1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/errno.h> 23 #include <linux/fs.h> 24 #include <linux/genhd.h> 25 #include <linux/hdreg.h> 26 #include <linux/idr.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/timer.h> 43 #include <linux/types.h> 44 #include <linux/io-64-nonatomic-lo-hi.h> 45 #include <asm/unaligned.h> 46 #include <linux/sed-opal.h> 47 48 #include "nvme.h" 49 50 #define NVME_Q_DEPTH 1024 51 #define NVME_AQ_DEPTH 256 52 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 53 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 54 55 /* 56 * We handle AEN commands ourselves and don't even let the 57 * block layer know about them. 58 */ 59 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 60 61 static int use_threaded_interrupts; 62 module_param(use_threaded_interrupts, int, 0); 63 64 static bool use_cmb_sqes = true; 65 module_param(use_cmb_sqes, bool, 0644); 66 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 67 68 static struct workqueue_struct *nvme_workq; 69 70 struct nvme_dev; 71 struct nvme_queue; 72 73 static int nvme_reset(struct nvme_dev *dev); 74 static void nvme_process_cq(struct nvme_queue *nvmeq); 75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 76 77 /* 78 * Represents an NVM Express device. Each nvme_dev is a PCI function. 79 */ 80 struct nvme_dev { 81 struct nvme_queue **queues; 82 struct blk_mq_tag_set tagset; 83 struct blk_mq_tag_set admin_tagset; 84 u32 __iomem *dbs; 85 struct device *dev; 86 struct dma_pool *prp_page_pool; 87 struct dma_pool *prp_small_pool; 88 unsigned queue_count; 89 unsigned online_queues; 90 unsigned max_qid; 91 int q_depth; 92 u32 db_stride; 93 void __iomem *bar; 94 struct work_struct reset_work; 95 struct work_struct remove_work; 96 struct timer_list watchdog_timer; 97 struct mutex shutdown_lock; 98 bool subsystem; 99 void __iomem *cmb; 100 dma_addr_t cmb_dma_addr; 101 u64 cmb_size; 102 u32 cmbsz; 103 u32 cmbloc; 104 struct nvme_ctrl ctrl; 105 struct completion ioq_wait; 106 }; 107 108 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 109 { 110 return container_of(ctrl, struct nvme_dev, ctrl); 111 } 112 113 /* 114 * An NVM Express queue. Each device has at least two (one for admin 115 * commands and one for I/O commands). 116 */ 117 struct nvme_queue { 118 struct device *q_dmadev; 119 struct nvme_dev *dev; 120 char irqname[24]; /* nvme4294967295-65535\0 */ 121 spinlock_t q_lock; 122 struct nvme_command *sq_cmds; 123 struct nvme_command __iomem *sq_cmds_io; 124 volatile struct nvme_completion *cqes; 125 struct blk_mq_tags **tags; 126 dma_addr_t sq_dma_addr; 127 dma_addr_t cq_dma_addr; 128 u32 __iomem *q_db; 129 u16 q_depth; 130 s16 cq_vector; 131 u16 sq_tail; 132 u16 cq_head; 133 u16 qid; 134 u8 cq_phase; 135 u8 cqe_seen; 136 }; 137 138 /* 139 * The nvme_iod describes the data in an I/O, including the list of PRP 140 * entries. You can't see it in this data structure because C doesn't let 141 * me express that. Use nvme_init_iod to ensure there's enough space 142 * allocated to store the PRP list. 143 */ 144 struct nvme_iod { 145 struct nvme_request req; 146 struct nvme_queue *nvmeq; 147 int aborted; 148 int npages; /* In the PRP list. 0 means small pool in use */ 149 int nents; /* Used in scatterlist */ 150 int length; /* Of data, in bytes */ 151 dma_addr_t first_dma; 152 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 153 struct scatterlist *sg; 154 struct scatterlist inline_sg[0]; 155 }; 156 157 /* 158 * Check we didin't inadvertently grow the command struct 159 */ 160 static inline void _nvme_check_size(void) 161 { 162 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 163 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 164 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 165 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 166 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 167 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 168 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 169 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 170 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 171 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 172 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 173 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 174 } 175 176 /* 177 * Max size of iod being embedded in the request payload 178 */ 179 #define NVME_INT_PAGES 2 180 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 181 182 /* 183 * Will slightly overestimate the number of pages needed. This is OK 184 * as it only leads to a small amount of wasted memory for the lifetime of 185 * the I/O. 186 */ 187 static int nvme_npages(unsigned size, struct nvme_dev *dev) 188 { 189 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 190 dev->ctrl.page_size); 191 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 192 } 193 194 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 195 unsigned int size, unsigned int nseg) 196 { 197 return sizeof(__le64 *) * nvme_npages(size, dev) + 198 sizeof(struct scatterlist) * nseg; 199 } 200 201 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 202 { 203 return sizeof(struct nvme_iod) + 204 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 205 } 206 207 static int nvmeq_irq(struct nvme_queue *nvmeq) 208 { 209 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); 210 } 211 212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 213 unsigned int hctx_idx) 214 { 215 struct nvme_dev *dev = data; 216 struct nvme_queue *nvmeq = dev->queues[0]; 217 218 WARN_ON(hctx_idx != 0); 219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 220 WARN_ON(nvmeq->tags); 221 222 hctx->driver_data = nvmeq; 223 nvmeq->tags = &dev->admin_tagset.tags[0]; 224 return 0; 225 } 226 227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 228 { 229 struct nvme_queue *nvmeq = hctx->driver_data; 230 231 nvmeq->tags = NULL; 232 } 233 234 static int nvme_admin_init_request(void *data, struct request *req, 235 unsigned int hctx_idx, unsigned int rq_idx, 236 unsigned int numa_node) 237 { 238 struct nvme_dev *dev = data; 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 240 struct nvme_queue *nvmeq = dev->queues[0]; 241 242 BUG_ON(!nvmeq); 243 iod->nvmeq = nvmeq; 244 return 0; 245 } 246 247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 248 unsigned int hctx_idx) 249 { 250 struct nvme_dev *dev = data; 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 252 253 if (!nvmeq->tags) 254 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 255 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 257 hctx->driver_data = nvmeq; 258 return 0; 259 } 260 261 static int nvme_init_request(void *data, struct request *req, 262 unsigned int hctx_idx, unsigned int rq_idx, 263 unsigned int numa_node) 264 { 265 struct nvme_dev *dev = data; 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 268 269 BUG_ON(!nvmeq); 270 iod->nvmeq = nvmeq; 271 return 0; 272 } 273 274 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 275 { 276 struct nvme_dev *dev = set->driver_data; 277 278 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 279 } 280 281 /** 282 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 283 * @nvmeq: The queue to use 284 * @cmd: The command to send 285 * 286 * Safe to use from interrupt context 287 */ 288 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 289 struct nvme_command *cmd) 290 { 291 u16 tail = nvmeq->sq_tail; 292 293 if (nvmeq->sq_cmds_io) 294 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 295 else 296 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 297 298 if (++tail == nvmeq->q_depth) 299 tail = 0; 300 writel(tail, nvmeq->q_db); 301 nvmeq->sq_tail = tail; 302 } 303 304 static __le64 **iod_list(struct request *req) 305 { 306 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 307 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 308 } 309 310 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev) 311 { 312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 313 int nseg = blk_rq_nr_phys_segments(rq); 314 unsigned int size = blk_rq_payload_bytes(rq); 315 316 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 317 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 318 if (!iod->sg) 319 return BLK_MQ_RQ_QUEUE_BUSY; 320 } else { 321 iod->sg = iod->inline_sg; 322 } 323 324 iod->aborted = 0; 325 iod->npages = -1; 326 iod->nents = 0; 327 iod->length = size; 328 329 if (!(rq->rq_flags & RQF_DONTPREP)) { 330 rq->retries = 0; 331 rq->rq_flags |= RQF_DONTPREP; 332 } 333 return BLK_MQ_RQ_QUEUE_OK; 334 } 335 336 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 337 { 338 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 339 const int last_prp = dev->ctrl.page_size / 8 - 1; 340 int i; 341 __le64 **list = iod_list(req); 342 dma_addr_t prp_dma = iod->first_dma; 343 344 if (iod->npages == 0) 345 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 346 for (i = 0; i < iod->npages; i++) { 347 __le64 *prp_list = list[i]; 348 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 349 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 350 prp_dma = next_prp_dma; 351 } 352 353 if (iod->sg != iod->inline_sg) 354 kfree(iod->sg); 355 } 356 357 #ifdef CONFIG_BLK_DEV_INTEGRITY 358 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 359 { 360 if (be32_to_cpu(pi->ref_tag) == v) 361 pi->ref_tag = cpu_to_be32(p); 362 } 363 364 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 365 { 366 if (be32_to_cpu(pi->ref_tag) == p) 367 pi->ref_tag = cpu_to_be32(v); 368 } 369 370 /** 371 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 372 * 373 * The virtual start sector is the one that was originally submitted by the 374 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 375 * start sector may be different. Remap protection information to match the 376 * physical LBA on writes, and back to the original seed on reads. 377 * 378 * Type 0 and 3 do not have a ref tag, so no remapping required. 379 */ 380 static void nvme_dif_remap(struct request *req, 381 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 382 { 383 struct nvme_ns *ns = req->rq_disk->private_data; 384 struct bio_integrity_payload *bip; 385 struct t10_pi_tuple *pi; 386 void *p, *pmap; 387 u32 i, nlb, ts, phys, virt; 388 389 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 390 return; 391 392 bip = bio_integrity(req->bio); 393 if (!bip) 394 return; 395 396 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 397 398 p = pmap; 399 virt = bip_get_seed(bip); 400 phys = nvme_block_nr(ns, blk_rq_pos(req)); 401 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 402 ts = ns->disk->queue->integrity.tuple_size; 403 404 for (i = 0; i < nlb; i++, virt++, phys++) { 405 pi = (struct t10_pi_tuple *)p; 406 dif_swap(phys, virt, pi); 407 p += ts; 408 } 409 kunmap_atomic(pmap); 410 } 411 #else /* CONFIG_BLK_DEV_INTEGRITY */ 412 static void nvme_dif_remap(struct request *req, 413 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 414 { 415 } 416 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 417 { 418 } 419 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 420 { 421 } 422 #endif 423 424 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req) 425 { 426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 427 struct dma_pool *pool; 428 int length = blk_rq_payload_bytes(req); 429 struct scatterlist *sg = iod->sg; 430 int dma_len = sg_dma_len(sg); 431 u64 dma_addr = sg_dma_address(sg); 432 u32 page_size = dev->ctrl.page_size; 433 int offset = dma_addr & (page_size - 1); 434 __le64 *prp_list; 435 __le64 **list = iod_list(req); 436 dma_addr_t prp_dma; 437 int nprps, i; 438 439 length -= (page_size - offset); 440 if (length <= 0) 441 return true; 442 443 dma_len -= (page_size - offset); 444 if (dma_len) { 445 dma_addr += (page_size - offset); 446 } else { 447 sg = sg_next(sg); 448 dma_addr = sg_dma_address(sg); 449 dma_len = sg_dma_len(sg); 450 } 451 452 if (length <= page_size) { 453 iod->first_dma = dma_addr; 454 return true; 455 } 456 457 nprps = DIV_ROUND_UP(length, page_size); 458 if (nprps <= (256 / 8)) { 459 pool = dev->prp_small_pool; 460 iod->npages = 0; 461 } else { 462 pool = dev->prp_page_pool; 463 iod->npages = 1; 464 } 465 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 467 if (!prp_list) { 468 iod->first_dma = dma_addr; 469 iod->npages = -1; 470 return false; 471 } 472 list[0] = prp_list; 473 iod->first_dma = prp_dma; 474 i = 0; 475 for (;;) { 476 if (i == page_size >> 3) { 477 __le64 *old_prp_list = prp_list; 478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 479 if (!prp_list) 480 return false; 481 list[iod->npages++] = prp_list; 482 prp_list[0] = old_prp_list[i - 1]; 483 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 484 i = 1; 485 } 486 prp_list[i++] = cpu_to_le64(dma_addr); 487 dma_len -= page_size; 488 dma_addr += page_size; 489 length -= page_size; 490 if (length <= 0) 491 break; 492 if (dma_len > 0) 493 continue; 494 BUG_ON(dma_len < 0); 495 sg = sg_next(sg); 496 dma_addr = sg_dma_address(sg); 497 dma_len = sg_dma_len(sg); 498 } 499 500 return true; 501 } 502 503 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 504 struct nvme_command *cmnd) 505 { 506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 507 struct request_queue *q = req->q; 508 enum dma_data_direction dma_dir = rq_data_dir(req) ? 509 DMA_TO_DEVICE : DMA_FROM_DEVICE; 510 int ret = BLK_MQ_RQ_QUEUE_ERROR; 511 512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 513 iod->nents = blk_rq_map_sg(q, req, iod->sg); 514 if (!iod->nents) 515 goto out; 516 517 ret = BLK_MQ_RQ_QUEUE_BUSY; 518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 519 DMA_ATTR_NO_WARN)) 520 goto out; 521 522 if (!nvme_setup_prps(dev, req)) 523 goto out_unmap; 524 525 ret = BLK_MQ_RQ_QUEUE_ERROR; 526 if (blk_integrity_rq(req)) { 527 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 528 goto out_unmap; 529 530 sg_init_table(&iod->meta_sg, 1); 531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 532 goto out_unmap; 533 534 if (rq_data_dir(req)) 535 nvme_dif_remap(req, nvme_dif_prep); 536 537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 538 goto out_unmap; 539 } 540 541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 543 if (blk_integrity_rq(req)) 544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 545 return BLK_MQ_RQ_QUEUE_OK; 546 547 out_unmap: 548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 549 out: 550 return ret; 551 } 552 553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 554 { 555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 556 enum dma_data_direction dma_dir = rq_data_dir(req) ? 557 DMA_TO_DEVICE : DMA_FROM_DEVICE; 558 559 if (iod->nents) { 560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 561 if (blk_integrity_rq(req)) { 562 if (!rq_data_dir(req)) 563 nvme_dif_remap(req, nvme_dif_complete); 564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 565 } 566 } 567 568 nvme_cleanup_cmd(req); 569 nvme_free_iod(dev, req); 570 } 571 572 /* 573 * NOTE: ns is NULL when called on the admin queue. 574 */ 575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 576 const struct blk_mq_queue_data *bd) 577 { 578 struct nvme_ns *ns = hctx->queue->queuedata; 579 struct nvme_queue *nvmeq = hctx->driver_data; 580 struct nvme_dev *dev = nvmeq->dev; 581 struct request *req = bd->rq; 582 struct nvme_command cmnd; 583 int ret = BLK_MQ_RQ_QUEUE_OK; 584 585 /* 586 * If formated with metadata, require the block layer provide a buffer 587 * unless this namespace is formated such that the metadata can be 588 * stripped/generated by the controller with PRACT=1. 589 */ 590 if (ns && ns->ms && !blk_integrity_rq(req)) { 591 if (!(ns->pi_type && ns->ms == 8) && 592 !blk_rq_is_passthrough(req)) { 593 blk_mq_end_request(req, -EFAULT); 594 return BLK_MQ_RQ_QUEUE_OK; 595 } 596 } 597 598 ret = nvme_setup_cmd(ns, req, &cmnd); 599 if (ret != BLK_MQ_RQ_QUEUE_OK) 600 return ret; 601 602 ret = nvme_init_iod(req, dev); 603 if (ret != BLK_MQ_RQ_QUEUE_OK) 604 goto out_free_cmd; 605 606 if (blk_rq_nr_phys_segments(req)) 607 ret = nvme_map_data(dev, req, &cmnd); 608 609 if (ret != BLK_MQ_RQ_QUEUE_OK) 610 goto out_cleanup_iod; 611 612 blk_mq_start_request(req); 613 614 spin_lock_irq(&nvmeq->q_lock); 615 if (unlikely(nvmeq->cq_vector < 0)) { 616 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) 617 ret = BLK_MQ_RQ_QUEUE_BUSY; 618 else 619 ret = BLK_MQ_RQ_QUEUE_ERROR; 620 spin_unlock_irq(&nvmeq->q_lock); 621 goto out_cleanup_iod; 622 } 623 __nvme_submit_cmd(nvmeq, &cmnd); 624 nvme_process_cq(nvmeq); 625 spin_unlock_irq(&nvmeq->q_lock); 626 return BLK_MQ_RQ_QUEUE_OK; 627 out_cleanup_iod: 628 nvme_free_iod(dev, req); 629 out_free_cmd: 630 nvme_cleanup_cmd(req); 631 return ret; 632 } 633 634 static void nvme_complete_rq(struct request *req) 635 { 636 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 637 struct nvme_dev *dev = iod->nvmeq->dev; 638 int error = 0; 639 640 nvme_unmap_data(dev, req); 641 642 if (unlikely(req->errors)) { 643 if (nvme_req_needs_retry(req, req->errors)) { 644 req->retries++; 645 nvme_requeue_req(req); 646 return; 647 } 648 649 if (blk_rq_is_passthrough(req)) 650 error = req->errors; 651 else 652 error = nvme_error_status(req->errors); 653 } 654 655 if (unlikely(iod->aborted)) { 656 dev_warn(dev->ctrl.device, 657 "completing aborted command with status: %04x\n", 658 req->errors); 659 } 660 661 blk_mq_end_request(req, error); 662 } 663 664 /* We read the CQE phase first to check if the rest of the entry is valid */ 665 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 666 u16 phase) 667 { 668 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 669 } 670 671 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 672 { 673 u16 head, phase; 674 675 head = nvmeq->cq_head; 676 phase = nvmeq->cq_phase; 677 678 while (nvme_cqe_valid(nvmeq, head, phase)) { 679 struct nvme_completion cqe = nvmeq->cqes[head]; 680 struct request *req; 681 682 if (++head == nvmeq->q_depth) { 683 head = 0; 684 phase = !phase; 685 } 686 687 if (tag && *tag == cqe.command_id) 688 *tag = -1; 689 690 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 691 dev_warn(nvmeq->dev->ctrl.device, 692 "invalid id %d completed on queue %d\n", 693 cqe.command_id, le16_to_cpu(cqe.sq_id)); 694 continue; 695 } 696 697 /* 698 * AEN requests are special as they don't time out and can 699 * survive any kind of queue freeze and often don't respond to 700 * aborts. We don't even bother to allocate a struct request 701 * for them but rather special case them here. 702 */ 703 if (unlikely(nvmeq->qid == 0 && 704 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 705 nvme_complete_async_event(&nvmeq->dev->ctrl, 706 cqe.status, &cqe.result); 707 continue; 708 } 709 710 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 711 nvme_req(req)->result = cqe.result; 712 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 713 } 714 715 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 716 return; 717 718 if (likely(nvmeq->cq_vector >= 0)) 719 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 720 nvmeq->cq_head = head; 721 nvmeq->cq_phase = phase; 722 723 nvmeq->cqe_seen = 1; 724 } 725 726 static void nvme_process_cq(struct nvme_queue *nvmeq) 727 { 728 __nvme_process_cq(nvmeq, NULL); 729 } 730 731 static irqreturn_t nvme_irq(int irq, void *data) 732 { 733 irqreturn_t result; 734 struct nvme_queue *nvmeq = data; 735 spin_lock(&nvmeq->q_lock); 736 nvme_process_cq(nvmeq); 737 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 738 nvmeq->cqe_seen = 0; 739 spin_unlock(&nvmeq->q_lock); 740 return result; 741 } 742 743 static irqreturn_t nvme_irq_check(int irq, void *data) 744 { 745 struct nvme_queue *nvmeq = data; 746 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 747 return IRQ_WAKE_THREAD; 748 return IRQ_NONE; 749 } 750 751 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 752 { 753 struct nvme_queue *nvmeq = hctx->driver_data; 754 755 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 756 spin_lock_irq(&nvmeq->q_lock); 757 __nvme_process_cq(nvmeq, &tag); 758 spin_unlock_irq(&nvmeq->q_lock); 759 760 if (tag == -1) 761 return 1; 762 } 763 764 return 0; 765 } 766 767 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 768 { 769 struct nvme_dev *dev = to_nvme_dev(ctrl); 770 struct nvme_queue *nvmeq = dev->queues[0]; 771 struct nvme_command c; 772 773 memset(&c, 0, sizeof(c)); 774 c.common.opcode = nvme_admin_async_event; 775 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 776 777 spin_lock_irq(&nvmeq->q_lock); 778 __nvme_submit_cmd(nvmeq, &c); 779 spin_unlock_irq(&nvmeq->q_lock); 780 } 781 782 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 783 { 784 struct nvme_command c; 785 786 memset(&c, 0, sizeof(c)); 787 c.delete_queue.opcode = opcode; 788 c.delete_queue.qid = cpu_to_le16(id); 789 790 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 791 } 792 793 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 794 struct nvme_queue *nvmeq) 795 { 796 struct nvme_command c; 797 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 798 799 /* 800 * Note: we (ab)use the fact the the prp fields survive if no data 801 * is attached to the request. 802 */ 803 memset(&c, 0, sizeof(c)); 804 c.create_cq.opcode = nvme_admin_create_cq; 805 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 806 c.create_cq.cqid = cpu_to_le16(qid); 807 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 808 c.create_cq.cq_flags = cpu_to_le16(flags); 809 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 810 811 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 812 } 813 814 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 815 struct nvme_queue *nvmeq) 816 { 817 struct nvme_command c; 818 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 819 820 /* 821 * Note: we (ab)use the fact the the prp fields survive if no data 822 * is attached to the request. 823 */ 824 memset(&c, 0, sizeof(c)); 825 c.create_sq.opcode = nvme_admin_create_sq; 826 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 827 c.create_sq.sqid = cpu_to_le16(qid); 828 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 829 c.create_sq.sq_flags = cpu_to_le16(flags); 830 c.create_sq.cqid = cpu_to_le16(qid); 831 832 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 833 } 834 835 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 836 { 837 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 838 } 839 840 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 841 { 842 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 843 } 844 845 static void abort_endio(struct request *req, int error) 846 { 847 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 848 struct nvme_queue *nvmeq = iod->nvmeq; 849 u16 status = req->errors; 850 851 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 852 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 853 blk_mq_free_request(req); 854 } 855 856 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 857 { 858 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 859 struct nvme_queue *nvmeq = iod->nvmeq; 860 struct nvme_dev *dev = nvmeq->dev; 861 struct request *abort_req; 862 struct nvme_command cmd; 863 864 /* 865 * Shutdown immediately if controller times out while starting. The 866 * reset work will see the pci device disabled when it gets the forced 867 * cancellation error. All outstanding requests are completed on 868 * shutdown, so we return BLK_EH_HANDLED. 869 */ 870 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 871 dev_warn(dev->ctrl.device, 872 "I/O %d QID %d timeout, disable controller\n", 873 req->tag, nvmeq->qid); 874 nvme_dev_disable(dev, false); 875 req->errors = NVME_SC_CANCELLED; 876 return BLK_EH_HANDLED; 877 } 878 879 /* 880 * Shutdown the controller immediately and schedule a reset if the 881 * command was already aborted once before and still hasn't been 882 * returned to the driver, or if this is the admin queue. 883 */ 884 if (!nvmeq->qid || iod->aborted) { 885 dev_warn(dev->ctrl.device, 886 "I/O %d QID %d timeout, reset controller\n", 887 req->tag, nvmeq->qid); 888 nvme_dev_disable(dev, false); 889 nvme_reset(dev); 890 891 /* 892 * Mark the request as handled, since the inline shutdown 893 * forces all outstanding requests to complete. 894 */ 895 req->errors = NVME_SC_CANCELLED; 896 return BLK_EH_HANDLED; 897 } 898 899 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 900 atomic_inc(&dev->ctrl.abort_limit); 901 return BLK_EH_RESET_TIMER; 902 } 903 iod->aborted = 1; 904 905 memset(&cmd, 0, sizeof(cmd)); 906 cmd.abort.opcode = nvme_admin_abort_cmd; 907 cmd.abort.cid = req->tag; 908 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 909 910 dev_warn(nvmeq->dev->ctrl.device, 911 "I/O %d QID %d timeout, aborting\n", 912 req->tag, nvmeq->qid); 913 914 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 915 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 916 if (IS_ERR(abort_req)) { 917 atomic_inc(&dev->ctrl.abort_limit); 918 return BLK_EH_RESET_TIMER; 919 } 920 921 abort_req->timeout = ADMIN_TIMEOUT; 922 abort_req->end_io_data = NULL; 923 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 924 925 /* 926 * The aborted req will be completed on receiving the abort req. 927 * We enable the timer again. If hit twice, it'll cause a device reset, 928 * as the device then is in a faulty state. 929 */ 930 return BLK_EH_RESET_TIMER; 931 } 932 933 static void nvme_free_queue(struct nvme_queue *nvmeq) 934 { 935 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 936 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 937 if (nvmeq->sq_cmds) 938 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 939 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 940 kfree(nvmeq); 941 } 942 943 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 944 { 945 int i; 946 947 for (i = dev->queue_count - 1; i >= lowest; i--) { 948 struct nvme_queue *nvmeq = dev->queues[i]; 949 dev->queue_count--; 950 dev->queues[i] = NULL; 951 nvme_free_queue(nvmeq); 952 } 953 } 954 955 /** 956 * nvme_suspend_queue - put queue into suspended state 957 * @nvmeq - queue to suspend 958 */ 959 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 960 { 961 int vector; 962 963 spin_lock_irq(&nvmeq->q_lock); 964 if (nvmeq->cq_vector == -1) { 965 spin_unlock_irq(&nvmeq->q_lock); 966 return 1; 967 } 968 vector = nvmeq_irq(nvmeq); 969 nvmeq->dev->online_queues--; 970 nvmeq->cq_vector = -1; 971 spin_unlock_irq(&nvmeq->q_lock); 972 973 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 974 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 975 976 free_irq(vector, nvmeq); 977 978 return 0; 979 } 980 981 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 982 { 983 struct nvme_queue *nvmeq = dev->queues[0]; 984 985 if (!nvmeq) 986 return; 987 if (nvme_suspend_queue(nvmeq)) 988 return; 989 990 if (shutdown) 991 nvme_shutdown_ctrl(&dev->ctrl); 992 else 993 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 994 dev->bar + NVME_REG_CAP)); 995 996 spin_lock_irq(&nvmeq->q_lock); 997 nvme_process_cq(nvmeq); 998 spin_unlock_irq(&nvmeq->q_lock); 999 } 1000 1001 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1002 int entry_size) 1003 { 1004 int q_depth = dev->q_depth; 1005 unsigned q_size_aligned = roundup(q_depth * entry_size, 1006 dev->ctrl.page_size); 1007 1008 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1009 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1010 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1011 q_depth = div_u64(mem_per_q, entry_size); 1012 1013 /* 1014 * Ensure the reduced q_depth is above some threshold where it 1015 * would be better to map queues in system memory with the 1016 * original depth 1017 */ 1018 if (q_depth < 64) 1019 return -ENOMEM; 1020 } 1021 1022 return q_depth; 1023 } 1024 1025 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1026 int qid, int depth) 1027 { 1028 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1029 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1030 dev->ctrl.page_size); 1031 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1032 nvmeq->sq_cmds_io = dev->cmb + offset; 1033 } else { 1034 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1035 &nvmeq->sq_dma_addr, GFP_KERNEL); 1036 if (!nvmeq->sq_cmds) 1037 return -ENOMEM; 1038 } 1039 1040 return 0; 1041 } 1042 1043 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1044 int depth) 1045 { 1046 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1047 if (!nvmeq) 1048 return NULL; 1049 1050 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1051 &nvmeq->cq_dma_addr, GFP_KERNEL); 1052 if (!nvmeq->cqes) 1053 goto free_nvmeq; 1054 1055 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1056 goto free_cqdma; 1057 1058 nvmeq->q_dmadev = dev->dev; 1059 nvmeq->dev = dev; 1060 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1061 dev->ctrl.instance, qid); 1062 spin_lock_init(&nvmeq->q_lock); 1063 nvmeq->cq_head = 0; 1064 nvmeq->cq_phase = 1; 1065 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1066 nvmeq->q_depth = depth; 1067 nvmeq->qid = qid; 1068 nvmeq->cq_vector = -1; 1069 dev->queues[qid] = nvmeq; 1070 dev->queue_count++; 1071 1072 return nvmeq; 1073 1074 free_cqdma: 1075 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1076 nvmeq->cq_dma_addr); 1077 free_nvmeq: 1078 kfree(nvmeq); 1079 return NULL; 1080 } 1081 1082 static int queue_request_irq(struct nvme_queue *nvmeq) 1083 { 1084 if (use_threaded_interrupts) 1085 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, 1086 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); 1087 else 1088 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, 1089 nvmeq->irqname, nvmeq); 1090 } 1091 1092 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1093 { 1094 struct nvme_dev *dev = nvmeq->dev; 1095 1096 spin_lock_irq(&nvmeq->q_lock); 1097 nvmeq->sq_tail = 0; 1098 nvmeq->cq_head = 0; 1099 nvmeq->cq_phase = 1; 1100 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1101 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1102 dev->online_queues++; 1103 spin_unlock_irq(&nvmeq->q_lock); 1104 } 1105 1106 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1107 { 1108 struct nvme_dev *dev = nvmeq->dev; 1109 int result; 1110 1111 nvmeq->cq_vector = qid - 1; 1112 result = adapter_alloc_cq(dev, qid, nvmeq); 1113 if (result < 0) 1114 return result; 1115 1116 result = adapter_alloc_sq(dev, qid, nvmeq); 1117 if (result < 0) 1118 goto release_cq; 1119 1120 result = queue_request_irq(nvmeq); 1121 if (result < 0) 1122 goto release_sq; 1123 1124 nvme_init_queue(nvmeq, qid); 1125 return result; 1126 1127 release_sq: 1128 adapter_delete_sq(dev, qid); 1129 release_cq: 1130 adapter_delete_cq(dev, qid); 1131 return result; 1132 } 1133 1134 static struct blk_mq_ops nvme_mq_admin_ops = { 1135 .queue_rq = nvme_queue_rq, 1136 .complete = nvme_complete_rq, 1137 .init_hctx = nvme_admin_init_hctx, 1138 .exit_hctx = nvme_admin_exit_hctx, 1139 .init_request = nvme_admin_init_request, 1140 .timeout = nvme_timeout, 1141 }; 1142 1143 static struct blk_mq_ops nvme_mq_ops = { 1144 .queue_rq = nvme_queue_rq, 1145 .complete = nvme_complete_rq, 1146 .init_hctx = nvme_init_hctx, 1147 .init_request = nvme_init_request, 1148 .map_queues = nvme_pci_map_queues, 1149 .timeout = nvme_timeout, 1150 .poll = nvme_poll, 1151 }; 1152 1153 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1154 { 1155 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1156 /* 1157 * If the controller was reset during removal, it's possible 1158 * user requests may be waiting on a stopped queue. Start the 1159 * queue to flush these to completion. 1160 */ 1161 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1162 blk_cleanup_queue(dev->ctrl.admin_q); 1163 blk_mq_free_tag_set(&dev->admin_tagset); 1164 } 1165 } 1166 1167 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1168 { 1169 if (!dev->ctrl.admin_q) { 1170 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1171 dev->admin_tagset.nr_hw_queues = 1; 1172 1173 /* 1174 * Subtract one to leave an empty queue entry for 'Full Queue' 1175 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1176 */ 1177 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1178 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1179 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1180 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1181 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1182 dev->admin_tagset.driver_data = dev; 1183 1184 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1185 return -ENOMEM; 1186 1187 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1188 if (IS_ERR(dev->ctrl.admin_q)) { 1189 blk_mq_free_tag_set(&dev->admin_tagset); 1190 return -ENOMEM; 1191 } 1192 if (!blk_get_queue(dev->ctrl.admin_q)) { 1193 nvme_dev_remove_admin(dev); 1194 dev->ctrl.admin_q = NULL; 1195 return -ENODEV; 1196 } 1197 } else 1198 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1199 1200 return 0; 1201 } 1202 1203 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1204 { 1205 int result; 1206 u32 aqa; 1207 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1208 struct nvme_queue *nvmeq; 1209 1210 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1211 NVME_CAP_NSSRC(cap) : 0; 1212 1213 if (dev->subsystem && 1214 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1215 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1216 1217 result = nvme_disable_ctrl(&dev->ctrl, cap); 1218 if (result < 0) 1219 return result; 1220 1221 nvmeq = dev->queues[0]; 1222 if (!nvmeq) { 1223 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1224 if (!nvmeq) 1225 return -ENOMEM; 1226 } 1227 1228 aqa = nvmeq->q_depth - 1; 1229 aqa |= aqa << 16; 1230 1231 writel(aqa, dev->bar + NVME_REG_AQA); 1232 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1233 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1234 1235 result = nvme_enable_ctrl(&dev->ctrl, cap); 1236 if (result) 1237 return result; 1238 1239 nvmeq->cq_vector = 0; 1240 result = queue_request_irq(nvmeq); 1241 if (result) { 1242 nvmeq->cq_vector = -1; 1243 return result; 1244 } 1245 1246 return result; 1247 } 1248 1249 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1250 { 1251 1252 /* If true, indicates loss of adapter communication, possibly by a 1253 * NVMe Subsystem reset. 1254 */ 1255 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1256 1257 /* If there is a reset ongoing, we shouldn't reset again. */ 1258 if (work_busy(&dev->reset_work)) 1259 return false; 1260 1261 /* We shouldn't reset unless the controller is on fatal error state 1262 * _or_ if we lost the communication with it. 1263 */ 1264 if (!(csts & NVME_CSTS_CFS) && !nssro) 1265 return false; 1266 1267 /* If PCI error recovery process is happening, we cannot reset or 1268 * the recovery mechanism will surely fail. 1269 */ 1270 if (pci_channel_offline(to_pci_dev(dev->dev))) 1271 return false; 1272 1273 return true; 1274 } 1275 1276 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1277 { 1278 /* Read a config register to help see what died. */ 1279 u16 pci_status; 1280 int result; 1281 1282 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1283 &pci_status); 1284 if (result == PCIBIOS_SUCCESSFUL) 1285 dev_warn(dev->dev, 1286 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1287 csts, pci_status); 1288 else 1289 dev_warn(dev->dev, 1290 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1291 csts, result); 1292 } 1293 1294 static void nvme_watchdog_timer(unsigned long data) 1295 { 1296 struct nvme_dev *dev = (struct nvme_dev *)data; 1297 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1298 1299 /* Skip controllers under certain specific conditions. */ 1300 if (nvme_should_reset(dev, csts)) { 1301 if (!nvme_reset(dev)) 1302 nvme_warn_reset(dev, csts); 1303 return; 1304 } 1305 1306 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1307 } 1308 1309 static int nvme_create_io_queues(struct nvme_dev *dev) 1310 { 1311 unsigned i, max; 1312 int ret = 0; 1313 1314 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1315 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1316 ret = -ENOMEM; 1317 break; 1318 } 1319 } 1320 1321 max = min(dev->max_qid, dev->queue_count - 1); 1322 for (i = dev->online_queues; i <= max; i++) { 1323 ret = nvme_create_queue(dev->queues[i], i); 1324 if (ret) 1325 break; 1326 } 1327 1328 /* 1329 * Ignore failing Create SQ/CQ commands, we can continue with less 1330 * than the desired aount of queues, and even a controller without 1331 * I/O queues an still be used to issue admin commands. This might 1332 * be useful to upgrade a buggy firmware for example. 1333 */ 1334 return ret >= 0 ? 0 : ret; 1335 } 1336 1337 static ssize_t nvme_cmb_show(struct device *dev, 1338 struct device_attribute *attr, 1339 char *buf) 1340 { 1341 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1342 1343 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1344 ndev->cmbloc, ndev->cmbsz); 1345 } 1346 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1347 1348 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1349 { 1350 u64 szu, size, offset; 1351 resource_size_t bar_size; 1352 struct pci_dev *pdev = to_pci_dev(dev->dev); 1353 void __iomem *cmb; 1354 dma_addr_t dma_addr; 1355 1356 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1357 if (!(NVME_CMB_SZ(dev->cmbsz))) 1358 return NULL; 1359 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1360 1361 if (!use_cmb_sqes) 1362 return NULL; 1363 1364 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1365 size = szu * NVME_CMB_SZ(dev->cmbsz); 1366 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1367 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1368 1369 if (offset > bar_size) 1370 return NULL; 1371 1372 /* 1373 * Controllers may support a CMB size larger than their BAR, 1374 * for example, due to being behind a bridge. Reduce the CMB to 1375 * the reported size of the BAR 1376 */ 1377 if (size > bar_size - offset) 1378 size = bar_size - offset; 1379 1380 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1381 cmb = ioremap_wc(dma_addr, size); 1382 if (!cmb) 1383 return NULL; 1384 1385 dev->cmb_dma_addr = dma_addr; 1386 dev->cmb_size = size; 1387 return cmb; 1388 } 1389 1390 static inline void nvme_release_cmb(struct nvme_dev *dev) 1391 { 1392 if (dev->cmb) { 1393 iounmap(dev->cmb); 1394 dev->cmb = NULL; 1395 } 1396 } 1397 1398 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1399 { 1400 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1401 } 1402 1403 static int nvme_setup_io_queues(struct nvme_dev *dev) 1404 { 1405 struct nvme_queue *adminq = dev->queues[0]; 1406 struct pci_dev *pdev = to_pci_dev(dev->dev); 1407 int result, nr_io_queues, size; 1408 1409 nr_io_queues = num_online_cpus(); 1410 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1411 if (result < 0) 1412 return result; 1413 1414 if (nr_io_queues == 0) 1415 return 0; 1416 1417 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1418 result = nvme_cmb_qdepth(dev, nr_io_queues, 1419 sizeof(struct nvme_command)); 1420 if (result > 0) 1421 dev->q_depth = result; 1422 else 1423 nvme_release_cmb(dev); 1424 } 1425 1426 size = db_bar_size(dev, nr_io_queues); 1427 if (size > 8192) { 1428 iounmap(dev->bar); 1429 do { 1430 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1431 if (dev->bar) 1432 break; 1433 if (!--nr_io_queues) 1434 return -ENOMEM; 1435 size = db_bar_size(dev, nr_io_queues); 1436 } while (1); 1437 dev->dbs = dev->bar + 4096; 1438 adminq->q_db = dev->dbs; 1439 } 1440 1441 /* Deregister the admin queue's interrupt */ 1442 free_irq(pci_irq_vector(pdev, 0), adminq); 1443 1444 /* 1445 * If we enable msix early due to not intx, disable it again before 1446 * setting up the full range we need. 1447 */ 1448 pci_free_irq_vectors(pdev); 1449 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1450 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1451 if (nr_io_queues <= 0) 1452 return -EIO; 1453 dev->max_qid = nr_io_queues; 1454 1455 /* 1456 * Should investigate if there's a performance win from allocating 1457 * more queues than interrupt vectors; it might allow the submission 1458 * path to scale better, even if the receive path is limited by the 1459 * number of interrupts. 1460 */ 1461 1462 result = queue_request_irq(adminq); 1463 if (result) { 1464 adminq->cq_vector = -1; 1465 return result; 1466 } 1467 return nvme_create_io_queues(dev); 1468 } 1469 1470 static void nvme_del_queue_end(struct request *req, int error) 1471 { 1472 struct nvme_queue *nvmeq = req->end_io_data; 1473 1474 blk_mq_free_request(req); 1475 complete(&nvmeq->dev->ioq_wait); 1476 } 1477 1478 static void nvme_del_cq_end(struct request *req, int error) 1479 { 1480 struct nvme_queue *nvmeq = req->end_io_data; 1481 1482 if (!error) { 1483 unsigned long flags; 1484 1485 /* 1486 * We might be called with the AQ q_lock held 1487 * and the I/O queue q_lock should always 1488 * nest inside the AQ one. 1489 */ 1490 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1491 SINGLE_DEPTH_NESTING); 1492 nvme_process_cq(nvmeq); 1493 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1494 } 1495 1496 nvme_del_queue_end(req, error); 1497 } 1498 1499 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1500 { 1501 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1502 struct request *req; 1503 struct nvme_command cmd; 1504 1505 memset(&cmd, 0, sizeof(cmd)); 1506 cmd.delete_queue.opcode = opcode; 1507 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1508 1509 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1510 if (IS_ERR(req)) 1511 return PTR_ERR(req); 1512 1513 req->timeout = ADMIN_TIMEOUT; 1514 req->end_io_data = nvmeq; 1515 1516 blk_execute_rq_nowait(q, NULL, req, false, 1517 opcode == nvme_admin_delete_cq ? 1518 nvme_del_cq_end : nvme_del_queue_end); 1519 return 0; 1520 } 1521 1522 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1523 { 1524 int pass; 1525 unsigned long timeout; 1526 u8 opcode = nvme_admin_delete_sq; 1527 1528 for (pass = 0; pass < 2; pass++) { 1529 int sent = 0, i = queues; 1530 1531 reinit_completion(&dev->ioq_wait); 1532 retry: 1533 timeout = ADMIN_TIMEOUT; 1534 for (; i > 0; i--, sent++) 1535 if (nvme_delete_queue(dev->queues[i], opcode)) 1536 break; 1537 1538 while (sent--) { 1539 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1540 if (timeout == 0) 1541 return; 1542 if (i) 1543 goto retry; 1544 } 1545 opcode = nvme_admin_delete_cq; 1546 } 1547 } 1548 1549 /* 1550 * Return: error value if an error occurred setting up the queues or calling 1551 * Identify Device. 0 if these succeeded, even if adding some of the 1552 * namespaces failed. At the moment, these failures are silent. TBD which 1553 * failures should be reported. 1554 */ 1555 static int nvme_dev_add(struct nvme_dev *dev) 1556 { 1557 if (!dev->ctrl.tagset) { 1558 dev->tagset.ops = &nvme_mq_ops; 1559 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1560 dev->tagset.timeout = NVME_IO_TIMEOUT; 1561 dev->tagset.numa_node = dev_to_node(dev->dev); 1562 dev->tagset.queue_depth = 1563 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1564 dev->tagset.cmd_size = nvme_cmd_size(dev); 1565 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1566 dev->tagset.driver_data = dev; 1567 1568 if (blk_mq_alloc_tag_set(&dev->tagset)) 1569 return 0; 1570 dev->ctrl.tagset = &dev->tagset; 1571 } else { 1572 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1573 1574 /* Free previously allocated queues that are no longer usable */ 1575 nvme_free_queues(dev, dev->online_queues); 1576 } 1577 1578 return 0; 1579 } 1580 1581 static int nvme_pci_enable(struct nvme_dev *dev) 1582 { 1583 u64 cap; 1584 int result = -ENOMEM; 1585 struct pci_dev *pdev = to_pci_dev(dev->dev); 1586 1587 if (pci_enable_device_mem(pdev)) 1588 return result; 1589 1590 pci_set_master(pdev); 1591 1592 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1593 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1594 goto disable; 1595 1596 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1597 result = -ENODEV; 1598 goto disable; 1599 } 1600 1601 /* 1602 * Some devices and/or platforms don't advertise or work with INTx 1603 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1604 * adjust this later. 1605 */ 1606 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1607 if (result < 0) 1608 return result; 1609 1610 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1611 1612 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1613 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1614 dev->dbs = dev->bar + 4096; 1615 1616 /* 1617 * Temporary fix for the Apple controller found in the MacBook8,1 and 1618 * some MacBook7,1 to avoid controller resets and data loss. 1619 */ 1620 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1621 dev->q_depth = 2; 1622 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1623 "queue depth=%u to work around controller resets\n", 1624 dev->q_depth); 1625 } 1626 1627 /* 1628 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1629 * populate sysfs if a CMB is implemented. Note that we add the 1630 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1631 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1632 * NULL as final argument to sysfs_add_file_to_group. 1633 */ 1634 1635 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1636 dev->cmb = nvme_map_cmb(dev); 1637 1638 if (dev->cmbsz) { 1639 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1640 &dev_attr_cmb.attr, NULL)) 1641 dev_warn(dev->dev, 1642 "failed to add sysfs attribute for CMB\n"); 1643 } 1644 } 1645 1646 pci_enable_pcie_error_reporting(pdev); 1647 pci_save_state(pdev); 1648 return 0; 1649 1650 disable: 1651 pci_disable_device(pdev); 1652 return result; 1653 } 1654 1655 static void nvme_dev_unmap(struct nvme_dev *dev) 1656 { 1657 if (dev->bar) 1658 iounmap(dev->bar); 1659 pci_release_mem_regions(to_pci_dev(dev->dev)); 1660 } 1661 1662 static void nvme_pci_disable(struct nvme_dev *dev) 1663 { 1664 struct pci_dev *pdev = to_pci_dev(dev->dev); 1665 1666 pci_free_irq_vectors(pdev); 1667 1668 if (pci_is_enabled(pdev)) { 1669 pci_disable_pcie_error_reporting(pdev); 1670 pci_disable_device(pdev); 1671 } 1672 } 1673 1674 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1675 { 1676 int i, queues; 1677 u32 csts = -1; 1678 1679 del_timer_sync(&dev->watchdog_timer); 1680 1681 mutex_lock(&dev->shutdown_lock); 1682 if (pci_is_enabled(to_pci_dev(dev->dev))) { 1683 nvme_stop_queues(&dev->ctrl); 1684 csts = readl(dev->bar + NVME_REG_CSTS); 1685 } 1686 1687 queues = dev->online_queues - 1; 1688 for (i = dev->queue_count - 1; i > 0; i--) 1689 nvme_suspend_queue(dev->queues[i]); 1690 1691 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1692 /* A device might become IO incapable very soon during 1693 * probe, before the admin queue is configured. Thus, 1694 * queue_count can be 0 here. 1695 */ 1696 if (dev->queue_count) 1697 nvme_suspend_queue(dev->queues[0]); 1698 } else { 1699 nvme_disable_io_queues(dev, queues); 1700 nvme_disable_admin_queue(dev, shutdown); 1701 } 1702 nvme_pci_disable(dev); 1703 1704 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1705 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1706 mutex_unlock(&dev->shutdown_lock); 1707 } 1708 1709 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1710 { 1711 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1712 PAGE_SIZE, PAGE_SIZE, 0); 1713 if (!dev->prp_page_pool) 1714 return -ENOMEM; 1715 1716 /* Optimisation for I/Os between 4k and 128k */ 1717 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1718 256, 256, 0); 1719 if (!dev->prp_small_pool) { 1720 dma_pool_destroy(dev->prp_page_pool); 1721 return -ENOMEM; 1722 } 1723 return 0; 1724 } 1725 1726 static void nvme_release_prp_pools(struct nvme_dev *dev) 1727 { 1728 dma_pool_destroy(dev->prp_page_pool); 1729 dma_pool_destroy(dev->prp_small_pool); 1730 } 1731 1732 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1733 { 1734 struct nvme_dev *dev = to_nvme_dev(ctrl); 1735 1736 put_device(dev->dev); 1737 if (dev->tagset.tags) 1738 blk_mq_free_tag_set(&dev->tagset); 1739 if (dev->ctrl.admin_q) 1740 blk_put_queue(dev->ctrl.admin_q); 1741 kfree(dev->queues); 1742 kfree(dev->ctrl.opal_dev); 1743 kfree(dev); 1744 } 1745 1746 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1747 { 1748 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1749 1750 kref_get(&dev->ctrl.kref); 1751 nvme_dev_disable(dev, false); 1752 if (!schedule_work(&dev->remove_work)) 1753 nvme_put_ctrl(&dev->ctrl); 1754 } 1755 1756 static void nvme_reset_work(struct work_struct *work) 1757 { 1758 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1759 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 1760 int result = -ENODEV; 1761 1762 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1763 goto out; 1764 1765 /* 1766 * If we're called to reset a live controller first shut it down before 1767 * moving on. 1768 */ 1769 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1770 nvme_dev_disable(dev, false); 1771 1772 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1773 goto out; 1774 1775 result = nvme_pci_enable(dev); 1776 if (result) 1777 goto out; 1778 1779 result = nvme_configure_admin_queue(dev); 1780 if (result) 1781 goto out; 1782 1783 nvme_init_queue(dev->queues[0], 0); 1784 result = nvme_alloc_admin_tags(dev); 1785 if (result) 1786 goto out; 1787 1788 result = nvme_init_identify(&dev->ctrl); 1789 if (result) 1790 goto out; 1791 1792 if ((dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) && !dev->ctrl.opal_dev) { 1793 dev->ctrl.opal_dev = 1794 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 1795 } 1796 1797 if (was_suspend) 1798 opal_unlock_from_suspend(dev->ctrl.opal_dev); 1799 1800 result = nvme_setup_io_queues(dev); 1801 if (result) 1802 goto out; 1803 1804 /* 1805 * A controller that can not execute IO typically requires user 1806 * intervention to correct. For such degraded controllers, the driver 1807 * should not submit commands the user did not request, so skip 1808 * registering for asynchronous event notification on this condition. 1809 */ 1810 if (dev->online_queues > 1) 1811 nvme_queue_async_events(&dev->ctrl); 1812 1813 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1814 1815 /* 1816 * Keep the controller around but remove all namespaces if we don't have 1817 * any working I/O queue. 1818 */ 1819 if (dev->online_queues < 2) { 1820 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1821 nvme_kill_queues(&dev->ctrl); 1822 nvme_remove_namespaces(&dev->ctrl); 1823 } else { 1824 nvme_start_queues(&dev->ctrl); 1825 nvme_dev_add(dev); 1826 } 1827 1828 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1829 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1830 goto out; 1831 } 1832 1833 if (dev->online_queues > 1) 1834 nvme_queue_scan(&dev->ctrl); 1835 return; 1836 1837 out: 1838 nvme_remove_dead_ctrl(dev, result); 1839 } 1840 1841 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1842 { 1843 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1844 struct pci_dev *pdev = to_pci_dev(dev->dev); 1845 1846 nvme_kill_queues(&dev->ctrl); 1847 if (pci_get_drvdata(pdev)) 1848 device_release_driver(&pdev->dev); 1849 nvme_put_ctrl(&dev->ctrl); 1850 } 1851 1852 static int nvme_reset(struct nvme_dev *dev) 1853 { 1854 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1855 return -ENODEV; 1856 if (work_busy(&dev->reset_work)) 1857 return -ENODEV; 1858 if (!queue_work(nvme_workq, &dev->reset_work)) 1859 return -EBUSY; 1860 return 0; 1861 } 1862 1863 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1864 { 1865 *val = readl(to_nvme_dev(ctrl)->bar + off); 1866 return 0; 1867 } 1868 1869 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1870 { 1871 writel(val, to_nvme_dev(ctrl)->bar + off); 1872 return 0; 1873 } 1874 1875 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1876 { 1877 *val = readq(to_nvme_dev(ctrl)->bar + off); 1878 return 0; 1879 } 1880 1881 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1882 { 1883 struct nvme_dev *dev = to_nvme_dev(ctrl); 1884 int ret = nvme_reset(dev); 1885 1886 if (!ret) 1887 flush_work(&dev->reset_work); 1888 return ret; 1889 } 1890 1891 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1892 .name = "pcie", 1893 .module = THIS_MODULE, 1894 .reg_read32 = nvme_pci_reg_read32, 1895 .reg_write32 = nvme_pci_reg_write32, 1896 .reg_read64 = nvme_pci_reg_read64, 1897 .reset_ctrl = nvme_pci_reset_ctrl, 1898 .free_ctrl = nvme_pci_free_ctrl, 1899 .submit_async_event = nvme_pci_submit_async_event, 1900 }; 1901 1902 static int nvme_dev_map(struct nvme_dev *dev) 1903 { 1904 struct pci_dev *pdev = to_pci_dev(dev->dev); 1905 1906 if (pci_request_mem_regions(pdev, "nvme")) 1907 return -ENODEV; 1908 1909 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1910 if (!dev->bar) 1911 goto release; 1912 1913 return 0; 1914 release: 1915 pci_release_mem_regions(pdev); 1916 return -ENODEV; 1917 } 1918 1919 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1920 { 1921 int node, result = -ENOMEM; 1922 struct nvme_dev *dev; 1923 1924 node = dev_to_node(&pdev->dev); 1925 if (node == NUMA_NO_NODE) 1926 set_dev_node(&pdev->dev, first_memory_node); 1927 1928 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 1929 if (!dev) 1930 return -ENOMEM; 1931 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 1932 GFP_KERNEL, node); 1933 if (!dev->queues) 1934 goto free; 1935 1936 dev->dev = get_device(&pdev->dev); 1937 pci_set_drvdata(pdev, dev); 1938 1939 result = nvme_dev_map(dev); 1940 if (result) 1941 goto free; 1942 1943 INIT_WORK(&dev->reset_work, nvme_reset_work); 1944 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 1945 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 1946 (unsigned long)dev); 1947 mutex_init(&dev->shutdown_lock); 1948 init_completion(&dev->ioq_wait); 1949 1950 result = nvme_setup_prp_pools(dev); 1951 if (result) 1952 goto put_pci; 1953 1954 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 1955 id->driver_data); 1956 if (result) 1957 goto release_pools; 1958 1959 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 1960 1961 queue_work(nvme_workq, &dev->reset_work); 1962 return 0; 1963 1964 release_pools: 1965 nvme_release_prp_pools(dev); 1966 put_pci: 1967 put_device(dev->dev); 1968 nvme_dev_unmap(dev); 1969 free: 1970 kfree(dev->queues); 1971 kfree(dev); 1972 return result; 1973 } 1974 1975 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 1976 { 1977 struct nvme_dev *dev = pci_get_drvdata(pdev); 1978 1979 if (prepare) 1980 nvme_dev_disable(dev, false); 1981 else 1982 nvme_reset(dev); 1983 } 1984 1985 static void nvme_shutdown(struct pci_dev *pdev) 1986 { 1987 struct nvme_dev *dev = pci_get_drvdata(pdev); 1988 nvme_dev_disable(dev, true); 1989 } 1990 1991 /* 1992 * The driver's remove may be called on a device in a partially initialized 1993 * state. This function must not have any dependencies on the device state in 1994 * order to proceed. 1995 */ 1996 static void nvme_remove(struct pci_dev *pdev) 1997 { 1998 struct nvme_dev *dev = pci_get_drvdata(pdev); 1999 2000 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2001 2002 pci_set_drvdata(pdev, NULL); 2003 2004 if (!pci_device_is_present(pdev)) 2005 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2006 2007 flush_work(&dev->reset_work); 2008 nvme_uninit_ctrl(&dev->ctrl); 2009 nvme_dev_disable(dev, true); 2010 nvme_dev_remove_admin(dev); 2011 nvme_free_queues(dev, 0); 2012 nvme_release_cmb(dev); 2013 nvme_release_prp_pools(dev); 2014 nvme_dev_unmap(dev); 2015 nvme_put_ctrl(&dev->ctrl); 2016 } 2017 2018 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2019 { 2020 int ret = 0; 2021 2022 if (numvfs == 0) { 2023 if (pci_vfs_assigned(pdev)) { 2024 dev_warn(&pdev->dev, 2025 "Cannot disable SR-IOV VFs while assigned\n"); 2026 return -EPERM; 2027 } 2028 pci_disable_sriov(pdev); 2029 return 0; 2030 } 2031 2032 ret = pci_enable_sriov(pdev, numvfs); 2033 return ret ? ret : numvfs; 2034 } 2035 2036 #ifdef CONFIG_PM_SLEEP 2037 static int nvme_suspend(struct device *dev) 2038 { 2039 struct pci_dev *pdev = to_pci_dev(dev); 2040 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2041 2042 nvme_dev_disable(ndev, true); 2043 return 0; 2044 } 2045 2046 static int nvme_resume(struct device *dev) 2047 { 2048 struct pci_dev *pdev = to_pci_dev(dev); 2049 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2050 2051 nvme_reset(ndev); 2052 return 0; 2053 } 2054 #endif 2055 2056 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2057 2058 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2059 pci_channel_state_t state) 2060 { 2061 struct nvme_dev *dev = pci_get_drvdata(pdev); 2062 2063 /* 2064 * A frozen channel requires a reset. When detected, this method will 2065 * shutdown the controller to quiesce. The controller will be restarted 2066 * after the slot reset through driver's slot_reset callback. 2067 */ 2068 switch (state) { 2069 case pci_channel_io_normal: 2070 return PCI_ERS_RESULT_CAN_RECOVER; 2071 case pci_channel_io_frozen: 2072 dev_warn(dev->ctrl.device, 2073 "frozen state error detected, reset controller\n"); 2074 nvme_dev_disable(dev, false); 2075 return PCI_ERS_RESULT_NEED_RESET; 2076 case pci_channel_io_perm_failure: 2077 dev_warn(dev->ctrl.device, 2078 "failure state error detected, request disconnect\n"); 2079 return PCI_ERS_RESULT_DISCONNECT; 2080 } 2081 return PCI_ERS_RESULT_NEED_RESET; 2082 } 2083 2084 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2085 { 2086 struct nvme_dev *dev = pci_get_drvdata(pdev); 2087 2088 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2089 pci_restore_state(pdev); 2090 nvme_reset(dev); 2091 return PCI_ERS_RESULT_RECOVERED; 2092 } 2093 2094 static void nvme_error_resume(struct pci_dev *pdev) 2095 { 2096 pci_cleanup_aer_uncorrect_error_status(pdev); 2097 } 2098 2099 static const struct pci_error_handlers nvme_err_handler = { 2100 .error_detected = nvme_error_detected, 2101 .slot_reset = nvme_slot_reset, 2102 .resume = nvme_error_resume, 2103 .reset_notify = nvme_reset_notify, 2104 }; 2105 2106 static const struct pci_device_id nvme_id_table[] = { 2107 { PCI_VDEVICE(INTEL, 0x0953), 2108 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2109 NVME_QUIRK_DISCARD_ZEROES, }, 2110 { PCI_VDEVICE(INTEL, 0x0a53), 2111 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2112 NVME_QUIRK_DISCARD_ZEROES, }, 2113 { PCI_VDEVICE(INTEL, 0x0a54), 2114 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2115 NVME_QUIRK_DISCARD_ZEROES, }, 2116 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2117 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2118 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2119 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2120 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2121 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2122 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2123 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2124 { 0, } 2125 }; 2126 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2127 2128 static struct pci_driver nvme_driver = { 2129 .name = "nvme", 2130 .id_table = nvme_id_table, 2131 .probe = nvme_probe, 2132 .remove = nvme_remove, 2133 .shutdown = nvme_shutdown, 2134 .driver = { 2135 .pm = &nvme_dev_pm_ops, 2136 }, 2137 .sriov_configure = nvme_pci_sriov_configure, 2138 .err_handler = &nvme_err_handler, 2139 }; 2140 2141 static int __init nvme_init(void) 2142 { 2143 int result; 2144 2145 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2146 if (!nvme_workq) 2147 return -ENOMEM; 2148 2149 result = pci_register_driver(&nvme_driver); 2150 if (result) 2151 destroy_workqueue(nvme_workq); 2152 return result; 2153 } 2154 2155 static void __exit nvme_exit(void) 2156 { 2157 pci_unregister_driver(&nvme_driver); 2158 destroy_workqueue(nvme_workq); 2159 _nvme_check_size(); 2160 } 2161 2162 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2163 MODULE_LICENSE("GPL"); 2164 MODULE_VERSION("1.0"); 2165 module_init(nvme_init); 2166 module_exit(nvme_exit); 2167