xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 4e1a33b1)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/hdreg.h>
26 #include <linux/idr.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/timer.h>
43 #include <linux/types.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 #include <linux/sed-opal.h>
47 
48 #include "nvme.h"
49 
50 #define NVME_Q_DEPTH		1024
51 #define NVME_AQ_DEPTH		256
52 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
53 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
54 
55 /*
56  * We handle AEN commands ourselves and don't even let the
57  * block layer know about them.
58  */
59 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
60 
61 static int use_threaded_interrupts;
62 module_param(use_threaded_interrupts, int, 0);
63 
64 static bool use_cmb_sqes = true;
65 module_param(use_cmb_sqes, bool, 0644);
66 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
67 
68 static struct workqueue_struct *nvme_workq;
69 
70 struct nvme_dev;
71 struct nvme_queue;
72 
73 static int nvme_reset(struct nvme_dev *dev);
74 static void nvme_process_cq(struct nvme_queue *nvmeq);
75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
76 
77 /*
78  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
79  */
80 struct nvme_dev {
81 	struct nvme_queue **queues;
82 	struct blk_mq_tag_set tagset;
83 	struct blk_mq_tag_set admin_tagset;
84 	u32 __iomem *dbs;
85 	struct device *dev;
86 	struct dma_pool *prp_page_pool;
87 	struct dma_pool *prp_small_pool;
88 	unsigned queue_count;
89 	unsigned online_queues;
90 	unsigned max_qid;
91 	int q_depth;
92 	u32 db_stride;
93 	void __iomem *bar;
94 	struct work_struct reset_work;
95 	struct work_struct remove_work;
96 	struct timer_list watchdog_timer;
97 	struct mutex shutdown_lock;
98 	bool subsystem;
99 	void __iomem *cmb;
100 	dma_addr_t cmb_dma_addr;
101 	u64 cmb_size;
102 	u32 cmbsz;
103 	u32 cmbloc;
104 	struct nvme_ctrl ctrl;
105 	struct completion ioq_wait;
106 };
107 
108 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
109 {
110 	return container_of(ctrl, struct nvme_dev, ctrl);
111 }
112 
113 /*
114  * An NVM Express queue.  Each device has at least two (one for admin
115  * commands and one for I/O commands).
116  */
117 struct nvme_queue {
118 	struct device *q_dmadev;
119 	struct nvme_dev *dev;
120 	char irqname[24];	/* nvme4294967295-65535\0 */
121 	spinlock_t q_lock;
122 	struct nvme_command *sq_cmds;
123 	struct nvme_command __iomem *sq_cmds_io;
124 	volatile struct nvme_completion *cqes;
125 	struct blk_mq_tags **tags;
126 	dma_addr_t sq_dma_addr;
127 	dma_addr_t cq_dma_addr;
128 	u32 __iomem *q_db;
129 	u16 q_depth;
130 	s16 cq_vector;
131 	u16 sq_tail;
132 	u16 cq_head;
133 	u16 qid;
134 	u8 cq_phase;
135 	u8 cqe_seen;
136 };
137 
138 /*
139  * The nvme_iod describes the data in an I/O, including the list of PRP
140  * entries.  You can't see it in this data structure because C doesn't let
141  * me express that.  Use nvme_init_iod to ensure there's enough space
142  * allocated to store the PRP list.
143  */
144 struct nvme_iod {
145 	struct nvme_request req;
146 	struct nvme_queue *nvmeq;
147 	int aborted;
148 	int npages;		/* In the PRP list. 0 means small pool in use */
149 	int nents;		/* Used in scatterlist */
150 	int length;		/* Of data, in bytes */
151 	dma_addr_t first_dma;
152 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
153 	struct scatterlist *sg;
154 	struct scatterlist inline_sg[0];
155 };
156 
157 /*
158  * Check we didin't inadvertently grow the command struct
159  */
160 static inline void _nvme_check_size(void)
161 {
162 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
163 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
164 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
165 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
166 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
167 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
168 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
169 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
170 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
171 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
172 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
173 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
174 }
175 
176 /*
177  * Max size of iod being embedded in the request payload
178  */
179 #define NVME_INT_PAGES		2
180 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
181 
182 /*
183  * Will slightly overestimate the number of pages needed.  This is OK
184  * as it only leads to a small amount of wasted memory for the lifetime of
185  * the I/O.
186  */
187 static int nvme_npages(unsigned size, struct nvme_dev *dev)
188 {
189 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
190 				      dev->ctrl.page_size);
191 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
192 }
193 
194 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
195 		unsigned int size, unsigned int nseg)
196 {
197 	return sizeof(__le64 *) * nvme_npages(size, dev) +
198 			sizeof(struct scatterlist) * nseg;
199 }
200 
201 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
202 {
203 	return sizeof(struct nvme_iod) +
204 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
205 }
206 
207 static int nvmeq_irq(struct nvme_queue *nvmeq)
208 {
209 	return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
210 }
211 
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 				unsigned int hctx_idx)
214 {
215 	struct nvme_dev *dev = data;
216 	struct nvme_queue *nvmeq = dev->queues[0];
217 
218 	WARN_ON(hctx_idx != 0);
219 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 	WARN_ON(nvmeq->tags);
221 
222 	hctx->driver_data = nvmeq;
223 	nvmeq->tags = &dev->admin_tagset.tags[0];
224 	return 0;
225 }
226 
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229 	struct nvme_queue *nvmeq = hctx->driver_data;
230 
231 	nvmeq->tags = NULL;
232 }
233 
234 static int nvme_admin_init_request(void *data, struct request *req,
235 				unsigned int hctx_idx, unsigned int rq_idx,
236 				unsigned int numa_node)
237 {
238 	struct nvme_dev *dev = data;
239 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240 	struct nvme_queue *nvmeq = dev->queues[0];
241 
242 	BUG_ON(!nvmeq);
243 	iod->nvmeq = nvmeq;
244 	return 0;
245 }
246 
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 			  unsigned int hctx_idx)
249 {
250 	struct nvme_dev *dev = data;
251 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252 
253 	if (!nvmeq->tags)
254 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
255 
256 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257 	hctx->driver_data = nvmeq;
258 	return 0;
259 }
260 
261 static int nvme_init_request(void *data, struct request *req,
262 				unsigned int hctx_idx, unsigned int rq_idx,
263 				unsigned int numa_node)
264 {
265 	struct nvme_dev *dev = data;
266 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268 
269 	BUG_ON(!nvmeq);
270 	iod->nvmeq = nvmeq;
271 	return 0;
272 }
273 
274 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
275 {
276 	struct nvme_dev *dev = set->driver_data;
277 
278 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
279 }
280 
281 /**
282  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
283  * @nvmeq: The queue to use
284  * @cmd: The command to send
285  *
286  * Safe to use from interrupt context
287  */
288 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
289 						struct nvme_command *cmd)
290 {
291 	u16 tail = nvmeq->sq_tail;
292 
293 	if (nvmeq->sq_cmds_io)
294 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
295 	else
296 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
297 
298 	if (++tail == nvmeq->q_depth)
299 		tail = 0;
300 	writel(tail, nvmeq->q_db);
301 	nvmeq->sq_tail = tail;
302 }
303 
304 static __le64 **iod_list(struct request *req)
305 {
306 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
307 	return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
308 }
309 
310 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
311 {
312 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
313 	int nseg = blk_rq_nr_phys_segments(rq);
314 	unsigned int size = blk_rq_payload_bytes(rq);
315 
316 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
317 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
318 		if (!iod->sg)
319 			return BLK_MQ_RQ_QUEUE_BUSY;
320 	} else {
321 		iod->sg = iod->inline_sg;
322 	}
323 
324 	iod->aborted = 0;
325 	iod->npages = -1;
326 	iod->nents = 0;
327 	iod->length = size;
328 
329 	if (!(rq->rq_flags & RQF_DONTPREP)) {
330 		rq->retries = 0;
331 		rq->rq_flags |= RQF_DONTPREP;
332 	}
333 	return BLK_MQ_RQ_QUEUE_OK;
334 }
335 
336 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
337 {
338 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
339 	const int last_prp = dev->ctrl.page_size / 8 - 1;
340 	int i;
341 	__le64 **list = iod_list(req);
342 	dma_addr_t prp_dma = iod->first_dma;
343 
344 	if (iod->npages == 0)
345 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
346 	for (i = 0; i < iod->npages; i++) {
347 		__le64 *prp_list = list[i];
348 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
349 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
350 		prp_dma = next_prp_dma;
351 	}
352 
353 	if (iod->sg != iod->inline_sg)
354 		kfree(iod->sg);
355 }
356 
357 #ifdef CONFIG_BLK_DEV_INTEGRITY
358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
359 {
360 	if (be32_to_cpu(pi->ref_tag) == v)
361 		pi->ref_tag = cpu_to_be32(p);
362 }
363 
364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
365 {
366 	if (be32_to_cpu(pi->ref_tag) == p)
367 		pi->ref_tag = cpu_to_be32(v);
368 }
369 
370 /**
371  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
372  *
373  * The virtual start sector is the one that was originally submitted by the
374  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
375  * start sector may be different. Remap protection information to match the
376  * physical LBA on writes, and back to the original seed on reads.
377  *
378  * Type 0 and 3 do not have a ref tag, so no remapping required.
379  */
380 static void nvme_dif_remap(struct request *req,
381 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
382 {
383 	struct nvme_ns *ns = req->rq_disk->private_data;
384 	struct bio_integrity_payload *bip;
385 	struct t10_pi_tuple *pi;
386 	void *p, *pmap;
387 	u32 i, nlb, ts, phys, virt;
388 
389 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
390 		return;
391 
392 	bip = bio_integrity(req->bio);
393 	if (!bip)
394 		return;
395 
396 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
397 
398 	p = pmap;
399 	virt = bip_get_seed(bip);
400 	phys = nvme_block_nr(ns, blk_rq_pos(req));
401 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
402 	ts = ns->disk->queue->integrity.tuple_size;
403 
404 	for (i = 0; i < nlb; i++, virt++, phys++) {
405 		pi = (struct t10_pi_tuple *)p;
406 		dif_swap(phys, virt, pi);
407 		p += ts;
408 	}
409 	kunmap_atomic(pmap);
410 }
411 #else /* CONFIG_BLK_DEV_INTEGRITY */
412 static void nvme_dif_remap(struct request *req,
413 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
414 {
415 }
416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
417 {
418 }
419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
420 {
421 }
422 #endif
423 
424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
425 {
426 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
427 	struct dma_pool *pool;
428 	int length = blk_rq_payload_bytes(req);
429 	struct scatterlist *sg = iod->sg;
430 	int dma_len = sg_dma_len(sg);
431 	u64 dma_addr = sg_dma_address(sg);
432 	u32 page_size = dev->ctrl.page_size;
433 	int offset = dma_addr & (page_size - 1);
434 	__le64 *prp_list;
435 	__le64 **list = iod_list(req);
436 	dma_addr_t prp_dma;
437 	int nprps, i;
438 
439 	length -= (page_size - offset);
440 	if (length <= 0)
441 		return true;
442 
443 	dma_len -= (page_size - offset);
444 	if (dma_len) {
445 		dma_addr += (page_size - offset);
446 	} else {
447 		sg = sg_next(sg);
448 		dma_addr = sg_dma_address(sg);
449 		dma_len = sg_dma_len(sg);
450 	}
451 
452 	if (length <= page_size) {
453 		iod->first_dma = dma_addr;
454 		return true;
455 	}
456 
457 	nprps = DIV_ROUND_UP(length, page_size);
458 	if (nprps <= (256 / 8)) {
459 		pool = dev->prp_small_pool;
460 		iod->npages = 0;
461 	} else {
462 		pool = dev->prp_page_pool;
463 		iod->npages = 1;
464 	}
465 
466 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
467 	if (!prp_list) {
468 		iod->first_dma = dma_addr;
469 		iod->npages = -1;
470 		return false;
471 	}
472 	list[0] = prp_list;
473 	iod->first_dma = prp_dma;
474 	i = 0;
475 	for (;;) {
476 		if (i == page_size >> 3) {
477 			__le64 *old_prp_list = prp_list;
478 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
479 			if (!prp_list)
480 				return false;
481 			list[iod->npages++] = prp_list;
482 			prp_list[0] = old_prp_list[i - 1];
483 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
484 			i = 1;
485 		}
486 		prp_list[i++] = cpu_to_le64(dma_addr);
487 		dma_len -= page_size;
488 		dma_addr += page_size;
489 		length -= page_size;
490 		if (length <= 0)
491 			break;
492 		if (dma_len > 0)
493 			continue;
494 		BUG_ON(dma_len < 0);
495 		sg = sg_next(sg);
496 		dma_addr = sg_dma_address(sg);
497 		dma_len = sg_dma_len(sg);
498 	}
499 
500 	return true;
501 }
502 
503 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
504 		struct nvme_command *cmnd)
505 {
506 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
507 	struct request_queue *q = req->q;
508 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
509 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
510 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
511 
512 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
513 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
514 	if (!iod->nents)
515 		goto out;
516 
517 	ret = BLK_MQ_RQ_QUEUE_BUSY;
518 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
519 				DMA_ATTR_NO_WARN))
520 		goto out;
521 
522 	if (!nvme_setup_prps(dev, req))
523 		goto out_unmap;
524 
525 	ret = BLK_MQ_RQ_QUEUE_ERROR;
526 	if (blk_integrity_rq(req)) {
527 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
528 			goto out_unmap;
529 
530 		sg_init_table(&iod->meta_sg, 1);
531 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
532 			goto out_unmap;
533 
534 		if (rq_data_dir(req))
535 			nvme_dif_remap(req, nvme_dif_prep);
536 
537 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
538 			goto out_unmap;
539 	}
540 
541 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
542 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
543 	if (blk_integrity_rq(req))
544 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
545 	return BLK_MQ_RQ_QUEUE_OK;
546 
547 out_unmap:
548 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
549 out:
550 	return ret;
551 }
552 
553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
554 {
555 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
556 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
557 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
558 
559 	if (iod->nents) {
560 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
561 		if (blk_integrity_rq(req)) {
562 			if (!rq_data_dir(req))
563 				nvme_dif_remap(req, nvme_dif_complete);
564 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
565 		}
566 	}
567 
568 	nvme_cleanup_cmd(req);
569 	nvme_free_iod(dev, req);
570 }
571 
572 /*
573  * NOTE: ns is NULL when called on the admin queue.
574  */
575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
576 			 const struct blk_mq_queue_data *bd)
577 {
578 	struct nvme_ns *ns = hctx->queue->queuedata;
579 	struct nvme_queue *nvmeq = hctx->driver_data;
580 	struct nvme_dev *dev = nvmeq->dev;
581 	struct request *req = bd->rq;
582 	struct nvme_command cmnd;
583 	int ret = BLK_MQ_RQ_QUEUE_OK;
584 
585 	/*
586 	 * If formated with metadata, require the block layer provide a buffer
587 	 * unless this namespace is formated such that the metadata can be
588 	 * stripped/generated by the controller with PRACT=1.
589 	 */
590 	if (ns && ns->ms && !blk_integrity_rq(req)) {
591 		if (!(ns->pi_type && ns->ms == 8) &&
592 		    !blk_rq_is_passthrough(req)) {
593 			blk_mq_end_request(req, -EFAULT);
594 			return BLK_MQ_RQ_QUEUE_OK;
595 		}
596 	}
597 
598 	ret = nvme_setup_cmd(ns, req, &cmnd);
599 	if (ret != BLK_MQ_RQ_QUEUE_OK)
600 		return ret;
601 
602 	ret = nvme_init_iod(req, dev);
603 	if (ret != BLK_MQ_RQ_QUEUE_OK)
604 		goto out_free_cmd;
605 
606 	if (blk_rq_nr_phys_segments(req))
607 		ret = nvme_map_data(dev, req, &cmnd);
608 
609 	if (ret != BLK_MQ_RQ_QUEUE_OK)
610 		goto out_cleanup_iod;
611 
612 	blk_mq_start_request(req);
613 
614 	spin_lock_irq(&nvmeq->q_lock);
615 	if (unlikely(nvmeq->cq_vector < 0)) {
616 		if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
617 			ret = BLK_MQ_RQ_QUEUE_BUSY;
618 		else
619 			ret = BLK_MQ_RQ_QUEUE_ERROR;
620 		spin_unlock_irq(&nvmeq->q_lock);
621 		goto out_cleanup_iod;
622 	}
623 	__nvme_submit_cmd(nvmeq, &cmnd);
624 	nvme_process_cq(nvmeq);
625 	spin_unlock_irq(&nvmeq->q_lock);
626 	return BLK_MQ_RQ_QUEUE_OK;
627 out_cleanup_iod:
628 	nvme_free_iod(dev, req);
629 out_free_cmd:
630 	nvme_cleanup_cmd(req);
631 	return ret;
632 }
633 
634 static void nvme_complete_rq(struct request *req)
635 {
636 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
637 	struct nvme_dev *dev = iod->nvmeq->dev;
638 	int error = 0;
639 
640 	nvme_unmap_data(dev, req);
641 
642 	if (unlikely(req->errors)) {
643 		if (nvme_req_needs_retry(req, req->errors)) {
644 			req->retries++;
645 			nvme_requeue_req(req);
646 			return;
647 		}
648 
649 		if (blk_rq_is_passthrough(req))
650 			error = req->errors;
651 		else
652 			error = nvme_error_status(req->errors);
653 	}
654 
655 	if (unlikely(iod->aborted)) {
656 		dev_warn(dev->ctrl.device,
657 			"completing aborted command with status: %04x\n",
658 			req->errors);
659 	}
660 
661 	blk_mq_end_request(req, error);
662 }
663 
664 /* We read the CQE phase first to check if the rest of the entry is valid */
665 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
666 		u16 phase)
667 {
668 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
669 }
670 
671 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
672 {
673 	u16 head, phase;
674 
675 	head = nvmeq->cq_head;
676 	phase = nvmeq->cq_phase;
677 
678 	while (nvme_cqe_valid(nvmeq, head, phase)) {
679 		struct nvme_completion cqe = nvmeq->cqes[head];
680 		struct request *req;
681 
682 		if (++head == nvmeq->q_depth) {
683 			head = 0;
684 			phase = !phase;
685 		}
686 
687 		if (tag && *tag == cqe.command_id)
688 			*tag = -1;
689 
690 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
691 			dev_warn(nvmeq->dev->ctrl.device,
692 				"invalid id %d completed on queue %d\n",
693 				cqe.command_id, le16_to_cpu(cqe.sq_id));
694 			continue;
695 		}
696 
697 		/*
698 		 * AEN requests are special as they don't time out and can
699 		 * survive any kind of queue freeze and often don't respond to
700 		 * aborts.  We don't even bother to allocate a struct request
701 		 * for them but rather special case them here.
702 		 */
703 		if (unlikely(nvmeq->qid == 0 &&
704 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
705 			nvme_complete_async_event(&nvmeq->dev->ctrl,
706 					cqe.status, &cqe.result);
707 			continue;
708 		}
709 
710 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
711 		nvme_req(req)->result = cqe.result;
712 		blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
713 	}
714 
715 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
716 		return;
717 
718 	if (likely(nvmeq->cq_vector >= 0))
719 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
720 	nvmeq->cq_head = head;
721 	nvmeq->cq_phase = phase;
722 
723 	nvmeq->cqe_seen = 1;
724 }
725 
726 static void nvme_process_cq(struct nvme_queue *nvmeq)
727 {
728 	__nvme_process_cq(nvmeq, NULL);
729 }
730 
731 static irqreturn_t nvme_irq(int irq, void *data)
732 {
733 	irqreturn_t result;
734 	struct nvme_queue *nvmeq = data;
735 	spin_lock(&nvmeq->q_lock);
736 	nvme_process_cq(nvmeq);
737 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
738 	nvmeq->cqe_seen = 0;
739 	spin_unlock(&nvmeq->q_lock);
740 	return result;
741 }
742 
743 static irqreturn_t nvme_irq_check(int irq, void *data)
744 {
745 	struct nvme_queue *nvmeq = data;
746 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
747 		return IRQ_WAKE_THREAD;
748 	return IRQ_NONE;
749 }
750 
751 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
752 {
753 	struct nvme_queue *nvmeq = hctx->driver_data;
754 
755 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
756 		spin_lock_irq(&nvmeq->q_lock);
757 		__nvme_process_cq(nvmeq, &tag);
758 		spin_unlock_irq(&nvmeq->q_lock);
759 
760 		if (tag == -1)
761 			return 1;
762 	}
763 
764 	return 0;
765 }
766 
767 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
768 {
769 	struct nvme_dev *dev = to_nvme_dev(ctrl);
770 	struct nvme_queue *nvmeq = dev->queues[0];
771 	struct nvme_command c;
772 
773 	memset(&c, 0, sizeof(c));
774 	c.common.opcode = nvme_admin_async_event;
775 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
776 
777 	spin_lock_irq(&nvmeq->q_lock);
778 	__nvme_submit_cmd(nvmeq, &c);
779 	spin_unlock_irq(&nvmeq->q_lock);
780 }
781 
782 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
783 {
784 	struct nvme_command c;
785 
786 	memset(&c, 0, sizeof(c));
787 	c.delete_queue.opcode = opcode;
788 	c.delete_queue.qid = cpu_to_le16(id);
789 
790 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
791 }
792 
793 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
794 						struct nvme_queue *nvmeq)
795 {
796 	struct nvme_command c;
797 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
798 
799 	/*
800 	 * Note: we (ab)use the fact the the prp fields survive if no data
801 	 * is attached to the request.
802 	 */
803 	memset(&c, 0, sizeof(c));
804 	c.create_cq.opcode = nvme_admin_create_cq;
805 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
806 	c.create_cq.cqid = cpu_to_le16(qid);
807 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
808 	c.create_cq.cq_flags = cpu_to_le16(flags);
809 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
810 
811 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
812 }
813 
814 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
815 						struct nvme_queue *nvmeq)
816 {
817 	struct nvme_command c;
818 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
819 
820 	/*
821 	 * Note: we (ab)use the fact the the prp fields survive if no data
822 	 * is attached to the request.
823 	 */
824 	memset(&c, 0, sizeof(c));
825 	c.create_sq.opcode = nvme_admin_create_sq;
826 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
827 	c.create_sq.sqid = cpu_to_le16(qid);
828 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
829 	c.create_sq.sq_flags = cpu_to_le16(flags);
830 	c.create_sq.cqid = cpu_to_le16(qid);
831 
832 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
833 }
834 
835 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
836 {
837 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
838 }
839 
840 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
841 {
842 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
843 }
844 
845 static void abort_endio(struct request *req, int error)
846 {
847 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
848 	struct nvme_queue *nvmeq = iod->nvmeq;
849 	u16 status = req->errors;
850 
851 	dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
852 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
853 	blk_mq_free_request(req);
854 }
855 
856 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
857 {
858 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
859 	struct nvme_queue *nvmeq = iod->nvmeq;
860 	struct nvme_dev *dev = nvmeq->dev;
861 	struct request *abort_req;
862 	struct nvme_command cmd;
863 
864 	/*
865 	 * Shutdown immediately if controller times out while starting. The
866 	 * reset work will see the pci device disabled when it gets the forced
867 	 * cancellation error. All outstanding requests are completed on
868 	 * shutdown, so we return BLK_EH_HANDLED.
869 	 */
870 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
871 		dev_warn(dev->ctrl.device,
872 			 "I/O %d QID %d timeout, disable controller\n",
873 			 req->tag, nvmeq->qid);
874 		nvme_dev_disable(dev, false);
875 		req->errors = NVME_SC_CANCELLED;
876 		return BLK_EH_HANDLED;
877 	}
878 
879 	/*
880  	 * Shutdown the controller immediately and schedule a reset if the
881  	 * command was already aborted once before and still hasn't been
882  	 * returned to the driver, or if this is the admin queue.
883 	 */
884 	if (!nvmeq->qid || iod->aborted) {
885 		dev_warn(dev->ctrl.device,
886 			 "I/O %d QID %d timeout, reset controller\n",
887 			 req->tag, nvmeq->qid);
888 		nvme_dev_disable(dev, false);
889 		nvme_reset(dev);
890 
891 		/*
892 		 * Mark the request as handled, since the inline shutdown
893 		 * forces all outstanding requests to complete.
894 		 */
895 		req->errors = NVME_SC_CANCELLED;
896 		return BLK_EH_HANDLED;
897 	}
898 
899 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
900 		atomic_inc(&dev->ctrl.abort_limit);
901 		return BLK_EH_RESET_TIMER;
902 	}
903 	iod->aborted = 1;
904 
905 	memset(&cmd, 0, sizeof(cmd));
906 	cmd.abort.opcode = nvme_admin_abort_cmd;
907 	cmd.abort.cid = req->tag;
908 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
909 
910 	dev_warn(nvmeq->dev->ctrl.device,
911 		"I/O %d QID %d timeout, aborting\n",
912 		 req->tag, nvmeq->qid);
913 
914 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
915 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
916 	if (IS_ERR(abort_req)) {
917 		atomic_inc(&dev->ctrl.abort_limit);
918 		return BLK_EH_RESET_TIMER;
919 	}
920 
921 	abort_req->timeout = ADMIN_TIMEOUT;
922 	abort_req->end_io_data = NULL;
923 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
924 
925 	/*
926 	 * The aborted req will be completed on receiving the abort req.
927 	 * We enable the timer again. If hit twice, it'll cause a device reset,
928 	 * as the device then is in a faulty state.
929 	 */
930 	return BLK_EH_RESET_TIMER;
931 }
932 
933 static void nvme_free_queue(struct nvme_queue *nvmeq)
934 {
935 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
936 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
937 	if (nvmeq->sq_cmds)
938 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
939 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
940 	kfree(nvmeq);
941 }
942 
943 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
944 {
945 	int i;
946 
947 	for (i = dev->queue_count - 1; i >= lowest; i--) {
948 		struct nvme_queue *nvmeq = dev->queues[i];
949 		dev->queue_count--;
950 		dev->queues[i] = NULL;
951 		nvme_free_queue(nvmeq);
952 	}
953 }
954 
955 /**
956  * nvme_suspend_queue - put queue into suspended state
957  * @nvmeq - queue to suspend
958  */
959 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
960 {
961 	int vector;
962 
963 	spin_lock_irq(&nvmeq->q_lock);
964 	if (nvmeq->cq_vector == -1) {
965 		spin_unlock_irq(&nvmeq->q_lock);
966 		return 1;
967 	}
968 	vector = nvmeq_irq(nvmeq);
969 	nvmeq->dev->online_queues--;
970 	nvmeq->cq_vector = -1;
971 	spin_unlock_irq(&nvmeq->q_lock);
972 
973 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
974 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
975 
976 	free_irq(vector, nvmeq);
977 
978 	return 0;
979 }
980 
981 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
982 {
983 	struct nvme_queue *nvmeq = dev->queues[0];
984 
985 	if (!nvmeq)
986 		return;
987 	if (nvme_suspend_queue(nvmeq))
988 		return;
989 
990 	if (shutdown)
991 		nvme_shutdown_ctrl(&dev->ctrl);
992 	else
993 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
994 						dev->bar + NVME_REG_CAP));
995 
996 	spin_lock_irq(&nvmeq->q_lock);
997 	nvme_process_cq(nvmeq);
998 	spin_unlock_irq(&nvmeq->q_lock);
999 }
1000 
1001 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002 				int entry_size)
1003 {
1004 	int q_depth = dev->q_depth;
1005 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1006 					  dev->ctrl.page_size);
1007 
1008 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1009 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1010 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1011 		q_depth = div_u64(mem_per_q, entry_size);
1012 
1013 		/*
1014 		 * Ensure the reduced q_depth is above some threshold where it
1015 		 * would be better to map queues in system memory with the
1016 		 * original depth
1017 		 */
1018 		if (q_depth < 64)
1019 			return -ENOMEM;
1020 	}
1021 
1022 	return q_depth;
1023 }
1024 
1025 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026 				int qid, int depth)
1027 {
1028 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1029 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1030 						      dev->ctrl.page_size);
1031 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1032 		nvmeq->sq_cmds_io = dev->cmb + offset;
1033 	} else {
1034 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1035 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1036 		if (!nvmeq->sq_cmds)
1037 			return -ENOMEM;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1044 							int depth)
1045 {
1046 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1047 	if (!nvmeq)
1048 		return NULL;
1049 
1050 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1051 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1052 	if (!nvmeq->cqes)
1053 		goto free_nvmeq;
1054 
1055 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1056 		goto free_cqdma;
1057 
1058 	nvmeq->q_dmadev = dev->dev;
1059 	nvmeq->dev = dev;
1060 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1061 			dev->ctrl.instance, qid);
1062 	spin_lock_init(&nvmeq->q_lock);
1063 	nvmeq->cq_head = 0;
1064 	nvmeq->cq_phase = 1;
1065 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1066 	nvmeq->q_depth = depth;
1067 	nvmeq->qid = qid;
1068 	nvmeq->cq_vector = -1;
1069 	dev->queues[qid] = nvmeq;
1070 	dev->queue_count++;
1071 
1072 	return nvmeq;
1073 
1074  free_cqdma:
1075 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1076 							nvmeq->cq_dma_addr);
1077  free_nvmeq:
1078 	kfree(nvmeq);
1079 	return NULL;
1080 }
1081 
1082 static int queue_request_irq(struct nvme_queue *nvmeq)
1083 {
1084 	if (use_threaded_interrupts)
1085 		return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1086 				nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087 	else
1088 		return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1089 				nvmeq->irqname, nvmeq);
1090 }
1091 
1092 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1093 {
1094 	struct nvme_dev *dev = nvmeq->dev;
1095 
1096 	spin_lock_irq(&nvmeq->q_lock);
1097 	nvmeq->sq_tail = 0;
1098 	nvmeq->cq_head = 0;
1099 	nvmeq->cq_phase = 1;
1100 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1101 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1102 	dev->online_queues++;
1103 	spin_unlock_irq(&nvmeq->q_lock);
1104 }
1105 
1106 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107 {
1108 	struct nvme_dev *dev = nvmeq->dev;
1109 	int result;
1110 
1111 	nvmeq->cq_vector = qid - 1;
1112 	result = adapter_alloc_cq(dev, qid, nvmeq);
1113 	if (result < 0)
1114 		return result;
1115 
1116 	result = adapter_alloc_sq(dev, qid, nvmeq);
1117 	if (result < 0)
1118 		goto release_cq;
1119 
1120 	result = queue_request_irq(nvmeq);
1121 	if (result < 0)
1122 		goto release_sq;
1123 
1124 	nvme_init_queue(nvmeq, qid);
1125 	return result;
1126 
1127  release_sq:
1128 	adapter_delete_sq(dev, qid);
1129  release_cq:
1130 	adapter_delete_cq(dev, qid);
1131 	return result;
1132 }
1133 
1134 static struct blk_mq_ops nvme_mq_admin_ops = {
1135 	.queue_rq	= nvme_queue_rq,
1136 	.complete	= nvme_complete_rq,
1137 	.init_hctx	= nvme_admin_init_hctx,
1138 	.exit_hctx      = nvme_admin_exit_hctx,
1139 	.init_request	= nvme_admin_init_request,
1140 	.timeout	= nvme_timeout,
1141 };
1142 
1143 static struct blk_mq_ops nvme_mq_ops = {
1144 	.queue_rq	= nvme_queue_rq,
1145 	.complete	= nvme_complete_rq,
1146 	.init_hctx	= nvme_init_hctx,
1147 	.init_request	= nvme_init_request,
1148 	.map_queues	= nvme_pci_map_queues,
1149 	.timeout	= nvme_timeout,
1150 	.poll		= nvme_poll,
1151 };
1152 
1153 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154 {
1155 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1156 		/*
1157 		 * If the controller was reset during removal, it's possible
1158 		 * user requests may be waiting on a stopped queue. Start the
1159 		 * queue to flush these to completion.
1160 		 */
1161 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1162 		blk_cleanup_queue(dev->ctrl.admin_q);
1163 		blk_mq_free_tag_set(&dev->admin_tagset);
1164 	}
1165 }
1166 
1167 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168 {
1169 	if (!dev->ctrl.admin_q) {
1170 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1171 		dev->admin_tagset.nr_hw_queues = 1;
1172 
1173 		/*
1174 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1175 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176 		 */
1177 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1178 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1179 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1180 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1181 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1182 		dev->admin_tagset.driver_data = dev;
1183 
1184 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1185 			return -ENOMEM;
1186 
1187 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1188 		if (IS_ERR(dev->ctrl.admin_q)) {
1189 			blk_mq_free_tag_set(&dev->admin_tagset);
1190 			return -ENOMEM;
1191 		}
1192 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1193 			nvme_dev_remove_admin(dev);
1194 			dev->ctrl.admin_q = NULL;
1195 			return -ENODEV;
1196 		}
1197 	} else
1198 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1199 
1200 	return 0;
1201 }
1202 
1203 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1204 {
1205 	int result;
1206 	u32 aqa;
1207 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1208 	struct nvme_queue *nvmeq;
1209 
1210 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1211 						NVME_CAP_NSSRC(cap) : 0;
1212 
1213 	if (dev->subsystem &&
1214 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1215 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1216 
1217 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1218 	if (result < 0)
1219 		return result;
1220 
1221 	nvmeq = dev->queues[0];
1222 	if (!nvmeq) {
1223 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1224 		if (!nvmeq)
1225 			return -ENOMEM;
1226 	}
1227 
1228 	aqa = nvmeq->q_depth - 1;
1229 	aqa |= aqa << 16;
1230 
1231 	writel(aqa, dev->bar + NVME_REG_AQA);
1232 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1233 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1234 
1235 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1236 	if (result)
1237 		return result;
1238 
1239 	nvmeq->cq_vector = 0;
1240 	result = queue_request_irq(nvmeq);
1241 	if (result) {
1242 		nvmeq->cq_vector = -1;
1243 		return result;
1244 	}
1245 
1246 	return result;
1247 }
1248 
1249 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1250 {
1251 
1252 	/* If true, indicates loss of adapter communication, possibly by a
1253 	 * NVMe Subsystem reset.
1254 	 */
1255 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1256 
1257 	/* If there is a reset ongoing, we shouldn't reset again. */
1258 	if (work_busy(&dev->reset_work))
1259 		return false;
1260 
1261 	/* We shouldn't reset unless the controller is on fatal error state
1262 	 * _or_ if we lost the communication with it.
1263 	 */
1264 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1265 		return false;
1266 
1267 	/* If PCI error recovery process is happening, we cannot reset or
1268 	 * the recovery mechanism will surely fail.
1269 	 */
1270 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1271 		return false;
1272 
1273 	return true;
1274 }
1275 
1276 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1277 {
1278 	/* Read a config register to help see what died. */
1279 	u16 pci_status;
1280 	int result;
1281 
1282 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1283 				      &pci_status);
1284 	if (result == PCIBIOS_SUCCESSFUL)
1285 		dev_warn(dev->dev,
1286 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1287 			 csts, pci_status);
1288 	else
1289 		dev_warn(dev->dev,
1290 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1291 			 csts, result);
1292 }
1293 
1294 static void nvme_watchdog_timer(unsigned long data)
1295 {
1296 	struct nvme_dev *dev = (struct nvme_dev *)data;
1297 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1298 
1299 	/* Skip controllers under certain specific conditions. */
1300 	if (nvme_should_reset(dev, csts)) {
1301 		if (!nvme_reset(dev))
1302 			nvme_warn_reset(dev, csts);
1303 		return;
1304 	}
1305 
1306 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1307 }
1308 
1309 static int nvme_create_io_queues(struct nvme_dev *dev)
1310 {
1311 	unsigned i, max;
1312 	int ret = 0;
1313 
1314 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1315 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1316 			ret = -ENOMEM;
1317 			break;
1318 		}
1319 	}
1320 
1321 	max = min(dev->max_qid, dev->queue_count - 1);
1322 	for (i = dev->online_queues; i <= max; i++) {
1323 		ret = nvme_create_queue(dev->queues[i], i);
1324 		if (ret)
1325 			break;
1326 	}
1327 
1328 	/*
1329 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1330 	 * than the desired aount of queues, and even a controller without
1331 	 * I/O queues an still be used to issue admin commands.  This might
1332 	 * be useful to upgrade a buggy firmware for example.
1333 	 */
1334 	return ret >= 0 ? 0 : ret;
1335 }
1336 
1337 static ssize_t nvme_cmb_show(struct device *dev,
1338 			     struct device_attribute *attr,
1339 			     char *buf)
1340 {
1341 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1342 
1343 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1344 		       ndev->cmbloc, ndev->cmbsz);
1345 }
1346 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1347 
1348 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1349 {
1350 	u64 szu, size, offset;
1351 	resource_size_t bar_size;
1352 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1353 	void __iomem *cmb;
1354 	dma_addr_t dma_addr;
1355 
1356 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1357 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1358 		return NULL;
1359 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1360 
1361 	if (!use_cmb_sqes)
1362 		return NULL;
1363 
1364 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1365 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1366 	offset = szu * NVME_CMB_OFST(dev->cmbloc);
1367 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1368 
1369 	if (offset > bar_size)
1370 		return NULL;
1371 
1372 	/*
1373 	 * Controllers may support a CMB size larger than their BAR,
1374 	 * for example, due to being behind a bridge. Reduce the CMB to
1375 	 * the reported size of the BAR
1376 	 */
1377 	if (size > bar_size - offset)
1378 		size = bar_size - offset;
1379 
1380 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1381 	cmb = ioremap_wc(dma_addr, size);
1382 	if (!cmb)
1383 		return NULL;
1384 
1385 	dev->cmb_dma_addr = dma_addr;
1386 	dev->cmb_size = size;
1387 	return cmb;
1388 }
1389 
1390 static inline void nvme_release_cmb(struct nvme_dev *dev)
1391 {
1392 	if (dev->cmb) {
1393 		iounmap(dev->cmb);
1394 		dev->cmb = NULL;
1395 	}
1396 }
1397 
1398 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1399 {
1400 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1401 }
1402 
1403 static int nvme_setup_io_queues(struct nvme_dev *dev)
1404 {
1405 	struct nvme_queue *adminq = dev->queues[0];
1406 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1407 	int result, nr_io_queues, size;
1408 
1409 	nr_io_queues = num_online_cpus();
1410 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1411 	if (result < 0)
1412 		return result;
1413 
1414 	if (nr_io_queues == 0)
1415 		return 0;
1416 
1417 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1418 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1419 				sizeof(struct nvme_command));
1420 		if (result > 0)
1421 			dev->q_depth = result;
1422 		else
1423 			nvme_release_cmb(dev);
1424 	}
1425 
1426 	size = db_bar_size(dev, nr_io_queues);
1427 	if (size > 8192) {
1428 		iounmap(dev->bar);
1429 		do {
1430 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1431 			if (dev->bar)
1432 				break;
1433 			if (!--nr_io_queues)
1434 				return -ENOMEM;
1435 			size = db_bar_size(dev, nr_io_queues);
1436 		} while (1);
1437 		dev->dbs = dev->bar + 4096;
1438 		adminq->q_db = dev->dbs;
1439 	}
1440 
1441 	/* Deregister the admin queue's interrupt */
1442 	free_irq(pci_irq_vector(pdev, 0), adminq);
1443 
1444 	/*
1445 	 * If we enable msix early due to not intx, disable it again before
1446 	 * setting up the full range we need.
1447 	 */
1448 	pci_free_irq_vectors(pdev);
1449 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1450 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1451 	if (nr_io_queues <= 0)
1452 		return -EIO;
1453 	dev->max_qid = nr_io_queues;
1454 
1455 	/*
1456 	 * Should investigate if there's a performance win from allocating
1457 	 * more queues than interrupt vectors; it might allow the submission
1458 	 * path to scale better, even if the receive path is limited by the
1459 	 * number of interrupts.
1460 	 */
1461 
1462 	result = queue_request_irq(adminq);
1463 	if (result) {
1464 		adminq->cq_vector = -1;
1465 		return result;
1466 	}
1467 	return nvme_create_io_queues(dev);
1468 }
1469 
1470 static void nvme_del_queue_end(struct request *req, int error)
1471 {
1472 	struct nvme_queue *nvmeq = req->end_io_data;
1473 
1474 	blk_mq_free_request(req);
1475 	complete(&nvmeq->dev->ioq_wait);
1476 }
1477 
1478 static void nvme_del_cq_end(struct request *req, int error)
1479 {
1480 	struct nvme_queue *nvmeq = req->end_io_data;
1481 
1482 	if (!error) {
1483 		unsigned long flags;
1484 
1485 		/*
1486 		 * We might be called with the AQ q_lock held
1487 		 * and the I/O queue q_lock should always
1488 		 * nest inside the AQ one.
1489 		 */
1490 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1491 					SINGLE_DEPTH_NESTING);
1492 		nvme_process_cq(nvmeq);
1493 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1494 	}
1495 
1496 	nvme_del_queue_end(req, error);
1497 }
1498 
1499 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1500 {
1501 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1502 	struct request *req;
1503 	struct nvme_command cmd;
1504 
1505 	memset(&cmd, 0, sizeof(cmd));
1506 	cmd.delete_queue.opcode = opcode;
1507 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1508 
1509 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1510 	if (IS_ERR(req))
1511 		return PTR_ERR(req);
1512 
1513 	req->timeout = ADMIN_TIMEOUT;
1514 	req->end_io_data = nvmeq;
1515 
1516 	blk_execute_rq_nowait(q, NULL, req, false,
1517 			opcode == nvme_admin_delete_cq ?
1518 				nvme_del_cq_end : nvme_del_queue_end);
1519 	return 0;
1520 }
1521 
1522 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1523 {
1524 	int pass;
1525 	unsigned long timeout;
1526 	u8 opcode = nvme_admin_delete_sq;
1527 
1528 	for (pass = 0; pass < 2; pass++) {
1529 		int sent = 0, i = queues;
1530 
1531 		reinit_completion(&dev->ioq_wait);
1532  retry:
1533 		timeout = ADMIN_TIMEOUT;
1534 		for (; i > 0; i--, sent++)
1535 			if (nvme_delete_queue(dev->queues[i], opcode))
1536 				break;
1537 
1538 		while (sent--) {
1539 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1540 			if (timeout == 0)
1541 				return;
1542 			if (i)
1543 				goto retry;
1544 		}
1545 		opcode = nvme_admin_delete_cq;
1546 	}
1547 }
1548 
1549 /*
1550  * Return: error value if an error occurred setting up the queues or calling
1551  * Identify Device.  0 if these succeeded, even if adding some of the
1552  * namespaces failed.  At the moment, these failures are silent.  TBD which
1553  * failures should be reported.
1554  */
1555 static int nvme_dev_add(struct nvme_dev *dev)
1556 {
1557 	if (!dev->ctrl.tagset) {
1558 		dev->tagset.ops = &nvme_mq_ops;
1559 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1560 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1561 		dev->tagset.numa_node = dev_to_node(dev->dev);
1562 		dev->tagset.queue_depth =
1563 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1564 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1565 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1566 		dev->tagset.driver_data = dev;
1567 
1568 		if (blk_mq_alloc_tag_set(&dev->tagset))
1569 			return 0;
1570 		dev->ctrl.tagset = &dev->tagset;
1571 	} else {
1572 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1573 
1574 		/* Free previously allocated queues that are no longer usable */
1575 		nvme_free_queues(dev, dev->online_queues);
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static int nvme_pci_enable(struct nvme_dev *dev)
1582 {
1583 	u64 cap;
1584 	int result = -ENOMEM;
1585 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1586 
1587 	if (pci_enable_device_mem(pdev))
1588 		return result;
1589 
1590 	pci_set_master(pdev);
1591 
1592 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1593 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1594 		goto disable;
1595 
1596 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1597 		result = -ENODEV;
1598 		goto disable;
1599 	}
1600 
1601 	/*
1602 	 * Some devices and/or platforms don't advertise or work with INTx
1603 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1604 	 * adjust this later.
1605 	 */
1606 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1607 	if (result < 0)
1608 		return result;
1609 
1610 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1611 
1612 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1613 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1614 	dev->dbs = dev->bar + 4096;
1615 
1616 	/*
1617 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1618 	 * some MacBook7,1 to avoid controller resets and data loss.
1619 	 */
1620 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1621 		dev->q_depth = 2;
1622 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1623 			"queue depth=%u to work around controller resets\n",
1624 			dev->q_depth);
1625 	}
1626 
1627 	/*
1628 	 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1629 	 * populate sysfs if a CMB is implemented. Note that we add the
1630 	 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1631 	 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1632 	 * NULL as final argument to sysfs_add_file_to_group.
1633 	 */
1634 
1635 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1636 		dev->cmb = nvme_map_cmb(dev);
1637 
1638 		if (dev->cmbsz) {
1639 			if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1640 						    &dev_attr_cmb.attr, NULL))
1641 				dev_warn(dev->dev,
1642 					 "failed to add sysfs attribute for CMB\n");
1643 		}
1644 	}
1645 
1646 	pci_enable_pcie_error_reporting(pdev);
1647 	pci_save_state(pdev);
1648 	return 0;
1649 
1650  disable:
1651 	pci_disable_device(pdev);
1652 	return result;
1653 }
1654 
1655 static void nvme_dev_unmap(struct nvme_dev *dev)
1656 {
1657 	if (dev->bar)
1658 		iounmap(dev->bar);
1659 	pci_release_mem_regions(to_pci_dev(dev->dev));
1660 }
1661 
1662 static void nvme_pci_disable(struct nvme_dev *dev)
1663 {
1664 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1665 
1666 	pci_free_irq_vectors(pdev);
1667 
1668 	if (pci_is_enabled(pdev)) {
1669 		pci_disable_pcie_error_reporting(pdev);
1670 		pci_disable_device(pdev);
1671 	}
1672 }
1673 
1674 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1675 {
1676 	int i, queues;
1677 	u32 csts = -1;
1678 
1679 	del_timer_sync(&dev->watchdog_timer);
1680 
1681 	mutex_lock(&dev->shutdown_lock);
1682 	if (pci_is_enabled(to_pci_dev(dev->dev))) {
1683 		nvme_stop_queues(&dev->ctrl);
1684 		csts = readl(dev->bar + NVME_REG_CSTS);
1685 	}
1686 
1687 	queues = dev->online_queues - 1;
1688 	for (i = dev->queue_count - 1; i > 0; i--)
1689 		nvme_suspend_queue(dev->queues[i]);
1690 
1691 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1692 		/* A device might become IO incapable very soon during
1693 		 * probe, before the admin queue is configured. Thus,
1694 		 * queue_count can be 0 here.
1695 		 */
1696 		if (dev->queue_count)
1697 			nvme_suspend_queue(dev->queues[0]);
1698 	} else {
1699 		nvme_disable_io_queues(dev, queues);
1700 		nvme_disable_admin_queue(dev, shutdown);
1701 	}
1702 	nvme_pci_disable(dev);
1703 
1704 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1705 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1706 	mutex_unlock(&dev->shutdown_lock);
1707 }
1708 
1709 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1710 {
1711 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1712 						PAGE_SIZE, PAGE_SIZE, 0);
1713 	if (!dev->prp_page_pool)
1714 		return -ENOMEM;
1715 
1716 	/* Optimisation for I/Os between 4k and 128k */
1717 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1718 						256, 256, 0);
1719 	if (!dev->prp_small_pool) {
1720 		dma_pool_destroy(dev->prp_page_pool);
1721 		return -ENOMEM;
1722 	}
1723 	return 0;
1724 }
1725 
1726 static void nvme_release_prp_pools(struct nvme_dev *dev)
1727 {
1728 	dma_pool_destroy(dev->prp_page_pool);
1729 	dma_pool_destroy(dev->prp_small_pool);
1730 }
1731 
1732 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1733 {
1734 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1735 
1736 	put_device(dev->dev);
1737 	if (dev->tagset.tags)
1738 		blk_mq_free_tag_set(&dev->tagset);
1739 	if (dev->ctrl.admin_q)
1740 		blk_put_queue(dev->ctrl.admin_q);
1741 	kfree(dev->queues);
1742 	kfree(dev->ctrl.opal_dev);
1743 	kfree(dev);
1744 }
1745 
1746 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1747 {
1748 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1749 
1750 	kref_get(&dev->ctrl.kref);
1751 	nvme_dev_disable(dev, false);
1752 	if (!schedule_work(&dev->remove_work))
1753 		nvme_put_ctrl(&dev->ctrl);
1754 }
1755 
1756 static void nvme_reset_work(struct work_struct *work)
1757 {
1758 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1759 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1760 	int result = -ENODEV;
1761 
1762 	if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1763 		goto out;
1764 
1765 	/*
1766 	 * If we're called to reset a live controller first shut it down before
1767 	 * moving on.
1768 	 */
1769 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1770 		nvme_dev_disable(dev, false);
1771 
1772 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1773 		goto out;
1774 
1775 	result = nvme_pci_enable(dev);
1776 	if (result)
1777 		goto out;
1778 
1779 	result = nvme_configure_admin_queue(dev);
1780 	if (result)
1781 		goto out;
1782 
1783 	nvme_init_queue(dev->queues[0], 0);
1784 	result = nvme_alloc_admin_tags(dev);
1785 	if (result)
1786 		goto out;
1787 
1788 	result = nvme_init_identify(&dev->ctrl);
1789 	if (result)
1790 		goto out;
1791 
1792 	if ((dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) && !dev->ctrl.opal_dev) {
1793 		dev->ctrl.opal_dev =
1794 			init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1795 	}
1796 
1797 	if (was_suspend)
1798 		opal_unlock_from_suspend(dev->ctrl.opal_dev);
1799 
1800 	result = nvme_setup_io_queues(dev);
1801 	if (result)
1802 		goto out;
1803 
1804 	/*
1805 	 * A controller that can not execute IO typically requires user
1806 	 * intervention to correct. For such degraded controllers, the driver
1807 	 * should not submit commands the user did not request, so skip
1808 	 * registering for asynchronous event notification on this condition.
1809 	 */
1810 	if (dev->online_queues > 1)
1811 		nvme_queue_async_events(&dev->ctrl);
1812 
1813 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1814 
1815 	/*
1816 	 * Keep the controller around but remove all namespaces if we don't have
1817 	 * any working I/O queue.
1818 	 */
1819 	if (dev->online_queues < 2) {
1820 		dev_warn(dev->ctrl.device, "IO queues not created\n");
1821 		nvme_kill_queues(&dev->ctrl);
1822 		nvme_remove_namespaces(&dev->ctrl);
1823 	} else {
1824 		nvme_start_queues(&dev->ctrl);
1825 		nvme_dev_add(dev);
1826 	}
1827 
1828 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1829 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1830 		goto out;
1831 	}
1832 
1833 	if (dev->online_queues > 1)
1834 		nvme_queue_scan(&dev->ctrl);
1835 	return;
1836 
1837  out:
1838 	nvme_remove_dead_ctrl(dev, result);
1839 }
1840 
1841 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1842 {
1843 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1844 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1845 
1846 	nvme_kill_queues(&dev->ctrl);
1847 	if (pci_get_drvdata(pdev))
1848 		device_release_driver(&pdev->dev);
1849 	nvme_put_ctrl(&dev->ctrl);
1850 }
1851 
1852 static int nvme_reset(struct nvme_dev *dev)
1853 {
1854 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1855 		return -ENODEV;
1856 	if (work_busy(&dev->reset_work))
1857 		return -ENODEV;
1858 	if (!queue_work(nvme_workq, &dev->reset_work))
1859 		return -EBUSY;
1860 	return 0;
1861 }
1862 
1863 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1864 {
1865 	*val = readl(to_nvme_dev(ctrl)->bar + off);
1866 	return 0;
1867 }
1868 
1869 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1870 {
1871 	writel(val, to_nvme_dev(ctrl)->bar + off);
1872 	return 0;
1873 }
1874 
1875 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1876 {
1877 	*val = readq(to_nvme_dev(ctrl)->bar + off);
1878 	return 0;
1879 }
1880 
1881 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1882 {
1883 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1884 	int ret = nvme_reset(dev);
1885 
1886 	if (!ret)
1887 		flush_work(&dev->reset_work);
1888 	return ret;
1889 }
1890 
1891 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1892 	.name			= "pcie",
1893 	.module			= THIS_MODULE,
1894 	.reg_read32		= nvme_pci_reg_read32,
1895 	.reg_write32		= nvme_pci_reg_write32,
1896 	.reg_read64		= nvme_pci_reg_read64,
1897 	.reset_ctrl		= nvme_pci_reset_ctrl,
1898 	.free_ctrl		= nvme_pci_free_ctrl,
1899 	.submit_async_event	= nvme_pci_submit_async_event,
1900 };
1901 
1902 static int nvme_dev_map(struct nvme_dev *dev)
1903 {
1904 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1905 
1906 	if (pci_request_mem_regions(pdev, "nvme"))
1907 		return -ENODEV;
1908 
1909 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1910 	if (!dev->bar)
1911 		goto release;
1912 
1913 	return 0;
1914   release:
1915 	pci_release_mem_regions(pdev);
1916 	return -ENODEV;
1917 }
1918 
1919 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1920 {
1921 	int node, result = -ENOMEM;
1922 	struct nvme_dev *dev;
1923 
1924 	node = dev_to_node(&pdev->dev);
1925 	if (node == NUMA_NO_NODE)
1926 		set_dev_node(&pdev->dev, first_memory_node);
1927 
1928 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1929 	if (!dev)
1930 		return -ENOMEM;
1931 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1932 							GFP_KERNEL, node);
1933 	if (!dev->queues)
1934 		goto free;
1935 
1936 	dev->dev = get_device(&pdev->dev);
1937 	pci_set_drvdata(pdev, dev);
1938 
1939 	result = nvme_dev_map(dev);
1940 	if (result)
1941 		goto free;
1942 
1943 	INIT_WORK(&dev->reset_work, nvme_reset_work);
1944 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1945 	setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1946 		(unsigned long)dev);
1947 	mutex_init(&dev->shutdown_lock);
1948 	init_completion(&dev->ioq_wait);
1949 
1950 	result = nvme_setup_prp_pools(dev);
1951 	if (result)
1952 		goto put_pci;
1953 
1954 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1955 			id->driver_data);
1956 	if (result)
1957 		goto release_pools;
1958 
1959 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1960 
1961 	queue_work(nvme_workq, &dev->reset_work);
1962 	return 0;
1963 
1964  release_pools:
1965 	nvme_release_prp_pools(dev);
1966  put_pci:
1967 	put_device(dev->dev);
1968 	nvme_dev_unmap(dev);
1969  free:
1970 	kfree(dev->queues);
1971 	kfree(dev);
1972 	return result;
1973 }
1974 
1975 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1976 {
1977 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1978 
1979 	if (prepare)
1980 		nvme_dev_disable(dev, false);
1981 	else
1982 		nvme_reset(dev);
1983 }
1984 
1985 static void nvme_shutdown(struct pci_dev *pdev)
1986 {
1987 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1988 	nvme_dev_disable(dev, true);
1989 }
1990 
1991 /*
1992  * The driver's remove may be called on a device in a partially initialized
1993  * state. This function must not have any dependencies on the device state in
1994  * order to proceed.
1995  */
1996 static void nvme_remove(struct pci_dev *pdev)
1997 {
1998 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1999 
2000 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2001 
2002 	pci_set_drvdata(pdev, NULL);
2003 
2004 	if (!pci_device_is_present(pdev))
2005 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2006 
2007 	flush_work(&dev->reset_work);
2008 	nvme_uninit_ctrl(&dev->ctrl);
2009 	nvme_dev_disable(dev, true);
2010 	nvme_dev_remove_admin(dev);
2011 	nvme_free_queues(dev, 0);
2012 	nvme_release_cmb(dev);
2013 	nvme_release_prp_pools(dev);
2014 	nvme_dev_unmap(dev);
2015 	nvme_put_ctrl(&dev->ctrl);
2016 }
2017 
2018 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2019 {
2020 	int ret = 0;
2021 
2022 	if (numvfs == 0) {
2023 		if (pci_vfs_assigned(pdev)) {
2024 			dev_warn(&pdev->dev,
2025 				"Cannot disable SR-IOV VFs while assigned\n");
2026 			return -EPERM;
2027 		}
2028 		pci_disable_sriov(pdev);
2029 		return 0;
2030 	}
2031 
2032 	ret = pci_enable_sriov(pdev, numvfs);
2033 	return ret ? ret : numvfs;
2034 }
2035 
2036 #ifdef CONFIG_PM_SLEEP
2037 static int nvme_suspend(struct device *dev)
2038 {
2039 	struct pci_dev *pdev = to_pci_dev(dev);
2040 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2041 
2042 	nvme_dev_disable(ndev, true);
2043 	return 0;
2044 }
2045 
2046 static int nvme_resume(struct device *dev)
2047 {
2048 	struct pci_dev *pdev = to_pci_dev(dev);
2049 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2050 
2051 	nvme_reset(ndev);
2052 	return 0;
2053 }
2054 #endif
2055 
2056 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2057 
2058 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2059 						pci_channel_state_t state)
2060 {
2061 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2062 
2063 	/*
2064 	 * A frozen channel requires a reset. When detected, this method will
2065 	 * shutdown the controller to quiesce. The controller will be restarted
2066 	 * after the slot reset through driver's slot_reset callback.
2067 	 */
2068 	switch (state) {
2069 	case pci_channel_io_normal:
2070 		return PCI_ERS_RESULT_CAN_RECOVER;
2071 	case pci_channel_io_frozen:
2072 		dev_warn(dev->ctrl.device,
2073 			"frozen state error detected, reset controller\n");
2074 		nvme_dev_disable(dev, false);
2075 		return PCI_ERS_RESULT_NEED_RESET;
2076 	case pci_channel_io_perm_failure:
2077 		dev_warn(dev->ctrl.device,
2078 			"failure state error detected, request disconnect\n");
2079 		return PCI_ERS_RESULT_DISCONNECT;
2080 	}
2081 	return PCI_ERS_RESULT_NEED_RESET;
2082 }
2083 
2084 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2085 {
2086 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2087 
2088 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2089 	pci_restore_state(pdev);
2090 	nvme_reset(dev);
2091 	return PCI_ERS_RESULT_RECOVERED;
2092 }
2093 
2094 static void nvme_error_resume(struct pci_dev *pdev)
2095 {
2096 	pci_cleanup_aer_uncorrect_error_status(pdev);
2097 }
2098 
2099 static const struct pci_error_handlers nvme_err_handler = {
2100 	.error_detected	= nvme_error_detected,
2101 	.slot_reset	= nvme_slot_reset,
2102 	.resume		= nvme_error_resume,
2103 	.reset_notify	= nvme_reset_notify,
2104 };
2105 
2106 static const struct pci_device_id nvme_id_table[] = {
2107 	{ PCI_VDEVICE(INTEL, 0x0953),
2108 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2109 				NVME_QUIRK_DISCARD_ZEROES, },
2110 	{ PCI_VDEVICE(INTEL, 0x0a53),
2111 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2112 				NVME_QUIRK_DISCARD_ZEROES, },
2113 	{ PCI_VDEVICE(INTEL, 0x0a54),
2114 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2115 				NVME_QUIRK_DISCARD_ZEROES, },
2116 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2117 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2118 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2119 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2120 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2121 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2122 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2123 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2124 	{ 0, }
2125 };
2126 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2127 
2128 static struct pci_driver nvme_driver = {
2129 	.name		= "nvme",
2130 	.id_table	= nvme_id_table,
2131 	.probe		= nvme_probe,
2132 	.remove		= nvme_remove,
2133 	.shutdown	= nvme_shutdown,
2134 	.driver		= {
2135 		.pm	= &nvme_dev_pm_ops,
2136 	},
2137 	.sriov_configure = nvme_pci_sriov_configure,
2138 	.err_handler	= &nvme_err_handler,
2139 };
2140 
2141 static int __init nvme_init(void)
2142 {
2143 	int result;
2144 
2145 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2146 	if (!nvme_workq)
2147 		return -ENOMEM;
2148 
2149 	result = pci_register_driver(&nvme_driver);
2150 	if (result)
2151 		destroy_workqueue(nvme_workq);
2152 	return result;
2153 }
2154 
2155 static void __exit nvme_exit(void)
2156 {
2157 	pci_unregister_driver(&nvme_driver);
2158 	destroy_workqueue(nvme_workq);
2159 	_nvme_check_size();
2160 }
2161 
2162 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2163 MODULE_LICENSE("GPL");
2164 MODULE_VERSION("1.0");
2165 module_init(nvme_init);
2166 module_exit(nvme_exit);
2167