list[i++] = *link; 757 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 758 } 759 760 nvme_pci_sgl_set_data(&sg_list[i++], sg); 761 sg = sg_next(sg); 762 } while (--entries > 0); 763 764 return BLK_STS_OK; 765 } 766 767 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 768 struct request *req, struct nvme_rw_command *cmnd, 769 struct bio_vec *bv) 770 { 771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 772 unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset; 773 774 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 775 if (dma_mapping_error(dev->dev, iod->first_dma)) 776 return BLK_STS_RESOURCE; 777 iod->dma_len = bv->bv_len; 778 779 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 780 if (bv->bv_len > first_prp_len) 781 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 782 return 0; 783 } 784 785 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 786 struct request *req, struct nvme_rw_command *cmnd, 787 struct bio_vec *bv) 788 { 789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 790 791 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 792 if (dma_mapping_error(dev->dev, iod->first_dma)) 793 return BLK_STS_RESOURCE; 794 iod->dma_len = bv->bv_len; 795 796 cmnd->flags = NVME_CMD_SGL_METABUF; 797 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 798 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 799 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 800 return 0; 801 } 802 803 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 804 struct nvme_command *cmnd) 805 { 806 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 807 blk_status_t ret = BLK_STS_RESOURCE; 808 int nr_mapped; 809 810 if (blk_rq_nr_phys_segments(req) == 1) { 811 struct bio_vec bv = req_bvec(req); 812 813 if (!is_pci_p2pdma_page(bv.bv_page)) { 814 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2) 815 return nvme_setup_prp_simple(dev, req, 816 &cmnd->rw, &bv); 817 818 if (iod->nvmeq->qid && 819 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 820 return nvme_setup_sgl_simple(dev, req, 821 &cmnd->rw, &bv); 822 } 823 } 824 825 iod->dma_len = 0; 826 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 827 if (!iod->sg) 828 return BLK_STS_RESOURCE; 829 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 830 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 831 if (!iod->nents) 832 goto out; 833 834 if (is_pci_p2pdma_page(sg_page(iod->sg))) 835 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents, 836 rq_dma_dir(req)); 837 else 838 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 839 rq_dma_dir(req), DMA_ATTR_NO_WARN); 840 if (!nr_mapped) 841 goto out; 842 843 iod->use_sgl = nvme_pci_use_sgls(dev, req); 844 if (iod->use_sgl) 845 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 846 else 847 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 848 out: 849 if (ret != BLK_STS_OK) 850 nvme_unmap_data(dev, req); 851 return ret; 852 } 853 854 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 855 struct nvme_command *cmnd) 856 { 857 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 858 859 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 860 rq_dma_dir(req), 0); 861 if (dma_mapping_error(dev->dev, iod->meta_dma)) 862 return BLK_STS_IOERR; 863 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 864 return 0; 865 } 866 867 /* 868 * NOTE: ns is NULL when called on the admin queue. 869 */ 870 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 871 const struct blk_mq_queue_data *bd) 872 { 873 struct nvme_ns *ns = hctx->queue->queuedata; 874 struct nvme_queue *nvmeq = hctx->driver_data; 875 struct nvme_dev *dev = nvmeq->dev; 876 struct request *req = bd->rq; 877 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 878 struct nvme_command cmnd; 879 blk_status_t ret; 880 881 iod->aborted = 0; 882 iod->npages = -1; 883 iod->nents = 0; 884 885 /* 886 * We should not need to do this, but we're still using this to 887 * ensure we can drain requests on a dying queue. 888 */ 889 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 890 return BLK_STS_IOERR; 891 892 ret = nvme_setup_cmd(ns, req, &cmnd); 893 if (ret) 894 return ret; 895 896 if (blk_rq_nr_phys_segments(req)) { 897 ret = nvme_map_data(dev, req, &cmnd); 898 if (ret) 899 goto out_free_cmd; 900 } 901 902 if (blk_integrity_rq(req)) { 903 ret = nvme_map_metadata(dev, req, &cmnd); 904 if (ret) 905 goto out_unmap_data; 906 } 907 908 blk_mq_start_request(req); 909 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 910 return BLK_STS_OK; 911 out_unmap_data: 912 nvme_unmap_data(dev, req); 913 out_free_cmd: 914 nvme_cleanup_cmd(req); 915 return ret; 916 } 917 918 static void nvme_pci_complete_rq(struct request *req) 919 { 920 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 921 struct nvme_dev *dev = iod->nvmeq->dev; 922 923 nvme_cleanup_cmd(req); 924 if (blk_integrity_rq(req)) 925 dma_unmap_page(dev->dev, iod->meta_dma, 926 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 927 if (blk_rq_nr_phys_segments(req)) 928 nvme_unmap_data(dev, req); 929 nvme_complete_rq(req); 930 } 931 932 /* We read the CQE phase first to check if the rest of the entry is valid */ 933 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 934 { 935 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == 936 nvmeq->cq_phase; 937 } 938 939 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 940 { 941 u16 head = nvmeq->cq_head; 942 943 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 944 nvmeq->dbbuf_cq_ei)) 945 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 946 } 947 948 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 949 { 950 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; 951 struct request *req; 952 953 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 954 dev_warn(nvmeq->dev->ctrl.device, 955 "invalid id %d completed on queue %d\n", 956 cqe->command_id, le16_to_cpu(cqe->sq_id)); 957 return; 958 } 959 960 /* 961 * AEN requests are special as they don't time out and can 962 * survive any kind of queue freeze and often don't respond to 963 * aborts. We don't even bother to allocate a struct request 964 * for them but rather special case them here. 965 */ 966 if (unlikely(nvmeq->qid == 0 && 967 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) { 968 nvme_complete_async_event(&nvmeq->dev->ctrl, 969 cqe->status, &cqe->result); 970 return; 971 } 972 973 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); 974 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 975 nvme_end_request(req, cqe->status, cqe->result); 976 } 977 978 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end) 979 { 980 while (start != end) { 981 nvme_handle_cqe(nvmeq, start); 982 if (++start == nvmeq->q_depth) 983 start = 0; 984 } 985 } 986 987 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 988 { 989 if (nvmeq->cq_head == nvmeq->q_depth - 1) { 990 nvmeq->cq_head = 0; 991 nvmeq->cq_phase = !nvmeq->cq_phase; 992 } else { 993 nvmeq->cq_head++; 994 } 995 } 996 997 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start, 998 u16 *end, unsigned int tag) 999 { 1000 int found = 0; 1001 1002 *start = nvmeq->cq_head; 1003 while (nvme_cqe_pending(nvmeq)) { 1004 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag) 1005 found++; 1006 nvme_update_cq_head(nvmeq); 1007 } 1008 *end = nvmeq->cq_head; 1009 1010 if (*start != *end) 1011 nvme_ring_cq_doorbell(nvmeq); 1012 return found; 1013 } 1014 1015 static irqreturn_t nvme_irq(int irq, void *data) 1016 { 1017 struct nvme_queue *nvmeq = data; 1018 irqreturn_t ret = IRQ_NONE; 1019 u16 start, end; 1020 1021 /* 1022 * The rmb/wmb pair ensures we see all updates from a previous run of 1023 * the irq handler, even if that was on another CPU. 1024 */ 1025 rmb(); 1026 if (nvmeq->cq_head != nvmeq->last_cq_head) 1027 ret = IRQ_HANDLED; 1028 nvme_process_cq(nvmeq, &start, &end, -1); 1029 nvmeq->last_cq_head = nvmeq->cq_head; 1030 wmb(); 1031 1032 if (start != end) { 1033 nvme_complete_cqes(nvmeq, start, end); 1034 return IRQ_HANDLED; 1035 } 1036 1037 return ret; 1038 } 1039 1040 static irqreturn_t nvme_irq_check(int irq, void *data) 1041 { 1042 struct nvme_queue *nvmeq = data; 1043 if (nvme_cqe_pending(nvmeq)) 1044 return IRQ_WAKE_THREAD; 1045 return IRQ_NONE; 1046 } 1047 1048 /* 1049 * Poll for completions any queue, including those not dedicated to polling. 1050 * Can be called from any context. 1051 */ 1052 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag) 1053 { 1054 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1055 u16 start, end; 1056 int found; 1057 1058 /* 1059 * For a poll queue we need to protect against the polling thread 1060 * using the CQ lock. For normal interrupt driven threads we have 1061 * to disable the interrupt to avoid racing with it. 1062 */ 1063 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) { 1064 spin_lock(&nvmeq->cq_poll_lock); 1065 found = nvme_process_cq(nvmeq, &start, &end, tag); 1066 spin_unlock(&nvmeq->cq_poll_lock); 1067 } else { 1068 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1069 found = nvme_process_cq(nvmeq, &start, &end, tag); 1070 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1071 } 1072 1073 nvme_complete_cqes(nvmeq, start, end); 1074 return found; 1075 } 1076 1077 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1078 { 1079 struct nvme_queue *nvmeq = hctx->driver_data; 1080 u16 start, end; 1081 bool found; 1082 1083 if (!nvme_cqe_pending(nvmeq)) 1084 return 0; 1085 1086 spin_lock(&nvmeq->cq_poll_lock); 1087 found = nvme_process_cq(nvmeq, &start, &end, -1); 1088 spin_unlock(&nvmeq->cq_poll_lock); 1089 1090 nvme_complete_cqes(nvmeq, start, end); 1091 return found; 1092 } 1093 1094 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1095 { 1096 struct nvme_dev *dev = to_nvme_dev(ctrl); 1097 struct nvme_queue *nvmeq = &dev->queues[0]; 1098 struct nvme_command c; 1099 1100 memset(&c, 0, sizeof(c)); 1101 c.common.opcode = nvme_admin_async_event; 1102 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1103 nvme_submit_cmd(nvmeq, &c, true); 1104 } 1105 1106 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1107 { 1108 struct nvme_command c; 1109 1110 memset(&c, 0, sizeof(c)); 1111 c.delete_queue.opcode = opcode; 1112 c.delete_queue.qid = cpu_to_le16(id); 1113 1114 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1115 } 1116 1117 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1118 struct nvme_queue *nvmeq, s16 vector) 1119 { 1120 struct nvme_command c; 1121 int flags = NVME_QUEUE_PHYS_CONTIG; 1122 1123 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1124 flags |= NVME_CQ_IRQ_ENABLED; 1125 1126 /* 1127 * Note: we (ab)use the fact that the prp fields survive if no data 1128 * is attached to the request. 1129 */ 1130 memset(&c, 0, sizeof(c)); 1131 c.create_cq.opcode = nvme_admin_create_cq; 1132 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1133 c.create_cq.cqid = cpu_to_le16(qid); 1134 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1135 c.create_cq.cq_flags = cpu_to_le16(flags); 1136 c.create_cq.irq_vector = cpu_to_le16(vector); 1137 1138 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1139 } 1140 1141 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1142 struct nvme_queue *nvmeq) 1143 { 1144 struct nvme_ctrl *ctrl = &dev->ctrl; 1145 struct nvme_command c; 1146 int flags = NVME_QUEUE_PHYS_CONTIG; 1147 1148 /* 1149 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1150 * set. Since URGENT priority is zeroes, it makes all queues 1151 * URGENT. 1152 */ 1153 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1154 flags |= NVME_SQ_PRIO_MEDIUM; 1155 1156 /* 1157 * Note: we (ab)use the fact that the prp fields survive if no data 1158 * is attached to the request. 1159 */ 1160 memset(&c, 0, sizeof(c)); 1161 c.create_sq.opcode = nvme_admin_create_sq; 1162 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1163 c.create_sq.sqid = cpu_to_le16(qid); 1164 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1165 c.create_sq.sq_flags = cpu_to_le16(flags); 1166 c.create_sq.cqid = cpu_to_le16(qid); 1167 1168 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1169 } 1170 1171 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1172 { 1173 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1174 } 1175 1176 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1177 { 1178 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1179 } 1180 1181 static void abort_endio(struct request *req, blk_status_t error) 1182 { 1183 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1184 struct nvme_queue *nvmeq = iod->nvmeq; 1185 1186 dev_warn(nvmeq->dev->ctrl.device, 1187 "Abort status: 0x%x", nvme_req(req)->status); 1188 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1189 blk_mq_free_request(req); 1190 } 1191 1192 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1193 { 1194 1195 /* If true, indicates loss of adapter communication, possibly by a 1196 * NVMe Subsystem reset. 1197 */ 1198 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1199 1200 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1201 switch (dev->ctrl.state) { 1202 case NVME_CTRL_RESETTING: 1203 case NVME_CTRL_CONNECTING: 1204 return false; 1205 default: 1206 break; 1207 } 1208 1209 /* We shouldn't reset unless the controller is on fatal error state 1210 * _or_ if we lost the communication with it. 1211 */ 1212 if (!(csts & NVME_CSTS_CFS) && !nssro) 1213 return false; 1214 1215 return true; 1216 } 1217 1218 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1219 { 1220 /* Read a config register to help see what died. */ 1221 u16 pci_status; 1222 int result; 1223 1224 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1225 &pci_status); 1226 if (result == PCIBIOS_SUCCESSFUL) 1227 dev_warn(dev->ctrl.device, 1228 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1229 csts, pci_status); 1230 else 1231 dev_warn(dev->ctrl.device, 1232 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1233 csts, result); 1234 } 1235 1236 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1237 { 1238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1239 struct nvme_queue *nvmeq = iod->nvmeq; 1240 struct nvme_dev *dev = nvmeq->dev; 1241 struct request *abort_req; 1242 struct nvme_command cmd; 1243 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1244 1245 /* If PCI error recovery process is happening, we cannot reset or 1246 * the recovery mechanism will surely fail. 1247 */ 1248 mb(); 1249 if (pci_channel_offline(to_pci_dev(dev->dev))) 1250 return BLK_EH_RESET_TIMER; 1251 1252 /* 1253 * Reset immediately if the controller is failed 1254 */ 1255 if (nvme_should_reset(dev, csts)) { 1256 nvme_warn_reset(dev, csts); 1257 nvme_dev_disable(dev, false); 1258 nvme_reset_ctrl(&dev->ctrl); 1259 return BLK_EH_DONE; 1260 } 1261 1262 /* 1263 * Did we miss an interrupt? 1264 */ 1265 if (nvme_poll_irqdisable(nvmeq, req->tag)) { 1266 dev_warn(dev->ctrl.device, 1267 "I/O %d QID %d timeout, completion polled\n", 1268 req->tag, nvmeq->qid); 1269 return BLK_EH_DONE; 1270 } 1271 1272 /* 1273 * Shutdown immediately if controller times out while starting. The 1274 * reset work will see the pci device disabled when it gets the forced 1275 * cancellation error. All outstanding requests are completed on 1276 * shutdown, so we return BLK_EH_DONE. 1277 */ 1278 switch (dev->ctrl.state) { 1279 case NVME_CTRL_CONNECTING: 1280 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1281 /* fall through */ 1282 case NVME_CTRL_DELETING: 1283 dev_warn_ratelimited(dev->ctrl.device, 1284 "I/O %d QID %d timeout, disable controller\n", 1285 req->tag, nvmeq->qid); 1286 nvme_dev_disable(dev, true); 1287 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1288 return BLK_EH_DONE; 1289 case NVME_CTRL_RESETTING: 1290 return BLK_EH_RESET_TIMER; 1291 default: 1292 break; 1293 } 1294 1295 /* 1296 * Shutdown the controller immediately and schedule a reset if the 1297 * command was already aborted once before and still hasn't been 1298 * returned to the driver, or if this is the admin queue. 1299 */ 1300 if (!nvmeq->qid || iod->aborted) { 1301 dev_warn(dev->ctrl.device, 1302 "I/O %d QID %d timeout, reset controller\n", 1303 req->tag, nvmeq->qid); 1304 nvme_dev_disable(dev, false); 1305 nvme_reset_ctrl(&dev->ctrl); 1306 1307 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1308 return BLK_EH_DONE; 1309 } 1310 1311 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1312 atomic_inc(&dev->ctrl.abort_limit); 1313 return BLK_EH_RESET_TIMER; 1314 } 1315 iod->aborted = 1; 1316 1317 memset(&cmd, 0, sizeof(cmd)); 1318 cmd.abort.opcode = nvme_admin_abort_cmd; 1319 cmd.abort.cid = req->tag; 1320 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1321 1322 dev_warn(nvmeq->dev->ctrl.device, 1323 "I/O %d QID %d timeout, aborting\n", 1324 req->tag, nvmeq->qid); 1325 1326 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1327 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1328 if (IS_ERR(abort_req)) { 1329 atomic_inc(&dev->ctrl.abort_limit); 1330 return BLK_EH_RESET_TIMER; 1331 } 1332 1333 abort_req->timeout = ADMIN_TIMEOUT; 1334 abort_req->end_io_data = NULL; 1335 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1336 1337 /* 1338 * The aborted req will be completed on receiving the abort req. 1339 * We enable the timer again. If hit twice, it'll cause a device reset, 1340 * as the device then is in a faulty state. 1341 */ 1342 return BLK_EH_RESET_TIMER; 1343 } 1344 1345 static void nvme_free_queue(struct nvme_queue *nvmeq) 1346 { 1347 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth), 1348 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1349 if (!nvmeq->sq_cmds) 1350 return; 1351 1352 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1353 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1354 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth)); 1355 } else { 1356 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth), 1357 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1358 } 1359 } 1360 1361 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1362 { 1363 int i; 1364 1365 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1366 dev->ctrl.queue_count--; 1367 nvme_free_queue(&dev->queues[i]); 1368 } 1369 } 1370 1371 /** 1372 * nvme_suspend_queue - put queue into suspended state 1373 * @nvmeq: queue to suspend 1374 */ 1375 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1376 { 1377 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1378 return 1; 1379 1380 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1381 mb(); 1382 1383 nvmeq->dev->online_queues--; 1384 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1385 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1386 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1387 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1388 return 0; 1389 } 1390 1391 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1392 { 1393 int i; 1394 1395 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1396 nvme_suspend_queue(&dev->queues[i]); 1397 } 1398 1399 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1400 { 1401 struct nvme_queue *nvmeq = &dev->queues[0]; 1402 1403 if (shutdown) 1404 nvme_shutdown_ctrl(&dev->ctrl); 1405 else 1406 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1407 1408 nvme_poll_irqdisable(nvmeq, -1); 1409 } 1410 1411 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1412 int entry_size) 1413 { 1414 int q_depth = dev->q_depth; 1415 unsigned q_size_aligned = roundup(q_depth * entry_size, 1416 dev->ctrl.page_size); 1417 1418 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1419 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1420 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1421 q_depth = div_u64(mem_per_q, entry_size); 1422 1423 /* 1424 * Ensure the reduced q_depth is above some threshold where it 1425 * would be better to map queues in system memory with the 1426 * original depth 1427 */ 1428 if (q_depth < 64) 1429 return -ENOMEM; 1430 } 1431 1432 return q_depth; 1433 } 1434 1435 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1436 int qid, int depth) 1437 { 1438 struct pci_dev *pdev = to_pci_dev(dev->dev); 1439 1440 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1441 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth)); 1442 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1443 nvmeq->sq_cmds); 1444 if (nvmeq->sq_dma_addr) { 1445 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1446 return 0; 1447 } 1448 } 1449 1450 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1451 &nvmeq->sq_dma_addr, GFP_KERNEL); 1452 if (!nvmeq->sq_cmds) 1453 return -ENOMEM; 1454 return 0; 1455 } 1456 1457 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1458 { 1459 struct nvme_queue *nvmeq = &dev->queues[qid]; 1460 1461 if (dev->ctrl.queue_count > qid) 1462 return 0; 1463 1464 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth), 1465 &nvmeq->cq_dma_addr, GFP_KERNEL); 1466 if (!nvmeq->cqes) 1467 goto free_nvmeq; 1468 1469 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1470 goto free_cqdma; 1471 1472 nvmeq->dev = dev; 1473 spin_lock_init(&nvmeq->sq_lock); 1474 spin_lock_init(&nvmeq->cq_poll_lock); 1475 nvmeq->cq_head = 0; 1476 nvmeq->cq_phase = 1; 1477 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1478 nvmeq->q_depth = depth; 1479 nvmeq->qid = qid; 1480 dev->ctrl.queue_count++; 1481 1482 return 0; 1483 1484 free_cqdma: 1485 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1486 nvmeq->cq_dma_addr); 1487 free_nvmeq: 1488 return -ENOMEM; 1489 } 1490 1491 static int queue_request_irq(struct nvme_queue *nvmeq) 1492 { 1493 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1494 int nr = nvmeq->dev->ctrl.instance; 1495 1496 if (use_threaded_interrupts) { 1497 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1498 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1499 } else { 1500 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1501 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1502 } 1503 } 1504 1505 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1506 { 1507 struct nvme_dev *dev = nvmeq->dev; 1508 1509 nvmeq->sq_tail = 0; 1510 nvmeq->last_sq_tail = 0; 1511 nvmeq->cq_head = 0; 1512 nvmeq->cq_phase = 1; 1513 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1514 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1515 nvme_dbbuf_init(dev, nvmeq, qid); 1516 dev->online_queues++; 1517 wmb(); /* ensure the first interrupt sees the initialization */ 1518 } 1519 1520 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1521 { 1522 struct nvme_dev *dev = nvmeq->dev; 1523 int result; 1524 u16 vector = 0; 1525 1526 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1527 1528 /* 1529 * A queue's vector matches the queue identifier unless the controller 1530 * has only one vector available. 1531 */ 1532 if (!polled) 1533 vector = dev->num_vecs == 1 ? 0 : qid; 1534 else 1535 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1536 1537 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1538 if (result) 1539 return result; 1540 1541 result = adapter_alloc_sq(dev, qid, nvmeq); 1542 if (result < 0) 1543 return result; 1544 else if (result) 1545 goto release_cq; 1546 1547 nvmeq->cq_vector = vector; 1548 nvme_init_queue(nvmeq, qid); 1549 1550 if (!polled) { 1551 nvmeq->cq_vector = vector; 1552 result = queue_request_irq(nvmeq); 1553 if (result < 0) 1554 goto release_sq; 1555 } 1556 1557 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1558 return result; 1559 1560 release_sq: 1561 dev->online_queues--; 1562 adapter_delete_sq(dev, qid); 1563 release_cq: 1564 adapter_delete_cq(dev, qid); 1565 return result; 1566 } 1567 1568 static const struct blk_mq_ops nvme_mq_admin_ops = { 1569 .queue_rq = nvme_queue_rq, 1570 .complete = nvme_pci_complete_rq, 1571 .init_hctx = nvme_admin_init_hctx, 1572 .exit_hctx = nvme_admin_exit_hctx, 1573 .init_request = nvme_init_request, 1574 .timeout = nvme_timeout, 1575 }; 1576 1577 static const struct blk_mq_ops nvme_mq_ops = { 1578 .queue_rq = nvme_queue_rq, 1579 .complete = nvme_pci_complete_rq, 1580 .commit_rqs = nvme_commit_rqs, 1581 .init_hctx = nvme_init_hctx, 1582 .init_request = nvme_init_request, 1583 .map_queues = nvme_pci_map_queues, 1584 .timeout = nvme_timeout, 1585 .poll = nvme_poll, 1586 }; 1587 1588 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1589 { 1590 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1591 /* 1592 * If the controller was reset during removal, it's possible 1593 * user requests may be waiting on a stopped queue. Start the 1594 * queue to flush these to completion. 1595 */ 1596 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1597 blk_cleanup_queue(dev->ctrl.admin_q); 1598 blk_mq_free_tag_set(&dev->admin_tagset); 1599 } 1600 } 1601 1602 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1603 { 1604 if (!dev->ctrl.admin_q) { 1605 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1606 dev->admin_tagset.nr_hw_queues = 1; 1607 1608 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1609 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1610 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1611 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1612 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1613 dev->admin_tagset.driver_data = dev; 1614 1615 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1616 return -ENOMEM; 1617 dev->ctrl.admin_tagset = &dev->admin_tagset; 1618 1619 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1620 if (IS_ERR(dev->ctrl.admin_q)) { 1621 blk_mq_free_tag_set(&dev->admin_tagset); 1622 return -ENOMEM; 1623 } 1624 if (!blk_get_queue(dev->ctrl.admin_q)) { 1625 nvme_dev_remove_admin(dev); 1626 dev->ctrl.admin_q = NULL; 1627 return -ENODEV; 1628 } 1629 } else 1630 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1631 1632 return 0; 1633 } 1634 1635 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1636 { 1637 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1638 } 1639 1640 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1641 { 1642 struct pci_dev *pdev = to_pci_dev(dev->dev); 1643 1644 if (size <= dev->bar_mapped_size) 1645 return 0; 1646 if (size > pci_resource_len(pdev, 0)) 1647 return -ENOMEM; 1648 if (dev->bar) 1649 iounmap(dev->bar); 1650 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1651 if (!dev->bar) { 1652 dev->bar_mapped_size = 0; 1653 return -ENOMEM; 1654 } 1655 dev->bar_mapped_size = size; 1656 dev->dbs = dev->bar + NVME_REG_DBS; 1657 1658 return 0; 1659 } 1660 1661 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1662 { 1663 int result; 1664 u32 aqa; 1665 struct nvme_queue *nvmeq; 1666 1667 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1668 if (result < 0) 1669 return result; 1670 1671 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1672 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1673 1674 if (dev->subsystem && 1675 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1676 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1677 1678 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1679 if (result < 0) 1680 return result; 1681 1682 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1683 if (result) 1684 return result; 1685 1686 nvmeq = &dev->queues[0]; 1687 aqa = nvmeq->q_depth - 1; 1688 aqa |= aqa << 16; 1689 1690 writel(aqa, dev->bar + NVME_REG_AQA); 1691 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1692 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1693 1694 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); 1695 if (result) 1696 return result; 1697 1698 nvmeq->cq_vector = 0; 1699 nvme_init_queue(nvmeq, 0); 1700 result = queue_request_irq(nvmeq); 1701 if (result) { 1702 dev->online_queues--; 1703 return result; 1704 } 1705 1706 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1707 return result; 1708 } 1709 1710 static int nvme_create_io_queues(struct nvme_dev *dev) 1711 { 1712 unsigned i, max, rw_queues; 1713 int ret = 0; 1714 1715 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1716 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1717 ret = -ENOMEM; 1718 break; 1719 } 1720 } 1721 1722 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1723 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1724 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1725 dev->io_queues[HCTX_TYPE_READ]; 1726 } else { 1727 rw_queues = max; 1728 } 1729 1730 for (i = dev->online_queues; i <= max; i++) { 1731 bool polled = i > rw_queues; 1732 1733 ret = nvme_create_queue(&dev->queues[i], i, polled); 1734 if (ret) 1735 break; 1736 } 1737 1738 /* 1739 * Ignore failing Create SQ/CQ commands, we can continue with less 1740 * than the desired amount of queues, and even a controller without 1741 * I/O queues can still be used to issue admin commands. This might 1742 * be useful to upgrade a buggy firmware for example. 1743 */ 1744 return ret >= 0 ? 0 : ret; 1745 } 1746 1747 static ssize_t nvme_cmb_show(struct device *dev, 1748 struct device_attribute *attr, 1749 char *buf) 1750 { 1751 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1752 1753 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1754 ndev->cmbloc, ndev->cmbsz); 1755 } 1756 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1757 1758 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1759 { 1760 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1761 1762 return 1ULL << (12 + 4 * szu); 1763 } 1764 1765 static u32 nvme_cmb_size(struct nvme_dev *dev) 1766 { 1767 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1768 } 1769 1770 static void nvme_map_cmb(struct nvme_dev *dev) 1771 { 1772 u64 size, offset; 1773 resource_size_t bar_size; 1774 struct pci_dev *pdev = to_pci_dev(dev->dev); 1775 int bar; 1776 1777 if (dev->cmb_size) 1778 return; 1779 1780 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1781 if (!dev->cmbsz) 1782 return; 1783 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1784 1785 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1786 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1787 bar = NVME_CMB_BIR(dev->cmbloc); 1788 bar_size = pci_resource_len(pdev, bar); 1789 1790 if (offset > bar_size) 1791 return; 1792 1793 /* 1794 * Controllers may support a CMB size larger than their BAR, 1795 * for example, due to being behind a bridge. Reduce the CMB to 1796 * the reported size of the BAR 1797 */ 1798 if (size > bar_size - offset) 1799 size = bar_size - offset; 1800 1801 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1802 dev_warn(dev->ctrl.device, 1803 "failed to register the CMB\n"); 1804 return; 1805 } 1806 1807 dev->cmb_size = size; 1808 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1809 1810 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1811 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1812 pci_p2pmem_publish(pdev, true); 1813 1814 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1815 &dev_attr_cmb.attr, NULL)) 1816 dev_warn(dev->ctrl.device, 1817 "failed to add sysfs attribute for CMB\n"); 1818 } 1819 1820 static inline void nvme_release_cmb(struct nvme_dev *dev) 1821 { 1822 if (dev->cmb_size) { 1823 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1824 &dev_attr_cmb.attr, NULL); 1825 dev->cmb_size = 0; 1826 } 1827 } 1828 1829 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1830 { 1831 u64 dma_addr = dev->host_mem_descs_dma; 1832 struct nvme_command c; 1833 int ret; 1834 1835 memset(&c, 0, sizeof(c)); 1836 c.features.opcode = nvme_admin_set_features; 1837 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1838 c.features.dword11 = cpu_to_le32(bits); 1839 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1840 ilog2(dev->ctrl.page_size)); 1841 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1842 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1843 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1844 1845 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1846 if (ret) { 1847 dev_warn(dev->ctrl.device, 1848 "failed to set host mem (err %d, flags %#x).\n", 1849 ret, bits); 1850 } 1851 return ret; 1852 } 1853 1854 static void nvme_free_host_mem(struct nvme_dev *dev) 1855 { 1856 int i; 1857 1858 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1859 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1860 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1861 1862 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1863 le64_to_cpu(desc->addr), 1864 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1865 } 1866 1867 kfree(dev->host_mem_desc_bufs); 1868 dev->host_mem_desc_bufs = NULL; 1869 dma_free_coherent(dev->dev, 1870 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1871 dev->host_mem_descs, dev->host_mem_descs_dma); 1872 dev->host_mem_descs = NULL; 1873 dev->nr_host_mem_descs = 0; 1874 } 1875 1876 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1877 u32 chunk_size) 1878 { 1879 struct nvme_host_mem_buf_desc *descs; 1880 u32 max_entries, len; 1881 dma_addr_t descs_dma; 1882 int i = 0; 1883 void **bufs; 1884 u64 size, tmp; 1885 1886 tmp = (preferred + chunk_size - 1); 1887 do_div(tmp, chunk_size); 1888 max_entries = tmp; 1889 1890 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1891 max_entries = dev->ctrl.hmmaxd; 1892 1893 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1894 &descs_dma, GFP_KERNEL); 1895 if (!descs) 1896 goto out; 1897 1898 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1899 if (!bufs) 1900 goto out_free_descs; 1901 1902 for (size = 0; size < preferred && i < max_entries; size += len) { 1903 dma_addr_t dma_addr; 1904 1905 len = min_t(u64, chunk_size, preferred - size); 1906 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1907 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1908 if (!bufs[i]) 1909 break; 1910 1911 descs[i].addr = cpu_to_le64(dma_addr); 1912 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1913 i++; 1914 } 1915 1916 if (!size) 1917 goto out_free_bufs; 1918 1919 dev->nr_host_mem_descs = i; 1920 dev->host_mem_size = size; 1921 dev->host_mem_descs = descs; 1922 dev->host_mem_descs_dma = descs_dma; 1923 dev->host_mem_desc_bufs = bufs; 1924 return 0; 1925 1926 out_free_bufs: 1927 while (--i >= 0) { 1928 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1929 1930 dma_free_attrs(dev->dev, size, bufs[i], 1931 le64_to_cpu(descs[i].addr), 1932 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1933 } 1934 1935 kfree(bufs); 1936 out_free_descs: 1937 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1938 descs_dma); 1939 out: 1940 dev->host_mem_descs = NULL; 1941 return -ENOMEM; 1942 } 1943 1944 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1945 { 1946 u32 chunk_size; 1947 1948 /* start big and work our way down */ 1949 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1950 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1951 chunk_size /= 2) { 1952 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1953 if (!min || dev->host_mem_size >= min) 1954 return 0; 1955 nvme_free_host_mem(dev); 1956 } 1957 } 1958 1959 return -ENOMEM; 1960 } 1961 1962 static int nvme_setup_host_mem(struct nvme_dev *dev) 1963 { 1964 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1965 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1966 u64 min = (u64)dev->ctrl.hmmin * 4096; 1967 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1968 int ret; 1969 1970 preferred = min(preferred, max); 1971 if (min > max) { 1972 dev_warn(dev->ctrl.device, 1973 "min host memory (%lld MiB) above limit (%d MiB).\n", 1974 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1975 nvme_free_host_mem(dev); 1976 return 0; 1977 } 1978 1979 /* 1980 * If we already have a buffer allocated check if we can reuse it. 1981 */ 1982 if (dev->host_mem_descs) { 1983 if (dev->host_mem_size >= min) 1984 enable_bits |= NVME_HOST_MEM_RETURN; 1985 else 1986 nvme_free_host_mem(dev); 1987 } 1988 1989 if (!dev->host_mem_descs) { 1990 if (nvme_alloc_host_mem(dev, min, preferred)) { 1991 dev_warn(dev->ctrl.device, 1992 "failed to allocate host memory buffer.\n"); 1993 return 0; /* controller must work without HMB */ 1994 } 1995 1996 dev_info(dev->ctrl.device, 1997 "allocated %lld MiB host memory buffer.\n", 1998 dev->host_mem_size >> ilog2(SZ_1M)); 1999 } 2000 2001 ret = nvme_set_host_mem(dev, enable_bits); 2002 if (ret) 2003 nvme_free_host_mem(dev); 2004 return ret; 2005 } 2006 2007 /* 2008 * nirqs is the number of interrupts available for write and read 2009 * queues. The core already reserved an interrupt for the admin queue. 2010 */ 2011 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2012 { 2013 struct nvme_dev *dev = affd->priv; 2014 unsigned int nr_read_queues; 2015 2016 /* 2017 * If there is no interupt available for queues, ensure that 2018 * the default queue is set to 1. The affinity set size is 2019 * also set to one, but the irq core ignores it for this case. 2020 * 2021 * If only one interrupt is available or 'write_queue' == 0, combine 2022 * write and read queues. 2023 * 2024 * If 'write_queues' > 0, ensure it leaves room for at least one read 2025 * queue. 2026 */ 2027 if (!nrirqs) { 2028 nrirqs = 1; 2029 nr_read_queues = 0; 2030 } else if (nrirqs == 1 || !write_queues) { 2031 nr_read_queues = 0; 2032 } else if (write_queues >= nrirqs) { 2033 nr_read_queues = 1; 2034 } else { 2035 nr_read_queues = nrirqs - write_queues; 2036 } 2037 2038 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2039 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2040 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2041 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2042 affd->nr_sets = nr_read_queues ? 2 : 1; 2043 } 2044 2045 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2046 { 2047 struct pci_dev *pdev = to_pci_dev(dev->dev); 2048 struct irq_affinity affd = { 2049 .pre_vectors = 1, 2050 .calc_sets = nvme_calc_irq_sets, 2051 .priv = dev, 2052 }; 2053 unsigned int irq_queues, this_p_queues; 2054 unsigned int nr_cpus = num_possible_cpus(); 2055 2056 /* 2057 * Poll queues don't need interrupts, but we need at least one IO 2058 * queue left over for non-polled IO. 2059 */ 2060 this_p_queues = poll_queues; 2061 if (this_p_queues >= nr_io_queues) { 2062 this_p_queues = nr_io_queues - 1; 2063 irq_queues = 1; 2064 } else { 2065 if (nr_cpus < nr_io_queues - this_p_queues) 2066 irq_queues = nr_cpus + 1; 2067 else 2068 irq_queues = nr_io_queues - this_p_queues + 1; 2069 } 2070 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; 2071 2072 /* Initialize for the single interrupt case */ 2073 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2074 dev->io_queues[HCTX_TYPE_READ] = 0; 2075 2076 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2077 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2078 } 2079 2080 static void nvme_disable_io_queues(struct nvme_dev *dev) 2081 { 2082 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2083 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2084 } 2085 2086 static int nvme_setup_io_queues(struct nvme_dev *dev) 2087 { 2088 struct nvme_queue *adminq = &dev->queues[0]; 2089 struct pci_dev *pdev = to_pci_dev(dev->dev); 2090 int result, nr_io_queues; 2091 unsigned long size; 2092 2093 nr_io_queues = max_io_queues(); 2094 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2095 if (result < 0) 2096 return result; 2097 2098 if (nr_io_queues == 0) 2099 return 0; 2100 2101 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2102 2103 if (dev->cmb_use_sqes) { 2104 result = nvme_cmb_qdepth(dev, nr_io_queues, 2105 sizeof(struct nvme_command)); 2106 if (result > 0) 2107 dev->q_depth = result; 2108 else 2109 dev->cmb_use_sqes = false; 2110 } 2111 2112 do { 2113 size = db_bar_size(dev, nr_io_queues); 2114 result = nvme_remap_bar(dev, size); 2115 if (!result) 2116 break; 2117 if (!--nr_io_queues) 2118 return -ENOMEM; 2119 } while (1); 2120 adminq->q_db = dev->dbs; 2121 2122 retry: 2123 /* Deregister the admin queue's interrupt */ 2124 pci_free_irq(pdev, 0, adminq); 2125 2126 /* 2127 * If we enable msix early due to not intx, disable it again before 2128 * setting up the full range we need. 2129 */ 2130 pci_free_irq_vectors(pdev); 2131 2132 result = nvme_setup_irqs(dev, nr_io_queues); 2133 if (result <= 0) 2134 return -EIO; 2135 2136 dev->num_vecs = result; 2137 result = max(result - 1, 1); 2138 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2139 2140 /* 2141 * Should investigate if there's a performance win from allocating 2142 * more queues than interrupt vectors; it might allow the submission 2143 * path to scale better, even if the receive path is limited by the 2144 * number of interrupts. 2145 */ 2146 result = queue_request_irq(adminq); 2147 if (result) 2148 return result; 2149 set_bit(NVMEQ_ENABLED, &adminq->flags); 2150 2151 result = nvme_create_io_queues(dev); 2152 if (result || dev->online_queues < 2) 2153 return result; 2154 2155 if (dev->online_queues - 1 < dev->max_qid) { 2156 nr_io_queues = dev->online_queues - 1; 2157 nvme_disable_io_queues(dev); 2158 nvme_suspend_io_queues(dev); 2159 goto retry; 2160 } 2161 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2162 dev->io_queues[HCTX_TYPE_DEFAULT], 2163 dev->io_queues[HCTX_TYPE_READ], 2164 dev->io_queues[HCTX_TYPE_POLL]); 2165 return 0; 2166 } 2167 2168 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2169 { 2170 struct nvme_queue *nvmeq = req->end_io_data; 2171 2172 blk_mq_free_request(req); 2173 complete(&nvmeq->delete_done); 2174 } 2175 2176 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2177 { 2178 struct nvme_queue *nvmeq = req->end_io_data; 2179 2180 if (error) 2181 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2182 2183 nvme_del_queue_end(req, error); 2184 } 2185 2186 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2187 { 2188 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2189 struct request *req; 2190 struct nvme_command cmd; 2191 2192 memset(&cmd, 0, sizeof(cmd)); 2193 cmd.delete_queue.opcode = opcode; 2194 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2195 2196 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2197 if (IS_ERR(req)) 2198 return PTR_ERR(req); 2199 2200 req->timeout = ADMIN_TIMEOUT; 2201 req->end_io_data = nvmeq; 2202 2203 init_completion(&nvmeq->delete_done); 2204 blk_execute_rq_nowait(q, NULL, req, false, 2205 opcode == nvme_admin_delete_cq ? 2206 nvme_del_cq_end : nvme_del_queue_end); 2207 return 0; 2208 } 2209 2210 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2211 { 2212 int nr_queues = dev->online_queues - 1, sent = 0; 2213 unsigned long timeout; 2214 2215 retry: 2216 timeout = ADMIN_TIMEOUT; 2217 while (nr_queues > 0) { 2218 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2219 break; 2220 nr_queues--; 2221 sent++; 2222 } 2223 while (sent) { 2224 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2225 2226 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2227 timeout); 2228 if (timeout == 0) 2229 return false; 2230 2231 /* handle any remaining CQEs */ 2232 if (opcode == nvme_admin_delete_cq && 2233 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags)) 2234 nvme_poll_irqdisable(nvmeq, -1); 2235 2236 sent--; 2237 if (nr_queues) 2238 goto retry; 2239 } 2240 return true; 2241 } 2242 2243 /* 2244 * return error value only when tagset allocation failed 2245 */ 2246 static int nvme_dev_add(struct nvme_dev *dev) 2247 { 2248 int ret; 2249 2250 if (!dev->ctrl.tagset) { 2251 dev->tagset.ops = &nvme_mq_ops; 2252 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2253 dev->tagset.nr_maps = 2; /* default + read */ 2254 if (dev->io_queues[HCTX_TYPE_POLL]) 2255 dev->tagset.nr_maps++; 2256 dev->tagset.timeout = NVME_IO_TIMEOUT; 2257 dev->tagset.numa_node = dev_to_node(dev->dev); 2258 dev->tagset.queue_depth = 2259 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2260 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2261 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2262 dev->tagset.driver_data = dev; 2263 2264 ret = blk_mq_alloc_tag_set(&dev->tagset); 2265 if (ret) { 2266 dev_warn(dev->ctrl.device, 2267 "IO queues tagset allocation failed %d\n", ret); 2268 return ret; 2269 } 2270 dev->ctrl.tagset = &dev->tagset; 2271 } else { 2272 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2273 2274 /* Free previously allocated queues that are no longer usable */ 2275 nvme_free_queues(dev, dev->online_queues); 2276 } 2277 2278 nvme_dbbuf_set(dev); 2279 return 0; 2280 } 2281 2282 static int nvme_pci_enable(struct nvme_dev *dev) 2283 { 2284 int result = -ENOMEM; 2285 struct pci_dev *pdev = to_pci_dev(dev->dev); 2286 2287 if (pci_enable_device_mem(pdev)) 2288 return result; 2289 2290 pci_set_master(pdev); 2291 2292 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 2293 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 2294 goto disable; 2295 2296 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2297 result = -ENODEV; 2298 goto disable; 2299 } 2300 2301 /* 2302 * Some devices and/or platforms don't advertise or work with INTx 2303 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2304 * adjust this later. 2305 */ 2306 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2307 if (result < 0) 2308 return result; 2309 2310 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2311 2312 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2313 io_queue_depth); 2314 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2315 dev->dbs = dev->bar + 4096; 2316 2317 /* 2318 * Temporary fix for the Apple controller found in the MacBook8,1 and 2319 * some MacBook7,1 to avoid controller resets and data loss. 2320 */ 2321 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2322 dev->q_depth = 2; 2323 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2324 "set queue depth=%u to work around controller resets\n", 2325 dev->q_depth); 2326 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2327 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2328 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2329 dev->q_depth = 64; 2330 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2331 "set queue depth=%u\n", dev->q_depth); 2332 } 2333 2334 nvme_map_cmb(dev); 2335 2336 pci_enable_pcie_error_reporting(pdev); 2337 pci_save_state(pdev); 2338 return 0; 2339 2340 disable: 2341 pci_disable_device(pdev); 2342 return result; 2343 } 2344 2345 static void nvme_dev_unmap(struct nvme_dev *dev) 2346 { 2347 if (dev->bar) 2348 iounmap(dev->bar); 2349 pci_release_mem_regions(to_pci_dev(dev->dev)); 2350 } 2351 2352 static void nvme_pci_disable(struct nvme_dev *dev) 2353 { 2354 struct pci_dev *pdev = to_pci_dev(dev->dev); 2355 2356 pci_free_irq_vectors(pdev); 2357 2358 if (pci_is_enabled(pdev)) { 2359 pci_disable_pcie_error_reporting(pdev); 2360 pci_disable_device(pdev); 2361 } 2362 } 2363 2364 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2365 { 2366 bool dead = true, freeze = false; 2367 struct pci_dev *pdev = to_pci_dev(dev->dev); 2368 2369 mutex_lock(&dev->shutdown_lock); 2370 if (pci_is_enabled(pdev)) { 2371 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2372 2373 if (dev->ctrl.state == NVME_CTRL_LIVE || 2374 dev->ctrl.state == NVME_CTRL_RESETTING) { 2375 freeze = true; 2376 nvme_start_freeze(&dev->ctrl); 2377 } 2378 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2379 pdev->error_state != pci_channel_io_normal); 2380 } 2381 2382 /* 2383 * Give the controller a chance to complete all entered requests if 2384 * doing a safe shutdown. 2385 */ 2386 if (!dead && shutdown && freeze) 2387 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2388 2389 nvme_stop_queues(&dev->ctrl); 2390 2391 if (!dead && dev->ctrl.queue_count > 0) { 2392 nvme_disable_io_queues(dev); 2393 nvme_disable_admin_queue(dev, shutdown); 2394 } 2395 nvme_suspend_io_queues(dev); 2396 nvme_suspend_queue(&dev->queues[0]); 2397 nvme_pci_disable(dev); 2398 2399 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2400 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2401 2402 /* 2403 * The driver will not be starting up queues again if shutting down so 2404 * must flush all entered requests to their failed completion to avoid 2405 * deadlocking blk-mq hot-cpu notifier. 2406 */ 2407 if (shutdown) { 2408 nvme_start_queues(&dev->ctrl); 2409 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2410 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2411 } 2412 mutex_unlock(&dev->shutdown_lock); 2413 } 2414 2415 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2416 { 2417 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2418 PAGE_SIZE, PAGE_SIZE, 0); 2419 if (!dev->prp_page_pool) 2420 return -ENOMEM; 2421 2422 /* Optimisation for I/Os between 4k and 128k */ 2423 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2424 256, 256, 0); 2425 if (!dev->prp_small_pool) { 2426 dma_pool_destroy(dev->prp_page_pool); 2427 return -ENOMEM; 2428 } 2429 return 0; 2430 } 2431 2432 static void nvme_release_prp_pools(struct nvme_dev *dev) 2433 { 2434 dma_pool_destroy(dev->prp_page_pool); 2435 dma_pool_destroy(dev->prp_small_pool); 2436 } 2437 2438 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2439 { 2440 struct nvme_dev *dev = to_nvme_dev(ctrl); 2441 2442 nvme_dbbuf_dma_free(dev); 2443 put_device(dev->dev); 2444 if (dev->tagset.tags) 2445 blk_mq_free_tag_set(&dev->tagset); 2446 if (dev->ctrl.admin_q) 2447 blk_put_queue(dev->ctrl.admin_q); 2448 kfree(dev->queues); 2449 free_opal_dev(dev->ctrl.opal_dev); 2450 mempool_destroy(dev->iod_mempool); 2451 kfree(dev); 2452 } 2453 2454 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2455 { 2456 nvme_get_ctrl(&dev->ctrl); 2457 nvme_dev_disable(dev, false); 2458 nvme_kill_queues(&dev->ctrl); 2459 if (!queue_work(nvme_wq, &dev->remove_work)) 2460 nvme_put_ctrl(&dev->ctrl); 2461 } 2462 2463 static void nvme_reset_work(struct work_struct *work) 2464 { 2465 struct nvme_dev *dev = 2466 container_of(work, struct nvme_dev, ctrl.reset_work); 2467 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2468 int result; 2469 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE; 2470 2471 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2472 result = -ENODEV; 2473 goto out; 2474 } 2475 2476 /* 2477 * If we're called to reset a live controller first shut it down before 2478 * moving on. 2479 */ 2480 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2481 nvme_dev_disable(dev, false); 2482 nvme_sync_queues(&dev->ctrl); 2483 2484 mutex_lock(&dev->shutdown_lock); 2485 result = nvme_pci_enable(dev); 2486 if (result) 2487 goto out_unlock; 2488 2489 result = nvme_pci_configure_admin_queue(dev); 2490 if (result) 2491 goto out_unlock; 2492 2493 result = nvme_alloc_admin_tags(dev); 2494 if (result) 2495 goto out_unlock; 2496 2497 /* 2498 * Limit the max command size to prevent iod->sg allocations going 2499 * over a single page. 2500 */ 2501 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1; 2502 dev->ctrl.max_segments = NVME_MAX_SEGS; 2503 2504 /* 2505 * Don't limit the IOMMU merged segment size. 2506 */ 2507 dma_set_max_seg_size(dev->dev, 0xffffffff); 2508 2509 mutex_unlock(&dev->shutdown_lock); 2510 2511 /* 2512 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2513 * initializing procedure here. 2514 */ 2515 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2516 dev_warn(dev->ctrl.device, 2517 "failed to mark controller CONNECTING\n"); 2518 result = -EBUSY; 2519 goto out; 2520 } 2521 2522 result = nvme_init_identify(&dev->ctrl); 2523 if (result) 2524 goto out; 2525 2526 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2527 if (!dev->ctrl.opal_dev) 2528 dev->ctrl.opal_dev = 2529 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2530 else if (was_suspend) 2531 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2532 } else { 2533 free_opal_dev(dev->ctrl.opal_dev); 2534 dev->ctrl.opal_dev = NULL; 2535 } 2536 2537 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2538 result = nvme_dbbuf_dma_alloc(dev); 2539 if (result) 2540 dev_warn(dev->dev, 2541 "unable to allocate dma for dbbuf\n"); 2542 } 2543 2544 if (dev->ctrl.hmpre) { 2545 result = nvme_setup_host_mem(dev); 2546 if (result < 0) 2547 goto out; 2548 } 2549 2550 result = nvme_setup_io_queues(dev); 2551 if (result) 2552 goto out; 2553 2554 /* 2555 * Keep the controller around but remove all namespaces if we don't have 2556 * any working I/O queue. 2557 */ 2558 if (dev->online_queues < 2) { 2559 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2560 nvme_kill_queues(&dev->ctrl); 2561 nvme_remove_namespaces(&dev->ctrl); 2562 new_state = NVME_CTRL_ADMIN_ONLY; 2563 } else { 2564 nvme_start_queues(&dev->ctrl); 2565 nvme_wait_freeze(&dev->ctrl); 2566 /* hit this only when allocate tagset fails */ 2567 if (nvme_dev_add(dev)) 2568 new_state = NVME_CTRL_ADMIN_ONLY; 2569 nvme_unfreeze(&dev->ctrl); 2570 } 2571 2572 /* 2573 * If only admin queue live, keep it to do further investigation or 2574 * recovery. 2575 */ 2576 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) { 2577 dev_warn(dev->ctrl.device, 2578 "failed to mark controller state %d\n", new_state); 2579 result = -ENODEV; 2580 goto out; 2581 } 2582 2583 nvme_start_ctrl(&dev->ctrl); 2584 return; 2585 2586 out_unlock: 2587 mutex_unlock(&dev->shutdown_lock); 2588 out: 2589 if (result) 2590 dev_warn(dev->ctrl.device, 2591 "Removing after probe failure status: %d\n", result); 2592 nvme_remove_dead_ctrl(dev); 2593 } 2594 2595 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2596 { 2597 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2598 struct pci_dev *pdev = to_pci_dev(dev->dev); 2599 2600 if (pci_get_drvdata(pdev)) 2601 device_release_driver(&pdev->dev); 2602 nvme_put_ctrl(&dev->ctrl); 2603 } 2604 2605 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2606 { 2607 *val = readl(to_nvme_dev(ctrl)->bar + off); 2608 return 0; 2609 } 2610 2611 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2612 { 2613 writel(val, to_nvme_dev(ctrl)->bar + off); 2614 return 0; 2615 } 2616 2617 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2618 { 2619 *val = readq(to_nvme_dev(ctrl)->bar + off); 2620 return 0; 2621 } 2622 2623 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2624 { 2625 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2626 2627 return snprintf(buf, size, "%s", dev_name(&pdev->dev)); 2628 } 2629 2630 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2631 .name = "pcie", 2632 .module = THIS_MODULE, 2633 .flags = NVME_F_METADATA_SUPPORTED | 2634 NVME_F_PCI_P2PDMA, 2635 .reg_read32 = nvme_pci_reg_read32, 2636 .reg_write32 = nvme_pci_reg_write32, 2637 .reg_read64 = nvme_pci_reg_read64, 2638 .free_ctrl = nvme_pci_free_ctrl, 2639 .submit_async_event = nvme_pci_submit_async_event, 2640 .get_address = nvme_pci_get_address, 2641 }; 2642 2643 static int nvme_dev_map(struct nvme_dev *dev) 2644 { 2645 struct pci_dev *pdev = to_pci_dev(dev->dev); 2646 2647 if (pci_request_mem_regions(pdev, "nvme")) 2648 return -ENODEV; 2649 2650 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2651 goto release; 2652 2653 return 0; 2654 release: 2655 pci_release_mem_regions(pdev); 2656 return -ENODEV; 2657 } 2658 2659 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2660 { 2661 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2662 /* 2663 * Several Samsung devices seem to drop off the PCIe bus 2664 * randomly when APST is on and uses the deepest sleep state. 2665 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2666 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2667 * 950 PRO 256GB", but it seems to be restricted to two Dell 2668 * laptops. 2669 */ 2670 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2671 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2672 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2673 return NVME_QUIRK_NO_DEEPEST_PS; 2674 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2675 /* 2676 * Samsung SSD 960 EVO drops off the PCIe bus after system 2677 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2678 * within few minutes after bootup on a Coffee Lake board - 2679 * ASUS PRIME Z370-A 2680 */ 2681 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2682 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2683 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2684 return NVME_QUIRK_NO_APST; 2685 } 2686 2687 return 0; 2688 } 2689 2690 static void nvme_async_probe(void *data, async_cookie_t cookie) 2691 { 2692 struct nvme_dev *dev = data; 2693 2694 nvme_reset_ctrl_sync(&dev->ctrl); 2695 flush_work(&dev->ctrl.scan_work); 2696 nvme_put_ctrl(&dev->ctrl); 2697 } 2698 2699 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2700 { 2701 int node, result = -ENOMEM; 2702 struct nvme_dev *dev; 2703 unsigned long quirks = id->driver_data; 2704 size_t alloc_size; 2705 2706 node = dev_to_node(&pdev->dev); 2707 if (node == NUMA_NO_NODE) 2708 set_dev_node(&pdev->dev, first_memory_node); 2709 2710 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2711 if (!dev) 2712 return -ENOMEM; 2713 2714 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue), 2715 GFP_KERNEL, node); 2716 if (!dev->queues) 2717 goto free; 2718 2719 dev->dev = get_device(&pdev->dev); 2720 pci_set_drvdata(pdev, dev); 2721 2722 result = nvme_dev_map(dev); 2723 if (result) 2724 goto put_pci; 2725 2726 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2727 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2728 mutex_init(&dev->shutdown_lock); 2729 2730 result = nvme_setup_prp_pools(dev); 2731 if (result) 2732 goto unmap; 2733 2734 quirks |= check_vendor_combination_bug(pdev); 2735 2736 /* 2737 * Double check that our mempool alloc size will cover the biggest 2738 * command we support. 2739 */ 2740 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, 2741 NVME_MAX_SEGS, true); 2742 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2743 2744 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2745 mempool_kfree, 2746 (void *) alloc_size, 2747 GFP_KERNEL, node); 2748 if (!dev->iod_mempool) { 2749 result = -ENOMEM; 2750 goto release_pools; 2751 } 2752 2753 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2754 quirks); 2755 if (result) 2756 goto release_mempool; 2757 2758 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2759 2760 nvme_get_ctrl(&dev->ctrl); 2761 async_schedule(nvme_async_probe, dev); 2762 2763 return 0; 2764 2765 release_mempool: 2766 mempool_destroy(dev->iod_mempool); 2767 release_pools: 2768 nvme_release_prp_pools(dev); 2769 unmap: 2770 nvme_dev_unmap(dev); 2771 put_pci: 2772 put_device(dev->dev); 2773 free: 2774 kfree(dev->queues); 2775 kfree(dev); 2776 return result; 2777 } 2778 2779 static void nvme_reset_prepare(struct pci_dev *pdev) 2780 { 2781 struct nvme_dev *dev = pci_get_drvdata(pdev); 2782 nvme_dev_disable(dev, false); 2783 } 2784 2785 static void nvme_reset_done(struct pci_dev *pdev) 2786 { 2787 struct nvme_dev *dev = pci_get_drvdata(pdev); 2788 nvme_reset_ctrl_sync(&dev->ctrl); 2789 } 2790 2791 static void nvme_shutdown(struct pci_dev *pdev) 2792 { 2793 struct nvme_dev *dev = pci_get_drvdata(pdev); 2794 nvme_dev_disable(dev, true); 2795 } 2796 2797 /* 2798 * The driver's remove may be called on a device in a partially initialized 2799 * state. This function must not have any dependencies on the device state in 2800 * order to proceed. 2801 */ 2802 static void nvme_remove(struct pci_dev *pdev) 2803 { 2804 struct nvme_dev *dev = pci_get_drvdata(pdev); 2805 2806 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2807 pci_set_drvdata(pdev, NULL); 2808 2809 if (!pci_device_is_present(pdev)) { 2810 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2811 nvme_dev_disable(dev, true); 2812 nvme_dev_remove_admin(dev); 2813 } 2814 2815 flush_work(&dev->ctrl.reset_work); 2816 nvme_stop_ctrl(&dev->ctrl); 2817 nvme_remove_namespaces(&dev->ctrl); 2818 nvme_dev_disable(dev, true); 2819 nvme_release_cmb(dev); 2820 nvme_free_host_mem(dev); 2821 nvme_dev_remove_admin(dev); 2822 nvme_free_queues(dev, 0); 2823 nvme_uninit_ctrl(&dev->ctrl); 2824 nvme_release_prp_pools(dev); 2825 nvme_dev_unmap(dev); 2826 nvme_put_ctrl(&dev->ctrl); 2827 } 2828 2829 #ifdef CONFIG_PM_SLEEP 2830 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2831 { 2832 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2833 } 2834 2835 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 2836 { 2837 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 2838 } 2839 2840 static int nvme_resume(struct device *dev) 2841 { 2842 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2843 struct nvme_ctrl *ctrl = &ndev->ctrl; 2844 2845 if (pm_resume_via_firmware() || !ctrl->npss || 2846 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 2847 nvme_reset_ctrl(ctrl); 2848 return 0; 2849 } 2850 2851 static int nvme_suspend(struct device *dev) 2852 { 2853 struct pci_dev *pdev = to_pci_dev(dev); 2854 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2855 struct nvme_ctrl *ctrl = &ndev->ctrl; 2856 int ret = -EBUSY; 2857 2858 /* 2859 * The platform does not remove power for a kernel managed suspend so 2860 * use host managed nvme power settings for lowest idle power if 2861 * possible. This should have quicker resume latency than a full device 2862 * shutdown. But if the firmware is involved after the suspend or the 2863 * device does not support any non-default power states, shut down the 2864 * device fully. 2865 */ 2866 if (pm_suspend_via_firmware() || !ctrl->npss) { 2867 nvme_dev_disable(ndev, true); 2868 return 0; 2869 } 2870 2871 nvme_start_freeze(ctrl); 2872 nvme_wait_freeze(ctrl); 2873 nvme_sync_queues(ctrl); 2874 2875 if (ctrl->state != NVME_CTRL_LIVE && 2876 ctrl->state != NVME_CTRL_ADMIN_ONLY) 2877 goto unfreeze; 2878 2879 ndev->last_ps = 0; 2880 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 2881 if (ret < 0) 2882 goto unfreeze; 2883 2884 ret = nvme_set_power_state(ctrl, ctrl->npss); 2885 if (ret < 0) 2886 goto unfreeze; 2887 2888 if (ret) { 2889 /* 2890 * Clearing npss forces a controller reset on resume. The 2891 * correct value will be resdicovered then. 2892 */ 2893 nvme_dev_disable(ndev, true); 2894 ctrl->npss = 0; 2895 ret = 0; 2896 goto unfreeze; 2897 } 2898 /* 2899 * A saved state prevents pci pm from generically controlling the 2900 * device's power. If we're using protocol specific settings, we don't 2901 * want pci interfering. 2902 */ 2903 pci_save_state(pdev); 2904 unfreeze: 2905 nvme_unfreeze(ctrl); 2906 return ret; 2907 } 2908 2909 static int nvme_simple_suspend(struct device *dev) 2910 { 2911 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2912 2913 nvme_dev_disable(ndev, true); 2914 return 0; 2915 } 2916 2917 static int nvme_simple_resume(struct device *dev) 2918 { 2919 struct pci_dev *pdev = to_pci_dev(dev); 2920 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2921 2922 nvme_reset_ctrl(&ndev->ctrl); 2923 return 0; 2924 } 2925 2926 const struct dev_pm_ops nvme_dev_pm_ops = { 2927 .suspend = nvme_suspend, 2928 .resume = nvme_resume, 2929 .freeze = nvme_simple_suspend, 2930 .thaw = nvme_simple_resume, 2931 .poweroff = nvme_simple_suspend, 2932 .restore = nvme_simple_resume, 2933 }; 2934 #endif /* CONFIG_PM_SLEEP */ 2935 2936 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2937 pci_channel_state_t state) 2938 { 2939 struct nvme_dev *dev = pci_get_drvdata(pdev); 2940 2941 /* 2942 * A frozen channel requires a reset. When detected, this method will 2943 * shutdown the controller to quiesce. The controller will be restarted 2944 * after the slot reset through driver's slot_reset callback. 2945 */ 2946 switch (state) { 2947 case pci_channel_io_normal: 2948 return PCI_ERS_RESULT_CAN_RECOVER; 2949 case pci_channel_io_frozen: 2950 dev_warn(dev->ctrl.device, 2951 "frozen state error detected, reset controller\n"); 2952 nvme_dev_disable(dev, false); 2953 return PCI_ERS_RESULT_NEED_RESET; 2954 case pci_channel_io_perm_failure: 2955 dev_warn(dev->ctrl.device, 2956 "failure state error detected, request disconnect\n"); 2957 return PCI_ERS_RESULT_DISCONNECT; 2958 } 2959 return PCI_ERS_RESULT_NEED_RESET; 2960 } 2961 2962 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2963 { 2964 struct nvme_dev *dev = pci_get_drvdata(pdev); 2965 2966 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2967 pci_restore_state(pdev); 2968 nvme_reset_ctrl(&dev->ctrl); 2969 return PCI_ERS_RESULT_RECOVERED; 2970 } 2971 2972 static void nvme_error_resume(struct pci_dev *pdev) 2973 { 2974 struct nvme_dev *dev = pci_get_drvdata(pdev); 2975 2976 flush_work(&dev->ctrl.reset_work); 2977 } 2978 2979 static const struct pci_error_handlers nvme_err_handler = { 2980 .error_detected = nvme_error_detected, 2981 .slot_reset = nvme_slot_reset, 2982 .resume = nvme_error_resume, 2983 .reset_prepare = nvme_reset_prepare, 2984 .reset_done = nvme_reset_done, 2985 }; 2986 2987 static const struct pci_device_id nvme_id_table[] = { 2988 { PCI_VDEVICE(INTEL, 0x0953), 2989 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2990 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2991 { PCI_VDEVICE(INTEL, 0x0a53), 2992 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2993 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2994 { PCI_VDEVICE(INTEL, 0x0a54), 2995 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2996 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2997 { PCI_VDEVICE(INTEL, 0x0a55), 2998 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2999 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3000 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3001 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3002 NVME_QUIRK_MEDIUM_PRIO_SQ }, 3003 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3004 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3005 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3006 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3007 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3008 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3009 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3010 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3011 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3012 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3013 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3014 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3015 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3016 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3017 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3018 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3019 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3020 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3021 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3022 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3023 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3024 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3025 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3026 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3027 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 3028 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3029 { 0, } 3030 }; 3031 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3032 3033 static struct pci_driver nvme_driver = { 3034 .name = "nvme", 3035 .id_table = nvme_id_table, 3036 .probe = nvme_probe, 3037 .remove = nvme_remove, 3038 .shutdown = nvme_shutdown, 3039 #ifdef CONFIG_PM_SLEEP 3040 .driver = { 3041 .pm = &nvme_dev_pm_ops, 3042 }, 3043 #endif 3044 .sriov_configure = pci_sriov_configure_simple, 3045 .err_handler = &nvme_err_handler, 3046 }; 3047 3048 static int __init nvme_init(void) 3049 { 3050 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3051 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3052 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3053 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3054 return pci_register_driver(&nvme_driver); 3055 } 3056 3057 static void __exit nvme_exit(void) 3058 { 3059 pci_unregister_driver(&nvme_driver); 3060 flush_workqueue(nvme_wq); 3061 } 3062 3063 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3064 MODULE_LICENSE("GPL"); 3065 MODULE_VERSION("1.0"); 3066 module_init(nvme_init); 3067 module_exit(nvme_exit); 3068