xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 4b7ead03)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/sed-opal.h>
27 #include <linux/pci-p2pdma.h>
28 
29 #include "trace.h"
30 #include "nvme.h"
31 
32 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
33 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
34 
35 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
36 
37 /*
38  * These can be higher, but we need to ensure that any command doesn't
39  * require an sg allocation that needs more than a page of data.
40  */
41 #define NVME_MAX_KB_SZ	4096
42 #define NVME_MAX_SEGS	127
43 
44 static int use_threaded_interrupts;
45 module_param(use_threaded_interrupts, int, 0);
46 
47 static bool use_cmb_sqes = true;
48 module_param(use_cmb_sqes, bool, 0444);
49 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
50 
51 static unsigned int max_host_mem_size_mb = 128;
52 module_param(max_host_mem_size_mb, uint, 0444);
53 MODULE_PARM_DESC(max_host_mem_size_mb,
54 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
55 
56 static unsigned int sgl_threshold = SZ_32K;
57 module_param(sgl_threshold, uint, 0644);
58 MODULE_PARM_DESC(sgl_threshold,
59 		"Use SGLs when average request segment size is larger or equal to "
60 		"this size. Use 0 to disable SGLs.");
61 
62 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
63 static const struct kernel_param_ops io_queue_depth_ops = {
64 	.set = io_queue_depth_set,
65 	.get = param_get_uint,
66 };
67 
68 static unsigned int io_queue_depth = 1024;
69 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
70 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
71 
72 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
73 {
74 	unsigned int n;
75 	int ret;
76 
77 	ret = kstrtouint(val, 10, &n);
78 	if (ret != 0 || n > num_possible_cpus())
79 		return -EINVAL;
80 	return param_set_uint(val, kp);
81 }
82 
83 static const struct kernel_param_ops io_queue_count_ops = {
84 	.set = io_queue_count_set,
85 	.get = param_get_uint,
86 };
87 
88 static unsigned int write_queues;
89 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
90 MODULE_PARM_DESC(write_queues,
91 	"Number of queues to use for writes. If not set, reads and writes "
92 	"will share a queue set.");
93 
94 static unsigned int poll_queues;
95 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
96 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
97 
98 static bool noacpi;
99 module_param(noacpi, bool, 0444);
100 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
101 
102 struct nvme_dev;
103 struct nvme_queue;
104 
105 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
106 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
107 
108 /*
109  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
110  */
111 struct nvme_dev {
112 	struct nvme_queue *queues;
113 	struct blk_mq_tag_set tagset;
114 	struct blk_mq_tag_set admin_tagset;
115 	u32 __iomem *dbs;
116 	struct device *dev;
117 	struct dma_pool *prp_page_pool;
118 	struct dma_pool *prp_small_pool;
119 	unsigned online_queues;
120 	unsigned max_qid;
121 	unsigned io_queues[HCTX_MAX_TYPES];
122 	unsigned int num_vecs;
123 	u32 q_depth;
124 	int io_sqes;
125 	u32 db_stride;
126 	void __iomem *bar;
127 	unsigned long bar_mapped_size;
128 	struct work_struct remove_work;
129 	struct mutex shutdown_lock;
130 	bool subsystem;
131 	u64 cmb_size;
132 	bool cmb_use_sqes;
133 	u32 cmbsz;
134 	u32 cmbloc;
135 	struct nvme_ctrl ctrl;
136 	u32 last_ps;
137 
138 	mempool_t *iod_mempool;
139 
140 	/* shadow doorbell buffer support: */
141 	u32 *dbbuf_dbs;
142 	dma_addr_t dbbuf_dbs_dma_addr;
143 	u32 *dbbuf_eis;
144 	dma_addr_t dbbuf_eis_dma_addr;
145 
146 	/* host memory buffer support: */
147 	u64 host_mem_size;
148 	u32 nr_host_mem_descs;
149 	dma_addr_t host_mem_descs_dma;
150 	struct nvme_host_mem_buf_desc *host_mem_descs;
151 	void **host_mem_desc_bufs;
152 	unsigned int nr_allocated_queues;
153 	unsigned int nr_write_queues;
154 	unsigned int nr_poll_queues;
155 };
156 
157 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
158 {
159 	int ret;
160 	u32 n;
161 
162 	ret = kstrtou32(val, 10, &n);
163 	if (ret != 0 || n < 2)
164 		return -EINVAL;
165 
166 	return param_set_uint(val, kp);
167 }
168 
169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 	return qid * 2 * stride;
172 }
173 
174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 	return (qid * 2 + 1) * stride;
177 }
178 
179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183 
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189 	struct nvme_dev *dev;
190 	spinlock_t sq_lock;
191 	void *sq_cmds;
192 	 /* only used for poll queues: */
193 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 	struct nvme_completion *cqes;
195 	dma_addr_t sq_dma_addr;
196 	dma_addr_t cq_dma_addr;
197 	u32 __iomem *q_db;
198 	u32 q_depth;
199 	u16 cq_vector;
200 	u16 sq_tail;
201 	u16 last_sq_tail;
202 	u16 cq_head;
203 	u16 qid;
204 	u8 cq_phase;
205 	u8 sqes;
206 	unsigned long flags;
207 #define NVMEQ_ENABLED		0
208 #define NVMEQ_SQ_CMB		1
209 #define NVMEQ_DELETE_ERROR	2
210 #define NVMEQ_POLLED		3
211 	u32 *dbbuf_sq_db;
212 	u32 *dbbuf_cq_db;
213 	u32 *dbbuf_sq_ei;
214 	u32 *dbbuf_cq_ei;
215 	struct completion delete_done;
216 };
217 
218 /*
219  * The nvme_iod describes the data in an I/O.
220  *
221  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222  * to the actual struct scatterlist.
223  */
224 struct nvme_iod {
225 	struct nvme_request req;
226 	struct nvme_queue *nvmeq;
227 	bool use_sgl;
228 	int aborted;
229 	int npages;		/* In the PRP list. 0 means small pool in use */
230 	int nents;		/* Used in scatterlist */
231 	dma_addr_t first_dma;
232 	unsigned int dma_len;	/* length of single DMA segment mapping */
233 	dma_addr_t meta_dma;
234 	struct scatterlist *sg;
235 };
236 
237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
238 {
239 	return dev->nr_allocated_queues * 8 * dev->db_stride;
240 }
241 
242 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243 {
244 	unsigned int mem_size = nvme_dbbuf_size(dev);
245 
246 	if (dev->dbbuf_dbs)
247 		return 0;
248 
249 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
250 					    &dev->dbbuf_dbs_dma_addr,
251 					    GFP_KERNEL);
252 	if (!dev->dbbuf_dbs)
253 		return -ENOMEM;
254 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
255 					    &dev->dbbuf_eis_dma_addr,
256 					    GFP_KERNEL);
257 	if (!dev->dbbuf_eis) {
258 		dma_free_coherent(dev->dev, mem_size,
259 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 		dev->dbbuf_dbs = NULL;
261 		return -ENOMEM;
262 	}
263 
264 	return 0;
265 }
266 
267 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
268 {
269 	unsigned int mem_size = nvme_dbbuf_size(dev);
270 
271 	if (dev->dbbuf_dbs) {
272 		dma_free_coherent(dev->dev, mem_size,
273 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
274 		dev->dbbuf_dbs = NULL;
275 	}
276 	if (dev->dbbuf_eis) {
277 		dma_free_coherent(dev->dev, mem_size,
278 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
279 		dev->dbbuf_eis = NULL;
280 	}
281 }
282 
283 static void nvme_dbbuf_init(struct nvme_dev *dev,
284 			    struct nvme_queue *nvmeq, int qid)
285 {
286 	if (!dev->dbbuf_dbs || !qid)
287 		return;
288 
289 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
290 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
291 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
293 }
294 
295 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
296 {
297 	if (!nvmeq->qid)
298 		return;
299 
300 	nvmeq->dbbuf_sq_db = NULL;
301 	nvmeq->dbbuf_cq_db = NULL;
302 	nvmeq->dbbuf_sq_ei = NULL;
303 	nvmeq->dbbuf_cq_ei = NULL;
304 }
305 
306 static void nvme_dbbuf_set(struct nvme_dev *dev)
307 {
308 	struct nvme_command c;
309 	unsigned int i;
310 
311 	if (!dev->dbbuf_dbs)
312 		return;
313 
314 	memset(&c, 0, sizeof(c));
315 	c.dbbuf.opcode = nvme_admin_dbbuf;
316 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
317 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
318 
319 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
320 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
321 		/* Free memory and continue on */
322 		nvme_dbbuf_dma_free(dev);
323 
324 		for (i = 1; i <= dev->online_queues; i++)
325 			nvme_dbbuf_free(&dev->queues[i]);
326 	}
327 }
328 
329 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
330 {
331 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
332 }
333 
334 /* Update dbbuf and return true if an MMIO is required */
335 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
336 					      volatile u32 *dbbuf_ei)
337 {
338 	if (dbbuf_db) {
339 		u16 old_value;
340 
341 		/*
342 		 * Ensure that the queue is written before updating
343 		 * the doorbell in memory
344 		 */
345 		wmb();
346 
347 		old_value = *dbbuf_db;
348 		*dbbuf_db = value;
349 
350 		/*
351 		 * Ensure that the doorbell is updated before reading the event
352 		 * index from memory.  The controller needs to provide similar
353 		 * ordering to ensure the envent index is updated before reading
354 		 * the doorbell.
355 		 */
356 		mb();
357 
358 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
359 			return false;
360 	}
361 
362 	return true;
363 }
364 
365 /*
366  * Will slightly overestimate the number of pages needed.  This is OK
367  * as it only leads to a small amount of wasted memory for the lifetime of
368  * the I/O.
369  */
370 static int nvme_pci_npages_prp(void)
371 {
372 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
373 				      NVME_CTRL_PAGE_SIZE);
374 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
375 }
376 
377 /*
378  * Calculates the number of pages needed for the SGL segments. For example a 4k
379  * page can accommodate 256 SGL descriptors.
380  */
381 static int nvme_pci_npages_sgl(void)
382 {
383 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
384 			PAGE_SIZE);
385 }
386 
387 static size_t nvme_pci_iod_alloc_size(void)
388 {
389 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
390 
391 	return sizeof(__le64 *) * npages +
392 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = data;
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = data;
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420 		unsigned int hctx_idx, unsigned int numa_node)
421 {
422 	struct nvme_dev *dev = set->driver_data;
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
425 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
426 
427 	BUG_ON(!nvmeq);
428 	iod->nvmeq = nvmeq;
429 
430 	nvme_req(req)->ctrl = &dev->ctrl;
431 	return 0;
432 }
433 
434 static int queue_irq_offset(struct nvme_dev *dev)
435 {
436 	/* if we have more than 1 vec, admin queue offsets us by 1 */
437 	if (dev->num_vecs > 1)
438 		return 1;
439 
440 	return 0;
441 }
442 
443 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
444 {
445 	struct nvme_dev *dev = set->driver_data;
446 	int i, qoff, offset;
447 
448 	offset = queue_irq_offset(dev);
449 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
450 		struct blk_mq_queue_map *map = &set->map[i];
451 
452 		map->nr_queues = dev->io_queues[i];
453 		if (!map->nr_queues) {
454 			BUG_ON(i == HCTX_TYPE_DEFAULT);
455 			continue;
456 		}
457 
458 		/*
459 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
460 		 * affinity), so use the regular blk-mq cpu mapping
461 		 */
462 		map->queue_offset = qoff;
463 		if (i != HCTX_TYPE_POLL && offset)
464 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
465 		else
466 			blk_mq_map_queues(map);
467 		qoff += map->nr_queues;
468 		offset += map->nr_queues;
469 	}
470 
471 	return 0;
472 }
473 
474 /*
475  * Write sq tail if we are asked to, or if the next command would wrap.
476  */
477 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
478 {
479 	if (!write_sq) {
480 		u16 next_tail = nvmeq->sq_tail + 1;
481 
482 		if (next_tail == nvmeq->q_depth)
483 			next_tail = 0;
484 		if (next_tail != nvmeq->last_sq_tail)
485 			return;
486 	}
487 
488 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
489 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
490 		writel(nvmeq->sq_tail, nvmeq->q_db);
491 	nvmeq->last_sq_tail = nvmeq->sq_tail;
492 }
493 
494 /**
495  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
496  * @nvmeq: The queue to use
497  * @cmd: The command to send
498  * @write_sq: whether to write to the SQ doorbell
499  */
500 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
501 			    bool write_sq)
502 {
503 	spin_lock(&nvmeq->sq_lock);
504 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
505 	       cmd, sizeof(*cmd));
506 	if (++nvmeq->sq_tail == nvmeq->q_depth)
507 		nvmeq->sq_tail = 0;
508 	nvme_write_sq_db(nvmeq, write_sq);
509 	spin_unlock(&nvmeq->sq_lock);
510 }
511 
512 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
513 {
514 	struct nvme_queue *nvmeq = hctx->driver_data;
515 
516 	spin_lock(&nvmeq->sq_lock);
517 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
518 		nvme_write_sq_db(nvmeq, true);
519 	spin_unlock(&nvmeq->sq_lock);
520 }
521 
522 static void **nvme_pci_iod_list(struct request *req)
523 {
524 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
525 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
526 }
527 
528 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
529 {
530 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
531 	int nseg = blk_rq_nr_phys_segments(req);
532 	unsigned int avg_seg_size;
533 
534 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
535 
536 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
537 		return false;
538 	if (!iod->nvmeq->qid)
539 		return false;
540 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
541 		return false;
542 	return true;
543 }
544 
545 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
546 {
547 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
548 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
549 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
550 	int i;
551 
552 	if (iod->dma_len) {
553 		dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
554 			       rq_dma_dir(req));
555 		return;
556 	}
557 
558 	WARN_ON_ONCE(!iod->nents);
559 
560 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
561 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
562 				    rq_dma_dir(req));
563 	else
564 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
565 
566 
567 	if (iod->npages == 0)
568 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
569 			dma_addr);
570 
571 	for (i = 0; i < iod->npages; i++) {
572 		void *addr = nvme_pci_iod_list(req)[i];
573 
574 		if (iod->use_sgl) {
575 			struct nvme_sgl_desc *sg_list = addr;
576 
577 			next_dma_addr =
578 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
579 		} else {
580 			__le64 *prp_list = addr;
581 
582 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
583 		}
584 
585 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
586 		dma_addr = next_dma_addr;
587 	}
588 
589 	mempool_free(iod->sg, dev->iod_mempool);
590 }
591 
592 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
593 {
594 	int i;
595 	struct scatterlist *sg;
596 
597 	for_each_sg(sgl, sg, nents, i) {
598 		dma_addr_t phys = sg_phys(sg);
599 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
600 			"dma_address:%pad dma_length:%d\n",
601 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
602 			sg_dma_len(sg));
603 	}
604 }
605 
606 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
607 		struct request *req, struct nvme_rw_command *cmnd)
608 {
609 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
610 	struct dma_pool *pool;
611 	int length = blk_rq_payload_bytes(req);
612 	struct scatterlist *sg = iod->sg;
613 	int dma_len = sg_dma_len(sg);
614 	u64 dma_addr = sg_dma_address(sg);
615 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
616 	__le64 *prp_list;
617 	void **list = nvme_pci_iod_list(req);
618 	dma_addr_t prp_dma;
619 	int nprps, i;
620 
621 	length -= (NVME_CTRL_PAGE_SIZE - offset);
622 	if (length <= 0) {
623 		iod->first_dma = 0;
624 		goto done;
625 	}
626 
627 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
628 	if (dma_len) {
629 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
630 	} else {
631 		sg = sg_next(sg);
632 		dma_addr = sg_dma_address(sg);
633 		dma_len = sg_dma_len(sg);
634 	}
635 
636 	if (length <= NVME_CTRL_PAGE_SIZE) {
637 		iod->first_dma = dma_addr;
638 		goto done;
639 	}
640 
641 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
642 	if (nprps <= (256 / 8)) {
643 		pool = dev->prp_small_pool;
644 		iod->npages = 0;
645 	} else {
646 		pool = dev->prp_page_pool;
647 		iod->npages = 1;
648 	}
649 
650 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
651 	if (!prp_list) {
652 		iod->first_dma = dma_addr;
653 		iod->npages = -1;
654 		return BLK_STS_RESOURCE;
655 	}
656 	list[0] = prp_list;
657 	iod->first_dma = prp_dma;
658 	i = 0;
659 	for (;;) {
660 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
661 			__le64 *old_prp_list = prp_list;
662 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
663 			if (!prp_list)
664 				return BLK_STS_RESOURCE;
665 			list[iod->npages++] = prp_list;
666 			prp_list[0] = old_prp_list[i - 1];
667 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
668 			i = 1;
669 		}
670 		prp_list[i++] = cpu_to_le64(dma_addr);
671 		dma_len -= NVME_CTRL_PAGE_SIZE;
672 		dma_addr += NVME_CTRL_PAGE_SIZE;
673 		length -= NVME_CTRL_PAGE_SIZE;
674 		if (length <= 0)
675 			break;
676 		if (dma_len > 0)
677 			continue;
678 		if (unlikely(dma_len < 0))
679 			goto bad_sgl;
680 		sg = sg_next(sg);
681 		dma_addr = sg_dma_address(sg);
682 		dma_len = sg_dma_len(sg);
683 	}
684 
685 done:
686 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
687 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
688 
689 	return BLK_STS_OK;
690 
691  bad_sgl:
692 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
693 			"Invalid SGL for payload:%d nents:%d\n",
694 			blk_rq_payload_bytes(req), iod->nents);
695 	return BLK_STS_IOERR;
696 }
697 
698 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
699 		struct scatterlist *sg)
700 {
701 	sge->addr = cpu_to_le64(sg_dma_address(sg));
702 	sge->length = cpu_to_le32(sg_dma_len(sg));
703 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
704 }
705 
706 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
707 		dma_addr_t dma_addr, int entries)
708 {
709 	sge->addr = cpu_to_le64(dma_addr);
710 	if (entries < SGES_PER_PAGE) {
711 		sge->length = cpu_to_le32(entries * sizeof(*sge));
712 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
713 	} else {
714 		sge->length = cpu_to_le32(PAGE_SIZE);
715 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
716 	}
717 }
718 
719 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
720 		struct request *req, struct nvme_rw_command *cmd, int entries)
721 {
722 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
723 	struct dma_pool *pool;
724 	struct nvme_sgl_desc *sg_list;
725 	struct scatterlist *sg = iod->sg;
726 	dma_addr_t sgl_dma;
727 	int i = 0;
728 
729 	/* setting the transfer type as SGL */
730 	cmd->flags = NVME_CMD_SGL_METABUF;
731 
732 	if (entries == 1) {
733 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
734 		return BLK_STS_OK;
735 	}
736 
737 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
738 		pool = dev->prp_small_pool;
739 		iod->npages = 0;
740 	} else {
741 		pool = dev->prp_page_pool;
742 		iod->npages = 1;
743 	}
744 
745 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
746 	if (!sg_list) {
747 		iod->npages = -1;
748 		return BLK_STS_RESOURCE;
749 	}
750 
751 	nvme_pci_iod_list(req)[0] = sg_list;
752 	iod->first_dma = sgl_dma;
753 
754 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
755 
756 	do {
757 		if (i == SGES_PER_PAGE) {
758 			struct nvme_sgl_desc *old_sg_desc = sg_list;
759 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
760 
761 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
762 			if (!sg_list)
763 				return BLK_STS_RESOURCE;
764 
765 			i = 0;
766 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
767 			sg_list[i++] = *link;
768 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
769 		}
770 
771 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
772 		sg = sg_next(sg);
773 	} while (--entries > 0);
774 
775 	return BLK_STS_OK;
776 }
777 
778 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
779 		struct request *req, struct nvme_rw_command *cmnd,
780 		struct bio_vec *bv)
781 {
782 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
783 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
784 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
785 
786 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
787 	if (dma_mapping_error(dev->dev, iod->first_dma))
788 		return BLK_STS_RESOURCE;
789 	iod->dma_len = bv->bv_len;
790 
791 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
792 	if (bv->bv_len > first_prp_len)
793 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
794 	return BLK_STS_OK;
795 }
796 
797 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
798 		struct request *req, struct nvme_rw_command *cmnd,
799 		struct bio_vec *bv)
800 {
801 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
802 
803 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
804 	if (dma_mapping_error(dev->dev, iod->first_dma))
805 		return BLK_STS_RESOURCE;
806 	iod->dma_len = bv->bv_len;
807 
808 	cmnd->flags = NVME_CMD_SGL_METABUF;
809 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
810 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
811 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
812 	return BLK_STS_OK;
813 }
814 
815 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
816 		struct nvme_command *cmnd)
817 {
818 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
819 	blk_status_t ret = BLK_STS_RESOURCE;
820 	int nr_mapped;
821 
822 	if (blk_rq_nr_phys_segments(req) == 1) {
823 		struct bio_vec bv = req_bvec(req);
824 
825 		if (!is_pci_p2pdma_page(bv.bv_page)) {
826 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
827 				return nvme_setup_prp_simple(dev, req,
828 							     &cmnd->rw, &bv);
829 
830 			if (iod->nvmeq->qid &&
831 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
832 				return nvme_setup_sgl_simple(dev, req,
833 							     &cmnd->rw, &bv);
834 		}
835 	}
836 
837 	iod->dma_len = 0;
838 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
839 	if (!iod->sg)
840 		return BLK_STS_RESOURCE;
841 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
842 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
843 	if (!iod->nents)
844 		goto out;
845 
846 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
847 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
848 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
849 	else
850 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
851 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
852 	if (!nr_mapped)
853 		goto out;
854 
855 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
856 	if (iod->use_sgl)
857 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
858 	else
859 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
860 out:
861 	if (ret != BLK_STS_OK)
862 		nvme_unmap_data(dev, req);
863 	return ret;
864 }
865 
866 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
867 		struct nvme_command *cmnd)
868 {
869 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
870 
871 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
872 			rq_dma_dir(req), 0);
873 	if (dma_mapping_error(dev->dev, iod->meta_dma))
874 		return BLK_STS_IOERR;
875 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
876 	return BLK_STS_OK;
877 }
878 
879 /*
880  * NOTE: ns is NULL when called on the admin queue.
881  */
882 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
883 			 const struct blk_mq_queue_data *bd)
884 {
885 	struct nvme_ns *ns = hctx->queue->queuedata;
886 	struct nvme_queue *nvmeq = hctx->driver_data;
887 	struct nvme_dev *dev = nvmeq->dev;
888 	struct request *req = bd->rq;
889 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
890 	struct nvme_command cmnd;
891 	blk_status_t ret;
892 
893 	iod->aborted = 0;
894 	iod->npages = -1;
895 	iod->nents = 0;
896 
897 	/*
898 	 * We should not need to do this, but we're still using this to
899 	 * ensure we can drain requests on a dying queue.
900 	 */
901 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
902 		return BLK_STS_IOERR;
903 
904 	ret = nvme_setup_cmd(ns, req, &cmnd);
905 	if (ret)
906 		return ret;
907 
908 	if (blk_rq_nr_phys_segments(req)) {
909 		ret = nvme_map_data(dev, req, &cmnd);
910 		if (ret)
911 			goto out_free_cmd;
912 	}
913 
914 	if (blk_integrity_rq(req)) {
915 		ret = nvme_map_metadata(dev, req, &cmnd);
916 		if (ret)
917 			goto out_unmap_data;
918 	}
919 
920 	blk_mq_start_request(req);
921 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
922 	return BLK_STS_OK;
923 out_unmap_data:
924 	nvme_unmap_data(dev, req);
925 out_free_cmd:
926 	nvme_cleanup_cmd(req);
927 	return ret;
928 }
929 
930 static void nvme_pci_complete_rq(struct request *req)
931 {
932 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
933 	struct nvme_dev *dev = iod->nvmeq->dev;
934 
935 	if (blk_integrity_rq(req))
936 		dma_unmap_page(dev->dev, iod->meta_dma,
937 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
938 	if (blk_rq_nr_phys_segments(req))
939 		nvme_unmap_data(dev, req);
940 	nvme_complete_rq(req);
941 }
942 
943 /* We read the CQE phase first to check if the rest of the entry is valid */
944 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
945 {
946 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
947 
948 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
949 }
950 
951 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
952 {
953 	u16 head = nvmeq->cq_head;
954 
955 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
956 					      nvmeq->dbbuf_cq_ei))
957 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
958 }
959 
960 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
961 {
962 	if (!nvmeq->qid)
963 		return nvmeq->dev->admin_tagset.tags[0];
964 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
965 }
966 
967 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
968 {
969 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
970 	__u16 command_id = READ_ONCE(cqe->command_id);
971 	struct request *req;
972 
973 	/*
974 	 * AEN requests are special as they don't time out and can
975 	 * survive any kind of queue freeze and often don't respond to
976 	 * aborts.  We don't even bother to allocate a struct request
977 	 * for them but rather special case them here.
978 	 */
979 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
980 		nvme_complete_async_event(&nvmeq->dev->ctrl,
981 				cqe->status, &cqe->result);
982 		return;
983 	}
984 
985 	req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id);
986 	if (unlikely(!req)) {
987 		dev_warn(nvmeq->dev->ctrl.device,
988 			"invalid id %d completed on queue %d\n",
989 			command_id, le16_to_cpu(cqe->sq_id));
990 		return;
991 	}
992 
993 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
994 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
995 		nvme_pci_complete_rq(req);
996 }
997 
998 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
999 {
1000 	u16 tmp = nvmeq->cq_head + 1;
1001 
1002 	if (tmp == nvmeq->q_depth) {
1003 		nvmeq->cq_head = 0;
1004 		nvmeq->cq_phase ^= 1;
1005 	} else {
1006 		nvmeq->cq_head = tmp;
1007 	}
1008 }
1009 
1010 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1011 {
1012 	int found = 0;
1013 
1014 	while (nvme_cqe_pending(nvmeq)) {
1015 		found++;
1016 		/*
1017 		 * load-load control dependency between phase and the rest of
1018 		 * the cqe requires a full read memory barrier
1019 		 */
1020 		dma_rmb();
1021 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1022 		nvme_update_cq_head(nvmeq);
1023 	}
1024 
1025 	if (found)
1026 		nvme_ring_cq_doorbell(nvmeq);
1027 	return found;
1028 }
1029 
1030 static irqreturn_t nvme_irq(int irq, void *data)
1031 {
1032 	struct nvme_queue *nvmeq = data;
1033 	irqreturn_t ret = IRQ_NONE;
1034 
1035 	/*
1036 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1037 	 * the irq handler, even if that was on another CPU.
1038 	 */
1039 	rmb();
1040 	if (nvme_process_cq(nvmeq))
1041 		ret = IRQ_HANDLED;
1042 	wmb();
1043 
1044 	return ret;
1045 }
1046 
1047 static irqreturn_t nvme_irq_check(int irq, void *data)
1048 {
1049 	struct nvme_queue *nvmeq = data;
1050 
1051 	if (nvme_cqe_pending(nvmeq))
1052 		return IRQ_WAKE_THREAD;
1053 	return IRQ_NONE;
1054 }
1055 
1056 /*
1057  * Poll for completions for any interrupt driven queue
1058  * Can be called from any context.
1059  */
1060 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1061 {
1062 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1063 
1064 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1065 
1066 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1067 	nvme_process_cq(nvmeq);
1068 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1069 }
1070 
1071 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1072 {
1073 	struct nvme_queue *nvmeq = hctx->driver_data;
1074 	bool found;
1075 
1076 	if (!nvme_cqe_pending(nvmeq))
1077 		return 0;
1078 
1079 	spin_lock(&nvmeq->cq_poll_lock);
1080 	found = nvme_process_cq(nvmeq);
1081 	spin_unlock(&nvmeq->cq_poll_lock);
1082 
1083 	return found;
1084 }
1085 
1086 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1087 {
1088 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1089 	struct nvme_queue *nvmeq = &dev->queues[0];
1090 	struct nvme_command c;
1091 
1092 	memset(&c, 0, sizeof(c));
1093 	c.common.opcode = nvme_admin_async_event;
1094 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1095 	nvme_submit_cmd(nvmeq, &c, true);
1096 }
1097 
1098 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1099 {
1100 	struct nvme_command c;
1101 
1102 	memset(&c, 0, sizeof(c));
1103 	c.delete_queue.opcode = opcode;
1104 	c.delete_queue.qid = cpu_to_le16(id);
1105 
1106 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1107 }
1108 
1109 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1110 		struct nvme_queue *nvmeq, s16 vector)
1111 {
1112 	struct nvme_command c;
1113 	int flags = NVME_QUEUE_PHYS_CONTIG;
1114 
1115 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1116 		flags |= NVME_CQ_IRQ_ENABLED;
1117 
1118 	/*
1119 	 * Note: we (ab)use the fact that the prp fields survive if no data
1120 	 * is attached to the request.
1121 	 */
1122 	memset(&c, 0, sizeof(c));
1123 	c.create_cq.opcode = nvme_admin_create_cq;
1124 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1125 	c.create_cq.cqid = cpu_to_le16(qid);
1126 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1127 	c.create_cq.cq_flags = cpu_to_le16(flags);
1128 	c.create_cq.irq_vector = cpu_to_le16(vector);
1129 
1130 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1131 }
1132 
1133 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1134 						struct nvme_queue *nvmeq)
1135 {
1136 	struct nvme_ctrl *ctrl = &dev->ctrl;
1137 	struct nvme_command c;
1138 	int flags = NVME_QUEUE_PHYS_CONTIG;
1139 
1140 	/*
1141 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1142 	 * set. Since URGENT priority is zeroes, it makes all queues
1143 	 * URGENT.
1144 	 */
1145 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1146 		flags |= NVME_SQ_PRIO_MEDIUM;
1147 
1148 	/*
1149 	 * Note: we (ab)use the fact that the prp fields survive if no data
1150 	 * is attached to the request.
1151 	 */
1152 	memset(&c, 0, sizeof(c));
1153 	c.create_sq.opcode = nvme_admin_create_sq;
1154 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1155 	c.create_sq.sqid = cpu_to_le16(qid);
1156 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1157 	c.create_sq.sq_flags = cpu_to_le16(flags);
1158 	c.create_sq.cqid = cpu_to_le16(qid);
1159 
1160 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1161 }
1162 
1163 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1164 {
1165 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1166 }
1167 
1168 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1169 {
1170 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1171 }
1172 
1173 static void abort_endio(struct request *req, blk_status_t error)
1174 {
1175 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1176 	struct nvme_queue *nvmeq = iod->nvmeq;
1177 
1178 	dev_warn(nvmeq->dev->ctrl.device,
1179 		 "Abort status: 0x%x", nvme_req(req)->status);
1180 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1181 	blk_mq_free_request(req);
1182 }
1183 
1184 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1185 {
1186 	/* If true, indicates loss of adapter communication, possibly by a
1187 	 * NVMe Subsystem reset.
1188 	 */
1189 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1190 
1191 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1192 	switch (dev->ctrl.state) {
1193 	case NVME_CTRL_RESETTING:
1194 	case NVME_CTRL_CONNECTING:
1195 		return false;
1196 	default:
1197 		break;
1198 	}
1199 
1200 	/* We shouldn't reset unless the controller is on fatal error state
1201 	 * _or_ if we lost the communication with it.
1202 	 */
1203 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1204 		return false;
1205 
1206 	return true;
1207 }
1208 
1209 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1210 {
1211 	/* Read a config register to help see what died. */
1212 	u16 pci_status;
1213 	int result;
1214 
1215 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1216 				      &pci_status);
1217 	if (result == PCIBIOS_SUCCESSFUL)
1218 		dev_warn(dev->ctrl.device,
1219 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1220 			 csts, pci_status);
1221 	else
1222 		dev_warn(dev->ctrl.device,
1223 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1224 			 csts, result);
1225 }
1226 
1227 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1228 {
1229 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1230 	struct nvme_queue *nvmeq = iod->nvmeq;
1231 	struct nvme_dev *dev = nvmeq->dev;
1232 	struct request *abort_req;
1233 	struct nvme_command cmd;
1234 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1235 
1236 	/* If PCI error recovery process is happening, we cannot reset or
1237 	 * the recovery mechanism will surely fail.
1238 	 */
1239 	mb();
1240 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1241 		return BLK_EH_RESET_TIMER;
1242 
1243 	/*
1244 	 * Reset immediately if the controller is failed
1245 	 */
1246 	if (nvme_should_reset(dev, csts)) {
1247 		nvme_warn_reset(dev, csts);
1248 		nvme_dev_disable(dev, false);
1249 		nvme_reset_ctrl(&dev->ctrl);
1250 		return BLK_EH_DONE;
1251 	}
1252 
1253 	/*
1254 	 * Did we miss an interrupt?
1255 	 */
1256 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1257 		nvme_poll(req->mq_hctx);
1258 	else
1259 		nvme_poll_irqdisable(nvmeq);
1260 
1261 	if (blk_mq_request_completed(req)) {
1262 		dev_warn(dev->ctrl.device,
1263 			 "I/O %d QID %d timeout, completion polled\n",
1264 			 req->tag, nvmeq->qid);
1265 		return BLK_EH_DONE;
1266 	}
1267 
1268 	/*
1269 	 * Shutdown immediately if controller times out while starting. The
1270 	 * reset work will see the pci device disabled when it gets the forced
1271 	 * cancellation error. All outstanding requests are completed on
1272 	 * shutdown, so we return BLK_EH_DONE.
1273 	 */
1274 	switch (dev->ctrl.state) {
1275 	case NVME_CTRL_CONNECTING:
1276 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1277 		fallthrough;
1278 	case NVME_CTRL_DELETING:
1279 		dev_warn_ratelimited(dev->ctrl.device,
1280 			 "I/O %d QID %d timeout, disable controller\n",
1281 			 req->tag, nvmeq->qid);
1282 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1283 		nvme_dev_disable(dev, true);
1284 		return BLK_EH_DONE;
1285 	case NVME_CTRL_RESETTING:
1286 		return BLK_EH_RESET_TIMER;
1287 	default:
1288 		break;
1289 	}
1290 
1291 	/*
1292 	 * Shutdown the controller immediately and schedule a reset if the
1293 	 * command was already aborted once before and still hasn't been
1294 	 * returned to the driver, or if this is the admin queue.
1295 	 */
1296 	if (!nvmeq->qid || iod->aborted) {
1297 		dev_warn(dev->ctrl.device,
1298 			 "I/O %d QID %d timeout, reset controller\n",
1299 			 req->tag, nvmeq->qid);
1300 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1301 		nvme_dev_disable(dev, false);
1302 		nvme_reset_ctrl(&dev->ctrl);
1303 
1304 		return BLK_EH_DONE;
1305 	}
1306 
1307 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1308 		atomic_inc(&dev->ctrl.abort_limit);
1309 		return BLK_EH_RESET_TIMER;
1310 	}
1311 	iod->aborted = 1;
1312 
1313 	memset(&cmd, 0, sizeof(cmd));
1314 	cmd.abort.opcode = nvme_admin_abort_cmd;
1315 	cmd.abort.cid = req->tag;
1316 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1317 
1318 	dev_warn(nvmeq->dev->ctrl.device,
1319 		"I/O %d QID %d timeout, aborting\n",
1320 		 req->tag, nvmeq->qid);
1321 
1322 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1323 			BLK_MQ_REQ_NOWAIT);
1324 	if (IS_ERR(abort_req)) {
1325 		atomic_inc(&dev->ctrl.abort_limit);
1326 		return BLK_EH_RESET_TIMER;
1327 	}
1328 
1329 	abort_req->end_io_data = NULL;
1330 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1331 
1332 	/*
1333 	 * The aborted req will be completed on receiving the abort req.
1334 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1335 	 * as the device then is in a faulty state.
1336 	 */
1337 	return BLK_EH_RESET_TIMER;
1338 }
1339 
1340 static void nvme_free_queue(struct nvme_queue *nvmeq)
1341 {
1342 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1343 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1344 	if (!nvmeq->sq_cmds)
1345 		return;
1346 
1347 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1348 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1349 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1350 	} else {
1351 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1352 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1353 	}
1354 }
1355 
1356 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1357 {
1358 	int i;
1359 
1360 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1361 		dev->ctrl.queue_count--;
1362 		nvme_free_queue(&dev->queues[i]);
1363 	}
1364 }
1365 
1366 /**
1367  * nvme_suspend_queue - put queue into suspended state
1368  * @nvmeq: queue to suspend
1369  */
1370 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1371 {
1372 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1373 		return 1;
1374 
1375 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1376 	mb();
1377 
1378 	nvmeq->dev->online_queues--;
1379 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1380 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1381 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1382 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1383 	return 0;
1384 }
1385 
1386 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1387 {
1388 	int i;
1389 
1390 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1391 		nvme_suspend_queue(&dev->queues[i]);
1392 }
1393 
1394 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1395 {
1396 	struct nvme_queue *nvmeq = &dev->queues[0];
1397 
1398 	if (shutdown)
1399 		nvme_shutdown_ctrl(&dev->ctrl);
1400 	else
1401 		nvme_disable_ctrl(&dev->ctrl);
1402 
1403 	nvme_poll_irqdisable(nvmeq);
1404 }
1405 
1406 /*
1407  * Called only on a device that has been disabled and after all other threads
1408  * that can check this device's completion queues have synced, except
1409  * nvme_poll(). This is the last chance for the driver to see a natural
1410  * completion before nvme_cancel_request() terminates all incomplete requests.
1411  */
1412 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1413 {
1414 	int i;
1415 
1416 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1417 		spin_lock(&dev->queues[i].cq_poll_lock);
1418 		nvme_process_cq(&dev->queues[i]);
1419 		spin_unlock(&dev->queues[i].cq_poll_lock);
1420 	}
1421 }
1422 
1423 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1424 				int entry_size)
1425 {
1426 	int q_depth = dev->q_depth;
1427 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1428 					  NVME_CTRL_PAGE_SIZE);
1429 
1430 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1431 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1432 
1433 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1434 		q_depth = div_u64(mem_per_q, entry_size);
1435 
1436 		/*
1437 		 * Ensure the reduced q_depth is above some threshold where it
1438 		 * would be better to map queues in system memory with the
1439 		 * original depth
1440 		 */
1441 		if (q_depth < 64)
1442 			return -ENOMEM;
1443 	}
1444 
1445 	return q_depth;
1446 }
1447 
1448 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1449 				int qid)
1450 {
1451 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1452 
1453 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1454 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1455 		if (nvmeq->sq_cmds) {
1456 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1457 							nvmeq->sq_cmds);
1458 			if (nvmeq->sq_dma_addr) {
1459 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1460 				return 0;
1461 			}
1462 
1463 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1464 		}
1465 	}
1466 
1467 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1468 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1469 	if (!nvmeq->sq_cmds)
1470 		return -ENOMEM;
1471 	return 0;
1472 }
1473 
1474 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1475 {
1476 	struct nvme_queue *nvmeq = &dev->queues[qid];
1477 
1478 	if (dev->ctrl.queue_count > qid)
1479 		return 0;
1480 
1481 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1482 	nvmeq->q_depth = depth;
1483 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1484 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1485 	if (!nvmeq->cqes)
1486 		goto free_nvmeq;
1487 
1488 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1489 		goto free_cqdma;
1490 
1491 	nvmeq->dev = dev;
1492 	spin_lock_init(&nvmeq->sq_lock);
1493 	spin_lock_init(&nvmeq->cq_poll_lock);
1494 	nvmeq->cq_head = 0;
1495 	nvmeq->cq_phase = 1;
1496 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1497 	nvmeq->qid = qid;
1498 	dev->ctrl.queue_count++;
1499 
1500 	return 0;
1501 
1502  free_cqdma:
1503 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1504 			  nvmeq->cq_dma_addr);
1505  free_nvmeq:
1506 	return -ENOMEM;
1507 }
1508 
1509 static int queue_request_irq(struct nvme_queue *nvmeq)
1510 {
1511 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1512 	int nr = nvmeq->dev->ctrl.instance;
1513 
1514 	if (use_threaded_interrupts) {
1515 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1516 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1517 	} else {
1518 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1519 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1520 	}
1521 }
1522 
1523 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1524 {
1525 	struct nvme_dev *dev = nvmeq->dev;
1526 
1527 	nvmeq->sq_tail = 0;
1528 	nvmeq->last_sq_tail = 0;
1529 	nvmeq->cq_head = 0;
1530 	nvmeq->cq_phase = 1;
1531 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1532 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1533 	nvme_dbbuf_init(dev, nvmeq, qid);
1534 	dev->online_queues++;
1535 	wmb(); /* ensure the first interrupt sees the initialization */
1536 }
1537 
1538 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1539 {
1540 	struct nvme_dev *dev = nvmeq->dev;
1541 	int result;
1542 	u16 vector = 0;
1543 
1544 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1545 
1546 	/*
1547 	 * A queue's vector matches the queue identifier unless the controller
1548 	 * has only one vector available.
1549 	 */
1550 	if (!polled)
1551 		vector = dev->num_vecs == 1 ? 0 : qid;
1552 	else
1553 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1554 
1555 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1556 	if (result)
1557 		return result;
1558 
1559 	result = adapter_alloc_sq(dev, qid, nvmeq);
1560 	if (result < 0)
1561 		return result;
1562 	if (result)
1563 		goto release_cq;
1564 
1565 	nvmeq->cq_vector = vector;
1566 	nvme_init_queue(nvmeq, qid);
1567 
1568 	if (!polled) {
1569 		result = queue_request_irq(nvmeq);
1570 		if (result < 0)
1571 			goto release_sq;
1572 	}
1573 
1574 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1575 	return result;
1576 
1577 release_sq:
1578 	dev->online_queues--;
1579 	adapter_delete_sq(dev, qid);
1580 release_cq:
1581 	adapter_delete_cq(dev, qid);
1582 	return result;
1583 }
1584 
1585 static const struct blk_mq_ops nvme_mq_admin_ops = {
1586 	.queue_rq	= nvme_queue_rq,
1587 	.complete	= nvme_pci_complete_rq,
1588 	.init_hctx	= nvme_admin_init_hctx,
1589 	.init_request	= nvme_init_request,
1590 	.timeout	= nvme_timeout,
1591 };
1592 
1593 static const struct blk_mq_ops nvme_mq_ops = {
1594 	.queue_rq	= nvme_queue_rq,
1595 	.complete	= nvme_pci_complete_rq,
1596 	.commit_rqs	= nvme_commit_rqs,
1597 	.init_hctx	= nvme_init_hctx,
1598 	.init_request	= nvme_init_request,
1599 	.map_queues	= nvme_pci_map_queues,
1600 	.timeout	= nvme_timeout,
1601 	.poll		= nvme_poll,
1602 };
1603 
1604 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1605 {
1606 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1607 		/*
1608 		 * If the controller was reset during removal, it's possible
1609 		 * user requests may be waiting on a stopped queue. Start the
1610 		 * queue to flush these to completion.
1611 		 */
1612 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1613 		blk_cleanup_queue(dev->ctrl.admin_q);
1614 		blk_mq_free_tag_set(&dev->admin_tagset);
1615 	}
1616 }
1617 
1618 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1619 {
1620 	if (!dev->ctrl.admin_q) {
1621 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1622 		dev->admin_tagset.nr_hw_queues = 1;
1623 
1624 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1625 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1626 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1627 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1628 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1629 		dev->admin_tagset.driver_data = dev;
1630 
1631 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1632 			return -ENOMEM;
1633 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1634 
1635 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1636 		if (IS_ERR(dev->ctrl.admin_q)) {
1637 			blk_mq_free_tag_set(&dev->admin_tagset);
1638 			return -ENOMEM;
1639 		}
1640 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1641 			nvme_dev_remove_admin(dev);
1642 			dev->ctrl.admin_q = NULL;
1643 			return -ENODEV;
1644 		}
1645 	} else
1646 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1647 
1648 	return 0;
1649 }
1650 
1651 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1652 {
1653 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1654 }
1655 
1656 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1657 {
1658 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1659 
1660 	if (size <= dev->bar_mapped_size)
1661 		return 0;
1662 	if (size > pci_resource_len(pdev, 0))
1663 		return -ENOMEM;
1664 	if (dev->bar)
1665 		iounmap(dev->bar);
1666 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1667 	if (!dev->bar) {
1668 		dev->bar_mapped_size = 0;
1669 		return -ENOMEM;
1670 	}
1671 	dev->bar_mapped_size = size;
1672 	dev->dbs = dev->bar + NVME_REG_DBS;
1673 
1674 	return 0;
1675 }
1676 
1677 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1678 {
1679 	int result;
1680 	u32 aqa;
1681 	struct nvme_queue *nvmeq;
1682 
1683 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1684 	if (result < 0)
1685 		return result;
1686 
1687 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1688 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1689 
1690 	if (dev->subsystem &&
1691 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1692 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1693 
1694 	result = nvme_disable_ctrl(&dev->ctrl);
1695 	if (result < 0)
1696 		return result;
1697 
1698 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1699 	if (result)
1700 		return result;
1701 
1702 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1703 
1704 	nvmeq = &dev->queues[0];
1705 	aqa = nvmeq->q_depth - 1;
1706 	aqa |= aqa << 16;
1707 
1708 	writel(aqa, dev->bar + NVME_REG_AQA);
1709 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1710 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1711 
1712 	result = nvme_enable_ctrl(&dev->ctrl);
1713 	if (result)
1714 		return result;
1715 
1716 	nvmeq->cq_vector = 0;
1717 	nvme_init_queue(nvmeq, 0);
1718 	result = queue_request_irq(nvmeq);
1719 	if (result) {
1720 		dev->online_queues--;
1721 		return result;
1722 	}
1723 
1724 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1725 	return result;
1726 }
1727 
1728 static int nvme_create_io_queues(struct nvme_dev *dev)
1729 {
1730 	unsigned i, max, rw_queues;
1731 	int ret = 0;
1732 
1733 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1734 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1735 			ret = -ENOMEM;
1736 			break;
1737 		}
1738 	}
1739 
1740 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1741 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1742 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1743 				dev->io_queues[HCTX_TYPE_READ];
1744 	} else {
1745 		rw_queues = max;
1746 	}
1747 
1748 	for (i = dev->online_queues; i <= max; i++) {
1749 		bool polled = i > rw_queues;
1750 
1751 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1752 		if (ret)
1753 			break;
1754 	}
1755 
1756 	/*
1757 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1758 	 * than the desired amount of queues, and even a controller without
1759 	 * I/O queues can still be used to issue admin commands.  This might
1760 	 * be useful to upgrade a buggy firmware for example.
1761 	 */
1762 	return ret >= 0 ? 0 : ret;
1763 }
1764 
1765 static ssize_t nvme_cmb_show(struct device *dev,
1766 			     struct device_attribute *attr,
1767 			     char *buf)
1768 {
1769 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1770 
1771 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1772 		       ndev->cmbloc, ndev->cmbsz);
1773 }
1774 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1775 
1776 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1777 {
1778 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1779 
1780 	return 1ULL << (12 + 4 * szu);
1781 }
1782 
1783 static u32 nvme_cmb_size(struct nvme_dev *dev)
1784 {
1785 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1786 }
1787 
1788 static void nvme_map_cmb(struct nvme_dev *dev)
1789 {
1790 	u64 size, offset;
1791 	resource_size_t bar_size;
1792 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1793 	int bar;
1794 
1795 	if (dev->cmb_size)
1796 		return;
1797 
1798 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1799 	if (!dev->cmbsz)
1800 		return;
1801 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1802 
1803 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1804 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1805 	bar = NVME_CMB_BIR(dev->cmbloc);
1806 	bar_size = pci_resource_len(pdev, bar);
1807 
1808 	if (offset > bar_size)
1809 		return;
1810 
1811 	/*
1812 	 * Controllers may support a CMB size larger than their BAR,
1813 	 * for example, due to being behind a bridge. Reduce the CMB to
1814 	 * the reported size of the BAR
1815 	 */
1816 	if (size > bar_size - offset)
1817 		size = bar_size - offset;
1818 
1819 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1820 		dev_warn(dev->ctrl.device,
1821 			 "failed to register the CMB\n");
1822 		return;
1823 	}
1824 
1825 	dev->cmb_size = size;
1826 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1827 
1828 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1829 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1830 		pci_p2pmem_publish(pdev, true);
1831 
1832 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1833 				    &dev_attr_cmb.attr, NULL))
1834 		dev_warn(dev->ctrl.device,
1835 			 "failed to add sysfs attribute for CMB\n");
1836 }
1837 
1838 static inline void nvme_release_cmb(struct nvme_dev *dev)
1839 {
1840 	if (dev->cmb_size) {
1841 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1842 					     &dev_attr_cmb.attr, NULL);
1843 		dev->cmb_size = 0;
1844 	}
1845 }
1846 
1847 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1848 {
1849 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1850 	u64 dma_addr = dev->host_mem_descs_dma;
1851 	struct nvme_command c;
1852 	int ret;
1853 
1854 	memset(&c, 0, sizeof(c));
1855 	c.features.opcode	= nvme_admin_set_features;
1856 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1857 	c.features.dword11	= cpu_to_le32(bits);
1858 	c.features.dword12	= cpu_to_le32(host_mem_size);
1859 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1860 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1861 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1862 
1863 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1864 	if (ret) {
1865 		dev_warn(dev->ctrl.device,
1866 			 "failed to set host mem (err %d, flags %#x).\n",
1867 			 ret, bits);
1868 	}
1869 	return ret;
1870 }
1871 
1872 static void nvme_free_host_mem(struct nvme_dev *dev)
1873 {
1874 	int i;
1875 
1876 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1877 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1878 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1879 
1880 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1881 			       le64_to_cpu(desc->addr),
1882 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1883 	}
1884 
1885 	kfree(dev->host_mem_desc_bufs);
1886 	dev->host_mem_desc_bufs = NULL;
1887 	dma_free_coherent(dev->dev,
1888 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1889 			dev->host_mem_descs, dev->host_mem_descs_dma);
1890 	dev->host_mem_descs = NULL;
1891 	dev->nr_host_mem_descs = 0;
1892 }
1893 
1894 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1895 		u32 chunk_size)
1896 {
1897 	struct nvme_host_mem_buf_desc *descs;
1898 	u32 max_entries, len;
1899 	dma_addr_t descs_dma;
1900 	int i = 0;
1901 	void **bufs;
1902 	u64 size, tmp;
1903 
1904 	tmp = (preferred + chunk_size - 1);
1905 	do_div(tmp, chunk_size);
1906 	max_entries = tmp;
1907 
1908 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1909 		max_entries = dev->ctrl.hmmaxd;
1910 
1911 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1912 				   &descs_dma, GFP_KERNEL);
1913 	if (!descs)
1914 		goto out;
1915 
1916 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1917 	if (!bufs)
1918 		goto out_free_descs;
1919 
1920 	for (size = 0; size < preferred && i < max_entries; size += len) {
1921 		dma_addr_t dma_addr;
1922 
1923 		len = min_t(u64, chunk_size, preferred - size);
1924 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1925 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1926 		if (!bufs[i])
1927 			break;
1928 
1929 		descs[i].addr = cpu_to_le64(dma_addr);
1930 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1931 		i++;
1932 	}
1933 
1934 	if (!size)
1935 		goto out_free_bufs;
1936 
1937 	dev->nr_host_mem_descs = i;
1938 	dev->host_mem_size = size;
1939 	dev->host_mem_descs = descs;
1940 	dev->host_mem_descs_dma = descs_dma;
1941 	dev->host_mem_desc_bufs = bufs;
1942 	return 0;
1943 
1944 out_free_bufs:
1945 	while (--i >= 0) {
1946 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1947 
1948 		dma_free_attrs(dev->dev, size, bufs[i],
1949 			       le64_to_cpu(descs[i].addr),
1950 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1951 	}
1952 
1953 	kfree(bufs);
1954 out_free_descs:
1955 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1956 			descs_dma);
1957 out:
1958 	dev->host_mem_descs = NULL;
1959 	return -ENOMEM;
1960 }
1961 
1962 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1963 {
1964 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1965 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1966 	u64 chunk_size;
1967 
1968 	/* start big and work our way down */
1969 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
1970 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1971 			if (!min || dev->host_mem_size >= min)
1972 				return 0;
1973 			nvme_free_host_mem(dev);
1974 		}
1975 	}
1976 
1977 	return -ENOMEM;
1978 }
1979 
1980 static int nvme_setup_host_mem(struct nvme_dev *dev)
1981 {
1982 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1983 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1984 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1985 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1986 	int ret;
1987 
1988 	preferred = min(preferred, max);
1989 	if (min > max) {
1990 		dev_warn(dev->ctrl.device,
1991 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1992 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1993 		nvme_free_host_mem(dev);
1994 		return 0;
1995 	}
1996 
1997 	/*
1998 	 * If we already have a buffer allocated check if we can reuse it.
1999 	 */
2000 	if (dev->host_mem_descs) {
2001 		if (dev->host_mem_size >= min)
2002 			enable_bits |= NVME_HOST_MEM_RETURN;
2003 		else
2004 			nvme_free_host_mem(dev);
2005 	}
2006 
2007 	if (!dev->host_mem_descs) {
2008 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2009 			dev_warn(dev->ctrl.device,
2010 				"failed to allocate host memory buffer.\n");
2011 			return 0; /* controller must work without HMB */
2012 		}
2013 
2014 		dev_info(dev->ctrl.device,
2015 			"allocated %lld MiB host memory buffer.\n",
2016 			dev->host_mem_size >> ilog2(SZ_1M));
2017 	}
2018 
2019 	ret = nvme_set_host_mem(dev, enable_bits);
2020 	if (ret)
2021 		nvme_free_host_mem(dev);
2022 	return ret;
2023 }
2024 
2025 /*
2026  * nirqs is the number of interrupts available for write and read
2027  * queues. The core already reserved an interrupt for the admin queue.
2028  */
2029 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2030 {
2031 	struct nvme_dev *dev = affd->priv;
2032 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2033 
2034 	/*
2035 	 * If there is no interrupt available for queues, ensure that
2036 	 * the default queue is set to 1. The affinity set size is
2037 	 * also set to one, but the irq core ignores it for this case.
2038 	 *
2039 	 * If only one interrupt is available or 'write_queue' == 0, combine
2040 	 * write and read queues.
2041 	 *
2042 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2043 	 * queue.
2044 	 */
2045 	if (!nrirqs) {
2046 		nrirqs = 1;
2047 		nr_read_queues = 0;
2048 	} else if (nrirqs == 1 || !nr_write_queues) {
2049 		nr_read_queues = 0;
2050 	} else if (nr_write_queues >= nrirqs) {
2051 		nr_read_queues = 1;
2052 	} else {
2053 		nr_read_queues = nrirqs - nr_write_queues;
2054 	}
2055 
2056 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2057 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2058 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2059 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2060 	affd->nr_sets = nr_read_queues ? 2 : 1;
2061 }
2062 
2063 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2064 {
2065 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2066 	struct irq_affinity affd = {
2067 		.pre_vectors	= 1,
2068 		.calc_sets	= nvme_calc_irq_sets,
2069 		.priv		= dev,
2070 	};
2071 	unsigned int irq_queues, poll_queues;
2072 
2073 	/*
2074 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2075 	 * left over for non-polled I/O.
2076 	 */
2077 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2078 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2079 
2080 	/*
2081 	 * Initialize for the single interrupt case, will be updated in
2082 	 * nvme_calc_irq_sets().
2083 	 */
2084 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2085 	dev->io_queues[HCTX_TYPE_READ] = 0;
2086 
2087 	/*
2088 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2089 	 * but some Apple controllers require all queues to use the first
2090 	 * vector.
2091 	 */
2092 	irq_queues = 1;
2093 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2094 		irq_queues += (nr_io_queues - poll_queues);
2095 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2096 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2097 }
2098 
2099 static void nvme_disable_io_queues(struct nvme_dev *dev)
2100 {
2101 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2102 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2103 }
2104 
2105 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2106 {
2107 	/*
2108 	 * If tags are shared with admin queue (Apple bug), then
2109 	 * make sure we only use one IO queue.
2110 	 */
2111 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2112 		return 1;
2113 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2114 }
2115 
2116 static int nvme_setup_io_queues(struct nvme_dev *dev)
2117 {
2118 	struct nvme_queue *adminq = &dev->queues[0];
2119 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2120 	unsigned int nr_io_queues;
2121 	unsigned long size;
2122 	int result;
2123 
2124 	/*
2125 	 * Sample the module parameters once at reset time so that we have
2126 	 * stable values to work with.
2127 	 */
2128 	dev->nr_write_queues = write_queues;
2129 	dev->nr_poll_queues = poll_queues;
2130 
2131 	nr_io_queues = dev->nr_allocated_queues - 1;
2132 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2133 	if (result < 0)
2134 		return result;
2135 
2136 	if (nr_io_queues == 0)
2137 		return 0;
2138 
2139 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2140 
2141 	if (dev->cmb_use_sqes) {
2142 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2143 				sizeof(struct nvme_command));
2144 		if (result > 0)
2145 			dev->q_depth = result;
2146 		else
2147 			dev->cmb_use_sqes = false;
2148 	}
2149 
2150 	do {
2151 		size = db_bar_size(dev, nr_io_queues);
2152 		result = nvme_remap_bar(dev, size);
2153 		if (!result)
2154 			break;
2155 		if (!--nr_io_queues)
2156 			return -ENOMEM;
2157 	} while (1);
2158 	adminq->q_db = dev->dbs;
2159 
2160  retry:
2161 	/* Deregister the admin queue's interrupt */
2162 	pci_free_irq(pdev, 0, adminq);
2163 
2164 	/*
2165 	 * If we enable msix early due to not intx, disable it again before
2166 	 * setting up the full range we need.
2167 	 */
2168 	pci_free_irq_vectors(pdev);
2169 
2170 	result = nvme_setup_irqs(dev, nr_io_queues);
2171 	if (result <= 0)
2172 		return -EIO;
2173 
2174 	dev->num_vecs = result;
2175 	result = max(result - 1, 1);
2176 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2177 
2178 	/*
2179 	 * Should investigate if there's a performance win from allocating
2180 	 * more queues than interrupt vectors; it might allow the submission
2181 	 * path to scale better, even if the receive path is limited by the
2182 	 * number of interrupts.
2183 	 */
2184 	result = queue_request_irq(adminq);
2185 	if (result)
2186 		return result;
2187 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2188 
2189 	result = nvme_create_io_queues(dev);
2190 	if (result || dev->online_queues < 2)
2191 		return result;
2192 
2193 	if (dev->online_queues - 1 < dev->max_qid) {
2194 		nr_io_queues = dev->online_queues - 1;
2195 		nvme_disable_io_queues(dev);
2196 		nvme_suspend_io_queues(dev);
2197 		goto retry;
2198 	}
2199 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2200 					dev->io_queues[HCTX_TYPE_DEFAULT],
2201 					dev->io_queues[HCTX_TYPE_READ],
2202 					dev->io_queues[HCTX_TYPE_POLL]);
2203 	return 0;
2204 }
2205 
2206 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2207 {
2208 	struct nvme_queue *nvmeq = req->end_io_data;
2209 
2210 	blk_mq_free_request(req);
2211 	complete(&nvmeq->delete_done);
2212 }
2213 
2214 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2215 {
2216 	struct nvme_queue *nvmeq = req->end_io_data;
2217 
2218 	if (error)
2219 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2220 
2221 	nvme_del_queue_end(req, error);
2222 }
2223 
2224 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2225 {
2226 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2227 	struct request *req;
2228 	struct nvme_command cmd;
2229 
2230 	memset(&cmd, 0, sizeof(cmd));
2231 	cmd.delete_queue.opcode = opcode;
2232 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2233 
2234 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2235 	if (IS_ERR(req))
2236 		return PTR_ERR(req);
2237 
2238 	req->end_io_data = nvmeq;
2239 
2240 	init_completion(&nvmeq->delete_done);
2241 	blk_execute_rq_nowait(q, NULL, req, false,
2242 			opcode == nvme_admin_delete_cq ?
2243 				nvme_del_cq_end : nvme_del_queue_end);
2244 	return 0;
2245 }
2246 
2247 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2248 {
2249 	int nr_queues = dev->online_queues - 1, sent = 0;
2250 	unsigned long timeout;
2251 
2252  retry:
2253 	timeout = NVME_ADMIN_TIMEOUT;
2254 	while (nr_queues > 0) {
2255 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2256 			break;
2257 		nr_queues--;
2258 		sent++;
2259 	}
2260 	while (sent) {
2261 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2262 
2263 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2264 				timeout);
2265 		if (timeout == 0)
2266 			return false;
2267 
2268 		sent--;
2269 		if (nr_queues)
2270 			goto retry;
2271 	}
2272 	return true;
2273 }
2274 
2275 static void nvme_dev_add(struct nvme_dev *dev)
2276 {
2277 	int ret;
2278 
2279 	if (!dev->ctrl.tagset) {
2280 		dev->tagset.ops = &nvme_mq_ops;
2281 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2282 		dev->tagset.nr_maps = 2; /* default + read */
2283 		if (dev->io_queues[HCTX_TYPE_POLL])
2284 			dev->tagset.nr_maps++;
2285 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2286 		dev->tagset.numa_node = dev->ctrl.numa_node;
2287 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2288 						BLK_MQ_MAX_DEPTH) - 1;
2289 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2290 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2291 		dev->tagset.driver_data = dev;
2292 
2293 		/*
2294 		 * Some Apple controllers requires tags to be unique
2295 		 * across admin and IO queue, so reserve the first 32
2296 		 * tags of the IO queue.
2297 		 */
2298 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2299 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2300 
2301 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2302 		if (ret) {
2303 			dev_warn(dev->ctrl.device,
2304 				"IO queues tagset allocation failed %d\n", ret);
2305 			return;
2306 		}
2307 		dev->ctrl.tagset = &dev->tagset;
2308 	} else {
2309 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2310 
2311 		/* Free previously allocated queues that are no longer usable */
2312 		nvme_free_queues(dev, dev->online_queues);
2313 	}
2314 
2315 	nvme_dbbuf_set(dev);
2316 }
2317 
2318 static int nvme_pci_enable(struct nvme_dev *dev)
2319 {
2320 	int result = -ENOMEM;
2321 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2322 
2323 	if (pci_enable_device_mem(pdev))
2324 		return result;
2325 
2326 	pci_set_master(pdev);
2327 
2328 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2329 		goto disable;
2330 
2331 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2332 		result = -ENODEV;
2333 		goto disable;
2334 	}
2335 
2336 	/*
2337 	 * Some devices and/or platforms don't advertise or work with INTx
2338 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2339 	 * adjust this later.
2340 	 */
2341 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2342 	if (result < 0)
2343 		return result;
2344 
2345 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2346 
2347 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2348 				io_queue_depth);
2349 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2350 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2351 	dev->dbs = dev->bar + 4096;
2352 
2353 	/*
2354 	 * Some Apple controllers require a non-standard SQE size.
2355 	 * Interestingly they also seem to ignore the CC:IOSQES register
2356 	 * so we don't bother updating it here.
2357 	 */
2358 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2359 		dev->io_sqes = 7;
2360 	else
2361 		dev->io_sqes = NVME_NVM_IOSQES;
2362 
2363 	/*
2364 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2365 	 * some MacBook7,1 to avoid controller resets and data loss.
2366 	 */
2367 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2368 		dev->q_depth = 2;
2369 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2370 			"set queue depth=%u to work around controller resets\n",
2371 			dev->q_depth);
2372 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2373 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2374 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2375 		dev->q_depth = 64;
2376 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2377                         "set queue depth=%u\n", dev->q_depth);
2378 	}
2379 
2380 	/*
2381 	 * Controllers with the shared tags quirk need the IO queue to be
2382 	 * big enough so that we get 32 tags for the admin queue
2383 	 */
2384 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2385 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2386 		dev->q_depth = NVME_AQ_DEPTH + 2;
2387 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2388 			 dev->q_depth);
2389 	}
2390 
2391 
2392 	nvme_map_cmb(dev);
2393 
2394 	pci_enable_pcie_error_reporting(pdev);
2395 	pci_save_state(pdev);
2396 	return 0;
2397 
2398  disable:
2399 	pci_disable_device(pdev);
2400 	return result;
2401 }
2402 
2403 static void nvme_dev_unmap(struct nvme_dev *dev)
2404 {
2405 	if (dev->bar)
2406 		iounmap(dev->bar);
2407 	pci_release_mem_regions(to_pci_dev(dev->dev));
2408 }
2409 
2410 static void nvme_pci_disable(struct nvme_dev *dev)
2411 {
2412 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2413 
2414 	pci_free_irq_vectors(pdev);
2415 
2416 	if (pci_is_enabled(pdev)) {
2417 		pci_disable_pcie_error_reporting(pdev);
2418 		pci_disable_device(pdev);
2419 	}
2420 }
2421 
2422 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2423 {
2424 	bool dead = true, freeze = false;
2425 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2426 
2427 	mutex_lock(&dev->shutdown_lock);
2428 	if (pci_is_enabled(pdev)) {
2429 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2430 
2431 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2432 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2433 			freeze = true;
2434 			nvme_start_freeze(&dev->ctrl);
2435 		}
2436 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2437 			pdev->error_state  != pci_channel_io_normal);
2438 	}
2439 
2440 	/*
2441 	 * Give the controller a chance to complete all entered requests if
2442 	 * doing a safe shutdown.
2443 	 */
2444 	if (!dead && shutdown && freeze)
2445 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2446 
2447 	nvme_stop_queues(&dev->ctrl);
2448 
2449 	if (!dead && dev->ctrl.queue_count > 0) {
2450 		nvme_disable_io_queues(dev);
2451 		nvme_disable_admin_queue(dev, shutdown);
2452 	}
2453 	nvme_suspend_io_queues(dev);
2454 	nvme_suspend_queue(&dev->queues[0]);
2455 	nvme_pci_disable(dev);
2456 	nvme_reap_pending_cqes(dev);
2457 
2458 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2459 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2460 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2461 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2462 
2463 	/*
2464 	 * The driver will not be starting up queues again if shutting down so
2465 	 * must flush all entered requests to their failed completion to avoid
2466 	 * deadlocking blk-mq hot-cpu notifier.
2467 	 */
2468 	if (shutdown) {
2469 		nvme_start_queues(&dev->ctrl);
2470 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2471 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2472 	}
2473 	mutex_unlock(&dev->shutdown_lock);
2474 }
2475 
2476 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2477 {
2478 	if (!nvme_wait_reset(&dev->ctrl))
2479 		return -EBUSY;
2480 	nvme_dev_disable(dev, shutdown);
2481 	return 0;
2482 }
2483 
2484 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2485 {
2486 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2487 						NVME_CTRL_PAGE_SIZE,
2488 						NVME_CTRL_PAGE_SIZE, 0);
2489 	if (!dev->prp_page_pool)
2490 		return -ENOMEM;
2491 
2492 	/* Optimisation for I/Os between 4k and 128k */
2493 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2494 						256, 256, 0);
2495 	if (!dev->prp_small_pool) {
2496 		dma_pool_destroy(dev->prp_page_pool);
2497 		return -ENOMEM;
2498 	}
2499 	return 0;
2500 }
2501 
2502 static void nvme_release_prp_pools(struct nvme_dev *dev)
2503 {
2504 	dma_pool_destroy(dev->prp_page_pool);
2505 	dma_pool_destroy(dev->prp_small_pool);
2506 }
2507 
2508 static void nvme_free_tagset(struct nvme_dev *dev)
2509 {
2510 	if (dev->tagset.tags)
2511 		blk_mq_free_tag_set(&dev->tagset);
2512 	dev->ctrl.tagset = NULL;
2513 }
2514 
2515 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2516 {
2517 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2518 
2519 	nvme_dbbuf_dma_free(dev);
2520 	nvme_free_tagset(dev);
2521 	if (dev->ctrl.admin_q)
2522 		blk_put_queue(dev->ctrl.admin_q);
2523 	free_opal_dev(dev->ctrl.opal_dev);
2524 	mempool_destroy(dev->iod_mempool);
2525 	put_device(dev->dev);
2526 	kfree(dev->queues);
2527 	kfree(dev);
2528 }
2529 
2530 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2531 {
2532 	/*
2533 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2534 	 * may be holding this pci_dev's device lock.
2535 	 */
2536 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2537 	nvme_get_ctrl(&dev->ctrl);
2538 	nvme_dev_disable(dev, false);
2539 	nvme_kill_queues(&dev->ctrl);
2540 	if (!queue_work(nvme_wq, &dev->remove_work))
2541 		nvme_put_ctrl(&dev->ctrl);
2542 }
2543 
2544 static void nvme_reset_work(struct work_struct *work)
2545 {
2546 	struct nvme_dev *dev =
2547 		container_of(work, struct nvme_dev, ctrl.reset_work);
2548 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2549 	int result;
2550 
2551 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2552 		result = -ENODEV;
2553 		goto out;
2554 	}
2555 
2556 	/*
2557 	 * If we're called to reset a live controller first shut it down before
2558 	 * moving on.
2559 	 */
2560 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2561 		nvme_dev_disable(dev, false);
2562 	nvme_sync_queues(&dev->ctrl);
2563 
2564 	mutex_lock(&dev->shutdown_lock);
2565 	result = nvme_pci_enable(dev);
2566 	if (result)
2567 		goto out_unlock;
2568 
2569 	result = nvme_pci_configure_admin_queue(dev);
2570 	if (result)
2571 		goto out_unlock;
2572 
2573 	result = nvme_alloc_admin_tags(dev);
2574 	if (result)
2575 		goto out_unlock;
2576 
2577 	/*
2578 	 * Limit the max command size to prevent iod->sg allocations going
2579 	 * over a single page.
2580 	 */
2581 	dev->ctrl.max_hw_sectors = min_t(u32,
2582 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2583 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2584 
2585 	/*
2586 	 * Don't limit the IOMMU merged segment size.
2587 	 */
2588 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2589 
2590 	mutex_unlock(&dev->shutdown_lock);
2591 
2592 	/*
2593 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2594 	 * initializing procedure here.
2595 	 */
2596 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2597 		dev_warn(dev->ctrl.device,
2598 			"failed to mark controller CONNECTING\n");
2599 		result = -EBUSY;
2600 		goto out;
2601 	}
2602 
2603 	/*
2604 	 * We do not support an SGL for metadata (yet), so we are limited to a
2605 	 * single integrity segment for the separate metadata pointer.
2606 	 */
2607 	dev->ctrl.max_integrity_segments = 1;
2608 
2609 	result = nvme_init_identify(&dev->ctrl);
2610 	if (result)
2611 		goto out;
2612 
2613 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2614 		if (!dev->ctrl.opal_dev)
2615 			dev->ctrl.opal_dev =
2616 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2617 		else if (was_suspend)
2618 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2619 	} else {
2620 		free_opal_dev(dev->ctrl.opal_dev);
2621 		dev->ctrl.opal_dev = NULL;
2622 	}
2623 
2624 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2625 		result = nvme_dbbuf_dma_alloc(dev);
2626 		if (result)
2627 			dev_warn(dev->dev,
2628 				 "unable to allocate dma for dbbuf\n");
2629 	}
2630 
2631 	if (dev->ctrl.hmpre) {
2632 		result = nvme_setup_host_mem(dev);
2633 		if (result < 0)
2634 			goto out;
2635 	}
2636 
2637 	result = nvme_setup_io_queues(dev);
2638 	if (result)
2639 		goto out;
2640 
2641 	/*
2642 	 * Keep the controller around but remove all namespaces if we don't have
2643 	 * any working I/O queue.
2644 	 */
2645 	if (dev->online_queues < 2) {
2646 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2647 		nvme_kill_queues(&dev->ctrl);
2648 		nvme_remove_namespaces(&dev->ctrl);
2649 		nvme_free_tagset(dev);
2650 	} else {
2651 		nvme_start_queues(&dev->ctrl);
2652 		nvme_wait_freeze(&dev->ctrl);
2653 		nvme_dev_add(dev);
2654 		nvme_unfreeze(&dev->ctrl);
2655 	}
2656 
2657 	/*
2658 	 * If only admin queue live, keep it to do further investigation or
2659 	 * recovery.
2660 	 */
2661 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2662 		dev_warn(dev->ctrl.device,
2663 			"failed to mark controller live state\n");
2664 		result = -ENODEV;
2665 		goto out;
2666 	}
2667 
2668 	nvme_start_ctrl(&dev->ctrl);
2669 	return;
2670 
2671  out_unlock:
2672 	mutex_unlock(&dev->shutdown_lock);
2673  out:
2674 	if (result)
2675 		dev_warn(dev->ctrl.device,
2676 			 "Removing after probe failure status: %d\n", result);
2677 	nvme_remove_dead_ctrl(dev);
2678 }
2679 
2680 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2681 {
2682 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2683 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2684 
2685 	if (pci_get_drvdata(pdev))
2686 		device_release_driver(&pdev->dev);
2687 	nvme_put_ctrl(&dev->ctrl);
2688 }
2689 
2690 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2691 {
2692 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2693 	return 0;
2694 }
2695 
2696 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2697 {
2698 	writel(val, to_nvme_dev(ctrl)->bar + off);
2699 	return 0;
2700 }
2701 
2702 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2703 {
2704 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2705 	return 0;
2706 }
2707 
2708 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2709 {
2710 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2711 
2712 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2713 }
2714 
2715 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2716 	.name			= "pcie",
2717 	.module			= THIS_MODULE,
2718 	.flags			= NVME_F_METADATA_SUPPORTED |
2719 				  NVME_F_PCI_P2PDMA,
2720 	.reg_read32		= nvme_pci_reg_read32,
2721 	.reg_write32		= nvme_pci_reg_write32,
2722 	.reg_read64		= nvme_pci_reg_read64,
2723 	.free_ctrl		= nvme_pci_free_ctrl,
2724 	.submit_async_event	= nvme_pci_submit_async_event,
2725 	.get_address		= nvme_pci_get_address,
2726 };
2727 
2728 static int nvme_dev_map(struct nvme_dev *dev)
2729 {
2730 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2731 
2732 	if (pci_request_mem_regions(pdev, "nvme"))
2733 		return -ENODEV;
2734 
2735 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2736 		goto release;
2737 
2738 	return 0;
2739   release:
2740 	pci_release_mem_regions(pdev);
2741 	return -ENODEV;
2742 }
2743 
2744 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2745 {
2746 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2747 		/*
2748 		 * Several Samsung devices seem to drop off the PCIe bus
2749 		 * randomly when APST is on and uses the deepest sleep state.
2750 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2751 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2752 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2753 		 * laptops.
2754 		 */
2755 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2756 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2757 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2758 			return NVME_QUIRK_NO_DEEPEST_PS;
2759 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2760 		/*
2761 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2762 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2763 		 * within few minutes after bootup on a Coffee Lake board -
2764 		 * ASUS PRIME Z370-A
2765 		 */
2766 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2767 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2768 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2769 			return NVME_QUIRK_NO_APST;
2770 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2771 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2772 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2773 		/*
2774 		 * Forcing to use host managed nvme power settings for
2775 		 * lowest idle power with quick resume latency on
2776 		 * Samsung and Toshiba SSDs based on suspend behavior
2777 		 * on Coffee Lake board for LENOVO C640
2778 		 */
2779 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2780 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2781 			return NVME_QUIRK_SIMPLE_SUSPEND;
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 #ifdef CONFIG_ACPI
2788 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2789 {
2790 	struct acpi_device *adev;
2791 	struct pci_dev *root;
2792 	acpi_handle handle;
2793 	acpi_status status;
2794 	u8 val;
2795 
2796 	/*
2797 	 * Look for _DSD property specifying that the storage device on the port
2798 	 * must use D3 to support deep platform power savings during
2799 	 * suspend-to-idle.
2800 	 */
2801 	root = pcie_find_root_port(dev);
2802 	if (!root)
2803 		return false;
2804 
2805 	adev = ACPI_COMPANION(&root->dev);
2806 	if (!adev)
2807 		return false;
2808 
2809 	/*
2810 	 * The property is defined in the PXSX device for South complex ports
2811 	 * and in the PEGP device for North complex ports.
2812 	 */
2813 	status = acpi_get_handle(adev->handle, "PXSX", &handle);
2814 	if (ACPI_FAILURE(status)) {
2815 		status = acpi_get_handle(adev->handle, "PEGP", &handle);
2816 		if (ACPI_FAILURE(status))
2817 			return false;
2818 	}
2819 
2820 	if (acpi_bus_get_device(handle, &adev))
2821 		return false;
2822 
2823 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2824 			&val))
2825 		return false;
2826 	return val == 1;
2827 }
2828 #else
2829 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2830 {
2831 	return false;
2832 }
2833 #endif /* CONFIG_ACPI */
2834 
2835 static void nvme_async_probe(void *data, async_cookie_t cookie)
2836 {
2837 	struct nvme_dev *dev = data;
2838 
2839 	flush_work(&dev->ctrl.reset_work);
2840 	flush_work(&dev->ctrl.scan_work);
2841 	nvme_put_ctrl(&dev->ctrl);
2842 }
2843 
2844 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2845 {
2846 	int node, result = -ENOMEM;
2847 	struct nvme_dev *dev;
2848 	unsigned long quirks = id->driver_data;
2849 	size_t alloc_size;
2850 
2851 	node = dev_to_node(&pdev->dev);
2852 	if (node == NUMA_NO_NODE)
2853 		set_dev_node(&pdev->dev, first_memory_node);
2854 
2855 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2856 	if (!dev)
2857 		return -ENOMEM;
2858 
2859 	dev->nr_write_queues = write_queues;
2860 	dev->nr_poll_queues = poll_queues;
2861 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2862 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2863 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2864 	if (!dev->queues)
2865 		goto free;
2866 
2867 	dev->dev = get_device(&pdev->dev);
2868 	pci_set_drvdata(pdev, dev);
2869 
2870 	result = nvme_dev_map(dev);
2871 	if (result)
2872 		goto put_pci;
2873 
2874 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2875 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2876 	mutex_init(&dev->shutdown_lock);
2877 
2878 	result = nvme_setup_prp_pools(dev);
2879 	if (result)
2880 		goto unmap;
2881 
2882 	quirks |= check_vendor_combination_bug(pdev);
2883 
2884 	if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2885 		/*
2886 		 * Some systems use a bios work around to ask for D3 on
2887 		 * platforms that support kernel managed suspend.
2888 		 */
2889 		dev_info(&pdev->dev,
2890 			 "platform quirk: setting simple suspend\n");
2891 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2892 	}
2893 
2894 	/*
2895 	 * Double check that our mempool alloc size will cover the biggest
2896 	 * command we support.
2897 	 */
2898 	alloc_size = nvme_pci_iod_alloc_size();
2899 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2900 
2901 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2902 						mempool_kfree,
2903 						(void *) alloc_size,
2904 						GFP_KERNEL, node);
2905 	if (!dev->iod_mempool) {
2906 		result = -ENOMEM;
2907 		goto release_pools;
2908 	}
2909 
2910 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2911 			quirks);
2912 	if (result)
2913 		goto release_mempool;
2914 
2915 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2916 
2917 	nvme_reset_ctrl(&dev->ctrl);
2918 	async_schedule(nvme_async_probe, dev);
2919 
2920 	return 0;
2921 
2922  release_mempool:
2923 	mempool_destroy(dev->iod_mempool);
2924  release_pools:
2925 	nvme_release_prp_pools(dev);
2926  unmap:
2927 	nvme_dev_unmap(dev);
2928  put_pci:
2929 	put_device(dev->dev);
2930  free:
2931 	kfree(dev->queues);
2932 	kfree(dev);
2933 	return result;
2934 }
2935 
2936 static void nvme_reset_prepare(struct pci_dev *pdev)
2937 {
2938 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2939 
2940 	/*
2941 	 * We don't need to check the return value from waiting for the reset
2942 	 * state as pci_dev device lock is held, making it impossible to race
2943 	 * with ->remove().
2944 	 */
2945 	nvme_disable_prepare_reset(dev, false);
2946 	nvme_sync_queues(&dev->ctrl);
2947 }
2948 
2949 static void nvme_reset_done(struct pci_dev *pdev)
2950 {
2951 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2952 
2953 	if (!nvme_try_sched_reset(&dev->ctrl))
2954 		flush_work(&dev->ctrl.reset_work);
2955 }
2956 
2957 static void nvme_shutdown(struct pci_dev *pdev)
2958 {
2959 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2960 
2961 	nvme_disable_prepare_reset(dev, true);
2962 }
2963 
2964 /*
2965  * The driver's remove may be called on a device in a partially initialized
2966  * state. This function must not have any dependencies on the device state in
2967  * order to proceed.
2968  */
2969 static void nvme_remove(struct pci_dev *pdev)
2970 {
2971 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2972 
2973 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2974 	pci_set_drvdata(pdev, NULL);
2975 
2976 	if (!pci_device_is_present(pdev)) {
2977 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2978 		nvme_dev_disable(dev, true);
2979 		nvme_dev_remove_admin(dev);
2980 	}
2981 
2982 	flush_work(&dev->ctrl.reset_work);
2983 	nvme_stop_ctrl(&dev->ctrl);
2984 	nvme_remove_namespaces(&dev->ctrl);
2985 	nvme_dev_disable(dev, true);
2986 	nvme_release_cmb(dev);
2987 	nvme_free_host_mem(dev);
2988 	nvme_dev_remove_admin(dev);
2989 	nvme_free_queues(dev, 0);
2990 	nvme_release_prp_pools(dev);
2991 	nvme_dev_unmap(dev);
2992 	nvme_uninit_ctrl(&dev->ctrl);
2993 }
2994 
2995 #ifdef CONFIG_PM_SLEEP
2996 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2997 {
2998 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2999 }
3000 
3001 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3002 {
3003 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3004 }
3005 
3006 static int nvme_resume(struct device *dev)
3007 {
3008 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3009 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3010 
3011 	if (ndev->last_ps == U32_MAX ||
3012 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3013 		return nvme_try_sched_reset(&ndev->ctrl);
3014 	return 0;
3015 }
3016 
3017 static int nvme_suspend(struct device *dev)
3018 {
3019 	struct pci_dev *pdev = to_pci_dev(dev);
3020 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3021 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3022 	int ret = -EBUSY;
3023 
3024 	ndev->last_ps = U32_MAX;
3025 
3026 	/*
3027 	 * The platform does not remove power for a kernel managed suspend so
3028 	 * use host managed nvme power settings for lowest idle power if
3029 	 * possible. This should have quicker resume latency than a full device
3030 	 * shutdown.  But if the firmware is involved after the suspend or the
3031 	 * device does not support any non-default power states, shut down the
3032 	 * device fully.
3033 	 *
3034 	 * If ASPM is not enabled for the device, shut down the device and allow
3035 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3036 	 * down, so as to allow the platform to achieve its minimum low-power
3037 	 * state (which may not be possible if the link is up).
3038 	 *
3039 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3040 	 * specification allows the device to access the host memory buffer in
3041 	 * host DRAM from all power states, but hosts will fail access to DRAM
3042 	 * during S3.
3043 	 */
3044 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3045 	    !pcie_aspm_enabled(pdev) ||
3046 	    ndev->nr_host_mem_descs ||
3047 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3048 		return nvme_disable_prepare_reset(ndev, true);
3049 
3050 	nvme_start_freeze(ctrl);
3051 	nvme_wait_freeze(ctrl);
3052 	nvme_sync_queues(ctrl);
3053 
3054 	if (ctrl->state != NVME_CTRL_LIVE)
3055 		goto unfreeze;
3056 
3057 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3058 	if (ret < 0)
3059 		goto unfreeze;
3060 
3061 	/*
3062 	 * A saved state prevents pci pm from generically controlling the
3063 	 * device's power. If we're using protocol specific settings, we don't
3064 	 * want pci interfering.
3065 	 */
3066 	pci_save_state(pdev);
3067 
3068 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3069 	if (ret < 0)
3070 		goto unfreeze;
3071 
3072 	if (ret) {
3073 		/* discard the saved state */
3074 		pci_load_saved_state(pdev, NULL);
3075 
3076 		/*
3077 		 * Clearing npss forces a controller reset on resume. The
3078 		 * correct value will be rediscovered then.
3079 		 */
3080 		ret = nvme_disable_prepare_reset(ndev, true);
3081 		ctrl->npss = 0;
3082 	}
3083 unfreeze:
3084 	nvme_unfreeze(ctrl);
3085 	return ret;
3086 }
3087 
3088 static int nvme_simple_suspend(struct device *dev)
3089 {
3090 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3091 
3092 	return nvme_disable_prepare_reset(ndev, true);
3093 }
3094 
3095 static int nvme_simple_resume(struct device *dev)
3096 {
3097 	struct pci_dev *pdev = to_pci_dev(dev);
3098 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3099 
3100 	return nvme_try_sched_reset(&ndev->ctrl);
3101 }
3102 
3103 static const struct dev_pm_ops nvme_dev_pm_ops = {
3104 	.suspend	= nvme_suspend,
3105 	.resume		= nvme_resume,
3106 	.freeze		= nvme_simple_suspend,
3107 	.thaw		= nvme_simple_resume,
3108 	.poweroff	= nvme_simple_suspend,
3109 	.restore	= nvme_simple_resume,
3110 };
3111 #endif /* CONFIG_PM_SLEEP */
3112 
3113 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3114 						pci_channel_state_t state)
3115 {
3116 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3117 
3118 	/*
3119 	 * A frozen channel requires a reset. When detected, this method will
3120 	 * shutdown the controller to quiesce. The controller will be restarted
3121 	 * after the slot reset through driver's slot_reset callback.
3122 	 */
3123 	switch (state) {
3124 	case pci_channel_io_normal:
3125 		return PCI_ERS_RESULT_CAN_RECOVER;
3126 	case pci_channel_io_frozen:
3127 		dev_warn(dev->ctrl.device,
3128 			"frozen state error detected, reset controller\n");
3129 		nvme_dev_disable(dev, false);
3130 		return PCI_ERS_RESULT_NEED_RESET;
3131 	case pci_channel_io_perm_failure:
3132 		dev_warn(dev->ctrl.device,
3133 			"failure state error detected, request disconnect\n");
3134 		return PCI_ERS_RESULT_DISCONNECT;
3135 	}
3136 	return PCI_ERS_RESULT_NEED_RESET;
3137 }
3138 
3139 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3140 {
3141 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3142 
3143 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3144 	pci_restore_state(pdev);
3145 	nvme_reset_ctrl(&dev->ctrl);
3146 	return PCI_ERS_RESULT_RECOVERED;
3147 }
3148 
3149 static void nvme_error_resume(struct pci_dev *pdev)
3150 {
3151 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3152 
3153 	flush_work(&dev->ctrl.reset_work);
3154 }
3155 
3156 static const struct pci_error_handlers nvme_err_handler = {
3157 	.error_detected	= nvme_error_detected,
3158 	.slot_reset	= nvme_slot_reset,
3159 	.resume		= nvme_error_resume,
3160 	.reset_prepare	= nvme_reset_prepare,
3161 	.reset_done	= nvme_reset_done,
3162 };
3163 
3164 static const struct pci_device_id nvme_id_table[] = {
3165 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3166 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3167 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3168 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3169 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3170 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3171 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3172 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3173 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3174 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3175 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3176 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3177 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3178 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3179 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3180 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3181 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3182 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3183 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3184 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3185 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3186 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3187 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3188 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3189 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3190 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3191 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3192 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3193 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3194 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3195 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3196 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3197 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3198 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3199 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3200 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3201 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3202 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3203 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3204 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3205 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3206 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3207 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3208 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3209 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3210 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3211 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3212 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3213 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3214 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3215 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3216 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3217 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3218 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3219 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3220 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3221 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3222 				NVME_QUIRK_128_BYTES_SQES |
3223 				NVME_QUIRK_SHARED_TAGS },
3224 
3225 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3226 	{ 0, }
3227 };
3228 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3229 
3230 static struct pci_driver nvme_driver = {
3231 	.name		= "nvme",
3232 	.id_table	= nvme_id_table,
3233 	.probe		= nvme_probe,
3234 	.remove		= nvme_remove,
3235 	.shutdown	= nvme_shutdown,
3236 #ifdef CONFIG_PM_SLEEP
3237 	.driver		= {
3238 		.pm	= &nvme_dev_pm_ops,
3239 	},
3240 #endif
3241 	.sriov_configure = pci_sriov_configure_simple,
3242 	.err_handler	= &nvme_err_handler,
3243 };
3244 
3245 static int __init nvme_init(void)
3246 {
3247 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3248 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3249 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3250 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3251 
3252 	return pci_register_driver(&nvme_driver);
3253 }
3254 
3255 static void __exit nvme_exit(void)
3256 {
3257 	pci_unregister_driver(&nvme_driver);
3258 	flush_workqueue(nvme_wq);
3259 }
3260 
3261 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3262 MODULE_LICENSE("GPL");
3263 MODULE_VERSION("1.0");
3264 module_init(nvme_init);
3265 module_exit(nvme_exit);
3266