xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 4c9f748f)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/io-64-nonatomic-lo-hi.h>
43 #include <asm/unaligned.h>
44 
45 #include "nvme.h"
46 
47 #define NVME_Q_DEPTH		1024
48 #define NVME_AQ_DEPTH		256
49 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
51 
52 unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55 
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 
60 unsigned char shutdown_timeout = 5;
61 module_param(shutdown_timeout, byte, 0644);
62 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63 
64 static int use_threaded_interrupts;
65 module_param(use_threaded_interrupts, int, 0);
66 
67 static bool use_cmb_sqes = true;
68 module_param(use_cmb_sqes, bool, 0644);
69 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70 
71 static LIST_HEAD(dev_list);
72 static struct task_struct *nvme_thread;
73 static struct workqueue_struct *nvme_workq;
74 static wait_queue_head_t nvme_kthread_wait;
75 
76 struct nvme_dev;
77 struct nvme_queue;
78 struct nvme_iod;
79 
80 static int __nvme_reset(struct nvme_dev *dev);
81 static int nvme_reset(struct nvme_dev *dev);
82 static void nvme_process_cq(struct nvme_queue *nvmeq);
83 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
84 static void nvme_dead_ctrl(struct nvme_dev *dev);
85 
86 struct async_cmd_info {
87 	struct kthread_work work;
88 	struct kthread_worker *worker;
89 	struct request *req;
90 	u32 result;
91 	int status;
92 	void *ctx;
93 };
94 
95 /*
96  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
97  */
98 struct nvme_dev {
99 	struct list_head node;
100 	struct nvme_queue **queues;
101 	struct blk_mq_tag_set tagset;
102 	struct blk_mq_tag_set admin_tagset;
103 	u32 __iomem *dbs;
104 	struct device *dev;
105 	struct dma_pool *prp_page_pool;
106 	struct dma_pool *prp_small_pool;
107 	unsigned queue_count;
108 	unsigned online_queues;
109 	unsigned max_qid;
110 	int q_depth;
111 	u32 db_stride;
112 	struct msix_entry *entry;
113 	void __iomem *bar;
114 	struct work_struct reset_work;
115 	struct work_struct probe_work;
116 	struct work_struct scan_work;
117 	struct mutex shutdown_lock;
118 	bool subsystem;
119 	void __iomem *cmb;
120 	dma_addr_t cmb_dma_addr;
121 	u64 cmb_size;
122 	u32 cmbsz;
123 
124 	struct nvme_ctrl ctrl;
125 };
126 
127 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
128 {
129 	return container_of(ctrl, struct nvme_dev, ctrl);
130 }
131 
132 /*
133  * An NVM Express queue.  Each device has at least two (one for admin
134  * commands and one for I/O commands).
135  */
136 struct nvme_queue {
137 	struct device *q_dmadev;
138 	struct nvme_dev *dev;
139 	char irqname[24];	/* nvme4294967295-65535\0 */
140 	spinlock_t q_lock;
141 	struct nvme_command *sq_cmds;
142 	struct nvme_command __iomem *sq_cmds_io;
143 	volatile struct nvme_completion *cqes;
144 	struct blk_mq_tags **tags;
145 	dma_addr_t sq_dma_addr;
146 	dma_addr_t cq_dma_addr;
147 	u32 __iomem *q_db;
148 	u16 q_depth;
149 	s16 cq_vector;
150 	u16 sq_head;
151 	u16 sq_tail;
152 	u16 cq_head;
153 	u16 qid;
154 	u8 cq_phase;
155 	u8 cqe_seen;
156 	struct async_cmd_info cmdinfo;
157 };
158 
159 /*
160  * The nvme_iod describes the data in an I/O, including the list of PRP
161  * entries.  You can't see it in this data structure because C doesn't let
162  * me express that.  Use nvme_alloc_iod to ensure there's enough space
163  * allocated to store the PRP list.
164  */
165 struct nvme_iod {
166 	unsigned long private;	/* For the use of the submitter of the I/O */
167 	int npages;		/* In the PRP list. 0 means small pool in use */
168 	int offset;		/* Of PRP list */
169 	int nents;		/* Used in scatterlist */
170 	int length;		/* Of data, in bytes */
171 	dma_addr_t first_dma;
172 	struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
173 	struct scatterlist sg[0];
174 };
175 
176 /*
177  * Check we didin't inadvertently grow the command struct
178  */
179 static inline void _nvme_check_size(void)
180 {
181 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
186 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
187 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
188 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
192 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
193 }
194 
195 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
196 						struct nvme_completion *);
197 
198 struct nvme_cmd_info {
199 	nvme_completion_fn fn;
200 	void *ctx;
201 	int aborted;
202 	struct nvme_queue *nvmeq;
203 	struct nvme_iod iod[0];
204 };
205 
206 /*
207  * Max size of iod being embedded in the request payload
208  */
209 #define NVME_INT_PAGES		2
210 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
211 #define NVME_INT_MASK		0x01
212 
213 /*
214  * Will slightly overestimate the number of pages needed.  This is OK
215  * as it only leads to a small amount of wasted memory for the lifetime of
216  * the I/O.
217  */
218 static int nvme_npages(unsigned size, struct nvme_dev *dev)
219 {
220 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
221 				      dev->ctrl.page_size);
222 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
223 }
224 
225 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
226 {
227 	unsigned int ret = sizeof(struct nvme_cmd_info);
228 
229 	ret += sizeof(struct nvme_iod);
230 	ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
231 	ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
232 
233 	return ret;
234 }
235 
236 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
237 				unsigned int hctx_idx)
238 {
239 	struct nvme_dev *dev = data;
240 	struct nvme_queue *nvmeq = dev->queues[0];
241 
242 	WARN_ON(hctx_idx != 0);
243 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
244 	WARN_ON(nvmeq->tags);
245 
246 	hctx->driver_data = nvmeq;
247 	nvmeq->tags = &dev->admin_tagset.tags[0];
248 	return 0;
249 }
250 
251 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
252 {
253 	struct nvme_queue *nvmeq = hctx->driver_data;
254 
255 	nvmeq->tags = NULL;
256 }
257 
258 static int nvme_admin_init_request(void *data, struct request *req,
259 				unsigned int hctx_idx, unsigned int rq_idx,
260 				unsigned int numa_node)
261 {
262 	struct nvme_dev *dev = data;
263 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
264 	struct nvme_queue *nvmeq = dev->queues[0];
265 
266 	BUG_ON(!nvmeq);
267 	cmd->nvmeq = nvmeq;
268 	return 0;
269 }
270 
271 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
272 			  unsigned int hctx_idx)
273 {
274 	struct nvme_dev *dev = data;
275 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
276 
277 	if (!nvmeq->tags)
278 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
279 
280 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
281 	hctx->driver_data = nvmeq;
282 	return 0;
283 }
284 
285 static int nvme_init_request(void *data, struct request *req,
286 				unsigned int hctx_idx, unsigned int rq_idx,
287 				unsigned int numa_node)
288 {
289 	struct nvme_dev *dev = data;
290 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
291 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
292 
293 	BUG_ON(!nvmeq);
294 	cmd->nvmeq = nvmeq;
295 	return 0;
296 }
297 
298 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
299 				nvme_completion_fn handler)
300 {
301 	cmd->fn = handler;
302 	cmd->ctx = ctx;
303 	cmd->aborted = 0;
304 	blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
305 }
306 
307 static void *iod_get_private(struct nvme_iod *iod)
308 {
309 	return (void *) (iod->private & ~0x1UL);
310 }
311 
312 /*
313  * If bit 0 is set, the iod is embedded in the request payload.
314  */
315 static bool iod_should_kfree(struct nvme_iod *iod)
316 {
317 	return (iod->private & NVME_INT_MASK) == 0;
318 }
319 
320 /* Special values must be less than 0x1000 */
321 #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
322 #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
323 #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
324 #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
325 
326 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
327 						struct nvme_completion *cqe)
328 {
329 	if (ctx == CMD_CTX_CANCELLED)
330 		return;
331 	if (ctx == CMD_CTX_COMPLETED) {
332 		dev_warn(nvmeq->q_dmadev,
333 				"completed id %d twice on queue %d\n",
334 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
335 		return;
336 	}
337 	if (ctx == CMD_CTX_INVALID) {
338 		dev_warn(nvmeq->q_dmadev,
339 				"invalid id %d completed on queue %d\n",
340 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
341 		return;
342 	}
343 	dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
344 }
345 
346 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
347 {
348 	void *ctx;
349 
350 	if (fn)
351 		*fn = cmd->fn;
352 	ctx = cmd->ctx;
353 	cmd->fn = special_completion;
354 	cmd->ctx = CMD_CTX_CANCELLED;
355 	return ctx;
356 }
357 
358 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
359 						struct nvme_completion *cqe)
360 {
361 	u32 result = le32_to_cpup(&cqe->result);
362 	u16 status = le16_to_cpup(&cqe->status) >> 1;
363 
364 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
365 		++nvmeq->dev->ctrl.event_limit;
366 	if (status != NVME_SC_SUCCESS)
367 		return;
368 
369 	switch (result & 0xff07) {
370 	case NVME_AER_NOTICE_NS_CHANGED:
371 		dev_info(nvmeq->q_dmadev, "rescanning\n");
372 		schedule_work(&nvmeq->dev->scan_work);
373 	default:
374 		dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
375 	}
376 }
377 
378 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
379 						struct nvme_completion *cqe)
380 {
381 	struct request *req = ctx;
382 
383 	u16 status = le16_to_cpup(&cqe->status) >> 1;
384 	u32 result = le32_to_cpup(&cqe->result);
385 
386 	blk_mq_free_request(req);
387 
388 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
389 	++nvmeq->dev->ctrl.abort_limit;
390 }
391 
392 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
393 						struct nvme_completion *cqe)
394 {
395 	struct async_cmd_info *cmdinfo = ctx;
396 	cmdinfo->result = le32_to_cpup(&cqe->result);
397 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
398 	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
399 	blk_mq_free_request(cmdinfo->req);
400 }
401 
402 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
403 				  unsigned int tag)
404 {
405 	struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
406 
407 	return blk_mq_rq_to_pdu(req);
408 }
409 
410 /*
411  * Called with local interrupts disabled and the q_lock held.  May not sleep.
412  */
413 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
414 						nvme_completion_fn *fn)
415 {
416 	struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
417 	void *ctx;
418 	if (tag >= nvmeq->q_depth) {
419 		*fn = special_completion;
420 		return CMD_CTX_INVALID;
421 	}
422 	if (fn)
423 		*fn = cmd->fn;
424 	ctx = cmd->ctx;
425 	cmd->fn = special_completion;
426 	cmd->ctx = CMD_CTX_COMPLETED;
427 	return ctx;
428 }
429 
430 /**
431  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
432  * @nvmeq: The queue to use
433  * @cmd: The command to send
434  *
435  * Safe to use from interrupt context
436  */
437 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
438 						struct nvme_command *cmd)
439 {
440 	u16 tail = nvmeq->sq_tail;
441 
442 	if (nvmeq->sq_cmds_io)
443 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
444 	else
445 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
446 
447 	if (++tail == nvmeq->q_depth)
448 		tail = 0;
449 	writel(tail, nvmeq->q_db);
450 	nvmeq->sq_tail = tail;
451 }
452 
453 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
454 {
455 	unsigned long flags;
456 	spin_lock_irqsave(&nvmeq->q_lock, flags);
457 	__nvme_submit_cmd(nvmeq, cmd);
458 	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
459 }
460 
461 static __le64 **iod_list(struct nvme_iod *iod)
462 {
463 	return ((void *)iod) + iod->offset;
464 }
465 
466 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
467 			    unsigned nseg, unsigned long private)
468 {
469 	iod->private = private;
470 	iod->offset = offsetof(struct nvme_iod, sg[nseg]);
471 	iod->npages = -1;
472 	iod->length = nbytes;
473 	iod->nents = 0;
474 }
475 
476 static struct nvme_iod *
477 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
478 		 unsigned long priv, gfp_t gfp)
479 {
480 	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
481 				sizeof(__le64 *) * nvme_npages(bytes, dev) +
482 				sizeof(struct scatterlist) * nseg, gfp);
483 
484 	if (iod)
485 		iod_init(iod, bytes, nseg, priv);
486 
487 	return iod;
488 }
489 
490 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
491 			               gfp_t gfp)
492 {
493 	unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
494                                                 sizeof(struct nvme_dsm_range);
495 	struct nvme_iod *iod;
496 
497 	if (rq->nr_phys_segments <= NVME_INT_PAGES &&
498 	    size <= NVME_INT_BYTES(dev)) {
499 		struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
500 
501 		iod = cmd->iod;
502 		iod_init(iod, size, rq->nr_phys_segments,
503 				(unsigned long) rq | NVME_INT_MASK);
504 		return iod;
505 	}
506 
507 	return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
508 				(unsigned long) rq, gfp);
509 }
510 
511 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
512 {
513 	const int last_prp = dev->ctrl.page_size / 8 - 1;
514 	int i;
515 	__le64 **list = iod_list(iod);
516 	dma_addr_t prp_dma = iod->first_dma;
517 
518 	if (iod->npages == 0)
519 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
520 	for (i = 0; i < iod->npages; i++) {
521 		__le64 *prp_list = list[i];
522 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
523 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
524 		prp_dma = next_prp_dma;
525 	}
526 
527 	if (iod_should_kfree(iod))
528 		kfree(iod);
529 }
530 
531 #ifdef CONFIG_BLK_DEV_INTEGRITY
532 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
533 {
534 	if (be32_to_cpu(pi->ref_tag) == v)
535 		pi->ref_tag = cpu_to_be32(p);
536 }
537 
538 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539 {
540 	if (be32_to_cpu(pi->ref_tag) == p)
541 		pi->ref_tag = cpu_to_be32(v);
542 }
543 
544 /**
545  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
546  *
547  * The virtual start sector is the one that was originally submitted by the
548  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
549  * start sector may be different. Remap protection information to match the
550  * physical LBA on writes, and back to the original seed on reads.
551  *
552  * Type 0 and 3 do not have a ref tag, so no remapping required.
553  */
554 static void nvme_dif_remap(struct request *req,
555 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
556 {
557 	struct nvme_ns *ns = req->rq_disk->private_data;
558 	struct bio_integrity_payload *bip;
559 	struct t10_pi_tuple *pi;
560 	void *p, *pmap;
561 	u32 i, nlb, ts, phys, virt;
562 
563 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
564 		return;
565 
566 	bip = bio_integrity(req->bio);
567 	if (!bip)
568 		return;
569 
570 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
571 
572 	p = pmap;
573 	virt = bip_get_seed(bip);
574 	phys = nvme_block_nr(ns, blk_rq_pos(req));
575 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
576 	ts = ns->disk->queue->integrity.tuple_size;
577 
578 	for (i = 0; i < nlb; i++, virt++, phys++) {
579 		pi = (struct t10_pi_tuple *)p;
580 		dif_swap(phys, virt, pi);
581 		p += ts;
582 	}
583 	kunmap_atomic(pmap);
584 }
585 #else /* CONFIG_BLK_DEV_INTEGRITY */
586 static void nvme_dif_remap(struct request *req,
587 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
588 {
589 }
590 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
591 {
592 }
593 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
594 {
595 }
596 #endif
597 
598 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
599 						struct nvme_completion *cqe)
600 {
601 	struct nvme_iod *iod = ctx;
602 	struct request *req = iod_get_private(iod);
603 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
604 	u16 status = le16_to_cpup(&cqe->status) >> 1;
605 	int error = 0;
606 
607 	if (unlikely(status)) {
608 		if (!(status & NVME_SC_DNR || blk_noretry_request(req))
609 		    && (jiffies - req->start_time) < req->timeout) {
610 			unsigned long flags;
611 
612 			nvme_unmap_data(nvmeq->dev, iod);
613 
614 			blk_mq_requeue_request(req);
615 			spin_lock_irqsave(req->q->queue_lock, flags);
616 			if (!blk_queue_stopped(req->q))
617 				blk_mq_kick_requeue_list(req->q);
618 			spin_unlock_irqrestore(req->q->queue_lock, flags);
619 			return;
620 		}
621 
622 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
623 			if (cmd_rq->ctx == CMD_CTX_CANCELLED)
624 				error = -EINTR;
625 			else
626 				error = status;
627 		} else {
628 			error = nvme_error_status(status);
629 		}
630 	}
631 
632 	if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
633 		u32 result = le32_to_cpup(&cqe->result);
634 		req->special = (void *)(uintptr_t)result;
635 	}
636 
637 	if (cmd_rq->aborted)
638 		dev_warn(nvmeq->dev->dev,
639 			"completing aborted command with status:%04x\n",
640 			error);
641 
642 	nvme_unmap_data(nvmeq->dev, iod);
643 	blk_mq_complete_request(req, error);
644 }
645 
646 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
647 		int total_len)
648 {
649 	struct dma_pool *pool;
650 	int length = total_len;
651 	struct scatterlist *sg = iod->sg;
652 	int dma_len = sg_dma_len(sg);
653 	u64 dma_addr = sg_dma_address(sg);
654 	u32 page_size = dev->ctrl.page_size;
655 	int offset = dma_addr & (page_size - 1);
656 	__le64 *prp_list;
657 	__le64 **list = iod_list(iod);
658 	dma_addr_t prp_dma;
659 	int nprps, i;
660 
661 	length -= (page_size - offset);
662 	if (length <= 0)
663 		return true;
664 
665 	dma_len -= (page_size - offset);
666 	if (dma_len) {
667 		dma_addr += (page_size - offset);
668 	} else {
669 		sg = sg_next(sg);
670 		dma_addr = sg_dma_address(sg);
671 		dma_len = sg_dma_len(sg);
672 	}
673 
674 	if (length <= page_size) {
675 		iod->first_dma = dma_addr;
676 		return true;
677 	}
678 
679 	nprps = DIV_ROUND_UP(length, page_size);
680 	if (nprps <= (256 / 8)) {
681 		pool = dev->prp_small_pool;
682 		iod->npages = 0;
683 	} else {
684 		pool = dev->prp_page_pool;
685 		iod->npages = 1;
686 	}
687 
688 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
689 	if (!prp_list) {
690 		iod->first_dma = dma_addr;
691 		iod->npages = -1;
692 		return false;
693 	}
694 	list[0] = prp_list;
695 	iod->first_dma = prp_dma;
696 	i = 0;
697 	for (;;) {
698 		if (i == page_size >> 3) {
699 			__le64 *old_prp_list = prp_list;
700 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
701 			if (!prp_list)
702 				return false;
703 			list[iod->npages++] = prp_list;
704 			prp_list[0] = old_prp_list[i - 1];
705 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
706 			i = 1;
707 		}
708 		prp_list[i++] = cpu_to_le64(dma_addr);
709 		dma_len -= page_size;
710 		dma_addr += page_size;
711 		length -= page_size;
712 		if (length <= 0)
713 			break;
714 		if (dma_len > 0)
715 			continue;
716 		BUG_ON(dma_len < 0);
717 		sg = sg_next(sg);
718 		dma_addr = sg_dma_address(sg);
719 		dma_len = sg_dma_len(sg);
720 	}
721 
722 	return true;
723 }
724 
725 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
726 		struct nvme_command *cmnd)
727 {
728 	struct request *req = iod_get_private(iod);
729 	struct request_queue *q = req->q;
730 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
731 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
732 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
733 
734 	sg_init_table(iod->sg, req->nr_phys_segments);
735 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
736 	if (!iod->nents)
737 		goto out;
738 
739 	ret = BLK_MQ_RQ_QUEUE_BUSY;
740 	if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
741 		goto out;
742 
743 	if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
744 		goto out_unmap;
745 
746 	ret = BLK_MQ_RQ_QUEUE_ERROR;
747 	if (blk_integrity_rq(req)) {
748 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
749 			goto out_unmap;
750 
751 		sg_init_table(iod->meta_sg, 1);
752 		if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
753 			goto out_unmap;
754 
755 		if (rq_data_dir(req))
756 			nvme_dif_remap(req, nvme_dif_prep);
757 
758 		if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
759 			goto out_unmap;
760 	}
761 
762 	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
763 	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
764 	if (blk_integrity_rq(req))
765 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
766 	return BLK_MQ_RQ_QUEUE_OK;
767 
768 out_unmap:
769 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
770 out:
771 	return ret;
772 }
773 
774 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
775 {
776 	struct request *req = iod_get_private(iod);
777 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
778 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
779 
780 	if (iod->nents) {
781 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
782 		if (blk_integrity_rq(req)) {
783 			if (!rq_data_dir(req))
784 				nvme_dif_remap(req, nvme_dif_complete);
785 			dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
786 		}
787 	}
788 
789 	nvme_free_iod(dev, iod);
790 }
791 
792 /*
793  * We reuse the small pool to allocate the 16-byte range here as it is not
794  * worth having a special pool for these or additional cases to handle freeing
795  * the iod.
796  */
797 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
798 		struct nvme_iod *iod, struct nvme_command *cmnd)
799 {
800 	struct request *req = iod_get_private(iod);
801 	struct nvme_dsm_range *range;
802 
803 	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
804 						&iod->first_dma);
805 	if (!range)
806 		return BLK_MQ_RQ_QUEUE_BUSY;
807 	iod_list(iod)[0] = (__le64 *)range;
808 	iod->npages = 0;
809 
810 	range->cattr = cpu_to_le32(0);
811 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
812 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
813 
814 	memset(cmnd, 0, sizeof(*cmnd));
815 	cmnd->dsm.opcode = nvme_cmd_dsm;
816 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
817 	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
818 	cmnd->dsm.nr = 0;
819 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
820 	return BLK_MQ_RQ_QUEUE_OK;
821 }
822 
823 /*
824  * NOTE: ns is NULL when called on the admin queue.
825  */
826 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
827 			 const struct blk_mq_queue_data *bd)
828 {
829 	struct nvme_ns *ns = hctx->queue->queuedata;
830 	struct nvme_queue *nvmeq = hctx->driver_data;
831 	struct nvme_dev *dev = nvmeq->dev;
832 	struct request *req = bd->rq;
833 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
834 	struct nvme_iod *iod;
835 	struct nvme_command cmnd;
836 	int ret = BLK_MQ_RQ_QUEUE_OK;
837 
838 	/*
839 	 * If formated with metadata, require the block layer provide a buffer
840 	 * unless this namespace is formated such that the metadata can be
841 	 * stripped/generated by the controller with PRACT=1.
842 	 */
843 	if (ns && ns->ms && !blk_integrity_rq(req)) {
844 		if (!(ns->pi_type && ns->ms == 8) &&
845 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
846 			blk_mq_complete_request(req, -EFAULT);
847 			return BLK_MQ_RQ_QUEUE_OK;
848 		}
849 	}
850 
851 	iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
852 	if (!iod)
853 		return BLK_MQ_RQ_QUEUE_BUSY;
854 
855 	if (req->cmd_flags & REQ_DISCARD) {
856 		ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
857 	} else {
858 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
859 			memcpy(&cmnd, req->cmd, sizeof(cmnd));
860 		else if (req->cmd_flags & REQ_FLUSH)
861 			nvme_setup_flush(ns, &cmnd);
862 		else
863 			nvme_setup_rw(ns, req, &cmnd);
864 
865 		if (req->nr_phys_segments)
866 			ret = nvme_map_data(dev, iod, &cmnd);
867 	}
868 
869 	if (ret)
870 		goto out;
871 
872 	cmnd.common.command_id = req->tag;
873 	nvme_set_info(cmd, iod, req_completion);
874 
875 	spin_lock_irq(&nvmeq->q_lock);
876 	__nvme_submit_cmd(nvmeq, &cmnd);
877 	nvme_process_cq(nvmeq);
878 	spin_unlock_irq(&nvmeq->q_lock);
879 	return BLK_MQ_RQ_QUEUE_OK;
880 out:
881 	nvme_free_iod(dev, iod);
882 	return ret;
883 }
884 
885 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
886 {
887 	u16 head, phase;
888 
889 	head = nvmeq->cq_head;
890 	phase = nvmeq->cq_phase;
891 
892 	for (;;) {
893 		void *ctx;
894 		nvme_completion_fn fn;
895 		struct nvme_completion cqe = nvmeq->cqes[head];
896 		if ((le16_to_cpu(cqe.status) & 1) != phase)
897 			break;
898 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
899 		if (++head == nvmeq->q_depth) {
900 			head = 0;
901 			phase = !phase;
902 		}
903 		if (tag && *tag == cqe.command_id)
904 			*tag = -1;
905 		ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
906 		fn(nvmeq, ctx, &cqe);
907 	}
908 
909 	/* If the controller ignores the cq head doorbell and continuously
910 	 * writes to the queue, it is theoretically possible to wrap around
911 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
912 	 * requires that 0.1% of your interrupts are handled, so this isn't
913 	 * a big problem.
914 	 */
915 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
916 		return;
917 
918 	if (likely(nvmeq->cq_vector >= 0))
919 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
920 	nvmeq->cq_head = head;
921 	nvmeq->cq_phase = phase;
922 
923 	nvmeq->cqe_seen = 1;
924 }
925 
926 static void nvme_process_cq(struct nvme_queue *nvmeq)
927 {
928 	__nvme_process_cq(nvmeq, NULL);
929 }
930 
931 static irqreturn_t nvme_irq(int irq, void *data)
932 {
933 	irqreturn_t result;
934 	struct nvme_queue *nvmeq = data;
935 	spin_lock(&nvmeq->q_lock);
936 	nvme_process_cq(nvmeq);
937 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
938 	nvmeq->cqe_seen = 0;
939 	spin_unlock(&nvmeq->q_lock);
940 	return result;
941 }
942 
943 static irqreturn_t nvme_irq_check(int irq, void *data)
944 {
945 	struct nvme_queue *nvmeq = data;
946 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
947 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
948 		return IRQ_NONE;
949 	return IRQ_WAKE_THREAD;
950 }
951 
952 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
953 {
954 	struct nvme_queue *nvmeq = hctx->driver_data;
955 
956 	if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
957 	    nvmeq->cq_phase) {
958 		spin_lock_irq(&nvmeq->q_lock);
959 		__nvme_process_cq(nvmeq, &tag);
960 		spin_unlock_irq(&nvmeq->q_lock);
961 
962 		if (tag == -1)
963 			return 1;
964 	}
965 
966 	return 0;
967 }
968 
969 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
970 {
971 	struct nvme_queue *nvmeq = dev->queues[0];
972 	struct nvme_command c;
973 	struct nvme_cmd_info *cmd_info;
974 	struct request *req;
975 
976 	req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
977 			BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
978 	if (IS_ERR(req))
979 		return PTR_ERR(req);
980 
981 	req->cmd_flags |= REQ_NO_TIMEOUT;
982 	cmd_info = blk_mq_rq_to_pdu(req);
983 	nvme_set_info(cmd_info, NULL, async_req_completion);
984 
985 	memset(&c, 0, sizeof(c));
986 	c.common.opcode = nvme_admin_async_event;
987 	c.common.command_id = req->tag;
988 
989 	blk_mq_free_request(req);
990 	__nvme_submit_cmd(nvmeq, &c);
991 	return 0;
992 }
993 
994 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
995 			struct nvme_command *cmd,
996 			struct async_cmd_info *cmdinfo, unsigned timeout)
997 {
998 	struct nvme_queue *nvmeq = dev->queues[0];
999 	struct request *req;
1000 	struct nvme_cmd_info *cmd_rq;
1001 
1002 	req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
1003 	if (IS_ERR(req))
1004 		return PTR_ERR(req);
1005 
1006 	req->timeout = timeout;
1007 	cmd_rq = blk_mq_rq_to_pdu(req);
1008 	cmdinfo->req = req;
1009 	nvme_set_info(cmd_rq, cmdinfo, async_completion);
1010 	cmdinfo->status = -EINTR;
1011 
1012 	cmd->common.command_id = req->tag;
1013 
1014 	nvme_submit_cmd(nvmeq, cmd);
1015 	return 0;
1016 }
1017 
1018 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1019 {
1020 	struct nvme_command c;
1021 
1022 	memset(&c, 0, sizeof(c));
1023 	c.delete_queue.opcode = opcode;
1024 	c.delete_queue.qid = cpu_to_le16(id);
1025 
1026 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1027 }
1028 
1029 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1030 						struct nvme_queue *nvmeq)
1031 {
1032 	struct nvme_command c;
1033 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1034 
1035 	/*
1036 	 * Note: we (ab)use the fact the the prp fields survive if no data
1037 	 * is attached to the request.
1038 	 */
1039 	memset(&c, 0, sizeof(c));
1040 	c.create_cq.opcode = nvme_admin_create_cq;
1041 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1042 	c.create_cq.cqid = cpu_to_le16(qid);
1043 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1044 	c.create_cq.cq_flags = cpu_to_le16(flags);
1045 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1046 
1047 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1048 }
1049 
1050 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1051 						struct nvme_queue *nvmeq)
1052 {
1053 	struct nvme_command c;
1054 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1055 
1056 	/*
1057 	 * Note: we (ab)use the fact the the prp fields survive if no data
1058 	 * is attached to the request.
1059 	 */
1060 	memset(&c, 0, sizeof(c));
1061 	c.create_sq.opcode = nvme_admin_create_sq;
1062 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1063 	c.create_sq.sqid = cpu_to_le16(qid);
1064 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1065 	c.create_sq.sq_flags = cpu_to_le16(flags);
1066 	c.create_sq.cqid = cpu_to_le16(qid);
1067 
1068 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1069 }
1070 
1071 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1072 {
1073 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1074 }
1075 
1076 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1077 {
1078 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1079 }
1080 
1081 /**
1082  * nvme_abort_req - Attempt aborting a request
1083  *
1084  * Schedule controller reset if the command was already aborted once before and
1085  * still hasn't been returned to the driver, or if this is the admin queue.
1086  */
1087 static void nvme_abort_req(struct request *req)
1088 {
1089 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1090 	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1091 	struct nvme_dev *dev = nvmeq->dev;
1092 	struct request *abort_req;
1093 	struct nvme_cmd_info *abort_cmd;
1094 	struct nvme_command cmd;
1095 
1096 	if (!nvmeq->qid || cmd_rq->aborted) {
1097 		spin_lock_irq(&dev_list_lock);
1098 		if (!__nvme_reset(dev)) {
1099 			dev_warn(dev->dev,
1100 				 "I/O %d QID %d timeout, reset controller\n",
1101 				 req->tag, nvmeq->qid);
1102 		}
1103 		spin_unlock_irq(&dev_list_lock);
1104 		return;
1105 	}
1106 
1107 	if (!dev->ctrl.abort_limit)
1108 		return;
1109 
1110 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
1111 			BLK_MQ_REQ_NOWAIT);
1112 	if (IS_ERR(abort_req))
1113 		return;
1114 
1115 	abort_cmd = blk_mq_rq_to_pdu(abort_req);
1116 	nvme_set_info(abort_cmd, abort_req, abort_completion);
1117 
1118 	memset(&cmd, 0, sizeof(cmd));
1119 	cmd.abort.opcode = nvme_admin_abort_cmd;
1120 	cmd.abort.cid = req->tag;
1121 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1122 	cmd.abort.command_id = abort_req->tag;
1123 
1124 	--dev->ctrl.abort_limit;
1125 	cmd_rq->aborted = 1;
1126 
1127 	dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1128 							nvmeq->qid);
1129 	nvme_submit_cmd(dev->queues[0], &cmd);
1130 }
1131 
1132 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1133 {
1134 	struct nvme_queue *nvmeq = data;
1135 	void *ctx;
1136 	nvme_completion_fn fn;
1137 	struct nvme_cmd_info *cmd;
1138 	struct nvme_completion cqe;
1139 
1140 	if (!blk_mq_request_started(req))
1141 		return;
1142 
1143 	cmd = blk_mq_rq_to_pdu(req);
1144 
1145 	if (cmd->ctx == CMD_CTX_CANCELLED)
1146 		return;
1147 
1148 	if (blk_queue_dying(req->q))
1149 		cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1150 	else
1151 		cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1152 
1153 
1154 	dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1155 						req->tag, nvmeq->qid);
1156 	ctx = cancel_cmd_info(cmd, &fn);
1157 	fn(nvmeq, ctx, &cqe);
1158 }
1159 
1160 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1161 {
1162 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1163 	struct nvme_queue *nvmeq = cmd->nvmeq;
1164 
1165 	dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1166 							nvmeq->qid);
1167 	nvme_abort_req(req);
1168 
1169 	/*
1170 	 * The aborted req will be completed on receiving the abort req.
1171 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1172 	 * as the device then is in a faulty state.
1173 	 */
1174 	return BLK_EH_RESET_TIMER;
1175 }
1176 
1177 static void nvme_free_queue(struct nvme_queue *nvmeq)
1178 {
1179 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1180 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1181 	if (nvmeq->sq_cmds)
1182 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1183 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1184 	kfree(nvmeq);
1185 }
1186 
1187 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1188 {
1189 	int i;
1190 
1191 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1192 		struct nvme_queue *nvmeq = dev->queues[i];
1193 		dev->queue_count--;
1194 		dev->queues[i] = NULL;
1195 		nvme_free_queue(nvmeq);
1196 	}
1197 }
1198 
1199 /**
1200  * nvme_suspend_queue - put queue into suspended state
1201  * @nvmeq - queue to suspend
1202  */
1203 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1204 {
1205 	int vector;
1206 
1207 	spin_lock_irq(&nvmeq->q_lock);
1208 	if (nvmeq->cq_vector == -1) {
1209 		spin_unlock_irq(&nvmeq->q_lock);
1210 		return 1;
1211 	}
1212 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1213 	nvmeq->dev->online_queues--;
1214 	nvmeq->cq_vector = -1;
1215 	spin_unlock_irq(&nvmeq->q_lock);
1216 
1217 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1218 		blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1219 
1220 	irq_set_affinity_hint(vector, NULL);
1221 	free_irq(vector, nvmeq);
1222 
1223 	return 0;
1224 }
1225 
1226 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1227 {
1228 	spin_lock_irq(&nvmeq->q_lock);
1229 	if (nvmeq->tags && *nvmeq->tags)
1230 		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1231 	spin_unlock_irq(&nvmeq->q_lock);
1232 }
1233 
1234 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1235 {
1236 	struct nvme_queue *nvmeq = dev->queues[qid];
1237 
1238 	if (!nvmeq)
1239 		return;
1240 	if (nvme_suspend_queue(nvmeq))
1241 		return;
1242 
1243 	/* Don't tell the adapter to delete the admin queue.
1244 	 * Don't tell a removed adapter to delete IO queues. */
1245 	if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1246 		adapter_delete_sq(dev, qid);
1247 		adapter_delete_cq(dev, qid);
1248 	}
1249 
1250 	spin_lock_irq(&nvmeq->q_lock);
1251 	nvme_process_cq(nvmeq);
1252 	spin_unlock_irq(&nvmeq->q_lock);
1253 }
1254 
1255 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1256 				int entry_size)
1257 {
1258 	int q_depth = dev->q_depth;
1259 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1260 					  dev->ctrl.page_size);
1261 
1262 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1263 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1264 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1265 		q_depth = div_u64(mem_per_q, entry_size);
1266 
1267 		/*
1268 		 * Ensure the reduced q_depth is above some threshold where it
1269 		 * would be better to map queues in system memory with the
1270 		 * original depth
1271 		 */
1272 		if (q_depth < 64)
1273 			return -ENOMEM;
1274 	}
1275 
1276 	return q_depth;
1277 }
1278 
1279 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1280 				int qid, int depth)
1281 {
1282 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1283 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1284 						      dev->ctrl.page_size);
1285 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1286 		nvmeq->sq_cmds_io = dev->cmb + offset;
1287 	} else {
1288 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1289 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1290 		if (!nvmeq->sq_cmds)
1291 			return -ENOMEM;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1298 							int depth)
1299 {
1300 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1301 	if (!nvmeq)
1302 		return NULL;
1303 
1304 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1305 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1306 	if (!nvmeq->cqes)
1307 		goto free_nvmeq;
1308 
1309 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1310 		goto free_cqdma;
1311 
1312 	nvmeq->q_dmadev = dev->dev;
1313 	nvmeq->dev = dev;
1314 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1315 			dev->ctrl.instance, qid);
1316 	spin_lock_init(&nvmeq->q_lock);
1317 	nvmeq->cq_head = 0;
1318 	nvmeq->cq_phase = 1;
1319 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1320 	nvmeq->q_depth = depth;
1321 	nvmeq->qid = qid;
1322 	nvmeq->cq_vector = -1;
1323 	dev->queues[qid] = nvmeq;
1324 
1325 	/* make sure queue descriptor is set before queue count, for kthread */
1326 	mb();
1327 	dev->queue_count++;
1328 
1329 	return nvmeq;
1330 
1331  free_cqdma:
1332 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1333 							nvmeq->cq_dma_addr);
1334  free_nvmeq:
1335 	kfree(nvmeq);
1336 	return NULL;
1337 }
1338 
1339 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1340 							const char *name)
1341 {
1342 	if (use_threaded_interrupts)
1343 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1344 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1345 					name, nvmeq);
1346 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1347 				IRQF_SHARED, name, nvmeq);
1348 }
1349 
1350 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1351 {
1352 	struct nvme_dev *dev = nvmeq->dev;
1353 
1354 	spin_lock_irq(&nvmeq->q_lock);
1355 	nvmeq->sq_tail = 0;
1356 	nvmeq->cq_head = 0;
1357 	nvmeq->cq_phase = 1;
1358 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1359 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1360 	dev->online_queues++;
1361 	spin_unlock_irq(&nvmeq->q_lock);
1362 }
1363 
1364 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1365 {
1366 	struct nvme_dev *dev = nvmeq->dev;
1367 	int result;
1368 
1369 	nvmeq->cq_vector = qid - 1;
1370 	result = adapter_alloc_cq(dev, qid, nvmeq);
1371 	if (result < 0)
1372 		return result;
1373 
1374 	result = adapter_alloc_sq(dev, qid, nvmeq);
1375 	if (result < 0)
1376 		goto release_cq;
1377 
1378 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1379 	if (result < 0)
1380 		goto release_sq;
1381 
1382 	nvme_init_queue(nvmeq, qid);
1383 	return result;
1384 
1385  release_sq:
1386 	adapter_delete_sq(dev, qid);
1387  release_cq:
1388 	adapter_delete_cq(dev, qid);
1389 	return result;
1390 }
1391 
1392 static struct blk_mq_ops nvme_mq_admin_ops = {
1393 	.queue_rq	= nvme_queue_rq,
1394 	.map_queue	= blk_mq_map_queue,
1395 	.init_hctx	= nvme_admin_init_hctx,
1396 	.exit_hctx      = nvme_admin_exit_hctx,
1397 	.init_request	= nvme_admin_init_request,
1398 	.timeout	= nvme_timeout,
1399 };
1400 
1401 static struct blk_mq_ops nvme_mq_ops = {
1402 	.queue_rq	= nvme_queue_rq,
1403 	.map_queue	= blk_mq_map_queue,
1404 	.init_hctx	= nvme_init_hctx,
1405 	.init_request	= nvme_init_request,
1406 	.timeout	= nvme_timeout,
1407 	.poll		= nvme_poll,
1408 };
1409 
1410 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1411 {
1412 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1413 		blk_cleanup_queue(dev->ctrl.admin_q);
1414 		blk_mq_free_tag_set(&dev->admin_tagset);
1415 	}
1416 }
1417 
1418 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1419 {
1420 	if (!dev->ctrl.admin_q) {
1421 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1422 		dev->admin_tagset.nr_hw_queues = 1;
1423 		dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1424 		dev->admin_tagset.reserved_tags = 1;
1425 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1426 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1427 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1428 		dev->admin_tagset.driver_data = dev;
1429 
1430 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1431 			return -ENOMEM;
1432 
1433 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1434 		if (IS_ERR(dev->ctrl.admin_q)) {
1435 			blk_mq_free_tag_set(&dev->admin_tagset);
1436 			return -ENOMEM;
1437 		}
1438 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1439 			nvme_dev_remove_admin(dev);
1440 			dev->ctrl.admin_q = NULL;
1441 			return -ENODEV;
1442 		}
1443 	} else
1444 		blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1445 
1446 	return 0;
1447 }
1448 
1449 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1450 {
1451 	int result;
1452 	u32 aqa;
1453 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1454 	struct nvme_queue *nvmeq;
1455 
1456 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1457 						NVME_CAP_NSSRC(cap) : 0;
1458 
1459 	if (dev->subsystem &&
1460 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1461 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1462 
1463 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1464 	if (result < 0)
1465 		return result;
1466 
1467 	nvmeq = dev->queues[0];
1468 	if (!nvmeq) {
1469 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1470 		if (!nvmeq)
1471 			return -ENOMEM;
1472 	}
1473 
1474 	aqa = nvmeq->q_depth - 1;
1475 	aqa |= aqa << 16;
1476 
1477 	writel(aqa, dev->bar + NVME_REG_AQA);
1478 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1479 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1480 
1481 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1482 	if (result)
1483 		goto free_nvmeq;
1484 
1485 	nvmeq->cq_vector = 0;
1486 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1487 	if (result) {
1488 		nvmeq->cq_vector = -1;
1489 		goto free_nvmeq;
1490 	}
1491 
1492 	return result;
1493 
1494  free_nvmeq:
1495 	nvme_free_queues(dev, 0);
1496 	return result;
1497 }
1498 
1499 static int nvme_kthread(void *data)
1500 {
1501 	struct nvme_dev *dev, *next;
1502 
1503 	while (!kthread_should_stop()) {
1504 		set_current_state(TASK_INTERRUPTIBLE);
1505 		spin_lock(&dev_list_lock);
1506 		list_for_each_entry_safe(dev, next, &dev_list, node) {
1507 			int i;
1508 			u32 csts = readl(dev->bar + NVME_REG_CSTS);
1509 
1510 			if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1511 							csts & NVME_CSTS_CFS) {
1512 				if (!__nvme_reset(dev)) {
1513 					dev_warn(dev->dev,
1514 						"Failed status: %x, reset controller\n",
1515 						readl(dev->bar + NVME_REG_CSTS));
1516 				}
1517 				continue;
1518 			}
1519 			for (i = 0; i < dev->queue_count; i++) {
1520 				struct nvme_queue *nvmeq = dev->queues[i];
1521 				if (!nvmeq)
1522 					continue;
1523 				spin_lock_irq(&nvmeq->q_lock);
1524 				nvme_process_cq(nvmeq);
1525 
1526 				while (i == 0 && dev->ctrl.event_limit > 0) {
1527 					if (nvme_submit_async_admin_req(dev))
1528 						break;
1529 					dev->ctrl.event_limit--;
1530 				}
1531 				spin_unlock_irq(&nvmeq->q_lock);
1532 			}
1533 		}
1534 		spin_unlock(&dev_list_lock);
1535 		schedule_timeout(round_jiffies_relative(HZ));
1536 	}
1537 	return 0;
1538 }
1539 
1540 static int nvme_create_io_queues(struct nvme_dev *dev)
1541 {
1542 	unsigned i;
1543 	int ret = 0;
1544 
1545 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1546 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1547 			ret = -ENOMEM;
1548 			break;
1549 		}
1550 	}
1551 
1552 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1553 		ret = nvme_create_queue(dev->queues[i], i);
1554 		if (ret) {
1555 			nvme_free_queues(dev, i);
1556 			break;
1557 		}
1558 	}
1559 
1560 	/*
1561 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1562 	 * than the desired aount of queues, and even a controller without
1563 	 * I/O queues an still be used to issue admin commands.  This might
1564 	 * be useful to upgrade a buggy firmware for example.
1565 	 */
1566 	return ret >= 0 ? 0 : ret;
1567 }
1568 
1569 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1570 {
1571 	u64 szu, size, offset;
1572 	u32 cmbloc;
1573 	resource_size_t bar_size;
1574 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1575 	void __iomem *cmb;
1576 	dma_addr_t dma_addr;
1577 
1578 	if (!use_cmb_sqes)
1579 		return NULL;
1580 
1581 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1582 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1583 		return NULL;
1584 
1585 	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1586 
1587 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1588 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1589 	offset = szu * NVME_CMB_OFST(cmbloc);
1590 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1591 
1592 	if (offset > bar_size)
1593 		return NULL;
1594 
1595 	/*
1596 	 * Controllers may support a CMB size larger than their BAR,
1597 	 * for example, due to being behind a bridge. Reduce the CMB to
1598 	 * the reported size of the BAR
1599 	 */
1600 	if (size > bar_size - offset)
1601 		size = bar_size - offset;
1602 
1603 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1604 	cmb = ioremap_wc(dma_addr, size);
1605 	if (!cmb)
1606 		return NULL;
1607 
1608 	dev->cmb_dma_addr = dma_addr;
1609 	dev->cmb_size = size;
1610 	return cmb;
1611 }
1612 
1613 static inline void nvme_release_cmb(struct nvme_dev *dev)
1614 {
1615 	if (dev->cmb) {
1616 		iounmap(dev->cmb);
1617 		dev->cmb = NULL;
1618 	}
1619 }
1620 
1621 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1622 {
1623 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1624 }
1625 
1626 static int nvme_setup_io_queues(struct nvme_dev *dev)
1627 {
1628 	struct nvme_queue *adminq = dev->queues[0];
1629 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1630 	int result, i, vecs, nr_io_queues, size;
1631 
1632 	nr_io_queues = num_possible_cpus();
1633 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1634 	if (result < 0)
1635 		return result;
1636 
1637 	/*
1638 	 * Degraded controllers might return an error when setting the queue
1639 	 * count.  We still want to be able to bring them online and offer
1640 	 * access to the admin queue, as that might be only way to fix them up.
1641 	 */
1642 	if (result > 0) {
1643 		dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1644 		nr_io_queues = 0;
1645 		result = 0;
1646 	}
1647 
1648 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1649 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1650 				sizeof(struct nvme_command));
1651 		if (result > 0)
1652 			dev->q_depth = result;
1653 		else
1654 			nvme_release_cmb(dev);
1655 	}
1656 
1657 	size = db_bar_size(dev, nr_io_queues);
1658 	if (size > 8192) {
1659 		iounmap(dev->bar);
1660 		do {
1661 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1662 			if (dev->bar)
1663 				break;
1664 			if (!--nr_io_queues)
1665 				return -ENOMEM;
1666 			size = db_bar_size(dev, nr_io_queues);
1667 		} while (1);
1668 		dev->dbs = dev->bar + 4096;
1669 		adminq->q_db = dev->dbs;
1670 	}
1671 
1672 	/* Deregister the admin queue's interrupt */
1673 	free_irq(dev->entry[0].vector, adminq);
1674 
1675 	/*
1676 	 * If we enable msix early due to not intx, disable it again before
1677 	 * setting up the full range we need.
1678 	 */
1679 	if (!pdev->irq)
1680 		pci_disable_msix(pdev);
1681 
1682 	for (i = 0; i < nr_io_queues; i++)
1683 		dev->entry[i].entry = i;
1684 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1685 	if (vecs < 0) {
1686 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1687 		if (vecs < 0) {
1688 			vecs = 1;
1689 		} else {
1690 			for (i = 0; i < vecs; i++)
1691 				dev->entry[i].vector = i + pdev->irq;
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Should investigate if there's a performance win from allocating
1697 	 * more queues than interrupt vectors; it might allow the submission
1698 	 * path to scale better, even if the receive path is limited by the
1699 	 * number of interrupts.
1700 	 */
1701 	nr_io_queues = vecs;
1702 	dev->max_qid = nr_io_queues;
1703 
1704 	result = queue_request_irq(dev, adminq, adminq->irqname);
1705 	if (result) {
1706 		adminq->cq_vector = -1;
1707 		goto free_queues;
1708 	}
1709 
1710 	/* Free previously allocated queues that are no longer usable */
1711 	nvme_free_queues(dev, nr_io_queues + 1);
1712 	return nvme_create_io_queues(dev);
1713 
1714  free_queues:
1715 	nvme_free_queues(dev, 1);
1716 	return result;
1717 }
1718 
1719 static void nvme_set_irq_hints(struct nvme_dev *dev)
1720 {
1721 	struct nvme_queue *nvmeq;
1722 	int i;
1723 
1724 	for (i = 0; i < dev->online_queues; i++) {
1725 		nvmeq = dev->queues[i];
1726 
1727 		if (!nvmeq->tags || !(*nvmeq->tags))
1728 			continue;
1729 
1730 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1731 					blk_mq_tags_cpumask(*nvmeq->tags));
1732 	}
1733 }
1734 
1735 static void nvme_dev_scan(struct work_struct *work)
1736 {
1737 	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1738 
1739 	if (!dev->tagset.tags)
1740 		return;
1741 	nvme_scan_namespaces(&dev->ctrl);
1742 	nvme_set_irq_hints(dev);
1743 }
1744 
1745 /*
1746  * Return: error value if an error occurred setting up the queues or calling
1747  * Identify Device.  0 if these succeeded, even if adding some of the
1748  * namespaces failed.  At the moment, these failures are silent.  TBD which
1749  * failures should be reported.
1750  */
1751 static int nvme_dev_add(struct nvme_dev *dev)
1752 {
1753 	if (!dev->ctrl.tagset) {
1754 		dev->tagset.ops = &nvme_mq_ops;
1755 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1756 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1757 		dev->tagset.numa_node = dev_to_node(dev->dev);
1758 		dev->tagset.queue_depth =
1759 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1760 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1761 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1762 		dev->tagset.driver_data = dev;
1763 
1764 		if (blk_mq_alloc_tag_set(&dev->tagset))
1765 			return 0;
1766 		dev->ctrl.tagset = &dev->tagset;
1767 	}
1768 	schedule_work(&dev->scan_work);
1769 	return 0;
1770 }
1771 
1772 static int nvme_dev_map(struct nvme_dev *dev)
1773 {
1774 	u64 cap;
1775 	int bars, result = -ENOMEM;
1776 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1777 
1778 	if (pci_enable_device_mem(pdev))
1779 		return result;
1780 
1781 	dev->entry[0].vector = pdev->irq;
1782 	pci_set_master(pdev);
1783 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1784 	if (!bars)
1785 		goto disable_pci;
1786 
1787 	if (pci_request_selected_regions(pdev, bars, "nvme"))
1788 		goto disable_pci;
1789 
1790 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1791 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1792 		goto disable;
1793 
1794 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1795 	if (!dev->bar)
1796 		goto disable;
1797 
1798 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1799 		result = -ENODEV;
1800 		goto unmap;
1801 	}
1802 
1803 	/*
1804 	 * Some devices don't advertse INTx interrupts, pre-enable a single
1805 	 * MSIX vec for setup. We'll adjust this later.
1806 	 */
1807 	if (!pdev->irq) {
1808 		result = pci_enable_msix(pdev, dev->entry, 1);
1809 		if (result < 0)
1810 			goto unmap;
1811 	}
1812 
1813 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1814 
1815 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1816 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1817 	dev->dbs = dev->bar + 4096;
1818 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1819 		dev->cmb = nvme_map_cmb(dev);
1820 
1821 	return 0;
1822 
1823  unmap:
1824 	iounmap(dev->bar);
1825 	dev->bar = NULL;
1826  disable:
1827 	pci_release_regions(pdev);
1828  disable_pci:
1829 	pci_disable_device(pdev);
1830 	return result;
1831 }
1832 
1833 static void nvme_dev_unmap(struct nvme_dev *dev)
1834 {
1835 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1836 
1837 	if (pdev->msi_enabled)
1838 		pci_disable_msi(pdev);
1839 	else if (pdev->msix_enabled)
1840 		pci_disable_msix(pdev);
1841 
1842 	if (dev->bar) {
1843 		iounmap(dev->bar);
1844 		dev->bar = NULL;
1845 		pci_release_regions(pdev);
1846 	}
1847 
1848 	if (pci_is_enabled(pdev))
1849 		pci_disable_device(pdev);
1850 }
1851 
1852 struct nvme_delq_ctx {
1853 	struct task_struct *waiter;
1854 	struct kthread_worker *worker;
1855 	atomic_t refcount;
1856 };
1857 
1858 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1859 {
1860 	dq->waiter = current;
1861 	mb();
1862 
1863 	for (;;) {
1864 		set_current_state(TASK_KILLABLE);
1865 		if (!atomic_read(&dq->refcount))
1866 			break;
1867 		if (!schedule_timeout(ADMIN_TIMEOUT) ||
1868 					fatal_signal_pending(current)) {
1869 			/*
1870 			 * Disable the controller first since we can't trust it
1871 			 * at this point, but leave the admin queue enabled
1872 			 * until all queue deletion requests are flushed.
1873 			 * FIXME: This may take a while if there are more h/w
1874 			 * queues than admin tags.
1875 			 */
1876 			set_current_state(TASK_RUNNING);
1877 			nvme_disable_ctrl(&dev->ctrl,
1878 				lo_hi_readq(dev->bar + NVME_REG_CAP));
1879 			nvme_clear_queue(dev->queues[0]);
1880 			flush_kthread_worker(dq->worker);
1881 			nvme_disable_queue(dev, 0);
1882 			return;
1883 		}
1884 	}
1885 	set_current_state(TASK_RUNNING);
1886 }
1887 
1888 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1889 {
1890 	atomic_dec(&dq->refcount);
1891 	if (dq->waiter)
1892 		wake_up_process(dq->waiter);
1893 }
1894 
1895 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1896 {
1897 	atomic_inc(&dq->refcount);
1898 	return dq;
1899 }
1900 
1901 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1902 {
1903 	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1904 	nvme_put_dq(dq);
1905 
1906 	spin_lock_irq(&nvmeq->q_lock);
1907 	nvme_process_cq(nvmeq);
1908 	spin_unlock_irq(&nvmeq->q_lock);
1909 }
1910 
1911 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1912 						kthread_work_func_t fn)
1913 {
1914 	struct nvme_command c;
1915 
1916 	memset(&c, 0, sizeof(c));
1917 	c.delete_queue.opcode = opcode;
1918 	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1919 
1920 	init_kthread_work(&nvmeq->cmdinfo.work, fn);
1921 	return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1922 								ADMIN_TIMEOUT);
1923 }
1924 
1925 static void nvme_del_cq_work_handler(struct kthread_work *work)
1926 {
1927 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1928 							cmdinfo.work);
1929 	nvme_del_queue_end(nvmeq);
1930 }
1931 
1932 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1933 {
1934 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1935 						nvme_del_cq_work_handler);
1936 }
1937 
1938 static void nvme_del_sq_work_handler(struct kthread_work *work)
1939 {
1940 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1941 							cmdinfo.work);
1942 	int status = nvmeq->cmdinfo.status;
1943 
1944 	if (!status)
1945 		status = nvme_delete_cq(nvmeq);
1946 	if (status)
1947 		nvme_del_queue_end(nvmeq);
1948 }
1949 
1950 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1951 {
1952 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1953 						nvme_del_sq_work_handler);
1954 }
1955 
1956 static void nvme_del_queue_start(struct kthread_work *work)
1957 {
1958 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1959 							cmdinfo.work);
1960 	if (nvme_delete_sq(nvmeq))
1961 		nvme_del_queue_end(nvmeq);
1962 }
1963 
1964 static void nvme_disable_io_queues(struct nvme_dev *dev)
1965 {
1966 	int i;
1967 	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1968 	struct nvme_delq_ctx dq;
1969 	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1970 					&worker, "nvme%d", dev->ctrl.instance);
1971 
1972 	if (IS_ERR(kworker_task)) {
1973 		dev_err(dev->dev,
1974 			"Failed to create queue del task\n");
1975 		for (i = dev->queue_count - 1; i > 0; i--)
1976 			nvme_disable_queue(dev, i);
1977 		return;
1978 	}
1979 
1980 	dq.waiter = NULL;
1981 	atomic_set(&dq.refcount, 0);
1982 	dq.worker = &worker;
1983 	for (i = dev->queue_count - 1; i > 0; i--) {
1984 		struct nvme_queue *nvmeq = dev->queues[i];
1985 
1986 		if (nvme_suspend_queue(nvmeq))
1987 			continue;
1988 		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1989 		nvmeq->cmdinfo.worker = dq.worker;
1990 		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1991 		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1992 	}
1993 	nvme_wait_dq(&dq, dev);
1994 	kthread_stop(kworker_task);
1995 }
1996 
1997 static int nvme_dev_list_add(struct nvme_dev *dev)
1998 {
1999 	bool start_thread = false;
2000 
2001 	spin_lock(&dev_list_lock);
2002 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2003 		start_thread = true;
2004 		nvme_thread = NULL;
2005 	}
2006 	list_add(&dev->node, &dev_list);
2007 	spin_unlock(&dev_list_lock);
2008 
2009 	if (start_thread) {
2010 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2011 		wake_up_all(&nvme_kthread_wait);
2012 	} else
2013 		wait_event_killable(nvme_kthread_wait, nvme_thread);
2014 
2015 	if (IS_ERR_OR_NULL(nvme_thread))
2016 		return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2017 
2018 	return 0;
2019 }
2020 
2021 /*
2022 * Remove the node from the device list and check
2023 * for whether or not we need to stop the nvme_thread.
2024 */
2025 static void nvme_dev_list_remove(struct nvme_dev *dev)
2026 {
2027 	struct task_struct *tmp = NULL;
2028 
2029 	spin_lock(&dev_list_lock);
2030 	list_del_init(&dev->node);
2031 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2032 		tmp = nvme_thread;
2033 		nvme_thread = NULL;
2034 	}
2035 	spin_unlock(&dev_list_lock);
2036 
2037 	if (tmp)
2038 		kthread_stop(tmp);
2039 }
2040 
2041 static void nvme_freeze_queues(struct nvme_dev *dev)
2042 {
2043 	struct nvme_ns *ns;
2044 
2045 	list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2046 		blk_mq_freeze_queue_start(ns->queue);
2047 
2048 		spin_lock_irq(ns->queue->queue_lock);
2049 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2050 		spin_unlock_irq(ns->queue->queue_lock);
2051 
2052 		blk_mq_cancel_requeue_work(ns->queue);
2053 		blk_mq_stop_hw_queues(ns->queue);
2054 	}
2055 }
2056 
2057 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2058 {
2059 	struct nvme_ns *ns;
2060 
2061 	list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
2062 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2063 		blk_mq_unfreeze_queue(ns->queue);
2064 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2065 		blk_mq_kick_requeue_list(ns->queue);
2066 	}
2067 }
2068 
2069 static void nvme_dev_shutdown(struct nvme_dev *dev)
2070 {
2071 	int i;
2072 	u32 csts = -1;
2073 
2074 	nvme_dev_list_remove(dev);
2075 
2076 	mutex_lock(&dev->shutdown_lock);
2077 	if (dev->bar) {
2078 		nvme_freeze_queues(dev);
2079 		csts = readl(dev->bar + NVME_REG_CSTS);
2080 	}
2081 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2082 		for (i = dev->queue_count - 1; i >= 0; i--) {
2083 			struct nvme_queue *nvmeq = dev->queues[i];
2084 			nvme_suspend_queue(nvmeq);
2085 		}
2086 	} else {
2087 		nvme_disable_io_queues(dev);
2088 		nvme_shutdown_ctrl(&dev->ctrl);
2089 		nvme_disable_queue(dev, 0);
2090 	}
2091 	nvme_dev_unmap(dev);
2092 
2093 	for (i = dev->queue_count - 1; i >= 0; i--)
2094 		nvme_clear_queue(dev->queues[i]);
2095 	mutex_unlock(&dev->shutdown_lock);
2096 }
2097 
2098 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2099 {
2100 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2101 						PAGE_SIZE, PAGE_SIZE, 0);
2102 	if (!dev->prp_page_pool)
2103 		return -ENOMEM;
2104 
2105 	/* Optimisation for I/Os between 4k and 128k */
2106 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2107 						256, 256, 0);
2108 	if (!dev->prp_small_pool) {
2109 		dma_pool_destroy(dev->prp_page_pool);
2110 		return -ENOMEM;
2111 	}
2112 	return 0;
2113 }
2114 
2115 static void nvme_release_prp_pools(struct nvme_dev *dev)
2116 {
2117 	dma_pool_destroy(dev->prp_page_pool);
2118 	dma_pool_destroy(dev->prp_small_pool);
2119 }
2120 
2121 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2122 {
2123 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2124 
2125 	put_device(dev->dev);
2126 	if (dev->tagset.tags)
2127 		blk_mq_free_tag_set(&dev->tagset);
2128 	if (dev->ctrl.admin_q)
2129 		blk_put_queue(dev->ctrl.admin_q);
2130 	kfree(dev->queues);
2131 	kfree(dev->entry);
2132 	kfree(dev);
2133 }
2134 
2135 static void nvme_probe_work(struct work_struct *work)
2136 {
2137 	struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2138 	int result;
2139 
2140 	result = nvme_dev_map(dev);
2141 	if (result)
2142 		goto out;
2143 
2144 	result = nvme_configure_admin_queue(dev);
2145 	if (result)
2146 		goto unmap;
2147 
2148 	nvme_init_queue(dev->queues[0], 0);
2149 	result = nvme_alloc_admin_tags(dev);
2150 	if (result)
2151 		goto disable;
2152 
2153 	result = nvme_init_identify(&dev->ctrl);
2154 	if (result)
2155 		goto free_tags;
2156 
2157 	result = nvme_setup_io_queues(dev);
2158 	if (result)
2159 		goto free_tags;
2160 
2161 	dev->ctrl.event_limit = 1;
2162 
2163 	result = nvme_dev_list_add(dev);
2164 	if (result)
2165 		goto remove;
2166 
2167 	/*
2168 	 * Keep the controller around but remove all namespaces if we don't have
2169 	 * any working I/O queue.
2170 	 */
2171 	if (dev->online_queues < 2) {
2172 		dev_warn(dev->dev, "IO queues not created\n");
2173 		nvme_remove_namespaces(&dev->ctrl);
2174 	} else {
2175 		nvme_unfreeze_queues(dev);
2176 		nvme_dev_add(dev);
2177 	}
2178 
2179 	return;
2180 
2181  remove:
2182 	nvme_dev_list_remove(dev);
2183  free_tags:
2184 	nvme_dev_remove_admin(dev);
2185 	blk_put_queue(dev->ctrl.admin_q);
2186 	dev->ctrl.admin_q = NULL;
2187 	dev->queues[0]->tags = NULL;
2188  disable:
2189 	nvme_disable_queue(dev, 0);
2190  unmap:
2191 	nvme_dev_unmap(dev);
2192  out:
2193 	if (!work_busy(&dev->reset_work))
2194 		nvme_dead_ctrl(dev);
2195 }
2196 
2197 static int nvme_remove_dead_ctrl(void *arg)
2198 {
2199 	struct nvme_dev *dev = (struct nvme_dev *)arg;
2200 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2201 
2202 	if (pci_get_drvdata(pdev))
2203 		pci_stop_and_remove_bus_device_locked(pdev);
2204 	nvme_put_ctrl(&dev->ctrl);
2205 	return 0;
2206 }
2207 
2208 static void nvme_dead_ctrl(struct nvme_dev *dev)
2209 {
2210 	dev_warn(dev->dev, "Device failed to resume\n");
2211 	kref_get(&dev->ctrl.kref);
2212 	if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2213 						dev->ctrl.instance))) {
2214 		dev_err(dev->dev,
2215 			"Failed to start controller remove task\n");
2216 		nvme_put_ctrl(&dev->ctrl);
2217 	}
2218 }
2219 
2220 static void nvme_reset_work(struct work_struct *ws)
2221 {
2222 	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2223 	bool in_probe = work_busy(&dev->probe_work);
2224 
2225 	nvme_dev_shutdown(dev);
2226 
2227 	/* Synchronize with device probe so that work will see failure status
2228 	 * and exit gracefully without trying to schedule another reset */
2229 	flush_work(&dev->probe_work);
2230 
2231 	/* Fail this device if reset occured during probe to avoid
2232 	 * infinite initialization loops. */
2233 	if (in_probe) {
2234 		nvme_dead_ctrl(dev);
2235 		return;
2236 	}
2237 	/* Schedule device resume asynchronously so the reset work is available
2238 	 * to cleanup errors that may occur during reinitialization */
2239 	schedule_work(&dev->probe_work);
2240 }
2241 
2242 static int __nvme_reset(struct nvme_dev *dev)
2243 {
2244 	if (work_pending(&dev->reset_work))
2245 		return -EBUSY;
2246 	list_del_init(&dev->node);
2247 	queue_work(nvme_workq, &dev->reset_work);
2248 	return 0;
2249 }
2250 
2251 static int nvme_reset(struct nvme_dev *dev)
2252 {
2253 	int ret;
2254 
2255 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2256 		return -ENODEV;
2257 
2258 	spin_lock(&dev_list_lock);
2259 	ret = __nvme_reset(dev);
2260 	spin_unlock(&dev_list_lock);
2261 
2262 	if (!ret) {
2263 		flush_work(&dev->reset_work);
2264 		flush_work(&dev->probe_work);
2265 		return 0;
2266 	}
2267 
2268 	return ret;
2269 }
2270 
2271 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2272 {
2273 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2274 	return 0;
2275 }
2276 
2277 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2278 {
2279 	writel(val, to_nvme_dev(ctrl)->bar + off);
2280 	return 0;
2281 }
2282 
2283 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2284 {
2285 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2286 	return 0;
2287 }
2288 
2289 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2290 {
2291 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2292 
2293 	return !dev->bar || dev->online_queues < 2;
2294 }
2295 
2296 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2297 {
2298 	return nvme_reset(to_nvme_dev(ctrl));
2299 }
2300 
2301 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2302 	.reg_read32		= nvme_pci_reg_read32,
2303 	.reg_write32		= nvme_pci_reg_write32,
2304 	.reg_read64		= nvme_pci_reg_read64,
2305 	.io_incapable		= nvme_pci_io_incapable,
2306 	.reset_ctrl		= nvme_pci_reset_ctrl,
2307 	.free_ctrl		= nvme_pci_free_ctrl,
2308 };
2309 
2310 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2311 {
2312 	int node, result = -ENOMEM;
2313 	struct nvme_dev *dev;
2314 
2315 	node = dev_to_node(&pdev->dev);
2316 	if (node == NUMA_NO_NODE)
2317 		set_dev_node(&pdev->dev, 0);
2318 
2319 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2320 	if (!dev)
2321 		return -ENOMEM;
2322 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2323 							GFP_KERNEL, node);
2324 	if (!dev->entry)
2325 		goto free;
2326 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2327 							GFP_KERNEL, node);
2328 	if (!dev->queues)
2329 		goto free;
2330 
2331 	dev->dev = get_device(&pdev->dev);
2332 	pci_set_drvdata(pdev, dev);
2333 
2334 	INIT_LIST_HEAD(&dev->node);
2335 	INIT_WORK(&dev->scan_work, nvme_dev_scan);
2336 	INIT_WORK(&dev->probe_work, nvme_probe_work);
2337 	INIT_WORK(&dev->reset_work, nvme_reset_work);
2338 	mutex_init(&dev->shutdown_lock);
2339 
2340 	result = nvme_setup_prp_pools(dev);
2341 	if (result)
2342 		goto put_pci;
2343 
2344 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2345 			id->driver_data);
2346 	if (result)
2347 		goto release_pools;
2348 
2349 	schedule_work(&dev->probe_work);
2350 	return 0;
2351 
2352  release_pools:
2353 	nvme_release_prp_pools(dev);
2354  put_pci:
2355 	put_device(dev->dev);
2356  free:
2357 	kfree(dev->queues);
2358 	kfree(dev->entry);
2359 	kfree(dev);
2360 	return result;
2361 }
2362 
2363 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2364 {
2365 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2366 
2367 	if (prepare)
2368 		nvme_dev_shutdown(dev);
2369 	else
2370 		schedule_work(&dev->probe_work);
2371 }
2372 
2373 static void nvme_shutdown(struct pci_dev *pdev)
2374 {
2375 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2376 	nvme_dev_shutdown(dev);
2377 }
2378 
2379 static void nvme_remove(struct pci_dev *pdev)
2380 {
2381 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2382 
2383 	spin_lock(&dev_list_lock);
2384 	list_del_init(&dev->node);
2385 	spin_unlock(&dev_list_lock);
2386 
2387 	pci_set_drvdata(pdev, NULL);
2388 	flush_work(&dev->probe_work);
2389 	flush_work(&dev->reset_work);
2390 	flush_work(&dev->scan_work);
2391 	nvme_remove_namespaces(&dev->ctrl);
2392 	nvme_dev_shutdown(dev);
2393 	nvme_dev_remove_admin(dev);
2394 	nvme_free_queues(dev, 0);
2395 	nvme_release_cmb(dev);
2396 	nvme_release_prp_pools(dev);
2397 	nvme_put_ctrl(&dev->ctrl);
2398 }
2399 
2400 /* These functions are yet to be implemented */
2401 #define nvme_error_detected NULL
2402 #define nvme_dump_registers NULL
2403 #define nvme_link_reset NULL
2404 #define nvme_slot_reset NULL
2405 #define nvme_error_resume NULL
2406 
2407 #ifdef CONFIG_PM_SLEEP
2408 static int nvme_suspend(struct device *dev)
2409 {
2410 	struct pci_dev *pdev = to_pci_dev(dev);
2411 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2412 
2413 	nvme_dev_shutdown(ndev);
2414 	return 0;
2415 }
2416 
2417 static int nvme_resume(struct device *dev)
2418 {
2419 	struct pci_dev *pdev = to_pci_dev(dev);
2420 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2421 
2422 	schedule_work(&ndev->probe_work);
2423 	return 0;
2424 }
2425 #endif
2426 
2427 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2428 
2429 static const struct pci_error_handlers nvme_err_handler = {
2430 	.error_detected	= nvme_error_detected,
2431 	.mmio_enabled	= nvme_dump_registers,
2432 	.link_reset	= nvme_link_reset,
2433 	.slot_reset	= nvme_slot_reset,
2434 	.resume		= nvme_error_resume,
2435 	.reset_notify	= nvme_reset_notify,
2436 };
2437 
2438 /* Move to pci_ids.h later */
2439 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
2440 
2441 static const struct pci_device_id nvme_id_table[] = {
2442 	{ PCI_VDEVICE(INTEL, 0x0953),
2443 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
2444 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2445 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2446 	{ 0, }
2447 };
2448 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2449 
2450 static struct pci_driver nvme_driver = {
2451 	.name		= "nvme",
2452 	.id_table	= nvme_id_table,
2453 	.probe		= nvme_probe,
2454 	.remove		= nvme_remove,
2455 	.shutdown	= nvme_shutdown,
2456 	.driver		= {
2457 		.pm	= &nvme_dev_pm_ops,
2458 	},
2459 	.err_handler	= &nvme_err_handler,
2460 };
2461 
2462 static int __init nvme_init(void)
2463 {
2464 	int result;
2465 
2466 	init_waitqueue_head(&nvme_kthread_wait);
2467 
2468 	nvme_workq = create_singlethread_workqueue("nvme");
2469 	if (!nvme_workq)
2470 		return -ENOMEM;
2471 
2472 	result = nvme_core_init();
2473 	if (result < 0)
2474 		goto kill_workq;
2475 
2476 	result = pci_register_driver(&nvme_driver);
2477 	if (result)
2478 		goto core_exit;
2479 	return 0;
2480 
2481  core_exit:
2482 	nvme_core_exit();
2483  kill_workq:
2484 	destroy_workqueue(nvme_workq);
2485 	return result;
2486 }
2487 
2488 static void __exit nvme_exit(void)
2489 {
2490 	pci_unregister_driver(&nvme_driver);
2491 	nvme_core_exit();
2492 	destroy_workqueue(nvme_workq);
2493 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2494 	_nvme_check_size();
2495 }
2496 
2497 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2498 MODULE_LICENSE("GPL");
2499 MODULE_VERSION("1.0");
2500 module_init(nvme_init);
2501 module_exit(nvme_exit);
2502