1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/once.h> 21 #include <linux/pci.h> 22 #include <linux/suspend.h> 23 #include <linux/t10-pi.h> 24 #include <linux/types.h> 25 #include <linux/io-64-nonatomic-lo-hi.h> 26 #include <linux/sed-opal.h> 27 #include <linux/pci-p2pdma.h> 28 29 #include "trace.h" 30 #include "nvme.h" 31 32 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 33 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 34 35 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 36 37 /* 38 * These can be higher, but we need to ensure that any command doesn't 39 * require an sg allocation that needs more than a page of data. 40 */ 41 #define NVME_MAX_KB_SZ 4096 42 #define NVME_MAX_SEGS 127 43 44 static int use_threaded_interrupts; 45 module_param(use_threaded_interrupts, int, 0); 46 47 static bool use_cmb_sqes = true; 48 module_param(use_cmb_sqes, bool, 0444); 49 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 50 51 static unsigned int max_host_mem_size_mb = 128; 52 module_param(max_host_mem_size_mb, uint, 0444); 53 MODULE_PARM_DESC(max_host_mem_size_mb, 54 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 55 56 static unsigned int sgl_threshold = SZ_32K; 57 module_param(sgl_threshold, uint, 0644); 58 MODULE_PARM_DESC(sgl_threshold, 59 "Use SGLs when average request segment size is larger or equal to " 60 "this size. Use 0 to disable SGLs."); 61 62 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 63 static const struct kernel_param_ops io_queue_depth_ops = { 64 .set = io_queue_depth_set, 65 .get = param_get_uint, 66 }; 67 68 static unsigned int io_queue_depth = 1024; 69 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 70 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 71 72 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 73 { 74 unsigned int n; 75 int ret; 76 77 ret = kstrtouint(val, 10, &n); 78 if (ret != 0 || n > num_possible_cpus()) 79 return -EINVAL; 80 return param_set_uint(val, kp); 81 } 82 83 static const struct kernel_param_ops io_queue_count_ops = { 84 .set = io_queue_count_set, 85 .get = param_get_uint, 86 }; 87 88 static unsigned int write_queues; 89 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 90 MODULE_PARM_DESC(write_queues, 91 "Number of queues to use for writes. If not set, reads and writes " 92 "will share a queue set."); 93 94 static unsigned int poll_queues; 95 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 96 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 97 98 static bool noacpi; 99 module_param(noacpi, bool, 0444); 100 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 101 102 struct nvme_dev; 103 struct nvme_queue; 104 105 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 106 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 107 108 /* 109 * Represents an NVM Express device. Each nvme_dev is a PCI function. 110 */ 111 struct nvme_dev { 112 struct nvme_queue *queues; 113 struct blk_mq_tag_set tagset; 114 struct blk_mq_tag_set admin_tagset; 115 u32 __iomem *dbs; 116 struct device *dev; 117 struct dma_pool *prp_page_pool; 118 struct dma_pool *prp_small_pool; 119 unsigned online_queues; 120 unsigned max_qid; 121 unsigned io_queues[HCTX_MAX_TYPES]; 122 unsigned int num_vecs; 123 u32 q_depth; 124 int io_sqes; 125 u32 db_stride; 126 void __iomem *bar; 127 unsigned long bar_mapped_size; 128 struct work_struct remove_work; 129 struct mutex shutdown_lock; 130 bool subsystem; 131 u64 cmb_size; 132 bool cmb_use_sqes; 133 u32 cmbsz; 134 u32 cmbloc; 135 struct nvme_ctrl ctrl; 136 u32 last_ps; 137 138 mempool_t *iod_mempool; 139 140 /* shadow doorbell buffer support: */ 141 u32 *dbbuf_dbs; 142 dma_addr_t dbbuf_dbs_dma_addr; 143 u32 *dbbuf_eis; 144 dma_addr_t dbbuf_eis_dma_addr; 145 146 /* host memory buffer support: */ 147 u64 host_mem_size; 148 u32 nr_host_mem_descs; 149 dma_addr_t host_mem_descs_dma; 150 struct nvme_host_mem_buf_desc *host_mem_descs; 151 void **host_mem_desc_bufs; 152 unsigned int nr_allocated_queues; 153 unsigned int nr_write_queues; 154 unsigned int nr_poll_queues; 155 }; 156 157 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 158 { 159 int ret; 160 u32 n; 161 162 ret = kstrtou32(val, 10, &n); 163 if (ret != 0 || n < 2) 164 return -EINVAL; 165 166 return param_set_uint(val, kp); 167 } 168 169 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 170 { 171 return qid * 2 * stride; 172 } 173 174 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 175 { 176 return (qid * 2 + 1) * stride; 177 } 178 179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 180 { 181 return container_of(ctrl, struct nvme_dev, ctrl); 182 } 183 184 /* 185 * An NVM Express queue. Each device has at least two (one for admin 186 * commands and one for I/O commands). 187 */ 188 struct nvme_queue { 189 struct nvme_dev *dev; 190 spinlock_t sq_lock; 191 void *sq_cmds; 192 /* only used for poll queues: */ 193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 194 struct nvme_completion *cqes; 195 dma_addr_t sq_dma_addr; 196 dma_addr_t cq_dma_addr; 197 u32 __iomem *q_db; 198 u32 q_depth; 199 u16 cq_vector; 200 u16 sq_tail; 201 u16 last_sq_tail; 202 u16 cq_head; 203 u16 qid; 204 u8 cq_phase; 205 u8 sqes; 206 unsigned long flags; 207 #define NVMEQ_ENABLED 0 208 #define NVMEQ_SQ_CMB 1 209 #define NVMEQ_DELETE_ERROR 2 210 #define NVMEQ_POLLED 3 211 u32 *dbbuf_sq_db; 212 u32 *dbbuf_cq_db; 213 u32 *dbbuf_sq_ei; 214 u32 *dbbuf_cq_ei; 215 struct completion delete_done; 216 }; 217 218 /* 219 * The nvme_iod describes the data in an I/O. 220 * 221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 222 * to the actual struct scatterlist. 223 */ 224 struct nvme_iod { 225 struct nvme_request req; 226 struct nvme_queue *nvmeq; 227 bool use_sgl; 228 int aborted; 229 int npages; /* In the PRP list. 0 means small pool in use */ 230 int nents; /* Used in scatterlist */ 231 dma_addr_t first_dma; 232 unsigned int dma_len; /* length of single DMA segment mapping */ 233 dma_addr_t meta_dma; 234 struct scatterlist *sg; 235 }; 236 237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 238 { 239 return dev->nr_allocated_queues * 8 * dev->db_stride; 240 } 241 242 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 243 { 244 unsigned int mem_size = nvme_dbbuf_size(dev); 245 246 if (dev->dbbuf_dbs) 247 return 0; 248 249 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 250 &dev->dbbuf_dbs_dma_addr, 251 GFP_KERNEL); 252 if (!dev->dbbuf_dbs) 253 return -ENOMEM; 254 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 255 &dev->dbbuf_eis_dma_addr, 256 GFP_KERNEL); 257 if (!dev->dbbuf_eis) { 258 dma_free_coherent(dev->dev, mem_size, 259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 260 dev->dbbuf_dbs = NULL; 261 return -ENOMEM; 262 } 263 264 return 0; 265 } 266 267 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 268 { 269 unsigned int mem_size = nvme_dbbuf_size(dev); 270 271 if (dev->dbbuf_dbs) { 272 dma_free_coherent(dev->dev, mem_size, 273 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 274 dev->dbbuf_dbs = NULL; 275 } 276 if (dev->dbbuf_eis) { 277 dma_free_coherent(dev->dev, mem_size, 278 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 279 dev->dbbuf_eis = NULL; 280 } 281 } 282 283 static void nvme_dbbuf_init(struct nvme_dev *dev, 284 struct nvme_queue *nvmeq, int qid) 285 { 286 if (!dev->dbbuf_dbs || !qid) 287 return; 288 289 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 290 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 291 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 292 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 293 } 294 295 static void nvme_dbbuf_set(struct nvme_dev *dev) 296 { 297 struct nvme_command c; 298 299 if (!dev->dbbuf_dbs) 300 return; 301 302 memset(&c, 0, sizeof(c)); 303 c.dbbuf.opcode = nvme_admin_dbbuf; 304 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 305 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 306 307 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 308 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 309 /* Free memory and continue on */ 310 nvme_dbbuf_dma_free(dev); 311 } 312 } 313 314 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 315 { 316 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 317 } 318 319 /* Update dbbuf and return true if an MMIO is required */ 320 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 321 volatile u32 *dbbuf_ei) 322 { 323 if (dbbuf_db) { 324 u16 old_value; 325 326 /* 327 * Ensure that the queue is written before updating 328 * the doorbell in memory 329 */ 330 wmb(); 331 332 old_value = *dbbuf_db; 333 *dbbuf_db = value; 334 335 /* 336 * Ensure that the doorbell is updated before reading the event 337 * index from memory. The controller needs to provide similar 338 * ordering to ensure the envent index is updated before reading 339 * the doorbell. 340 */ 341 mb(); 342 343 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 344 return false; 345 } 346 347 return true; 348 } 349 350 /* 351 * Will slightly overestimate the number of pages needed. This is OK 352 * as it only leads to a small amount of wasted memory for the lifetime of 353 * the I/O. 354 */ 355 static int nvme_pci_npages_prp(void) 356 { 357 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 358 NVME_CTRL_PAGE_SIZE); 359 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 360 } 361 362 /* 363 * Calculates the number of pages needed for the SGL segments. For example a 4k 364 * page can accommodate 256 SGL descriptors. 365 */ 366 static int nvme_pci_npages_sgl(void) 367 { 368 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 369 PAGE_SIZE); 370 } 371 372 static size_t nvme_pci_iod_alloc_size(void) 373 { 374 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 375 376 return sizeof(__le64 *) * npages + 377 sizeof(struct scatterlist) * NVME_MAX_SEGS; 378 } 379 380 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 381 unsigned int hctx_idx) 382 { 383 struct nvme_dev *dev = data; 384 struct nvme_queue *nvmeq = &dev->queues[0]; 385 386 WARN_ON(hctx_idx != 0); 387 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 388 389 hctx->driver_data = nvmeq; 390 return 0; 391 } 392 393 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 394 unsigned int hctx_idx) 395 { 396 struct nvme_dev *dev = data; 397 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 398 399 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 400 hctx->driver_data = nvmeq; 401 return 0; 402 } 403 404 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 405 unsigned int hctx_idx, unsigned int numa_node) 406 { 407 struct nvme_dev *dev = set->driver_data; 408 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 409 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 410 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 411 412 BUG_ON(!nvmeq); 413 iod->nvmeq = nvmeq; 414 415 nvme_req(req)->ctrl = &dev->ctrl; 416 return 0; 417 } 418 419 static int queue_irq_offset(struct nvme_dev *dev) 420 { 421 /* if we have more than 1 vec, admin queue offsets us by 1 */ 422 if (dev->num_vecs > 1) 423 return 1; 424 425 return 0; 426 } 427 428 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 429 { 430 struct nvme_dev *dev = set->driver_data; 431 int i, qoff, offset; 432 433 offset = queue_irq_offset(dev); 434 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 435 struct blk_mq_queue_map *map = &set->map[i]; 436 437 map->nr_queues = dev->io_queues[i]; 438 if (!map->nr_queues) { 439 BUG_ON(i == HCTX_TYPE_DEFAULT); 440 continue; 441 } 442 443 /* 444 * The poll queue(s) doesn't have an IRQ (and hence IRQ 445 * affinity), so use the regular blk-mq cpu mapping 446 */ 447 map->queue_offset = qoff; 448 if (i != HCTX_TYPE_POLL && offset) 449 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 450 else 451 blk_mq_map_queues(map); 452 qoff += map->nr_queues; 453 offset += map->nr_queues; 454 } 455 456 return 0; 457 } 458 459 /* 460 * Write sq tail if we are asked to, or if the next command would wrap. 461 */ 462 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 463 { 464 if (!write_sq) { 465 u16 next_tail = nvmeq->sq_tail + 1; 466 467 if (next_tail == nvmeq->q_depth) 468 next_tail = 0; 469 if (next_tail != nvmeq->last_sq_tail) 470 return; 471 } 472 473 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 474 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 475 writel(nvmeq->sq_tail, nvmeq->q_db); 476 nvmeq->last_sq_tail = nvmeq->sq_tail; 477 } 478 479 /** 480 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 481 * @nvmeq: The queue to use 482 * @cmd: The command to send 483 * @write_sq: whether to write to the SQ doorbell 484 */ 485 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 486 bool write_sq) 487 { 488 spin_lock(&nvmeq->sq_lock); 489 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 490 cmd, sizeof(*cmd)); 491 if (++nvmeq->sq_tail == nvmeq->q_depth) 492 nvmeq->sq_tail = 0; 493 nvme_write_sq_db(nvmeq, write_sq); 494 spin_unlock(&nvmeq->sq_lock); 495 } 496 497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 498 { 499 struct nvme_queue *nvmeq = hctx->driver_data; 500 501 spin_lock(&nvmeq->sq_lock); 502 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 503 nvme_write_sq_db(nvmeq, true); 504 spin_unlock(&nvmeq->sq_lock); 505 } 506 507 static void **nvme_pci_iod_list(struct request *req) 508 { 509 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 510 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 511 } 512 513 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 514 { 515 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 516 int nseg = blk_rq_nr_phys_segments(req); 517 unsigned int avg_seg_size; 518 519 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 520 521 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 522 return false; 523 if (!iod->nvmeq->qid) 524 return false; 525 if (!sgl_threshold || avg_seg_size < sgl_threshold) 526 return false; 527 return true; 528 } 529 530 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 531 { 532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 533 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 534 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 535 int i; 536 537 if (iod->dma_len) { 538 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, 539 rq_dma_dir(req)); 540 return; 541 } 542 543 WARN_ON_ONCE(!iod->nents); 544 545 if (is_pci_p2pdma_page(sg_page(iod->sg))) 546 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 547 rq_dma_dir(req)); 548 else 549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 550 551 552 if (iod->npages == 0) 553 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 554 dma_addr); 555 556 for (i = 0; i < iod->npages; i++) { 557 void *addr = nvme_pci_iod_list(req)[i]; 558 559 if (iod->use_sgl) { 560 struct nvme_sgl_desc *sg_list = addr; 561 562 next_dma_addr = 563 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 564 } else { 565 __le64 *prp_list = addr; 566 567 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 568 } 569 570 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 571 dma_addr = next_dma_addr; 572 } 573 574 mempool_free(iod->sg, dev->iod_mempool); 575 } 576 577 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 578 { 579 int i; 580 struct scatterlist *sg; 581 582 for_each_sg(sgl, sg, nents, i) { 583 dma_addr_t phys = sg_phys(sg); 584 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 585 "dma_address:%pad dma_length:%d\n", 586 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 587 sg_dma_len(sg)); 588 } 589 } 590 591 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 592 struct request *req, struct nvme_rw_command *cmnd) 593 { 594 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 595 struct dma_pool *pool; 596 int length = blk_rq_payload_bytes(req); 597 struct scatterlist *sg = iod->sg; 598 int dma_len = sg_dma_len(sg); 599 u64 dma_addr = sg_dma_address(sg); 600 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 601 __le64 *prp_list; 602 void **list = nvme_pci_iod_list(req); 603 dma_addr_t prp_dma; 604 int nprps, i; 605 606 length -= (NVME_CTRL_PAGE_SIZE - offset); 607 if (length <= 0) { 608 iod->first_dma = 0; 609 goto done; 610 } 611 612 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 613 if (dma_len) { 614 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 615 } else { 616 sg = sg_next(sg); 617 dma_addr = sg_dma_address(sg); 618 dma_len = sg_dma_len(sg); 619 } 620 621 if (length <= NVME_CTRL_PAGE_SIZE) { 622 iod->first_dma = dma_addr; 623 goto done; 624 } 625 626 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 627 if (nprps <= (256 / 8)) { 628 pool = dev->prp_small_pool; 629 iod->npages = 0; 630 } else { 631 pool = dev->prp_page_pool; 632 iod->npages = 1; 633 } 634 635 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 636 if (!prp_list) { 637 iod->first_dma = dma_addr; 638 iod->npages = -1; 639 return BLK_STS_RESOURCE; 640 } 641 list[0] = prp_list; 642 iod->first_dma = prp_dma; 643 i = 0; 644 for (;;) { 645 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 646 __le64 *old_prp_list = prp_list; 647 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 648 if (!prp_list) 649 return BLK_STS_RESOURCE; 650 list[iod->npages++] = prp_list; 651 prp_list[0] = old_prp_list[i - 1]; 652 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 653 i = 1; 654 } 655 prp_list[i++] = cpu_to_le64(dma_addr); 656 dma_len -= NVME_CTRL_PAGE_SIZE; 657 dma_addr += NVME_CTRL_PAGE_SIZE; 658 length -= NVME_CTRL_PAGE_SIZE; 659 if (length <= 0) 660 break; 661 if (dma_len > 0) 662 continue; 663 if (unlikely(dma_len < 0)) 664 goto bad_sgl; 665 sg = sg_next(sg); 666 dma_addr = sg_dma_address(sg); 667 dma_len = sg_dma_len(sg); 668 } 669 670 done: 671 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 672 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 673 674 return BLK_STS_OK; 675 676 bad_sgl: 677 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 678 "Invalid SGL for payload:%d nents:%d\n", 679 blk_rq_payload_bytes(req), iod->nents); 680 return BLK_STS_IOERR; 681 } 682 683 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 684 struct scatterlist *sg) 685 { 686 sge->addr = cpu_to_le64(sg_dma_address(sg)); 687 sge->length = cpu_to_le32(sg_dma_len(sg)); 688 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 689 } 690 691 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 692 dma_addr_t dma_addr, int entries) 693 { 694 sge->addr = cpu_to_le64(dma_addr); 695 if (entries < SGES_PER_PAGE) { 696 sge->length = cpu_to_le32(entries * sizeof(*sge)); 697 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 698 } else { 699 sge->length = cpu_to_le32(PAGE_SIZE); 700 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 701 } 702 } 703 704 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 705 struct request *req, struct nvme_rw_command *cmd, int entries) 706 { 707 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 708 struct dma_pool *pool; 709 struct nvme_sgl_desc *sg_list; 710 struct scatterlist *sg = iod->sg; 711 dma_addr_t sgl_dma; 712 int i = 0; 713 714 /* setting the transfer type as SGL */ 715 cmd->flags = NVME_CMD_SGL_METABUF; 716 717 if (entries == 1) { 718 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 719 return BLK_STS_OK; 720 } 721 722 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 723 pool = dev->prp_small_pool; 724 iod->npages = 0; 725 } else { 726 pool = dev->prp_page_pool; 727 iod->npages = 1; 728 } 729 730 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 731 if (!sg_list) { 732 iod->npages = -1; 733 return BLK_STS_RESOURCE; 734 } 735 736 nvme_pci_iod_list(req)[0] = sg_list; 737 iod->first_dma = sgl_dma; 738 739 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 740 741 do { 742 if (i == SGES_PER_PAGE) { 743 struct nvme_sgl_desc *old_sg_desc = sg_list; 744 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 745 746 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 747 if (!sg_list) 748 return BLK_STS_RESOURCE; 749 750 i = 0; 751 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 752 sg_list[i++] = *link; 753 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 754 } 755 756 nvme_pci_sgl_set_data(&sg_list[i++], sg); 757 sg = sg_next(sg); 758 } while (--entries > 0); 759 760 return BLK_STS_OK; 761 } 762 763 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 764 struct request *req, struct nvme_rw_command *cmnd, 765 struct bio_vec *bv) 766 { 767 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 768 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 769 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 770 771 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 772 if (dma_mapping_error(dev->dev, iod->first_dma)) 773 return BLK_STS_RESOURCE; 774 iod->dma_len = bv->bv_len; 775 776 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 777 if (bv->bv_len > first_prp_len) 778 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 779 return BLK_STS_OK; 780 } 781 782 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 783 struct request *req, struct nvme_rw_command *cmnd, 784 struct bio_vec *bv) 785 { 786 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 787 788 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 789 if (dma_mapping_error(dev->dev, iod->first_dma)) 790 return BLK_STS_RESOURCE; 791 iod->dma_len = bv->bv_len; 792 793 cmnd->flags = NVME_CMD_SGL_METABUF; 794 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 795 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 796 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 797 return BLK_STS_OK; 798 } 799 800 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 801 struct nvme_command *cmnd) 802 { 803 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 804 blk_status_t ret = BLK_STS_RESOURCE; 805 int nr_mapped; 806 807 if (blk_rq_nr_phys_segments(req) == 1) { 808 struct bio_vec bv = req_bvec(req); 809 810 if (!is_pci_p2pdma_page(bv.bv_page)) { 811 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 812 return nvme_setup_prp_simple(dev, req, 813 &cmnd->rw, &bv); 814 815 if (iod->nvmeq->qid && 816 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 817 return nvme_setup_sgl_simple(dev, req, 818 &cmnd->rw, &bv); 819 } 820 } 821 822 iod->dma_len = 0; 823 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 824 if (!iod->sg) 825 return BLK_STS_RESOURCE; 826 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 827 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 828 if (!iod->nents) 829 goto out; 830 831 if (is_pci_p2pdma_page(sg_page(iod->sg))) 832 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 833 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 834 else 835 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 836 rq_dma_dir(req), DMA_ATTR_NO_WARN); 837 if (!nr_mapped) 838 goto out; 839 840 iod->use_sgl = nvme_pci_use_sgls(dev, req); 841 if (iod->use_sgl) 842 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 843 else 844 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 845 out: 846 if (ret != BLK_STS_OK) 847 nvme_unmap_data(dev, req); 848 return ret; 849 } 850 851 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 852 struct nvme_command *cmnd) 853 { 854 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 855 856 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 857 rq_dma_dir(req), 0); 858 if (dma_mapping_error(dev->dev, iod->meta_dma)) 859 return BLK_STS_IOERR; 860 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 861 return BLK_STS_OK; 862 } 863 864 /* 865 * NOTE: ns is NULL when called on the admin queue. 866 */ 867 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 868 const struct blk_mq_queue_data *bd) 869 { 870 struct nvme_ns *ns = hctx->queue->queuedata; 871 struct nvme_queue *nvmeq = hctx->driver_data; 872 struct nvme_dev *dev = nvmeq->dev; 873 struct request *req = bd->rq; 874 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 875 struct nvme_command cmnd; 876 blk_status_t ret; 877 878 iod->aborted = 0; 879 iod->npages = -1; 880 iod->nents = 0; 881 882 /* 883 * We should not need to do this, but we're still using this to 884 * ensure we can drain requests on a dying queue. 885 */ 886 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 887 return BLK_STS_IOERR; 888 889 ret = nvme_setup_cmd(ns, req, &cmnd); 890 if (ret) 891 return ret; 892 893 if (blk_rq_nr_phys_segments(req)) { 894 ret = nvme_map_data(dev, req, &cmnd); 895 if (ret) 896 goto out_free_cmd; 897 } 898 899 if (blk_integrity_rq(req)) { 900 ret = nvme_map_metadata(dev, req, &cmnd); 901 if (ret) 902 goto out_unmap_data; 903 } 904 905 blk_mq_start_request(req); 906 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 907 return BLK_STS_OK; 908 out_unmap_data: 909 nvme_unmap_data(dev, req); 910 out_free_cmd: 911 nvme_cleanup_cmd(req); 912 return ret; 913 } 914 915 static void nvme_pci_complete_rq(struct request *req) 916 { 917 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 918 struct nvme_dev *dev = iod->nvmeq->dev; 919 920 if (blk_integrity_rq(req)) 921 dma_unmap_page(dev->dev, iod->meta_dma, 922 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 923 if (blk_rq_nr_phys_segments(req)) 924 nvme_unmap_data(dev, req); 925 nvme_complete_rq(req); 926 } 927 928 /* We read the CQE phase first to check if the rest of the entry is valid */ 929 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 930 { 931 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 932 933 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 934 } 935 936 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 937 { 938 u16 head = nvmeq->cq_head; 939 940 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 941 nvmeq->dbbuf_cq_ei)) 942 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 943 } 944 945 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 946 { 947 if (!nvmeq->qid) 948 return nvmeq->dev->admin_tagset.tags[0]; 949 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 950 } 951 952 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 953 { 954 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 955 struct request *req; 956 957 /* 958 * AEN requests are special as they don't time out and can 959 * survive any kind of queue freeze and often don't respond to 960 * aborts. We don't even bother to allocate a struct request 961 * for them but rather special case them here. 962 */ 963 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { 964 nvme_complete_async_event(&nvmeq->dev->ctrl, 965 cqe->status, &cqe->result); 966 return; 967 } 968 969 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); 970 if (unlikely(!req)) { 971 dev_warn(nvmeq->dev->ctrl.device, 972 "invalid id %d completed on queue %d\n", 973 cqe->command_id, le16_to_cpu(cqe->sq_id)); 974 return; 975 } 976 977 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 978 if (!nvme_try_complete_req(req, cqe->status, cqe->result)) 979 nvme_pci_complete_rq(req); 980 } 981 982 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 983 { 984 u16 tmp = nvmeq->cq_head + 1; 985 986 if (tmp == nvmeq->q_depth) { 987 nvmeq->cq_head = 0; 988 nvmeq->cq_phase ^= 1; 989 } else { 990 nvmeq->cq_head = tmp; 991 } 992 } 993 994 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 995 { 996 int found = 0; 997 998 while (nvme_cqe_pending(nvmeq)) { 999 found++; 1000 /* 1001 * load-load control dependency between phase and the rest of 1002 * the cqe requires a full read memory barrier 1003 */ 1004 dma_rmb(); 1005 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 1006 nvme_update_cq_head(nvmeq); 1007 } 1008 1009 if (found) 1010 nvme_ring_cq_doorbell(nvmeq); 1011 return found; 1012 } 1013 1014 static irqreturn_t nvme_irq(int irq, void *data) 1015 { 1016 struct nvme_queue *nvmeq = data; 1017 irqreturn_t ret = IRQ_NONE; 1018 1019 /* 1020 * The rmb/wmb pair ensures we see all updates from a previous run of 1021 * the irq handler, even if that was on another CPU. 1022 */ 1023 rmb(); 1024 if (nvme_process_cq(nvmeq)) 1025 ret = IRQ_HANDLED; 1026 wmb(); 1027 1028 return ret; 1029 } 1030 1031 static irqreturn_t nvme_irq_check(int irq, void *data) 1032 { 1033 struct nvme_queue *nvmeq = data; 1034 1035 if (nvme_cqe_pending(nvmeq)) 1036 return IRQ_WAKE_THREAD; 1037 return IRQ_NONE; 1038 } 1039 1040 /* 1041 * Poll for completions for any interrupt driven queue 1042 * Can be called from any context. 1043 */ 1044 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1045 { 1046 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1047 1048 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1049 1050 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1051 nvme_process_cq(nvmeq); 1052 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1053 } 1054 1055 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1056 { 1057 struct nvme_queue *nvmeq = hctx->driver_data; 1058 bool found; 1059 1060 if (!nvme_cqe_pending(nvmeq)) 1061 return 0; 1062 1063 spin_lock(&nvmeq->cq_poll_lock); 1064 found = nvme_process_cq(nvmeq); 1065 spin_unlock(&nvmeq->cq_poll_lock); 1066 1067 return found; 1068 } 1069 1070 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1071 { 1072 struct nvme_dev *dev = to_nvme_dev(ctrl); 1073 struct nvme_queue *nvmeq = &dev->queues[0]; 1074 struct nvme_command c; 1075 1076 memset(&c, 0, sizeof(c)); 1077 c.common.opcode = nvme_admin_async_event; 1078 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1079 nvme_submit_cmd(nvmeq, &c, true); 1080 } 1081 1082 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1083 { 1084 struct nvme_command c; 1085 1086 memset(&c, 0, sizeof(c)); 1087 c.delete_queue.opcode = opcode; 1088 c.delete_queue.qid = cpu_to_le16(id); 1089 1090 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1091 } 1092 1093 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1094 struct nvme_queue *nvmeq, s16 vector) 1095 { 1096 struct nvme_command c; 1097 int flags = NVME_QUEUE_PHYS_CONTIG; 1098 1099 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1100 flags |= NVME_CQ_IRQ_ENABLED; 1101 1102 /* 1103 * Note: we (ab)use the fact that the prp fields survive if no data 1104 * is attached to the request. 1105 */ 1106 memset(&c, 0, sizeof(c)); 1107 c.create_cq.opcode = nvme_admin_create_cq; 1108 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1109 c.create_cq.cqid = cpu_to_le16(qid); 1110 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1111 c.create_cq.cq_flags = cpu_to_le16(flags); 1112 c.create_cq.irq_vector = cpu_to_le16(vector); 1113 1114 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1115 } 1116 1117 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1118 struct nvme_queue *nvmeq) 1119 { 1120 struct nvme_ctrl *ctrl = &dev->ctrl; 1121 struct nvme_command c; 1122 int flags = NVME_QUEUE_PHYS_CONTIG; 1123 1124 /* 1125 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1126 * set. Since URGENT priority is zeroes, it makes all queues 1127 * URGENT. 1128 */ 1129 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1130 flags |= NVME_SQ_PRIO_MEDIUM; 1131 1132 /* 1133 * Note: we (ab)use the fact that the prp fields survive if no data 1134 * is attached to the request. 1135 */ 1136 memset(&c, 0, sizeof(c)); 1137 c.create_sq.opcode = nvme_admin_create_sq; 1138 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1139 c.create_sq.sqid = cpu_to_le16(qid); 1140 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1141 c.create_sq.sq_flags = cpu_to_le16(flags); 1142 c.create_sq.cqid = cpu_to_le16(qid); 1143 1144 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1145 } 1146 1147 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1148 { 1149 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1150 } 1151 1152 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1153 { 1154 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1155 } 1156 1157 static void abort_endio(struct request *req, blk_status_t error) 1158 { 1159 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1160 struct nvme_queue *nvmeq = iod->nvmeq; 1161 1162 dev_warn(nvmeq->dev->ctrl.device, 1163 "Abort status: 0x%x", nvme_req(req)->status); 1164 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1165 blk_mq_free_request(req); 1166 } 1167 1168 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1169 { 1170 /* If true, indicates loss of adapter communication, possibly by a 1171 * NVMe Subsystem reset. 1172 */ 1173 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1174 1175 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1176 switch (dev->ctrl.state) { 1177 case NVME_CTRL_RESETTING: 1178 case NVME_CTRL_CONNECTING: 1179 return false; 1180 default: 1181 break; 1182 } 1183 1184 /* We shouldn't reset unless the controller is on fatal error state 1185 * _or_ if we lost the communication with it. 1186 */ 1187 if (!(csts & NVME_CSTS_CFS) && !nssro) 1188 return false; 1189 1190 return true; 1191 } 1192 1193 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1194 { 1195 /* Read a config register to help see what died. */ 1196 u16 pci_status; 1197 int result; 1198 1199 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1200 &pci_status); 1201 if (result == PCIBIOS_SUCCESSFUL) 1202 dev_warn(dev->ctrl.device, 1203 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1204 csts, pci_status); 1205 else 1206 dev_warn(dev->ctrl.device, 1207 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1208 csts, result); 1209 } 1210 1211 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1212 { 1213 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1214 struct nvme_queue *nvmeq = iod->nvmeq; 1215 struct nvme_dev *dev = nvmeq->dev; 1216 struct request *abort_req; 1217 struct nvme_command cmd; 1218 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1219 1220 /* If PCI error recovery process is happening, we cannot reset or 1221 * the recovery mechanism will surely fail. 1222 */ 1223 mb(); 1224 if (pci_channel_offline(to_pci_dev(dev->dev))) 1225 return BLK_EH_RESET_TIMER; 1226 1227 /* 1228 * Reset immediately if the controller is failed 1229 */ 1230 if (nvme_should_reset(dev, csts)) { 1231 nvme_warn_reset(dev, csts); 1232 nvme_dev_disable(dev, false); 1233 nvme_reset_ctrl(&dev->ctrl); 1234 return BLK_EH_DONE; 1235 } 1236 1237 /* 1238 * Did we miss an interrupt? 1239 */ 1240 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1241 nvme_poll(req->mq_hctx); 1242 else 1243 nvme_poll_irqdisable(nvmeq); 1244 1245 if (blk_mq_request_completed(req)) { 1246 dev_warn(dev->ctrl.device, 1247 "I/O %d QID %d timeout, completion polled\n", 1248 req->tag, nvmeq->qid); 1249 return BLK_EH_DONE; 1250 } 1251 1252 /* 1253 * Shutdown immediately if controller times out while starting. The 1254 * reset work will see the pci device disabled when it gets the forced 1255 * cancellation error. All outstanding requests are completed on 1256 * shutdown, so we return BLK_EH_DONE. 1257 */ 1258 switch (dev->ctrl.state) { 1259 case NVME_CTRL_CONNECTING: 1260 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1261 fallthrough; 1262 case NVME_CTRL_DELETING: 1263 dev_warn_ratelimited(dev->ctrl.device, 1264 "I/O %d QID %d timeout, disable controller\n", 1265 req->tag, nvmeq->qid); 1266 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1267 nvme_dev_disable(dev, true); 1268 return BLK_EH_DONE; 1269 case NVME_CTRL_RESETTING: 1270 return BLK_EH_RESET_TIMER; 1271 default: 1272 break; 1273 } 1274 1275 /* 1276 * Shutdown the controller immediately and schedule a reset if the 1277 * command was already aborted once before and still hasn't been 1278 * returned to the driver, or if this is the admin queue. 1279 */ 1280 if (!nvmeq->qid || iod->aborted) { 1281 dev_warn(dev->ctrl.device, 1282 "I/O %d QID %d timeout, reset controller\n", 1283 req->tag, nvmeq->qid); 1284 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1285 nvme_dev_disable(dev, false); 1286 nvme_reset_ctrl(&dev->ctrl); 1287 1288 return BLK_EH_DONE; 1289 } 1290 1291 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1292 atomic_inc(&dev->ctrl.abort_limit); 1293 return BLK_EH_RESET_TIMER; 1294 } 1295 iod->aborted = 1; 1296 1297 memset(&cmd, 0, sizeof(cmd)); 1298 cmd.abort.opcode = nvme_admin_abort_cmd; 1299 cmd.abort.cid = req->tag; 1300 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1301 1302 dev_warn(nvmeq->dev->ctrl.device, 1303 "I/O %d QID %d timeout, aborting\n", 1304 req->tag, nvmeq->qid); 1305 1306 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1307 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1308 if (IS_ERR(abort_req)) { 1309 atomic_inc(&dev->ctrl.abort_limit); 1310 return BLK_EH_RESET_TIMER; 1311 } 1312 1313 abort_req->timeout = ADMIN_TIMEOUT; 1314 abort_req->end_io_data = NULL; 1315 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1316 1317 /* 1318 * The aborted req will be completed on receiving the abort req. 1319 * We enable the timer again. If hit twice, it'll cause a device reset, 1320 * as the device then is in a faulty state. 1321 */ 1322 return BLK_EH_RESET_TIMER; 1323 } 1324 1325 static void nvme_free_queue(struct nvme_queue *nvmeq) 1326 { 1327 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1328 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1329 if (!nvmeq->sq_cmds) 1330 return; 1331 1332 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1333 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1334 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1335 } else { 1336 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1337 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1338 } 1339 } 1340 1341 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1342 { 1343 int i; 1344 1345 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1346 dev->ctrl.queue_count--; 1347 nvme_free_queue(&dev->queues[i]); 1348 } 1349 } 1350 1351 /** 1352 * nvme_suspend_queue - put queue into suspended state 1353 * @nvmeq: queue to suspend 1354 */ 1355 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1356 { 1357 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1358 return 1; 1359 1360 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1361 mb(); 1362 1363 nvmeq->dev->online_queues--; 1364 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1365 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1366 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1367 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1368 return 0; 1369 } 1370 1371 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1372 { 1373 int i; 1374 1375 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1376 nvme_suspend_queue(&dev->queues[i]); 1377 } 1378 1379 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1380 { 1381 struct nvme_queue *nvmeq = &dev->queues[0]; 1382 1383 if (shutdown) 1384 nvme_shutdown_ctrl(&dev->ctrl); 1385 else 1386 nvme_disable_ctrl(&dev->ctrl); 1387 1388 nvme_poll_irqdisable(nvmeq); 1389 } 1390 1391 /* 1392 * Called only on a device that has been disabled and after all other threads 1393 * that can check this device's completion queues have synced, except 1394 * nvme_poll(). This is the last chance for the driver to see a natural 1395 * completion before nvme_cancel_request() terminates all incomplete requests. 1396 */ 1397 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1398 { 1399 int i; 1400 1401 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1402 spin_lock(&dev->queues[i].cq_poll_lock); 1403 nvme_process_cq(&dev->queues[i]); 1404 spin_unlock(&dev->queues[i].cq_poll_lock); 1405 } 1406 } 1407 1408 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1409 int entry_size) 1410 { 1411 int q_depth = dev->q_depth; 1412 unsigned q_size_aligned = roundup(q_depth * entry_size, 1413 NVME_CTRL_PAGE_SIZE); 1414 1415 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1416 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1417 1418 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1419 q_depth = div_u64(mem_per_q, entry_size); 1420 1421 /* 1422 * Ensure the reduced q_depth is above some threshold where it 1423 * would be better to map queues in system memory with the 1424 * original depth 1425 */ 1426 if (q_depth < 64) 1427 return -ENOMEM; 1428 } 1429 1430 return q_depth; 1431 } 1432 1433 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1434 int qid) 1435 { 1436 struct pci_dev *pdev = to_pci_dev(dev->dev); 1437 1438 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1439 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1440 if (nvmeq->sq_cmds) { 1441 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1442 nvmeq->sq_cmds); 1443 if (nvmeq->sq_dma_addr) { 1444 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1445 return 0; 1446 } 1447 1448 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1449 } 1450 } 1451 1452 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1453 &nvmeq->sq_dma_addr, GFP_KERNEL); 1454 if (!nvmeq->sq_cmds) 1455 return -ENOMEM; 1456 return 0; 1457 } 1458 1459 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1460 { 1461 struct nvme_queue *nvmeq = &dev->queues[qid]; 1462 1463 if (dev->ctrl.queue_count > qid) 1464 return 0; 1465 1466 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1467 nvmeq->q_depth = depth; 1468 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1469 &nvmeq->cq_dma_addr, GFP_KERNEL); 1470 if (!nvmeq->cqes) 1471 goto free_nvmeq; 1472 1473 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1474 goto free_cqdma; 1475 1476 nvmeq->dev = dev; 1477 spin_lock_init(&nvmeq->sq_lock); 1478 spin_lock_init(&nvmeq->cq_poll_lock); 1479 nvmeq->cq_head = 0; 1480 nvmeq->cq_phase = 1; 1481 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1482 nvmeq->qid = qid; 1483 dev->ctrl.queue_count++; 1484 1485 return 0; 1486 1487 free_cqdma: 1488 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1489 nvmeq->cq_dma_addr); 1490 free_nvmeq: 1491 return -ENOMEM; 1492 } 1493 1494 static int queue_request_irq(struct nvme_queue *nvmeq) 1495 { 1496 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1497 int nr = nvmeq->dev->ctrl.instance; 1498 1499 if (use_threaded_interrupts) { 1500 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1501 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1502 } else { 1503 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1504 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1505 } 1506 } 1507 1508 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1509 { 1510 struct nvme_dev *dev = nvmeq->dev; 1511 1512 nvmeq->sq_tail = 0; 1513 nvmeq->last_sq_tail = 0; 1514 nvmeq->cq_head = 0; 1515 nvmeq->cq_phase = 1; 1516 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1517 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1518 nvme_dbbuf_init(dev, nvmeq, qid); 1519 dev->online_queues++; 1520 wmb(); /* ensure the first interrupt sees the initialization */ 1521 } 1522 1523 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1524 { 1525 struct nvme_dev *dev = nvmeq->dev; 1526 int result; 1527 u16 vector = 0; 1528 1529 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1530 1531 /* 1532 * A queue's vector matches the queue identifier unless the controller 1533 * has only one vector available. 1534 */ 1535 if (!polled) 1536 vector = dev->num_vecs == 1 ? 0 : qid; 1537 else 1538 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1539 1540 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1541 if (result) 1542 return result; 1543 1544 result = adapter_alloc_sq(dev, qid, nvmeq); 1545 if (result < 0) 1546 return result; 1547 if (result) 1548 goto release_cq; 1549 1550 nvmeq->cq_vector = vector; 1551 nvme_init_queue(nvmeq, qid); 1552 1553 if (!polled) { 1554 result = queue_request_irq(nvmeq); 1555 if (result < 0) 1556 goto release_sq; 1557 } 1558 1559 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1560 return result; 1561 1562 release_sq: 1563 dev->online_queues--; 1564 adapter_delete_sq(dev, qid); 1565 release_cq: 1566 adapter_delete_cq(dev, qid); 1567 return result; 1568 } 1569 1570 static const struct blk_mq_ops nvme_mq_admin_ops = { 1571 .queue_rq = nvme_queue_rq, 1572 .complete = nvme_pci_complete_rq, 1573 .init_hctx = nvme_admin_init_hctx, 1574 .init_request = nvme_init_request, 1575 .timeout = nvme_timeout, 1576 }; 1577 1578 static const struct blk_mq_ops nvme_mq_ops = { 1579 .queue_rq = nvme_queue_rq, 1580 .complete = nvme_pci_complete_rq, 1581 .commit_rqs = nvme_commit_rqs, 1582 .init_hctx = nvme_init_hctx, 1583 .init_request = nvme_init_request, 1584 .map_queues = nvme_pci_map_queues, 1585 .timeout = nvme_timeout, 1586 .poll = nvme_poll, 1587 }; 1588 1589 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1590 { 1591 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1592 /* 1593 * If the controller was reset during removal, it's possible 1594 * user requests may be waiting on a stopped queue. Start the 1595 * queue to flush these to completion. 1596 */ 1597 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1598 blk_cleanup_queue(dev->ctrl.admin_q); 1599 blk_mq_free_tag_set(&dev->admin_tagset); 1600 } 1601 } 1602 1603 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1604 { 1605 if (!dev->ctrl.admin_q) { 1606 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1607 dev->admin_tagset.nr_hw_queues = 1; 1608 1609 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1610 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1611 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1612 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1613 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1614 dev->admin_tagset.driver_data = dev; 1615 1616 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1617 return -ENOMEM; 1618 dev->ctrl.admin_tagset = &dev->admin_tagset; 1619 1620 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1621 if (IS_ERR(dev->ctrl.admin_q)) { 1622 blk_mq_free_tag_set(&dev->admin_tagset); 1623 return -ENOMEM; 1624 } 1625 if (!blk_get_queue(dev->ctrl.admin_q)) { 1626 nvme_dev_remove_admin(dev); 1627 dev->ctrl.admin_q = NULL; 1628 return -ENODEV; 1629 } 1630 } else 1631 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1632 1633 return 0; 1634 } 1635 1636 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1637 { 1638 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1639 } 1640 1641 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1642 { 1643 struct pci_dev *pdev = to_pci_dev(dev->dev); 1644 1645 if (size <= dev->bar_mapped_size) 1646 return 0; 1647 if (size > pci_resource_len(pdev, 0)) 1648 return -ENOMEM; 1649 if (dev->bar) 1650 iounmap(dev->bar); 1651 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1652 if (!dev->bar) { 1653 dev->bar_mapped_size = 0; 1654 return -ENOMEM; 1655 } 1656 dev->bar_mapped_size = size; 1657 dev->dbs = dev->bar + NVME_REG_DBS; 1658 1659 return 0; 1660 } 1661 1662 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1663 { 1664 int result; 1665 u32 aqa; 1666 struct nvme_queue *nvmeq; 1667 1668 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1669 if (result < 0) 1670 return result; 1671 1672 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1673 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1674 1675 if (dev->subsystem && 1676 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1677 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1678 1679 result = nvme_disable_ctrl(&dev->ctrl); 1680 if (result < 0) 1681 return result; 1682 1683 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1684 if (result) 1685 return result; 1686 1687 dev->ctrl.numa_node = dev_to_node(dev->dev); 1688 1689 nvmeq = &dev->queues[0]; 1690 aqa = nvmeq->q_depth - 1; 1691 aqa |= aqa << 16; 1692 1693 writel(aqa, dev->bar + NVME_REG_AQA); 1694 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1695 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1696 1697 result = nvme_enable_ctrl(&dev->ctrl); 1698 if (result) 1699 return result; 1700 1701 nvmeq->cq_vector = 0; 1702 nvme_init_queue(nvmeq, 0); 1703 result = queue_request_irq(nvmeq); 1704 if (result) { 1705 dev->online_queues--; 1706 return result; 1707 } 1708 1709 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1710 return result; 1711 } 1712 1713 static int nvme_create_io_queues(struct nvme_dev *dev) 1714 { 1715 unsigned i, max, rw_queues; 1716 int ret = 0; 1717 1718 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1719 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1720 ret = -ENOMEM; 1721 break; 1722 } 1723 } 1724 1725 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1726 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1727 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1728 dev->io_queues[HCTX_TYPE_READ]; 1729 } else { 1730 rw_queues = max; 1731 } 1732 1733 for (i = dev->online_queues; i <= max; i++) { 1734 bool polled = i > rw_queues; 1735 1736 ret = nvme_create_queue(&dev->queues[i], i, polled); 1737 if (ret) 1738 break; 1739 } 1740 1741 /* 1742 * Ignore failing Create SQ/CQ commands, we can continue with less 1743 * than the desired amount of queues, and even a controller without 1744 * I/O queues can still be used to issue admin commands. This might 1745 * be useful to upgrade a buggy firmware for example. 1746 */ 1747 return ret >= 0 ? 0 : ret; 1748 } 1749 1750 static ssize_t nvme_cmb_show(struct device *dev, 1751 struct device_attribute *attr, 1752 char *buf) 1753 { 1754 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1755 1756 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1757 ndev->cmbloc, ndev->cmbsz); 1758 } 1759 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1760 1761 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1762 { 1763 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1764 1765 return 1ULL << (12 + 4 * szu); 1766 } 1767 1768 static u32 nvme_cmb_size(struct nvme_dev *dev) 1769 { 1770 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1771 } 1772 1773 static void nvme_map_cmb(struct nvme_dev *dev) 1774 { 1775 u64 size, offset; 1776 resource_size_t bar_size; 1777 struct pci_dev *pdev = to_pci_dev(dev->dev); 1778 int bar; 1779 1780 if (dev->cmb_size) 1781 return; 1782 1783 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1784 if (!dev->cmbsz) 1785 return; 1786 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1787 1788 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1789 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1790 bar = NVME_CMB_BIR(dev->cmbloc); 1791 bar_size = pci_resource_len(pdev, bar); 1792 1793 if (offset > bar_size) 1794 return; 1795 1796 /* 1797 * Controllers may support a CMB size larger than their BAR, 1798 * for example, due to being behind a bridge. Reduce the CMB to 1799 * the reported size of the BAR 1800 */ 1801 if (size > bar_size - offset) 1802 size = bar_size - offset; 1803 1804 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1805 dev_warn(dev->ctrl.device, 1806 "failed to register the CMB\n"); 1807 return; 1808 } 1809 1810 dev->cmb_size = size; 1811 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1812 1813 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1814 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1815 pci_p2pmem_publish(pdev, true); 1816 1817 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1818 &dev_attr_cmb.attr, NULL)) 1819 dev_warn(dev->ctrl.device, 1820 "failed to add sysfs attribute for CMB\n"); 1821 } 1822 1823 static inline void nvme_release_cmb(struct nvme_dev *dev) 1824 { 1825 if (dev->cmb_size) { 1826 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1827 &dev_attr_cmb.attr, NULL); 1828 dev->cmb_size = 0; 1829 } 1830 } 1831 1832 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1833 { 1834 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1835 u64 dma_addr = dev->host_mem_descs_dma; 1836 struct nvme_command c; 1837 int ret; 1838 1839 memset(&c, 0, sizeof(c)); 1840 c.features.opcode = nvme_admin_set_features; 1841 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1842 c.features.dword11 = cpu_to_le32(bits); 1843 c.features.dword12 = cpu_to_le32(host_mem_size); 1844 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1845 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1846 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1847 1848 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1849 if (ret) { 1850 dev_warn(dev->ctrl.device, 1851 "failed to set host mem (err %d, flags %#x).\n", 1852 ret, bits); 1853 } 1854 return ret; 1855 } 1856 1857 static void nvme_free_host_mem(struct nvme_dev *dev) 1858 { 1859 int i; 1860 1861 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1862 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1863 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1864 1865 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1866 le64_to_cpu(desc->addr), 1867 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1868 } 1869 1870 kfree(dev->host_mem_desc_bufs); 1871 dev->host_mem_desc_bufs = NULL; 1872 dma_free_coherent(dev->dev, 1873 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1874 dev->host_mem_descs, dev->host_mem_descs_dma); 1875 dev->host_mem_descs = NULL; 1876 dev->nr_host_mem_descs = 0; 1877 } 1878 1879 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1880 u32 chunk_size) 1881 { 1882 struct nvme_host_mem_buf_desc *descs; 1883 u32 max_entries, len; 1884 dma_addr_t descs_dma; 1885 int i = 0; 1886 void **bufs; 1887 u64 size, tmp; 1888 1889 tmp = (preferred + chunk_size - 1); 1890 do_div(tmp, chunk_size); 1891 max_entries = tmp; 1892 1893 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1894 max_entries = dev->ctrl.hmmaxd; 1895 1896 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1897 &descs_dma, GFP_KERNEL); 1898 if (!descs) 1899 goto out; 1900 1901 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1902 if (!bufs) 1903 goto out_free_descs; 1904 1905 for (size = 0; size < preferred && i < max_entries; size += len) { 1906 dma_addr_t dma_addr; 1907 1908 len = min_t(u64, chunk_size, preferred - size); 1909 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1910 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1911 if (!bufs[i]) 1912 break; 1913 1914 descs[i].addr = cpu_to_le64(dma_addr); 1915 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1916 i++; 1917 } 1918 1919 if (!size) 1920 goto out_free_bufs; 1921 1922 dev->nr_host_mem_descs = i; 1923 dev->host_mem_size = size; 1924 dev->host_mem_descs = descs; 1925 dev->host_mem_descs_dma = descs_dma; 1926 dev->host_mem_desc_bufs = bufs; 1927 return 0; 1928 1929 out_free_bufs: 1930 while (--i >= 0) { 1931 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1932 1933 dma_free_attrs(dev->dev, size, bufs[i], 1934 le64_to_cpu(descs[i].addr), 1935 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1936 } 1937 1938 kfree(bufs); 1939 out_free_descs: 1940 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1941 descs_dma); 1942 out: 1943 dev->host_mem_descs = NULL; 1944 return -ENOMEM; 1945 } 1946 1947 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1948 { 1949 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1950 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1951 u64 chunk_size; 1952 1953 /* start big and work our way down */ 1954 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 1955 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1956 if (!min || dev->host_mem_size >= min) 1957 return 0; 1958 nvme_free_host_mem(dev); 1959 } 1960 } 1961 1962 return -ENOMEM; 1963 } 1964 1965 static int nvme_setup_host_mem(struct nvme_dev *dev) 1966 { 1967 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1968 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1969 u64 min = (u64)dev->ctrl.hmmin * 4096; 1970 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1971 int ret; 1972 1973 preferred = min(preferred, max); 1974 if (min > max) { 1975 dev_warn(dev->ctrl.device, 1976 "min host memory (%lld MiB) above limit (%d MiB).\n", 1977 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1978 nvme_free_host_mem(dev); 1979 return 0; 1980 } 1981 1982 /* 1983 * If we already have a buffer allocated check if we can reuse it. 1984 */ 1985 if (dev->host_mem_descs) { 1986 if (dev->host_mem_size >= min) 1987 enable_bits |= NVME_HOST_MEM_RETURN; 1988 else 1989 nvme_free_host_mem(dev); 1990 } 1991 1992 if (!dev->host_mem_descs) { 1993 if (nvme_alloc_host_mem(dev, min, preferred)) { 1994 dev_warn(dev->ctrl.device, 1995 "failed to allocate host memory buffer.\n"); 1996 return 0; /* controller must work without HMB */ 1997 } 1998 1999 dev_info(dev->ctrl.device, 2000 "allocated %lld MiB host memory buffer.\n", 2001 dev->host_mem_size >> ilog2(SZ_1M)); 2002 } 2003 2004 ret = nvme_set_host_mem(dev, enable_bits); 2005 if (ret) 2006 nvme_free_host_mem(dev); 2007 return ret; 2008 } 2009 2010 /* 2011 * nirqs is the number of interrupts available for write and read 2012 * queues. The core already reserved an interrupt for the admin queue. 2013 */ 2014 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2015 { 2016 struct nvme_dev *dev = affd->priv; 2017 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2018 2019 /* 2020 * If there is no interrupt available for queues, ensure that 2021 * the default queue is set to 1. The affinity set size is 2022 * also set to one, but the irq core ignores it for this case. 2023 * 2024 * If only one interrupt is available or 'write_queue' == 0, combine 2025 * write and read queues. 2026 * 2027 * If 'write_queues' > 0, ensure it leaves room for at least one read 2028 * queue. 2029 */ 2030 if (!nrirqs) { 2031 nrirqs = 1; 2032 nr_read_queues = 0; 2033 } else if (nrirqs == 1 || !nr_write_queues) { 2034 nr_read_queues = 0; 2035 } else if (nr_write_queues >= nrirqs) { 2036 nr_read_queues = 1; 2037 } else { 2038 nr_read_queues = nrirqs - nr_write_queues; 2039 } 2040 2041 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2042 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2043 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2044 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2045 affd->nr_sets = nr_read_queues ? 2 : 1; 2046 } 2047 2048 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2049 { 2050 struct pci_dev *pdev = to_pci_dev(dev->dev); 2051 struct irq_affinity affd = { 2052 .pre_vectors = 1, 2053 .calc_sets = nvme_calc_irq_sets, 2054 .priv = dev, 2055 }; 2056 unsigned int irq_queues, poll_queues; 2057 2058 /* 2059 * Poll queues don't need interrupts, but we need at least one I/O queue 2060 * left over for non-polled I/O. 2061 */ 2062 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2063 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2064 2065 /* 2066 * Initialize for the single interrupt case, will be updated in 2067 * nvme_calc_irq_sets(). 2068 */ 2069 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2070 dev->io_queues[HCTX_TYPE_READ] = 0; 2071 2072 /* 2073 * We need interrupts for the admin queue and each non-polled I/O queue, 2074 * but some Apple controllers require all queues to use the first 2075 * vector. 2076 */ 2077 irq_queues = 1; 2078 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2079 irq_queues += (nr_io_queues - poll_queues); 2080 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2081 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2082 } 2083 2084 static void nvme_disable_io_queues(struct nvme_dev *dev) 2085 { 2086 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2087 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2088 } 2089 2090 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2091 { 2092 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2093 } 2094 2095 static int nvme_setup_io_queues(struct nvme_dev *dev) 2096 { 2097 struct nvme_queue *adminq = &dev->queues[0]; 2098 struct pci_dev *pdev = to_pci_dev(dev->dev); 2099 unsigned int nr_io_queues; 2100 unsigned long size; 2101 int result; 2102 2103 /* 2104 * Sample the module parameters once at reset time so that we have 2105 * stable values to work with. 2106 */ 2107 dev->nr_write_queues = write_queues; 2108 dev->nr_poll_queues = poll_queues; 2109 2110 /* 2111 * If tags are shared with admin queue (Apple bug), then 2112 * make sure we only use one IO queue. 2113 */ 2114 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2115 nr_io_queues = 1; 2116 else 2117 nr_io_queues = min(nvme_max_io_queues(dev), 2118 dev->nr_allocated_queues - 1); 2119 2120 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2121 if (result < 0) 2122 return result; 2123 2124 if (nr_io_queues == 0) 2125 return 0; 2126 2127 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2128 2129 if (dev->cmb_use_sqes) { 2130 result = nvme_cmb_qdepth(dev, nr_io_queues, 2131 sizeof(struct nvme_command)); 2132 if (result > 0) 2133 dev->q_depth = result; 2134 else 2135 dev->cmb_use_sqes = false; 2136 } 2137 2138 do { 2139 size = db_bar_size(dev, nr_io_queues); 2140 result = nvme_remap_bar(dev, size); 2141 if (!result) 2142 break; 2143 if (!--nr_io_queues) 2144 return -ENOMEM; 2145 } while (1); 2146 adminq->q_db = dev->dbs; 2147 2148 retry: 2149 /* Deregister the admin queue's interrupt */ 2150 pci_free_irq(pdev, 0, adminq); 2151 2152 /* 2153 * If we enable msix early due to not intx, disable it again before 2154 * setting up the full range we need. 2155 */ 2156 pci_free_irq_vectors(pdev); 2157 2158 result = nvme_setup_irqs(dev, nr_io_queues); 2159 if (result <= 0) 2160 return -EIO; 2161 2162 dev->num_vecs = result; 2163 result = max(result - 1, 1); 2164 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2165 2166 /* 2167 * Should investigate if there's a performance win from allocating 2168 * more queues than interrupt vectors; it might allow the submission 2169 * path to scale better, even if the receive path is limited by the 2170 * number of interrupts. 2171 */ 2172 result = queue_request_irq(adminq); 2173 if (result) 2174 return result; 2175 set_bit(NVMEQ_ENABLED, &adminq->flags); 2176 2177 result = nvme_create_io_queues(dev); 2178 if (result || dev->online_queues < 2) 2179 return result; 2180 2181 if (dev->online_queues - 1 < dev->max_qid) { 2182 nr_io_queues = dev->online_queues - 1; 2183 nvme_disable_io_queues(dev); 2184 nvme_suspend_io_queues(dev); 2185 goto retry; 2186 } 2187 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2188 dev->io_queues[HCTX_TYPE_DEFAULT], 2189 dev->io_queues[HCTX_TYPE_READ], 2190 dev->io_queues[HCTX_TYPE_POLL]); 2191 return 0; 2192 } 2193 2194 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2195 { 2196 struct nvme_queue *nvmeq = req->end_io_data; 2197 2198 blk_mq_free_request(req); 2199 complete(&nvmeq->delete_done); 2200 } 2201 2202 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2203 { 2204 struct nvme_queue *nvmeq = req->end_io_data; 2205 2206 if (error) 2207 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2208 2209 nvme_del_queue_end(req, error); 2210 } 2211 2212 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2213 { 2214 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2215 struct request *req; 2216 struct nvme_command cmd; 2217 2218 memset(&cmd, 0, sizeof(cmd)); 2219 cmd.delete_queue.opcode = opcode; 2220 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2221 2222 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2223 if (IS_ERR(req)) 2224 return PTR_ERR(req); 2225 2226 req->timeout = ADMIN_TIMEOUT; 2227 req->end_io_data = nvmeq; 2228 2229 init_completion(&nvmeq->delete_done); 2230 blk_execute_rq_nowait(q, NULL, req, false, 2231 opcode == nvme_admin_delete_cq ? 2232 nvme_del_cq_end : nvme_del_queue_end); 2233 return 0; 2234 } 2235 2236 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2237 { 2238 int nr_queues = dev->online_queues - 1, sent = 0; 2239 unsigned long timeout; 2240 2241 retry: 2242 timeout = ADMIN_TIMEOUT; 2243 while (nr_queues > 0) { 2244 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2245 break; 2246 nr_queues--; 2247 sent++; 2248 } 2249 while (sent) { 2250 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2251 2252 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2253 timeout); 2254 if (timeout == 0) 2255 return false; 2256 2257 sent--; 2258 if (nr_queues) 2259 goto retry; 2260 } 2261 return true; 2262 } 2263 2264 static void nvme_dev_add(struct nvme_dev *dev) 2265 { 2266 int ret; 2267 2268 if (!dev->ctrl.tagset) { 2269 dev->tagset.ops = &nvme_mq_ops; 2270 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2271 dev->tagset.nr_maps = 2; /* default + read */ 2272 if (dev->io_queues[HCTX_TYPE_POLL]) 2273 dev->tagset.nr_maps++; 2274 dev->tagset.timeout = NVME_IO_TIMEOUT; 2275 dev->tagset.numa_node = dev->ctrl.numa_node; 2276 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2277 BLK_MQ_MAX_DEPTH) - 1; 2278 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2279 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2280 dev->tagset.driver_data = dev; 2281 2282 /* 2283 * Some Apple controllers requires tags to be unique 2284 * across admin and IO queue, so reserve the first 32 2285 * tags of the IO queue. 2286 */ 2287 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2288 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2289 2290 ret = blk_mq_alloc_tag_set(&dev->tagset); 2291 if (ret) { 2292 dev_warn(dev->ctrl.device, 2293 "IO queues tagset allocation failed %d\n", ret); 2294 return; 2295 } 2296 dev->ctrl.tagset = &dev->tagset; 2297 } else { 2298 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2299 2300 /* Free previously allocated queues that are no longer usable */ 2301 nvme_free_queues(dev, dev->online_queues); 2302 } 2303 2304 nvme_dbbuf_set(dev); 2305 } 2306 2307 static int nvme_pci_enable(struct nvme_dev *dev) 2308 { 2309 int result = -ENOMEM; 2310 struct pci_dev *pdev = to_pci_dev(dev->dev); 2311 2312 if (pci_enable_device_mem(pdev)) 2313 return result; 2314 2315 pci_set_master(pdev); 2316 2317 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2318 goto disable; 2319 2320 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2321 result = -ENODEV; 2322 goto disable; 2323 } 2324 2325 /* 2326 * Some devices and/or platforms don't advertise or work with INTx 2327 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2328 * adjust this later. 2329 */ 2330 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2331 if (result < 0) 2332 return result; 2333 2334 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2335 2336 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2337 io_queue_depth); 2338 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2339 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2340 dev->dbs = dev->bar + 4096; 2341 2342 /* 2343 * Some Apple controllers require a non-standard SQE size. 2344 * Interestingly they also seem to ignore the CC:IOSQES register 2345 * so we don't bother updating it here. 2346 */ 2347 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2348 dev->io_sqes = 7; 2349 else 2350 dev->io_sqes = NVME_NVM_IOSQES; 2351 2352 /* 2353 * Temporary fix for the Apple controller found in the MacBook8,1 and 2354 * some MacBook7,1 to avoid controller resets and data loss. 2355 */ 2356 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2357 dev->q_depth = 2; 2358 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2359 "set queue depth=%u to work around controller resets\n", 2360 dev->q_depth); 2361 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2362 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2363 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2364 dev->q_depth = 64; 2365 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2366 "set queue depth=%u\n", dev->q_depth); 2367 } 2368 2369 /* 2370 * Controllers with the shared tags quirk need the IO queue to be 2371 * big enough so that we get 32 tags for the admin queue 2372 */ 2373 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2374 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2375 dev->q_depth = NVME_AQ_DEPTH + 2; 2376 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2377 dev->q_depth); 2378 } 2379 2380 2381 nvme_map_cmb(dev); 2382 2383 pci_enable_pcie_error_reporting(pdev); 2384 pci_save_state(pdev); 2385 return 0; 2386 2387 disable: 2388 pci_disable_device(pdev); 2389 return result; 2390 } 2391 2392 static void nvme_dev_unmap(struct nvme_dev *dev) 2393 { 2394 if (dev->bar) 2395 iounmap(dev->bar); 2396 pci_release_mem_regions(to_pci_dev(dev->dev)); 2397 } 2398 2399 static void nvme_pci_disable(struct nvme_dev *dev) 2400 { 2401 struct pci_dev *pdev = to_pci_dev(dev->dev); 2402 2403 pci_free_irq_vectors(pdev); 2404 2405 if (pci_is_enabled(pdev)) { 2406 pci_disable_pcie_error_reporting(pdev); 2407 pci_disable_device(pdev); 2408 } 2409 } 2410 2411 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2412 { 2413 bool dead = true, freeze = false; 2414 struct pci_dev *pdev = to_pci_dev(dev->dev); 2415 2416 mutex_lock(&dev->shutdown_lock); 2417 if (pci_is_enabled(pdev)) { 2418 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2419 2420 if (dev->ctrl.state == NVME_CTRL_LIVE || 2421 dev->ctrl.state == NVME_CTRL_RESETTING) { 2422 freeze = true; 2423 nvme_start_freeze(&dev->ctrl); 2424 } 2425 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2426 pdev->error_state != pci_channel_io_normal); 2427 } 2428 2429 /* 2430 * Give the controller a chance to complete all entered requests if 2431 * doing a safe shutdown. 2432 */ 2433 if (!dead && shutdown && freeze) 2434 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2435 2436 nvme_stop_queues(&dev->ctrl); 2437 2438 if (!dead && dev->ctrl.queue_count > 0) { 2439 nvme_disable_io_queues(dev); 2440 nvme_disable_admin_queue(dev, shutdown); 2441 } 2442 nvme_suspend_io_queues(dev); 2443 nvme_suspend_queue(&dev->queues[0]); 2444 nvme_pci_disable(dev); 2445 nvme_reap_pending_cqes(dev); 2446 2447 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2448 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2449 blk_mq_tagset_wait_completed_request(&dev->tagset); 2450 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2451 2452 /* 2453 * The driver will not be starting up queues again if shutting down so 2454 * must flush all entered requests to their failed completion to avoid 2455 * deadlocking blk-mq hot-cpu notifier. 2456 */ 2457 if (shutdown) { 2458 nvme_start_queues(&dev->ctrl); 2459 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2460 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2461 } 2462 mutex_unlock(&dev->shutdown_lock); 2463 } 2464 2465 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2466 { 2467 if (!nvme_wait_reset(&dev->ctrl)) 2468 return -EBUSY; 2469 nvme_dev_disable(dev, shutdown); 2470 return 0; 2471 } 2472 2473 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2474 { 2475 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2476 NVME_CTRL_PAGE_SIZE, 2477 NVME_CTRL_PAGE_SIZE, 0); 2478 if (!dev->prp_page_pool) 2479 return -ENOMEM; 2480 2481 /* Optimisation for I/Os between 4k and 128k */ 2482 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2483 256, 256, 0); 2484 if (!dev->prp_small_pool) { 2485 dma_pool_destroy(dev->prp_page_pool); 2486 return -ENOMEM; 2487 } 2488 return 0; 2489 } 2490 2491 static void nvme_release_prp_pools(struct nvme_dev *dev) 2492 { 2493 dma_pool_destroy(dev->prp_page_pool); 2494 dma_pool_destroy(dev->prp_small_pool); 2495 } 2496 2497 static void nvme_free_tagset(struct nvme_dev *dev) 2498 { 2499 if (dev->tagset.tags) 2500 blk_mq_free_tag_set(&dev->tagset); 2501 dev->ctrl.tagset = NULL; 2502 } 2503 2504 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2505 { 2506 struct nvme_dev *dev = to_nvme_dev(ctrl); 2507 2508 nvme_dbbuf_dma_free(dev); 2509 nvme_free_tagset(dev); 2510 if (dev->ctrl.admin_q) 2511 blk_put_queue(dev->ctrl.admin_q); 2512 free_opal_dev(dev->ctrl.opal_dev); 2513 mempool_destroy(dev->iod_mempool); 2514 put_device(dev->dev); 2515 kfree(dev->queues); 2516 kfree(dev); 2517 } 2518 2519 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2520 { 2521 /* 2522 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2523 * may be holding this pci_dev's device lock. 2524 */ 2525 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2526 nvme_get_ctrl(&dev->ctrl); 2527 nvme_dev_disable(dev, false); 2528 nvme_kill_queues(&dev->ctrl); 2529 if (!queue_work(nvme_wq, &dev->remove_work)) 2530 nvme_put_ctrl(&dev->ctrl); 2531 } 2532 2533 static void nvme_reset_work(struct work_struct *work) 2534 { 2535 struct nvme_dev *dev = 2536 container_of(work, struct nvme_dev, ctrl.reset_work); 2537 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2538 int result; 2539 2540 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2541 result = -ENODEV; 2542 goto out; 2543 } 2544 2545 /* 2546 * If we're called to reset a live controller first shut it down before 2547 * moving on. 2548 */ 2549 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2550 nvme_dev_disable(dev, false); 2551 nvme_sync_queues(&dev->ctrl); 2552 2553 mutex_lock(&dev->shutdown_lock); 2554 result = nvme_pci_enable(dev); 2555 if (result) 2556 goto out_unlock; 2557 2558 result = nvme_pci_configure_admin_queue(dev); 2559 if (result) 2560 goto out_unlock; 2561 2562 result = nvme_alloc_admin_tags(dev); 2563 if (result) 2564 goto out_unlock; 2565 2566 /* 2567 * Limit the max command size to prevent iod->sg allocations going 2568 * over a single page. 2569 */ 2570 dev->ctrl.max_hw_sectors = min_t(u32, 2571 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2572 dev->ctrl.max_segments = NVME_MAX_SEGS; 2573 2574 /* 2575 * Don't limit the IOMMU merged segment size. 2576 */ 2577 dma_set_max_seg_size(dev->dev, 0xffffffff); 2578 2579 mutex_unlock(&dev->shutdown_lock); 2580 2581 /* 2582 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2583 * initializing procedure here. 2584 */ 2585 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2586 dev_warn(dev->ctrl.device, 2587 "failed to mark controller CONNECTING\n"); 2588 result = -EBUSY; 2589 goto out; 2590 } 2591 2592 /* 2593 * We do not support an SGL for metadata (yet), so we are limited to a 2594 * single integrity segment for the separate metadata pointer. 2595 */ 2596 dev->ctrl.max_integrity_segments = 1; 2597 2598 result = nvme_init_identify(&dev->ctrl); 2599 if (result) 2600 goto out; 2601 2602 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2603 if (!dev->ctrl.opal_dev) 2604 dev->ctrl.opal_dev = 2605 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2606 else if (was_suspend) 2607 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2608 } else { 2609 free_opal_dev(dev->ctrl.opal_dev); 2610 dev->ctrl.opal_dev = NULL; 2611 } 2612 2613 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2614 result = nvme_dbbuf_dma_alloc(dev); 2615 if (result) 2616 dev_warn(dev->dev, 2617 "unable to allocate dma for dbbuf\n"); 2618 } 2619 2620 if (dev->ctrl.hmpre) { 2621 result = nvme_setup_host_mem(dev); 2622 if (result < 0) 2623 goto out; 2624 } 2625 2626 result = nvme_setup_io_queues(dev); 2627 if (result) 2628 goto out; 2629 2630 /* 2631 * Keep the controller around but remove all namespaces if we don't have 2632 * any working I/O queue. 2633 */ 2634 if (dev->online_queues < 2) { 2635 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2636 nvme_kill_queues(&dev->ctrl); 2637 nvme_remove_namespaces(&dev->ctrl); 2638 nvme_free_tagset(dev); 2639 } else { 2640 nvme_start_queues(&dev->ctrl); 2641 nvme_wait_freeze(&dev->ctrl); 2642 nvme_dev_add(dev); 2643 nvme_unfreeze(&dev->ctrl); 2644 } 2645 2646 /* 2647 * If only admin queue live, keep it to do further investigation or 2648 * recovery. 2649 */ 2650 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2651 dev_warn(dev->ctrl.device, 2652 "failed to mark controller live state\n"); 2653 result = -ENODEV; 2654 goto out; 2655 } 2656 2657 nvme_start_ctrl(&dev->ctrl); 2658 return; 2659 2660 out_unlock: 2661 mutex_unlock(&dev->shutdown_lock); 2662 out: 2663 if (result) 2664 dev_warn(dev->ctrl.device, 2665 "Removing after probe failure status: %d\n", result); 2666 nvme_remove_dead_ctrl(dev); 2667 } 2668 2669 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2670 { 2671 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2672 struct pci_dev *pdev = to_pci_dev(dev->dev); 2673 2674 if (pci_get_drvdata(pdev)) 2675 device_release_driver(&pdev->dev); 2676 nvme_put_ctrl(&dev->ctrl); 2677 } 2678 2679 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2680 { 2681 *val = readl(to_nvme_dev(ctrl)->bar + off); 2682 return 0; 2683 } 2684 2685 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2686 { 2687 writel(val, to_nvme_dev(ctrl)->bar + off); 2688 return 0; 2689 } 2690 2691 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2692 { 2693 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2694 return 0; 2695 } 2696 2697 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2698 { 2699 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2700 2701 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2702 } 2703 2704 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2705 .name = "pcie", 2706 .module = THIS_MODULE, 2707 .flags = NVME_F_METADATA_SUPPORTED | 2708 NVME_F_PCI_P2PDMA, 2709 .reg_read32 = nvme_pci_reg_read32, 2710 .reg_write32 = nvme_pci_reg_write32, 2711 .reg_read64 = nvme_pci_reg_read64, 2712 .free_ctrl = nvme_pci_free_ctrl, 2713 .submit_async_event = nvme_pci_submit_async_event, 2714 .get_address = nvme_pci_get_address, 2715 }; 2716 2717 static int nvme_dev_map(struct nvme_dev *dev) 2718 { 2719 struct pci_dev *pdev = to_pci_dev(dev->dev); 2720 2721 if (pci_request_mem_regions(pdev, "nvme")) 2722 return -ENODEV; 2723 2724 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2725 goto release; 2726 2727 return 0; 2728 release: 2729 pci_release_mem_regions(pdev); 2730 return -ENODEV; 2731 } 2732 2733 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2734 { 2735 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2736 /* 2737 * Several Samsung devices seem to drop off the PCIe bus 2738 * randomly when APST is on and uses the deepest sleep state. 2739 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2740 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2741 * 950 PRO 256GB", but it seems to be restricted to two Dell 2742 * laptops. 2743 */ 2744 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2745 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2746 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2747 return NVME_QUIRK_NO_DEEPEST_PS; 2748 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2749 /* 2750 * Samsung SSD 960 EVO drops off the PCIe bus after system 2751 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2752 * within few minutes after bootup on a Coffee Lake board - 2753 * ASUS PRIME Z370-A 2754 */ 2755 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2756 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2757 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2758 return NVME_QUIRK_NO_APST; 2759 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2760 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2761 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2762 /* 2763 * Forcing to use host managed nvme power settings for 2764 * lowest idle power with quick resume latency on 2765 * Samsung and Toshiba SSDs based on suspend behavior 2766 * on Coffee Lake board for LENOVO C640 2767 */ 2768 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2769 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2770 return NVME_QUIRK_SIMPLE_SUSPEND; 2771 } 2772 2773 return 0; 2774 } 2775 2776 #ifdef CONFIG_ACPI 2777 static bool nvme_acpi_storage_d3(struct pci_dev *dev) 2778 { 2779 struct acpi_device *adev; 2780 struct pci_dev *root; 2781 acpi_handle handle; 2782 acpi_status status; 2783 u8 val; 2784 2785 /* 2786 * Look for _DSD property specifying that the storage device on the port 2787 * must use D3 to support deep platform power savings during 2788 * suspend-to-idle. 2789 */ 2790 root = pcie_find_root_port(dev); 2791 if (!root) 2792 return false; 2793 2794 adev = ACPI_COMPANION(&root->dev); 2795 if (!adev) 2796 return false; 2797 2798 /* 2799 * The property is defined in the PXSX device for South complex ports 2800 * and in the PEGP device for North complex ports. 2801 */ 2802 status = acpi_get_handle(adev->handle, "PXSX", &handle); 2803 if (ACPI_FAILURE(status)) { 2804 status = acpi_get_handle(adev->handle, "PEGP", &handle); 2805 if (ACPI_FAILURE(status)) 2806 return false; 2807 } 2808 2809 if (acpi_bus_get_device(handle, &adev)) 2810 return false; 2811 2812 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 2813 &val)) 2814 return false; 2815 return val == 1; 2816 } 2817 #else 2818 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev) 2819 { 2820 return false; 2821 } 2822 #endif /* CONFIG_ACPI */ 2823 2824 static void nvme_async_probe(void *data, async_cookie_t cookie) 2825 { 2826 struct nvme_dev *dev = data; 2827 2828 flush_work(&dev->ctrl.reset_work); 2829 flush_work(&dev->ctrl.scan_work); 2830 nvme_put_ctrl(&dev->ctrl); 2831 } 2832 2833 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2834 { 2835 int node, result = -ENOMEM; 2836 struct nvme_dev *dev; 2837 unsigned long quirks = id->driver_data; 2838 size_t alloc_size; 2839 2840 node = dev_to_node(&pdev->dev); 2841 if (node == NUMA_NO_NODE) 2842 set_dev_node(&pdev->dev, first_memory_node); 2843 2844 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2845 if (!dev) 2846 return -ENOMEM; 2847 2848 dev->nr_write_queues = write_queues; 2849 dev->nr_poll_queues = poll_queues; 2850 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2851 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2852 sizeof(struct nvme_queue), GFP_KERNEL, node); 2853 if (!dev->queues) 2854 goto free; 2855 2856 dev->dev = get_device(&pdev->dev); 2857 pci_set_drvdata(pdev, dev); 2858 2859 result = nvme_dev_map(dev); 2860 if (result) 2861 goto put_pci; 2862 2863 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2864 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2865 mutex_init(&dev->shutdown_lock); 2866 2867 result = nvme_setup_prp_pools(dev); 2868 if (result) 2869 goto unmap; 2870 2871 quirks |= check_vendor_combination_bug(pdev); 2872 2873 if (!noacpi && nvme_acpi_storage_d3(pdev)) { 2874 /* 2875 * Some systems use a bios work around to ask for D3 on 2876 * platforms that support kernel managed suspend. 2877 */ 2878 dev_info(&pdev->dev, 2879 "platform quirk: setting simple suspend\n"); 2880 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2881 } 2882 2883 /* 2884 * Double check that our mempool alloc size will cover the biggest 2885 * command we support. 2886 */ 2887 alloc_size = nvme_pci_iod_alloc_size(); 2888 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2889 2890 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2891 mempool_kfree, 2892 (void *) alloc_size, 2893 GFP_KERNEL, node); 2894 if (!dev->iod_mempool) { 2895 result = -ENOMEM; 2896 goto release_pools; 2897 } 2898 2899 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2900 quirks); 2901 if (result) 2902 goto release_mempool; 2903 2904 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2905 2906 nvme_reset_ctrl(&dev->ctrl); 2907 async_schedule(nvme_async_probe, dev); 2908 2909 return 0; 2910 2911 release_mempool: 2912 mempool_destroy(dev->iod_mempool); 2913 release_pools: 2914 nvme_release_prp_pools(dev); 2915 unmap: 2916 nvme_dev_unmap(dev); 2917 put_pci: 2918 put_device(dev->dev); 2919 free: 2920 kfree(dev->queues); 2921 kfree(dev); 2922 return result; 2923 } 2924 2925 static void nvme_reset_prepare(struct pci_dev *pdev) 2926 { 2927 struct nvme_dev *dev = pci_get_drvdata(pdev); 2928 2929 /* 2930 * We don't need to check the return value from waiting for the reset 2931 * state as pci_dev device lock is held, making it impossible to race 2932 * with ->remove(). 2933 */ 2934 nvme_disable_prepare_reset(dev, false); 2935 nvme_sync_queues(&dev->ctrl); 2936 } 2937 2938 static void nvme_reset_done(struct pci_dev *pdev) 2939 { 2940 struct nvme_dev *dev = pci_get_drvdata(pdev); 2941 2942 if (!nvme_try_sched_reset(&dev->ctrl)) 2943 flush_work(&dev->ctrl.reset_work); 2944 } 2945 2946 static void nvme_shutdown(struct pci_dev *pdev) 2947 { 2948 struct nvme_dev *dev = pci_get_drvdata(pdev); 2949 2950 nvme_disable_prepare_reset(dev, true); 2951 } 2952 2953 /* 2954 * The driver's remove may be called on a device in a partially initialized 2955 * state. This function must not have any dependencies on the device state in 2956 * order to proceed. 2957 */ 2958 static void nvme_remove(struct pci_dev *pdev) 2959 { 2960 struct nvme_dev *dev = pci_get_drvdata(pdev); 2961 2962 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2963 pci_set_drvdata(pdev, NULL); 2964 2965 if (!pci_device_is_present(pdev)) { 2966 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2967 nvme_dev_disable(dev, true); 2968 nvme_dev_remove_admin(dev); 2969 } 2970 2971 flush_work(&dev->ctrl.reset_work); 2972 nvme_stop_ctrl(&dev->ctrl); 2973 nvme_remove_namespaces(&dev->ctrl); 2974 nvme_dev_disable(dev, true); 2975 nvme_release_cmb(dev); 2976 nvme_free_host_mem(dev); 2977 nvme_dev_remove_admin(dev); 2978 nvme_free_queues(dev, 0); 2979 nvme_release_prp_pools(dev); 2980 nvme_dev_unmap(dev); 2981 nvme_uninit_ctrl(&dev->ctrl); 2982 } 2983 2984 #ifdef CONFIG_PM_SLEEP 2985 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2986 { 2987 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2988 } 2989 2990 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 2991 { 2992 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 2993 } 2994 2995 static int nvme_resume(struct device *dev) 2996 { 2997 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2998 struct nvme_ctrl *ctrl = &ndev->ctrl; 2999 3000 if (ndev->last_ps == U32_MAX || 3001 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3002 return nvme_try_sched_reset(&ndev->ctrl); 3003 return 0; 3004 } 3005 3006 static int nvme_suspend(struct device *dev) 3007 { 3008 struct pci_dev *pdev = to_pci_dev(dev); 3009 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3010 struct nvme_ctrl *ctrl = &ndev->ctrl; 3011 int ret = -EBUSY; 3012 3013 ndev->last_ps = U32_MAX; 3014 3015 /* 3016 * The platform does not remove power for a kernel managed suspend so 3017 * use host managed nvme power settings for lowest idle power if 3018 * possible. This should have quicker resume latency than a full device 3019 * shutdown. But if the firmware is involved after the suspend or the 3020 * device does not support any non-default power states, shut down the 3021 * device fully. 3022 * 3023 * If ASPM is not enabled for the device, shut down the device and allow 3024 * the PCI bus layer to put it into D3 in order to take the PCIe link 3025 * down, so as to allow the platform to achieve its minimum low-power 3026 * state (which may not be possible if the link is up). 3027 * 3028 * If a host memory buffer is enabled, shut down the device as the NVMe 3029 * specification allows the device to access the host memory buffer in 3030 * host DRAM from all power states, but hosts will fail access to DRAM 3031 * during S3. 3032 */ 3033 if (pm_suspend_via_firmware() || !ctrl->npss || 3034 !pcie_aspm_enabled(pdev) || 3035 ndev->nr_host_mem_descs || 3036 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3037 return nvme_disable_prepare_reset(ndev, true); 3038 3039 nvme_start_freeze(ctrl); 3040 nvme_wait_freeze(ctrl); 3041 nvme_sync_queues(ctrl); 3042 3043 if (ctrl->state != NVME_CTRL_LIVE) 3044 goto unfreeze; 3045 3046 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3047 if (ret < 0) 3048 goto unfreeze; 3049 3050 /* 3051 * A saved state prevents pci pm from generically controlling the 3052 * device's power. If we're using protocol specific settings, we don't 3053 * want pci interfering. 3054 */ 3055 pci_save_state(pdev); 3056 3057 ret = nvme_set_power_state(ctrl, ctrl->npss); 3058 if (ret < 0) 3059 goto unfreeze; 3060 3061 if (ret) { 3062 /* discard the saved state */ 3063 pci_load_saved_state(pdev, NULL); 3064 3065 /* 3066 * Clearing npss forces a controller reset on resume. The 3067 * correct value will be rediscovered then. 3068 */ 3069 ret = nvme_disable_prepare_reset(ndev, true); 3070 ctrl->npss = 0; 3071 } 3072 unfreeze: 3073 nvme_unfreeze(ctrl); 3074 return ret; 3075 } 3076 3077 static int nvme_simple_suspend(struct device *dev) 3078 { 3079 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3080 3081 return nvme_disable_prepare_reset(ndev, true); 3082 } 3083 3084 static int nvme_simple_resume(struct device *dev) 3085 { 3086 struct pci_dev *pdev = to_pci_dev(dev); 3087 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3088 3089 return nvme_try_sched_reset(&ndev->ctrl); 3090 } 3091 3092 static const struct dev_pm_ops nvme_dev_pm_ops = { 3093 .suspend = nvme_suspend, 3094 .resume = nvme_resume, 3095 .freeze = nvme_simple_suspend, 3096 .thaw = nvme_simple_resume, 3097 .poweroff = nvme_simple_suspend, 3098 .restore = nvme_simple_resume, 3099 }; 3100 #endif /* CONFIG_PM_SLEEP */ 3101 3102 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3103 pci_channel_state_t state) 3104 { 3105 struct nvme_dev *dev = pci_get_drvdata(pdev); 3106 3107 /* 3108 * A frozen channel requires a reset. When detected, this method will 3109 * shutdown the controller to quiesce. The controller will be restarted 3110 * after the slot reset through driver's slot_reset callback. 3111 */ 3112 switch (state) { 3113 case pci_channel_io_normal: 3114 return PCI_ERS_RESULT_CAN_RECOVER; 3115 case pci_channel_io_frozen: 3116 dev_warn(dev->ctrl.device, 3117 "frozen state error detected, reset controller\n"); 3118 nvme_dev_disable(dev, false); 3119 return PCI_ERS_RESULT_NEED_RESET; 3120 case pci_channel_io_perm_failure: 3121 dev_warn(dev->ctrl.device, 3122 "failure state error detected, request disconnect\n"); 3123 return PCI_ERS_RESULT_DISCONNECT; 3124 } 3125 return PCI_ERS_RESULT_NEED_RESET; 3126 } 3127 3128 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3129 { 3130 struct nvme_dev *dev = pci_get_drvdata(pdev); 3131 3132 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3133 pci_restore_state(pdev); 3134 nvme_reset_ctrl(&dev->ctrl); 3135 return PCI_ERS_RESULT_RECOVERED; 3136 } 3137 3138 static void nvme_error_resume(struct pci_dev *pdev) 3139 { 3140 struct nvme_dev *dev = pci_get_drvdata(pdev); 3141 3142 flush_work(&dev->ctrl.reset_work); 3143 } 3144 3145 static const struct pci_error_handlers nvme_err_handler = { 3146 .error_detected = nvme_error_detected, 3147 .slot_reset = nvme_slot_reset, 3148 .resume = nvme_error_resume, 3149 .reset_prepare = nvme_reset_prepare, 3150 .reset_done = nvme_reset_done, 3151 }; 3152 3153 static const struct pci_device_id nvme_id_table[] = { 3154 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3155 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3156 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3157 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3158 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3159 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3160 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3161 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3162 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3163 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3164 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3165 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3166 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3167 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3168 NVME_QUIRK_MEDIUM_PRIO_SQ | 3169 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3170 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3171 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3172 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3173 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3174 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3175 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3176 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3177 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3178 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3179 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3180 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3181 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3182 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3183 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3184 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3185 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3186 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3187 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3188 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3189 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3190 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3191 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3192 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3193 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3194 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3195 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3196 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3197 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3198 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3199 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3200 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3201 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3202 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3203 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3204 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3205 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3206 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3207 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3208 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3209 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3210 NVME_QUIRK_128_BYTES_SQES | 3211 NVME_QUIRK_SHARED_TAGS }, 3212 3213 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3214 { 0, } 3215 }; 3216 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3217 3218 static struct pci_driver nvme_driver = { 3219 .name = "nvme", 3220 .id_table = nvme_id_table, 3221 .probe = nvme_probe, 3222 .remove = nvme_remove, 3223 .shutdown = nvme_shutdown, 3224 #ifdef CONFIG_PM_SLEEP 3225 .driver = { 3226 .pm = &nvme_dev_pm_ops, 3227 }, 3228 #endif 3229 .sriov_configure = pci_sriov_configure_simple, 3230 .err_handler = &nvme_err_handler, 3231 }; 3232 3233 static int __init nvme_init(void) 3234 { 3235 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3236 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3237 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3238 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3239 3240 return pci_register_driver(&nvme_driver); 3241 } 3242 3243 static void __exit nvme_exit(void) 3244 { 3245 pci_unregister_driver(&nvme_driver); 3246 flush_workqueue(nvme_wq); 3247 } 3248 3249 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3250 MODULE_LICENSE("GPL"); 3251 MODULE_VERSION("1.0"); 3252 module_init(nvme_init); 3253 module_exit(nvme_exit); 3254