1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/once.h> 21 #include <linux/pci.h> 22 #include <linux/suspend.h> 23 #include <linux/t10-pi.h> 24 #include <linux/types.h> 25 #include <linux/io-64-nonatomic-lo-hi.h> 26 #include <linux/io-64-nonatomic-hi-lo.h> 27 #include <linux/sed-opal.h> 28 #include <linux/pci-p2pdma.h> 29 30 #include "trace.h" 31 #include "nvme.h" 32 33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 35 36 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 37 38 /* 39 * These can be higher, but we need to ensure that any command doesn't 40 * require an sg allocation that needs more than a page of data. 41 */ 42 #define NVME_MAX_KB_SZ 4096 43 #define NVME_MAX_SEGS 127 44 45 static int use_threaded_interrupts; 46 module_param(use_threaded_interrupts, int, 0); 47 48 static bool use_cmb_sqes = true; 49 module_param(use_cmb_sqes, bool, 0444); 50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 51 52 static unsigned int max_host_mem_size_mb = 128; 53 module_param(max_host_mem_size_mb, uint, 0444); 54 MODULE_PARM_DESC(max_host_mem_size_mb, 55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 56 57 static unsigned int sgl_threshold = SZ_32K; 58 module_param(sgl_threshold, uint, 0644); 59 MODULE_PARM_DESC(sgl_threshold, 60 "Use SGLs when average request segment size is larger or equal to " 61 "this size. Use 0 to disable SGLs."); 62 63 #define NVME_PCI_MIN_QUEUE_SIZE 2 64 #define NVME_PCI_MAX_QUEUE_SIZE 4095 65 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 66 static const struct kernel_param_ops io_queue_depth_ops = { 67 .set = io_queue_depth_set, 68 .get = param_get_uint, 69 }; 70 71 static unsigned int io_queue_depth = 1024; 72 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 73 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 74 75 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 76 { 77 unsigned int n; 78 int ret; 79 80 ret = kstrtouint(val, 10, &n); 81 if (ret != 0 || n > num_possible_cpus()) 82 return -EINVAL; 83 return param_set_uint(val, kp); 84 } 85 86 static const struct kernel_param_ops io_queue_count_ops = { 87 .set = io_queue_count_set, 88 .get = param_get_uint, 89 }; 90 91 static unsigned int write_queues; 92 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 93 MODULE_PARM_DESC(write_queues, 94 "Number of queues to use for writes. If not set, reads and writes " 95 "will share a queue set."); 96 97 static unsigned int poll_queues; 98 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 99 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 100 101 static bool noacpi; 102 module_param(noacpi, bool, 0444); 103 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 104 105 struct nvme_dev; 106 struct nvme_queue; 107 108 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 109 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 110 111 /* 112 * Represents an NVM Express device. Each nvme_dev is a PCI function. 113 */ 114 struct nvme_dev { 115 struct nvme_queue *queues; 116 struct blk_mq_tag_set tagset; 117 struct blk_mq_tag_set admin_tagset; 118 u32 __iomem *dbs; 119 struct device *dev; 120 struct dma_pool *prp_page_pool; 121 struct dma_pool *prp_small_pool; 122 unsigned online_queues; 123 unsigned max_qid; 124 unsigned io_queues[HCTX_MAX_TYPES]; 125 unsigned int num_vecs; 126 u32 q_depth; 127 int io_sqes; 128 u32 db_stride; 129 void __iomem *bar; 130 unsigned long bar_mapped_size; 131 struct work_struct remove_work; 132 struct mutex shutdown_lock; 133 bool subsystem; 134 u64 cmb_size; 135 bool cmb_use_sqes; 136 u32 cmbsz; 137 u32 cmbloc; 138 struct nvme_ctrl ctrl; 139 u32 last_ps; 140 bool hmb; 141 142 mempool_t *iod_mempool; 143 144 /* shadow doorbell buffer support: */ 145 u32 *dbbuf_dbs; 146 dma_addr_t dbbuf_dbs_dma_addr; 147 u32 *dbbuf_eis; 148 dma_addr_t dbbuf_eis_dma_addr; 149 150 /* host memory buffer support: */ 151 u64 host_mem_size; 152 u32 nr_host_mem_descs; 153 dma_addr_t host_mem_descs_dma; 154 struct nvme_host_mem_buf_desc *host_mem_descs; 155 void **host_mem_desc_bufs; 156 unsigned int nr_allocated_queues; 157 unsigned int nr_write_queues; 158 unsigned int nr_poll_queues; 159 160 bool attrs_added; 161 }; 162 163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 164 { 165 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 166 NVME_PCI_MAX_QUEUE_SIZE); 167 } 168 169 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 170 { 171 return qid * 2 * stride; 172 } 173 174 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 175 { 176 return (qid * 2 + 1) * stride; 177 } 178 179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 180 { 181 return container_of(ctrl, struct nvme_dev, ctrl); 182 } 183 184 /* 185 * An NVM Express queue. Each device has at least two (one for admin 186 * commands and one for I/O commands). 187 */ 188 struct nvme_queue { 189 struct nvme_dev *dev; 190 spinlock_t sq_lock; 191 void *sq_cmds; 192 /* only used for poll queues: */ 193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 194 struct nvme_completion *cqes; 195 dma_addr_t sq_dma_addr; 196 dma_addr_t cq_dma_addr; 197 u32 __iomem *q_db; 198 u32 q_depth; 199 u16 cq_vector; 200 u16 sq_tail; 201 u16 last_sq_tail; 202 u16 cq_head; 203 u16 qid; 204 u8 cq_phase; 205 u8 sqes; 206 unsigned long flags; 207 #define NVMEQ_ENABLED 0 208 #define NVMEQ_SQ_CMB 1 209 #define NVMEQ_DELETE_ERROR 2 210 #define NVMEQ_POLLED 3 211 u32 *dbbuf_sq_db; 212 u32 *dbbuf_cq_db; 213 u32 *dbbuf_sq_ei; 214 u32 *dbbuf_cq_ei; 215 struct completion delete_done; 216 }; 217 218 /* 219 * The nvme_iod describes the data in an I/O. 220 * 221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 222 * to the actual struct scatterlist. 223 */ 224 struct nvme_iod { 225 struct nvme_request req; 226 struct nvme_command cmd; 227 struct nvme_queue *nvmeq; 228 bool use_sgl; 229 int aborted; 230 int npages; /* In the PRP list. 0 means small pool in use */ 231 int nents; /* Used in scatterlist */ 232 dma_addr_t first_dma; 233 unsigned int dma_len; /* length of single DMA segment mapping */ 234 dma_addr_t meta_dma; 235 struct scatterlist *sg; 236 }; 237 238 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 239 { 240 return dev->nr_allocated_queues * 8 * dev->db_stride; 241 } 242 243 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 244 { 245 unsigned int mem_size = nvme_dbbuf_size(dev); 246 247 if (dev->dbbuf_dbs) 248 return 0; 249 250 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 251 &dev->dbbuf_dbs_dma_addr, 252 GFP_KERNEL); 253 if (!dev->dbbuf_dbs) 254 return -ENOMEM; 255 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 256 &dev->dbbuf_eis_dma_addr, 257 GFP_KERNEL); 258 if (!dev->dbbuf_eis) { 259 dma_free_coherent(dev->dev, mem_size, 260 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 261 dev->dbbuf_dbs = NULL; 262 return -ENOMEM; 263 } 264 265 return 0; 266 } 267 268 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 269 { 270 unsigned int mem_size = nvme_dbbuf_size(dev); 271 272 if (dev->dbbuf_dbs) { 273 dma_free_coherent(dev->dev, mem_size, 274 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 275 dev->dbbuf_dbs = NULL; 276 } 277 if (dev->dbbuf_eis) { 278 dma_free_coherent(dev->dev, mem_size, 279 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 280 dev->dbbuf_eis = NULL; 281 } 282 } 283 284 static void nvme_dbbuf_init(struct nvme_dev *dev, 285 struct nvme_queue *nvmeq, int qid) 286 { 287 if (!dev->dbbuf_dbs || !qid) 288 return; 289 290 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 291 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 292 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 293 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 294 } 295 296 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 297 { 298 if (!nvmeq->qid) 299 return; 300 301 nvmeq->dbbuf_sq_db = NULL; 302 nvmeq->dbbuf_cq_db = NULL; 303 nvmeq->dbbuf_sq_ei = NULL; 304 nvmeq->dbbuf_cq_ei = NULL; 305 } 306 307 static void nvme_dbbuf_set(struct nvme_dev *dev) 308 { 309 struct nvme_command c = { }; 310 unsigned int i; 311 312 if (!dev->dbbuf_dbs) 313 return; 314 315 c.dbbuf.opcode = nvme_admin_dbbuf; 316 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 317 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 318 319 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 320 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 321 /* Free memory and continue on */ 322 nvme_dbbuf_dma_free(dev); 323 324 for (i = 1; i <= dev->online_queues; i++) 325 nvme_dbbuf_free(&dev->queues[i]); 326 } 327 } 328 329 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 330 { 331 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 332 } 333 334 /* Update dbbuf and return true if an MMIO is required */ 335 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 336 volatile u32 *dbbuf_ei) 337 { 338 if (dbbuf_db) { 339 u16 old_value; 340 341 /* 342 * Ensure that the queue is written before updating 343 * the doorbell in memory 344 */ 345 wmb(); 346 347 old_value = *dbbuf_db; 348 *dbbuf_db = value; 349 350 /* 351 * Ensure that the doorbell is updated before reading the event 352 * index from memory. The controller needs to provide similar 353 * ordering to ensure the envent index is updated before reading 354 * the doorbell. 355 */ 356 mb(); 357 358 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 359 return false; 360 } 361 362 return true; 363 } 364 365 /* 366 * Will slightly overestimate the number of pages needed. This is OK 367 * as it only leads to a small amount of wasted memory for the lifetime of 368 * the I/O. 369 */ 370 static int nvme_pci_npages_prp(void) 371 { 372 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 373 NVME_CTRL_PAGE_SIZE); 374 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 375 } 376 377 /* 378 * Calculates the number of pages needed for the SGL segments. For example a 4k 379 * page can accommodate 256 SGL descriptors. 380 */ 381 static int nvme_pci_npages_sgl(void) 382 { 383 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 384 PAGE_SIZE); 385 } 386 387 static size_t nvme_pci_iod_alloc_size(void) 388 { 389 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 390 391 return sizeof(__le64 *) * npages + 392 sizeof(struct scatterlist) * NVME_MAX_SEGS; 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = data; 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = data; 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 420 unsigned int hctx_idx, unsigned int numa_node) 421 { 422 struct nvme_dev *dev = set->driver_data; 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 425 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 426 427 BUG_ON(!nvmeq); 428 iod->nvmeq = nvmeq; 429 430 nvme_req(req)->ctrl = &dev->ctrl; 431 nvme_req(req)->cmd = &iod->cmd; 432 return 0; 433 } 434 435 static int queue_irq_offset(struct nvme_dev *dev) 436 { 437 /* if we have more than 1 vec, admin queue offsets us by 1 */ 438 if (dev->num_vecs > 1) 439 return 1; 440 441 return 0; 442 } 443 444 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 445 { 446 struct nvme_dev *dev = set->driver_data; 447 int i, qoff, offset; 448 449 offset = queue_irq_offset(dev); 450 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 451 struct blk_mq_queue_map *map = &set->map[i]; 452 453 map->nr_queues = dev->io_queues[i]; 454 if (!map->nr_queues) { 455 BUG_ON(i == HCTX_TYPE_DEFAULT); 456 continue; 457 } 458 459 /* 460 * The poll queue(s) doesn't have an IRQ (and hence IRQ 461 * affinity), so use the regular blk-mq cpu mapping 462 */ 463 map->queue_offset = qoff; 464 if (i != HCTX_TYPE_POLL && offset) 465 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 466 else 467 blk_mq_map_queues(map); 468 qoff += map->nr_queues; 469 offset += map->nr_queues; 470 } 471 472 return 0; 473 } 474 475 /* 476 * Write sq tail if we are asked to, or if the next command would wrap. 477 */ 478 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 479 { 480 if (!write_sq) { 481 u16 next_tail = nvmeq->sq_tail + 1; 482 483 if (next_tail == nvmeq->q_depth) 484 next_tail = 0; 485 if (next_tail != nvmeq->last_sq_tail) 486 return; 487 } 488 489 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 490 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 491 writel(nvmeq->sq_tail, nvmeq->q_db); 492 nvmeq->last_sq_tail = nvmeq->sq_tail; 493 } 494 495 /** 496 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 497 * @nvmeq: The queue to use 498 * @cmd: The command to send 499 * @write_sq: whether to write to the SQ doorbell 500 */ 501 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 502 bool write_sq) 503 { 504 spin_lock(&nvmeq->sq_lock); 505 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 506 cmd, sizeof(*cmd)); 507 if (++nvmeq->sq_tail == nvmeq->q_depth) 508 nvmeq->sq_tail = 0; 509 nvme_write_sq_db(nvmeq, write_sq); 510 spin_unlock(&nvmeq->sq_lock); 511 } 512 513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 514 { 515 struct nvme_queue *nvmeq = hctx->driver_data; 516 517 spin_lock(&nvmeq->sq_lock); 518 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 519 nvme_write_sq_db(nvmeq, true); 520 spin_unlock(&nvmeq->sq_lock); 521 } 522 523 static void **nvme_pci_iod_list(struct request *req) 524 { 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 526 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 527 } 528 529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 530 { 531 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 532 int nseg = blk_rq_nr_phys_segments(req); 533 unsigned int avg_seg_size; 534 535 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 536 537 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 538 return false; 539 if (!iod->nvmeq->qid) 540 return false; 541 if (!sgl_threshold || avg_seg_size < sgl_threshold) 542 return false; 543 return true; 544 } 545 546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 547 { 548 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 549 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 550 dma_addr_t dma_addr = iod->first_dma; 551 int i; 552 553 for (i = 0; i < iod->npages; i++) { 554 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 555 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 556 557 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 558 dma_addr = next_dma_addr; 559 } 560 } 561 562 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 563 { 564 const int last_sg = SGES_PER_PAGE - 1; 565 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 566 dma_addr_t dma_addr = iod->first_dma; 567 int i; 568 569 for (i = 0; i < iod->npages; i++) { 570 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 571 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 572 573 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 574 dma_addr = next_dma_addr; 575 } 576 } 577 578 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) 579 { 580 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 581 582 if (is_pci_p2pdma_page(sg_page(iod->sg))) 583 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 584 rq_dma_dir(req)); 585 else 586 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 587 } 588 589 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 590 { 591 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 592 593 if (iod->dma_len) { 594 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 595 rq_dma_dir(req)); 596 return; 597 } 598 599 WARN_ON_ONCE(!iod->nents); 600 601 nvme_unmap_sg(dev, req); 602 if (iod->npages == 0) 603 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 604 iod->first_dma); 605 else if (iod->use_sgl) 606 nvme_free_sgls(dev, req); 607 else 608 nvme_free_prps(dev, req); 609 mempool_free(iod->sg, dev->iod_mempool); 610 } 611 612 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 613 { 614 int i; 615 struct scatterlist *sg; 616 617 for_each_sg(sgl, sg, nents, i) { 618 dma_addr_t phys = sg_phys(sg); 619 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 620 "dma_address:%pad dma_length:%d\n", 621 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 622 sg_dma_len(sg)); 623 } 624 } 625 626 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 627 struct request *req, struct nvme_rw_command *cmnd) 628 { 629 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 630 struct dma_pool *pool; 631 int length = blk_rq_payload_bytes(req); 632 struct scatterlist *sg = iod->sg; 633 int dma_len = sg_dma_len(sg); 634 u64 dma_addr = sg_dma_address(sg); 635 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 636 __le64 *prp_list; 637 void **list = nvme_pci_iod_list(req); 638 dma_addr_t prp_dma; 639 int nprps, i; 640 641 length -= (NVME_CTRL_PAGE_SIZE - offset); 642 if (length <= 0) { 643 iod->first_dma = 0; 644 goto done; 645 } 646 647 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 648 if (dma_len) { 649 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 650 } else { 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 656 if (length <= NVME_CTRL_PAGE_SIZE) { 657 iod->first_dma = dma_addr; 658 goto done; 659 } 660 661 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 662 if (nprps <= (256 / 8)) { 663 pool = dev->prp_small_pool; 664 iod->npages = 0; 665 } else { 666 pool = dev->prp_page_pool; 667 iod->npages = 1; 668 } 669 670 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 671 if (!prp_list) { 672 iod->first_dma = dma_addr; 673 iod->npages = -1; 674 return BLK_STS_RESOURCE; 675 } 676 list[0] = prp_list; 677 iod->first_dma = prp_dma; 678 i = 0; 679 for (;;) { 680 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 681 __le64 *old_prp_list = prp_list; 682 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 683 if (!prp_list) 684 goto free_prps; 685 list[iod->npages++] = prp_list; 686 prp_list[0] = old_prp_list[i - 1]; 687 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 688 i = 1; 689 } 690 prp_list[i++] = cpu_to_le64(dma_addr); 691 dma_len -= NVME_CTRL_PAGE_SIZE; 692 dma_addr += NVME_CTRL_PAGE_SIZE; 693 length -= NVME_CTRL_PAGE_SIZE; 694 if (length <= 0) 695 break; 696 if (dma_len > 0) 697 continue; 698 if (unlikely(dma_len < 0)) 699 goto bad_sgl; 700 sg = sg_next(sg); 701 dma_addr = sg_dma_address(sg); 702 dma_len = sg_dma_len(sg); 703 } 704 done: 705 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 706 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 707 return BLK_STS_OK; 708 free_prps: 709 nvme_free_prps(dev, req); 710 return BLK_STS_RESOURCE; 711 bad_sgl: 712 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 713 "Invalid SGL for payload:%d nents:%d\n", 714 blk_rq_payload_bytes(req), iod->nents); 715 return BLK_STS_IOERR; 716 } 717 718 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 719 struct scatterlist *sg) 720 { 721 sge->addr = cpu_to_le64(sg_dma_address(sg)); 722 sge->length = cpu_to_le32(sg_dma_len(sg)); 723 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 724 } 725 726 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 727 dma_addr_t dma_addr, int entries) 728 { 729 sge->addr = cpu_to_le64(dma_addr); 730 if (entries < SGES_PER_PAGE) { 731 sge->length = cpu_to_le32(entries * sizeof(*sge)); 732 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 733 } else { 734 sge->length = cpu_to_le32(PAGE_SIZE); 735 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 736 } 737 } 738 739 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 740 struct request *req, struct nvme_rw_command *cmd, int entries) 741 { 742 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 743 struct dma_pool *pool; 744 struct nvme_sgl_desc *sg_list; 745 struct scatterlist *sg = iod->sg; 746 dma_addr_t sgl_dma; 747 int i = 0; 748 749 /* setting the transfer type as SGL */ 750 cmd->flags = NVME_CMD_SGL_METABUF; 751 752 if (entries == 1) { 753 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 754 return BLK_STS_OK; 755 } 756 757 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 758 pool = dev->prp_small_pool; 759 iod->npages = 0; 760 } else { 761 pool = dev->prp_page_pool; 762 iod->npages = 1; 763 } 764 765 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 766 if (!sg_list) { 767 iod->npages = -1; 768 return BLK_STS_RESOURCE; 769 } 770 771 nvme_pci_iod_list(req)[0] = sg_list; 772 iod->first_dma = sgl_dma; 773 774 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 775 776 do { 777 if (i == SGES_PER_PAGE) { 778 struct nvme_sgl_desc *old_sg_desc = sg_list; 779 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 780 781 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 782 if (!sg_list) 783 goto free_sgls; 784 785 i = 0; 786 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 787 sg_list[i++] = *link; 788 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 789 } 790 791 nvme_pci_sgl_set_data(&sg_list[i++], sg); 792 sg = sg_next(sg); 793 } while (--entries > 0); 794 795 return BLK_STS_OK; 796 free_sgls: 797 nvme_free_sgls(dev, req); 798 return BLK_STS_RESOURCE; 799 } 800 801 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 802 struct request *req, struct nvme_rw_command *cmnd, 803 struct bio_vec *bv) 804 { 805 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 806 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 807 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 808 809 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 810 if (dma_mapping_error(dev->dev, iod->first_dma)) 811 return BLK_STS_RESOURCE; 812 iod->dma_len = bv->bv_len; 813 814 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 815 if (bv->bv_len > first_prp_len) 816 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 817 return BLK_STS_OK; 818 } 819 820 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 821 struct request *req, struct nvme_rw_command *cmnd, 822 struct bio_vec *bv) 823 { 824 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 825 826 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 827 if (dma_mapping_error(dev->dev, iod->first_dma)) 828 return BLK_STS_RESOURCE; 829 iod->dma_len = bv->bv_len; 830 831 cmnd->flags = NVME_CMD_SGL_METABUF; 832 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 833 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 834 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 835 return BLK_STS_OK; 836 } 837 838 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 839 struct nvme_command *cmnd) 840 { 841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 842 blk_status_t ret = BLK_STS_RESOURCE; 843 int nr_mapped; 844 845 if (blk_rq_nr_phys_segments(req) == 1) { 846 struct bio_vec bv = req_bvec(req); 847 848 if (!is_pci_p2pdma_page(bv.bv_page)) { 849 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 850 return nvme_setup_prp_simple(dev, req, 851 &cmnd->rw, &bv); 852 853 if (iod->nvmeq->qid && sgl_threshold && 854 nvme_ctrl_sgl_supported(&dev->ctrl)) 855 return nvme_setup_sgl_simple(dev, req, 856 &cmnd->rw, &bv); 857 } 858 } 859 860 iod->dma_len = 0; 861 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 862 if (!iod->sg) 863 return BLK_STS_RESOURCE; 864 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 865 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 866 if (!iod->nents) 867 goto out_free_sg; 868 869 if (is_pci_p2pdma_page(sg_page(iod->sg))) 870 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 871 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 872 else 873 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 874 rq_dma_dir(req), DMA_ATTR_NO_WARN); 875 if (!nr_mapped) 876 goto out_free_sg; 877 878 iod->use_sgl = nvme_pci_use_sgls(dev, req); 879 if (iod->use_sgl) 880 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 881 else 882 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 883 if (ret != BLK_STS_OK) 884 goto out_unmap_sg; 885 return BLK_STS_OK; 886 887 out_unmap_sg: 888 nvme_unmap_sg(dev, req); 889 out_free_sg: 890 mempool_free(iod->sg, dev->iod_mempool); 891 return ret; 892 } 893 894 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 895 struct nvme_command *cmnd) 896 { 897 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 898 899 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 900 rq_dma_dir(req), 0); 901 if (dma_mapping_error(dev->dev, iod->meta_dma)) 902 return BLK_STS_IOERR; 903 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 904 return BLK_STS_OK; 905 } 906 907 /* 908 * NOTE: ns is NULL when called on the admin queue. 909 */ 910 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 911 const struct blk_mq_queue_data *bd) 912 { 913 struct nvme_ns *ns = hctx->queue->queuedata; 914 struct nvme_queue *nvmeq = hctx->driver_data; 915 struct nvme_dev *dev = nvmeq->dev; 916 struct request *req = bd->rq; 917 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 918 struct nvme_command *cmnd = &iod->cmd; 919 blk_status_t ret; 920 921 iod->aborted = 0; 922 iod->npages = -1; 923 iod->nents = 0; 924 925 /* 926 * We should not need to do this, but we're still using this to 927 * ensure we can drain requests on a dying queue. 928 */ 929 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 930 return BLK_STS_IOERR; 931 932 if (!nvme_check_ready(&dev->ctrl, req, true)) 933 return nvme_fail_nonready_command(&dev->ctrl, req); 934 935 ret = nvme_setup_cmd(ns, req); 936 if (ret) 937 return ret; 938 939 if (blk_rq_nr_phys_segments(req)) { 940 ret = nvme_map_data(dev, req, cmnd); 941 if (ret) 942 goto out_free_cmd; 943 } 944 945 if (blk_integrity_rq(req)) { 946 ret = nvme_map_metadata(dev, req, cmnd); 947 if (ret) 948 goto out_unmap_data; 949 } 950 951 blk_mq_start_request(req); 952 nvme_submit_cmd(nvmeq, cmnd, bd->last); 953 return BLK_STS_OK; 954 out_unmap_data: 955 nvme_unmap_data(dev, req); 956 out_free_cmd: 957 nvme_cleanup_cmd(req); 958 return ret; 959 } 960 961 static void nvme_pci_complete_rq(struct request *req) 962 { 963 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 964 struct nvme_dev *dev = iod->nvmeq->dev; 965 966 if (blk_integrity_rq(req)) 967 dma_unmap_page(dev->dev, iod->meta_dma, 968 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 969 if (blk_rq_nr_phys_segments(req)) 970 nvme_unmap_data(dev, req); 971 nvme_complete_rq(req); 972 } 973 974 /* We read the CQE phase first to check if the rest of the entry is valid */ 975 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 976 { 977 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 978 979 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 980 } 981 982 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 983 { 984 u16 head = nvmeq->cq_head; 985 986 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 987 nvmeq->dbbuf_cq_ei)) 988 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 989 } 990 991 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 992 { 993 if (!nvmeq->qid) 994 return nvmeq->dev->admin_tagset.tags[0]; 995 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 996 } 997 998 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 999 { 1000 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1001 __u16 command_id = READ_ONCE(cqe->command_id); 1002 struct request *req; 1003 1004 /* 1005 * AEN requests are special as they don't time out and can 1006 * survive any kind of queue freeze and often don't respond to 1007 * aborts. We don't even bother to allocate a struct request 1008 * for them but rather special case them here. 1009 */ 1010 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1011 nvme_complete_async_event(&nvmeq->dev->ctrl, 1012 cqe->status, &cqe->result); 1013 return; 1014 } 1015 1016 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1017 if (unlikely(!req)) { 1018 dev_warn(nvmeq->dev->ctrl.device, 1019 "invalid id %d completed on queue %d\n", 1020 command_id, le16_to_cpu(cqe->sq_id)); 1021 return; 1022 } 1023 1024 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1025 if (!nvme_try_complete_req(req, cqe->status, cqe->result)) 1026 nvme_pci_complete_rq(req); 1027 } 1028 1029 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1030 { 1031 u32 tmp = nvmeq->cq_head + 1; 1032 1033 if (tmp == nvmeq->q_depth) { 1034 nvmeq->cq_head = 0; 1035 nvmeq->cq_phase ^= 1; 1036 } else { 1037 nvmeq->cq_head = tmp; 1038 } 1039 } 1040 1041 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 1042 { 1043 int found = 0; 1044 1045 while (nvme_cqe_pending(nvmeq)) { 1046 found++; 1047 /* 1048 * load-load control dependency between phase and the rest of 1049 * the cqe requires a full read memory barrier 1050 */ 1051 dma_rmb(); 1052 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 1053 nvme_update_cq_head(nvmeq); 1054 } 1055 1056 if (found) 1057 nvme_ring_cq_doorbell(nvmeq); 1058 return found; 1059 } 1060 1061 static irqreturn_t nvme_irq(int irq, void *data) 1062 { 1063 struct nvme_queue *nvmeq = data; 1064 1065 if (nvme_process_cq(nvmeq)) 1066 return IRQ_HANDLED; 1067 return IRQ_NONE; 1068 } 1069 1070 static irqreturn_t nvme_irq_check(int irq, void *data) 1071 { 1072 struct nvme_queue *nvmeq = data; 1073 1074 if (nvme_cqe_pending(nvmeq)) 1075 return IRQ_WAKE_THREAD; 1076 return IRQ_NONE; 1077 } 1078 1079 /* 1080 * Poll for completions for any interrupt driven queue 1081 * Can be called from any context. 1082 */ 1083 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1084 { 1085 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1086 1087 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1088 1089 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1090 nvme_process_cq(nvmeq); 1091 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1092 } 1093 1094 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1095 { 1096 struct nvme_queue *nvmeq = hctx->driver_data; 1097 bool found; 1098 1099 if (!nvme_cqe_pending(nvmeq)) 1100 return 0; 1101 1102 spin_lock(&nvmeq->cq_poll_lock); 1103 found = nvme_process_cq(nvmeq); 1104 spin_unlock(&nvmeq->cq_poll_lock); 1105 1106 return found; 1107 } 1108 1109 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1110 { 1111 struct nvme_dev *dev = to_nvme_dev(ctrl); 1112 struct nvme_queue *nvmeq = &dev->queues[0]; 1113 struct nvme_command c = { }; 1114 1115 c.common.opcode = nvme_admin_async_event; 1116 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1117 nvme_submit_cmd(nvmeq, &c, true); 1118 } 1119 1120 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1121 { 1122 struct nvme_command c = { }; 1123 1124 c.delete_queue.opcode = opcode; 1125 c.delete_queue.qid = cpu_to_le16(id); 1126 1127 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1128 } 1129 1130 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1131 struct nvme_queue *nvmeq, s16 vector) 1132 { 1133 struct nvme_command c = { }; 1134 int flags = NVME_QUEUE_PHYS_CONTIG; 1135 1136 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1137 flags |= NVME_CQ_IRQ_ENABLED; 1138 1139 /* 1140 * Note: we (ab)use the fact that the prp fields survive if no data 1141 * is attached to the request. 1142 */ 1143 c.create_cq.opcode = nvme_admin_create_cq; 1144 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1145 c.create_cq.cqid = cpu_to_le16(qid); 1146 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1147 c.create_cq.cq_flags = cpu_to_le16(flags); 1148 c.create_cq.irq_vector = cpu_to_le16(vector); 1149 1150 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1151 } 1152 1153 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1154 struct nvme_queue *nvmeq) 1155 { 1156 struct nvme_ctrl *ctrl = &dev->ctrl; 1157 struct nvme_command c = { }; 1158 int flags = NVME_QUEUE_PHYS_CONTIG; 1159 1160 /* 1161 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1162 * set. Since URGENT priority is zeroes, it makes all queues 1163 * URGENT. 1164 */ 1165 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1166 flags |= NVME_SQ_PRIO_MEDIUM; 1167 1168 /* 1169 * Note: we (ab)use the fact that the prp fields survive if no data 1170 * is attached to the request. 1171 */ 1172 c.create_sq.opcode = nvme_admin_create_sq; 1173 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1174 c.create_sq.sqid = cpu_to_le16(qid); 1175 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1176 c.create_sq.sq_flags = cpu_to_le16(flags); 1177 c.create_sq.cqid = cpu_to_le16(qid); 1178 1179 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1180 } 1181 1182 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1183 { 1184 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1185 } 1186 1187 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1188 { 1189 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1190 } 1191 1192 static void abort_endio(struct request *req, blk_status_t error) 1193 { 1194 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1195 struct nvme_queue *nvmeq = iod->nvmeq; 1196 1197 dev_warn(nvmeq->dev->ctrl.device, 1198 "Abort status: 0x%x", nvme_req(req)->status); 1199 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1200 blk_mq_free_request(req); 1201 } 1202 1203 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1204 { 1205 /* If true, indicates loss of adapter communication, possibly by a 1206 * NVMe Subsystem reset. 1207 */ 1208 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1209 1210 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1211 switch (dev->ctrl.state) { 1212 case NVME_CTRL_RESETTING: 1213 case NVME_CTRL_CONNECTING: 1214 return false; 1215 default: 1216 break; 1217 } 1218 1219 /* We shouldn't reset unless the controller is on fatal error state 1220 * _or_ if we lost the communication with it. 1221 */ 1222 if (!(csts & NVME_CSTS_CFS) && !nssro) 1223 return false; 1224 1225 return true; 1226 } 1227 1228 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1229 { 1230 /* Read a config register to help see what died. */ 1231 u16 pci_status; 1232 int result; 1233 1234 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1235 &pci_status); 1236 if (result == PCIBIOS_SUCCESSFUL) 1237 dev_warn(dev->ctrl.device, 1238 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1239 csts, pci_status); 1240 else 1241 dev_warn(dev->ctrl.device, 1242 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1243 csts, result); 1244 } 1245 1246 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1247 { 1248 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1249 struct nvme_queue *nvmeq = iod->nvmeq; 1250 struct nvme_dev *dev = nvmeq->dev; 1251 struct request *abort_req; 1252 struct nvme_command cmd = { }; 1253 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1254 1255 /* If PCI error recovery process is happening, we cannot reset or 1256 * the recovery mechanism will surely fail. 1257 */ 1258 mb(); 1259 if (pci_channel_offline(to_pci_dev(dev->dev))) 1260 return BLK_EH_RESET_TIMER; 1261 1262 /* 1263 * Reset immediately if the controller is failed 1264 */ 1265 if (nvme_should_reset(dev, csts)) { 1266 nvme_warn_reset(dev, csts); 1267 nvme_dev_disable(dev, false); 1268 nvme_reset_ctrl(&dev->ctrl); 1269 return BLK_EH_DONE; 1270 } 1271 1272 /* 1273 * Did we miss an interrupt? 1274 */ 1275 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1276 nvme_poll(req->mq_hctx); 1277 else 1278 nvme_poll_irqdisable(nvmeq); 1279 1280 if (blk_mq_request_completed(req)) { 1281 dev_warn(dev->ctrl.device, 1282 "I/O %d QID %d timeout, completion polled\n", 1283 req->tag, nvmeq->qid); 1284 return BLK_EH_DONE; 1285 } 1286 1287 /* 1288 * Shutdown immediately if controller times out while starting. The 1289 * reset work will see the pci device disabled when it gets the forced 1290 * cancellation error. All outstanding requests are completed on 1291 * shutdown, so we return BLK_EH_DONE. 1292 */ 1293 switch (dev->ctrl.state) { 1294 case NVME_CTRL_CONNECTING: 1295 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1296 fallthrough; 1297 case NVME_CTRL_DELETING: 1298 dev_warn_ratelimited(dev->ctrl.device, 1299 "I/O %d QID %d timeout, disable controller\n", 1300 req->tag, nvmeq->qid); 1301 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1302 nvme_dev_disable(dev, true); 1303 return BLK_EH_DONE; 1304 case NVME_CTRL_RESETTING: 1305 return BLK_EH_RESET_TIMER; 1306 default: 1307 break; 1308 } 1309 1310 /* 1311 * Shutdown the controller immediately and schedule a reset if the 1312 * command was already aborted once before and still hasn't been 1313 * returned to the driver, or if this is the admin queue. 1314 */ 1315 if (!nvmeq->qid || iod->aborted) { 1316 dev_warn(dev->ctrl.device, 1317 "I/O %d QID %d timeout, reset controller\n", 1318 req->tag, nvmeq->qid); 1319 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1320 nvme_dev_disable(dev, false); 1321 nvme_reset_ctrl(&dev->ctrl); 1322 1323 return BLK_EH_DONE; 1324 } 1325 1326 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1327 atomic_inc(&dev->ctrl.abort_limit); 1328 return BLK_EH_RESET_TIMER; 1329 } 1330 iod->aborted = 1; 1331 1332 cmd.abort.opcode = nvme_admin_abort_cmd; 1333 cmd.abort.cid = req->tag; 1334 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1335 1336 dev_warn(nvmeq->dev->ctrl.device, 1337 "I/O %d QID %d timeout, aborting\n", 1338 req->tag, nvmeq->qid); 1339 1340 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1341 BLK_MQ_REQ_NOWAIT); 1342 if (IS_ERR(abort_req)) { 1343 atomic_inc(&dev->ctrl.abort_limit); 1344 return BLK_EH_RESET_TIMER; 1345 } 1346 1347 abort_req->end_io_data = NULL; 1348 blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio); 1349 1350 /* 1351 * The aborted req will be completed on receiving the abort req. 1352 * We enable the timer again. If hit twice, it'll cause a device reset, 1353 * as the device then is in a faulty state. 1354 */ 1355 return BLK_EH_RESET_TIMER; 1356 } 1357 1358 static void nvme_free_queue(struct nvme_queue *nvmeq) 1359 { 1360 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1361 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1362 if (!nvmeq->sq_cmds) 1363 return; 1364 1365 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1366 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1367 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1368 } else { 1369 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1370 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1371 } 1372 } 1373 1374 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1375 { 1376 int i; 1377 1378 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1379 dev->ctrl.queue_count--; 1380 nvme_free_queue(&dev->queues[i]); 1381 } 1382 } 1383 1384 /** 1385 * nvme_suspend_queue - put queue into suspended state 1386 * @nvmeq: queue to suspend 1387 */ 1388 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1389 { 1390 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1391 return 1; 1392 1393 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1394 mb(); 1395 1396 nvmeq->dev->online_queues--; 1397 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1398 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1399 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1400 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1401 return 0; 1402 } 1403 1404 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1405 { 1406 int i; 1407 1408 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1409 nvme_suspend_queue(&dev->queues[i]); 1410 } 1411 1412 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1413 { 1414 struct nvme_queue *nvmeq = &dev->queues[0]; 1415 1416 if (shutdown) 1417 nvme_shutdown_ctrl(&dev->ctrl); 1418 else 1419 nvme_disable_ctrl(&dev->ctrl); 1420 1421 nvme_poll_irqdisable(nvmeq); 1422 } 1423 1424 /* 1425 * Called only on a device that has been disabled and after all other threads 1426 * that can check this device's completion queues have synced, except 1427 * nvme_poll(). This is the last chance for the driver to see a natural 1428 * completion before nvme_cancel_request() terminates all incomplete requests. 1429 */ 1430 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1431 { 1432 int i; 1433 1434 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1435 spin_lock(&dev->queues[i].cq_poll_lock); 1436 nvme_process_cq(&dev->queues[i]); 1437 spin_unlock(&dev->queues[i].cq_poll_lock); 1438 } 1439 } 1440 1441 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1442 int entry_size) 1443 { 1444 int q_depth = dev->q_depth; 1445 unsigned q_size_aligned = roundup(q_depth * entry_size, 1446 NVME_CTRL_PAGE_SIZE); 1447 1448 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1449 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1450 1451 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1452 q_depth = div_u64(mem_per_q, entry_size); 1453 1454 /* 1455 * Ensure the reduced q_depth is above some threshold where it 1456 * would be better to map queues in system memory with the 1457 * original depth 1458 */ 1459 if (q_depth < 64) 1460 return -ENOMEM; 1461 } 1462 1463 return q_depth; 1464 } 1465 1466 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1467 int qid) 1468 { 1469 struct pci_dev *pdev = to_pci_dev(dev->dev); 1470 1471 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1472 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1473 if (nvmeq->sq_cmds) { 1474 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1475 nvmeq->sq_cmds); 1476 if (nvmeq->sq_dma_addr) { 1477 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1478 return 0; 1479 } 1480 1481 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1482 } 1483 } 1484 1485 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1486 &nvmeq->sq_dma_addr, GFP_KERNEL); 1487 if (!nvmeq->sq_cmds) 1488 return -ENOMEM; 1489 return 0; 1490 } 1491 1492 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1493 { 1494 struct nvme_queue *nvmeq = &dev->queues[qid]; 1495 1496 if (dev->ctrl.queue_count > qid) 1497 return 0; 1498 1499 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1500 nvmeq->q_depth = depth; 1501 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1502 &nvmeq->cq_dma_addr, GFP_KERNEL); 1503 if (!nvmeq->cqes) 1504 goto free_nvmeq; 1505 1506 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1507 goto free_cqdma; 1508 1509 nvmeq->dev = dev; 1510 spin_lock_init(&nvmeq->sq_lock); 1511 spin_lock_init(&nvmeq->cq_poll_lock); 1512 nvmeq->cq_head = 0; 1513 nvmeq->cq_phase = 1; 1514 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1515 nvmeq->qid = qid; 1516 dev->ctrl.queue_count++; 1517 1518 return 0; 1519 1520 free_cqdma: 1521 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1522 nvmeq->cq_dma_addr); 1523 free_nvmeq: 1524 return -ENOMEM; 1525 } 1526 1527 static int queue_request_irq(struct nvme_queue *nvmeq) 1528 { 1529 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1530 int nr = nvmeq->dev->ctrl.instance; 1531 1532 if (use_threaded_interrupts) { 1533 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1534 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1535 } else { 1536 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1537 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1538 } 1539 } 1540 1541 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1542 { 1543 struct nvme_dev *dev = nvmeq->dev; 1544 1545 nvmeq->sq_tail = 0; 1546 nvmeq->last_sq_tail = 0; 1547 nvmeq->cq_head = 0; 1548 nvmeq->cq_phase = 1; 1549 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1550 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1551 nvme_dbbuf_init(dev, nvmeq, qid); 1552 dev->online_queues++; 1553 wmb(); /* ensure the first interrupt sees the initialization */ 1554 } 1555 1556 /* 1557 * Try getting shutdown_lock while setting up IO queues. 1558 */ 1559 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1560 { 1561 /* 1562 * Give up if the lock is being held by nvme_dev_disable. 1563 */ 1564 if (!mutex_trylock(&dev->shutdown_lock)) 1565 return -ENODEV; 1566 1567 /* 1568 * Controller is in wrong state, fail early. 1569 */ 1570 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1571 mutex_unlock(&dev->shutdown_lock); 1572 return -ENODEV; 1573 } 1574 1575 return 0; 1576 } 1577 1578 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1579 { 1580 struct nvme_dev *dev = nvmeq->dev; 1581 int result; 1582 u16 vector = 0; 1583 1584 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1585 1586 /* 1587 * A queue's vector matches the queue identifier unless the controller 1588 * has only one vector available. 1589 */ 1590 if (!polled) 1591 vector = dev->num_vecs == 1 ? 0 : qid; 1592 else 1593 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1594 1595 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1596 if (result) 1597 return result; 1598 1599 result = adapter_alloc_sq(dev, qid, nvmeq); 1600 if (result < 0) 1601 return result; 1602 if (result) 1603 goto release_cq; 1604 1605 nvmeq->cq_vector = vector; 1606 1607 result = nvme_setup_io_queues_trylock(dev); 1608 if (result) 1609 return result; 1610 nvme_init_queue(nvmeq, qid); 1611 if (!polled) { 1612 result = queue_request_irq(nvmeq); 1613 if (result < 0) 1614 goto release_sq; 1615 } 1616 1617 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1618 mutex_unlock(&dev->shutdown_lock); 1619 return result; 1620 1621 release_sq: 1622 dev->online_queues--; 1623 mutex_unlock(&dev->shutdown_lock); 1624 adapter_delete_sq(dev, qid); 1625 release_cq: 1626 adapter_delete_cq(dev, qid); 1627 return result; 1628 } 1629 1630 static const struct blk_mq_ops nvme_mq_admin_ops = { 1631 .queue_rq = nvme_queue_rq, 1632 .complete = nvme_pci_complete_rq, 1633 .init_hctx = nvme_admin_init_hctx, 1634 .init_request = nvme_init_request, 1635 .timeout = nvme_timeout, 1636 }; 1637 1638 static const struct blk_mq_ops nvme_mq_ops = { 1639 .queue_rq = nvme_queue_rq, 1640 .complete = nvme_pci_complete_rq, 1641 .commit_rqs = nvme_commit_rqs, 1642 .init_hctx = nvme_init_hctx, 1643 .init_request = nvme_init_request, 1644 .map_queues = nvme_pci_map_queues, 1645 .timeout = nvme_timeout, 1646 .poll = nvme_poll, 1647 }; 1648 1649 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1650 { 1651 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1652 /* 1653 * If the controller was reset during removal, it's possible 1654 * user requests may be waiting on a stopped queue. Start the 1655 * queue to flush these to completion. 1656 */ 1657 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1658 blk_cleanup_queue(dev->ctrl.admin_q); 1659 blk_mq_free_tag_set(&dev->admin_tagset); 1660 } 1661 } 1662 1663 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1664 { 1665 if (!dev->ctrl.admin_q) { 1666 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1667 dev->admin_tagset.nr_hw_queues = 1; 1668 1669 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1670 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1671 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1672 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1673 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1674 dev->admin_tagset.driver_data = dev; 1675 1676 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1677 return -ENOMEM; 1678 dev->ctrl.admin_tagset = &dev->admin_tagset; 1679 1680 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1681 if (IS_ERR(dev->ctrl.admin_q)) { 1682 blk_mq_free_tag_set(&dev->admin_tagset); 1683 return -ENOMEM; 1684 } 1685 if (!blk_get_queue(dev->ctrl.admin_q)) { 1686 nvme_dev_remove_admin(dev); 1687 dev->ctrl.admin_q = NULL; 1688 return -ENODEV; 1689 } 1690 } else 1691 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1692 1693 return 0; 1694 } 1695 1696 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1697 { 1698 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1699 } 1700 1701 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1702 { 1703 struct pci_dev *pdev = to_pci_dev(dev->dev); 1704 1705 if (size <= dev->bar_mapped_size) 1706 return 0; 1707 if (size > pci_resource_len(pdev, 0)) 1708 return -ENOMEM; 1709 if (dev->bar) 1710 iounmap(dev->bar); 1711 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1712 if (!dev->bar) { 1713 dev->bar_mapped_size = 0; 1714 return -ENOMEM; 1715 } 1716 dev->bar_mapped_size = size; 1717 dev->dbs = dev->bar + NVME_REG_DBS; 1718 1719 return 0; 1720 } 1721 1722 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1723 { 1724 int result; 1725 u32 aqa; 1726 struct nvme_queue *nvmeq; 1727 1728 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1729 if (result < 0) 1730 return result; 1731 1732 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1733 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1734 1735 if (dev->subsystem && 1736 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1737 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1738 1739 result = nvme_disable_ctrl(&dev->ctrl); 1740 if (result < 0) 1741 return result; 1742 1743 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1744 if (result) 1745 return result; 1746 1747 dev->ctrl.numa_node = dev_to_node(dev->dev); 1748 1749 nvmeq = &dev->queues[0]; 1750 aqa = nvmeq->q_depth - 1; 1751 aqa |= aqa << 16; 1752 1753 writel(aqa, dev->bar + NVME_REG_AQA); 1754 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1755 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1756 1757 result = nvme_enable_ctrl(&dev->ctrl); 1758 if (result) 1759 return result; 1760 1761 nvmeq->cq_vector = 0; 1762 nvme_init_queue(nvmeq, 0); 1763 result = queue_request_irq(nvmeq); 1764 if (result) { 1765 dev->online_queues--; 1766 return result; 1767 } 1768 1769 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1770 return result; 1771 } 1772 1773 static int nvme_create_io_queues(struct nvme_dev *dev) 1774 { 1775 unsigned i, max, rw_queues; 1776 int ret = 0; 1777 1778 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1779 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1780 ret = -ENOMEM; 1781 break; 1782 } 1783 } 1784 1785 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1786 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1787 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1788 dev->io_queues[HCTX_TYPE_READ]; 1789 } else { 1790 rw_queues = max; 1791 } 1792 1793 for (i = dev->online_queues; i <= max; i++) { 1794 bool polled = i > rw_queues; 1795 1796 ret = nvme_create_queue(&dev->queues[i], i, polled); 1797 if (ret) 1798 break; 1799 } 1800 1801 /* 1802 * Ignore failing Create SQ/CQ commands, we can continue with less 1803 * than the desired amount of queues, and even a controller without 1804 * I/O queues can still be used to issue admin commands. This might 1805 * be useful to upgrade a buggy firmware for example. 1806 */ 1807 return ret >= 0 ? 0 : ret; 1808 } 1809 1810 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1811 { 1812 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1813 1814 return 1ULL << (12 + 4 * szu); 1815 } 1816 1817 static u32 nvme_cmb_size(struct nvme_dev *dev) 1818 { 1819 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1820 } 1821 1822 static void nvme_map_cmb(struct nvme_dev *dev) 1823 { 1824 u64 size, offset; 1825 resource_size_t bar_size; 1826 struct pci_dev *pdev = to_pci_dev(dev->dev); 1827 int bar; 1828 1829 if (dev->cmb_size) 1830 return; 1831 1832 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1833 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1834 1835 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1836 if (!dev->cmbsz) 1837 return; 1838 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1839 1840 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1841 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1842 bar = NVME_CMB_BIR(dev->cmbloc); 1843 bar_size = pci_resource_len(pdev, bar); 1844 1845 if (offset > bar_size) 1846 return; 1847 1848 /* 1849 * Tell the controller about the host side address mapping the CMB, 1850 * and enable CMB decoding for the NVMe 1.4+ scheme: 1851 */ 1852 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1853 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1854 (pci_bus_address(pdev, bar) + offset), 1855 dev->bar + NVME_REG_CMBMSC); 1856 } 1857 1858 /* 1859 * Controllers may support a CMB size larger than their BAR, 1860 * for example, due to being behind a bridge. Reduce the CMB to 1861 * the reported size of the BAR 1862 */ 1863 if (size > bar_size - offset) 1864 size = bar_size - offset; 1865 1866 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1867 dev_warn(dev->ctrl.device, 1868 "failed to register the CMB\n"); 1869 return; 1870 } 1871 1872 dev->cmb_size = size; 1873 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1874 1875 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1876 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1877 pci_p2pmem_publish(pdev, true); 1878 } 1879 1880 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1881 { 1882 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1883 u64 dma_addr = dev->host_mem_descs_dma; 1884 struct nvme_command c = { }; 1885 int ret; 1886 1887 c.features.opcode = nvme_admin_set_features; 1888 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1889 c.features.dword11 = cpu_to_le32(bits); 1890 c.features.dword12 = cpu_to_le32(host_mem_size); 1891 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1892 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1893 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1894 1895 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1896 if (ret) { 1897 dev_warn(dev->ctrl.device, 1898 "failed to set host mem (err %d, flags %#x).\n", 1899 ret, bits); 1900 } else 1901 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1902 1903 return ret; 1904 } 1905 1906 static void nvme_free_host_mem(struct nvme_dev *dev) 1907 { 1908 int i; 1909 1910 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1911 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1912 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1913 1914 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1915 le64_to_cpu(desc->addr), 1916 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1917 } 1918 1919 kfree(dev->host_mem_desc_bufs); 1920 dev->host_mem_desc_bufs = NULL; 1921 dma_free_coherent(dev->dev, 1922 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1923 dev->host_mem_descs, dev->host_mem_descs_dma); 1924 dev->host_mem_descs = NULL; 1925 dev->nr_host_mem_descs = 0; 1926 } 1927 1928 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1929 u32 chunk_size) 1930 { 1931 struct nvme_host_mem_buf_desc *descs; 1932 u32 max_entries, len; 1933 dma_addr_t descs_dma; 1934 int i = 0; 1935 void **bufs; 1936 u64 size, tmp; 1937 1938 tmp = (preferred + chunk_size - 1); 1939 do_div(tmp, chunk_size); 1940 max_entries = tmp; 1941 1942 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1943 max_entries = dev->ctrl.hmmaxd; 1944 1945 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1946 &descs_dma, GFP_KERNEL); 1947 if (!descs) 1948 goto out; 1949 1950 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1951 if (!bufs) 1952 goto out_free_descs; 1953 1954 for (size = 0; size < preferred && i < max_entries; size += len) { 1955 dma_addr_t dma_addr; 1956 1957 len = min_t(u64, chunk_size, preferred - size); 1958 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1959 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1960 if (!bufs[i]) 1961 break; 1962 1963 descs[i].addr = cpu_to_le64(dma_addr); 1964 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1965 i++; 1966 } 1967 1968 if (!size) 1969 goto out_free_bufs; 1970 1971 dev->nr_host_mem_descs = i; 1972 dev->host_mem_size = size; 1973 dev->host_mem_descs = descs; 1974 dev->host_mem_descs_dma = descs_dma; 1975 dev->host_mem_desc_bufs = bufs; 1976 return 0; 1977 1978 out_free_bufs: 1979 while (--i >= 0) { 1980 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1981 1982 dma_free_attrs(dev->dev, size, bufs[i], 1983 le64_to_cpu(descs[i].addr), 1984 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1985 } 1986 1987 kfree(bufs); 1988 out_free_descs: 1989 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1990 descs_dma); 1991 out: 1992 dev->host_mem_descs = NULL; 1993 return -ENOMEM; 1994 } 1995 1996 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1997 { 1998 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1999 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2000 u64 chunk_size; 2001 2002 /* start big and work our way down */ 2003 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2004 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2005 if (!min || dev->host_mem_size >= min) 2006 return 0; 2007 nvme_free_host_mem(dev); 2008 } 2009 } 2010 2011 return -ENOMEM; 2012 } 2013 2014 static int nvme_setup_host_mem(struct nvme_dev *dev) 2015 { 2016 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2017 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2018 u64 min = (u64)dev->ctrl.hmmin * 4096; 2019 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2020 int ret; 2021 2022 preferred = min(preferred, max); 2023 if (min > max) { 2024 dev_warn(dev->ctrl.device, 2025 "min host memory (%lld MiB) above limit (%d MiB).\n", 2026 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2027 nvme_free_host_mem(dev); 2028 return 0; 2029 } 2030 2031 /* 2032 * If we already have a buffer allocated check if we can reuse it. 2033 */ 2034 if (dev->host_mem_descs) { 2035 if (dev->host_mem_size >= min) 2036 enable_bits |= NVME_HOST_MEM_RETURN; 2037 else 2038 nvme_free_host_mem(dev); 2039 } 2040 2041 if (!dev->host_mem_descs) { 2042 if (nvme_alloc_host_mem(dev, min, preferred)) { 2043 dev_warn(dev->ctrl.device, 2044 "failed to allocate host memory buffer.\n"); 2045 return 0; /* controller must work without HMB */ 2046 } 2047 2048 dev_info(dev->ctrl.device, 2049 "allocated %lld MiB host memory buffer.\n", 2050 dev->host_mem_size >> ilog2(SZ_1M)); 2051 } 2052 2053 ret = nvme_set_host_mem(dev, enable_bits); 2054 if (ret) 2055 nvme_free_host_mem(dev); 2056 return ret; 2057 } 2058 2059 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2060 char *buf) 2061 { 2062 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2063 2064 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2065 ndev->cmbloc, ndev->cmbsz); 2066 } 2067 static DEVICE_ATTR_RO(cmb); 2068 2069 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2070 char *buf) 2071 { 2072 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2073 2074 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2075 } 2076 static DEVICE_ATTR_RO(cmbloc); 2077 2078 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2079 char *buf) 2080 { 2081 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2082 2083 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2084 } 2085 static DEVICE_ATTR_RO(cmbsz); 2086 2087 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2088 char *buf) 2089 { 2090 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2091 2092 return sysfs_emit(buf, "%d\n", ndev->hmb); 2093 } 2094 2095 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2096 const char *buf, size_t count) 2097 { 2098 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2099 bool new; 2100 int ret; 2101 2102 if (strtobool(buf, &new) < 0) 2103 return -EINVAL; 2104 2105 if (new == ndev->hmb) 2106 return count; 2107 2108 if (new) { 2109 ret = nvme_setup_host_mem(ndev); 2110 } else { 2111 ret = nvme_set_host_mem(ndev, 0); 2112 if (!ret) 2113 nvme_free_host_mem(ndev); 2114 } 2115 2116 if (ret < 0) 2117 return ret; 2118 2119 return count; 2120 } 2121 static DEVICE_ATTR_RW(hmb); 2122 2123 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2124 struct attribute *a, int n) 2125 { 2126 struct nvme_ctrl *ctrl = 2127 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2128 struct nvme_dev *dev = to_nvme_dev(ctrl); 2129 2130 if (a == &dev_attr_cmb.attr || 2131 a == &dev_attr_cmbloc.attr || 2132 a == &dev_attr_cmbsz.attr) { 2133 if (!dev->cmbsz) 2134 return 0; 2135 } 2136 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2137 return 0; 2138 2139 return a->mode; 2140 } 2141 2142 static struct attribute *nvme_pci_attrs[] = { 2143 &dev_attr_cmb.attr, 2144 &dev_attr_cmbloc.attr, 2145 &dev_attr_cmbsz.attr, 2146 &dev_attr_hmb.attr, 2147 NULL, 2148 }; 2149 2150 static const struct attribute_group nvme_pci_attr_group = { 2151 .attrs = nvme_pci_attrs, 2152 .is_visible = nvme_pci_attrs_are_visible, 2153 }; 2154 2155 /* 2156 * nirqs is the number of interrupts available for write and read 2157 * queues. The core already reserved an interrupt for the admin queue. 2158 */ 2159 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2160 { 2161 struct nvme_dev *dev = affd->priv; 2162 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2163 2164 /* 2165 * If there is no interrupt available for queues, ensure that 2166 * the default queue is set to 1. The affinity set size is 2167 * also set to one, but the irq core ignores it for this case. 2168 * 2169 * If only one interrupt is available or 'write_queue' == 0, combine 2170 * write and read queues. 2171 * 2172 * If 'write_queues' > 0, ensure it leaves room for at least one read 2173 * queue. 2174 */ 2175 if (!nrirqs) { 2176 nrirqs = 1; 2177 nr_read_queues = 0; 2178 } else if (nrirqs == 1 || !nr_write_queues) { 2179 nr_read_queues = 0; 2180 } else if (nr_write_queues >= nrirqs) { 2181 nr_read_queues = 1; 2182 } else { 2183 nr_read_queues = nrirqs - nr_write_queues; 2184 } 2185 2186 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2187 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2188 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2189 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2190 affd->nr_sets = nr_read_queues ? 2 : 1; 2191 } 2192 2193 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2194 { 2195 struct pci_dev *pdev = to_pci_dev(dev->dev); 2196 struct irq_affinity affd = { 2197 .pre_vectors = 1, 2198 .calc_sets = nvme_calc_irq_sets, 2199 .priv = dev, 2200 }; 2201 unsigned int irq_queues, poll_queues; 2202 2203 /* 2204 * Poll queues don't need interrupts, but we need at least one I/O queue 2205 * left over for non-polled I/O. 2206 */ 2207 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2208 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2209 2210 /* 2211 * Initialize for the single interrupt case, will be updated in 2212 * nvme_calc_irq_sets(). 2213 */ 2214 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2215 dev->io_queues[HCTX_TYPE_READ] = 0; 2216 2217 /* 2218 * We need interrupts for the admin queue and each non-polled I/O queue, 2219 * but some Apple controllers require all queues to use the first 2220 * vector. 2221 */ 2222 irq_queues = 1; 2223 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2224 irq_queues += (nr_io_queues - poll_queues); 2225 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2226 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2227 } 2228 2229 static void nvme_disable_io_queues(struct nvme_dev *dev) 2230 { 2231 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2232 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2233 } 2234 2235 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2236 { 2237 /* 2238 * If tags are shared with admin queue (Apple bug), then 2239 * make sure we only use one IO queue. 2240 */ 2241 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2242 return 1; 2243 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2244 } 2245 2246 static int nvme_setup_io_queues(struct nvme_dev *dev) 2247 { 2248 struct nvme_queue *adminq = &dev->queues[0]; 2249 struct pci_dev *pdev = to_pci_dev(dev->dev); 2250 unsigned int nr_io_queues; 2251 unsigned long size; 2252 int result; 2253 2254 /* 2255 * Sample the module parameters once at reset time so that we have 2256 * stable values to work with. 2257 */ 2258 dev->nr_write_queues = write_queues; 2259 dev->nr_poll_queues = poll_queues; 2260 2261 nr_io_queues = dev->nr_allocated_queues - 1; 2262 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2263 if (result < 0) 2264 return result; 2265 2266 if (nr_io_queues == 0) 2267 return 0; 2268 2269 /* 2270 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2271 * from set to unset. If there is a window to it is truely freed, 2272 * pci_free_irq_vectors() jumping into this window will crash. 2273 * And take lock to avoid racing with pci_free_irq_vectors() in 2274 * nvme_dev_disable() path. 2275 */ 2276 result = nvme_setup_io_queues_trylock(dev); 2277 if (result) 2278 return result; 2279 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2280 pci_free_irq(pdev, 0, adminq); 2281 2282 if (dev->cmb_use_sqes) { 2283 result = nvme_cmb_qdepth(dev, nr_io_queues, 2284 sizeof(struct nvme_command)); 2285 if (result > 0) 2286 dev->q_depth = result; 2287 else 2288 dev->cmb_use_sqes = false; 2289 } 2290 2291 do { 2292 size = db_bar_size(dev, nr_io_queues); 2293 result = nvme_remap_bar(dev, size); 2294 if (!result) 2295 break; 2296 if (!--nr_io_queues) { 2297 result = -ENOMEM; 2298 goto out_unlock; 2299 } 2300 } while (1); 2301 adminq->q_db = dev->dbs; 2302 2303 retry: 2304 /* Deregister the admin queue's interrupt */ 2305 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2306 pci_free_irq(pdev, 0, adminq); 2307 2308 /* 2309 * If we enable msix early due to not intx, disable it again before 2310 * setting up the full range we need. 2311 */ 2312 pci_free_irq_vectors(pdev); 2313 2314 result = nvme_setup_irqs(dev, nr_io_queues); 2315 if (result <= 0) { 2316 result = -EIO; 2317 goto out_unlock; 2318 } 2319 2320 dev->num_vecs = result; 2321 result = max(result - 1, 1); 2322 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2323 2324 /* 2325 * Should investigate if there's a performance win from allocating 2326 * more queues than interrupt vectors; it might allow the submission 2327 * path to scale better, even if the receive path is limited by the 2328 * number of interrupts. 2329 */ 2330 result = queue_request_irq(adminq); 2331 if (result) 2332 goto out_unlock; 2333 set_bit(NVMEQ_ENABLED, &adminq->flags); 2334 mutex_unlock(&dev->shutdown_lock); 2335 2336 result = nvme_create_io_queues(dev); 2337 if (result || dev->online_queues < 2) 2338 return result; 2339 2340 if (dev->online_queues - 1 < dev->max_qid) { 2341 nr_io_queues = dev->online_queues - 1; 2342 nvme_disable_io_queues(dev); 2343 result = nvme_setup_io_queues_trylock(dev); 2344 if (result) 2345 return result; 2346 nvme_suspend_io_queues(dev); 2347 goto retry; 2348 } 2349 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2350 dev->io_queues[HCTX_TYPE_DEFAULT], 2351 dev->io_queues[HCTX_TYPE_READ], 2352 dev->io_queues[HCTX_TYPE_POLL]); 2353 return 0; 2354 out_unlock: 2355 mutex_unlock(&dev->shutdown_lock); 2356 return result; 2357 } 2358 2359 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2360 { 2361 struct nvme_queue *nvmeq = req->end_io_data; 2362 2363 blk_mq_free_request(req); 2364 complete(&nvmeq->delete_done); 2365 } 2366 2367 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2368 { 2369 struct nvme_queue *nvmeq = req->end_io_data; 2370 2371 if (error) 2372 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2373 2374 nvme_del_queue_end(req, error); 2375 } 2376 2377 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2378 { 2379 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2380 struct request *req; 2381 struct nvme_command cmd = { }; 2382 2383 cmd.delete_queue.opcode = opcode; 2384 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2385 2386 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 2387 if (IS_ERR(req)) 2388 return PTR_ERR(req); 2389 2390 req->end_io_data = nvmeq; 2391 2392 init_completion(&nvmeq->delete_done); 2393 blk_execute_rq_nowait(NULL, req, false, 2394 opcode == nvme_admin_delete_cq ? 2395 nvme_del_cq_end : nvme_del_queue_end); 2396 return 0; 2397 } 2398 2399 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2400 { 2401 int nr_queues = dev->online_queues - 1, sent = 0; 2402 unsigned long timeout; 2403 2404 retry: 2405 timeout = NVME_ADMIN_TIMEOUT; 2406 while (nr_queues > 0) { 2407 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2408 break; 2409 nr_queues--; 2410 sent++; 2411 } 2412 while (sent) { 2413 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2414 2415 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2416 timeout); 2417 if (timeout == 0) 2418 return false; 2419 2420 sent--; 2421 if (nr_queues) 2422 goto retry; 2423 } 2424 return true; 2425 } 2426 2427 static void nvme_dev_add(struct nvme_dev *dev) 2428 { 2429 int ret; 2430 2431 if (!dev->ctrl.tagset) { 2432 dev->tagset.ops = &nvme_mq_ops; 2433 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2434 dev->tagset.nr_maps = 2; /* default + read */ 2435 if (dev->io_queues[HCTX_TYPE_POLL]) 2436 dev->tagset.nr_maps++; 2437 dev->tagset.timeout = NVME_IO_TIMEOUT; 2438 dev->tagset.numa_node = dev->ctrl.numa_node; 2439 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2440 BLK_MQ_MAX_DEPTH) - 1; 2441 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2442 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2443 dev->tagset.driver_data = dev; 2444 2445 /* 2446 * Some Apple controllers requires tags to be unique 2447 * across admin and IO queue, so reserve the first 32 2448 * tags of the IO queue. 2449 */ 2450 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2451 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2452 2453 ret = blk_mq_alloc_tag_set(&dev->tagset); 2454 if (ret) { 2455 dev_warn(dev->ctrl.device, 2456 "IO queues tagset allocation failed %d\n", ret); 2457 return; 2458 } 2459 dev->ctrl.tagset = &dev->tagset; 2460 } else { 2461 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2462 2463 /* Free previously allocated queues that are no longer usable */ 2464 nvme_free_queues(dev, dev->online_queues); 2465 } 2466 2467 nvme_dbbuf_set(dev); 2468 } 2469 2470 static int nvme_pci_enable(struct nvme_dev *dev) 2471 { 2472 int result = -ENOMEM; 2473 struct pci_dev *pdev = to_pci_dev(dev->dev); 2474 int dma_address_bits = 64; 2475 2476 if (pci_enable_device_mem(pdev)) 2477 return result; 2478 2479 pci_set_master(pdev); 2480 2481 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2482 dma_address_bits = 48; 2483 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2484 goto disable; 2485 2486 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2487 result = -ENODEV; 2488 goto disable; 2489 } 2490 2491 /* 2492 * Some devices and/or platforms don't advertise or work with INTx 2493 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2494 * adjust this later. 2495 */ 2496 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2497 if (result < 0) 2498 return result; 2499 2500 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2501 2502 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2503 io_queue_depth); 2504 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2505 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2506 dev->dbs = dev->bar + 4096; 2507 2508 /* 2509 * Some Apple controllers require a non-standard SQE size. 2510 * Interestingly they also seem to ignore the CC:IOSQES register 2511 * so we don't bother updating it here. 2512 */ 2513 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2514 dev->io_sqes = 7; 2515 else 2516 dev->io_sqes = NVME_NVM_IOSQES; 2517 2518 /* 2519 * Temporary fix for the Apple controller found in the MacBook8,1 and 2520 * some MacBook7,1 to avoid controller resets and data loss. 2521 */ 2522 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2523 dev->q_depth = 2; 2524 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2525 "set queue depth=%u to work around controller resets\n", 2526 dev->q_depth); 2527 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2528 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2529 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2530 dev->q_depth = 64; 2531 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2532 "set queue depth=%u\n", dev->q_depth); 2533 } 2534 2535 /* 2536 * Controllers with the shared tags quirk need the IO queue to be 2537 * big enough so that we get 32 tags for the admin queue 2538 */ 2539 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2540 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2541 dev->q_depth = NVME_AQ_DEPTH + 2; 2542 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2543 dev->q_depth); 2544 } 2545 2546 2547 nvme_map_cmb(dev); 2548 2549 pci_enable_pcie_error_reporting(pdev); 2550 pci_save_state(pdev); 2551 return 0; 2552 2553 disable: 2554 pci_disable_device(pdev); 2555 return result; 2556 } 2557 2558 static void nvme_dev_unmap(struct nvme_dev *dev) 2559 { 2560 if (dev->bar) 2561 iounmap(dev->bar); 2562 pci_release_mem_regions(to_pci_dev(dev->dev)); 2563 } 2564 2565 static void nvme_pci_disable(struct nvme_dev *dev) 2566 { 2567 struct pci_dev *pdev = to_pci_dev(dev->dev); 2568 2569 pci_free_irq_vectors(pdev); 2570 2571 if (pci_is_enabled(pdev)) { 2572 pci_disable_pcie_error_reporting(pdev); 2573 pci_disable_device(pdev); 2574 } 2575 } 2576 2577 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2578 { 2579 bool dead = true, freeze = false; 2580 struct pci_dev *pdev = to_pci_dev(dev->dev); 2581 2582 mutex_lock(&dev->shutdown_lock); 2583 if (pci_is_enabled(pdev)) { 2584 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2585 2586 if (dev->ctrl.state == NVME_CTRL_LIVE || 2587 dev->ctrl.state == NVME_CTRL_RESETTING) { 2588 freeze = true; 2589 nvme_start_freeze(&dev->ctrl); 2590 } 2591 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2592 pdev->error_state != pci_channel_io_normal); 2593 } 2594 2595 /* 2596 * Give the controller a chance to complete all entered requests if 2597 * doing a safe shutdown. 2598 */ 2599 if (!dead && shutdown && freeze) 2600 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2601 2602 nvme_stop_queues(&dev->ctrl); 2603 2604 if (!dead && dev->ctrl.queue_count > 0) { 2605 nvme_disable_io_queues(dev); 2606 nvme_disable_admin_queue(dev, shutdown); 2607 } 2608 nvme_suspend_io_queues(dev); 2609 nvme_suspend_queue(&dev->queues[0]); 2610 nvme_pci_disable(dev); 2611 nvme_reap_pending_cqes(dev); 2612 2613 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2614 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2615 blk_mq_tagset_wait_completed_request(&dev->tagset); 2616 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2617 2618 /* 2619 * The driver will not be starting up queues again if shutting down so 2620 * must flush all entered requests to their failed completion to avoid 2621 * deadlocking blk-mq hot-cpu notifier. 2622 */ 2623 if (shutdown) { 2624 nvme_start_queues(&dev->ctrl); 2625 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2626 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2627 } 2628 mutex_unlock(&dev->shutdown_lock); 2629 } 2630 2631 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2632 { 2633 if (!nvme_wait_reset(&dev->ctrl)) 2634 return -EBUSY; 2635 nvme_dev_disable(dev, shutdown); 2636 return 0; 2637 } 2638 2639 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2640 { 2641 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2642 NVME_CTRL_PAGE_SIZE, 2643 NVME_CTRL_PAGE_SIZE, 0); 2644 if (!dev->prp_page_pool) 2645 return -ENOMEM; 2646 2647 /* Optimisation for I/Os between 4k and 128k */ 2648 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2649 256, 256, 0); 2650 if (!dev->prp_small_pool) { 2651 dma_pool_destroy(dev->prp_page_pool); 2652 return -ENOMEM; 2653 } 2654 return 0; 2655 } 2656 2657 static void nvme_release_prp_pools(struct nvme_dev *dev) 2658 { 2659 dma_pool_destroy(dev->prp_page_pool); 2660 dma_pool_destroy(dev->prp_small_pool); 2661 } 2662 2663 static void nvme_free_tagset(struct nvme_dev *dev) 2664 { 2665 if (dev->tagset.tags) 2666 blk_mq_free_tag_set(&dev->tagset); 2667 dev->ctrl.tagset = NULL; 2668 } 2669 2670 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2671 { 2672 struct nvme_dev *dev = to_nvme_dev(ctrl); 2673 2674 nvme_dbbuf_dma_free(dev); 2675 nvme_free_tagset(dev); 2676 if (dev->ctrl.admin_q) 2677 blk_put_queue(dev->ctrl.admin_q); 2678 free_opal_dev(dev->ctrl.opal_dev); 2679 mempool_destroy(dev->iod_mempool); 2680 put_device(dev->dev); 2681 kfree(dev->queues); 2682 kfree(dev); 2683 } 2684 2685 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2686 { 2687 /* 2688 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2689 * may be holding this pci_dev's device lock. 2690 */ 2691 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2692 nvme_get_ctrl(&dev->ctrl); 2693 nvme_dev_disable(dev, false); 2694 nvme_kill_queues(&dev->ctrl); 2695 if (!queue_work(nvme_wq, &dev->remove_work)) 2696 nvme_put_ctrl(&dev->ctrl); 2697 } 2698 2699 static void nvme_reset_work(struct work_struct *work) 2700 { 2701 struct nvme_dev *dev = 2702 container_of(work, struct nvme_dev, ctrl.reset_work); 2703 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2704 int result; 2705 2706 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2707 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2708 dev->ctrl.state); 2709 result = -ENODEV; 2710 goto out; 2711 } 2712 2713 /* 2714 * If we're called to reset a live controller first shut it down before 2715 * moving on. 2716 */ 2717 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2718 nvme_dev_disable(dev, false); 2719 nvme_sync_queues(&dev->ctrl); 2720 2721 mutex_lock(&dev->shutdown_lock); 2722 result = nvme_pci_enable(dev); 2723 if (result) 2724 goto out_unlock; 2725 2726 result = nvme_pci_configure_admin_queue(dev); 2727 if (result) 2728 goto out_unlock; 2729 2730 result = nvme_alloc_admin_tags(dev); 2731 if (result) 2732 goto out_unlock; 2733 2734 /* 2735 * Limit the max command size to prevent iod->sg allocations going 2736 * over a single page. 2737 */ 2738 dev->ctrl.max_hw_sectors = min_t(u32, 2739 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2740 dev->ctrl.max_segments = NVME_MAX_SEGS; 2741 2742 /* 2743 * Don't limit the IOMMU merged segment size. 2744 */ 2745 dma_set_max_seg_size(dev->dev, 0xffffffff); 2746 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2747 2748 mutex_unlock(&dev->shutdown_lock); 2749 2750 /* 2751 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2752 * initializing procedure here. 2753 */ 2754 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2755 dev_warn(dev->ctrl.device, 2756 "failed to mark controller CONNECTING\n"); 2757 result = -EBUSY; 2758 goto out; 2759 } 2760 2761 /* 2762 * We do not support an SGL for metadata (yet), so we are limited to a 2763 * single integrity segment for the separate metadata pointer. 2764 */ 2765 dev->ctrl.max_integrity_segments = 1; 2766 2767 result = nvme_init_ctrl_finish(&dev->ctrl); 2768 if (result) 2769 goto out; 2770 2771 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2772 if (!dev->ctrl.opal_dev) 2773 dev->ctrl.opal_dev = 2774 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2775 else if (was_suspend) 2776 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2777 } else { 2778 free_opal_dev(dev->ctrl.opal_dev); 2779 dev->ctrl.opal_dev = NULL; 2780 } 2781 2782 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2783 result = nvme_dbbuf_dma_alloc(dev); 2784 if (result) 2785 dev_warn(dev->dev, 2786 "unable to allocate dma for dbbuf\n"); 2787 } 2788 2789 if (dev->ctrl.hmpre) { 2790 result = nvme_setup_host_mem(dev); 2791 if (result < 0) 2792 goto out; 2793 } 2794 2795 result = nvme_setup_io_queues(dev); 2796 if (result) 2797 goto out; 2798 2799 /* 2800 * Keep the controller around but remove all namespaces if we don't have 2801 * any working I/O queue. 2802 */ 2803 if (dev->online_queues < 2) { 2804 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2805 nvme_kill_queues(&dev->ctrl); 2806 nvme_remove_namespaces(&dev->ctrl); 2807 nvme_free_tagset(dev); 2808 } else { 2809 nvme_start_queues(&dev->ctrl); 2810 nvme_wait_freeze(&dev->ctrl); 2811 nvme_dev_add(dev); 2812 nvme_unfreeze(&dev->ctrl); 2813 } 2814 2815 /* 2816 * If only admin queue live, keep it to do further investigation or 2817 * recovery. 2818 */ 2819 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2820 dev_warn(dev->ctrl.device, 2821 "failed to mark controller live state\n"); 2822 result = -ENODEV; 2823 goto out; 2824 } 2825 2826 if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj, 2827 &nvme_pci_attr_group)) 2828 dev->attrs_added = true; 2829 2830 nvme_start_ctrl(&dev->ctrl); 2831 return; 2832 2833 out_unlock: 2834 mutex_unlock(&dev->shutdown_lock); 2835 out: 2836 if (result) 2837 dev_warn(dev->ctrl.device, 2838 "Removing after probe failure status: %d\n", result); 2839 nvme_remove_dead_ctrl(dev); 2840 } 2841 2842 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2843 { 2844 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2845 struct pci_dev *pdev = to_pci_dev(dev->dev); 2846 2847 if (pci_get_drvdata(pdev)) 2848 device_release_driver(&pdev->dev); 2849 nvme_put_ctrl(&dev->ctrl); 2850 } 2851 2852 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2853 { 2854 *val = readl(to_nvme_dev(ctrl)->bar + off); 2855 return 0; 2856 } 2857 2858 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2859 { 2860 writel(val, to_nvme_dev(ctrl)->bar + off); 2861 return 0; 2862 } 2863 2864 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2865 { 2866 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2867 return 0; 2868 } 2869 2870 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2871 { 2872 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2873 2874 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2875 } 2876 2877 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2878 .name = "pcie", 2879 .module = THIS_MODULE, 2880 .flags = NVME_F_METADATA_SUPPORTED | 2881 NVME_F_PCI_P2PDMA, 2882 .reg_read32 = nvme_pci_reg_read32, 2883 .reg_write32 = nvme_pci_reg_write32, 2884 .reg_read64 = nvme_pci_reg_read64, 2885 .free_ctrl = nvme_pci_free_ctrl, 2886 .submit_async_event = nvme_pci_submit_async_event, 2887 .get_address = nvme_pci_get_address, 2888 }; 2889 2890 static int nvme_dev_map(struct nvme_dev *dev) 2891 { 2892 struct pci_dev *pdev = to_pci_dev(dev->dev); 2893 2894 if (pci_request_mem_regions(pdev, "nvme")) 2895 return -ENODEV; 2896 2897 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2898 goto release; 2899 2900 return 0; 2901 release: 2902 pci_release_mem_regions(pdev); 2903 return -ENODEV; 2904 } 2905 2906 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2907 { 2908 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2909 /* 2910 * Several Samsung devices seem to drop off the PCIe bus 2911 * randomly when APST is on and uses the deepest sleep state. 2912 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2913 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2914 * 950 PRO 256GB", but it seems to be restricted to two Dell 2915 * laptops. 2916 */ 2917 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2918 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2919 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2920 return NVME_QUIRK_NO_DEEPEST_PS; 2921 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2922 /* 2923 * Samsung SSD 960 EVO drops off the PCIe bus after system 2924 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2925 * within few minutes after bootup on a Coffee Lake board - 2926 * ASUS PRIME Z370-A 2927 */ 2928 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2929 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2930 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2931 return NVME_QUIRK_NO_APST; 2932 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2933 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2934 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2935 /* 2936 * Forcing to use host managed nvme power settings for 2937 * lowest idle power with quick resume latency on 2938 * Samsung and Toshiba SSDs based on suspend behavior 2939 * on Coffee Lake board for LENOVO C640 2940 */ 2941 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2942 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2943 return NVME_QUIRK_SIMPLE_SUSPEND; 2944 } 2945 2946 return 0; 2947 } 2948 2949 static void nvme_async_probe(void *data, async_cookie_t cookie) 2950 { 2951 struct nvme_dev *dev = data; 2952 2953 flush_work(&dev->ctrl.reset_work); 2954 flush_work(&dev->ctrl.scan_work); 2955 nvme_put_ctrl(&dev->ctrl); 2956 } 2957 2958 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2959 { 2960 int node, result = -ENOMEM; 2961 struct nvme_dev *dev; 2962 unsigned long quirks = id->driver_data; 2963 size_t alloc_size; 2964 2965 node = dev_to_node(&pdev->dev); 2966 if (node == NUMA_NO_NODE) 2967 set_dev_node(&pdev->dev, first_memory_node); 2968 2969 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2970 if (!dev) 2971 return -ENOMEM; 2972 2973 dev->nr_write_queues = write_queues; 2974 dev->nr_poll_queues = poll_queues; 2975 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2976 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2977 sizeof(struct nvme_queue), GFP_KERNEL, node); 2978 if (!dev->queues) 2979 goto free; 2980 2981 dev->dev = get_device(&pdev->dev); 2982 pci_set_drvdata(pdev, dev); 2983 2984 result = nvme_dev_map(dev); 2985 if (result) 2986 goto put_pci; 2987 2988 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2989 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2990 mutex_init(&dev->shutdown_lock); 2991 2992 result = nvme_setup_prp_pools(dev); 2993 if (result) 2994 goto unmap; 2995 2996 quirks |= check_vendor_combination_bug(pdev); 2997 2998 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 2999 /* 3000 * Some systems use a bios work around to ask for D3 on 3001 * platforms that support kernel managed suspend. 3002 */ 3003 dev_info(&pdev->dev, 3004 "platform quirk: setting simple suspend\n"); 3005 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3006 } 3007 3008 /* 3009 * Double check that our mempool alloc size will cover the biggest 3010 * command we support. 3011 */ 3012 alloc_size = nvme_pci_iod_alloc_size(); 3013 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 3014 3015 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 3016 mempool_kfree, 3017 (void *) alloc_size, 3018 GFP_KERNEL, node); 3019 if (!dev->iod_mempool) { 3020 result = -ENOMEM; 3021 goto release_pools; 3022 } 3023 3024 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3025 quirks); 3026 if (result) 3027 goto release_mempool; 3028 3029 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3030 3031 nvme_reset_ctrl(&dev->ctrl); 3032 async_schedule(nvme_async_probe, dev); 3033 3034 return 0; 3035 3036 release_mempool: 3037 mempool_destroy(dev->iod_mempool); 3038 release_pools: 3039 nvme_release_prp_pools(dev); 3040 unmap: 3041 nvme_dev_unmap(dev); 3042 put_pci: 3043 put_device(dev->dev); 3044 free: 3045 kfree(dev->queues); 3046 kfree(dev); 3047 return result; 3048 } 3049 3050 static void nvme_reset_prepare(struct pci_dev *pdev) 3051 { 3052 struct nvme_dev *dev = pci_get_drvdata(pdev); 3053 3054 /* 3055 * We don't need to check the return value from waiting for the reset 3056 * state as pci_dev device lock is held, making it impossible to race 3057 * with ->remove(). 3058 */ 3059 nvme_disable_prepare_reset(dev, false); 3060 nvme_sync_queues(&dev->ctrl); 3061 } 3062 3063 static void nvme_reset_done(struct pci_dev *pdev) 3064 { 3065 struct nvme_dev *dev = pci_get_drvdata(pdev); 3066 3067 if (!nvme_try_sched_reset(&dev->ctrl)) 3068 flush_work(&dev->ctrl.reset_work); 3069 } 3070 3071 static void nvme_shutdown(struct pci_dev *pdev) 3072 { 3073 struct nvme_dev *dev = pci_get_drvdata(pdev); 3074 3075 nvme_disable_prepare_reset(dev, true); 3076 } 3077 3078 static void nvme_remove_attrs(struct nvme_dev *dev) 3079 { 3080 if (dev->attrs_added) 3081 sysfs_remove_group(&dev->ctrl.device->kobj, 3082 &nvme_pci_attr_group); 3083 } 3084 3085 /* 3086 * The driver's remove may be called on a device in a partially initialized 3087 * state. This function must not have any dependencies on the device state in 3088 * order to proceed. 3089 */ 3090 static void nvme_remove(struct pci_dev *pdev) 3091 { 3092 struct nvme_dev *dev = pci_get_drvdata(pdev); 3093 3094 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3095 pci_set_drvdata(pdev, NULL); 3096 3097 if (!pci_device_is_present(pdev)) { 3098 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3099 nvme_dev_disable(dev, true); 3100 } 3101 3102 flush_work(&dev->ctrl.reset_work); 3103 nvme_stop_ctrl(&dev->ctrl); 3104 nvme_remove_namespaces(&dev->ctrl); 3105 nvme_dev_disable(dev, true); 3106 nvme_remove_attrs(dev); 3107 nvme_free_host_mem(dev); 3108 nvme_dev_remove_admin(dev); 3109 nvme_free_queues(dev, 0); 3110 nvme_release_prp_pools(dev); 3111 nvme_dev_unmap(dev); 3112 nvme_uninit_ctrl(&dev->ctrl); 3113 } 3114 3115 #ifdef CONFIG_PM_SLEEP 3116 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3117 { 3118 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3119 } 3120 3121 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3122 { 3123 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3124 } 3125 3126 static int nvme_resume(struct device *dev) 3127 { 3128 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3129 struct nvme_ctrl *ctrl = &ndev->ctrl; 3130 3131 if (ndev->last_ps == U32_MAX || 3132 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3133 goto reset; 3134 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3135 goto reset; 3136 3137 return 0; 3138 reset: 3139 return nvme_try_sched_reset(ctrl); 3140 } 3141 3142 static int nvme_suspend(struct device *dev) 3143 { 3144 struct pci_dev *pdev = to_pci_dev(dev); 3145 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3146 struct nvme_ctrl *ctrl = &ndev->ctrl; 3147 int ret = -EBUSY; 3148 3149 ndev->last_ps = U32_MAX; 3150 3151 /* 3152 * The platform does not remove power for a kernel managed suspend so 3153 * use host managed nvme power settings for lowest idle power if 3154 * possible. This should have quicker resume latency than a full device 3155 * shutdown. But if the firmware is involved after the suspend or the 3156 * device does not support any non-default power states, shut down the 3157 * device fully. 3158 * 3159 * If ASPM is not enabled for the device, shut down the device and allow 3160 * the PCI bus layer to put it into D3 in order to take the PCIe link 3161 * down, so as to allow the platform to achieve its minimum low-power 3162 * state (which may not be possible if the link is up). 3163 */ 3164 if (pm_suspend_via_firmware() || !ctrl->npss || 3165 !pcie_aspm_enabled(pdev) || 3166 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3167 return nvme_disable_prepare_reset(ndev, true); 3168 3169 nvme_start_freeze(ctrl); 3170 nvme_wait_freeze(ctrl); 3171 nvme_sync_queues(ctrl); 3172 3173 if (ctrl->state != NVME_CTRL_LIVE) 3174 goto unfreeze; 3175 3176 /* 3177 * Host memory access may not be successful in a system suspend state, 3178 * but the specification allows the controller to access memory in a 3179 * non-operational power state. 3180 */ 3181 if (ndev->hmb) { 3182 ret = nvme_set_host_mem(ndev, 0); 3183 if (ret < 0) 3184 goto unfreeze; 3185 } 3186 3187 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3188 if (ret < 0) 3189 goto unfreeze; 3190 3191 /* 3192 * A saved state prevents pci pm from generically controlling the 3193 * device's power. If we're using protocol specific settings, we don't 3194 * want pci interfering. 3195 */ 3196 pci_save_state(pdev); 3197 3198 ret = nvme_set_power_state(ctrl, ctrl->npss); 3199 if (ret < 0) 3200 goto unfreeze; 3201 3202 if (ret) { 3203 /* discard the saved state */ 3204 pci_load_saved_state(pdev, NULL); 3205 3206 /* 3207 * Clearing npss forces a controller reset on resume. The 3208 * correct value will be rediscovered then. 3209 */ 3210 ret = nvme_disable_prepare_reset(ndev, true); 3211 ctrl->npss = 0; 3212 } 3213 unfreeze: 3214 nvme_unfreeze(ctrl); 3215 return ret; 3216 } 3217 3218 static int nvme_simple_suspend(struct device *dev) 3219 { 3220 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3221 3222 return nvme_disable_prepare_reset(ndev, true); 3223 } 3224 3225 static int nvme_simple_resume(struct device *dev) 3226 { 3227 struct pci_dev *pdev = to_pci_dev(dev); 3228 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3229 3230 return nvme_try_sched_reset(&ndev->ctrl); 3231 } 3232 3233 static const struct dev_pm_ops nvme_dev_pm_ops = { 3234 .suspend = nvme_suspend, 3235 .resume = nvme_resume, 3236 .freeze = nvme_simple_suspend, 3237 .thaw = nvme_simple_resume, 3238 .poweroff = nvme_simple_suspend, 3239 .restore = nvme_simple_resume, 3240 }; 3241 #endif /* CONFIG_PM_SLEEP */ 3242 3243 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3244 pci_channel_state_t state) 3245 { 3246 struct nvme_dev *dev = pci_get_drvdata(pdev); 3247 3248 /* 3249 * A frozen channel requires a reset. When detected, this method will 3250 * shutdown the controller to quiesce. The controller will be restarted 3251 * after the slot reset through driver's slot_reset callback. 3252 */ 3253 switch (state) { 3254 case pci_channel_io_normal: 3255 return PCI_ERS_RESULT_CAN_RECOVER; 3256 case pci_channel_io_frozen: 3257 dev_warn(dev->ctrl.device, 3258 "frozen state error detected, reset controller\n"); 3259 nvme_dev_disable(dev, false); 3260 return PCI_ERS_RESULT_NEED_RESET; 3261 case pci_channel_io_perm_failure: 3262 dev_warn(dev->ctrl.device, 3263 "failure state error detected, request disconnect\n"); 3264 return PCI_ERS_RESULT_DISCONNECT; 3265 } 3266 return PCI_ERS_RESULT_NEED_RESET; 3267 } 3268 3269 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3270 { 3271 struct nvme_dev *dev = pci_get_drvdata(pdev); 3272 3273 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3274 pci_restore_state(pdev); 3275 nvme_reset_ctrl(&dev->ctrl); 3276 return PCI_ERS_RESULT_RECOVERED; 3277 } 3278 3279 static void nvme_error_resume(struct pci_dev *pdev) 3280 { 3281 struct nvme_dev *dev = pci_get_drvdata(pdev); 3282 3283 flush_work(&dev->ctrl.reset_work); 3284 } 3285 3286 static const struct pci_error_handlers nvme_err_handler = { 3287 .error_detected = nvme_error_detected, 3288 .slot_reset = nvme_slot_reset, 3289 .resume = nvme_error_resume, 3290 .reset_prepare = nvme_reset_prepare, 3291 .reset_done = nvme_reset_done, 3292 }; 3293 3294 static const struct pci_device_id nvme_id_table[] = { 3295 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3296 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3297 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3298 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3299 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3300 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3301 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3302 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3303 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3304 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3305 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3306 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3307 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3308 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3309 NVME_QUIRK_MEDIUM_PRIO_SQ | 3310 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3311 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3312 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3313 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3314 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3315 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3316 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3317 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3318 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3319 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3320 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3321 NVME_QUIRK_NO_NS_DESC_LIST, }, 3322 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3323 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3324 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3325 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3326 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3327 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3328 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3329 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3330 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3331 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3332 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3333 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3334 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3335 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3336 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3337 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3338 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3339 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3340 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3341 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3342 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3343 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3344 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3345 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3346 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3347 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3348 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3349 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3350 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3351 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3352 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3353 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3354 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3355 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3356 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3357 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3358 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3359 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3360 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3361 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3362 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3363 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3364 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3365 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3366 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3367 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3368 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3369 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3370 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3371 NVME_QUIRK_128_BYTES_SQES | 3372 NVME_QUIRK_SHARED_TAGS }, 3373 3374 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3375 { 0, } 3376 }; 3377 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3378 3379 static struct pci_driver nvme_driver = { 3380 .name = "nvme", 3381 .id_table = nvme_id_table, 3382 .probe = nvme_probe, 3383 .remove = nvme_remove, 3384 .shutdown = nvme_shutdown, 3385 #ifdef CONFIG_PM_SLEEP 3386 .driver = { 3387 .pm = &nvme_dev_pm_ops, 3388 }, 3389 #endif 3390 .sriov_configure = pci_sriov_configure_simple, 3391 .err_handler = &nvme_err_handler, 3392 }; 3393 3394 static int __init nvme_init(void) 3395 { 3396 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3397 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3398 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3399 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3400 3401 return pci_register_driver(&nvme_driver); 3402 } 3403 3404 static void __exit nvme_exit(void) 3405 { 3406 pci_unregister_driver(&nvme_driver); 3407 flush_workqueue(nvme_wq); 3408 } 3409 3410 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3411 MODULE_LICENSE("GPL"); 3412 MODULE_VERSION("1.0"); 3413 module_init(nvme_init); 3414 module_exit(nvme_exit); 3415