1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/once.h> 21 #include <linux/pci.h> 22 #include <linux/suspend.h> 23 #include <linux/t10-pi.h> 24 #include <linux/types.h> 25 #include <linux/io-64-nonatomic-lo-hi.h> 26 #include <linux/sed-opal.h> 27 #include <linux/pci-p2pdma.h> 28 29 #include "trace.h" 30 #include "nvme.h" 31 32 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 33 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 34 35 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 36 37 /* 38 * These can be higher, but we need to ensure that any command doesn't 39 * require an sg allocation that needs more than a page of data. 40 */ 41 #define NVME_MAX_KB_SZ 4096 42 #define NVME_MAX_SEGS 127 43 44 static int use_threaded_interrupts; 45 module_param(use_threaded_interrupts, int, 0); 46 47 static bool use_cmb_sqes = true; 48 module_param(use_cmb_sqes, bool, 0444); 49 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 50 51 static unsigned int max_host_mem_size_mb = 128; 52 module_param(max_host_mem_size_mb, uint, 0444); 53 MODULE_PARM_DESC(max_host_mem_size_mb, 54 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 55 56 static unsigned int sgl_threshold = SZ_32K; 57 module_param(sgl_threshold, uint, 0644); 58 MODULE_PARM_DESC(sgl_threshold, 59 "Use SGLs when average request segment size is larger or equal to " 60 "this size. Use 0 to disable SGLs."); 61 62 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 63 static const struct kernel_param_ops io_queue_depth_ops = { 64 .set = io_queue_depth_set, 65 .get = param_get_uint, 66 }; 67 68 static unsigned int io_queue_depth = 1024; 69 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 70 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 71 72 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 73 { 74 unsigned int n; 75 int ret; 76 77 ret = kstrtouint(val, 10, &n); 78 if (ret != 0 || n > num_possible_cpus()) 79 return -EINVAL; 80 return param_set_uint(val, kp); 81 } 82 83 static const struct kernel_param_ops io_queue_count_ops = { 84 .set = io_queue_count_set, 85 .get = param_get_uint, 86 }; 87 88 static unsigned int write_queues; 89 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 90 MODULE_PARM_DESC(write_queues, 91 "Number of queues to use for writes. If not set, reads and writes " 92 "will share a queue set."); 93 94 static unsigned int poll_queues; 95 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 96 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 97 98 static bool noacpi; 99 module_param(noacpi, bool, 0444); 100 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 101 102 struct nvme_dev; 103 struct nvme_queue; 104 105 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 106 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 107 108 /* 109 * Represents an NVM Express device. Each nvme_dev is a PCI function. 110 */ 111 struct nvme_dev { 112 struct nvme_queue *queues; 113 struct blk_mq_tag_set tagset; 114 struct blk_mq_tag_set admin_tagset; 115 u32 __iomem *dbs; 116 struct device *dev; 117 struct dma_pool *prp_page_pool; 118 struct dma_pool *prp_small_pool; 119 unsigned online_queues; 120 unsigned max_qid; 121 unsigned io_queues[HCTX_MAX_TYPES]; 122 unsigned int num_vecs; 123 u16 q_depth; 124 int io_sqes; 125 u32 db_stride; 126 void __iomem *bar; 127 unsigned long bar_mapped_size; 128 struct work_struct remove_work; 129 struct mutex shutdown_lock; 130 bool subsystem; 131 u64 cmb_size; 132 bool cmb_use_sqes; 133 u32 cmbsz; 134 u32 cmbloc; 135 struct nvme_ctrl ctrl; 136 u32 last_ps; 137 138 mempool_t *iod_mempool; 139 140 /* shadow doorbell buffer support: */ 141 u32 *dbbuf_dbs; 142 dma_addr_t dbbuf_dbs_dma_addr; 143 u32 *dbbuf_eis; 144 dma_addr_t dbbuf_eis_dma_addr; 145 146 /* host memory buffer support: */ 147 u64 host_mem_size; 148 u32 nr_host_mem_descs; 149 dma_addr_t host_mem_descs_dma; 150 struct nvme_host_mem_buf_desc *host_mem_descs; 151 void **host_mem_desc_bufs; 152 unsigned int nr_allocated_queues; 153 unsigned int nr_write_queues; 154 unsigned int nr_poll_queues; 155 }; 156 157 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 158 { 159 int ret; 160 u16 n; 161 162 ret = kstrtou16(val, 10, &n); 163 if (ret != 0 || n < 2) 164 return -EINVAL; 165 166 return param_set_ushort(val, kp); 167 } 168 169 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 170 { 171 return qid * 2 * stride; 172 } 173 174 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 175 { 176 return (qid * 2 + 1) * stride; 177 } 178 179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 180 { 181 return container_of(ctrl, struct nvme_dev, ctrl); 182 } 183 184 /* 185 * An NVM Express queue. Each device has at least two (one for admin 186 * commands and one for I/O commands). 187 */ 188 struct nvme_queue { 189 struct nvme_dev *dev; 190 spinlock_t sq_lock; 191 void *sq_cmds; 192 /* only used for poll queues: */ 193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 194 struct nvme_completion *cqes; 195 dma_addr_t sq_dma_addr; 196 dma_addr_t cq_dma_addr; 197 u32 __iomem *q_db; 198 u16 q_depth; 199 u16 cq_vector; 200 u16 sq_tail; 201 u16 cq_head; 202 u16 qid; 203 u8 cq_phase; 204 u8 sqes; 205 unsigned long flags; 206 #define NVMEQ_ENABLED 0 207 #define NVMEQ_SQ_CMB 1 208 #define NVMEQ_DELETE_ERROR 2 209 #define NVMEQ_POLLED 3 210 u32 *dbbuf_sq_db; 211 u32 *dbbuf_cq_db; 212 u32 *dbbuf_sq_ei; 213 u32 *dbbuf_cq_ei; 214 struct completion delete_done; 215 }; 216 217 /* 218 * The nvme_iod describes the data in an I/O. 219 * 220 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 221 * to the actual struct scatterlist. 222 */ 223 struct nvme_iod { 224 struct nvme_request req; 225 struct nvme_queue *nvmeq; 226 bool use_sgl; 227 int aborted; 228 int npages; /* In the PRP list. 0 means small pool in use */ 229 int nents; /* Used in scatterlist */ 230 dma_addr_t first_dma; 231 unsigned int dma_len; /* length of single DMA segment mapping */ 232 dma_addr_t meta_dma; 233 struct scatterlist *sg; 234 }; 235 236 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 237 { 238 return dev->nr_allocated_queues * 8 * dev->db_stride; 239 } 240 241 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 242 { 243 unsigned int mem_size = nvme_dbbuf_size(dev); 244 245 if (dev->dbbuf_dbs) 246 return 0; 247 248 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 249 &dev->dbbuf_dbs_dma_addr, 250 GFP_KERNEL); 251 if (!dev->dbbuf_dbs) 252 return -ENOMEM; 253 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 254 &dev->dbbuf_eis_dma_addr, 255 GFP_KERNEL); 256 if (!dev->dbbuf_eis) { 257 dma_free_coherent(dev->dev, mem_size, 258 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 259 dev->dbbuf_dbs = NULL; 260 return -ENOMEM; 261 } 262 263 return 0; 264 } 265 266 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 267 { 268 unsigned int mem_size = nvme_dbbuf_size(dev); 269 270 if (dev->dbbuf_dbs) { 271 dma_free_coherent(dev->dev, mem_size, 272 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 273 dev->dbbuf_dbs = NULL; 274 } 275 if (dev->dbbuf_eis) { 276 dma_free_coherent(dev->dev, mem_size, 277 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 278 dev->dbbuf_eis = NULL; 279 } 280 } 281 282 static void nvme_dbbuf_init(struct nvme_dev *dev, 283 struct nvme_queue *nvmeq, int qid) 284 { 285 if (!dev->dbbuf_dbs || !qid) 286 return; 287 288 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 289 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 290 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 291 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 292 } 293 294 static void nvme_dbbuf_set(struct nvme_dev *dev) 295 { 296 struct nvme_command c; 297 298 if (!dev->dbbuf_dbs) 299 return; 300 301 memset(&c, 0, sizeof(c)); 302 c.dbbuf.opcode = nvme_admin_dbbuf; 303 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 304 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 305 306 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 307 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 308 /* Free memory and continue on */ 309 nvme_dbbuf_dma_free(dev); 310 } 311 } 312 313 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 314 { 315 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 316 } 317 318 /* Update dbbuf and return true if an MMIO is required */ 319 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 320 volatile u32 *dbbuf_ei) 321 { 322 if (dbbuf_db) { 323 u16 old_value; 324 325 /* 326 * Ensure that the queue is written before updating 327 * the doorbell in memory 328 */ 329 wmb(); 330 331 old_value = *dbbuf_db; 332 *dbbuf_db = value; 333 334 /* 335 * Ensure that the doorbell is updated before reading the event 336 * index from memory. The controller needs to provide similar 337 * ordering to ensure the envent index is updated before reading 338 * the doorbell. 339 */ 340 mb(); 341 342 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 343 return false; 344 } 345 346 return true; 347 } 348 349 /* 350 * Will slightly overestimate the number of pages needed. This is OK 351 * as it only leads to a small amount of wasted memory for the lifetime of 352 * the I/O. 353 */ 354 static int nvme_pci_npages_prp(void) 355 { 356 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 357 NVME_CTRL_PAGE_SIZE); 358 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 359 } 360 361 /* 362 * Calculates the number of pages needed for the SGL segments. For example a 4k 363 * page can accommodate 256 SGL descriptors. 364 */ 365 static int nvme_pci_npages_sgl(void) 366 { 367 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 368 PAGE_SIZE); 369 } 370 371 static size_t nvme_pci_iod_alloc_size(void) 372 { 373 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 374 375 return sizeof(__le64 *) * npages + 376 sizeof(struct scatterlist) * NVME_MAX_SEGS; 377 } 378 379 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 380 unsigned int hctx_idx) 381 { 382 struct nvme_dev *dev = data; 383 struct nvme_queue *nvmeq = &dev->queues[0]; 384 385 WARN_ON(hctx_idx != 0); 386 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 387 388 hctx->driver_data = nvmeq; 389 return 0; 390 } 391 392 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 393 unsigned int hctx_idx) 394 { 395 struct nvme_dev *dev = data; 396 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 397 398 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 399 hctx->driver_data = nvmeq; 400 return 0; 401 } 402 403 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 404 unsigned int hctx_idx, unsigned int numa_node) 405 { 406 struct nvme_dev *dev = set->driver_data; 407 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 408 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 409 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 410 411 BUG_ON(!nvmeq); 412 iod->nvmeq = nvmeq; 413 414 nvme_req(req)->ctrl = &dev->ctrl; 415 return 0; 416 } 417 418 static int queue_irq_offset(struct nvme_dev *dev) 419 { 420 /* if we have more than 1 vec, admin queue offsets us by 1 */ 421 if (dev->num_vecs > 1) 422 return 1; 423 424 return 0; 425 } 426 427 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 428 { 429 struct nvme_dev *dev = set->driver_data; 430 int i, qoff, offset; 431 432 offset = queue_irq_offset(dev); 433 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 434 struct blk_mq_queue_map *map = &set->map[i]; 435 436 map->nr_queues = dev->io_queues[i]; 437 if (!map->nr_queues) { 438 BUG_ON(i == HCTX_TYPE_DEFAULT); 439 continue; 440 } 441 442 /* 443 * The poll queue(s) doesn't have an IRQ (and hence IRQ 444 * affinity), so use the regular blk-mq cpu mapping 445 */ 446 map->queue_offset = qoff; 447 if (i != HCTX_TYPE_POLL && offset) 448 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 449 else 450 blk_mq_map_queues(map); 451 qoff += map->nr_queues; 452 offset += map->nr_queues; 453 } 454 455 return 0; 456 } 457 458 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq) 459 { 460 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 461 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 462 writel(nvmeq->sq_tail, nvmeq->q_db); 463 } 464 465 /** 466 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 467 * @nvmeq: The queue to use 468 * @cmd: The command to send 469 * @write_sq: whether to write to the SQ doorbell 470 */ 471 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 472 bool write_sq) 473 { 474 spin_lock(&nvmeq->sq_lock); 475 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 476 cmd, sizeof(*cmd)); 477 if (++nvmeq->sq_tail == nvmeq->q_depth) 478 nvmeq->sq_tail = 0; 479 if (write_sq) 480 nvme_write_sq_db(nvmeq); 481 spin_unlock(&nvmeq->sq_lock); 482 } 483 484 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 485 { 486 struct nvme_queue *nvmeq = hctx->driver_data; 487 488 spin_lock(&nvmeq->sq_lock); 489 nvme_write_sq_db(nvmeq); 490 spin_unlock(&nvmeq->sq_lock); 491 } 492 493 static void **nvme_pci_iod_list(struct request *req) 494 { 495 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 496 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 497 } 498 499 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 500 { 501 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 502 int nseg = blk_rq_nr_phys_segments(req); 503 unsigned int avg_seg_size; 504 505 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 506 507 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 508 return false; 509 if (!iod->nvmeq->qid) 510 return false; 511 if (!sgl_threshold || avg_seg_size < sgl_threshold) 512 return false; 513 return true; 514 } 515 516 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 517 { 518 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 519 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 520 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 521 int i; 522 523 if (iod->dma_len) { 524 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, 525 rq_dma_dir(req)); 526 return; 527 } 528 529 WARN_ON_ONCE(!iod->nents); 530 531 if (is_pci_p2pdma_page(sg_page(iod->sg))) 532 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 533 rq_dma_dir(req)); 534 else 535 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 536 537 538 if (iod->npages == 0) 539 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 540 dma_addr); 541 542 for (i = 0; i < iod->npages; i++) { 543 void *addr = nvme_pci_iod_list(req)[i]; 544 545 if (iod->use_sgl) { 546 struct nvme_sgl_desc *sg_list = addr; 547 548 next_dma_addr = 549 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 550 } else { 551 __le64 *prp_list = addr; 552 553 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 554 } 555 556 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 557 dma_addr = next_dma_addr; 558 } 559 560 mempool_free(iod->sg, dev->iod_mempool); 561 } 562 563 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 564 { 565 int i; 566 struct scatterlist *sg; 567 568 for_each_sg(sgl, sg, nents, i) { 569 dma_addr_t phys = sg_phys(sg); 570 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 571 "dma_address:%pad dma_length:%d\n", 572 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 573 sg_dma_len(sg)); 574 } 575 } 576 577 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 578 struct request *req, struct nvme_rw_command *cmnd) 579 { 580 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 581 struct dma_pool *pool; 582 int length = blk_rq_payload_bytes(req); 583 struct scatterlist *sg = iod->sg; 584 int dma_len = sg_dma_len(sg); 585 u64 dma_addr = sg_dma_address(sg); 586 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 587 __le64 *prp_list; 588 void **list = nvme_pci_iod_list(req); 589 dma_addr_t prp_dma; 590 int nprps, i; 591 592 length -= (NVME_CTRL_PAGE_SIZE - offset); 593 if (length <= 0) { 594 iod->first_dma = 0; 595 goto done; 596 } 597 598 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 599 if (dma_len) { 600 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 601 } else { 602 sg = sg_next(sg); 603 dma_addr = sg_dma_address(sg); 604 dma_len = sg_dma_len(sg); 605 } 606 607 if (length <= NVME_CTRL_PAGE_SIZE) { 608 iod->first_dma = dma_addr; 609 goto done; 610 } 611 612 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 613 if (nprps <= (256 / 8)) { 614 pool = dev->prp_small_pool; 615 iod->npages = 0; 616 } else { 617 pool = dev->prp_page_pool; 618 iod->npages = 1; 619 } 620 621 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 622 if (!prp_list) { 623 iod->first_dma = dma_addr; 624 iod->npages = -1; 625 return BLK_STS_RESOURCE; 626 } 627 list[0] = prp_list; 628 iod->first_dma = prp_dma; 629 i = 0; 630 for (;;) { 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 632 __le64 *old_prp_list = prp_list; 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 634 if (!prp_list) 635 return BLK_STS_RESOURCE; 636 list[iod->npages++] = prp_list; 637 prp_list[0] = old_prp_list[i - 1]; 638 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 639 i = 1; 640 } 641 prp_list[i++] = cpu_to_le64(dma_addr); 642 dma_len -= NVME_CTRL_PAGE_SIZE; 643 dma_addr += NVME_CTRL_PAGE_SIZE; 644 length -= NVME_CTRL_PAGE_SIZE; 645 if (length <= 0) 646 break; 647 if (dma_len > 0) 648 continue; 649 if (unlikely(dma_len < 0)) 650 goto bad_sgl; 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 656 done: 657 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 658 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 659 660 return BLK_STS_OK; 661 662 bad_sgl: 663 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 664 "Invalid SGL for payload:%d nents:%d\n", 665 blk_rq_payload_bytes(req), iod->nents); 666 return BLK_STS_IOERR; 667 } 668 669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 670 struct scatterlist *sg) 671 { 672 sge->addr = cpu_to_le64(sg_dma_address(sg)); 673 sge->length = cpu_to_le32(sg_dma_len(sg)); 674 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 675 } 676 677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 678 dma_addr_t dma_addr, int entries) 679 { 680 sge->addr = cpu_to_le64(dma_addr); 681 if (entries < SGES_PER_PAGE) { 682 sge->length = cpu_to_le32(entries * sizeof(*sge)); 683 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 684 } else { 685 sge->length = cpu_to_le32(PAGE_SIZE); 686 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 687 } 688 } 689 690 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 691 struct request *req, struct nvme_rw_command *cmd, int entries) 692 { 693 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 694 struct dma_pool *pool; 695 struct nvme_sgl_desc *sg_list; 696 struct scatterlist *sg = iod->sg; 697 dma_addr_t sgl_dma; 698 int i = 0; 699 700 /* setting the transfer type as SGL */ 701 cmd->flags = NVME_CMD_SGL_METABUF; 702 703 if (entries == 1) { 704 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 705 return BLK_STS_OK; 706 } 707 708 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 709 pool = dev->prp_small_pool; 710 iod->npages = 0; 711 } else { 712 pool = dev->prp_page_pool; 713 iod->npages = 1; 714 } 715 716 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 717 if (!sg_list) { 718 iod->npages = -1; 719 return BLK_STS_RESOURCE; 720 } 721 722 nvme_pci_iod_list(req)[0] = sg_list; 723 iod->first_dma = sgl_dma; 724 725 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 726 727 do { 728 if (i == SGES_PER_PAGE) { 729 struct nvme_sgl_desc *old_sg_desc = sg_list; 730 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 731 732 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 733 if (!sg_list) 734 return BLK_STS_RESOURCE; 735 736 i = 0; 737 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 738 sg_list[i++] = *link; 739 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 740 } 741 742 nvme_pci_sgl_set_data(&sg_list[i++], sg); 743 sg = sg_next(sg); 744 } while (--entries > 0); 745 746 return BLK_STS_OK; 747 } 748 749 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 750 struct request *req, struct nvme_rw_command *cmnd, 751 struct bio_vec *bv) 752 { 753 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 754 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 755 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 756 757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 758 if (dma_mapping_error(dev->dev, iod->first_dma)) 759 return BLK_STS_RESOURCE; 760 iod->dma_len = bv->bv_len; 761 762 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 763 if (bv->bv_len > first_prp_len) 764 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 765 return BLK_STS_OK; 766 } 767 768 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 769 struct request *req, struct nvme_rw_command *cmnd, 770 struct bio_vec *bv) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 774 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 775 if (dma_mapping_error(dev->dev, iod->first_dma)) 776 return BLK_STS_RESOURCE; 777 iod->dma_len = bv->bv_len; 778 779 cmnd->flags = NVME_CMD_SGL_METABUF; 780 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 781 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 782 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 783 return BLK_STS_OK; 784 } 785 786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 787 struct nvme_command *cmnd) 788 { 789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 790 blk_status_t ret = BLK_STS_RESOURCE; 791 int nr_mapped; 792 793 if (blk_rq_nr_phys_segments(req) == 1) { 794 struct bio_vec bv = req_bvec(req); 795 796 if (!is_pci_p2pdma_page(bv.bv_page)) { 797 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 798 return nvme_setup_prp_simple(dev, req, 799 &cmnd->rw, &bv); 800 801 if (iod->nvmeq->qid && 802 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 803 return nvme_setup_sgl_simple(dev, req, 804 &cmnd->rw, &bv); 805 } 806 } 807 808 iod->dma_len = 0; 809 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 810 if (!iod->sg) 811 return BLK_STS_RESOURCE; 812 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 813 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 814 if (!iod->nents) 815 goto out; 816 817 if (is_pci_p2pdma_page(sg_page(iod->sg))) 818 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 819 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 820 else 821 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 822 rq_dma_dir(req), DMA_ATTR_NO_WARN); 823 if (!nr_mapped) 824 goto out; 825 826 iod->use_sgl = nvme_pci_use_sgls(dev, req); 827 if (iod->use_sgl) 828 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 829 else 830 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 831 out: 832 if (ret != BLK_STS_OK) 833 nvme_unmap_data(dev, req); 834 return ret; 835 } 836 837 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 838 struct nvme_command *cmnd) 839 { 840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 841 842 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 843 rq_dma_dir(req), 0); 844 if (dma_mapping_error(dev->dev, iod->meta_dma)) 845 return BLK_STS_IOERR; 846 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 847 return BLK_STS_OK; 848 } 849 850 /* 851 * NOTE: ns is NULL when called on the admin queue. 852 */ 853 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 854 const struct blk_mq_queue_data *bd) 855 { 856 struct nvme_ns *ns = hctx->queue->queuedata; 857 struct nvme_queue *nvmeq = hctx->driver_data; 858 struct nvme_dev *dev = nvmeq->dev; 859 struct request *req = bd->rq; 860 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 861 struct nvme_command cmnd; 862 blk_status_t ret; 863 864 iod->aborted = 0; 865 iod->npages = -1; 866 iod->nents = 0; 867 868 /* 869 * We should not need to do this, but we're still using this to 870 * ensure we can drain requests on a dying queue. 871 */ 872 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 873 return BLK_STS_IOERR; 874 875 ret = nvme_setup_cmd(ns, req, &cmnd); 876 if (ret) 877 return ret; 878 879 if (blk_rq_nr_phys_segments(req)) { 880 ret = nvme_map_data(dev, req, &cmnd); 881 if (ret) 882 goto out_free_cmd; 883 } 884 885 if (blk_integrity_rq(req)) { 886 ret = nvme_map_metadata(dev, req, &cmnd); 887 if (ret) 888 goto out_unmap_data; 889 } 890 891 blk_mq_start_request(req); 892 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 893 return BLK_STS_OK; 894 out_unmap_data: 895 nvme_unmap_data(dev, req); 896 out_free_cmd: 897 nvme_cleanup_cmd(req); 898 return ret; 899 } 900 901 static void nvme_pci_complete_rq(struct request *req) 902 { 903 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 904 struct nvme_dev *dev = iod->nvmeq->dev; 905 906 if (blk_integrity_rq(req)) 907 dma_unmap_page(dev->dev, iod->meta_dma, 908 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 909 if (blk_rq_nr_phys_segments(req)) 910 nvme_unmap_data(dev, req); 911 nvme_complete_rq(req); 912 } 913 914 /* We read the CQE phase first to check if the rest of the entry is valid */ 915 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 916 { 917 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 918 919 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 920 } 921 922 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 923 { 924 u16 head = nvmeq->cq_head; 925 926 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 927 nvmeq->dbbuf_cq_ei)) 928 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 929 } 930 931 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 932 { 933 if (!nvmeq->qid) 934 return nvmeq->dev->admin_tagset.tags[0]; 935 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 936 } 937 938 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 939 { 940 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 941 struct request *req; 942 943 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 944 dev_warn(nvmeq->dev->ctrl.device, 945 "invalid id %d completed on queue %d\n", 946 cqe->command_id, le16_to_cpu(cqe->sq_id)); 947 return; 948 } 949 950 /* 951 * AEN requests are special as they don't time out and can 952 * survive any kind of queue freeze and often don't respond to 953 * aborts. We don't even bother to allocate a struct request 954 * for them but rather special case them here. 955 */ 956 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { 957 nvme_complete_async_event(&nvmeq->dev->ctrl, 958 cqe->status, &cqe->result); 959 return; 960 } 961 962 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); 963 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 964 if (!nvme_end_request(req, cqe->status, cqe->result)) 965 nvme_pci_complete_rq(req); 966 } 967 968 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 969 { 970 u16 tmp = nvmeq->cq_head + 1; 971 972 if (tmp == nvmeq->q_depth) { 973 nvmeq->cq_head = 0; 974 nvmeq->cq_phase ^= 1; 975 } else { 976 nvmeq->cq_head = tmp; 977 } 978 } 979 980 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 981 { 982 int found = 0; 983 984 while (nvme_cqe_pending(nvmeq)) { 985 found++; 986 /* 987 * load-load control dependency between phase and the rest of 988 * the cqe requires a full read memory barrier 989 */ 990 dma_rmb(); 991 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 992 nvme_update_cq_head(nvmeq); 993 } 994 995 if (found) 996 nvme_ring_cq_doorbell(nvmeq); 997 return found; 998 } 999 1000 static irqreturn_t nvme_irq(int irq, void *data) 1001 { 1002 struct nvme_queue *nvmeq = data; 1003 irqreturn_t ret = IRQ_NONE; 1004 1005 /* 1006 * The rmb/wmb pair ensures we see all updates from a previous run of 1007 * the irq handler, even if that was on another CPU. 1008 */ 1009 rmb(); 1010 if (nvme_process_cq(nvmeq)) 1011 ret = IRQ_HANDLED; 1012 wmb(); 1013 1014 return ret; 1015 } 1016 1017 static irqreturn_t nvme_irq_check(int irq, void *data) 1018 { 1019 struct nvme_queue *nvmeq = data; 1020 1021 if (nvme_cqe_pending(nvmeq)) 1022 return IRQ_WAKE_THREAD; 1023 return IRQ_NONE; 1024 } 1025 1026 /* 1027 * Poll for completions for any interrupt driven queue 1028 * Can be called from any context. 1029 */ 1030 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1031 { 1032 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1033 1034 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1035 1036 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1037 nvme_process_cq(nvmeq); 1038 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1039 } 1040 1041 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1042 { 1043 struct nvme_queue *nvmeq = hctx->driver_data; 1044 bool found; 1045 1046 if (!nvme_cqe_pending(nvmeq)) 1047 return 0; 1048 1049 spin_lock(&nvmeq->cq_poll_lock); 1050 found = nvme_process_cq(nvmeq); 1051 spin_unlock(&nvmeq->cq_poll_lock); 1052 1053 return found; 1054 } 1055 1056 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1057 { 1058 struct nvme_dev *dev = to_nvme_dev(ctrl); 1059 struct nvme_queue *nvmeq = &dev->queues[0]; 1060 struct nvme_command c; 1061 1062 memset(&c, 0, sizeof(c)); 1063 c.common.opcode = nvme_admin_async_event; 1064 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1065 nvme_submit_cmd(nvmeq, &c, true); 1066 } 1067 1068 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1069 { 1070 struct nvme_command c; 1071 1072 memset(&c, 0, sizeof(c)); 1073 c.delete_queue.opcode = opcode; 1074 c.delete_queue.qid = cpu_to_le16(id); 1075 1076 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1077 } 1078 1079 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1080 struct nvme_queue *nvmeq, s16 vector) 1081 { 1082 struct nvme_command c; 1083 int flags = NVME_QUEUE_PHYS_CONTIG; 1084 1085 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1086 flags |= NVME_CQ_IRQ_ENABLED; 1087 1088 /* 1089 * Note: we (ab)use the fact that the prp fields survive if no data 1090 * is attached to the request. 1091 */ 1092 memset(&c, 0, sizeof(c)); 1093 c.create_cq.opcode = nvme_admin_create_cq; 1094 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1095 c.create_cq.cqid = cpu_to_le16(qid); 1096 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1097 c.create_cq.cq_flags = cpu_to_le16(flags); 1098 c.create_cq.irq_vector = cpu_to_le16(vector); 1099 1100 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1101 } 1102 1103 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1104 struct nvme_queue *nvmeq) 1105 { 1106 struct nvme_ctrl *ctrl = &dev->ctrl; 1107 struct nvme_command c; 1108 int flags = NVME_QUEUE_PHYS_CONTIG; 1109 1110 /* 1111 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1112 * set. Since URGENT priority is zeroes, it makes all queues 1113 * URGENT. 1114 */ 1115 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1116 flags |= NVME_SQ_PRIO_MEDIUM; 1117 1118 /* 1119 * Note: we (ab)use the fact that the prp fields survive if no data 1120 * is attached to the request. 1121 */ 1122 memset(&c, 0, sizeof(c)); 1123 c.create_sq.opcode = nvme_admin_create_sq; 1124 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1125 c.create_sq.sqid = cpu_to_le16(qid); 1126 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1127 c.create_sq.sq_flags = cpu_to_le16(flags); 1128 c.create_sq.cqid = cpu_to_le16(qid); 1129 1130 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1131 } 1132 1133 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1134 { 1135 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1136 } 1137 1138 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1139 { 1140 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1141 } 1142 1143 static void abort_endio(struct request *req, blk_status_t error) 1144 { 1145 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1146 struct nvme_queue *nvmeq = iod->nvmeq; 1147 1148 dev_warn(nvmeq->dev->ctrl.device, 1149 "Abort status: 0x%x", nvme_req(req)->status); 1150 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1151 blk_mq_free_request(req); 1152 } 1153 1154 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1155 { 1156 /* If true, indicates loss of adapter communication, possibly by a 1157 * NVMe Subsystem reset. 1158 */ 1159 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1160 1161 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1162 switch (dev->ctrl.state) { 1163 case NVME_CTRL_RESETTING: 1164 case NVME_CTRL_CONNECTING: 1165 return false; 1166 default: 1167 break; 1168 } 1169 1170 /* We shouldn't reset unless the controller is on fatal error state 1171 * _or_ if we lost the communication with it. 1172 */ 1173 if (!(csts & NVME_CSTS_CFS) && !nssro) 1174 return false; 1175 1176 return true; 1177 } 1178 1179 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1180 { 1181 /* Read a config register to help see what died. */ 1182 u16 pci_status; 1183 int result; 1184 1185 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1186 &pci_status); 1187 if (result == PCIBIOS_SUCCESSFUL) 1188 dev_warn(dev->ctrl.device, 1189 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1190 csts, pci_status); 1191 else 1192 dev_warn(dev->ctrl.device, 1193 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1194 csts, result); 1195 } 1196 1197 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1198 { 1199 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1200 struct nvme_queue *nvmeq = iod->nvmeq; 1201 struct nvme_dev *dev = nvmeq->dev; 1202 struct request *abort_req; 1203 struct nvme_command cmd; 1204 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1205 1206 /* If PCI error recovery process is happening, we cannot reset or 1207 * the recovery mechanism will surely fail. 1208 */ 1209 mb(); 1210 if (pci_channel_offline(to_pci_dev(dev->dev))) 1211 return BLK_EH_RESET_TIMER; 1212 1213 /* 1214 * Reset immediately if the controller is failed 1215 */ 1216 if (nvme_should_reset(dev, csts)) { 1217 nvme_warn_reset(dev, csts); 1218 nvme_dev_disable(dev, false); 1219 nvme_reset_ctrl(&dev->ctrl); 1220 return BLK_EH_DONE; 1221 } 1222 1223 /* 1224 * Did we miss an interrupt? 1225 */ 1226 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1227 nvme_poll(req->mq_hctx); 1228 else 1229 nvme_poll_irqdisable(nvmeq); 1230 1231 if (blk_mq_request_completed(req)) { 1232 dev_warn(dev->ctrl.device, 1233 "I/O %d QID %d timeout, completion polled\n", 1234 req->tag, nvmeq->qid); 1235 return BLK_EH_DONE; 1236 } 1237 1238 /* 1239 * Shutdown immediately if controller times out while starting. The 1240 * reset work will see the pci device disabled when it gets the forced 1241 * cancellation error. All outstanding requests are completed on 1242 * shutdown, so we return BLK_EH_DONE. 1243 */ 1244 switch (dev->ctrl.state) { 1245 case NVME_CTRL_CONNECTING: 1246 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1247 /* fall through */ 1248 case NVME_CTRL_DELETING: 1249 dev_warn_ratelimited(dev->ctrl.device, 1250 "I/O %d QID %d timeout, disable controller\n", 1251 req->tag, nvmeq->qid); 1252 nvme_dev_disable(dev, true); 1253 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1254 return BLK_EH_DONE; 1255 case NVME_CTRL_RESETTING: 1256 return BLK_EH_RESET_TIMER; 1257 default: 1258 break; 1259 } 1260 1261 /* 1262 * Shutdown the controller immediately and schedule a reset if the 1263 * command was already aborted once before and still hasn't been 1264 * returned to the driver, or if this is the admin queue. 1265 */ 1266 if (!nvmeq->qid || iod->aborted) { 1267 dev_warn(dev->ctrl.device, 1268 "I/O %d QID %d timeout, reset controller\n", 1269 req->tag, nvmeq->qid); 1270 nvme_dev_disable(dev, false); 1271 nvme_reset_ctrl(&dev->ctrl); 1272 1273 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1274 return BLK_EH_DONE; 1275 } 1276 1277 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1278 atomic_inc(&dev->ctrl.abort_limit); 1279 return BLK_EH_RESET_TIMER; 1280 } 1281 iod->aborted = 1; 1282 1283 memset(&cmd, 0, sizeof(cmd)); 1284 cmd.abort.opcode = nvme_admin_abort_cmd; 1285 cmd.abort.cid = req->tag; 1286 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1287 1288 dev_warn(nvmeq->dev->ctrl.device, 1289 "I/O %d QID %d timeout, aborting\n", 1290 req->tag, nvmeq->qid); 1291 1292 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1293 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1294 if (IS_ERR(abort_req)) { 1295 atomic_inc(&dev->ctrl.abort_limit); 1296 return BLK_EH_RESET_TIMER; 1297 } 1298 1299 abort_req->timeout = ADMIN_TIMEOUT; 1300 abort_req->end_io_data = NULL; 1301 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1302 1303 /* 1304 * The aborted req will be completed on receiving the abort req. 1305 * We enable the timer again. If hit twice, it'll cause a device reset, 1306 * as the device then is in a faulty state. 1307 */ 1308 return BLK_EH_RESET_TIMER; 1309 } 1310 1311 static void nvme_free_queue(struct nvme_queue *nvmeq) 1312 { 1313 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1314 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1315 if (!nvmeq->sq_cmds) 1316 return; 1317 1318 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1319 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1320 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1321 } else { 1322 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1323 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1324 } 1325 } 1326 1327 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1328 { 1329 int i; 1330 1331 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1332 dev->ctrl.queue_count--; 1333 nvme_free_queue(&dev->queues[i]); 1334 } 1335 } 1336 1337 /** 1338 * nvme_suspend_queue - put queue into suspended state 1339 * @nvmeq: queue to suspend 1340 */ 1341 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1342 { 1343 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1344 return 1; 1345 1346 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1347 mb(); 1348 1349 nvmeq->dev->online_queues--; 1350 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1351 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1352 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1353 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1354 return 0; 1355 } 1356 1357 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1358 { 1359 int i; 1360 1361 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1362 nvme_suspend_queue(&dev->queues[i]); 1363 } 1364 1365 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1366 { 1367 struct nvme_queue *nvmeq = &dev->queues[0]; 1368 1369 if (shutdown) 1370 nvme_shutdown_ctrl(&dev->ctrl); 1371 else 1372 nvme_disable_ctrl(&dev->ctrl); 1373 1374 nvme_poll_irqdisable(nvmeq); 1375 } 1376 1377 /* 1378 * Called only on a device that has been disabled and after all other threads 1379 * that can check this device's completion queues have synced, except 1380 * nvme_poll(). This is the last chance for the driver to see a natural 1381 * completion before nvme_cancel_request() terminates all incomplete requests. 1382 */ 1383 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1384 { 1385 int i; 1386 1387 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1388 spin_lock(&dev->queues[i].cq_poll_lock); 1389 nvme_process_cq(&dev->queues[i]); 1390 spin_unlock(&dev->queues[i].cq_poll_lock); 1391 } 1392 } 1393 1394 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1395 int entry_size) 1396 { 1397 int q_depth = dev->q_depth; 1398 unsigned q_size_aligned = roundup(q_depth * entry_size, 1399 NVME_CTRL_PAGE_SIZE); 1400 1401 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1402 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1403 1404 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1405 q_depth = div_u64(mem_per_q, entry_size); 1406 1407 /* 1408 * Ensure the reduced q_depth is above some threshold where it 1409 * would be better to map queues in system memory with the 1410 * original depth 1411 */ 1412 if (q_depth < 64) 1413 return -ENOMEM; 1414 } 1415 1416 return q_depth; 1417 } 1418 1419 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1420 int qid) 1421 { 1422 struct pci_dev *pdev = to_pci_dev(dev->dev); 1423 1424 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1425 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1426 if (nvmeq->sq_cmds) { 1427 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1428 nvmeq->sq_cmds); 1429 if (nvmeq->sq_dma_addr) { 1430 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1431 return 0; 1432 } 1433 1434 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1435 } 1436 } 1437 1438 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1439 &nvmeq->sq_dma_addr, GFP_KERNEL); 1440 if (!nvmeq->sq_cmds) 1441 return -ENOMEM; 1442 return 0; 1443 } 1444 1445 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1446 { 1447 struct nvme_queue *nvmeq = &dev->queues[qid]; 1448 1449 if (dev->ctrl.queue_count > qid) 1450 return 0; 1451 1452 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1453 nvmeq->q_depth = depth; 1454 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1455 &nvmeq->cq_dma_addr, GFP_KERNEL); 1456 if (!nvmeq->cqes) 1457 goto free_nvmeq; 1458 1459 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1460 goto free_cqdma; 1461 1462 nvmeq->dev = dev; 1463 spin_lock_init(&nvmeq->sq_lock); 1464 spin_lock_init(&nvmeq->cq_poll_lock); 1465 nvmeq->cq_head = 0; 1466 nvmeq->cq_phase = 1; 1467 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1468 nvmeq->qid = qid; 1469 dev->ctrl.queue_count++; 1470 1471 return 0; 1472 1473 free_cqdma: 1474 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1475 nvmeq->cq_dma_addr); 1476 free_nvmeq: 1477 return -ENOMEM; 1478 } 1479 1480 static int queue_request_irq(struct nvme_queue *nvmeq) 1481 { 1482 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1483 int nr = nvmeq->dev->ctrl.instance; 1484 1485 if (use_threaded_interrupts) { 1486 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1487 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1488 } else { 1489 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1490 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1491 } 1492 } 1493 1494 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1495 { 1496 struct nvme_dev *dev = nvmeq->dev; 1497 1498 nvmeq->sq_tail = 0; 1499 nvmeq->cq_head = 0; 1500 nvmeq->cq_phase = 1; 1501 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1502 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1503 nvme_dbbuf_init(dev, nvmeq, qid); 1504 dev->online_queues++; 1505 wmb(); /* ensure the first interrupt sees the initialization */ 1506 } 1507 1508 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1509 { 1510 struct nvme_dev *dev = nvmeq->dev; 1511 int result; 1512 u16 vector = 0; 1513 1514 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1515 1516 /* 1517 * A queue's vector matches the queue identifier unless the controller 1518 * has only one vector available. 1519 */ 1520 if (!polled) 1521 vector = dev->num_vecs == 1 ? 0 : qid; 1522 else 1523 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1524 1525 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1526 if (result) 1527 return result; 1528 1529 result = adapter_alloc_sq(dev, qid, nvmeq); 1530 if (result < 0) 1531 return result; 1532 if (result) 1533 goto release_cq; 1534 1535 nvmeq->cq_vector = vector; 1536 nvme_init_queue(nvmeq, qid); 1537 1538 if (!polled) { 1539 result = queue_request_irq(nvmeq); 1540 if (result < 0) 1541 goto release_sq; 1542 } 1543 1544 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1545 return result; 1546 1547 release_sq: 1548 dev->online_queues--; 1549 adapter_delete_sq(dev, qid); 1550 release_cq: 1551 adapter_delete_cq(dev, qid); 1552 return result; 1553 } 1554 1555 static const struct blk_mq_ops nvme_mq_admin_ops = { 1556 .queue_rq = nvme_queue_rq, 1557 .complete = nvme_pci_complete_rq, 1558 .init_hctx = nvme_admin_init_hctx, 1559 .init_request = nvme_init_request, 1560 .timeout = nvme_timeout, 1561 }; 1562 1563 static const struct blk_mq_ops nvme_mq_ops = { 1564 .queue_rq = nvme_queue_rq, 1565 .complete = nvme_pci_complete_rq, 1566 .commit_rqs = nvme_commit_rqs, 1567 .init_hctx = nvme_init_hctx, 1568 .init_request = nvme_init_request, 1569 .map_queues = nvme_pci_map_queues, 1570 .timeout = nvme_timeout, 1571 .poll = nvme_poll, 1572 }; 1573 1574 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1575 { 1576 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1577 /* 1578 * If the controller was reset during removal, it's possible 1579 * user requests may be waiting on a stopped queue. Start the 1580 * queue to flush these to completion. 1581 */ 1582 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1583 blk_cleanup_queue(dev->ctrl.admin_q); 1584 blk_mq_free_tag_set(&dev->admin_tagset); 1585 } 1586 } 1587 1588 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1589 { 1590 if (!dev->ctrl.admin_q) { 1591 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1592 dev->admin_tagset.nr_hw_queues = 1; 1593 1594 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1595 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1596 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1597 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1598 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1599 dev->admin_tagset.driver_data = dev; 1600 1601 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1602 return -ENOMEM; 1603 dev->ctrl.admin_tagset = &dev->admin_tagset; 1604 1605 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1606 if (IS_ERR(dev->ctrl.admin_q)) { 1607 blk_mq_free_tag_set(&dev->admin_tagset); 1608 return -ENOMEM; 1609 } 1610 if (!blk_get_queue(dev->ctrl.admin_q)) { 1611 nvme_dev_remove_admin(dev); 1612 dev->ctrl.admin_q = NULL; 1613 return -ENODEV; 1614 } 1615 } else 1616 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1617 1618 return 0; 1619 } 1620 1621 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1622 { 1623 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1624 } 1625 1626 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1627 { 1628 struct pci_dev *pdev = to_pci_dev(dev->dev); 1629 1630 if (size <= dev->bar_mapped_size) 1631 return 0; 1632 if (size > pci_resource_len(pdev, 0)) 1633 return -ENOMEM; 1634 if (dev->bar) 1635 iounmap(dev->bar); 1636 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1637 if (!dev->bar) { 1638 dev->bar_mapped_size = 0; 1639 return -ENOMEM; 1640 } 1641 dev->bar_mapped_size = size; 1642 dev->dbs = dev->bar + NVME_REG_DBS; 1643 1644 return 0; 1645 } 1646 1647 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1648 { 1649 int result; 1650 u32 aqa; 1651 struct nvme_queue *nvmeq; 1652 1653 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1654 if (result < 0) 1655 return result; 1656 1657 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1658 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1659 1660 if (dev->subsystem && 1661 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1662 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1663 1664 result = nvme_disable_ctrl(&dev->ctrl); 1665 if (result < 0) 1666 return result; 1667 1668 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1669 if (result) 1670 return result; 1671 1672 dev->ctrl.numa_node = dev_to_node(dev->dev); 1673 1674 nvmeq = &dev->queues[0]; 1675 aqa = nvmeq->q_depth - 1; 1676 aqa |= aqa << 16; 1677 1678 writel(aqa, dev->bar + NVME_REG_AQA); 1679 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1680 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1681 1682 result = nvme_enable_ctrl(&dev->ctrl); 1683 if (result) 1684 return result; 1685 1686 nvmeq->cq_vector = 0; 1687 nvme_init_queue(nvmeq, 0); 1688 result = queue_request_irq(nvmeq); 1689 if (result) { 1690 dev->online_queues--; 1691 return result; 1692 } 1693 1694 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1695 return result; 1696 } 1697 1698 static int nvme_create_io_queues(struct nvme_dev *dev) 1699 { 1700 unsigned i, max, rw_queues; 1701 int ret = 0; 1702 1703 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1704 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1705 ret = -ENOMEM; 1706 break; 1707 } 1708 } 1709 1710 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1711 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1712 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1713 dev->io_queues[HCTX_TYPE_READ]; 1714 } else { 1715 rw_queues = max; 1716 } 1717 1718 for (i = dev->online_queues; i <= max; i++) { 1719 bool polled = i > rw_queues; 1720 1721 ret = nvme_create_queue(&dev->queues[i], i, polled); 1722 if (ret) 1723 break; 1724 } 1725 1726 /* 1727 * Ignore failing Create SQ/CQ commands, we can continue with less 1728 * than the desired amount of queues, and even a controller without 1729 * I/O queues can still be used to issue admin commands. This might 1730 * be useful to upgrade a buggy firmware for example. 1731 */ 1732 return ret >= 0 ? 0 : ret; 1733 } 1734 1735 static ssize_t nvme_cmb_show(struct device *dev, 1736 struct device_attribute *attr, 1737 char *buf) 1738 { 1739 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1740 1741 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1742 ndev->cmbloc, ndev->cmbsz); 1743 } 1744 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1745 1746 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1747 { 1748 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1749 1750 return 1ULL << (12 + 4 * szu); 1751 } 1752 1753 static u32 nvme_cmb_size(struct nvme_dev *dev) 1754 { 1755 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1756 } 1757 1758 static void nvme_map_cmb(struct nvme_dev *dev) 1759 { 1760 u64 size, offset; 1761 resource_size_t bar_size; 1762 struct pci_dev *pdev = to_pci_dev(dev->dev); 1763 int bar; 1764 1765 if (dev->cmb_size) 1766 return; 1767 1768 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1769 if (!dev->cmbsz) 1770 return; 1771 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1772 1773 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1774 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1775 bar = NVME_CMB_BIR(dev->cmbloc); 1776 bar_size = pci_resource_len(pdev, bar); 1777 1778 if (offset > bar_size) 1779 return; 1780 1781 /* 1782 * Controllers may support a CMB size larger than their BAR, 1783 * for example, due to being behind a bridge. Reduce the CMB to 1784 * the reported size of the BAR 1785 */ 1786 if (size > bar_size - offset) 1787 size = bar_size - offset; 1788 1789 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1790 dev_warn(dev->ctrl.device, 1791 "failed to register the CMB\n"); 1792 return; 1793 } 1794 1795 dev->cmb_size = size; 1796 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1797 1798 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1799 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1800 pci_p2pmem_publish(pdev, true); 1801 1802 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1803 &dev_attr_cmb.attr, NULL)) 1804 dev_warn(dev->ctrl.device, 1805 "failed to add sysfs attribute for CMB\n"); 1806 } 1807 1808 static inline void nvme_release_cmb(struct nvme_dev *dev) 1809 { 1810 if (dev->cmb_size) { 1811 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1812 &dev_attr_cmb.attr, NULL); 1813 dev->cmb_size = 0; 1814 } 1815 } 1816 1817 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1818 { 1819 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1820 u64 dma_addr = dev->host_mem_descs_dma; 1821 struct nvme_command c; 1822 int ret; 1823 1824 memset(&c, 0, sizeof(c)); 1825 c.features.opcode = nvme_admin_set_features; 1826 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1827 c.features.dword11 = cpu_to_le32(bits); 1828 c.features.dword12 = cpu_to_le32(host_mem_size); 1829 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1830 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1831 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1832 1833 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1834 if (ret) { 1835 dev_warn(dev->ctrl.device, 1836 "failed to set host mem (err %d, flags %#x).\n", 1837 ret, bits); 1838 } 1839 return ret; 1840 } 1841 1842 static void nvme_free_host_mem(struct nvme_dev *dev) 1843 { 1844 int i; 1845 1846 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1847 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1848 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1849 1850 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1851 le64_to_cpu(desc->addr), 1852 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1853 } 1854 1855 kfree(dev->host_mem_desc_bufs); 1856 dev->host_mem_desc_bufs = NULL; 1857 dma_free_coherent(dev->dev, 1858 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1859 dev->host_mem_descs, dev->host_mem_descs_dma); 1860 dev->host_mem_descs = NULL; 1861 dev->nr_host_mem_descs = 0; 1862 } 1863 1864 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1865 u32 chunk_size) 1866 { 1867 struct nvme_host_mem_buf_desc *descs; 1868 u32 max_entries, len; 1869 dma_addr_t descs_dma; 1870 int i = 0; 1871 void **bufs; 1872 u64 size, tmp; 1873 1874 tmp = (preferred + chunk_size - 1); 1875 do_div(tmp, chunk_size); 1876 max_entries = tmp; 1877 1878 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1879 max_entries = dev->ctrl.hmmaxd; 1880 1881 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1882 &descs_dma, GFP_KERNEL); 1883 if (!descs) 1884 goto out; 1885 1886 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1887 if (!bufs) 1888 goto out_free_descs; 1889 1890 for (size = 0; size < preferred && i < max_entries; size += len) { 1891 dma_addr_t dma_addr; 1892 1893 len = min_t(u64, chunk_size, preferred - size); 1894 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1895 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1896 if (!bufs[i]) 1897 break; 1898 1899 descs[i].addr = cpu_to_le64(dma_addr); 1900 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1901 i++; 1902 } 1903 1904 if (!size) 1905 goto out_free_bufs; 1906 1907 dev->nr_host_mem_descs = i; 1908 dev->host_mem_size = size; 1909 dev->host_mem_descs = descs; 1910 dev->host_mem_descs_dma = descs_dma; 1911 dev->host_mem_desc_bufs = bufs; 1912 return 0; 1913 1914 out_free_bufs: 1915 while (--i >= 0) { 1916 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1917 1918 dma_free_attrs(dev->dev, size, bufs[i], 1919 le64_to_cpu(descs[i].addr), 1920 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1921 } 1922 1923 kfree(bufs); 1924 out_free_descs: 1925 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1926 descs_dma); 1927 out: 1928 dev->host_mem_descs = NULL; 1929 return -ENOMEM; 1930 } 1931 1932 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1933 { 1934 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1935 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1936 u64 chunk_size; 1937 1938 /* start big and work our way down */ 1939 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 1940 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1941 if (!min || dev->host_mem_size >= min) 1942 return 0; 1943 nvme_free_host_mem(dev); 1944 } 1945 } 1946 1947 return -ENOMEM; 1948 } 1949 1950 static int nvme_setup_host_mem(struct nvme_dev *dev) 1951 { 1952 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1953 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1954 u64 min = (u64)dev->ctrl.hmmin * 4096; 1955 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1956 int ret; 1957 1958 preferred = min(preferred, max); 1959 if (min > max) { 1960 dev_warn(dev->ctrl.device, 1961 "min host memory (%lld MiB) above limit (%d MiB).\n", 1962 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1963 nvme_free_host_mem(dev); 1964 return 0; 1965 } 1966 1967 /* 1968 * If we already have a buffer allocated check if we can reuse it. 1969 */ 1970 if (dev->host_mem_descs) { 1971 if (dev->host_mem_size >= min) 1972 enable_bits |= NVME_HOST_MEM_RETURN; 1973 else 1974 nvme_free_host_mem(dev); 1975 } 1976 1977 if (!dev->host_mem_descs) { 1978 if (nvme_alloc_host_mem(dev, min, preferred)) { 1979 dev_warn(dev->ctrl.device, 1980 "failed to allocate host memory buffer.\n"); 1981 return 0; /* controller must work without HMB */ 1982 } 1983 1984 dev_info(dev->ctrl.device, 1985 "allocated %lld MiB host memory buffer.\n", 1986 dev->host_mem_size >> ilog2(SZ_1M)); 1987 } 1988 1989 ret = nvme_set_host_mem(dev, enable_bits); 1990 if (ret) 1991 nvme_free_host_mem(dev); 1992 return ret; 1993 } 1994 1995 /* 1996 * nirqs is the number of interrupts available for write and read 1997 * queues. The core already reserved an interrupt for the admin queue. 1998 */ 1999 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2000 { 2001 struct nvme_dev *dev = affd->priv; 2002 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2003 2004 /* 2005 * If there is no interrupt available for queues, ensure that 2006 * the default queue is set to 1. The affinity set size is 2007 * also set to one, but the irq core ignores it for this case. 2008 * 2009 * If only one interrupt is available or 'write_queue' == 0, combine 2010 * write and read queues. 2011 * 2012 * If 'write_queues' > 0, ensure it leaves room for at least one read 2013 * queue. 2014 */ 2015 if (!nrirqs) { 2016 nrirqs = 1; 2017 nr_read_queues = 0; 2018 } else if (nrirqs == 1 || !nr_write_queues) { 2019 nr_read_queues = 0; 2020 } else if (nr_write_queues >= nrirqs) { 2021 nr_read_queues = 1; 2022 } else { 2023 nr_read_queues = nrirqs - nr_write_queues; 2024 } 2025 2026 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2027 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2028 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2029 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2030 affd->nr_sets = nr_read_queues ? 2 : 1; 2031 } 2032 2033 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2034 { 2035 struct pci_dev *pdev = to_pci_dev(dev->dev); 2036 struct irq_affinity affd = { 2037 .pre_vectors = 1, 2038 .calc_sets = nvme_calc_irq_sets, 2039 .priv = dev, 2040 }; 2041 unsigned int irq_queues, this_p_queues; 2042 2043 /* 2044 * Poll queues don't need interrupts, but we need at least one IO 2045 * queue left over for non-polled IO. 2046 */ 2047 this_p_queues = dev->nr_poll_queues; 2048 if (this_p_queues >= nr_io_queues) { 2049 this_p_queues = nr_io_queues - 1; 2050 irq_queues = 1; 2051 } else { 2052 irq_queues = nr_io_queues - this_p_queues + 1; 2053 } 2054 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; 2055 2056 /* Initialize for the single interrupt case */ 2057 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2058 dev->io_queues[HCTX_TYPE_READ] = 0; 2059 2060 /* 2061 * Some Apple controllers require all queues to use the 2062 * first vector. 2063 */ 2064 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR) 2065 irq_queues = 1; 2066 2067 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2068 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2069 } 2070 2071 static void nvme_disable_io_queues(struct nvme_dev *dev) 2072 { 2073 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2074 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2075 } 2076 2077 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2078 { 2079 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2080 } 2081 2082 static int nvme_setup_io_queues(struct nvme_dev *dev) 2083 { 2084 struct nvme_queue *adminq = &dev->queues[0]; 2085 struct pci_dev *pdev = to_pci_dev(dev->dev); 2086 unsigned int nr_io_queues; 2087 unsigned long size; 2088 int result; 2089 2090 /* 2091 * Sample the module parameters once at reset time so that we have 2092 * stable values to work with. 2093 */ 2094 dev->nr_write_queues = write_queues; 2095 dev->nr_poll_queues = poll_queues; 2096 2097 /* 2098 * If tags are shared with admin queue (Apple bug), then 2099 * make sure we only use one IO queue. 2100 */ 2101 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2102 nr_io_queues = 1; 2103 else 2104 nr_io_queues = min(nvme_max_io_queues(dev), 2105 dev->nr_allocated_queues - 1); 2106 2107 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2108 if (result < 0) 2109 return result; 2110 2111 if (nr_io_queues == 0) 2112 return 0; 2113 2114 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2115 2116 if (dev->cmb_use_sqes) { 2117 result = nvme_cmb_qdepth(dev, nr_io_queues, 2118 sizeof(struct nvme_command)); 2119 if (result > 0) 2120 dev->q_depth = result; 2121 else 2122 dev->cmb_use_sqes = false; 2123 } 2124 2125 do { 2126 size = db_bar_size(dev, nr_io_queues); 2127 result = nvme_remap_bar(dev, size); 2128 if (!result) 2129 break; 2130 if (!--nr_io_queues) 2131 return -ENOMEM; 2132 } while (1); 2133 adminq->q_db = dev->dbs; 2134 2135 retry: 2136 /* Deregister the admin queue's interrupt */ 2137 pci_free_irq(pdev, 0, adminq); 2138 2139 /* 2140 * If we enable msix early due to not intx, disable it again before 2141 * setting up the full range we need. 2142 */ 2143 pci_free_irq_vectors(pdev); 2144 2145 result = nvme_setup_irqs(dev, nr_io_queues); 2146 if (result <= 0) 2147 return -EIO; 2148 2149 dev->num_vecs = result; 2150 result = max(result - 1, 1); 2151 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2152 2153 /* 2154 * Should investigate if there's a performance win from allocating 2155 * more queues than interrupt vectors; it might allow the submission 2156 * path to scale better, even if the receive path is limited by the 2157 * number of interrupts. 2158 */ 2159 result = queue_request_irq(adminq); 2160 if (result) 2161 return result; 2162 set_bit(NVMEQ_ENABLED, &adminq->flags); 2163 2164 result = nvme_create_io_queues(dev); 2165 if (result || dev->online_queues < 2) 2166 return result; 2167 2168 if (dev->online_queues - 1 < dev->max_qid) { 2169 nr_io_queues = dev->online_queues - 1; 2170 nvme_disable_io_queues(dev); 2171 nvme_suspend_io_queues(dev); 2172 goto retry; 2173 } 2174 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2175 dev->io_queues[HCTX_TYPE_DEFAULT], 2176 dev->io_queues[HCTX_TYPE_READ], 2177 dev->io_queues[HCTX_TYPE_POLL]); 2178 return 0; 2179 } 2180 2181 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2182 { 2183 struct nvme_queue *nvmeq = req->end_io_data; 2184 2185 blk_mq_free_request(req); 2186 complete(&nvmeq->delete_done); 2187 } 2188 2189 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2190 { 2191 struct nvme_queue *nvmeq = req->end_io_data; 2192 2193 if (error) 2194 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2195 2196 nvme_del_queue_end(req, error); 2197 } 2198 2199 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2200 { 2201 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2202 struct request *req; 2203 struct nvme_command cmd; 2204 2205 memset(&cmd, 0, sizeof(cmd)); 2206 cmd.delete_queue.opcode = opcode; 2207 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2208 2209 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2210 if (IS_ERR(req)) 2211 return PTR_ERR(req); 2212 2213 req->timeout = ADMIN_TIMEOUT; 2214 req->end_io_data = nvmeq; 2215 2216 init_completion(&nvmeq->delete_done); 2217 blk_execute_rq_nowait(q, NULL, req, false, 2218 opcode == nvme_admin_delete_cq ? 2219 nvme_del_cq_end : nvme_del_queue_end); 2220 return 0; 2221 } 2222 2223 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2224 { 2225 int nr_queues = dev->online_queues - 1, sent = 0; 2226 unsigned long timeout; 2227 2228 retry: 2229 timeout = ADMIN_TIMEOUT; 2230 while (nr_queues > 0) { 2231 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2232 break; 2233 nr_queues--; 2234 sent++; 2235 } 2236 while (sent) { 2237 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2238 2239 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2240 timeout); 2241 if (timeout == 0) 2242 return false; 2243 2244 sent--; 2245 if (nr_queues) 2246 goto retry; 2247 } 2248 return true; 2249 } 2250 2251 static void nvme_dev_add(struct nvme_dev *dev) 2252 { 2253 int ret; 2254 2255 if (!dev->ctrl.tagset) { 2256 dev->tagset.ops = &nvme_mq_ops; 2257 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2258 dev->tagset.nr_maps = 2; /* default + read */ 2259 if (dev->io_queues[HCTX_TYPE_POLL]) 2260 dev->tagset.nr_maps++; 2261 dev->tagset.timeout = NVME_IO_TIMEOUT; 2262 dev->tagset.numa_node = dev->ctrl.numa_node; 2263 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2264 BLK_MQ_MAX_DEPTH) - 1; 2265 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2266 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2267 dev->tagset.driver_data = dev; 2268 2269 /* 2270 * Some Apple controllers requires tags to be unique 2271 * across admin and IO queue, so reserve the first 32 2272 * tags of the IO queue. 2273 */ 2274 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2275 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2276 2277 ret = blk_mq_alloc_tag_set(&dev->tagset); 2278 if (ret) { 2279 dev_warn(dev->ctrl.device, 2280 "IO queues tagset allocation failed %d\n", ret); 2281 return; 2282 } 2283 dev->ctrl.tagset = &dev->tagset; 2284 } else { 2285 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2286 2287 /* Free previously allocated queues that are no longer usable */ 2288 nvme_free_queues(dev, dev->online_queues); 2289 } 2290 2291 nvme_dbbuf_set(dev); 2292 } 2293 2294 static int nvme_pci_enable(struct nvme_dev *dev) 2295 { 2296 int result = -ENOMEM; 2297 struct pci_dev *pdev = to_pci_dev(dev->dev); 2298 2299 if (pci_enable_device_mem(pdev)) 2300 return result; 2301 2302 pci_set_master(pdev); 2303 2304 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2305 goto disable; 2306 2307 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2308 result = -ENODEV; 2309 goto disable; 2310 } 2311 2312 /* 2313 * Some devices and/or platforms don't advertise or work with INTx 2314 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2315 * adjust this later. 2316 */ 2317 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2318 if (result < 0) 2319 return result; 2320 2321 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2322 2323 dev->q_depth = min_t(u16, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2324 io_queue_depth); 2325 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2326 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2327 dev->dbs = dev->bar + 4096; 2328 2329 /* 2330 * Some Apple controllers require a non-standard SQE size. 2331 * Interestingly they also seem to ignore the CC:IOSQES register 2332 * so we don't bother updating it here. 2333 */ 2334 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2335 dev->io_sqes = 7; 2336 else 2337 dev->io_sqes = NVME_NVM_IOSQES; 2338 2339 /* 2340 * Temporary fix for the Apple controller found in the MacBook8,1 and 2341 * some MacBook7,1 to avoid controller resets and data loss. 2342 */ 2343 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2344 dev->q_depth = 2; 2345 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2346 "set queue depth=%u to work around controller resets\n", 2347 dev->q_depth); 2348 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2349 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2350 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2351 dev->q_depth = 64; 2352 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2353 "set queue depth=%u\n", dev->q_depth); 2354 } 2355 2356 /* 2357 * Controllers with the shared tags quirk need the IO queue to be 2358 * big enough so that we get 32 tags for the admin queue 2359 */ 2360 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2361 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2362 dev->q_depth = NVME_AQ_DEPTH + 2; 2363 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2364 dev->q_depth); 2365 } 2366 2367 2368 nvme_map_cmb(dev); 2369 2370 pci_enable_pcie_error_reporting(pdev); 2371 pci_save_state(pdev); 2372 return 0; 2373 2374 disable: 2375 pci_disable_device(pdev); 2376 return result; 2377 } 2378 2379 static void nvme_dev_unmap(struct nvme_dev *dev) 2380 { 2381 if (dev->bar) 2382 iounmap(dev->bar); 2383 pci_release_mem_regions(to_pci_dev(dev->dev)); 2384 } 2385 2386 static void nvme_pci_disable(struct nvme_dev *dev) 2387 { 2388 struct pci_dev *pdev = to_pci_dev(dev->dev); 2389 2390 pci_free_irq_vectors(pdev); 2391 2392 if (pci_is_enabled(pdev)) { 2393 pci_disable_pcie_error_reporting(pdev); 2394 pci_disable_device(pdev); 2395 } 2396 } 2397 2398 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2399 { 2400 bool dead = true, freeze = false; 2401 struct pci_dev *pdev = to_pci_dev(dev->dev); 2402 2403 mutex_lock(&dev->shutdown_lock); 2404 if (pci_is_enabled(pdev)) { 2405 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2406 2407 if (dev->ctrl.state == NVME_CTRL_LIVE || 2408 dev->ctrl.state == NVME_CTRL_RESETTING) { 2409 freeze = true; 2410 nvme_start_freeze(&dev->ctrl); 2411 } 2412 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2413 pdev->error_state != pci_channel_io_normal); 2414 } 2415 2416 /* 2417 * Give the controller a chance to complete all entered requests if 2418 * doing a safe shutdown. 2419 */ 2420 if (!dead && shutdown && freeze) 2421 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2422 2423 nvme_stop_queues(&dev->ctrl); 2424 2425 if (!dead && dev->ctrl.queue_count > 0) { 2426 nvme_disable_io_queues(dev); 2427 nvme_disable_admin_queue(dev, shutdown); 2428 } 2429 nvme_suspend_io_queues(dev); 2430 nvme_suspend_queue(&dev->queues[0]); 2431 nvme_pci_disable(dev); 2432 nvme_reap_pending_cqes(dev); 2433 2434 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2435 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2436 blk_mq_tagset_wait_completed_request(&dev->tagset); 2437 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2438 2439 /* 2440 * The driver will not be starting up queues again if shutting down so 2441 * must flush all entered requests to their failed completion to avoid 2442 * deadlocking blk-mq hot-cpu notifier. 2443 */ 2444 if (shutdown) { 2445 nvme_start_queues(&dev->ctrl); 2446 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2447 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2448 } 2449 mutex_unlock(&dev->shutdown_lock); 2450 } 2451 2452 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2453 { 2454 if (!nvme_wait_reset(&dev->ctrl)) 2455 return -EBUSY; 2456 nvme_dev_disable(dev, shutdown); 2457 return 0; 2458 } 2459 2460 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2461 { 2462 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2463 PAGE_SIZE, PAGE_SIZE, 0); 2464 if (!dev->prp_page_pool) 2465 return -ENOMEM; 2466 2467 /* Optimisation for I/Os between 4k and 128k */ 2468 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2469 256, 256, 0); 2470 if (!dev->prp_small_pool) { 2471 dma_pool_destroy(dev->prp_page_pool); 2472 return -ENOMEM; 2473 } 2474 return 0; 2475 } 2476 2477 static void nvme_release_prp_pools(struct nvme_dev *dev) 2478 { 2479 dma_pool_destroy(dev->prp_page_pool); 2480 dma_pool_destroy(dev->prp_small_pool); 2481 } 2482 2483 static void nvme_free_tagset(struct nvme_dev *dev) 2484 { 2485 if (dev->tagset.tags) 2486 blk_mq_free_tag_set(&dev->tagset); 2487 dev->ctrl.tagset = NULL; 2488 } 2489 2490 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2491 { 2492 struct nvme_dev *dev = to_nvme_dev(ctrl); 2493 2494 nvme_dbbuf_dma_free(dev); 2495 nvme_free_tagset(dev); 2496 if (dev->ctrl.admin_q) 2497 blk_put_queue(dev->ctrl.admin_q); 2498 free_opal_dev(dev->ctrl.opal_dev); 2499 mempool_destroy(dev->iod_mempool); 2500 put_device(dev->dev); 2501 kfree(dev->queues); 2502 kfree(dev); 2503 } 2504 2505 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2506 { 2507 /* 2508 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2509 * may be holding this pci_dev's device lock. 2510 */ 2511 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2512 nvme_get_ctrl(&dev->ctrl); 2513 nvme_dev_disable(dev, false); 2514 nvme_kill_queues(&dev->ctrl); 2515 if (!queue_work(nvme_wq, &dev->remove_work)) 2516 nvme_put_ctrl(&dev->ctrl); 2517 } 2518 2519 static void nvme_reset_work(struct work_struct *work) 2520 { 2521 struct nvme_dev *dev = 2522 container_of(work, struct nvme_dev, ctrl.reset_work); 2523 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2524 int result; 2525 2526 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2527 result = -ENODEV; 2528 goto out; 2529 } 2530 2531 /* 2532 * If we're called to reset a live controller first shut it down before 2533 * moving on. 2534 */ 2535 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2536 nvme_dev_disable(dev, false); 2537 nvme_sync_queues(&dev->ctrl); 2538 2539 mutex_lock(&dev->shutdown_lock); 2540 result = nvme_pci_enable(dev); 2541 if (result) 2542 goto out_unlock; 2543 2544 result = nvme_pci_configure_admin_queue(dev); 2545 if (result) 2546 goto out_unlock; 2547 2548 result = nvme_alloc_admin_tags(dev); 2549 if (result) 2550 goto out_unlock; 2551 2552 /* 2553 * Limit the max command size to prevent iod->sg allocations going 2554 * over a single page. 2555 */ 2556 dev->ctrl.max_hw_sectors = min_t(u32, 2557 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2558 dev->ctrl.max_segments = NVME_MAX_SEGS; 2559 2560 /* 2561 * Don't limit the IOMMU merged segment size. 2562 */ 2563 dma_set_max_seg_size(dev->dev, 0xffffffff); 2564 2565 mutex_unlock(&dev->shutdown_lock); 2566 2567 /* 2568 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2569 * initializing procedure here. 2570 */ 2571 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2572 dev_warn(dev->ctrl.device, 2573 "failed to mark controller CONNECTING\n"); 2574 result = -EBUSY; 2575 goto out; 2576 } 2577 2578 /* 2579 * We do not support an SGL for metadata (yet), so we are limited to a 2580 * single integrity segment for the separate metadata pointer. 2581 */ 2582 dev->ctrl.max_integrity_segments = 1; 2583 2584 result = nvme_init_identify(&dev->ctrl); 2585 if (result) 2586 goto out; 2587 2588 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2589 if (!dev->ctrl.opal_dev) 2590 dev->ctrl.opal_dev = 2591 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2592 else if (was_suspend) 2593 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2594 } else { 2595 free_opal_dev(dev->ctrl.opal_dev); 2596 dev->ctrl.opal_dev = NULL; 2597 } 2598 2599 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2600 result = nvme_dbbuf_dma_alloc(dev); 2601 if (result) 2602 dev_warn(dev->dev, 2603 "unable to allocate dma for dbbuf\n"); 2604 } 2605 2606 if (dev->ctrl.hmpre) { 2607 result = nvme_setup_host_mem(dev); 2608 if (result < 0) 2609 goto out; 2610 } 2611 2612 result = nvme_setup_io_queues(dev); 2613 if (result) 2614 goto out; 2615 2616 /* 2617 * Keep the controller around but remove all namespaces if we don't have 2618 * any working I/O queue. 2619 */ 2620 if (dev->online_queues < 2) { 2621 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2622 nvme_kill_queues(&dev->ctrl); 2623 nvme_remove_namespaces(&dev->ctrl); 2624 nvme_free_tagset(dev); 2625 } else { 2626 nvme_start_queues(&dev->ctrl); 2627 nvme_wait_freeze(&dev->ctrl); 2628 nvme_dev_add(dev); 2629 nvme_unfreeze(&dev->ctrl); 2630 } 2631 2632 /* 2633 * If only admin queue live, keep it to do further investigation or 2634 * recovery. 2635 */ 2636 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2637 dev_warn(dev->ctrl.device, 2638 "failed to mark controller live state\n"); 2639 result = -ENODEV; 2640 goto out; 2641 } 2642 2643 nvme_start_ctrl(&dev->ctrl); 2644 return; 2645 2646 out_unlock: 2647 mutex_unlock(&dev->shutdown_lock); 2648 out: 2649 if (result) 2650 dev_warn(dev->ctrl.device, 2651 "Removing after probe failure status: %d\n", result); 2652 nvme_remove_dead_ctrl(dev); 2653 } 2654 2655 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2656 { 2657 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2658 struct pci_dev *pdev = to_pci_dev(dev->dev); 2659 2660 if (pci_get_drvdata(pdev)) 2661 device_release_driver(&pdev->dev); 2662 nvme_put_ctrl(&dev->ctrl); 2663 } 2664 2665 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2666 { 2667 *val = readl(to_nvme_dev(ctrl)->bar + off); 2668 return 0; 2669 } 2670 2671 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2672 { 2673 writel(val, to_nvme_dev(ctrl)->bar + off); 2674 return 0; 2675 } 2676 2677 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2678 { 2679 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2680 return 0; 2681 } 2682 2683 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2684 { 2685 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2686 2687 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2688 } 2689 2690 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2691 .name = "pcie", 2692 .module = THIS_MODULE, 2693 .flags = NVME_F_METADATA_SUPPORTED | 2694 NVME_F_PCI_P2PDMA, 2695 .reg_read32 = nvme_pci_reg_read32, 2696 .reg_write32 = nvme_pci_reg_write32, 2697 .reg_read64 = nvme_pci_reg_read64, 2698 .free_ctrl = nvme_pci_free_ctrl, 2699 .submit_async_event = nvme_pci_submit_async_event, 2700 .get_address = nvme_pci_get_address, 2701 }; 2702 2703 static int nvme_dev_map(struct nvme_dev *dev) 2704 { 2705 struct pci_dev *pdev = to_pci_dev(dev->dev); 2706 2707 if (pci_request_mem_regions(pdev, "nvme")) 2708 return -ENODEV; 2709 2710 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2711 goto release; 2712 2713 return 0; 2714 release: 2715 pci_release_mem_regions(pdev); 2716 return -ENODEV; 2717 } 2718 2719 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2720 { 2721 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2722 /* 2723 * Several Samsung devices seem to drop off the PCIe bus 2724 * randomly when APST is on and uses the deepest sleep state. 2725 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2726 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2727 * 950 PRO 256GB", but it seems to be restricted to two Dell 2728 * laptops. 2729 */ 2730 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2731 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2732 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2733 return NVME_QUIRK_NO_DEEPEST_PS; 2734 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2735 /* 2736 * Samsung SSD 960 EVO drops off the PCIe bus after system 2737 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2738 * within few minutes after bootup on a Coffee Lake board - 2739 * ASUS PRIME Z370-A 2740 */ 2741 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2742 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2743 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2744 return NVME_QUIRK_NO_APST; 2745 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2746 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2747 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2748 /* 2749 * Forcing to use host managed nvme power settings for 2750 * lowest idle power with quick resume latency on 2751 * Samsung and Toshiba SSDs based on suspend behavior 2752 * on Coffee Lake board for LENOVO C640 2753 */ 2754 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2755 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2756 return NVME_QUIRK_SIMPLE_SUSPEND; 2757 } 2758 2759 return 0; 2760 } 2761 2762 #ifdef CONFIG_ACPI 2763 static bool nvme_acpi_storage_d3(struct pci_dev *dev) 2764 { 2765 struct acpi_device *adev; 2766 struct pci_dev *root; 2767 acpi_handle handle; 2768 acpi_status status; 2769 u8 val; 2770 2771 /* 2772 * Look for _DSD property specifying that the storage device on the port 2773 * must use D3 to support deep platform power savings during 2774 * suspend-to-idle. 2775 */ 2776 root = pcie_find_root_port(dev); 2777 if (!root) 2778 return false; 2779 2780 adev = ACPI_COMPANION(&root->dev); 2781 if (!adev) 2782 return false; 2783 2784 /* 2785 * The property is defined in the PXSX device for South complex ports 2786 * and in the PEGP device for North complex ports. 2787 */ 2788 status = acpi_get_handle(adev->handle, "PXSX", &handle); 2789 if (ACPI_FAILURE(status)) { 2790 status = acpi_get_handle(adev->handle, "PEGP", &handle); 2791 if (ACPI_FAILURE(status)) 2792 return false; 2793 } 2794 2795 if (acpi_bus_get_device(handle, &adev)) 2796 return false; 2797 2798 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 2799 &val)) 2800 return false; 2801 return val == 1; 2802 } 2803 #else 2804 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev) 2805 { 2806 return false; 2807 } 2808 #endif /* CONFIG_ACPI */ 2809 2810 static void nvme_async_probe(void *data, async_cookie_t cookie) 2811 { 2812 struct nvme_dev *dev = data; 2813 2814 flush_work(&dev->ctrl.reset_work); 2815 flush_work(&dev->ctrl.scan_work); 2816 nvme_put_ctrl(&dev->ctrl); 2817 } 2818 2819 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2820 { 2821 int node, result = -ENOMEM; 2822 struct nvme_dev *dev; 2823 unsigned long quirks = id->driver_data; 2824 size_t alloc_size; 2825 2826 node = dev_to_node(&pdev->dev); 2827 if (node == NUMA_NO_NODE) 2828 set_dev_node(&pdev->dev, first_memory_node); 2829 2830 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2831 if (!dev) 2832 return -ENOMEM; 2833 2834 dev->nr_write_queues = write_queues; 2835 dev->nr_poll_queues = poll_queues; 2836 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2837 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2838 sizeof(struct nvme_queue), GFP_KERNEL, node); 2839 if (!dev->queues) 2840 goto free; 2841 2842 dev->dev = get_device(&pdev->dev); 2843 pci_set_drvdata(pdev, dev); 2844 2845 result = nvme_dev_map(dev); 2846 if (result) 2847 goto put_pci; 2848 2849 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2850 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2851 mutex_init(&dev->shutdown_lock); 2852 2853 result = nvme_setup_prp_pools(dev); 2854 if (result) 2855 goto unmap; 2856 2857 quirks |= check_vendor_combination_bug(pdev); 2858 2859 if (!noacpi && nvme_acpi_storage_d3(pdev)) { 2860 /* 2861 * Some systems use a bios work around to ask for D3 on 2862 * platforms that support kernel managed suspend. 2863 */ 2864 dev_info(&pdev->dev, 2865 "platform quirk: setting simple suspend\n"); 2866 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2867 } 2868 2869 /* 2870 * Double check that our mempool alloc size will cover the biggest 2871 * command we support. 2872 */ 2873 alloc_size = nvme_pci_iod_alloc_size(); 2874 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2875 2876 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2877 mempool_kfree, 2878 (void *) alloc_size, 2879 GFP_KERNEL, node); 2880 if (!dev->iod_mempool) { 2881 result = -ENOMEM; 2882 goto release_pools; 2883 } 2884 2885 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2886 quirks); 2887 if (result) 2888 goto release_mempool; 2889 2890 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2891 2892 nvme_reset_ctrl(&dev->ctrl); 2893 async_schedule(nvme_async_probe, dev); 2894 2895 return 0; 2896 2897 release_mempool: 2898 mempool_destroy(dev->iod_mempool); 2899 release_pools: 2900 nvme_release_prp_pools(dev); 2901 unmap: 2902 nvme_dev_unmap(dev); 2903 put_pci: 2904 put_device(dev->dev); 2905 free: 2906 kfree(dev->queues); 2907 kfree(dev); 2908 return result; 2909 } 2910 2911 static void nvme_reset_prepare(struct pci_dev *pdev) 2912 { 2913 struct nvme_dev *dev = pci_get_drvdata(pdev); 2914 2915 /* 2916 * We don't need to check the return value from waiting for the reset 2917 * state as pci_dev device lock is held, making it impossible to race 2918 * with ->remove(). 2919 */ 2920 nvme_disable_prepare_reset(dev, false); 2921 nvme_sync_queues(&dev->ctrl); 2922 } 2923 2924 static void nvme_reset_done(struct pci_dev *pdev) 2925 { 2926 struct nvme_dev *dev = pci_get_drvdata(pdev); 2927 2928 if (!nvme_try_sched_reset(&dev->ctrl)) 2929 flush_work(&dev->ctrl.reset_work); 2930 } 2931 2932 static void nvme_shutdown(struct pci_dev *pdev) 2933 { 2934 struct nvme_dev *dev = pci_get_drvdata(pdev); 2935 2936 nvme_disable_prepare_reset(dev, true); 2937 } 2938 2939 /* 2940 * The driver's remove may be called on a device in a partially initialized 2941 * state. This function must not have any dependencies on the device state in 2942 * order to proceed. 2943 */ 2944 static void nvme_remove(struct pci_dev *pdev) 2945 { 2946 struct nvme_dev *dev = pci_get_drvdata(pdev); 2947 2948 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2949 pci_set_drvdata(pdev, NULL); 2950 2951 if (!pci_device_is_present(pdev)) { 2952 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2953 nvme_dev_disable(dev, true); 2954 nvme_dev_remove_admin(dev); 2955 } 2956 2957 flush_work(&dev->ctrl.reset_work); 2958 nvme_stop_ctrl(&dev->ctrl); 2959 nvme_remove_namespaces(&dev->ctrl); 2960 nvme_dev_disable(dev, true); 2961 nvme_release_cmb(dev); 2962 nvme_free_host_mem(dev); 2963 nvme_dev_remove_admin(dev); 2964 nvme_free_queues(dev, 0); 2965 nvme_release_prp_pools(dev); 2966 nvme_dev_unmap(dev); 2967 nvme_uninit_ctrl(&dev->ctrl); 2968 } 2969 2970 #ifdef CONFIG_PM_SLEEP 2971 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2972 { 2973 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2974 } 2975 2976 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 2977 { 2978 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 2979 } 2980 2981 static int nvme_resume(struct device *dev) 2982 { 2983 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2984 struct nvme_ctrl *ctrl = &ndev->ctrl; 2985 2986 if (ndev->last_ps == U32_MAX || 2987 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 2988 return nvme_try_sched_reset(&ndev->ctrl); 2989 return 0; 2990 } 2991 2992 static int nvme_suspend(struct device *dev) 2993 { 2994 struct pci_dev *pdev = to_pci_dev(dev); 2995 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2996 struct nvme_ctrl *ctrl = &ndev->ctrl; 2997 int ret = -EBUSY; 2998 2999 ndev->last_ps = U32_MAX; 3000 3001 /* 3002 * The platform does not remove power for a kernel managed suspend so 3003 * use host managed nvme power settings for lowest idle power if 3004 * possible. This should have quicker resume latency than a full device 3005 * shutdown. But if the firmware is involved after the suspend or the 3006 * device does not support any non-default power states, shut down the 3007 * device fully. 3008 * 3009 * If ASPM is not enabled for the device, shut down the device and allow 3010 * the PCI bus layer to put it into D3 in order to take the PCIe link 3011 * down, so as to allow the platform to achieve its minimum low-power 3012 * state (which may not be possible if the link is up). 3013 * 3014 * If a host memory buffer is enabled, shut down the device as the NVMe 3015 * specification allows the device to access the host memory buffer in 3016 * host DRAM from all power states, but hosts will fail access to DRAM 3017 * during S3. 3018 */ 3019 if (pm_suspend_via_firmware() || !ctrl->npss || 3020 !pcie_aspm_enabled(pdev) || 3021 ndev->nr_host_mem_descs || 3022 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3023 return nvme_disable_prepare_reset(ndev, true); 3024 3025 nvme_start_freeze(ctrl); 3026 nvme_wait_freeze(ctrl); 3027 nvme_sync_queues(ctrl); 3028 3029 if (ctrl->state != NVME_CTRL_LIVE) 3030 goto unfreeze; 3031 3032 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3033 if (ret < 0) 3034 goto unfreeze; 3035 3036 /* 3037 * A saved state prevents pci pm from generically controlling the 3038 * device's power. If we're using protocol specific settings, we don't 3039 * want pci interfering. 3040 */ 3041 pci_save_state(pdev); 3042 3043 ret = nvme_set_power_state(ctrl, ctrl->npss); 3044 if (ret < 0) 3045 goto unfreeze; 3046 3047 if (ret) { 3048 /* discard the saved state */ 3049 pci_load_saved_state(pdev, NULL); 3050 3051 /* 3052 * Clearing npss forces a controller reset on resume. The 3053 * correct value will be rediscovered then. 3054 */ 3055 ret = nvme_disable_prepare_reset(ndev, true); 3056 ctrl->npss = 0; 3057 } 3058 unfreeze: 3059 nvme_unfreeze(ctrl); 3060 return ret; 3061 } 3062 3063 static int nvme_simple_suspend(struct device *dev) 3064 { 3065 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3066 3067 return nvme_disable_prepare_reset(ndev, true); 3068 } 3069 3070 static int nvme_simple_resume(struct device *dev) 3071 { 3072 struct pci_dev *pdev = to_pci_dev(dev); 3073 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3074 3075 return nvme_try_sched_reset(&ndev->ctrl); 3076 } 3077 3078 static const struct dev_pm_ops nvme_dev_pm_ops = { 3079 .suspend = nvme_suspend, 3080 .resume = nvme_resume, 3081 .freeze = nvme_simple_suspend, 3082 .thaw = nvme_simple_resume, 3083 .poweroff = nvme_simple_suspend, 3084 .restore = nvme_simple_resume, 3085 }; 3086 #endif /* CONFIG_PM_SLEEP */ 3087 3088 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3089 pci_channel_state_t state) 3090 { 3091 struct nvme_dev *dev = pci_get_drvdata(pdev); 3092 3093 /* 3094 * A frozen channel requires a reset. When detected, this method will 3095 * shutdown the controller to quiesce. The controller will be restarted 3096 * after the slot reset through driver's slot_reset callback. 3097 */ 3098 switch (state) { 3099 case pci_channel_io_normal: 3100 return PCI_ERS_RESULT_CAN_RECOVER; 3101 case pci_channel_io_frozen: 3102 dev_warn(dev->ctrl.device, 3103 "frozen state error detected, reset controller\n"); 3104 nvme_dev_disable(dev, false); 3105 return PCI_ERS_RESULT_NEED_RESET; 3106 case pci_channel_io_perm_failure: 3107 dev_warn(dev->ctrl.device, 3108 "failure state error detected, request disconnect\n"); 3109 return PCI_ERS_RESULT_DISCONNECT; 3110 } 3111 return PCI_ERS_RESULT_NEED_RESET; 3112 } 3113 3114 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3115 { 3116 struct nvme_dev *dev = pci_get_drvdata(pdev); 3117 3118 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3119 pci_restore_state(pdev); 3120 nvme_reset_ctrl(&dev->ctrl); 3121 return PCI_ERS_RESULT_RECOVERED; 3122 } 3123 3124 static void nvme_error_resume(struct pci_dev *pdev) 3125 { 3126 struct nvme_dev *dev = pci_get_drvdata(pdev); 3127 3128 flush_work(&dev->ctrl.reset_work); 3129 } 3130 3131 static const struct pci_error_handlers nvme_err_handler = { 3132 .error_detected = nvme_error_detected, 3133 .slot_reset = nvme_slot_reset, 3134 .resume = nvme_error_resume, 3135 .reset_prepare = nvme_reset_prepare, 3136 .reset_done = nvme_reset_done, 3137 }; 3138 3139 static const struct pci_device_id nvme_id_table[] = { 3140 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3141 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3142 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3143 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3144 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3145 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3146 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3147 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3148 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3149 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3150 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3151 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3152 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3153 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3154 NVME_QUIRK_MEDIUM_PRIO_SQ | 3155 NVME_QUIRK_NO_TEMP_THRESH_CHANGE }, 3156 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3157 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3158 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3159 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3160 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3161 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3162 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3163 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3164 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3165 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3166 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3167 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3168 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3169 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3170 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3171 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3172 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3173 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3174 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3175 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3176 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3177 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3178 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3179 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3180 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3181 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3182 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3183 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3184 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3185 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3186 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3187 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3188 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3189 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3190 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3191 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3192 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3193 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3194 NVME_QUIRK_128_BYTES_SQES | 3195 NVME_QUIRK_SHARED_TAGS }, 3196 { 0, } 3197 }; 3198 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3199 3200 static struct pci_driver nvme_driver = { 3201 .name = "nvme", 3202 .id_table = nvme_id_table, 3203 .probe = nvme_probe, 3204 .remove = nvme_remove, 3205 .shutdown = nvme_shutdown, 3206 #ifdef CONFIG_PM_SLEEP 3207 .driver = { 3208 .pm = &nvme_dev_pm_ops, 3209 }, 3210 #endif 3211 .sriov_configure = pci_sriov_configure_simple, 3212 .err_handler = &nvme_err_handler, 3213 }; 3214 3215 static int __init nvme_init(void) 3216 { 3217 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3218 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3219 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3220 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3221 3222 return pci_register_driver(&nvme_driver); 3223 } 3224 3225 static void __exit nvme_exit(void) 3226 { 3227 pci_unregister_driver(&nvme_driver); 3228 flush_workqueue(nvme_wq); 3229 } 3230 3231 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3232 MODULE_LICENSE("GPL"); 3233 MODULE_VERSION("1.0"); 3234 module_init(nvme_init); 3235 module_exit(nvme_exit); 3236