xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 612a462a)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/poison.h>
30 #include <linux/t10-pi.h>
31 #include <linux/timer.h>
32 #include <linux/types.h>
33 #include <linux/io-64-nonatomic-lo-hi.h>
34 #include <asm/unaligned.h>
35 #include <linux/sed-opal.h>
36 
37 #include "nvme.h"
38 
39 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
40 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
41 
42 /*
43  * We handle AEN commands ourselves and don't even let the
44  * block layer know about them.
45  */
46 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0644);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62 	.set = io_queue_depth_set,
63 	.get = param_get_int,
64 };
65 
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69 
70 struct nvme_dev;
71 struct nvme_queue;
72 
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75 
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80 	struct nvme_queue **queues;
81 	struct blk_mq_tag_set tagset;
82 	struct blk_mq_tag_set admin_tagset;
83 	u32 __iomem *dbs;
84 	struct device *dev;
85 	struct dma_pool *prp_page_pool;
86 	struct dma_pool *prp_small_pool;
87 	unsigned online_queues;
88 	unsigned max_qid;
89 	int q_depth;
90 	u32 db_stride;
91 	void __iomem *bar;
92 	unsigned long bar_mapped_size;
93 	struct work_struct remove_work;
94 	struct mutex shutdown_lock;
95 	bool subsystem;
96 	void __iomem *cmb;
97 	pci_bus_addr_t cmb_bus_addr;
98 	u64 cmb_size;
99 	u32 cmbsz;
100 	u32 cmbloc;
101 	struct nvme_ctrl ctrl;
102 	struct completion ioq_wait;
103 
104 	/* shadow doorbell buffer support: */
105 	u32 *dbbuf_dbs;
106 	dma_addr_t dbbuf_dbs_dma_addr;
107 	u32 *dbbuf_eis;
108 	dma_addr_t dbbuf_eis_dma_addr;
109 
110 	/* host memory buffer support: */
111 	u64 host_mem_size;
112 	u32 nr_host_mem_descs;
113 	dma_addr_t host_mem_descs_dma;
114 	struct nvme_host_mem_buf_desc *host_mem_descs;
115 	void **host_mem_desc_bufs;
116 };
117 
118 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
119 {
120 	int n = 0, ret;
121 
122 	ret = kstrtoint(val, 10, &n);
123 	if (ret != 0 || n < 2)
124 		return -EINVAL;
125 
126 	return param_set_int(val, kp);
127 }
128 
129 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
130 {
131 	return qid * 2 * stride;
132 }
133 
134 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
135 {
136 	return (qid * 2 + 1) * stride;
137 }
138 
139 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
140 {
141 	return container_of(ctrl, struct nvme_dev, ctrl);
142 }
143 
144 /*
145  * An NVM Express queue.  Each device has at least two (one for admin
146  * commands and one for I/O commands).
147  */
148 struct nvme_queue {
149 	struct device *q_dmadev;
150 	struct nvme_dev *dev;
151 	spinlock_t q_lock;
152 	struct nvme_command *sq_cmds;
153 	struct nvme_command __iomem *sq_cmds_io;
154 	volatile struct nvme_completion *cqes;
155 	struct blk_mq_tags **tags;
156 	dma_addr_t sq_dma_addr;
157 	dma_addr_t cq_dma_addr;
158 	u32 __iomem *q_db;
159 	u16 q_depth;
160 	s16 cq_vector;
161 	u16 sq_tail;
162 	u16 cq_head;
163 	u16 qid;
164 	u8 cq_phase;
165 	u8 cqe_seen;
166 	u32 *dbbuf_sq_db;
167 	u32 *dbbuf_cq_db;
168 	u32 *dbbuf_sq_ei;
169 	u32 *dbbuf_cq_ei;
170 };
171 
172 /*
173  * The nvme_iod describes the data in an I/O, including the list of PRP
174  * entries.  You can't see it in this data structure because C doesn't let
175  * me express that.  Use nvme_init_iod to ensure there's enough space
176  * allocated to store the PRP list.
177  */
178 struct nvme_iod {
179 	struct nvme_request req;
180 	struct nvme_queue *nvmeq;
181 	int aborted;
182 	int npages;		/* In the PRP list. 0 means small pool in use */
183 	int nents;		/* Used in scatterlist */
184 	int length;		/* Of data, in bytes */
185 	dma_addr_t first_dma;
186 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
187 	struct scatterlist *sg;
188 	struct scatterlist inline_sg[0];
189 };
190 
191 /*
192  * Check we didin't inadvertently grow the command struct
193  */
194 static inline void _nvme_check_size(void)
195 {
196 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
197 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
198 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
199 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
200 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
201 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
202 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
203 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
204 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
205 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
206 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
207 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
208 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
209 }
210 
211 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 {
213 	return ((num_possible_cpus() + 1) * 8 * stride);
214 }
215 
216 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 {
218 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219 
220 	if (dev->dbbuf_dbs)
221 		return 0;
222 
223 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
224 					    &dev->dbbuf_dbs_dma_addr,
225 					    GFP_KERNEL);
226 	if (!dev->dbbuf_dbs)
227 		return -ENOMEM;
228 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
229 					    &dev->dbbuf_eis_dma_addr,
230 					    GFP_KERNEL);
231 	if (!dev->dbbuf_eis) {
232 		dma_free_coherent(dev->dev, mem_size,
233 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
234 		dev->dbbuf_dbs = NULL;
235 		return -ENOMEM;
236 	}
237 
238 	return 0;
239 }
240 
241 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 {
243 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244 
245 	if (dev->dbbuf_dbs) {
246 		dma_free_coherent(dev->dev, mem_size,
247 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248 		dev->dbbuf_dbs = NULL;
249 	}
250 	if (dev->dbbuf_eis) {
251 		dma_free_coherent(dev->dev, mem_size,
252 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
253 		dev->dbbuf_eis = NULL;
254 	}
255 }
256 
257 static void nvme_dbbuf_init(struct nvme_dev *dev,
258 			    struct nvme_queue *nvmeq, int qid)
259 {
260 	if (!dev->dbbuf_dbs || !qid)
261 		return;
262 
263 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
264 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
265 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
266 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
267 }
268 
269 static void nvme_dbbuf_set(struct nvme_dev *dev)
270 {
271 	struct nvme_command c;
272 
273 	if (!dev->dbbuf_dbs)
274 		return;
275 
276 	memset(&c, 0, sizeof(c));
277 	c.dbbuf.opcode = nvme_admin_dbbuf;
278 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
279 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
280 
281 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
282 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
283 		/* Free memory and continue on */
284 		nvme_dbbuf_dma_free(dev);
285 	}
286 }
287 
288 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
289 {
290 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
291 }
292 
293 /* Update dbbuf and return true if an MMIO is required */
294 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
295 					      volatile u32 *dbbuf_ei)
296 {
297 	if (dbbuf_db) {
298 		u16 old_value;
299 
300 		/*
301 		 * Ensure that the queue is written before updating
302 		 * the doorbell in memory
303 		 */
304 		wmb();
305 
306 		old_value = *dbbuf_db;
307 		*dbbuf_db = value;
308 
309 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
310 			return false;
311 	}
312 
313 	return true;
314 }
315 
316 /*
317  * Max size of iod being embedded in the request payload
318  */
319 #define NVME_INT_PAGES		2
320 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
321 
322 /*
323  * Will slightly overestimate the number of pages needed.  This is OK
324  * as it only leads to a small amount of wasted memory for the lifetime of
325  * the I/O.
326  */
327 static int nvme_npages(unsigned size, struct nvme_dev *dev)
328 {
329 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
330 				      dev->ctrl.page_size);
331 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
332 }
333 
334 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
335 		unsigned int size, unsigned int nseg)
336 {
337 	return sizeof(__le64 *) * nvme_npages(size, dev) +
338 			sizeof(struct scatterlist) * nseg;
339 }
340 
341 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
342 {
343 	return sizeof(struct nvme_iod) +
344 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
345 }
346 
347 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
348 				unsigned int hctx_idx)
349 {
350 	struct nvme_dev *dev = data;
351 	struct nvme_queue *nvmeq = dev->queues[0];
352 
353 	WARN_ON(hctx_idx != 0);
354 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
355 	WARN_ON(nvmeq->tags);
356 
357 	hctx->driver_data = nvmeq;
358 	nvmeq->tags = &dev->admin_tagset.tags[0];
359 	return 0;
360 }
361 
362 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
363 {
364 	struct nvme_queue *nvmeq = hctx->driver_data;
365 
366 	nvmeq->tags = NULL;
367 }
368 
369 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
370 			  unsigned int hctx_idx)
371 {
372 	struct nvme_dev *dev = data;
373 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
374 
375 	if (!nvmeq->tags)
376 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
377 
378 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
379 	hctx->driver_data = nvmeq;
380 	return 0;
381 }
382 
383 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
384 		unsigned int hctx_idx, unsigned int numa_node)
385 {
386 	struct nvme_dev *dev = set->driver_data;
387 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
388 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
389 	struct nvme_queue *nvmeq = dev->queues[queue_idx];
390 
391 	BUG_ON(!nvmeq);
392 	iod->nvmeq = nvmeq;
393 	return 0;
394 }
395 
396 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
397 {
398 	struct nvme_dev *dev = set->driver_data;
399 
400 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
401 }
402 
403 /**
404  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
405  * @nvmeq: The queue to use
406  * @cmd: The command to send
407  *
408  * Safe to use from interrupt context
409  */
410 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
411 						struct nvme_command *cmd)
412 {
413 	u16 tail = nvmeq->sq_tail;
414 
415 	if (nvmeq->sq_cmds_io)
416 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
417 	else
418 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
419 
420 	if (++tail == nvmeq->q_depth)
421 		tail = 0;
422 	if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
423 					      nvmeq->dbbuf_sq_ei))
424 		writel(tail, nvmeq->q_db);
425 	nvmeq->sq_tail = tail;
426 }
427 
428 static __le64 **iod_list(struct request *req)
429 {
430 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
431 	return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
432 }
433 
434 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
435 {
436 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
437 	int nseg = blk_rq_nr_phys_segments(rq);
438 	unsigned int size = blk_rq_payload_bytes(rq);
439 
440 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
441 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
442 		if (!iod->sg)
443 			return BLK_STS_RESOURCE;
444 	} else {
445 		iod->sg = iod->inline_sg;
446 	}
447 
448 	iod->aborted = 0;
449 	iod->npages = -1;
450 	iod->nents = 0;
451 	iod->length = size;
452 
453 	return BLK_STS_OK;
454 }
455 
456 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
457 {
458 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
459 	const int last_prp = dev->ctrl.page_size / 8 - 1;
460 	int i;
461 	__le64 **list = iod_list(req);
462 	dma_addr_t prp_dma = iod->first_dma;
463 
464 	if (iod->npages == 0)
465 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
466 	for (i = 0; i < iod->npages; i++) {
467 		__le64 *prp_list = list[i];
468 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
469 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
470 		prp_dma = next_prp_dma;
471 	}
472 
473 	if (iod->sg != iod->inline_sg)
474 		kfree(iod->sg);
475 }
476 
477 #ifdef CONFIG_BLK_DEV_INTEGRITY
478 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
479 {
480 	if (be32_to_cpu(pi->ref_tag) == v)
481 		pi->ref_tag = cpu_to_be32(p);
482 }
483 
484 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
485 {
486 	if (be32_to_cpu(pi->ref_tag) == p)
487 		pi->ref_tag = cpu_to_be32(v);
488 }
489 
490 /**
491  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
492  *
493  * The virtual start sector is the one that was originally submitted by the
494  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
495  * start sector may be different. Remap protection information to match the
496  * physical LBA on writes, and back to the original seed on reads.
497  *
498  * Type 0 and 3 do not have a ref tag, so no remapping required.
499  */
500 static void nvme_dif_remap(struct request *req,
501 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
502 {
503 	struct nvme_ns *ns = req->rq_disk->private_data;
504 	struct bio_integrity_payload *bip;
505 	struct t10_pi_tuple *pi;
506 	void *p, *pmap;
507 	u32 i, nlb, ts, phys, virt;
508 
509 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
510 		return;
511 
512 	bip = bio_integrity(req->bio);
513 	if (!bip)
514 		return;
515 
516 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
517 
518 	p = pmap;
519 	virt = bip_get_seed(bip);
520 	phys = nvme_block_nr(ns, blk_rq_pos(req));
521 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
522 	ts = ns->disk->queue->integrity.tuple_size;
523 
524 	for (i = 0; i < nlb; i++, virt++, phys++) {
525 		pi = (struct t10_pi_tuple *)p;
526 		dif_swap(phys, virt, pi);
527 		p += ts;
528 	}
529 	kunmap_atomic(pmap);
530 }
531 #else /* CONFIG_BLK_DEV_INTEGRITY */
532 static void nvme_dif_remap(struct request *req,
533 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
534 {
535 }
536 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
537 {
538 }
539 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 }
542 #endif
543 
544 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
545 {
546 	int i;
547 	struct scatterlist *sg;
548 
549 	for_each_sg(sgl, sg, nents, i) {
550 		dma_addr_t phys = sg_phys(sg);
551 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
552 			"dma_address:%pad dma_length:%d\n",
553 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
554 			sg_dma_len(sg));
555 	}
556 }
557 
558 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
559 {
560 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
561 	struct dma_pool *pool;
562 	int length = blk_rq_payload_bytes(req);
563 	struct scatterlist *sg = iod->sg;
564 	int dma_len = sg_dma_len(sg);
565 	u64 dma_addr = sg_dma_address(sg);
566 	u32 page_size = dev->ctrl.page_size;
567 	int offset = dma_addr & (page_size - 1);
568 	__le64 *prp_list;
569 	__le64 **list = iod_list(req);
570 	dma_addr_t prp_dma;
571 	int nprps, i;
572 
573 	length -= (page_size - offset);
574 	if (length <= 0) {
575 		iod->first_dma = 0;
576 		return BLK_STS_OK;
577 	}
578 
579 	dma_len -= (page_size - offset);
580 	if (dma_len) {
581 		dma_addr += (page_size - offset);
582 	} else {
583 		sg = sg_next(sg);
584 		dma_addr = sg_dma_address(sg);
585 		dma_len = sg_dma_len(sg);
586 	}
587 
588 	if (length <= page_size) {
589 		iod->first_dma = dma_addr;
590 		return BLK_STS_OK;
591 	}
592 
593 	nprps = DIV_ROUND_UP(length, page_size);
594 	if (nprps <= (256 / 8)) {
595 		pool = dev->prp_small_pool;
596 		iod->npages = 0;
597 	} else {
598 		pool = dev->prp_page_pool;
599 		iod->npages = 1;
600 	}
601 
602 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
603 	if (!prp_list) {
604 		iod->first_dma = dma_addr;
605 		iod->npages = -1;
606 		return BLK_STS_RESOURCE;
607 	}
608 	list[0] = prp_list;
609 	iod->first_dma = prp_dma;
610 	i = 0;
611 	for (;;) {
612 		if (i == page_size >> 3) {
613 			__le64 *old_prp_list = prp_list;
614 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
615 			if (!prp_list)
616 				return BLK_STS_RESOURCE;
617 			list[iod->npages++] = prp_list;
618 			prp_list[0] = old_prp_list[i - 1];
619 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
620 			i = 1;
621 		}
622 		prp_list[i++] = cpu_to_le64(dma_addr);
623 		dma_len -= page_size;
624 		dma_addr += page_size;
625 		length -= page_size;
626 		if (length <= 0)
627 			break;
628 		if (dma_len > 0)
629 			continue;
630 		if (unlikely(dma_len < 0))
631 			goto bad_sgl;
632 		sg = sg_next(sg);
633 		dma_addr = sg_dma_address(sg);
634 		dma_len = sg_dma_len(sg);
635 	}
636 
637 	return BLK_STS_OK;
638 
639  bad_sgl:
640 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
641 			"Invalid SGL for payload:%d nents:%d\n",
642 			blk_rq_payload_bytes(req), iod->nents);
643 	return BLK_STS_IOERR;
644 }
645 
646 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
647 		struct nvme_command *cmnd)
648 {
649 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
650 	struct request_queue *q = req->q;
651 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
652 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
653 	blk_status_t ret = BLK_STS_IOERR;
654 
655 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
656 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
657 	if (!iod->nents)
658 		goto out;
659 
660 	ret = BLK_STS_RESOURCE;
661 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
662 				DMA_ATTR_NO_WARN))
663 		goto out;
664 
665 	ret = nvme_setup_prps(dev, req);
666 	if (ret != BLK_STS_OK)
667 		goto out_unmap;
668 
669 	ret = BLK_STS_IOERR;
670 	if (blk_integrity_rq(req)) {
671 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
672 			goto out_unmap;
673 
674 		sg_init_table(&iod->meta_sg, 1);
675 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
676 			goto out_unmap;
677 
678 		if (req_op(req) == REQ_OP_WRITE)
679 			nvme_dif_remap(req, nvme_dif_prep);
680 
681 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
682 			goto out_unmap;
683 	}
684 
685 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
686 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
687 	if (blk_integrity_rq(req))
688 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
689 	return BLK_STS_OK;
690 
691 out_unmap:
692 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
693 out:
694 	return ret;
695 }
696 
697 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
698 {
699 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
701 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
702 
703 	if (iod->nents) {
704 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
705 		if (blk_integrity_rq(req)) {
706 			if (req_op(req) == REQ_OP_READ)
707 				nvme_dif_remap(req, nvme_dif_complete);
708 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
709 		}
710 	}
711 
712 	nvme_cleanup_cmd(req);
713 	nvme_free_iod(dev, req);
714 }
715 
716 /*
717  * NOTE: ns is NULL when called on the admin queue.
718  */
719 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
720 			 const struct blk_mq_queue_data *bd)
721 {
722 	struct nvme_ns *ns = hctx->queue->queuedata;
723 	struct nvme_queue *nvmeq = hctx->driver_data;
724 	struct nvme_dev *dev = nvmeq->dev;
725 	struct request *req = bd->rq;
726 	struct nvme_command cmnd;
727 	blk_status_t ret;
728 
729 	ret = nvme_setup_cmd(ns, req, &cmnd);
730 	if (ret)
731 		return ret;
732 
733 	ret = nvme_init_iod(req, dev);
734 	if (ret)
735 		goto out_free_cmd;
736 
737 	if (blk_rq_nr_phys_segments(req)) {
738 		ret = nvme_map_data(dev, req, &cmnd);
739 		if (ret)
740 			goto out_cleanup_iod;
741 	}
742 
743 	blk_mq_start_request(req);
744 
745 	spin_lock_irq(&nvmeq->q_lock);
746 	if (unlikely(nvmeq->cq_vector < 0)) {
747 		ret = BLK_STS_IOERR;
748 		spin_unlock_irq(&nvmeq->q_lock);
749 		goto out_cleanup_iod;
750 	}
751 	__nvme_submit_cmd(nvmeq, &cmnd);
752 	nvme_process_cq(nvmeq);
753 	spin_unlock_irq(&nvmeq->q_lock);
754 	return BLK_STS_OK;
755 out_cleanup_iod:
756 	nvme_free_iod(dev, req);
757 out_free_cmd:
758 	nvme_cleanup_cmd(req);
759 	return ret;
760 }
761 
762 static void nvme_pci_complete_rq(struct request *req)
763 {
764 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
765 
766 	nvme_unmap_data(iod->nvmeq->dev, req);
767 	nvme_complete_rq(req);
768 }
769 
770 /* We read the CQE phase first to check if the rest of the entry is valid */
771 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
772 		u16 phase)
773 {
774 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
775 }
776 
777 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
778 {
779 	u16 head = nvmeq->cq_head;
780 
781 	if (likely(nvmeq->cq_vector >= 0)) {
782 		if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
783 						      nvmeq->dbbuf_cq_ei))
784 			writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
785 	}
786 }
787 
788 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
789 		struct nvme_completion *cqe)
790 {
791 	struct request *req;
792 
793 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
794 		dev_warn(nvmeq->dev->ctrl.device,
795 			"invalid id %d completed on queue %d\n",
796 			cqe->command_id, le16_to_cpu(cqe->sq_id));
797 		return;
798 	}
799 
800 	/*
801 	 * AEN requests are special as they don't time out and can
802 	 * survive any kind of queue freeze and often don't respond to
803 	 * aborts.  We don't even bother to allocate a struct request
804 	 * for them but rather special case them here.
805 	 */
806 	if (unlikely(nvmeq->qid == 0 &&
807 			cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
808 		nvme_complete_async_event(&nvmeq->dev->ctrl,
809 				cqe->status, &cqe->result);
810 		return;
811 	}
812 
813 	nvmeq->cqe_seen = 1;
814 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
815 	nvme_end_request(req, cqe->status, cqe->result);
816 }
817 
818 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
819 		struct nvme_completion *cqe)
820 {
821 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
822 		*cqe = nvmeq->cqes[nvmeq->cq_head];
823 
824 		if (++nvmeq->cq_head == nvmeq->q_depth) {
825 			nvmeq->cq_head = 0;
826 			nvmeq->cq_phase = !nvmeq->cq_phase;
827 		}
828 		return true;
829 	}
830 	return false;
831 }
832 
833 static void nvme_process_cq(struct nvme_queue *nvmeq)
834 {
835 	struct nvme_completion cqe;
836 	int consumed = 0;
837 
838 	while (nvme_read_cqe(nvmeq, &cqe)) {
839 		nvme_handle_cqe(nvmeq, &cqe);
840 		consumed++;
841 	}
842 
843 	if (consumed)
844 		nvme_ring_cq_doorbell(nvmeq);
845 }
846 
847 static irqreturn_t nvme_irq(int irq, void *data)
848 {
849 	irqreturn_t result;
850 	struct nvme_queue *nvmeq = data;
851 	spin_lock(&nvmeq->q_lock);
852 	nvme_process_cq(nvmeq);
853 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
854 	nvmeq->cqe_seen = 0;
855 	spin_unlock(&nvmeq->q_lock);
856 	return result;
857 }
858 
859 static irqreturn_t nvme_irq_check(int irq, void *data)
860 {
861 	struct nvme_queue *nvmeq = data;
862 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
863 		return IRQ_WAKE_THREAD;
864 	return IRQ_NONE;
865 }
866 
867 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
868 {
869 	struct nvme_completion cqe;
870 	int found = 0, consumed = 0;
871 
872 	if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
873 		return 0;
874 
875 	spin_lock_irq(&nvmeq->q_lock);
876 	while (nvme_read_cqe(nvmeq, &cqe)) {
877 		nvme_handle_cqe(nvmeq, &cqe);
878 		consumed++;
879 
880 		if (tag == cqe.command_id) {
881 			found = 1;
882 			break;
883 		}
884        }
885 
886 	if (consumed)
887 		nvme_ring_cq_doorbell(nvmeq);
888 	spin_unlock_irq(&nvmeq->q_lock);
889 
890 	return found;
891 }
892 
893 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
894 {
895 	struct nvme_queue *nvmeq = hctx->driver_data;
896 
897 	return __nvme_poll(nvmeq, tag);
898 }
899 
900 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
901 {
902 	struct nvme_dev *dev = to_nvme_dev(ctrl);
903 	struct nvme_queue *nvmeq = dev->queues[0];
904 	struct nvme_command c;
905 
906 	memset(&c, 0, sizeof(c));
907 	c.common.opcode = nvme_admin_async_event;
908 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
909 
910 	spin_lock_irq(&nvmeq->q_lock);
911 	__nvme_submit_cmd(nvmeq, &c);
912 	spin_unlock_irq(&nvmeq->q_lock);
913 }
914 
915 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
916 {
917 	struct nvme_command c;
918 
919 	memset(&c, 0, sizeof(c));
920 	c.delete_queue.opcode = opcode;
921 	c.delete_queue.qid = cpu_to_le16(id);
922 
923 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
924 }
925 
926 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
927 						struct nvme_queue *nvmeq)
928 {
929 	struct nvme_command c;
930 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
931 
932 	/*
933 	 * Note: we (ab)use the fact the the prp fields survive if no data
934 	 * is attached to the request.
935 	 */
936 	memset(&c, 0, sizeof(c));
937 	c.create_cq.opcode = nvme_admin_create_cq;
938 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
939 	c.create_cq.cqid = cpu_to_le16(qid);
940 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
941 	c.create_cq.cq_flags = cpu_to_le16(flags);
942 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
943 
944 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
945 }
946 
947 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
948 						struct nvme_queue *nvmeq)
949 {
950 	struct nvme_command c;
951 	int flags = NVME_QUEUE_PHYS_CONTIG;
952 
953 	/*
954 	 * Note: we (ab)use the fact the the prp fields survive if no data
955 	 * is attached to the request.
956 	 */
957 	memset(&c, 0, sizeof(c));
958 	c.create_sq.opcode = nvme_admin_create_sq;
959 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
960 	c.create_sq.sqid = cpu_to_le16(qid);
961 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
962 	c.create_sq.sq_flags = cpu_to_le16(flags);
963 	c.create_sq.cqid = cpu_to_le16(qid);
964 
965 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
966 }
967 
968 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
969 {
970 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
971 }
972 
973 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
974 {
975 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
976 }
977 
978 static void abort_endio(struct request *req, blk_status_t error)
979 {
980 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
981 	struct nvme_queue *nvmeq = iod->nvmeq;
982 
983 	dev_warn(nvmeq->dev->ctrl.device,
984 		 "Abort status: 0x%x", nvme_req(req)->status);
985 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
986 	blk_mq_free_request(req);
987 }
988 
989 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
990 {
991 
992 	/* If true, indicates loss of adapter communication, possibly by a
993 	 * NVMe Subsystem reset.
994 	 */
995 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
996 
997 	/* If there is a reset ongoing, we shouldn't reset again. */
998 	if (dev->ctrl.state == NVME_CTRL_RESETTING)
999 		return false;
1000 
1001 	/* We shouldn't reset unless the controller is on fatal error state
1002 	 * _or_ if we lost the communication with it.
1003 	 */
1004 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1005 		return false;
1006 
1007 	/* If PCI error recovery process is happening, we cannot reset or
1008 	 * the recovery mechanism will surely fail.
1009 	 */
1010 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1011 		return false;
1012 
1013 	return true;
1014 }
1015 
1016 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1017 {
1018 	/* Read a config register to help see what died. */
1019 	u16 pci_status;
1020 	int result;
1021 
1022 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1023 				      &pci_status);
1024 	if (result == PCIBIOS_SUCCESSFUL)
1025 		dev_warn(dev->ctrl.device,
1026 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1027 			 csts, pci_status);
1028 	else
1029 		dev_warn(dev->ctrl.device,
1030 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1031 			 csts, result);
1032 }
1033 
1034 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1035 {
1036 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1037 	struct nvme_queue *nvmeq = iod->nvmeq;
1038 	struct nvme_dev *dev = nvmeq->dev;
1039 	struct request *abort_req;
1040 	struct nvme_command cmd;
1041 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1042 
1043 	/*
1044 	 * Reset immediately if the controller is failed
1045 	 */
1046 	if (nvme_should_reset(dev, csts)) {
1047 		nvme_warn_reset(dev, csts);
1048 		nvme_dev_disable(dev, false);
1049 		nvme_reset_ctrl(&dev->ctrl);
1050 		return BLK_EH_HANDLED;
1051 	}
1052 
1053 	/*
1054 	 * Did we miss an interrupt?
1055 	 */
1056 	if (__nvme_poll(nvmeq, req->tag)) {
1057 		dev_warn(dev->ctrl.device,
1058 			 "I/O %d QID %d timeout, completion polled\n",
1059 			 req->tag, nvmeq->qid);
1060 		return BLK_EH_HANDLED;
1061 	}
1062 
1063 	/*
1064 	 * Shutdown immediately if controller times out while starting. The
1065 	 * reset work will see the pci device disabled when it gets the forced
1066 	 * cancellation error. All outstanding requests are completed on
1067 	 * shutdown, so we return BLK_EH_HANDLED.
1068 	 */
1069 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1070 		dev_warn(dev->ctrl.device,
1071 			 "I/O %d QID %d timeout, disable controller\n",
1072 			 req->tag, nvmeq->qid);
1073 		nvme_dev_disable(dev, false);
1074 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1075 		return BLK_EH_HANDLED;
1076 	}
1077 
1078 	/*
1079  	 * Shutdown the controller immediately and schedule a reset if the
1080  	 * command was already aborted once before and still hasn't been
1081  	 * returned to the driver, or if this is the admin queue.
1082 	 */
1083 	if (!nvmeq->qid || iod->aborted) {
1084 		dev_warn(dev->ctrl.device,
1085 			 "I/O %d QID %d timeout, reset controller\n",
1086 			 req->tag, nvmeq->qid);
1087 		nvme_dev_disable(dev, false);
1088 		nvme_reset_ctrl(&dev->ctrl);
1089 
1090 		/*
1091 		 * Mark the request as handled, since the inline shutdown
1092 		 * forces all outstanding requests to complete.
1093 		 */
1094 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1095 		return BLK_EH_HANDLED;
1096 	}
1097 
1098 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1099 		atomic_inc(&dev->ctrl.abort_limit);
1100 		return BLK_EH_RESET_TIMER;
1101 	}
1102 	iod->aborted = 1;
1103 
1104 	memset(&cmd, 0, sizeof(cmd));
1105 	cmd.abort.opcode = nvme_admin_abort_cmd;
1106 	cmd.abort.cid = req->tag;
1107 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1108 
1109 	dev_warn(nvmeq->dev->ctrl.device,
1110 		"I/O %d QID %d timeout, aborting\n",
1111 		 req->tag, nvmeq->qid);
1112 
1113 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1114 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1115 	if (IS_ERR(abort_req)) {
1116 		atomic_inc(&dev->ctrl.abort_limit);
1117 		return BLK_EH_RESET_TIMER;
1118 	}
1119 
1120 	abort_req->timeout = ADMIN_TIMEOUT;
1121 	abort_req->end_io_data = NULL;
1122 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1123 
1124 	/*
1125 	 * The aborted req will be completed on receiving the abort req.
1126 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1127 	 * as the device then is in a faulty state.
1128 	 */
1129 	return BLK_EH_RESET_TIMER;
1130 }
1131 
1132 static void nvme_free_queue(struct nvme_queue *nvmeq)
1133 {
1134 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1135 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1136 	if (nvmeq->sq_cmds)
1137 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1138 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1139 	kfree(nvmeq);
1140 }
1141 
1142 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1143 {
1144 	int i;
1145 
1146 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1147 		struct nvme_queue *nvmeq = dev->queues[i];
1148 		dev->ctrl.queue_count--;
1149 		dev->queues[i] = NULL;
1150 		nvme_free_queue(nvmeq);
1151 	}
1152 }
1153 
1154 /**
1155  * nvme_suspend_queue - put queue into suspended state
1156  * @nvmeq - queue to suspend
1157  */
1158 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1159 {
1160 	int vector;
1161 
1162 	spin_lock_irq(&nvmeq->q_lock);
1163 	if (nvmeq->cq_vector == -1) {
1164 		spin_unlock_irq(&nvmeq->q_lock);
1165 		return 1;
1166 	}
1167 	vector = nvmeq->cq_vector;
1168 	nvmeq->dev->online_queues--;
1169 	nvmeq->cq_vector = -1;
1170 	spin_unlock_irq(&nvmeq->q_lock);
1171 
1172 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1173 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1174 
1175 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1176 
1177 	return 0;
1178 }
1179 
1180 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1181 {
1182 	struct nvme_queue *nvmeq = dev->queues[0];
1183 
1184 	if (!nvmeq)
1185 		return;
1186 	if (nvme_suspend_queue(nvmeq))
1187 		return;
1188 
1189 	if (shutdown)
1190 		nvme_shutdown_ctrl(&dev->ctrl);
1191 	else
1192 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1193 
1194 	spin_lock_irq(&nvmeq->q_lock);
1195 	nvme_process_cq(nvmeq);
1196 	spin_unlock_irq(&nvmeq->q_lock);
1197 }
1198 
1199 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1200 				int entry_size)
1201 {
1202 	int q_depth = dev->q_depth;
1203 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1204 					  dev->ctrl.page_size);
1205 
1206 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1207 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1208 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1209 		q_depth = div_u64(mem_per_q, entry_size);
1210 
1211 		/*
1212 		 * Ensure the reduced q_depth is above some threshold where it
1213 		 * would be better to map queues in system memory with the
1214 		 * original depth
1215 		 */
1216 		if (q_depth < 64)
1217 			return -ENOMEM;
1218 	}
1219 
1220 	return q_depth;
1221 }
1222 
1223 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1224 				int qid, int depth)
1225 {
1226 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1227 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1228 						      dev->ctrl.page_size);
1229 		nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1230 		nvmeq->sq_cmds_io = dev->cmb + offset;
1231 	} else {
1232 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1233 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1234 		if (!nvmeq->sq_cmds)
1235 			return -ENOMEM;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1242 							int depth, int node)
1243 {
1244 	struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1245 							node);
1246 	if (!nvmeq)
1247 		return NULL;
1248 
1249 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1250 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1251 	if (!nvmeq->cqes)
1252 		goto free_nvmeq;
1253 
1254 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1255 		goto free_cqdma;
1256 
1257 	nvmeq->q_dmadev = dev->dev;
1258 	nvmeq->dev = dev;
1259 	spin_lock_init(&nvmeq->q_lock);
1260 	nvmeq->cq_head = 0;
1261 	nvmeq->cq_phase = 1;
1262 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1263 	nvmeq->q_depth = depth;
1264 	nvmeq->qid = qid;
1265 	nvmeq->cq_vector = -1;
1266 	dev->queues[qid] = nvmeq;
1267 	dev->ctrl.queue_count++;
1268 
1269 	return nvmeq;
1270 
1271  free_cqdma:
1272 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1273 							nvmeq->cq_dma_addr);
1274  free_nvmeq:
1275 	kfree(nvmeq);
1276 	return NULL;
1277 }
1278 
1279 static int queue_request_irq(struct nvme_queue *nvmeq)
1280 {
1281 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1282 	int nr = nvmeq->dev->ctrl.instance;
1283 
1284 	if (use_threaded_interrupts) {
1285 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1286 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1287 	} else {
1288 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1289 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1290 	}
1291 }
1292 
1293 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1294 {
1295 	struct nvme_dev *dev = nvmeq->dev;
1296 
1297 	spin_lock_irq(&nvmeq->q_lock);
1298 	nvmeq->sq_tail = 0;
1299 	nvmeq->cq_head = 0;
1300 	nvmeq->cq_phase = 1;
1301 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1302 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1303 	nvme_dbbuf_init(dev, nvmeq, qid);
1304 	dev->online_queues++;
1305 	spin_unlock_irq(&nvmeq->q_lock);
1306 }
1307 
1308 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1309 {
1310 	struct nvme_dev *dev = nvmeq->dev;
1311 	int result;
1312 
1313 	nvmeq->cq_vector = qid - 1;
1314 	result = adapter_alloc_cq(dev, qid, nvmeq);
1315 	if (result < 0)
1316 		return result;
1317 
1318 	result = adapter_alloc_sq(dev, qid, nvmeq);
1319 	if (result < 0)
1320 		goto release_cq;
1321 
1322 	nvme_init_queue(nvmeq, qid);
1323 	result = queue_request_irq(nvmeq);
1324 	if (result < 0)
1325 		goto release_sq;
1326 
1327 	return result;
1328 
1329  release_sq:
1330 	adapter_delete_sq(dev, qid);
1331  release_cq:
1332 	adapter_delete_cq(dev, qid);
1333 	return result;
1334 }
1335 
1336 static const struct blk_mq_ops nvme_mq_admin_ops = {
1337 	.queue_rq	= nvme_queue_rq,
1338 	.complete	= nvme_pci_complete_rq,
1339 	.init_hctx	= nvme_admin_init_hctx,
1340 	.exit_hctx      = nvme_admin_exit_hctx,
1341 	.init_request	= nvme_init_request,
1342 	.timeout	= nvme_timeout,
1343 };
1344 
1345 static const struct blk_mq_ops nvme_mq_ops = {
1346 	.queue_rq	= nvme_queue_rq,
1347 	.complete	= nvme_pci_complete_rq,
1348 	.init_hctx	= nvme_init_hctx,
1349 	.init_request	= nvme_init_request,
1350 	.map_queues	= nvme_pci_map_queues,
1351 	.timeout	= nvme_timeout,
1352 	.poll		= nvme_poll,
1353 };
1354 
1355 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1356 {
1357 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1358 		/*
1359 		 * If the controller was reset during removal, it's possible
1360 		 * user requests may be waiting on a stopped queue. Start the
1361 		 * queue to flush these to completion.
1362 		 */
1363 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1364 		blk_cleanup_queue(dev->ctrl.admin_q);
1365 		blk_mq_free_tag_set(&dev->admin_tagset);
1366 	}
1367 }
1368 
1369 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1370 {
1371 	if (!dev->ctrl.admin_q) {
1372 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1373 		dev->admin_tagset.nr_hw_queues = 1;
1374 
1375 		/*
1376 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1377 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1378 		 */
1379 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1380 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1381 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1382 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1383 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1384 		dev->admin_tagset.driver_data = dev;
1385 
1386 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1387 			return -ENOMEM;
1388 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1389 
1390 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1391 		if (IS_ERR(dev->ctrl.admin_q)) {
1392 			blk_mq_free_tag_set(&dev->admin_tagset);
1393 			return -ENOMEM;
1394 		}
1395 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1396 			nvme_dev_remove_admin(dev);
1397 			dev->ctrl.admin_q = NULL;
1398 			return -ENODEV;
1399 		}
1400 	} else
1401 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1402 
1403 	return 0;
1404 }
1405 
1406 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1407 {
1408 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1409 }
1410 
1411 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1412 {
1413 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1414 
1415 	if (size <= dev->bar_mapped_size)
1416 		return 0;
1417 	if (size > pci_resource_len(pdev, 0))
1418 		return -ENOMEM;
1419 	if (dev->bar)
1420 		iounmap(dev->bar);
1421 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1422 	if (!dev->bar) {
1423 		dev->bar_mapped_size = 0;
1424 		return -ENOMEM;
1425 	}
1426 	dev->bar_mapped_size = size;
1427 	dev->dbs = dev->bar + NVME_REG_DBS;
1428 
1429 	return 0;
1430 }
1431 
1432 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1433 {
1434 	int result;
1435 	u32 aqa;
1436 	struct nvme_queue *nvmeq;
1437 
1438 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1439 	if (result < 0)
1440 		return result;
1441 
1442 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1443 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1444 
1445 	if (dev->subsystem &&
1446 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1447 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1448 
1449 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1450 	if (result < 0)
1451 		return result;
1452 
1453 	nvmeq = dev->queues[0];
1454 	if (!nvmeq) {
1455 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1456 					dev_to_node(dev->dev));
1457 		if (!nvmeq)
1458 			return -ENOMEM;
1459 	}
1460 
1461 	aqa = nvmeq->q_depth - 1;
1462 	aqa |= aqa << 16;
1463 
1464 	writel(aqa, dev->bar + NVME_REG_AQA);
1465 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1466 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1467 
1468 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1469 	if (result)
1470 		return result;
1471 
1472 	nvmeq->cq_vector = 0;
1473 	nvme_init_queue(nvmeq, 0);
1474 	result = queue_request_irq(nvmeq);
1475 	if (result) {
1476 		nvmeq->cq_vector = -1;
1477 		return result;
1478 	}
1479 
1480 	return result;
1481 }
1482 
1483 static int nvme_create_io_queues(struct nvme_dev *dev)
1484 {
1485 	unsigned i, max;
1486 	int ret = 0;
1487 
1488 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1489 		/* vector == qid - 1, match nvme_create_queue */
1490 		if (!nvme_alloc_queue(dev, i, dev->q_depth,
1491 		     pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1492 			ret = -ENOMEM;
1493 			break;
1494 		}
1495 	}
1496 
1497 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1498 	for (i = dev->online_queues; i <= max; i++) {
1499 		ret = nvme_create_queue(dev->queues[i], i);
1500 		if (ret)
1501 			break;
1502 	}
1503 
1504 	/*
1505 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1506 	 * than the desired aount of queues, and even a controller without
1507 	 * I/O queues an still be used to issue admin commands.  This might
1508 	 * be useful to upgrade a buggy firmware for example.
1509 	 */
1510 	return ret >= 0 ? 0 : ret;
1511 }
1512 
1513 static ssize_t nvme_cmb_show(struct device *dev,
1514 			     struct device_attribute *attr,
1515 			     char *buf)
1516 {
1517 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1518 
1519 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1520 		       ndev->cmbloc, ndev->cmbsz);
1521 }
1522 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1523 
1524 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1525 {
1526 	u64 szu, size, offset;
1527 	resource_size_t bar_size;
1528 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1529 	void __iomem *cmb;
1530 	int bar;
1531 
1532 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1533 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1534 		return NULL;
1535 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1536 
1537 	if (!use_cmb_sqes)
1538 		return NULL;
1539 
1540 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1541 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1542 	offset = szu * NVME_CMB_OFST(dev->cmbloc);
1543 	bar = NVME_CMB_BIR(dev->cmbloc);
1544 	bar_size = pci_resource_len(pdev, bar);
1545 
1546 	if (offset > bar_size)
1547 		return NULL;
1548 
1549 	/*
1550 	 * Controllers may support a CMB size larger than their BAR,
1551 	 * for example, due to being behind a bridge. Reduce the CMB to
1552 	 * the reported size of the BAR
1553 	 */
1554 	if (size > bar_size - offset)
1555 		size = bar_size - offset;
1556 
1557 	cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1558 	if (!cmb)
1559 		return NULL;
1560 
1561 	dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1562 	dev->cmb_size = size;
1563 	return cmb;
1564 }
1565 
1566 static inline void nvme_release_cmb(struct nvme_dev *dev)
1567 {
1568 	if (dev->cmb) {
1569 		iounmap(dev->cmb);
1570 		dev->cmb = NULL;
1571 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1572 					     &dev_attr_cmb.attr, NULL);
1573 		dev->cmbsz = 0;
1574 	}
1575 }
1576 
1577 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1578 {
1579 	u64 dma_addr = dev->host_mem_descs_dma;
1580 	struct nvme_command c;
1581 	int ret;
1582 
1583 	memset(&c, 0, sizeof(c));
1584 	c.features.opcode	= nvme_admin_set_features;
1585 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1586 	c.features.dword11	= cpu_to_le32(bits);
1587 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1588 					      ilog2(dev->ctrl.page_size));
1589 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1590 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1591 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1592 
1593 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1594 	if (ret) {
1595 		dev_warn(dev->ctrl.device,
1596 			 "failed to set host mem (err %d, flags %#x).\n",
1597 			 ret, bits);
1598 	}
1599 	return ret;
1600 }
1601 
1602 static void nvme_free_host_mem(struct nvme_dev *dev)
1603 {
1604 	int i;
1605 
1606 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1607 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1608 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1609 
1610 		dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1611 				le64_to_cpu(desc->addr));
1612 	}
1613 
1614 	kfree(dev->host_mem_desc_bufs);
1615 	dev->host_mem_desc_bufs = NULL;
1616 	dma_free_coherent(dev->dev,
1617 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1618 			dev->host_mem_descs, dev->host_mem_descs_dma);
1619 	dev->host_mem_descs = NULL;
1620 }
1621 
1622 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1623 		u32 chunk_size)
1624 {
1625 	struct nvme_host_mem_buf_desc *descs;
1626 	u32 max_entries, len;
1627 	dma_addr_t descs_dma;
1628 	int i = 0;
1629 	void **bufs;
1630 	u64 size = 0, tmp;
1631 
1632 	tmp = (preferred + chunk_size - 1);
1633 	do_div(tmp, chunk_size);
1634 	max_entries = tmp;
1635 
1636 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1637 		max_entries = dev->ctrl.hmmaxd;
1638 
1639 	descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1640 			&descs_dma, GFP_KERNEL);
1641 	if (!descs)
1642 		goto out;
1643 
1644 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1645 	if (!bufs)
1646 		goto out_free_descs;
1647 
1648 	for (size = 0; size < preferred; size += len) {
1649 		dma_addr_t dma_addr;
1650 
1651 		len = min_t(u64, chunk_size, preferred - size);
1652 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1653 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1654 		if (!bufs[i])
1655 			break;
1656 
1657 		descs[i].addr = cpu_to_le64(dma_addr);
1658 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1659 		i++;
1660 	}
1661 
1662 	if (!size)
1663 		goto out_free_bufs;
1664 
1665 	dev->nr_host_mem_descs = i;
1666 	dev->host_mem_size = size;
1667 	dev->host_mem_descs = descs;
1668 	dev->host_mem_descs_dma = descs_dma;
1669 	dev->host_mem_desc_bufs = bufs;
1670 	return 0;
1671 
1672 out_free_bufs:
1673 	while (--i >= 0) {
1674 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1675 
1676 		dma_free_coherent(dev->dev, size, bufs[i],
1677 				le64_to_cpu(descs[i].addr));
1678 	}
1679 
1680 	kfree(bufs);
1681 out_free_descs:
1682 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1683 			descs_dma);
1684 out:
1685 	dev->host_mem_descs = NULL;
1686 	return -ENOMEM;
1687 }
1688 
1689 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1690 {
1691 	u32 chunk_size;
1692 
1693 	/* start big and work our way down */
1694 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1695 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1696 	     chunk_size /= 2) {
1697 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1698 			if (!min || dev->host_mem_size >= min)
1699 				return 0;
1700 			nvme_free_host_mem(dev);
1701 		}
1702 	}
1703 
1704 	return -ENOMEM;
1705 }
1706 
1707 static int nvme_setup_host_mem(struct nvme_dev *dev)
1708 {
1709 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1710 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1711 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1712 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1713 	int ret = 0;
1714 
1715 	preferred = min(preferred, max);
1716 	if (min > max) {
1717 		dev_warn(dev->ctrl.device,
1718 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1719 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1720 		nvme_free_host_mem(dev);
1721 		return 0;
1722 	}
1723 
1724 	/*
1725 	 * If we already have a buffer allocated check if we can reuse it.
1726 	 */
1727 	if (dev->host_mem_descs) {
1728 		if (dev->host_mem_size >= min)
1729 			enable_bits |= NVME_HOST_MEM_RETURN;
1730 		else
1731 			nvme_free_host_mem(dev);
1732 	}
1733 
1734 	if (!dev->host_mem_descs) {
1735 		if (nvme_alloc_host_mem(dev, min, preferred)) {
1736 			dev_warn(dev->ctrl.device,
1737 				"failed to allocate host memory buffer.\n");
1738 			return 0; /* controller must work without HMB */
1739 		}
1740 
1741 		dev_info(dev->ctrl.device,
1742 			"allocated %lld MiB host memory buffer.\n",
1743 			dev->host_mem_size >> ilog2(SZ_1M));
1744 	}
1745 
1746 	ret = nvme_set_host_mem(dev, enable_bits);
1747 	if (ret)
1748 		nvme_free_host_mem(dev);
1749 	return ret;
1750 }
1751 
1752 static int nvme_setup_io_queues(struct nvme_dev *dev)
1753 {
1754 	struct nvme_queue *adminq = dev->queues[0];
1755 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1756 	int result, nr_io_queues;
1757 	unsigned long size;
1758 
1759 	nr_io_queues = num_present_cpus();
1760 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1761 	if (result < 0)
1762 		return result;
1763 
1764 	if (nr_io_queues == 0)
1765 		return 0;
1766 
1767 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1768 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1769 				sizeof(struct nvme_command));
1770 		if (result > 0)
1771 			dev->q_depth = result;
1772 		else
1773 			nvme_release_cmb(dev);
1774 	}
1775 
1776 	do {
1777 		size = db_bar_size(dev, nr_io_queues);
1778 		result = nvme_remap_bar(dev, size);
1779 		if (!result)
1780 			break;
1781 		if (!--nr_io_queues)
1782 			return -ENOMEM;
1783 	} while (1);
1784 	adminq->q_db = dev->dbs;
1785 
1786 	/* Deregister the admin queue's interrupt */
1787 	pci_free_irq(pdev, 0, adminq);
1788 
1789 	/*
1790 	 * If we enable msix early due to not intx, disable it again before
1791 	 * setting up the full range we need.
1792 	 */
1793 	pci_free_irq_vectors(pdev);
1794 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1795 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1796 	if (nr_io_queues <= 0)
1797 		return -EIO;
1798 	dev->max_qid = nr_io_queues;
1799 
1800 	/*
1801 	 * Should investigate if there's a performance win from allocating
1802 	 * more queues than interrupt vectors; it might allow the submission
1803 	 * path to scale better, even if the receive path is limited by the
1804 	 * number of interrupts.
1805 	 */
1806 
1807 	result = queue_request_irq(adminq);
1808 	if (result) {
1809 		adminq->cq_vector = -1;
1810 		return result;
1811 	}
1812 	return nvme_create_io_queues(dev);
1813 }
1814 
1815 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1816 {
1817 	struct nvme_queue *nvmeq = req->end_io_data;
1818 
1819 	blk_mq_free_request(req);
1820 	complete(&nvmeq->dev->ioq_wait);
1821 }
1822 
1823 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1824 {
1825 	struct nvme_queue *nvmeq = req->end_io_data;
1826 
1827 	if (!error) {
1828 		unsigned long flags;
1829 
1830 		/*
1831 		 * We might be called with the AQ q_lock held
1832 		 * and the I/O queue q_lock should always
1833 		 * nest inside the AQ one.
1834 		 */
1835 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1836 					SINGLE_DEPTH_NESTING);
1837 		nvme_process_cq(nvmeq);
1838 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1839 	}
1840 
1841 	nvme_del_queue_end(req, error);
1842 }
1843 
1844 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1845 {
1846 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1847 	struct request *req;
1848 	struct nvme_command cmd;
1849 
1850 	memset(&cmd, 0, sizeof(cmd));
1851 	cmd.delete_queue.opcode = opcode;
1852 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1853 
1854 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1855 	if (IS_ERR(req))
1856 		return PTR_ERR(req);
1857 
1858 	req->timeout = ADMIN_TIMEOUT;
1859 	req->end_io_data = nvmeq;
1860 
1861 	blk_execute_rq_nowait(q, NULL, req, false,
1862 			opcode == nvme_admin_delete_cq ?
1863 				nvme_del_cq_end : nvme_del_queue_end);
1864 	return 0;
1865 }
1866 
1867 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1868 {
1869 	int pass;
1870 	unsigned long timeout;
1871 	u8 opcode = nvme_admin_delete_sq;
1872 
1873 	for (pass = 0; pass < 2; pass++) {
1874 		int sent = 0, i = queues;
1875 
1876 		reinit_completion(&dev->ioq_wait);
1877  retry:
1878 		timeout = ADMIN_TIMEOUT;
1879 		for (; i > 0; i--, sent++)
1880 			if (nvme_delete_queue(dev->queues[i], opcode))
1881 				break;
1882 
1883 		while (sent--) {
1884 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1885 			if (timeout == 0)
1886 				return;
1887 			if (i)
1888 				goto retry;
1889 		}
1890 		opcode = nvme_admin_delete_cq;
1891 	}
1892 }
1893 
1894 /*
1895  * Return: error value if an error occurred setting up the queues or calling
1896  * Identify Device.  0 if these succeeded, even if adding some of the
1897  * namespaces failed.  At the moment, these failures are silent.  TBD which
1898  * failures should be reported.
1899  */
1900 static int nvme_dev_add(struct nvme_dev *dev)
1901 {
1902 	if (!dev->ctrl.tagset) {
1903 		dev->tagset.ops = &nvme_mq_ops;
1904 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1905 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1906 		dev->tagset.numa_node = dev_to_node(dev->dev);
1907 		dev->tagset.queue_depth =
1908 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1909 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1910 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1911 		dev->tagset.driver_data = dev;
1912 
1913 		if (blk_mq_alloc_tag_set(&dev->tagset))
1914 			return 0;
1915 		dev->ctrl.tagset = &dev->tagset;
1916 
1917 		nvme_dbbuf_set(dev);
1918 	} else {
1919 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1920 
1921 		/* Free previously allocated queues that are no longer usable */
1922 		nvme_free_queues(dev, dev->online_queues);
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static int nvme_pci_enable(struct nvme_dev *dev)
1929 {
1930 	int result = -ENOMEM;
1931 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1932 
1933 	if (pci_enable_device_mem(pdev))
1934 		return result;
1935 
1936 	pci_set_master(pdev);
1937 
1938 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1939 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1940 		goto disable;
1941 
1942 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1943 		result = -ENODEV;
1944 		goto disable;
1945 	}
1946 
1947 	/*
1948 	 * Some devices and/or platforms don't advertise or work with INTx
1949 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1950 	 * adjust this later.
1951 	 */
1952 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1953 	if (result < 0)
1954 		return result;
1955 
1956 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1957 
1958 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1959 				io_queue_depth);
1960 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1961 	dev->dbs = dev->bar + 4096;
1962 
1963 	/*
1964 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1965 	 * some MacBook7,1 to avoid controller resets and data loss.
1966 	 */
1967 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1968 		dev->q_depth = 2;
1969 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1970 			"set queue depth=%u to work around controller resets\n",
1971 			dev->q_depth);
1972 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1973 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1974 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1975 		dev->q_depth = 64;
1976 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1977                         "set queue depth=%u\n", dev->q_depth);
1978 	}
1979 
1980 	/*
1981 	 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1982 	 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
1983 	 * has no name we can pass NULL as final argument to
1984 	 * sysfs_add_file_to_group.
1985 	 */
1986 
1987 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1988 		dev->cmb = nvme_map_cmb(dev);
1989 		if (dev->cmb) {
1990 			if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1991 						    &dev_attr_cmb.attr, NULL))
1992 				dev_warn(dev->ctrl.device,
1993 					 "failed to add sysfs attribute for CMB\n");
1994 		}
1995 	}
1996 
1997 	pci_enable_pcie_error_reporting(pdev);
1998 	pci_save_state(pdev);
1999 	return 0;
2000 
2001  disable:
2002 	pci_disable_device(pdev);
2003 	return result;
2004 }
2005 
2006 static void nvme_dev_unmap(struct nvme_dev *dev)
2007 {
2008 	if (dev->bar)
2009 		iounmap(dev->bar);
2010 	pci_release_mem_regions(to_pci_dev(dev->dev));
2011 }
2012 
2013 static void nvme_pci_disable(struct nvme_dev *dev)
2014 {
2015 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2016 
2017 	nvme_release_cmb(dev);
2018 	pci_free_irq_vectors(pdev);
2019 
2020 	if (pci_is_enabled(pdev)) {
2021 		pci_disable_pcie_error_reporting(pdev);
2022 		pci_disable_device(pdev);
2023 	}
2024 }
2025 
2026 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2027 {
2028 	int i, queues;
2029 	bool dead = true;
2030 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2031 
2032 	mutex_lock(&dev->shutdown_lock);
2033 	if (pci_is_enabled(pdev)) {
2034 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2035 
2036 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2037 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2038 			nvme_start_freeze(&dev->ctrl);
2039 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2040 			pdev->error_state  != pci_channel_io_normal);
2041 	}
2042 
2043 	/*
2044 	 * Give the controller a chance to complete all entered requests if
2045 	 * doing a safe shutdown.
2046 	 */
2047 	if (!dead) {
2048 		if (shutdown)
2049 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2050 
2051 		/*
2052 		 * If the controller is still alive tell it to stop using the
2053 		 * host memory buffer.  In theory the shutdown / reset should
2054 		 * make sure that it doesn't access the host memoery anymore,
2055 		 * but I'd rather be safe than sorry..
2056 		 */
2057 		if (dev->host_mem_descs)
2058 			nvme_set_host_mem(dev, 0);
2059 
2060 	}
2061 	nvme_stop_queues(&dev->ctrl);
2062 
2063 	queues = dev->online_queues - 1;
2064 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2065 		nvme_suspend_queue(dev->queues[i]);
2066 
2067 	if (dead) {
2068 		/* A device might become IO incapable very soon during
2069 		 * probe, before the admin queue is configured. Thus,
2070 		 * queue_count can be 0 here.
2071 		 */
2072 		if (dev->ctrl.queue_count)
2073 			nvme_suspend_queue(dev->queues[0]);
2074 	} else {
2075 		nvme_disable_io_queues(dev, queues);
2076 		nvme_disable_admin_queue(dev, shutdown);
2077 	}
2078 	nvme_pci_disable(dev);
2079 
2080 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2081 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2082 
2083 	/*
2084 	 * The driver will not be starting up queues again if shutting down so
2085 	 * must flush all entered requests to their failed completion to avoid
2086 	 * deadlocking blk-mq hot-cpu notifier.
2087 	 */
2088 	if (shutdown)
2089 		nvme_start_queues(&dev->ctrl);
2090 	mutex_unlock(&dev->shutdown_lock);
2091 }
2092 
2093 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2094 {
2095 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2096 						PAGE_SIZE, PAGE_SIZE, 0);
2097 	if (!dev->prp_page_pool)
2098 		return -ENOMEM;
2099 
2100 	/* Optimisation for I/Os between 4k and 128k */
2101 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2102 						256, 256, 0);
2103 	if (!dev->prp_small_pool) {
2104 		dma_pool_destroy(dev->prp_page_pool);
2105 		return -ENOMEM;
2106 	}
2107 	return 0;
2108 }
2109 
2110 static void nvme_release_prp_pools(struct nvme_dev *dev)
2111 {
2112 	dma_pool_destroy(dev->prp_page_pool);
2113 	dma_pool_destroy(dev->prp_small_pool);
2114 }
2115 
2116 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2117 {
2118 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2119 
2120 	nvme_dbbuf_dma_free(dev);
2121 	put_device(dev->dev);
2122 	if (dev->tagset.tags)
2123 		blk_mq_free_tag_set(&dev->tagset);
2124 	if (dev->ctrl.admin_q)
2125 		blk_put_queue(dev->ctrl.admin_q);
2126 	kfree(dev->queues);
2127 	free_opal_dev(dev->ctrl.opal_dev);
2128 	kfree(dev);
2129 }
2130 
2131 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2132 {
2133 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2134 
2135 	kref_get(&dev->ctrl.kref);
2136 	nvme_dev_disable(dev, false);
2137 	if (!schedule_work(&dev->remove_work))
2138 		nvme_put_ctrl(&dev->ctrl);
2139 }
2140 
2141 static void nvme_reset_work(struct work_struct *work)
2142 {
2143 	struct nvme_dev *dev =
2144 		container_of(work, struct nvme_dev, ctrl.reset_work);
2145 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2146 	int result = -ENODEV;
2147 
2148 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2149 		goto out;
2150 
2151 	/*
2152 	 * If we're called to reset a live controller first shut it down before
2153 	 * moving on.
2154 	 */
2155 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2156 		nvme_dev_disable(dev, false);
2157 
2158 	result = nvme_pci_enable(dev);
2159 	if (result)
2160 		goto out;
2161 
2162 	result = nvme_pci_configure_admin_queue(dev);
2163 	if (result)
2164 		goto out;
2165 
2166 	result = nvme_alloc_admin_tags(dev);
2167 	if (result)
2168 		goto out;
2169 
2170 	result = nvme_init_identify(&dev->ctrl);
2171 	if (result)
2172 		goto out;
2173 
2174 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2175 		if (!dev->ctrl.opal_dev)
2176 			dev->ctrl.opal_dev =
2177 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2178 		else if (was_suspend)
2179 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2180 	} else {
2181 		free_opal_dev(dev->ctrl.opal_dev);
2182 		dev->ctrl.opal_dev = NULL;
2183 	}
2184 
2185 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2186 		result = nvme_dbbuf_dma_alloc(dev);
2187 		if (result)
2188 			dev_warn(dev->dev,
2189 				 "unable to allocate dma for dbbuf\n");
2190 	}
2191 
2192 	if (dev->ctrl.hmpre) {
2193 		result = nvme_setup_host_mem(dev);
2194 		if (result < 0)
2195 			goto out;
2196 	}
2197 
2198 	result = nvme_setup_io_queues(dev);
2199 	if (result)
2200 		goto out;
2201 
2202 	/*
2203 	 * Keep the controller around but remove all namespaces if we don't have
2204 	 * any working I/O queue.
2205 	 */
2206 	if (dev->online_queues < 2) {
2207 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2208 		nvme_kill_queues(&dev->ctrl);
2209 		nvme_remove_namespaces(&dev->ctrl);
2210 	} else {
2211 		nvme_start_queues(&dev->ctrl);
2212 		nvme_wait_freeze(&dev->ctrl);
2213 		nvme_dev_add(dev);
2214 		nvme_unfreeze(&dev->ctrl);
2215 	}
2216 
2217 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2218 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2219 		goto out;
2220 	}
2221 
2222 	nvme_start_ctrl(&dev->ctrl);
2223 	return;
2224 
2225  out:
2226 	nvme_remove_dead_ctrl(dev, result);
2227 }
2228 
2229 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2230 {
2231 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2232 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2233 
2234 	nvme_kill_queues(&dev->ctrl);
2235 	if (pci_get_drvdata(pdev))
2236 		device_release_driver(&pdev->dev);
2237 	nvme_put_ctrl(&dev->ctrl);
2238 }
2239 
2240 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2241 {
2242 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2243 	return 0;
2244 }
2245 
2246 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2247 {
2248 	writel(val, to_nvme_dev(ctrl)->bar + off);
2249 	return 0;
2250 }
2251 
2252 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2253 {
2254 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2255 	return 0;
2256 }
2257 
2258 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2259 	.name			= "pcie",
2260 	.module			= THIS_MODULE,
2261 	.flags			= NVME_F_METADATA_SUPPORTED,
2262 	.reg_read32		= nvme_pci_reg_read32,
2263 	.reg_write32		= nvme_pci_reg_write32,
2264 	.reg_read64		= nvme_pci_reg_read64,
2265 	.free_ctrl		= nvme_pci_free_ctrl,
2266 	.submit_async_event	= nvme_pci_submit_async_event,
2267 };
2268 
2269 static int nvme_dev_map(struct nvme_dev *dev)
2270 {
2271 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2272 
2273 	if (pci_request_mem_regions(pdev, "nvme"))
2274 		return -ENODEV;
2275 
2276 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2277 		goto release;
2278 
2279 	return 0;
2280   release:
2281 	pci_release_mem_regions(pdev);
2282 	return -ENODEV;
2283 }
2284 
2285 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2286 {
2287 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2288 		/*
2289 		 * Several Samsung devices seem to drop off the PCIe bus
2290 		 * randomly when APST is on and uses the deepest sleep state.
2291 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2292 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2293 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2294 		 * laptops.
2295 		 */
2296 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2297 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2298 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2299 			return NVME_QUIRK_NO_DEEPEST_PS;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2306 {
2307 	int node, result = -ENOMEM;
2308 	struct nvme_dev *dev;
2309 	unsigned long quirks = id->driver_data;
2310 
2311 	node = dev_to_node(&pdev->dev);
2312 	if (node == NUMA_NO_NODE)
2313 		set_dev_node(&pdev->dev, first_memory_node);
2314 
2315 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2316 	if (!dev)
2317 		return -ENOMEM;
2318 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2319 							GFP_KERNEL, node);
2320 	if (!dev->queues)
2321 		goto free;
2322 
2323 	dev->dev = get_device(&pdev->dev);
2324 	pci_set_drvdata(pdev, dev);
2325 
2326 	result = nvme_dev_map(dev);
2327 	if (result)
2328 		goto put_pci;
2329 
2330 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2331 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2332 	mutex_init(&dev->shutdown_lock);
2333 	init_completion(&dev->ioq_wait);
2334 
2335 	result = nvme_setup_prp_pools(dev);
2336 	if (result)
2337 		goto unmap;
2338 
2339 	quirks |= check_dell_samsung_bug(pdev);
2340 
2341 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2342 			quirks);
2343 	if (result)
2344 		goto release_pools;
2345 
2346 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2347 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2348 
2349 	queue_work(nvme_wq, &dev->ctrl.reset_work);
2350 	return 0;
2351 
2352  release_pools:
2353 	nvme_release_prp_pools(dev);
2354  unmap:
2355 	nvme_dev_unmap(dev);
2356  put_pci:
2357 	put_device(dev->dev);
2358  free:
2359 	kfree(dev->queues);
2360 	kfree(dev);
2361 	return result;
2362 }
2363 
2364 static void nvme_reset_prepare(struct pci_dev *pdev)
2365 {
2366 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2367 	nvme_dev_disable(dev, false);
2368 }
2369 
2370 static void nvme_reset_done(struct pci_dev *pdev)
2371 {
2372 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2373 	nvme_reset_ctrl(&dev->ctrl);
2374 }
2375 
2376 static void nvme_shutdown(struct pci_dev *pdev)
2377 {
2378 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2379 	nvme_dev_disable(dev, true);
2380 }
2381 
2382 /*
2383  * The driver's remove may be called on a device in a partially initialized
2384  * state. This function must not have any dependencies on the device state in
2385  * order to proceed.
2386  */
2387 static void nvme_remove(struct pci_dev *pdev)
2388 {
2389 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2390 
2391 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2392 
2393 	cancel_work_sync(&dev->ctrl.reset_work);
2394 	pci_set_drvdata(pdev, NULL);
2395 
2396 	if (!pci_device_is_present(pdev)) {
2397 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2398 		nvme_dev_disable(dev, false);
2399 	}
2400 
2401 	flush_work(&dev->ctrl.reset_work);
2402 	nvme_stop_ctrl(&dev->ctrl);
2403 	nvme_remove_namespaces(&dev->ctrl);
2404 	nvme_dev_disable(dev, true);
2405 	nvme_free_host_mem(dev);
2406 	nvme_dev_remove_admin(dev);
2407 	nvme_free_queues(dev, 0);
2408 	nvme_uninit_ctrl(&dev->ctrl);
2409 	nvme_release_prp_pools(dev);
2410 	nvme_dev_unmap(dev);
2411 	nvme_put_ctrl(&dev->ctrl);
2412 }
2413 
2414 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2415 {
2416 	int ret = 0;
2417 
2418 	if (numvfs == 0) {
2419 		if (pci_vfs_assigned(pdev)) {
2420 			dev_warn(&pdev->dev,
2421 				"Cannot disable SR-IOV VFs while assigned\n");
2422 			return -EPERM;
2423 		}
2424 		pci_disable_sriov(pdev);
2425 		return 0;
2426 	}
2427 
2428 	ret = pci_enable_sriov(pdev, numvfs);
2429 	return ret ? ret : numvfs;
2430 }
2431 
2432 #ifdef CONFIG_PM_SLEEP
2433 static int nvme_suspend(struct device *dev)
2434 {
2435 	struct pci_dev *pdev = to_pci_dev(dev);
2436 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2437 
2438 	nvme_dev_disable(ndev, true);
2439 	return 0;
2440 }
2441 
2442 static int nvme_resume(struct device *dev)
2443 {
2444 	struct pci_dev *pdev = to_pci_dev(dev);
2445 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2446 
2447 	nvme_reset_ctrl(&ndev->ctrl);
2448 	return 0;
2449 }
2450 #endif
2451 
2452 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2453 
2454 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2455 						pci_channel_state_t state)
2456 {
2457 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2458 
2459 	/*
2460 	 * A frozen channel requires a reset. When detected, this method will
2461 	 * shutdown the controller to quiesce. The controller will be restarted
2462 	 * after the slot reset through driver's slot_reset callback.
2463 	 */
2464 	switch (state) {
2465 	case pci_channel_io_normal:
2466 		return PCI_ERS_RESULT_CAN_RECOVER;
2467 	case pci_channel_io_frozen:
2468 		dev_warn(dev->ctrl.device,
2469 			"frozen state error detected, reset controller\n");
2470 		nvme_dev_disable(dev, false);
2471 		return PCI_ERS_RESULT_NEED_RESET;
2472 	case pci_channel_io_perm_failure:
2473 		dev_warn(dev->ctrl.device,
2474 			"failure state error detected, request disconnect\n");
2475 		return PCI_ERS_RESULT_DISCONNECT;
2476 	}
2477 	return PCI_ERS_RESULT_NEED_RESET;
2478 }
2479 
2480 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2481 {
2482 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2483 
2484 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2485 	pci_restore_state(pdev);
2486 	nvme_reset_ctrl(&dev->ctrl);
2487 	return PCI_ERS_RESULT_RECOVERED;
2488 }
2489 
2490 static void nvme_error_resume(struct pci_dev *pdev)
2491 {
2492 	pci_cleanup_aer_uncorrect_error_status(pdev);
2493 }
2494 
2495 static const struct pci_error_handlers nvme_err_handler = {
2496 	.error_detected	= nvme_error_detected,
2497 	.slot_reset	= nvme_slot_reset,
2498 	.resume		= nvme_error_resume,
2499 	.reset_prepare	= nvme_reset_prepare,
2500 	.reset_done	= nvme_reset_done,
2501 };
2502 
2503 static const struct pci_device_id nvme_id_table[] = {
2504 	{ PCI_VDEVICE(INTEL, 0x0953),
2505 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2506 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2507 	{ PCI_VDEVICE(INTEL, 0x0a53),
2508 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2509 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2510 	{ PCI_VDEVICE(INTEL, 0x0a54),
2511 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2512 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2513 	{ PCI_VDEVICE(INTEL, 0x0a55),
2514 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2515 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2516 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2517 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2518 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2519 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2520 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2521 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2522 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2523 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2524 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2525 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2526 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2527 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2528 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
2529 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2530 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
2531 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2532 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2533 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2534 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2535 	{ 0, }
2536 };
2537 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2538 
2539 static struct pci_driver nvme_driver = {
2540 	.name		= "nvme",
2541 	.id_table	= nvme_id_table,
2542 	.probe		= nvme_probe,
2543 	.remove		= nvme_remove,
2544 	.shutdown	= nvme_shutdown,
2545 	.driver		= {
2546 		.pm	= &nvme_dev_pm_ops,
2547 	},
2548 	.sriov_configure = nvme_pci_sriov_configure,
2549 	.err_handler	= &nvme_err_handler,
2550 };
2551 
2552 static int __init nvme_init(void)
2553 {
2554 	return pci_register_driver(&nvme_driver);
2555 }
2556 
2557 static void __exit nvme_exit(void)
2558 {
2559 	pci_unregister_driver(&nvme_driver);
2560 	_nvme_check_size();
2561 }
2562 
2563 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2564 MODULE_LICENSE("GPL");
2565 MODULE_VERSION("1.0");
2566 module_init(nvme_init);
2567 module_exit(nvme_exit);
2568