1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/kstrtox.h> 19 #include <linux/memremap.h> 20 #include <linux/mm.h> 21 #include <linux/module.h> 22 #include <linux/mutex.h> 23 #include <linux/once.h> 24 #include <linux/pci.h> 25 #include <linux/suspend.h> 26 #include <linux/t10-pi.h> 27 #include <linux/types.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/io-64-nonatomic-hi-lo.h> 30 #include <linux/sed-opal.h> 31 #include <linux/pci-p2pdma.h> 32 33 #include "trace.h" 34 #include "nvme.h" 35 36 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 37 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 38 39 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 40 41 /* 42 * These can be higher, but we need to ensure that any command doesn't 43 * require an sg allocation that needs more than a page of data. 44 */ 45 #define NVME_MAX_KB_SZ 4096 46 #define NVME_MAX_SEGS 127 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 114 /* 115 * Represents an NVM Express device. Each nvme_dev is a PCI function. 116 */ 117 struct nvme_dev { 118 struct nvme_queue *queues; 119 struct blk_mq_tag_set tagset; 120 struct blk_mq_tag_set admin_tagset; 121 u32 __iomem *dbs; 122 struct device *dev; 123 struct dma_pool *prp_page_pool; 124 struct dma_pool *prp_small_pool; 125 unsigned online_queues; 126 unsigned max_qid; 127 unsigned io_queues[HCTX_MAX_TYPES]; 128 unsigned int num_vecs; 129 u32 q_depth; 130 int io_sqes; 131 u32 db_stride; 132 void __iomem *bar; 133 unsigned long bar_mapped_size; 134 struct mutex shutdown_lock; 135 bool subsystem; 136 u64 cmb_size; 137 bool cmb_use_sqes; 138 u32 cmbsz; 139 u32 cmbloc; 140 struct nvme_ctrl ctrl; 141 u32 last_ps; 142 bool hmb; 143 144 mempool_t *iod_mempool; 145 146 /* shadow doorbell buffer support: */ 147 __le32 *dbbuf_dbs; 148 dma_addr_t dbbuf_dbs_dma_addr; 149 __le32 *dbbuf_eis; 150 dma_addr_t dbbuf_eis_dma_addr; 151 152 /* host memory buffer support: */ 153 u64 host_mem_size; 154 u32 nr_host_mem_descs; 155 dma_addr_t host_mem_descs_dma; 156 struct nvme_host_mem_buf_desc *host_mem_descs; 157 void **host_mem_desc_bufs; 158 unsigned int nr_allocated_queues; 159 unsigned int nr_write_queues; 160 unsigned int nr_poll_queues; 161 }; 162 163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 164 { 165 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 166 NVME_PCI_MAX_QUEUE_SIZE); 167 } 168 169 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 170 { 171 return qid * 2 * stride; 172 } 173 174 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 175 { 176 return (qid * 2 + 1) * stride; 177 } 178 179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 180 { 181 return container_of(ctrl, struct nvme_dev, ctrl); 182 } 183 184 /* 185 * An NVM Express queue. Each device has at least two (one for admin 186 * commands and one for I/O commands). 187 */ 188 struct nvme_queue { 189 struct nvme_dev *dev; 190 spinlock_t sq_lock; 191 void *sq_cmds; 192 /* only used for poll queues: */ 193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 194 struct nvme_completion *cqes; 195 dma_addr_t sq_dma_addr; 196 dma_addr_t cq_dma_addr; 197 u32 __iomem *q_db; 198 u32 q_depth; 199 u16 cq_vector; 200 u16 sq_tail; 201 u16 last_sq_tail; 202 u16 cq_head; 203 u16 qid; 204 u8 cq_phase; 205 u8 sqes; 206 unsigned long flags; 207 #define NVMEQ_ENABLED 0 208 #define NVMEQ_SQ_CMB 1 209 #define NVMEQ_DELETE_ERROR 2 210 #define NVMEQ_POLLED 3 211 __le32 *dbbuf_sq_db; 212 __le32 *dbbuf_cq_db; 213 __le32 *dbbuf_sq_ei; 214 __le32 *dbbuf_cq_ei; 215 struct completion delete_done; 216 }; 217 218 /* 219 * The nvme_iod describes the data in an I/O. 220 * 221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 222 * to the actual struct scatterlist. 223 */ 224 struct nvme_iod { 225 struct nvme_request req; 226 struct nvme_command cmd; 227 bool use_sgl; 228 bool aborted; 229 s8 nr_allocations; /* PRP list pool allocations. 0 means small 230 pool in use */ 231 unsigned int dma_len; /* length of single DMA segment mapping */ 232 dma_addr_t first_dma; 233 dma_addr_t meta_dma; 234 struct sg_table sgt; 235 }; 236 237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 238 { 239 return dev->nr_allocated_queues * 8 * dev->db_stride; 240 } 241 242 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 243 { 244 unsigned int mem_size = nvme_dbbuf_size(dev); 245 246 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 247 return; 248 249 if (dev->dbbuf_dbs) { 250 /* 251 * Clear the dbbuf memory so the driver doesn't observe stale 252 * values from the previous instantiation. 253 */ 254 memset(dev->dbbuf_dbs, 0, mem_size); 255 memset(dev->dbbuf_eis, 0, mem_size); 256 return; 257 } 258 259 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 260 &dev->dbbuf_dbs_dma_addr, 261 GFP_KERNEL); 262 if (!dev->dbbuf_dbs) 263 goto fail; 264 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 265 &dev->dbbuf_eis_dma_addr, 266 GFP_KERNEL); 267 if (!dev->dbbuf_eis) 268 goto fail_free_dbbuf_dbs; 269 return; 270 271 fail_free_dbbuf_dbs: 272 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 273 dev->dbbuf_dbs_dma_addr); 274 dev->dbbuf_dbs = NULL; 275 fail: 276 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 277 } 278 279 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 280 { 281 unsigned int mem_size = nvme_dbbuf_size(dev); 282 283 if (dev->dbbuf_dbs) { 284 dma_free_coherent(dev->dev, mem_size, 285 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 286 dev->dbbuf_dbs = NULL; 287 } 288 if (dev->dbbuf_eis) { 289 dma_free_coherent(dev->dev, mem_size, 290 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 291 dev->dbbuf_eis = NULL; 292 } 293 } 294 295 static void nvme_dbbuf_init(struct nvme_dev *dev, 296 struct nvme_queue *nvmeq, int qid) 297 { 298 if (!dev->dbbuf_dbs || !qid) 299 return; 300 301 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 302 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 303 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 304 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 305 } 306 307 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 308 { 309 if (!nvmeq->qid) 310 return; 311 312 nvmeq->dbbuf_sq_db = NULL; 313 nvmeq->dbbuf_cq_db = NULL; 314 nvmeq->dbbuf_sq_ei = NULL; 315 nvmeq->dbbuf_cq_ei = NULL; 316 } 317 318 static void nvme_dbbuf_set(struct nvme_dev *dev) 319 { 320 struct nvme_command c = { }; 321 unsigned int i; 322 323 if (!dev->dbbuf_dbs) 324 return; 325 326 c.dbbuf.opcode = nvme_admin_dbbuf; 327 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 328 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 329 330 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 331 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 332 /* Free memory and continue on */ 333 nvme_dbbuf_dma_free(dev); 334 335 for (i = 1; i <= dev->online_queues; i++) 336 nvme_dbbuf_free(&dev->queues[i]); 337 } 338 } 339 340 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 341 { 342 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 343 } 344 345 /* Update dbbuf and return true if an MMIO is required */ 346 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 347 volatile __le32 *dbbuf_ei) 348 { 349 if (dbbuf_db) { 350 u16 old_value, event_idx; 351 352 /* 353 * Ensure that the queue is written before updating 354 * the doorbell in memory 355 */ 356 wmb(); 357 358 old_value = le32_to_cpu(*dbbuf_db); 359 *dbbuf_db = cpu_to_le32(value); 360 361 /* 362 * Ensure that the doorbell is updated before reading the event 363 * index from memory. The controller needs to provide similar 364 * ordering to ensure the envent index is updated before reading 365 * the doorbell. 366 */ 367 mb(); 368 369 event_idx = le32_to_cpu(*dbbuf_ei); 370 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 371 return false; 372 } 373 374 return true; 375 } 376 377 /* 378 * Will slightly overestimate the number of pages needed. This is OK 379 * as it only leads to a small amount of wasted memory for the lifetime of 380 * the I/O. 381 */ 382 static int nvme_pci_npages_prp(void) 383 { 384 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 385 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 386 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 387 } 388 389 /* 390 * Calculates the number of pages needed for the SGL segments. For example a 4k 391 * page can accommodate 256 SGL descriptors. 392 */ 393 static int nvme_pci_npages_sgl(void) 394 { 395 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 396 NVME_CTRL_PAGE_SIZE); 397 } 398 399 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 400 unsigned int hctx_idx) 401 { 402 struct nvme_dev *dev = to_nvme_dev(data); 403 struct nvme_queue *nvmeq = &dev->queues[0]; 404 405 WARN_ON(hctx_idx != 0); 406 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 407 408 hctx->driver_data = nvmeq; 409 return 0; 410 } 411 412 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 413 unsigned int hctx_idx) 414 { 415 struct nvme_dev *dev = to_nvme_dev(data); 416 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 417 418 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 419 hctx->driver_data = nvmeq; 420 return 0; 421 } 422 423 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 424 struct request *req, unsigned int hctx_idx, 425 unsigned int numa_node) 426 { 427 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 429 430 nvme_req(req)->ctrl = &dev->ctrl; 431 nvme_req(req)->cmd = &iod->cmd; 432 return 0; 433 } 434 435 static int queue_irq_offset(struct nvme_dev *dev) 436 { 437 /* if we have more than 1 vec, admin queue offsets us by 1 */ 438 if (dev->num_vecs > 1) 439 return 1; 440 441 return 0; 442 } 443 444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 445 { 446 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 447 int i, qoff, offset; 448 449 offset = queue_irq_offset(dev); 450 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 451 struct blk_mq_queue_map *map = &set->map[i]; 452 453 map->nr_queues = dev->io_queues[i]; 454 if (!map->nr_queues) { 455 BUG_ON(i == HCTX_TYPE_DEFAULT); 456 continue; 457 } 458 459 /* 460 * The poll queue(s) doesn't have an IRQ (and hence IRQ 461 * affinity), so use the regular blk-mq cpu mapping 462 */ 463 map->queue_offset = qoff; 464 if (i != HCTX_TYPE_POLL && offset) 465 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 466 else 467 blk_mq_map_queues(map); 468 qoff += map->nr_queues; 469 offset += map->nr_queues; 470 } 471 } 472 473 /* 474 * Write sq tail if we are asked to, or if the next command would wrap. 475 */ 476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 477 { 478 if (!write_sq) { 479 u16 next_tail = nvmeq->sq_tail + 1; 480 481 if (next_tail == nvmeq->q_depth) 482 next_tail = 0; 483 if (next_tail != nvmeq->last_sq_tail) 484 return; 485 } 486 487 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 488 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 489 writel(nvmeq->sq_tail, nvmeq->q_db); 490 nvmeq->last_sq_tail = nvmeq->sq_tail; 491 } 492 493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 494 struct nvme_command *cmd) 495 { 496 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 497 absolute_pointer(cmd), sizeof(*cmd)); 498 if (++nvmeq->sq_tail == nvmeq->q_depth) 499 nvmeq->sq_tail = 0; 500 } 501 502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 503 { 504 struct nvme_queue *nvmeq = hctx->driver_data; 505 506 spin_lock(&nvmeq->sq_lock); 507 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 508 nvme_write_sq_db(nvmeq, true); 509 spin_unlock(&nvmeq->sq_lock); 510 } 511 512 static void **nvme_pci_iod_list(struct request *req) 513 { 514 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 515 return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req)); 516 } 517 518 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 519 { 520 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 521 int nseg = blk_rq_nr_phys_segments(req); 522 unsigned int avg_seg_size; 523 524 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 525 526 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 527 return false; 528 if (!nvmeq->qid) 529 return false; 530 if (!sgl_threshold || avg_seg_size < sgl_threshold) 531 return false; 532 return true; 533 } 534 535 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 536 { 537 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 538 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 539 dma_addr_t dma_addr = iod->first_dma; 540 int i; 541 542 for (i = 0; i < iod->nr_allocations; i++) { 543 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 544 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 545 546 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 547 dma_addr = next_dma_addr; 548 } 549 } 550 551 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 552 { 553 const int last_sg = SGES_PER_PAGE - 1; 554 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 555 dma_addr_t dma_addr = iod->first_dma; 556 int i; 557 558 for (i = 0; i < iod->nr_allocations; i++) { 559 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 560 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 561 562 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 563 dma_addr = next_dma_addr; 564 } 565 } 566 567 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 568 { 569 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 570 571 if (iod->dma_len) { 572 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 573 rq_dma_dir(req)); 574 return; 575 } 576 577 WARN_ON_ONCE(!iod->sgt.nents); 578 579 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 580 581 if (iod->nr_allocations == 0) 582 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 583 iod->first_dma); 584 else if (iod->use_sgl) 585 nvme_free_sgls(dev, req); 586 else 587 nvme_free_prps(dev, req); 588 mempool_free(iod->sgt.sgl, dev->iod_mempool); 589 } 590 591 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 592 { 593 int i; 594 struct scatterlist *sg; 595 596 for_each_sg(sgl, sg, nents, i) { 597 dma_addr_t phys = sg_phys(sg); 598 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 599 "dma_address:%pad dma_length:%d\n", 600 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 601 sg_dma_len(sg)); 602 } 603 } 604 605 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 606 struct request *req, struct nvme_rw_command *cmnd) 607 { 608 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 609 struct dma_pool *pool; 610 int length = blk_rq_payload_bytes(req); 611 struct scatterlist *sg = iod->sgt.sgl; 612 int dma_len = sg_dma_len(sg); 613 u64 dma_addr = sg_dma_address(sg); 614 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 615 __le64 *prp_list; 616 void **list = nvme_pci_iod_list(req); 617 dma_addr_t prp_dma; 618 int nprps, i; 619 620 length -= (NVME_CTRL_PAGE_SIZE - offset); 621 if (length <= 0) { 622 iod->first_dma = 0; 623 goto done; 624 } 625 626 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 627 if (dma_len) { 628 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 629 } else { 630 sg = sg_next(sg); 631 dma_addr = sg_dma_address(sg); 632 dma_len = sg_dma_len(sg); 633 } 634 635 if (length <= NVME_CTRL_PAGE_SIZE) { 636 iod->first_dma = dma_addr; 637 goto done; 638 } 639 640 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 641 if (nprps <= (256 / 8)) { 642 pool = dev->prp_small_pool; 643 iod->nr_allocations = 0; 644 } else { 645 pool = dev->prp_page_pool; 646 iod->nr_allocations = 1; 647 } 648 649 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 650 if (!prp_list) { 651 iod->nr_allocations = -1; 652 return BLK_STS_RESOURCE; 653 } 654 list[0] = prp_list; 655 iod->first_dma = prp_dma; 656 i = 0; 657 for (;;) { 658 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 659 __le64 *old_prp_list = prp_list; 660 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 661 if (!prp_list) 662 goto free_prps; 663 list[iod->nr_allocations++] = prp_list; 664 prp_list[0] = old_prp_list[i - 1]; 665 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 666 i = 1; 667 } 668 prp_list[i++] = cpu_to_le64(dma_addr); 669 dma_len -= NVME_CTRL_PAGE_SIZE; 670 dma_addr += NVME_CTRL_PAGE_SIZE; 671 length -= NVME_CTRL_PAGE_SIZE; 672 if (length <= 0) 673 break; 674 if (dma_len > 0) 675 continue; 676 if (unlikely(dma_len < 0)) 677 goto bad_sgl; 678 sg = sg_next(sg); 679 dma_addr = sg_dma_address(sg); 680 dma_len = sg_dma_len(sg); 681 } 682 done: 683 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 684 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 685 return BLK_STS_OK; 686 free_prps: 687 nvme_free_prps(dev, req); 688 return BLK_STS_RESOURCE; 689 bad_sgl: 690 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 691 "Invalid SGL for payload:%d nents:%d\n", 692 blk_rq_payload_bytes(req), iod->sgt.nents); 693 return BLK_STS_IOERR; 694 } 695 696 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 697 struct scatterlist *sg) 698 { 699 sge->addr = cpu_to_le64(sg_dma_address(sg)); 700 sge->length = cpu_to_le32(sg_dma_len(sg)); 701 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 702 } 703 704 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 705 dma_addr_t dma_addr, int entries) 706 { 707 sge->addr = cpu_to_le64(dma_addr); 708 if (entries < SGES_PER_PAGE) { 709 sge->length = cpu_to_le32(entries * sizeof(*sge)); 710 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 711 } else { 712 sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE); 713 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 714 } 715 } 716 717 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 718 struct request *req, struct nvme_rw_command *cmd) 719 { 720 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 721 struct dma_pool *pool; 722 struct nvme_sgl_desc *sg_list; 723 struct scatterlist *sg = iod->sgt.sgl; 724 unsigned int entries = iod->sgt.nents; 725 dma_addr_t sgl_dma; 726 int i = 0; 727 728 /* setting the transfer type as SGL */ 729 cmd->flags = NVME_CMD_SGL_METABUF; 730 731 if (entries == 1) { 732 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 733 return BLK_STS_OK; 734 } 735 736 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 737 pool = dev->prp_small_pool; 738 iod->nr_allocations = 0; 739 } else { 740 pool = dev->prp_page_pool; 741 iod->nr_allocations = 1; 742 } 743 744 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 745 if (!sg_list) { 746 iod->nr_allocations = -1; 747 return BLK_STS_RESOURCE; 748 } 749 750 nvme_pci_iod_list(req)[0] = sg_list; 751 iod->first_dma = sgl_dma; 752 753 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 754 755 do { 756 if (i == SGES_PER_PAGE) { 757 struct nvme_sgl_desc *old_sg_desc = sg_list; 758 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 759 760 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 761 if (!sg_list) 762 goto free_sgls; 763 764 i = 0; 765 nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list; 766 sg_list[i++] = *link; 767 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 768 } 769 770 nvme_pci_sgl_set_data(&sg_list[i++], sg); 771 sg = sg_next(sg); 772 } while (--entries > 0); 773 774 return BLK_STS_OK; 775 free_sgls: 776 nvme_free_sgls(dev, req); 777 return BLK_STS_RESOURCE; 778 } 779 780 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 781 struct request *req, struct nvme_rw_command *cmnd, 782 struct bio_vec *bv) 783 { 784 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 785 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 786 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 787 788 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 789 if (dma_mapping_error(dev->dev, iod->first_dma)) 790 return BLK_STS_RESOURCE; 791 iod->dma_len = bv->bv_len; 792 793 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 794 if (bv->bv_len > first_prp_len) 795 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 796 else 797 cmnd->dptr.prp2 = 0; 798 return BLK_STS_OK; 799 } 800 801 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 802 struct request *req, struct nvme_rw_command *cmnd, 803 struct bio_vec *bv) 804 { 805 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 806 807 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 808 if (dma_mapping_error(dev->dev, iod->first_dma)) 809 return BLK_STS_RESOURCE; 810 iod->dma_len = bv->bv_len; 811 812 cmnd->flags = NVME_CMD_SGL_METABUF; 813 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 814 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 815 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 816 return BLK_STS_OK; 817 } 818 819 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 820 struct nvme_command *cmnd) 821 { 822 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 823 blk_status_t ret = BLK_STS_RESOURCE; 824 int rc; 825 826 if (blk_rq_nr_phys_segments(req) == 1) { 827 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 828 struct bio_vec bv = req_bvec(req); 829 830 if (!is_pci_p2pdma_page(bv.bv_page)) { 831 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 832 return nvme_setup_prp_simple(dev, req, 833 &cmnd->rw, &bv); 834 835 if (nvmeq->qid && sgl_threshold && 836 nvme_ctrl_sgl_supported(&dev->ctrl)) 837 return nvme_setup_sgl_simple(dev, req, 838 &cmnd->rw, &bv); 839 } 840 } 841 842 iod->dma_len = 0; 843 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 844 if (!iod->sgt.sgl) 845 return BLK_STS_RESOURCE; 846 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 847 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 848 if (!iod->sgt.orig_nents) 849 goto out_free_sg; 850 851 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 852 DMA_ATTR_NO_WARN); 853 if (rc) { 854 if (rc == -EREMOTEIO) 855 ret = BLK_STS_TARGET; 856 goto out_free_sg; 857 } 858 859 iod->use_sgl = nvme_pci_use_sgls(dev, req); 860 if (iod->use_sgl) 861 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 862 else 863 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 864 if (ret != BLK_STS_OK) 865 goto out_unmap_sg; 866 return BLK_STS_OK; 867 868 out_unmap_sg: 869 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 870 out_free_sg: 871 mempool_free(iod->sgt.sgl, dev->iod_mempool); 872 return ret; 873 } 874 875 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 876 struct nvme_command *cmnd) 877 { 878 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 879 880 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 881 rq_dma_dir(req), 0); 882 if (dma_mapping_error(dev->dev, iod->meta_dma)) 883 return BLK_STS_IOERR; 884 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 885 return BLK_STS_OK; 886 } 887 888 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 889 { 890 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 891 blk_status_t ret; 892 893 iod->aborted = false; 894 iod->nr_allocations = -1; 895 iod->sgt.nents = 0; 896 897 ret = nvme_setup_cmd(req->q->queuedata, req); 898 if (ret) 899 return ret; 900 901 if (blk_rq_nr_phys_segments(req)) { 902 ret = nvme_map_data(dev, req, &iod->cmd); 903 if (ret) 904 goto out_free_cmd; 905 } 906 907 if (blk_integrity_rq(req)) { 908 ret = nvme_map_metadata(dev, req, &iod->cmd); 909 if (ret) 910 goto out_unmap_data; 911 } 912 913 nvme_start_request(req); 914 return BLK_STS_OK; 915 out_unmap_data: 916 nvme_unmap_data(dev, req); 917 out_free_cmd: 918 nvme_cleanup_cmd(req); 919 return ret; 920 } 921 922 /* 923 * NOTE: ns is NULL when called on the admin queue. 924 */ 925 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 926 const struct blk_mq_queue_data *bd) 927 { 928 struct nvme_queue *nvmeq = hctx->driver_data; 929 struct nvme_dev *dev = nvmeq->dev; 930 struct request *req = bd->rq; 931 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 932 blk_status_t ret; 933 934 /* 935 * We should not need to do this, but we're still using this to 936 * ensure we can drain requests on a dying queue. 937 */ 938 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 939 return BLK_STS_IOERR; 940 941 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 942 return nvme_fail_nonready_command(&dev->ctrl, req); 943 944 ret = nvme_prep_rq(dev, req); 945 if (unlikely(ret)) 946 return ret; 947 spin_lock(&nvmeq->sq_lock); 948 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 949 nvme_write_sq_db(nvmeq, bd->last); 950 spin_unlock(&nvmeq->sq_lock); 951 return BLK_STS_OK; 952 } 953 954 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 955 { 956 spin_lock(&nvmeq->sq_lock); 957 while (!rq_list_empty(*rqlist)) { 958 struct request *req = rq_list_pop(rqlist); 959 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 960 961 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 962 } 963 nvme_write_sq_db(nvmeq, true); 964 spin_unlock(&nvmeq->sq_lock); 965 } 966 967 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 968 { 969 /* 970 * We should not need to do this, but we're still using this to 971 * ensure we can drain requests on a dying queue. 972 */ 973 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 974 return false; 975 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 976 return false; 977 978 req->mq_hctx->tags->rqs[req->tag] = req; 979 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 980 } 981 982 static void nvme_queue_rqs(struct request **rqlist) 983 { 984 struct request *req, *next, *prev = NULL; 985 struct request *requeue_list = NULL; 986 987 rq_list_for_each_safe(rqlist, req, next) { 988 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 989 990 if (!nvme_prep_rq_batch(nvmeq, req)) { 991 /* detach 'req' and add to remainder list */ 992 rq_list_move(rqlist, &requeue_list, req, prev); 993 994 req = prev; 995 if (!req) 996 continue; 997 } 998 999 if (!next || req->mq_hctx != next->mq_hctx) { 1000 /* detach rest of list, and submit */ 1001 req->rq_next = NULL; 1002 nvme_submit_cmds(nvmeq, rqlist); 1003 *rqlist = next; 1004 prev = NULL; 1005 } else 1006 prev = req; 1007 } 1008 1009 *rqlist = requeue_list; 1010 } 1011 1012 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1013 { 1014 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1015 struct nvme_dev *dev = nvmeq->dev; 1016 1017 if (blk_integrity_rq(req)) { 1018 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1019 1020 dma_unmap_page(dev->dev, iod->meta_dma, 1021 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 1022 } 1023 1024 if (blk_rq_nr_phys_segments(req)) 1025 nvme_unmap_data(dev, req); 1026 } 1027 1028 static void nvme_pci_complete_rq(struct request *req) 1029 { 1030 nvme_pci_unmap_rq(req); 1031 nvme_complete_rq(req); 1032 } 1033 1034 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1035 { 1036 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1037 } 1038 1039 /* We read the CQE phase first to check if the rest of the entry is valid */ 1040 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1041 { 1042 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1043 1044 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1045 } 1046 1047 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1048 { 1049 u16 head = nvmeq->cq_head; 1050 1051 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1052 nvmeq->dbbuf_cq_ei)) 1053 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1054 } 1055 1056 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1057 { 1058 if (!nvmeq->qid) 1059 return nvmeq->dev->admin_tagset.tags[0]; 1060 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1061 } 1062 1063 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1064 struct io_comp_batch *iob, u16 idx) 1065 { 1066 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1067 __u16 command_id = READ_ONCE(cqe->command_id); 1068 struct request *req; 1069 1070 /* 1071 * AEN requests are special as they don't time out and can 1072 * survive any kind of queue freeze and often don't respond to 1073 * aborts. We don't even bother to allocate a struct request 1074 * for them but rather special case them here. 1075 */ 1076 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1077 nvme_complete_async_event(&nvmeq->dev->ctrl, 1078 cqe->status, &cqe->result); 1079 return; 1080 } 1081 1082 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1083 if (unlikely(!req)) { 1084 dev_warn(nvmeq->dev->ctrl.device, 1085 "invalid id %d completed on queue %d\n", 1086 command_id, le16_to_cpu(cqe->sq_id)); 1087 return; 1088 } 1089 1090 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1091 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1092 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1093 nvme_pci_complete_batch)) 1094 nvme_pci_complete_rq(req); 1095 } 1096 1097 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1098 { 1099 u32 tmp = nvmeq->cq_head + 1; 1100 1101 if (tmp == nvmeq->q_depth) { 1102 nvmeq->cq_head = 0; 1103 nvmeq->cq_phase ^= 1; 1104 } else { 1105 nvmeq->cq_head = tmp; 1106 } 1107 } 1108 1109 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1110 struct io_comp_batch *iob) 1111 { 1112 int found = 0; 1113 1114 while (nvme_cqe_pending(nvmeq)) { 1115 found++; 1116 /* 1117 * load-load control dependency between phase and the rest of 1118 * the cqe requires a full read memory barrier 1119 */ 1120 dma_rmb(); 1121 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1122 nvme_update_cq_head(nvmeq); 1123 } 1124 1125 if (found) 1126 nvme_ring_cq_doorbell(nvmeq); 1127 return found; 1128 } 1129 1130 static irqreturn_t nvme_irq(int irq, void *data) 1131 { 1132 struct nvme_queue *nvmeq = data; 1133 DEFINE_IO_COMP_BATCH(iob); 1134 1135 if (nvme_poll_cq(nvmeq, &iob)) { 1136 if (!rq_list_empty(iob.req_list)) 1137 nvme_pci_complete_batch(&iob); 1138 return IRQ_HANDLED; 1139 } 1140 return IRQ_NONE; 1141 } 1142 1143 static irqreturn_t nvme_irq_check(int irq, void *data) 1144 { 1145 struct nvme_queue *nvmeq = data; 1146 1147 if (nvme_cqe_pending(nvmeq)) 1148 return IRQ_WAKE_THREAD; 1149 return IRQ_NONE; 1150 } 1151 1152 /* 1153 * Poll for completions for any interrupt driven queue 1154 * Can be called from any context. 1155 */ 1156 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1157 { 1158 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1159 1160 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1161 1162 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1163 nvme_poll_cq(nvmeq, NULL); 1164 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1165 } 1166 1167 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1168 { 1169 struct nvme_queue *nvmeq = hctx->driver_data; 1170 bool found; 1171 1172 if (!nvme_cqe_pending(nvmeq)) 1173 return 0; 1174 1175 spin_lock(&nvmeq->cq_poll_lock); 1176 found = nvme_poll_cq(nvmeq, iob); 1177 spin_unlock(&nvmeq->cq_poll_lock); 1178 1179 return found; 1180 } 1181 1182 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1183 { 1184 struct nvme_dev *dev = to_nvme_dev(ctrl); 1185 struct nvme_queue *nvmeq = &dev->queues[0]; 1186 struct nvme_command c = { }; 1187 1188 c.common.opcode = nvme_admin_async_event; 1189 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1190 1191 spin_lock(&nvmeq->sq_lock); 1192 nvme_sq_copy_cmd(nvmeq, &c); 1193 nvme_write_sq_db(nvmeq, true); 1194 spin_unlock(&nvmeq->sq_lock); 1195 } 1196 1197 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1198 { 1199 struct nvme_command c = { }; 1200 1201 c.delete_queue.opcode = opcode; 1202 c.delete_queue.qid = cpu_to_le16(id); 1203 1204 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1205 } 1206 1207 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1208 struct nvme_queue *nvmeq, s16 vector) 1209 { 1210 struct nvme_command c = { }; 1211 int flags = NVME_QUEUE_PHYS_CONTIG; 1212 1213 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1214 flags |= NVME_CQ_IRQ_ENABLED; 1215 1216 /* 1217 * Note: we (ab)use the fact that the prp fields survive if no data 1218 * is attached to the request. 1219 */ 1220 c.create_cq.opcode = nvme_admin_create_cq; 1221 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1222 c.create_cq.cqid = cpu_to_le16(qid); 1223 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1224 c.create_cq.cq_flags = cpu_to_le16(flags); 1225 c.create_cq.irq_vector = cpu_to_le16(vector); 1226 1227 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1228 } 1229 1230 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1231 struct nvme_queue *nvmeq) 1232 { 1233 struct nvme_ctrl *ctrl = &dev->ctrl; 1234 struct nvme_command c = { }; 1235 int flags = NVME_QUEUE_PHYS_CONTIG; 1236 1237 /* 1238 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1239 * set. Since URGENT priority is zeroes, it makes all queues 1240 * URGENT. 1241 */ 1242 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1243 flags |= NVME_SQ_PRIO_MEDIUM; 1244 1245 /* 1246 * Note: we (ab)use the fact that the prp fields survive if no data 1247 * is attached to the request. 1248 */ 1249 c.create_sq.opcode = nvme_admin_create_sq; 1250 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1251 c.create_sq.sqid = cpu_to_le16(qid); 1252 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1253 c.create_sq.sq_flags = cpu_to_le16(flags); 1254 c.create_sq.cqid = cpu_to_le16(qid); 1255 1256 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1257 } 1258 1259 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1260 { 1261 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1262 } 1263 1264 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1265 { 1266 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1267 } 1268 1269 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1270 { 1271 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1272 1273 dev_warn(nvmeq->dev->ctrl.device, 1274 "Abort status: 0x%x", nvme_req(req)->status); 1275 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1276 blk_mq_free_request(req); 1277 return RQ_END_IO_NONE; 1278 } 1279 1280 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1281 { 1282 /* If true, indicates loss of adapter communication, possibly by a 1283 * NVMe Subsystem reset. 1284 */ 1285 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1286 1287 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1288 switch (dev->ctrl.state) { 1289 case NVME_CTRL_RESETTING: 1290 case NVME_CTRL_CONNECTING: 1291 return false; 1292 default: 1293 break; 1294 } 1295 1296 /* We shouldn't reset unless the controller is on fatal error state 1297 * _or_ if we lost the communication with it. 1298 */ 1299 if (!(csts & NVME_CSTS_CFS) && !nssro) 1300 return false; 1301 1302 return true; 1303 } 1304 1305 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1306 { 1307 /* Read a config register to help see what died. */ 1308 u16 pci_status; 1309 int result; 1310 1311 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1312 &pci_status); 1313 if (result == PCIBIOS_SUCCESSFUL) 1314 dev_warn(dev->ctrl.device, 1315 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1316 csts, pci_status); 1317 else 1318 dev_warn(dev->ctrl.device, 1319 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1320 csts, result); 1321 1322 if (csts != ~0) 1323 return; 1324 1325 dev_warn(dev->ctrl.device, 1326 "Does your device have a faulty power saving mode enabled?\n"); 1327 dev_warn(dev->ctrl.device, 1328 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1329 } 1330 1331 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1332 { 1333 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1334 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1335 struct nvme_dev *dev = nvmeq->dev; 1336 struct request *abort_req; 1337 struct nvme_command cmd = { }; 1338 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1339 1340 /* If PCI error recovery process is happening, we cannot reset or 1341 * the recovery mechanism will surely fail. 1342 */ 1343 mb(); 1344 if (pci_channel_offline(to_pci_dev(dev->dev))) 1345 return BLK_EH_RESET_TIMER; 1346 1347 /* 1348 * Reset immediately if the controller is failed 1349 */ 1350 if (nvme_should_reset(dev, csts)) { 1351 nvme_warn_reset(dev, csts); 1352 nvme_dev_disable(dev, false); 1353 nvme_reset_ctrl(&dev->ctrl); 1354 return BLK_EH_DONE; 1355 } 1356 1357 /* 1358 * Did we miss an interrupt? 1359 */ 1360 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1361 nvme_poll(req->mq_hctx, NULL); 1362 else 1363 nvme_poll_irqdisable(nvmeq); 1364 1365 if (blk_mq_request_completed(req)) { 1366 dev_warn(dev->ctrl.device, 1367 "I/O %d QID %d timeout, completion polled\n", 1368 req->tag, nvmeq->qid); 1369 return BLK_EH_DONE; 1370 } 1371 1372 /* 1373 * Shutdown immediately if controller times out while starting. The 1374 * reset work will see the pci device disabled when it gets the forced 1375 * cancellation error. All outstanding requests are completed on 1376 * shutdown, so we return BLK_EH_DONE. 1377 */ 1378 switch (dev->ctrl.state) { 1379 case NVME_CTRL_CONNECTING: 1380 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1381 fallthrough; 1382 case NVME_CTRL_DELETING: 1383 dev_warn_ratelimited(dev->ctrl.device, 1384 "I/O %d QID %d timeout, disable controller\n", 1385 req->tag, nvmeq->qid); 1386 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1387 nvme_dev_disable(dev, true); 1388 return BLK_EH_DONE; 1389 case NVME_CTRL_RESETTING: 1390 return BLK_EH_RESET_TIMER; 1391 default: 1392 break; 1393 } 1394 1395 /* 1396 * Shutdown the controller immediately and schedule a reset if the 1397 * command was already aborted once before and still hasn't been 1398 * returned to the driver, or if this is the admin queue. 1399 */ 1400 if (!nvmeq->qid || iod->aborted) { 1401 dev_warn(dev->ctrl.device, 1402 "I/O %d QID %d timeout, reset controller\n", 1403 req->tag, nvmeq->qid); 1404 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1405 nvme_dev_disable(dev, false); 1406 nvme_reset_ctrl(&dev->ctrl); 1407 1408 return BLK_EH_DONE; 1409 } 1410 1411 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1412 atomic_inc(&dev->ctrl.abort_limit); 1413 return BLK_EH_RESET_TIMER; 1414 } 1415 iod->aborted = true; 1416 1417 cmd.abort.opcode = nvme_admin_abort_cmd; 1418 cmd.abort.cid = nvme_cid(req); 1419 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1420 1421 dev_warn(nvmeq->dev->ctrl.device, 1422 "I/O %d (%s) QID %d timeout, aborting\n", 1423 req->tag, 1424 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1425 nvmeq->qid); 1426 1427 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1428 BLK_MQ_REQ_NOWAIT); 1429 if (IS_ERR(abort_req)) { 1430 atomic_inc(&dev->ctrl.abort_limit); 1431 return BLK_EH_RESET_TIMER; 1432 } 1433 nvme_init_request(abort_req, &cmd); 1434 1435 abort_req->end_io = abort_endio; 1436 abort_req->end_io_data = NULL; 1437 blk_execute_rq_nowait(abort_req, false); 1438 1439 /* 1440 * The aborted req will be completed on receiving the abort req. 1441 * We enable the timer again. If hit twice, it'll cause a device reset, 1442 * as the device then is in a faulty state. 1443 */ 1444 return BLK_EH_RESET_TIMER; 1445 } 1446 1447 static void nvme_free_queue(struct nvme_queue *nvmeq) 1448 { 1449 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1450 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1451 if (!nvmeq->sq_cmds) 1452 return; 1453 1454 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1455 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1456 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1457 } else { 1458 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1459 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1460 } 1461 } 1462 1463 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1464 { 1465 int i; 1466 1467 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1468 dev->ctrl.queue_count--; 1469 nvme_free_queue(&dev->queues[i]); 1470 } 1471 } 1472 1473 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1474 { 1475 struct nvme_queue *nvmeq = &dev->queues[qid]; 1476 1477 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1478 return; 1479 1480 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1481 mb(); 1482 1483 nvmeq->dev->online_queues--; 1484 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1485 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1486 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1487 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1488 } 1489 1490 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1491 { 1492 int i; 1493 1494 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1495 nvme_suspend_queue(dev, i); 1496 } 1497 1498 /* 1499 * Called only on a device that has been disabled and after all other threads 1500 * that can check this device's completion queues have synced, except 1501 * nvme_poll(). This is the last chance for the driver to see a natural 1502 * completion before nvme_cancel_request() terminates all incomplete requests. 1503 */ 1504 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1505 { 1506 int i; 1507 1508 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1509 spin_lock(&dev->queues[i].cq_poll_lock); 1510 nvme_poll_cq(&dev->queues[i], NULL); 1511 spin_unlock(&dev->queues[i].cq_poll_lock); 1512 } 1513 } 1514 1515 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1516 int entry_size) 1517 { 1518 int q_depth = dev->q_depth; 1519 unsigned q_size_aligned = roundup(q_depth * entry_size, 1520 NVME_CTRL_PAGE_SIZE); 1521 1522 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1523 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1524 1525 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1526 q_depth = div_u64(mem_per_q, entry_size); 1527 1528 /* 1529 * Ensure the reduced q_depth is above some threshold where it 1530 * would be better to map queues in system memory with the 1531 * original depth 1532 */ 1533 if (q_depth < 64) 1534 return -ENOMEM; 1535 } 1536 1537 return q_depth; 1538 } 1539 1540 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1541 int qid) 1542 { 1543 struct pci_dev *pdev = to_pci_dev(dev->dev); 1544 1545 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1546 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1547 if (nvmeq->sq_cmds) { 1548 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1549 nvmeq->sq_cmds); 1550 if (nvmeq->sq_dma_addr) { 1551 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1552 return 0; 1553 } 1554 1555 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1556 } 1557 } 1558 1559 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1560 &nvmeq->sq_dma_addr, GFP_KERNEL); 1561 if (!nvmeq->sq_cmds) 1562 return -ENOMEM; 1563 return 0; 1564 } 1565 1566 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1567 { 1568 struct nvme_queue *nvmeq = &dev->queues[qid]; 1569 1570 if (dev->ctrl.queue_count > qid) 1571 return 0; 1572 1573 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1574 nvmeq->q_depth = depth; 1575 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1576 &nvmeq->cq_dma_addr, GFP_KERNEL); 1577 if (!nvmeq->cqes) 1578 goto free_nvmeq; 1579 1580 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1581 goto free_cqdma; 1582 1583 nvmeq->dev = dev; 1584 spin_lock_init(&nvmeq->sq_lock); 1585 spin_lock_init(&nvmeq->cq_poll_lock); 1586 nvmeq->cq_head = 0; 1587 nvmeq->cq_phase = 1; 1588 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1589 nvmeq->qid = qid; 1590 dev->ctrl.queue_count++; 1591 1592 return 0; 1593 1594 free_cqdma: 1595 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1596 nvmeq->cq_dma_addr); 1597 free_nvmeq: 1598 return -ENOMEM; 1599 } 1600 1601 static int queue_request_irq(struct nvme_queue *nvmeq) 1602 { 1603 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1604 int nr = nvmeq->dev->ctrl.instance; 1605 1606 if (use_threaded_interrupts) { 1607 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1608 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1609 } else { 1610 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1611 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1612 } 1613 } 1614 1615 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1616 { 1617 struct nvme_dev *dev = nvmeq->dev; 1618 1619 nvmeq->sq_tail = 0; 1620 nvmeq->last_sq_tail = 0; 1621 nvmeq->cq_head = 0; 1622 nvmeq->cq_phase = 1; 1623 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1624 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1625 nvme_dbbuf_init(dev, nvmeq, qid); 1626 dev->online_queues++; 1627 wmb(); /* ensure the first interrupt sees the initialization */ 1628 } 1629 1630 /* 1631 * Try getting shutdown_lock while setting up IO queues. 1632 */ 1633 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1634 { 1635 /* 1636 * Give up if the lock is being held by nvme_dev_disable. 1637 */ 1638 if (!mutex_trylock(&dev->shutdown_lock)) 1639 return -ENODEV; 1640 1641 /* 1642 * Controller is in wrong state, fail early. 1643 */ 1644 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1645 mutex_unlock(&dev->shutdown_lock); 1646 return -ENODEV; 1647 } 1648 1649 return 0; 1650 } 1651 1652 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1653 { 1654 struct nvme_dev *dev = nvmeq->dev; 1655 int result; 1656 u16 vector = 0; 1657 1658 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1659 1660 /* 1661 * A queue's vector matches the queue identifier unless the controller 1662 * has only one vector available. 1663 */ 1664 if (!polled) 1665 vector = dev->num_vecs == 1 ? 0 : qid; 1666 else 1667 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1668 1669 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1670 if (result) 1671 return result; 1672 1673 result = adapter_alloc_sq(dev, qid, nvmeq); 1674 if (result < 0) 1675 return result; 1676 if (result) 1677 goto release_cq; 1678 1679 nvmeq->cq_vector = vector; 1680 1681 result = nvme_setup_io_queues_trylock(dev); 1682 if (result) 1683 return result; 1684 nvme_init_queue(nvmeq, qid); 1685 if (!polled) { 1686 result = queue_request_irq(nvmeq); 1687 if (result < 0) 1688 goto release_sq; 1689 } 1690 1691 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1692 mutex_unlock(&dev->shutdown_lock); 1693 return result; 1694 1695 release_sq: 1696 dev->online_queues--; 1697 mutex_unlock(&dev->shutdown_lock); 1698 adapter_delete_sq(dev, qid); 1699 release_cq: 1700 adapter_delete_cq(dev, qid); 1701 return result; 1702 } 1703 1704 static const struct blk_mq_ops nvme_mq_admin_ops = { 1705 .queue_rq = nvme_queue_rq, 1706 .complete = nvme_pci_complete_rq, 1707 .init_hctx = nvme_admin_init_hctx, 1708 .init_request = nvme_pci_init_request, 1709 .timeout = nvme_timeout, 1710 }; 1711 1712 static const struct blk_mq_ops nvme_mq_ops = { 1713 .queue_rq = nvme_queue_rq, 1714 .queue_rqs = nvme_queue_rqs, 1715 .complete = nvme_pci_complete_rq, 1716 .commit_rqs = nvme_commit_rqs, 1717 .init_hctx = nvme_init_hctx, 1718 .init_request = nvme_pci_init_request, 1719 .map_queues = nvme_pci_map_queues, 1720 .timeout = nvme_timeout, 1721 .poll = nvme_poll, 1722 }; 1723 1724 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1725 { 1726 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1727 /* 1728 * If the controller was reset during removal, it's possible 1729 * user requests may be waiting on a stopped queue. Start the 1730 * queue to flush these to completion. 1731 */ 1732 nvme_unquiesce_admin_queue(&dev->ctrl); 1733 nvme_remove_admin_tag_set(&dev->ctrl); 1734 } 1735 } 1736 1737 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1738 { 1739 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1740 } 1741 1742 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1743 { 1744 struct pci_dev *pdev = to_pci_dev(dev->dev); 1745 1746 if (size <= dev->bar_mapped_size) 1747 return 0; 1748 if (size > pci_resource_len(pdev, 0)) 1749 return -ENOMEM; 1750 if (dev->bar) 1751 iounmap(dev->bar); 1752 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1753 if (!dev->bar) { 1754 dev->bar_mapped_size = 0; 1755 return -ENOMEM; 1756 } 1757 dev->bar_mapped_size = size; 1758 dev->dbs = dev->bar + NVME_REG_DBS; 1759 1760 return 0; 1761 } 1762 1763 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1764 { 1765 int result; 1766 u32 aqa; 1767 struct nvme_queue *nvmeq; 1768 1769 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1770 if (result < 0) 1771 return result; 1772 1773 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1774 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1775 1776 if (dev->subsystem && 1777 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1778 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1779 1780 /* 1781 * If the device has been passed off to us in an enabled state, just 1782 * clear the enabled bit. The spec says we should set the 'shutdown 1783 * notification bits', but doing so may cause the device to complete 1784 * commands to the admin queue ... and we don't know what memory that 1785 * might be pointing at! 1786 */ 1787 result = nvme_disable_ctrl(&dev->ctrl, false); 1788 if (result < 0) 1789 return result; 1790 1791 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1792 if (result) 1793 return result; 1794 1795 dev->ctrl.numa_node = dev_to_node(dev->dev); 1796 1797 nvmeq = &dev->queues[0]; 1798 aqa = nvmeq->q_depth - 1; 1799 aqa |= aqa << 16; 1800 1801 writel(aqa, dev->bar + NVME_REG_AQA); 1802 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1803 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1804 1805 result = nvme_enable_ctrl(&dev->ctrl); 1806 if (result) 1807 return result; 1808 1809 nvmeq->cq_vector = 0; 1810 nvme_init_queue(nvmeq, 0); 1811 result = queue_request_irq(nvmeq); 1812 if (result) { 1813 dev->online_queues--; 1814 return result; 1815 } 1816 1817 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1818 return result; 1819 } 1820 1821 static int nvme_create_io_queues(struct nvme_dev *dev) 1822 { 1823 unsigned i, max, rw_queues; 1824 int ret = 0; 1825 1826 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1827 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1828 ret = -ENOMEM; 1829 break; 1830 } 1831 } 1832 1833 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1834 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1835 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1836 dev->io_queues[HCTX_TYPE_READ]; 1837 } else { 1838 rw_queues = max; 1839 } 1840 1841 for (i = dev->online_queues; i <= max; i++) { 1842 bool polled = i > rw_queues; 1843 1844 ret = nvme_create_queue(&dev->queues[i], i, polled); 1845 if (ret) 1846 break; 1847 } 1848 1849 /* 1850 * Ignore failing Create SQ/CQ commands, we can continue with less 1851 * than the desired amount of queues, and even a controller without 1852 * I/O queues can still be used to issue admin commands. This might 1853 * be useful to upgrade a buggy firmware for example. 1854 */ 1855 return ret >= 0 ? 0 : ret; 1856 } 1857 1858 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1859 { 1860 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1861 1862 return 1ULL << (12 + 4 * szu); 1863 } 1864 1865 static u32 nvme_cmb_size(struct nvme_dev *dev) 1866 { 1867 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1868 } 1869 1870 static void nvme_map_cmb(struct nvme_dev *dev) 1871 { 1872 u64 size, offset; 1873 resource_size_t bar_size; 1874 struct pci_dev *pdev = to_pci_dev(dev->dev); 1875 int bar; 1876 1877 if (dev->cmb_size) 1878 return; 1879 1880 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1881 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1882 1883 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1884 if (!dev->cmbsz) 1885 return; 1886 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1887 1888 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1889 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1890 bar = NVME_CMB_BIR(dev->cmbloc); 1891 bar_size = pci_resource_len(pdev, bar); 1892 1893 if (offset > bar_size) 1894 return; 1895 1896 /* 1897 * Tell the controller about the host side address mapping the CMB, 1898 * and enable CMB decoding for the NVMe 1.4+ scheme: 1899 */ 1900 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1901 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1902 (pci_bus_address(pdev, bar) + offset), 1903 dev->bar + NVME_REG_CMBMSC); 1904 } 1905 1906 /* 1907 * Controllers may support a CMB size larger than their BAR, 1908 * for example, due to being behind a bridge. Reduce the CMB to 1909 * the reported size of the BAR 1910 */ 1911 if (size > bar_size - offset) 1912 size = bar_size - offset; 1913 1914 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1915 dev_warn(dev->ctrl.device, 1916 "failed to register the CMB\n"); 1917 return; 1918 } 1919 1920 dev->cmb_size = size; 1921 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1922 1923 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1924 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1925 pci_p2pmem_publish(pdev, true); 1926 } 1927 1928 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1929 { 1930 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1931 u64 dma_addr = dev->host_mem_descs_dma; 1932 struct nvme_command c = { }; 1933 int ret; 1934 1935 c.features.opcode = nvme_admin_set_features; 1936 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1937 c.features.dword11 = cpu_to_le32(bits); 1938 c.features.dword12 = cpu_to_le32(host_mem_size); 1939 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1940 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1941 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1942 1943 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1944 if (ret) { 1945 dev_warn(dev->ctrl.device, 1946 "failed to set host mem (err %d, flags %#x).\n", 1947 ret, bits); 1948 } else 1949 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1950 1951 return ret; 1952 } 1953 1954 static void nvme_free_host_mem(struct nvme_dev *dev) 1955 { 1956 int i; 1957 1958 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1959 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1960 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1961 1962 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1963 le64_to_cpu(desc->addr), 1964 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1965 } 1966 1967 kfree(dev->host_mem_desc_bufs); 1968 dev->host_mem_desc_bufs = NULL; 1969 dma_free_coherent(dev->dev, 1970 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1971 dev->host_mem_descs, dev->host_mem_descs_dma); 1972 dev->host_mem_descs = NULL; 1973 dev->nr_host_mem_descs = 0; 1974 } 1975 1976 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1977 u32 chunk_size) 1978 { 1979 struct nvme_host_mem_buf_desc *descs; 1980 u32 max_entries, len; 1981 dma_addr_t descs_dma; 1982 int i = 0; 1983 void **bufs; 1984 u64 size, tmp; 1985 1986 tmp = (preferred + chunk_size - 1); 1987 do_div(tmp, chunk_size); 1988 max_entries = tmp; 1989 1990 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1991 max_entries = dev->ctrl.hmmaxd; 1992 1993 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1994 &descs_dma, GFP_KERNEL); 1995 if (!descs) 1996 goto out; 1997 1998 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1999 if (!bufs) 2000 goto out_free_descs; 2001 2002 for (size = 0; size < preferred && i < max_entries; size += len) { 2003 dma_addr_t dma_addr; 2004 2005 len = min_t(u64, chunk_size, preferred - size); 2006 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2007 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2008 if (!bufs[i]) 2009 break; 2010 2011 descs[i].addr = cpu_to_le64(dma_addr); 2012 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2013 i++; 2014 } 2015 2016 if (!size) 2017 goto out_free_bufs; 2018 2019 dev->nr_host_mem_descs = i; 2020 dev->host_mem_size = size; 2021 dev->host_mem_descs = descs; 2022 dev->host_mem_descs_dma = descs_dma; 2023 dev->host_mem_desc_bufs = bufs; 2024 return 0; 2025 2026 out_free_bufs: 2027 while (--i >= 0) { 2028 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 2029 2030 dma_free_attrs(dev->dev, size, bufs[i], 2031 le64_to_cpu(descs[i].addr), 2032 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2033 } 2034 2035 kfree(bufs); 2036 out_free_descs: 2037 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2038 descs_dma); 2039 out: 2040 dev->host_mem_descs = NULL; 2041 return -ENOMEM; 2042 } 2043 2044 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2045 { 2046 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2047 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2048 u64 chunk_size; 2049 2050 /* start big and work our way down */ 2051 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2052 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2053 if (!min || dev->host_mem_size >= min) 2054 return 0; 2055 nvme_free_host_mem(dev); 2056 } 2057 } 2058 2059 return -ENOMEM; 2060 } 2061 2062 static int nvme_setup_host_mem(struct nvme_dev *dev) 2063 { 2064 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2065 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2066 u64 min = (u64)dev->ctrl.hmmin * 4096; 2067 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2068 int ret; 2069 2070 if (!dev->ctrl.hmpre) 2071 return 0; 2072 2073 preferred = min(preferred, max); 2074 if (min > max) { 2075 dev_warn(dev->ctrl.device, 2076 "min host memory (%lld MiB) above limit (%d MiB).\n", 2077 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2078 nvme_free_host_mem(dev); 2079 return 0; 2080 } 2081 2082 /* 2083 * If we already have a buffer allocated check if we can reuse it. 2084 */ 2085 if (dev->host_mem_descs) { 2086 if (dev->host_mem_size >= min) 2087 enable_bits |= NVME_HOST_MEM_RETURN; 2088 else 2089 nvme_free_host_mem(dev); 2090 } 2091 2092 if (!dev->host_mem_descs) { 2093 if (nvme_alloc_host_mem(dev, min, preferred)) { 2094 dev_warn(dev->ctrl.device, 2095 "failed to allocate host memory buffer.\n"); 2096 return 0; /* controller must work without HMB */ 2097 } 2098 2099 dev_info(dev->ctrl.device, 2100 "allocated %lld MiB host memory buffer.\n", 2101 dev->host_mem_size >> ilog2(SZ_1M)); 2102 } 2103 2104 ret = nvme_set_host_mem(dev, enable_bits); 2105 if (ret) 2106 nvme_free_host_mem(dev); 2107 return ret; 2108 } 2109 2110 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2111 char *buf) 2112 { 2113 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2114 2115 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2116 ndev->cmbloc, ndev->cmbsz); 2117 } 2118 static DEVICE_ATTR_RO(cmb); 2119 2120 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2121 char *buf) 2122 { 2123 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2124 2125 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2126 } 2127 static DEVICE_ATTR_RO(cmbloc); 2128 2129 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2130 char *buf) 2131 { 2132 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2133 2134 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2135 } 2136 static DEVICE_ATTR_RO(cmbsz); 2137 2138 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2139 char *buf) 2140 { 2141 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2142 2143 return sysfs_emit(buf, "%d\n", ndev->hmb); 2144 } 2145 2146 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2147 const char *buf, size_t count) 2148 { 2149 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2150 bool new; 2151 int ret; 2152 2153 if (kstrtobool(buf, &new) < 0) 2154 return -EINVAL; 2155 2156 if (new == ndev->hmb) 2157 return count; 2158 2159 if (new) { 2160 ret = nvme_setup_host_mem(ndev); 2161 } else { 2162 ret = nvme_set_host_mem(ndev, 0); 2163 if (!ret) 2164 nvme_free_host_mem(ndev); 2165 } 2166 2167 if (ret < 0) 2168 return ret; 2169 2170 return count; 2171 } 2172 static DEVICE_ATTR_RW(hmb); 2173 2174 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2175 struct attribute *a, int n) 2176 { 2177 struct nvme_ctrl *ctrl = 2178 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2179 struct nvme_dev *dev = to_nvme_dev(ctrl); 2180 2181 if (a == &dev_attr_cmb.attr || 2182 a == &dev_attr_cmbloc.attr || 2183 a == &dev_attr_cmbsz.attr) { 2184 if (!dev->cmbsz) 2185 return 0; 2186 } 2187 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2188 return 0; 2189 2190 return a->mode; 2191 } 2192 2193 static struct attribute *nvme_pci_attrs[] = { 2194 &dev_attr_cmb.attr, 2195 &dev_attr_cmbloc.attr, 2196 &dev_attr_cmbsz.attr, 2197 &dev_attr_hmb.attr, 2198 NULL, 2199 }; 2200 2201 static const struct attribute_group nvme_pci_dev_attrs_group = { 2202 .attrs = nvme_pci_attrs, 2203 .is_visible = nvme_pci_attrs_are_visible, 2204 }; 2205 2206 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2207 &nvme_dev_attrs_group, 2208 &nvme_pci_dev_attrs_group, 2209 NULL, 2210 }; 2211 2212 /* 2213 * nirqs is the number of interrupts available for write and read 2214 * queues. The core already reserved an interrupt for the admin queue. 2215 */ 2216 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2217 { 2218 struct nvme_dev *dev = affd->priv; 2219 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2220 2221 /* 2222 * If there is no interrupt available for queues, ensure that 2223 * the default queue is set to 1. The affinity set size is 2224 * also set to one, but the irq core ignores it for this case. 2225 * 2226 * If only one interrupt is available or 'write_queue' == 0, combine 2227 * write and read queues. 2228 * 2229 * If 'write_queues' > 0, ensure it leaves room for at least one read 2230 * queue. 2231 */ 2232 if (!nrirqs) { 2233 nrirqs = 1; 2234 nr_read_queues = 0; 2235 } else if (nrirqs == 1 || !nr_write_queues) { 2236 nr_read_queues = 0; 2237 } else if (nr_write_queues >= nrirqs) { 2238 nr_read_queues = 1; 2239 } else { 2240 nr_read_queues = nrirqs - nr_write_queues; 2241 } 2242 2243 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2244 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2245 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2246 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2247 affd->nr_sets = nr_read_queues ? 2 : 1; 2248 } 2249 2250 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2251 { 2252 struct pci_dev *pdev = to_pci_dev(dev->dev); 2253 struct irq_affinity affd = { 2254 .pre_vectors = 1, 2255 .calc_sets = nvme_calc_irq_sets, 2256 .priv = dev, 2257 }; 2258 unsigned int irq_queues, poll_queues; 2259 2260 /* 2261 * Poll queues don't need interrupts, but we need at least one I/O queue 2262 * left over for non-polled I/O. 2263 */ 2264 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2265 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2266 2267 /* 2268 * Initialize for the single interrupt case, will be updated in 2269 * nvme_calc_irq_sets(). 2270 */ 2271 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2272 dev->io_queues[HCTX_TYPE_READ] = 0; 2273 2274 /* 2275 * We need interrupts for the admin queue and each non-polled I/O queue, 2276 * but some Apple controllers require all queues to use the first 2277 * vector. 2278 */ 2279 irq_queues = 1; 2280 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2281 irq_queues += (nr_io_queues - poll_queues); 2282 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2283 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2284 } 2285 2286 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2287 { 2288 /* 2289 * If tags are shared with admin queue (Apple bug), then 2290 * make sure we only use one IO queue. 2291 */ 2292 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2293 return 1; 2294 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2295 } 2296 2297 static int nvme_setup_io_queues(struct nvme_dev *dev) 2298 { 2299 struct nvme_queue *adminq = &dev->queues[0]; 2300 struct pci_dev *pdev = to_pci_dev(dev->dev); 2301 unsigned int nr_io_queues; 2302 unsigned long size; 2303 int result; 2304 2305 /* 2306 * Sample the module parameters once at reset time so that we have 2307 * stable values to work with. 2308 */ 2309 dev->nr_write_queues = write_queues; 2310 dev->nr_poll_queues = poll_queues; 2311 2312 nr_io_queues = dev->nr_allocated_queues - 1; 2313 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2314 if (result < 0) 2315 return result; 2316 2317 if (nr_io_queues == 0) 2318 return 0; 2319 2320 /* 2321 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2322 * from set to unset. If there is a window to it is truely freed, 2323 * pci_free_irq_vectors() jumping into this window will crash. 2324 * And take lock to avoid racing with pci_free_irq_vectors() in 2325 * nvme_dev_disable() path. 2326 */ 2327 result = nvme_setup_io_queues_trylock(dev); 2328 if (result) 2329 return result; 2330 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2331 pci_free_irq(pdev, 0, adminq); 2332 2333 if (dev->cmb_use_sqes) { 2334 result = nvme_cmb_qdepth(dev, nr_io_queues, 2335 sizeof(struct nvme_command)); 2336 if (result > 0) { 2337 dev->q_depth = result; 2338 dev->ctrl.sqsize = result - 1; 2339 } else { 2340 dev->cmb_use_sqes = false; 2341 } 2342 } 2343 2344 do { 2345 size = db_bar_size(dev, nr_io_queues); 2346 result = nvme_remap_bar(dev, size); 2347 if (!result) 2348 break; 2349 if (!--nr_io_queues) { 2350 result = -ENOMEM; 2351 goto out_unlock; 2352 } 2353 } while (1); 2354 adminq->q_db = dev->dbs; 2355 2356 retry: 2357 /* Deregister the admin queue's interrupt */ 2358 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2359 pci_free_irq(pdev, 0, adminq); 2360 2361 /* 2362 * If we enable msix early due to not intx, disable it again before 2363 * setting up the full range we need. 2364 */ 2365 pci_free_irq_vectors(pdev); 2366 2367 result = nvme_setup_irqs(dev, nr_io_queues); 2368 if (result <= 0) { 2369 result = -EIO; 2370 goto out_unlock; 2371 } 2372 2373 dev->num_vecs = result; 2374 result = max(result - 1, 1); 2375 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2376 2377 /* 2378 * Should investigate if there's a performance win from allocating 2379 * more queues than interrupt vectors; it might allow the submission 2380 * path to scale better, even if the receive path is limited by the 2381 * number of interrupts. 2382 */ 2383 result = queue_request_irq(adminq); 2384 if (result) 2385 goto out_unlock; 2386 set_bit(NVMEQ_ENABLED, &adminq->flags); 2387 mutex_unlock(&dev->shutdown_lock); 2388 2389 result = nvme_create_io_queues(dev); 2390 if (result || dev->online_queues < 2) 2391 return result; 2392 2393 if (dev->online_queues - 1 < dev->max_qid) { 2394 nr_io_queues = dev->online_queues - 1; 2395 nvme_delete_io_queues(dev); 2396 result = nvme_setup_io_queues_trylock(dev); 2397 if (result) 2398 return result; 2399 nvme_suspend_io_queues(dev); 2400 goto retry; 2401 } 2402 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2403 dev->io_queues[HCTX_TYPE_DEFAULT], 2404 dev->io_queues[HCTX_TYPE_READ], 2405 dev->io_queues[HCTX_TYPE_POLL]); 2406 return 0; 2407 out_unlock: 2408 mutex_unlock(&dev->shutdown_lock); 2409 return result; 2410 } 2411 2412 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2413 blk_status_t error) 2414 { 2415 struct nvme_queue *nvmeq = req->end_io_data; 2416 2417 blk_mq_free_request(req); 2418 complete(&nvmeq->delete_done); 2419 return RQ_END_IO_NONE; 2420 } 2421 2422 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2423 blk_status_t error) 2424 { 2425 struct nvme_queue *nvmeq = req->end_io_data; 2426 2427 if (error) 2428 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2429 2430 return nvme_del_queue_end(req, error); 2431 } 2432 2433 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2434 { 2435 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2436 struct request *req; 2437 struct nvme_command cmd = { }; 2438 2439 cmd.delete_queue.opcode = opcode; 2440 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2441 2442 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2443 if (IS_ERR(req)) 2444 return PTR_ERR(req); 2445 nvme_init_request(req, &cmd); 2446 2447 if (opcode == nvme_admin_delete_cq) 2448 req->end_io = nvme_del_cq_end; 2449 else 2450 req->end_io = nvme_del_queue_end; 2451 req->end_io_data = nvmeq; 2452 2453 init_completion(&nvmeq->delete_done); 2454 blk_execute_rq_nowait(req, false); 2455 return 0; 2456 } 2457 2458 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2459 { 2460 int nr_queues = dev->online_queues - 1, sent = 0; 2461 unsigned long timeout; 2462 2463 retry: 2464 timeout = NVME_ADMIN_TIMEOUT; 2465 while (nr_queues > 0) { 2466 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2467 break; 2468 nr_queues--; 2469 sent++; 2470 } 2471 while (sent) { 2472 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2473 2474 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2475 timeout); 2476 if (timeout == 0) 2477 return false; 2478 2479 sent--; 2480 if (nr_queues) 2481 goto retry; 2482 } 2483 return true; 2484 } 2485 2486 static void nvme_delete_io_queues(struct nvme_dev *dev) 2487 { 2488 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2489 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2490 } 2491 2492 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2493 { 2494 if (dev->io_queues[HCTX_TYPE_POLL]) 2495 return 3; 2496 if (dev->io_queues[HCTX_TYPE_READ]) 2497 return 2; 2498 return 1; 2499 } 2500 2501 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2502 { 2503 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2504 /* free previously allocated queues that are no longer usable */ 2505 nvme_free_queues(dev, dev->online_queues); 2506 } 2507 2508 static int nvme_pci_enable(struct nvme_dev *dev) 2509 { 2510 int result = -ENOMEM; 2511 struct pci_dev *pdev = to_pci_dev(dev->dev); 2512 int dma_address_bits = 64; 2513 2514 if (pci_enable_device_mem(pdev)) 2515 return result; 2516 2517 pci_set_master(pdev); 2518 2519 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2520 dma_address_bits = 48; 2521 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2522 goto disable; 2523 2524 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2525 result = -ENODEV; 2526 goto disable; 2527 } 2528 2529 /* 2530 * Some devices and/or platforms don't advertise or work with INTx 2531 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2532 * adjust this later. 2533 */ 2534 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2535 if (result < 0) 2536 goto disable; 2537 2538 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2539 2540 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2541 io_queue_depth); 2542 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2543 dev->dbs = dev->bar + 4096; 2544 2545 /* 2546 * Some Apple controllers require a non-standard SQE size. 2547 * Interestingly they also seem to ignore the CC:IOSQES register 2548 * so we don't bother updating it here. 2549 */ 2550 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2551 dev->io_sqes = 7; 2552 else 2553 dev->io_sqes = NVME_NVM_IOSQES; 2554 2555 /* 2556 * Temporary fix for the Apple controller found in the MacBook8,1 and 2557 * some MacBook7,1 to avoid controller resets and data loss. 2558 */ 2559 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2560 dev->q_depth = 2; 2561 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2562 "set queue depth=%u to work around controller resets\n", 2563 dev->q_depth); 2564 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2565 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2566 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2567 dev->q_depth = 64; 2568 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2569 "set queue depth=%u\n", dev->q_depth); 2570 } 2571 2572 /* 2573 * Controllers with the shared tags quirk need the IO queue to be 2574 * big enough so that we get 32 tags for the admin queue 2575 */ 2576 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2577 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2578 dev->q_depth = NVME_AQ_DEPTH + 2; 2579 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2580 dev->q_depth); 2581 } 2582 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2583 2584 nvme_map_cmb(dev); 2585 2586 pci_enable_pcie_error_reporting(pdev); 2587 pci_save_state(pdev); 2588 2589 result = nvme_pci_configure_admin_queue(dev); 2590 if (result) 2591 goto free_irq; 2592 return result; 2593 2594 free_irq: 2595 pci_free_irq_vectors(pdev); 2596 disable: 2597 pci_disable_device(pdev); 2598 return result; 2599 } 2600 2601 static void nvme_dev_unmap(struct nvme_dev *dev) 2602 { 2603 if (dev->bar) 2604 iounmap(dev->bar); 2605 pci_release_mem_regions(to_pci_dev(dev->dev)); 2606 } 2607 2608 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2609 { 2610 struct pci_dev *pdev = to_pci_dev(dev->dev); 2611 u32 csts; 2612 2613 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2614 return true; 2615 if (pdev->error_state != pci_channel_io_normal) 2616 return true; 2617 2618 csts = readl(dev->bar + NVME_REG_CSTS); 2619 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2620 } 2621 2622 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2623 { 2624 struct pci_dev *pdev = to_pci_dev(dev->dev); 2625 bool dead; 2626 2627 mutex_lock(&dev->shutdown_lock); 2628 dead = nvme_pci_ctrl_is_dead(dev); 2629 if (dev->ctrl.state == NVME_CTRL_LIVE || 2630 dev->ctrl.state == NVME_CTRL_RESETTING) { 2631 if (pci_is_enabled(pdev)) 2632 nvme_start_freeze(&dev->ctrl); 2633 /* 2634 * Give the controller a chance to complete all entered requests 2635 * if doing a safe shutdown. 2636 */ 2637 if (!dead && shutdown) 2638 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2639 } 2640 2641 nvme_quiesce_io_queues(&dev->ctrl); 2642 2643 if (!dead && dev->ctrl.queue_count > 0) { 2644 nvme_delete_io_queues(dev); 2645 nvme_disable_ctrl(&dev->ctrl, shutdown); 2646 nvme_poll_irqdisable(&dev->queues[0]); 2647 } 2648 nvme_suspend_io_queues(dev); 2649 nvme_suspend_queue(dev, 0); 2650 pci_free_irq_vectors(pdev); 2651 if (pci_is_enabled(pdev)) { 2652 pci_disable_pcie_error_reporting(pdev); 2653 pci_disable_device(pdev); 2654 } 2655 nvme_reap_pending_cqes(dev); 2656 2657 nvme_cancel_tagset(&dev->ctrl); 2658 nvme_cancel_admin_tagset(&dev->ctrl); 2659 2660 /* 2661 * The driver will not be starting up queues again if shutting down so 2662 * must flush all entered requests to their failed completion to avoid 2663 * deadlocking blk-mq hot-cpu notifier. 2664 */ 2665 if (shutdown) { 2666 nvme_unquiesce_io_queues(&dev->ctrl); 2667 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2668 nvme_unquiesce_admin_queue(&dev->ctrl); 2669 } 2670 mutex_unlock(&dev->shutdown_lock); 2671 } 2672 2673 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2674 { 2675 if (!nvme_wait_reset(&dev->ctrl)) 2676 return -EBUSY; 2677 nvme_dev_disable(dev, shutdown); 2678 return 0; 2679 } 2680 2681 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2682 { 2683 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2684 NVME_CTRL_PAGE_SIZE, 2685 NVME_CTRL_PAGE_SIZE, 0); 2686 if (!dev->prp_page_pool) 2687 return -ENOMEM; 2688 2689 /* Optimisation for I/Os between 4k and 128k */ 2690 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2691 256, 256, 0); 2692 if (!dev->prp_small_pool) { 2693 dma_pool_destroy(dev->prp_page_pool); 2694 return -ENOMEM; 2695 } 2696 return 0; 2697 } 2698 2699 static void nvme_release_prp_pools(struct nvme_dev *dev) 2700 { 2701 dma_pool_destroy(dev->prp_page_pool); 2702 dma_pool_destroy(dev->prp_small_pool); 2703 } 2704 2705 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2706 { 2707 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 2708 size_t alloc_size = sizeof(__le64 *) * npages + 2709 sizeof(struct scatterlist) * NVME_MAX_SEGS; 2710 2711 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2712 dev->iod_mempool = mempool_create_node(1, 2713 mempool_kmalloc, mempool_kfree, 2714 (void *)alloc_size, GFP_KERNEL, 2715 dev_to_node(dev->dev)); 2716 if (!dev->iod_mempool) 2717 return -ENOMEM; 2718 return 0; 2719 } 2720 2721 static void nvme_free_tagset(struct nvme_dev *dev) 2722 { 2723 if (dev->tagset.tags) 2724 nvme_remove_io_tag_set(&dev->ctrl); 2725 dev->ctrl.tagset = NULL; 2726 } 2727 2728 /* pairs with nvme_pci_alloc_dev */ 2729 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2730 { 2731 struct nvme_dev *dev = to_nvme_dev(ctrl); 2732 2733 nvme_free_tagset(dev); 2734 put_device(dev->dev); 2735 kfree(dev->queues); 2736 kfree(dev); 2737 } 2738 2739 static void nvme_reset_work(struct work_struct *work) 2740 { 2741 struct nvme_dev *dev = 2742 container_of(work, struct nvme_dev, ctrl.reset_work); 2743 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2744 int result; 2745 2746 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2747 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2748 dev->ctrl.state); 2749 return; 2750 } 2751 2752 /* 2753 * If we're called to reset a live controller first shut it down before 2754 * moving on. 2755 */ 2756 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2757 nvme_dev_disable(dev, false); 2758 nvme_sync_queues(&dev->ctrl); 2759 2760 mutex_lock(&dev->shutdown_lock); 2761 result = nvme_pci_enable(dev); 2762 if (result) 2763 goto out_unlock; 2764 nvme_unquiesce_admin_queue(&dev->ctrl); 2765 mutex_unlock(&dev->shutdown_lock); 2766 2767 /* 2768 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2769 * initializing procedure here. 2770 */ 2771 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2772 dev_warn(dev->ctrl.device, 2773 "failed to mark controller CONNECTING\n"); 2774 result = -EBUSY; 2775 goto out; 2776 } 2777 2778 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2779 if (result) 2780 goto out; 2781 2782 nvme_dbbuf_dma_alloc(dev); 2783 2784 result = nvme_setup_host_mem(dev); 2785 if (result < 0) 2786 goto out; 2787 2788 result = nvme_setup_io_queues(dev); 2789 if (result) 2790 goto out; 2791 2792 /* 2793 * Freeze and update the number of I/O queues as thos might have 2794 * changed. If there are no I/O queues left after this reset, keep the 2795 * controller around but remove all namespaces. 2796 */ 2797 if (dev->online_queues > 1) { 2798 nvme_unquiesce_io_queues(&dev->ctrl); 2799 nvme_wait_freeze(&dev->ctrl); 2800 nvme_pci_update_nr_queues(dev); 2801 nvme_dbbuf_set(dev); 2802 nvme_unfreeze(&dev->ctrl); 2803 } else { 2804 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2805 nvme_mark_namespaces_dead(&dev->ctrl); 2806 nvme_unquiesce_io_queues(&dev->ctrl); 2807 nvme_remove_namespaces(&dev->ctrl); 2808 nvme_free_tagset(dev); 2809 } 2810 2811 /* 2812 * If only admin queue live, keep it to do further investigation or 2813 * recovery. 2814 */ 2815 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2816 dev_warn(dev->ctrl.device, 2817 "failed to mark controller live state\n"); 2818 result = -ENODEV; 2819 goto out; 2820 } 2821 2822 nvme_start_ctrl(&dev->ctrl); 2823 return; 2824 2825 out_unlock: 2826 mutex_unlock(&dev->shutdown_lock); 2827 out: 2828 /* 2829 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2830 * may be holding this pci_dev's device lock. 2831 */ 2832 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2833 result); 2834 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2835 nvme_dev_disable(dev, true); 2836 nvme_mark_namespaces_dead(&dev->ctrl); 2837 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2838 } 2839 2840 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2841 { 2842 *val = readl(to_nvme_dev(ctrl)->bar + off); 2843 return 0; 2844 } 2845 2846 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2847 { 2848 writel(val, to_nvme_dev(ctrl)->bar + off); 2849 return 0; 2850 } 2851 2852 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2853 { 2854 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2855 return 0; 2856 } 2857 2858 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2859 { 2860 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2861 2862 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2863 } 2864 2865 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2866 { 2867 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2868 struct nvme_subsystem *subsys = ctrl->subsys; 2869 2870 dev_err(ctrl->device, 2871 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2872 pdev->vendor, pdev->device, 2873 nvme_strlen(subsys->model, sizeof(subsys->model)), 2874 subsys->model, nvme_strlen(subsys->firmware_rev, 2875 sizeof(subsys->firmware_rev)), 2876 subsys->firmware_rev); 2877 } 2878 2879 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2880 { 2881 struct nvme_dev *dev = to_nvme_dev(ctrl); 2882 2883 return dma_pci_p2pdma_supported(dev->dev); 2884 } 2885 2886 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2887 .name = "pcie", 2888 .module = THIS_MODULE, 2889 .flags = NVME_F_METADATA_SUPPORTED, 2890 .dev_attr_groups = nvme_pci_dev_attr_groups, 2891 .reg_read32 = nvme_pci_reg_read32, 2892 .reg_write32 = nvme_pci_reg_write32, 2893 .reg_read64 = nvme_pci_reg_read64, 2894 .free_ctrl = nvme_pci_free_ctrl, 2895 .submit_async_event = nvme_pci_submit_async_event, 2896 .get_address = nvme_pci_get_address, 2897 .print_device_info = nvme_pci_print_device_info, 2898 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2899 }; 2900 2901 static int nvme_dev_map(struct nvme_dev *dev) 2902 { 2903 struct pci_dev *pdev = to_pci_dev(dev->dev); 2904 2905 if (pci_request_mem_regions(pdev, "nvme")) 2906 return -ENODEV; 2907 2908 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2909 goto release; 2910 2911 return 0; 2912 release: 2913 pci_release_mem_regions(pdev); 2914 return -ENODEV; 2915 } 2916 2917 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2918 { 2919 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2920 /* 2921 * Several Samsung devices seem to drop off the PCIe bus 2922 * randomly when APST is on and uses the deepest sleep state. 2923 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2924 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2925 * 950 PRO 256GB", but it seems to be restricted to two Dell 2926 * laptops. 2927 */ 2928 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2929 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2930 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2931 return NVME_QUIRK_NO_DEEPEST_PS; 2932 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2933 /* 2934 * Samsung SSD 960 EVO drops off the PCIe bus after system 2935 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2936 * within few minutes after bootup on a Coffee Lake board - 2937 * ASUS PRIME Z370-A 2938 */ 2939 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2940 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2941 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2942 return NVME_QUIRK_NO_APST; 2943 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2944 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2945 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2946 /* 2947 * Forcing to use host managed nvme power settings for 2948 * lowest idle power with quick resume latency on 2949 * Samsung and Toshiba SSDs based on suspend behavior 2950 * on Coffee Lake board for LENOVO C640 2951 */ 2952 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2953 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2954 return NVME_QUIRK_SIMPLE_SUSPEND; 2955 } 2956 2957 return 0; 2958 } 2959 2960 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2961 const struct pci_device_id *id) 2962 { 2963 unsigned long quirks = id->driver_data; 2964 int node = dev_to_node(&pdev->dev); 2965 struct nvme_dev *dev; 2966 int ret = -ENOMEM; 2967 2968 if (node == NUMA_NO_NODE) 2969 set_dev_node(&pdev->dev, first_memory_node); 2970 2971 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2972 if (!dev) 2973 return NULL; 2974 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2975 mutex_init(&dev->shutdown_lock); 2976 2977 dev->nr_write_queues = write_queues; 2978 dev->nr_poll_queues = poll_queues; 2979 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2980 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2981 sizeof(struct nvme_queue), GFP_KERNEL, node); 2982 if (!dev->queues) 2983 goto out_free_dev; 2984 2985 dev->dev = get_device(&pdev->dev); 2986 2987 quirks |= check_vendor_combination_bug(pdev); 2988 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 2989 /* 2990 * Some systems use a bios work around to ask for D3 on 2991 * platforms that support kernel managed suspend. 2992 */ 2993 dev_info(&pdev->dev, 2994 "platform quirk: setting simple suspend\n"); 2995 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2996 } 2997 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2998 quirks); 2999 if (ret) 3000 goto out_put_device; 3001 3002 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3003 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3004 3005 /* 3006 * Limit the max command size to prevent iod->sg allocations going 3007 * over a single page. 3008 */ 3009 dev->ctrl.max_hw_sectors = min_t(u32, 3010 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9); 3011 dev->ctrl.max_segments = NVME_MAX_SEGS; 3012 3013 /* 3014 * There is no support for SGLs for metadata (yet), so we are limited to 3015 * a single integrity segment for the separate metadata pointer. 3016 */ 3017 dev->ctrl.max_integrity_segments = 1; 3018 return dev; 3019 3020 out_put_device: 3021 put_device(dev->dev); 3022 kfree(dev->queues); 3023 out_free_dev: 3024 kfree(dev); 3025 return ERR_PTR(ret); 3026 } 3027 3028 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3029 { 3030 struct nvme_dev *dev; 3031 int result = -ENOMEM; 3032 3033 dev = nvme_pci_alloc_dev(pdev, id); 3034 if (!dev) 3035 return -ENOMEM; 3036 3037 result = nvme_dev_map(dev); 3038 if (result) 3039 goto out_uninit_ctrl; 3040 3041 result = nvme_setup_prp_pools(dev); 3042 if (result) 3043 goto out_dev_unmap; 3044 3045 result = nvme_pci_alloc_iod_mempool(dev); 3046 if (result) 3047 goto out_release_prp_pools; 3048 3049 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3050 3051 result = nvme_pci_enable(dev); 3052 if (result) 3053 goto out_release_iod_mempool; 3054 3055 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3056 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3057 if (result) 3058 goto out_disable; 3059 3060 /* 3061 * Mark the controller as connecting before sending admin commands to 3062 * allow the timeout handler to do the right thing. 3063 */ 3064 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3065 dev_warn(dev->ctrl.device, 3066 "failed to mark controller CONNECTING\n"); 3067 result = -EBUSY; 3068 goto out_disable; 3069 } 3070 3071 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3072 if (result) 3073 goto out_disable; 3074 3075 nvme_dbbuf_dma_alloc(dev); 3076 3077 result = nvme_setup_host_mem(dev); 3078 if (result < 0) 3079 goto out_disable; 3080 3081 result = nvme_setup_io_queues(dev); 3082 if (result) 3083 goto out_disable; 3084 3085 if (dev->online_queues > 1) { 3086 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3087 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3088 nvme_dbbuf_set(dev); 3089 } 3090 3091 if (!dev->ctrl.tagset) 3092 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3093 3094 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3095 dev_warn(dev->ctrl.device, 3096 "failed to mark controller live state\n"); 3097 result = -ENODEV; 3098 goto out_disable; 3099 } 3100 3101 pci_set_drvdata(pdev, dev); 3102 3103 nvme_start_ctrl(&dev->ctrl); 3104 nvme_put_ctrl(&dev->ctrl); 3105 return 0; 3106 3107 out_disable: 3108 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3109 nvme_dev_disable(dev, true); 3110 nvme_free_host_mem(dev); 3111 nvme_dev_remove_admin(dev); 3112 nvme_dbbuf_dma_free(dev); 3113 nvme_free_queues(dev, 0); 3114 out_release_iod_mempool: 3115 mempool_destroy(dev->iod_mempool); 3116 out_release_prp_pools: 3117 nvme_release_prp_pools(dev); 3118 out_dev_unmap: 3119 nvme_dev_unmap(dev); 3120 out_uninit_ctrl: 3121 nvme_uninit_ctrl(&dev->ctrl); 3122 return result; 3123 } 3124 3125 static void nvme_reset_prepare(struct pci_dev *pdev) 3126 { 3127 struct nvme_dev *dev = pci_get_drvdata(pdev); 3128 3129 /* 3130 * We don't need to check the return value from waiting for the reset 3131 * state as pci_dev device lock is held, making it impossible to race 3132 * with ->remove(). 3133 */ 3134 nvme_disable_prepare_reset(dev, false); 3135 nvme_sync_queues(&dev->ctrl); 3136 } 3137 3138 static void nvme_reset_done(struct pci_dev *pdev) 3139 { 3140 struct nvme_dev *dev = pci_get_drvdata(pdev); 3141 3142 if (!nvme_try_sched_reset(&dev->ctrl)) 3143 flush_work(&dev->ctrl.reset_work); 3144 } 3145 3146 static void nvme_shutdown(struct pci_dev *pdev) 3147 { 3148 struct nvme_dev *dev = pci_get_drvdata(pdev); 3149 3150 nvme_disable_prepare_reset(dev, true); 3151 } 3152 3153 /* 3154 * The driver's remove may be called on a device in a partially initialized 3155 * state. This function must not have any dependencies on the device state in 3156 * order to proceed. 3157 */ 3158 static void nvme_remove(struct pci_dev *pdev) 3159 { 3160 struct nvme_dev *dev = pci_get_drvdata(pdev); 3161 3162 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3163 pci_set_drvdata(pdev, NULL); 3164 3165 if (!pci_device_is_present(pdev)) { 3166 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3167 nvme_dev_disable(dev, true); 3168 } 3169 3170 flush_work(&dev->ctrl.reset_work); 3171 nvme_stop_ctrl(&dev->ctrl); 3172 nvme_remove_namespaces(&dev->ctrl); 3173 nvme_dev_disable(dev, true); 3174 nvme_free_host_mem(dev); 3175 nvme_dev_remove_admin(dev); 3176 nvme_dbbuf_dma_free(dev); 3177 nvme_free_queues(dev, 0); 3178 mempool_destroy(dev->iod_mempool); 3179 nvme_release_prp_pools(dev); 3180 nvme_dev_unmap(dev); 3181 nvme_uninit_ctrl(&dev->ctrl); 3182 } 3183 3184 #ifdef CONFIG_PM_SLEEP 3185 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3186 { 3187 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3188 } 3189 3190 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3191 { 3192 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3193 } 3194 3195 static int nvme_resume(struct device *dev) 3196 { 3197 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3198 struct nvme_ctrl *ctrl = &ndev->ctrl; 3199 3200 if (ndev->last_ps == U32_MAX || 3201 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3202 goto reset; 3203 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3204 goto reset; 3205 3206 return 0; 3207 reset: 3208 return nvme_try_sched_reset(ctrl); 3209 } 3210 3211 static int nvme_suspend(struct device *dev) 3212 { 3213 struct pci_dev *pdev = to_pci_dev(dev); 3214 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3215 struct nvme_ctrl *ctrl = &ndev->ctrl; 3216 int ret = -EBUSY; 3217 3218 ndev->last_ps = U32_MAX; 3219 3220 /* 3221 * The platform does not remove power for a kernel managed suspend so 3222 * use host managed nvme power settings for lowest idle power if 3223 * possible. This should have quicker resume latency than a full device 3224 * shutdown. But if the firmware is involved after the suspend or the 3225 * device does not support any non-default power states, shut down the 3226 * device fully. 3227 * 3228 * If ASPM is not enabled for the device, shut down the device and allow 3229 * the PCI bus layer to put it into D3 in order to take the PCIe link 3230 * down, so as to allow the platform to achieve its minimum low-power 3231 * state (which may not be possible if the link is up). 3232 */ 3233 if (pm_suspend_via_firmware() || !ctrl->npss || 3234 !pcie_aspm_enabled(pdev) || 3235 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3236 return nvme_disable_prepare_reset(ndev, true); 3237 3238 nvme_start_freeze(ctrl); 3239 nvme_wait_freeze(ctrl); 3240 nvme_sync_queues(ctrl); 3241 3242 if (ctrl->state != NVME_CTRL_LIVE) 3243 goto unfreeze; 3244 3245 /* 3246 * Host memory access may not be successful in a system suspend state, 3247 * but the specification allows the controller to access memory in a 3248 * non-operational power state. 3249 */ 3250 if (ndev->hmb) { 3251 ret = nvme_set_host_mem(ndev, 0); 3252 if (ret < 0) 3253 goto unfreeze; 3254 } 3255 3256 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3257 if (ret < 0) 3258 goto unfreeze; 3259 3260 /* 3261 * A saved state prevents pci pm from generically controlling the 3262 * device's power. If we're using protocol specific settings, we don't 3263 * want pci interfering. 3264 */ 3265 pci_save_state(pdev); 3266 3267 ret = nvme_set_power_state(ctrl, ctrl->npss); 3268 if (ret < 0) 3269 goto unfreeze; 3270 3271 if (ret) { 3272 /* discard the saved state */ 3273 pci_load_saved_state(pdev, NULL); 3274 3275 /* 3276 * Clearing npss forces a controller reset on resume. The 3277 * correct value will be rediscovered then. 3278 */ 3279 ret = nvme_disable_prepare_reset(ndev, true); 3280 ctrl->npss = 0; 3281 } 3282 unfreeze: 3283 nvme_unfreeze(ctrl); 3284 return ret; 3285 } 3286 3287 static int nvme_simple_suspend(struct device *dev) 3288 { 3289 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3290 3291 return nvme_disable_prepare_reset(ndev, true); 3292 } 3293 3294 static int nvme_simple_resume(struct device *dev) 3295 { 3296 struct pci_dev *pdev = to_pci_dev(dev); 3297 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3298 3299 return nvme_try_sched_reset(&ndev->ctrl); 3300 } 3301 3302 static const struct dev_pm_ops nvme_dev_pm_ops = { 3303 .suspend = nvme_suspend, 3304 .resume = nvme_resume, 3305 .freeze = nvme_simple_suspend, 3306 .thaw = nvme_simple_resume, 3307 .poweroff = nvme_simple_suspend, 3308 .restore = nvme_simple_resume, 3309 }; 3310 #endif /* CONFIG_PM_SLEEP */ 3311 3312 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3313 pci_channel_state_t state) 3314 { 3315 struct nvme_dev *dev = pci_get_drvdata(pdev); 3316 3317 /* 3318 * A frozen channel requires a reset. When detected, this method will 3319 * shutdown the controller to quiesce. The controller will be restarted 3320 * after the slot reset through driver's slot_reset callback. 3321 */ 3322 switch (state) { 3323 case pci_channel_io_normal: 3324 return PCI_ERS_RESULT_CAN_RECOVER; 3325 case pci_channel_io_frozen: 3326 dev_warn(dev->ctrl.device, 3327 "frozen state error detected, reset controller\n"); 3328 nvme_dev_disable(dev, false); 3329 return PCI_ERS_RESULT_NEED_RESET; 3330 case pci_channel_io_perm_failure: 3331 dev_warn(dev->ctrl.device, 3332 "failure state error detected, request disconnect\n"); 3333 return PCI_ERS_RESULT_DISCONNECT; 3334 } 3335 return PCI_ERS_RESULT_NEED_RESET; 3336 } 3337 3338 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3339 { 3340 struct nvme_dev *dev = pci_get_drvdata(pdev); 3341 3342 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3343 pci_restore_state(pdev); 3344 nvme_reset_ctrl(&dev->ctrl); 3345 return PCI_ERS_RESULT_RECOVERED; 3346 } 3347 3348 static void nvme_error_resume(struct pci_dev *pdev) 3349 { 3350 struct nvme_dev *dev = pci_get_drvdata(pdev); 3351 3352 flush_work(&dev->ctrl.reset_work); 3353 } 3354 3355 static const struct pci_error_handlers nvme_err_handler = { 3356 .error_detected = nvme_error_detected, 3357 .slot_reset = nvme_slot_reset, 3358 .resume = nvme_error_resume, 3359 .reset_prepare = nvme_reset_prepare, 3360 .reset_done = nvme_reset_done, 3361 }; 3362 3363 static const struct pci_device_id nvme_id_table[] = { 3364 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3365 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3366 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3367 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3368 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3369 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3370 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3371 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3372 NVME_QUIRK_DEALLOCATE_ZEROES | 3373 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3374 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3375 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3376 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3377 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3378 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3379 NVME_QUIRK_MEDIUM_PRIO_SQ | 3380 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3381 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3382 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3383 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3384 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3385 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3386 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3387 NVME_QUIRK_BOGUS_NID, }, 3388 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3389 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3390 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3391 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3392 NVME_QUIRK_BOGUS_NID, }, 3393 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3394 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3395 NVME_QUIRK_NO_NS_DESC_LIST, }, 3396 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3397 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3398 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3399 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3400 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3401 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3402 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3403 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3404 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3405 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3406 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3407 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3408 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3409 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3410 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3411 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3412 NVME_QUIRK_BOGUS_NID, }, 3413 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3414 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3415 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3416 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3417 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3418 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3419 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3420 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3421 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3422 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3423 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3424 NVME_QUIRK_BOGUS_NID, }, 3425 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3426 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3427 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3428 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3429 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3430 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3431 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3432 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3433 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3434 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3435 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3436 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3437 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3438 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3439 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3440 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3441 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3442 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3443 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3444 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3445 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3446 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3447 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3448 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3449 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3450 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3451 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3452 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3453 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3454 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3455 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3456 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3457 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3458 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3459 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3460 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3461 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3462 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3463 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3464 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3465 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3466 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3467 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3468 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3469 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3470 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3471 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3472 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3473 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3474 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3475 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3476 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3477 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3478 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3479 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3480 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3481 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3482 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3483 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3484 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3485 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3486 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3487 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3488 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3489 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3490 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3491 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3492 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3493 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3494 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3495 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3496 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3497 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3498 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3499 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3500 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3501 NVME_QUIRK_128_BYTES_SQES | 3502 NVME_QUIRK_SHARED_TAGS | 3503 NVME_QUIRK_SKIP_CID_GEN | 3504 NVME_QUIRK_IDENTIFY_CNS }, 3505 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3506 { 0, } 3507 }; 3508 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3509 3510 static struct pci_driver nvme_driver = { 3511 .name = "nvme", 3512 .id_table = nvme_id_table, 3513 .probe = nvme_probe, 3514 .remove = nvme_remove, 3515 .shutdown = nvme_shutdown, 3516 .driver = { 3517 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3518 #ifdef CONFIG_PM_SLEEP 3519 .pm = &nvme_dev_pm_ops, 3520 #endif 3521 }, 3522 .sriov_configure = pci_sriov_configure_simple, 3523 .err_handler = &nvme_err_handler, 3524 }; 3525 3526 static int __init nvme_init(void) 3527 { 3528 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3529 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3530 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3531 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3532 BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) > 3533 S8_MAX); 3534 3535 return pci_register_driver(&nvme_driver); 3536 } 3537 3538 static void __exit nvme_exit(void) 3539 { 3540 pci_unregister_driver(&nvme_driver); 3541 flush_workqueue(nvme_wq); 3542 } 3543 3544 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3545 MODULE_LICENSE("GPL"); 3546 MODULE_VERSION("1.0"); 3547 module_init(nvme_init); 3548 module_exit(nvme_exit); 3549