xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 3e50b639)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kstrtox.h>
19 #include <linux/memremap.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/once.h>
24 #include <linux/pci.h>
25 #include <linux/suspend.h>
26 #include <linux/t10-pi.h>
27 #include <linux/types.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 #include <linux/sed-opal.h>
31 #include <linux/pci-p2pdma.h>
32 
33 #include "trace.h"
34 #include "nvme.h"
35 
36 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
37 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
38 
39 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ	4096
46 #define NVME_MAX_SEGS	127
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 
114 /*
115  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
116  */
117 struct nvme_dev {
118 	struct nvme_queue *queues;
119 	struct blk_mq_tag_set tagset;
120 	struct blk_mq_tag_set admin_tagset;
121 	u32 __iomem *dbs;
122 	struct device *dev;
123 	struct dma_pool *prp_page_pool;
124 	struct dma_pool *prp_small_pool;
125 	unsigned online_queues;
126 	unsigned max_qid;
127 	unsigned io_queues[HCTX_MAX_TYPES];
128 	unsigned int num_vecs;
129 	u32 q_depth;
130 	int io_sqes;
131 	u32 db_stride;
132 	void __iomem *bar;
133 	unsigned long bar_mapped_size;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	__le32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	__le32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 };
162 
163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164 {
165 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166 			NVME_PCI_MAX_QUEUE_SIZE);
167 }
168 
169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 	return qid * 2 * stride;
172 }
173 
174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 	return (qid * 2 + 1) * stride;
177 }
178 
179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183 
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189 	struct nvme_dev *dev;
190 	spinlock_t sq_lock;
191 	void *sq_cmds;
192 	 /* only used for poll queues: */
193 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 	struct nvme_completion *cqes;
195 	dma_addr_t sq_dma_addr;
196 	dma_addr_t cq_dma_addr;
197 	u32 __iomem *q_db;
198 	u32 q_depth;
199 	u16 cq_vector;
200 	u16 sq_tail;
201 	u16 last_sq_tail;
202 	u16 cq_head;
203 	u16 qid;
204 	u8 cq_phase;
205 	u8 sqes;
206 	unsigned long flags;
207 #define NVMEQ_ENABLED		0
208 #define NVMEQ_SQ_CMB		1
209 #define NVMEQ_DELETE_ERROR	2
210 #define NVMEQ_POLLED		3
211 	__le32 *dbbuf_sq_db;
212 	__le32 *dbbuf_cq_db;
213 	__le32 *dbbuf_sq_ei;
214 	__le32 *dbbuf_cq_ei;
215 	struct completion delete_done;
216 };
217 
218 /*
219  * The nvme_iod describes the data in an I/O.
220  *
221  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222  * to the actual struct scatterlist.
223  */
224 struct nvme_iod {
225 	struct nvme_request req;
226 	struct nvme_command cmd;
227 	bool use_sgl;
228 	bool aborted;
229 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
230 				   pool in use */
231 	unsigned int dma_len;	/* length of single DMA segment mapping */
232 	dma_addr_t first_dma;
233 	dma_addr_t meta_dma;
234 	struct sg_table sgt;
235 };
236 
237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
238 {
239 	return dev->nr_allocated_queues * 8 * dev->db_stride;
240 }
241 
242 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
243 {
244 	unsigned int mem_size = nvme_dbbuf_size(dev);
245 
246 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
247 		return;
248 
249 	if (dev->dbbuf_dbs) {
250 		/*
251 		 * Clear the dbbuf memory so the driver doesn't observe stale
252 		 * values from the previous instantiation.
253 		 */
254 		memset(dev->dbbuf_dbs, 0, mem_size);
255 		memset(dev->dbbuf_eis, 0, mem_size);
256 		return;
257 	}
258 
259 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
260 					    &dev->dbbuf_dbs_dma_addr,
261 					    GFP_KERNEL);
262 	if (!dev->dbbuf_dbs)
263 		goto fail;
264 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
265 					    &dev->dbbuf_eis_dma_addr,
266 					    GFP_KERNEL);
267 	if (!dev->dbbuf_eis)
268 		goto fail_free_dbbuf_dbs;
269 	return;
270 
271 fail_free_dbbuf_dbs:
272 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
273 			  dev->dbbuf_dbs_dma_addr);
274 	dev->dbbuf_dbs = NULL;
275 fail:
276 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
277 }
278 
279 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
280 {
281 	unsigned int mem_size = nvme_dbbuf_size(dev);
282 
283 	if (dev->dbbuf_dbs) {
284 		dma_free_coherent(dev->dev, mem_size,
285 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
286 		dev->dbbuf_dbs = NULL;
287 	}
288 	if (dev->dbbuf_eis) {
289 		dma_free_coherent(dev->dev, mem_size,
290 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
291 		dev->dbbuf_eis = NULL;
292 	}
293 }
294 
295 static void nvme_dbbuf_init(struct nvme_dev *dev,
296 			    struct nvme_queue *nvmeq, int qid)
297 {
298 	if (!dev->dbbuf_dbs || !qid)
299 		return;
300 
301 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
302 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
303 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
304 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
305 }
306 
307 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
308 {
309 	if (!nvmeq->qid)
310 		return;
311 
312 	nvmeq->dbbuf_sq_db = NULL;
313 	nvmeq->dbbuf_cq_db = NULL;
314 	nvmeq->dbbuf_sq_ei = NULL;
315 	nvmeq->dbbuf_cq_ei = NULL;
316 }
317 
318 static void nvme_dbbuf_set(struct nvme_dev *dev)
319 {
320 	struct nvme_command c = { };
321 	unsigned int i;
322 
323 	if (!dev->dbbuf_dbs)
324 		return;
325 
326 	c.dbbuf.opcode = nvme_admin_dbbuf;
327 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
328 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
329 
330 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
331 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
332 		/* Free memory and continue on */
333 		nvme_dbbuf_dma_free(dev);
334 
335 		for (i = 1; i <= dev->online_queues; i++)
336 			nvme_dbbuf_free(&dev->queues[i]);
337 	}
338 }
339 
340 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
341 {
342 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
343 }
344 
345 /* Update dbbuf and return true if an MMIO is required */
346 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
347 					      volatile __le32 *dbbuf_ei)
348 {
349 	if (dbbuf_db) {
350 		u16 old_value, event_idx;
351 
352 		/*
353 		 * Ensure that the queue is written before updating
354 		 * the doorbell in memory
355 		 */
356 		wmb();
357 
358 		old_value = le32_to_cpu(*dbbuf_db);
359 		*dbbuf_db = cpu_to_le32(value);
360 
361 		/*
362 		 * Ensure that the doorbell is updated before reading the event
363 		 * index from memory.  The controller needs to provide similar
364 		 * ordering to ensure the envent index is updated before reading
365 		 * the doorbell.
366 		 */
367 		mb();
368 
369 		event_idx = le32_to_cpu(*dbbuf_ei);
370 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
371 			return false;
372 	}
373 
374 	return true;
375 }
376 
377 /*
378  * Will slightly overestimate the number of pages needed.  This is OK
379  * as it only leads to a small amount of wasted memory for the lifetime of
380  * the I/O.
381  */
382 static int nvme_pci_npages_prp(void)
383 {
384 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
385 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
386 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
387 }
388 
389 /*
390  * Calculates the number of pages needed for the SGL segments. For example a 4k
391  * page can accommodate 256 SGL descriptors.
392  */
393 static int nvme_pci_npages_sgl(void)
394 {
395 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
396 			NVME_CTRL_PAGE_SIZE);
397 }
398 
399 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
400 				unsigned int hctx_idx)
401 {
402 	struct nvme_dev *dev = to_nvme_dev(data);
403 	struct nvme_queue *nvmeq = &dev->queues[0];
404 
405 	WARN_ON(hctx_idx != 0);
406 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
407 
408 	hctx->driver_data = nvmeq;
409 	return 0;
410 }
411 
412 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
413 			  unsigned int hctx_idx)
414 {
415 	struct nvme_dev *dev = to_nvme_dev(data);
416 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
417 
418 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
419 	hctx->driver_data = nvmeq;
420 	return 0;
421 }
422 
423 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
424 		struct request *req, unsigned int hctx_idx,
425 		unsigned int numa_node)
426 {
427 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
428 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429 
430 	nvme_req(req)->ctrl = &dev->ctrl;
431 	nvme_req(req)->cmd = &iod->cmd;
432 	return 0;
433 }
434 
435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 	/* if we have more than 1 vec, admin queue offsets us by 1 */
438 	if (dev->num_vecs > 1)
439 		return 1;
440 
441 	return 0;
442 }
443 
444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
447 	int i, qoff, offset;
448 
449 	offset = queue_irq_offset(dev);
450 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 		struct blk_mq_queue_map *map = &set->map[i];
452 
453 		map->nr_queues = dev->io_queues[i];
454 		if (!map->nr_queues) {
455 			BUG_ON(i == HCTX_TYPE_DEFAULT);
456 			continue;
457 		}
458 
459 		/*
460 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 		 * affinity), so use the regular blk-mq cpu mapping
462 		 */
463 		map->queue_offset = qoff;
464 		if (i != HCTX_TYPE_POLL && offset)
465 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
466 		else
467 			blk_mq_map_queues(map);
468 		qoff += map->nr_queues;
469 		offset += map->nr_queues;
470 	}
471 }
472 
473 /*
474  * Write sq tail if we are asked to, or if the next command would wrap.
475  */
476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
477 {
478 	if (!write_sq) {
479 		u16 next_tail = nvmeq->sq_tail + 1;
480 
481 		if (next_tail == nvmeq->q_depth)
482 			next_tail = 0;
483 		if (next_tail != nvmeq->last_sq_tail)
484 			return;
485 	}
486 
487 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
488 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
489 		writel(nvmeq->sq_tail, nvmeq->q_db);
490 	nvmeq->last_sq_tail = nvmeq->sq_tail;
491 }
492 
493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
494 				    struct nvme_command *cmd)
495 {
496 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
497 		absolute_pointer(cmd), sizeof(*cmd));
498 	if (++nvmeq->sq_tail == nvmeq->q_depth)
499 		nvmeq->sq_tail = 0;
500 }
501 
502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
503 {
504 	struct nvme_queue *nvmeq = hctx->driver_data;
505 
506 	spin_lock(&nvmeq->sq_lock);
507 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
508 		nvme_write_sq_db(nvmeq, true);
509 	spin_unlock(&nvmeq->sq_lock);
510 }
511 
512 static void **nvme_pci_iod_list(struct request *req)
513 {
514 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
515 	return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
516 }
517 
518 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
519 {
520 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
521 	int nseg = blk_rq_nr_phys_segments(req);
522 	unsigned int avg_seg_size;
523 
524 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
525 
526 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
527 		return false;
528 	if (!nvmeq->qid)
529 		return false;
530 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
531 		return false;
532 	return true;
533 }
534 
535 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
536 {
537 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
538 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
539 	dma_addr_t dma_addr = iod->first_dma;
540 	int i;
541 
542 	for (i = 0; i < iod->nr_allocations; i++) {
543 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
544 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
545 
546 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
547 		dma_addr = next_dma_addr;
548 	}
549 }
550 
551 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
552 {
553 	const int last_sg = SGES_PER_PAGE - 1;
554 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
555 	dma_addr_t dma_addr = iod->first_dma;
556 	int i;
557 
558 	for (i = 0; i < iod->nr_allocations; i++) {
559 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
560 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
561 
562 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
563 		dma_addr = next_dma_addr;
564 	}
565 }
566 
567 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
568 {
569 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
570 
571 	if (iod->dma_len) {
572 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
573 			       rq_dma_dir(req));
574 		return;
575 	}
576 
577 	WARN_ON_ONCE(!iod->sgt.nents);
578 
579 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
580 
581 	if (iod->nr_allocations == 0)
582 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
583 			      iod->first_dma);
584 	else if (iod->use_sgl)
585 		nvme_free_sgls(dev, req);
586 	else
587 		nvme_free_prps(dev, req);
588 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
589 }
590 
591 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
592 {
593 	int i;
594 	struct scatterlist *sg;
595 
596 	for_each_sg(sgl, sg, nents, i) {
597 		dma_addr_t phys = sg_phys(sg);
598 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
599 			"dma_address:%pad dma_length:%d\n",
600 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
601 			sg_dma_len(sg));
602 	}
603 }
604 
605 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
606 		struct request *req, struct nvme_rw_command *cmnd)
607 {
608 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
609 	struct dma_pool *pool;
610 	int length = blk_rq_payload_bytes(req);
611 	struct scatterlist *sg = iod->sgt.sgl;
612 	int dma_len = sg_dma_len(sg);
613 	u64 dma_addr = sg_dma_address(sg);
614 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
615 	__le64 *prp_list;
616 	void **list = nvme_pci_iod_list(req);
617 	dma_addr_t prp_dma;
618 	int nprps, i;
619 
620 	length -= (NVME_CTRL_PAGE_SIZE - offset);
621 	if (length <= 0) {
622 		iod->first_dma = 0;
623 		goto done;
624 	}
625 
626 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
627 	if (dma_len) {
628 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
629 	} else {
630 		sg = sg_next(sg);
631 		dma_addr = sg_dma_address(sg);
632 		dma_len = sg_dma_len(sg);
633 	}
634 
635 	if (length <= NVME_CTRL_PAGE_SIZE) {
636 		iod->first_dma = dma_addr;
637 		goto done;
638 	}
639 
640 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
641 	if (nprps <= (256 / 8)) {
642 		pool = dev->prp_small_pool;
643 		iod->nr_allocations = 0;
644 	} else {
645 		pool = dev->prp_page_pool;
646 		iod->nr_allocations = 1;
647 	}
648 
649 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
650 	if (!prp_list) {
651 		iod->nr_allocations = -1;
652 		return BLK_STS_RESOURCE;
653 	}
654 	list[0] = prp_list;
655 	iod->first_dma = prp_dma;
656 	i = 0;
657 	for (;;) {
658 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
659 			__le64 *old_prp_list = prp_list;
660 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
661 			if (!prp_list)
662 				goto free_prps;
663 			list[iod->nr_allocations++] = prp_list;
664 			prp_list[0] = old_prp_list[i - 1];
665 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
666 			i = 1;
667 		}
668 		prp_list[i++] = cpu_to_le64(dma_addr);
669 		dma_len -= NVME_CTRL_PAGE_SIZE;
670 		dma_addr += NVME_CTRL_PAGE_SIZE;
671 		length -= NVME_CTRL_PAGE_SIZE;
672 		if (length <= 0)
673 			break;
674 		if (dma_len > 0)
675 			continue;
676 		if (unlikely(dma_len < 0))
677 			goto bad_sgl;
678 		sg = sg_next(sg);
679 		dma_addr = sg_dma_address(sg);
680 		dma_len = sg_dma_len(sg);
681 	}
682 done:
683 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
684 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
685 	return BLK_STS_OK;
686 free_prps:
687 	nvme_free_prps(dev, req);
688 	return BLK_STS_RESOURCE;
689 bad_sgl:
690 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
691 			"Invalid SGL for payload:%d nents:%d\n",
692 			blk_rq_payload_bytes(req), iod->sgt.nents);
693 	return BLK_STS_IOERR;
694 }
695 
696 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
697 		struct scatterlist *sg)
698 {
699 	sge->addr = cpu_to_le64(sg_dma_address(sg));
700 	sge->length = cpu_to_le32(sg_dma_len(sg));
701 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
702 }
703 
704 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
705 		dma_addr_t dma_addr, int entries)
706 {
707 	sge->addr = cpu_to_le64(dma_addr);
708 	if (entries < SGES_PER_PAGE) {
709 		sge->length = cpu_to_le32(entries * sizeof(*sge));
710 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
711 	} else {
712 		sge->length = cpu_to_le32(NVME_CTRL_PAGE_SIZE);
713 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
714 	}
715 }
716 
717 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
718 		struct request *req, struct nvme_rw_command *cmd)
719 {
720 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
721 	struct dma_pool *pool;
722 	struct nvme_sgl_desc *sg_list;
723 	struct scatterlist *sg = iod->sgt.sgl;
724 	unsigned int entries = iod->sgt.nents;
725 	dma_addr_t sgl_dma;
726 	int i = 0;
727 
728 	/* setting the transfer type as SGL */
729 	cmd->flags = NVME_CMD_SGL_METABUF;
730 
731 	if (entries == 1) {
732 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
733 		return BLK_STS_OK;
734 	}
735 
736 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
737 		pool = dev->prp_small_pool;
738 		iod->nr_allocations = 0;
739 	} else {
740 		pool = dev->prp_page_pool;
741 		iod->nr_allocations = 1;
742 	}
743 
744 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
745 	if (!sg_list) {
746 		iod->nr_allocations = -1;
747 		return BLK_STS_RESOURCE;
748 	}
749 
750 	nvme_pci_iod_list(req)[0] = sg_list;
751 	iod->first_dma = sgl_dma;
752 
753 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
754 
755 	do {
756 		if (i == SGES_PER_PAGE) {
757 			struct nvme_sgl_desc *old_sg_desc = sg_list;
758 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
759 
760 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
761 			if (!sg_list)
762 				goto free_sgls;
763 
764 			i = 0;
765 			nvme_pci_iod_list(req)[iod->nr_allocations++] = sg_list;
766 			sg_list[i++] = *link;
767 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
768 		}
769 
770 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
771 		sg = sg_next(sg);
772 	} while (--entries > 0);
773 
774 	return BLK_STS_OK;
775 free_sgls:
776 	nvme_free_sgls(dev, req);
777 	return BLK_STS_RESOURCE;
778 }
779 
780 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
781 		struct request *req, struct nvme_rw_command *cmnd,
782 		struct bio_vec *bv)
783 {
784 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
785 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
786 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
787 
788 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
789 	if (dma_mapping_error(dev->dev, iod->first_dma))
790 		return BLK_STS_RESOURCE;
791 	iod->dma_len = bv->bv_len;
792 
793 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
794 	if (bv->bv_len > first_prp_len)
795 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
796 	else
797 		cmnd->dptr.prp2 = 0;
798 	return BLK_STS_OK;
799 }
800 
801 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
802 		struct request *req, struct nvme_rw_command *cmnd,
803 		struct bio_vec *bv)
804 {
805 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
806 
807 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
808 	if (dma_mapping_error(dev->dev, iod->first_dma))
809 		return BLK_STS_RESOURCE;
810 	iod->dma_len = bv->bv_len;
811 
812 	cmnd->flags = NVME_CMD_SGL_METABUF;
813 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
814 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
815 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
816 	return BLK_STS_OK;
817 }
818 
819 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
820 		struct nvme_command *cmnd)
821 {
822 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
823 	blk_status_t ret = BLK_STS_RESOURCE;
824 	int rc;
825 
826 	if (blk_rq_nr_phys_segments(req) == 1) {
827 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
828 		struct bio_vec bv = req_bvec(req);
829 
830 		if (!is_pci_p2pdma_page(bv.bv_page)) {
831 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
832 				return nvme_setup_prp_simple(dev, req,
833 							     &cmnd->rw, &bv);
834 
835 			if (nvmeq->qid && sgl_threshold &&
836 			    nvme_ctrl_sgl_supported(&dev->ctrl))
837 				return nvme_setup_sgl_simple(dev, req,
838 							     &cmnd->rw, &bv);
839 		}
840 	}
841 
842 	iod->dma_len = 0;
843 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
844 	if (!iod->sgt.sgl)
845 		return BLK_STS_RESOURCE;
846 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
847 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
848 	if (!iod->sgt.orig_nents)
849 		goto out_free_sg;
850 
851 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
852 			     DMA_ATTR_NO_WARN);
853 	if (rc) {
854 		if (rc == -EREMOTEIO)
855 			ret = BLK_STS_TARGET;
856 		goto out_free_sg;
857 	}
858 
859 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
860 	if (iod->use_sgl)
861 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
862 	else
863 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
864 	if (ret != BLK_STS_OK)
865 		goto out_unmap_sg;
866 	return BLK_STS_OK;
867 
868 out_unmap_sg:
869 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
870 out_free_sg:
871 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
872 	return ret;
873 }
874 
875 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
876 		struct nvme_command *cmnd)
877 {
878 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
879 
880 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
881 			rq_dma_dir(req), 0);
882 	if (dma_mapping_error(dev->dev, iod->meta_dma))
883 		return BLK_STS_IOERR;
884 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
885 	return BLK_STS_OK;
886 }
887 
888 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
889 {
890 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
891 	blk_status_t ret;
892 
893 	iod->aborted = false;
894 	iod->nr_allocations = -1;
895 	iod->sgt.nents = 0;
896 
897 	ret = nvme_setup_cmd(req->q->queuedata, req);
898 	if (ret)
899 		return ret;
900 
901 	if (blk_rq_nr_phys_segments(req)) {
902 		ret = nvme_map_data(dev, req, &iod->cmd);
903 		if (ret)
904 			goto out_free_cmd;
905 	}
906 
907 	if (blk_integrity_rq(req)) {
908 		ret = nvme_map_metadata(dev, req, &iod->cmd);
909 		if (ret)
910 			goto out_unmap_data;
911 	}
912 
913 	nvme_start_request(req);
914 	return BLK_STS_OK;
915 out_unmap_data:
916 	nvme_unmap_data(dev, req);
917 out_free_cmd:
918 	nvme_cleanup_cmd(req);
919 	return ret;
920 }
921 
922 /*
923  * NOTE: ns is NULL when called on the admin queue.
924  */
925 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
926 			 const struct blk_mq_queue_data *bd)
927 {
928 	struct nvme_queue *nvmeq = hctx->driver_data;
929 	struct nvme_dev *dev = nvmeq->dev;
930 	struct request *req = bd->rq;
931 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
932 	blk_status_t ret;
933 
934 	/*
935 	 * We should not need to do this, but we're still using this to
936 	 * ensure we can drain requests on a dying queue.
937 	 */
938 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
939 		return BLK_STS_IOERR;
940 
941 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
942 		return nvme_fail_nonready_command(&dev->ctrl, req);
943 
944 	ret = nvme_prep_rq(dev, req);
945 	if (unlikely(ret))
946 		return ret;
947 	spin_lock(&nvmeq->sq_lock);
948 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
949 	nvme_write_sq_db(nvmeq, bd->last);
950 	spin_unlock(&nvmeq->sq_lock);
951 	return BLK_STS_OK;
952 }
953 
954 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
955 {
956 	spin_lock(&nvmeq->sq_lock);
957 	while (!rq_list_empty(*rqlist)) {
958 		struct request *req = rq_list_pop(rqlist);
959 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
960 
961 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
962 	}
963 	nvme_write_sq_db(nvmeq, true);
964 	spin_unlock(&nvmeq->sq_lock);
965 }
966 
967 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
968 {
969 	/*
970 	 * We should not need to do this, but we're still using this to
971 	 * ensure we can drain requests on a dying queue.
972 	 */
973 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
974 		return false;
975 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
976 		return false;
977 
978 	req->mq_hctx->tags->rqs[req->tag] = req;
979 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
980 }
981 
982 static void nvme_queue_rqs(struct request **rqlist)
983 {
984 	struct request *req, *next, *prev = NULL;
985 	struct request *requeue_list = NULL;
986 
987 	rq_list_for_each_safe(rqlist, req, next) {
988 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
989 
990 		if (!nvme_prep_rq_batch(nvmeq, req)) {
991 			/* detach 'req' and add to remainder list */
992 			rq_list_move(rqlist, &requeue_list, req, prev);
993 
994 			req = prev;
995 			if (!req)
996 				continue;
997 		}
998 
999 		if (!next || req->mq_hctx != next->mq_hctx) {
1000 			/* detach rest of list, and submit */
1001 			req->rq_next = NULL;
1002 			nvme_submit_cmds(nvmeq, rqlist);
1003 			*rqlist = next;
1004 			prev = NULL;
1005 		} else
1006 			prev = req;
1007 	}
1008 
1009 	*rqlist = requeue_list;
1010 }
1011 
1012 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1013 {
1014 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1015 	struct nvme_dev *dev = nvmeq->dev;
1016 
1017 	if (blk_integrity_rq(req)) {
1018 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1019 
1020 		dma_unmap_page(dev->dev, iod->meta_dma,
1021 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1022 	}
1023 
1024 	if (blk_rq_nr_phys_segments(req))
1025 		nvme_unmap_data(dev, req);
1026 }
1027 
1028 static void nvme_pci_complete_rq(struct request *req)
1029 {
1030 	nvme_pci_unmap_rq(req);
1031 	nvme_complete_rq(req);
1032 }
1033 
1034 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1035 {
1036 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1037 }
1038 
1039 /* We read the CQE phase first to check if the rest of the entry is valid */
1040 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1041 {
1042 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1043 
1044 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1045 }
1046 
1047 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1048 {
1049 	u16 head = nvmeq->cq_head;
1050 
1051 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1052 					      nvmeq->dbbuf_cq_ei))
1053 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1054 }
1055 
1056 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1057 {
1058 	if (!nvmeq->qid)
1059 		return nvmeq->dev->admin_tagset.tags[0];
1060 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1061 }
1062 
1063 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1064 				   struct io_comp_batch *iob, u16 idx)
1065 {
1066 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1067 	__u16 command_id = READ_ONCE(cqe->command_id);
1068 	struct request *req;
1069 
1070 	/*
1071 	 * AEN requests are special as they don't time out and can
1072 	 * survive any kind of queue freeze and often don't respond to
1073 	 * aborts.  We don't even bother to allocate a struct request
1074 	 * for them but rather special case them here.
1075 	 */
1076 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1077 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1078 				cqe->status, &cqe->result);
1079 		return;
1080 	}
1081 
1082 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1083 	if (unlikely(!req)) {
1084 		dev_warn(nvmeq->dev->ctrl.device,
1085 			"invalid id %d completed on queue %d\n",
1086 			command_id, le16_to_cpu(cqe->sq_id));
1087 		return;
1088 	}
1089 
1090 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1091 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1092 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1093 					nvme_pci_complete_batch))
1094 		nvme_pci_complete_rq(req);
1095 }
1096 
1097 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1098 {
1099 	u32 tmp = nvmeq->cq_head + 1;
1100 
1101 	if (tmp == nvmeq->q_depth) {
1102 		nvmeq->cq_head = 0;
1103 		nvmeq->cq_phase ^= 1;
1104 	} else {
1105 		nvmeq->cq_head = tmp;
1106 	}
1107 }
1108 
1109 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1110 			       struct io_comp_batch *iob)
1111 {
1112 	int found = 0;
1113 
1114 	while (nvme_cqe_pending(nvmeq)) {
1115 		found++;
1116 		/*
1117 		 * load-load control dependency between phase and the rest of
1118 		 * the cqe requires a full read memory barrier
1119 		 */
1120 		dma_rmb();
1121 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1122 		nvme_update_cq_head(nvmeq);
1123 	}
1124 
1125 	if (found)
1126 		nvme_ring_cq_doorbell(nvmeq);
1127 	return found;
1128 }
1129 
1130 static irqreturn_t nvme_irq(int irq, void *data)
1131 {
1132 	struct nvme_queue *nvmeq = data;
1133 	DEFINE_IO_COMP_BATCH(iob);
1134 
1135 	if (nvme_poll_cq(nvmeq, &iob)) {
1136 		if (!rq_list_empty(iob.req_list))
1137 			nvme_pci_complete_batch(&iob);
1138 		return IRQ_HANDLED;
1139 	}
1140 	return IRQ_NONE;
1141 }
1142 
1143 static irqreturn_t nvme_irq_check(int irq, void *data)
1144 {
1145 	struct nvme_queue *nvmeq = data;
1146 
1147 	if (nvme_cqe_pending(nvmeq))
1148 		return IRQ_WAKE_THREAD;
1149 	return IRQ_NONE;
1150 }
1151 
1152 /*
1153  * Poll for completions for any interrupt driven queue
1154  * Can be called from any context.
1155  */
1156 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1157 {
1158 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1159 
1160 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1161 
1162 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1163 	nvme_poll_cq(nvmeq, NULL);
1164 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1165 }
1166 
1167 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1168 {
1169 	struct nvme_queue *nvmeq = hctx->driver_data;
1170 	bool found;
1171 
1172 	if (!nvme_cqe_pending(nvmeq))
1173 		return 0;
1174 
1175 	spin_lock(&nvmeq->cq_poll_lock);
1176 	found = nvme_poll_cq(nvmeq, iob);
1177 	spin_unlock(&nvmeq->cq_poll_lock);
1178 
1179 	return found;
1180 }
1181 
1182 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1183 {
1184 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1185 	struct nvme_queue *nvmeq = &dev->queues[0];
1186 	struct nvme_command c = { };
1187 
1188 	c.common.opcode = nvme_admin_async_event;
1189 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1190 
1191 	spin_lock(&nvmeq->sq_lock);
1192 	nvme_sq_copy_cmd(nvmeq, &c);
1193 	nvme_write_sq_db(nvmeq, true);
1194 	spin_unlock(&nvmeq->sq_lock);
1195 }
1196 
1197 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1198 {
1199 	struct nvme_command c = { };
1200 
1201 	c.delete_queue.opcode = opcode;
1202 	c.delete_queue.qid = cpu_to_le16(id);
1203 
1204 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1205 }
1206 
1207 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1208 		struct nvme_queue *nvmeq, s16 vector)
1209 {
1210 	struct nvme_command c = { };
1211 	int flags = NVME_QUEUE_PHYS_CONTIG;
1212 
1213 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1214 		flags |= NVME_CQ_IRQ_ENABLED;
1215 
1216 	/*
1217 	 * Note: we (ab)use the fact that the prp fields survive if no data
1218 	 * is attached to the request.
1219 	 */
1220 	c.create_cq.opcode = nvme_admin_create_cq;
1221 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1222 	c.create_cq.cqid = cpu_to_le16(qid);
1223 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1224 	c.create_cq.cq_flags = cpu_to_le16(flags);
1225 	c.create_cq.irq_vector = cpu_to_le16(vector);
1226 
1227 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1228 }
1229 
1230 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1231 						struct nvme_queue *nvmeq)
1232 {
1233 	struct nvme_ctrl *ctrl = &dev->ctrl;
1234 	struct nvme_command c = { };
1235 	int flags = NVME_QUEUE_PHYS_CONTIG;
1236 
1237 	/*
1238 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1239 	 * set. Since URGENT priority is zeroes, it makes all queues
1240 	 * URGENT.
1241 	 */
1242 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1243 		flags |= NVME_SQ_PRIO_MEDIUM;
1244 
1245 	/*
1246 	 * Note: we (ab)use the fact that the prp fields survive if no data
1247 	 * is attached to the request.
1248 	 */
1249 	c.create_sq.opcode = nvme_admin_create_sq;
1250 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1251 	c.create_sq.sqid = cpu_to_le16(qid);
1252 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1253 	c.create_sq.sq_flags = cpu_to_le16(flags);
1254 	c.create_sq.cqid = cpu_to_le16(qid);
1255 
1256 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1257 }
1258 
1259 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1260 {
1261 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1262 }
1263 
1264 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1265 {
1266 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1267 }
1268 
1269 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1270 {
1271 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1272 
1273 	dev_warn(nvmeq->dev->ctrl.device,
1274 		 "Abort status: 0x%x", nvme_req(req)->status);
1275 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1276 	blk_mq_free_request(req);
1277 	return RQ_END_IO_NONE;
1278 }
1279 
1280 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1281 {
1282 	/* If true, indicates loss of adapter communication, possibly by a
1283 	 * NVMe Subsystem reset.
1284 	 */
1285 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1286 
1287 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1288 	switch (dev->ctrl.state) {
1289 	case NVME_CTRL_RESETTING:
1290 	case NVME_CTRL_CONNECTING:
1291 		return false;
1292 	default:
1293 		break;
1294 	}
1295 
1296 	/* We shouldn't reset unless the controller is on fatal error state
1297 	 * _or_ if we lost the communication with it.
1298 	 */
1299 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1300 		return false;
1301 
1302 	return true;
1303 }
1304 
1305 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1306 {
1307 	/* Read a config register to help see what died. */
1308 	u16 pci_status;
1309 	int result;
1310 
1311 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1312 				      &pci_status);
1313 	if (result == PCIBIOS_SUCCESSFUL)
1314 		dev_warn(dev->ctrl.device,
1315 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1316 			 csts, pci_status);
1317 	else
1318 		dev_warn(dev->ctrl.device,
1319 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1320 			 csts, result);
1321 
1322 	if (csts != ~0)
1323 		return;
1324 
1325 	dev_warn(dev->ctrl.device,
1326 		 "Does your device have a faulty power saving mode enabled?\n");
1327 	dev_warn(dev->ctrl.device,
1328 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1329 }
1330 
1331 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1332 {
1333 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1334 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1335 	struct nvme_dev *dev = nvmeq->dev;
1336 	struct request *abort_req;
1337 	struct nvme_command cmd = { };
1338 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1339 
1340 	/* If PCI error recovery process is happening, we cannot reset or
1341 	 * the recovery mechanism will surely fail.
1342 	 */
1343 	mb();
1344 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1345 		return BLK_EH_RESET_TIMER;
1346 
1347 	/*
1348 	 * Reset immediately if the controller is failed
1349 	 */
1350 	if (nvme_should_reset(dev, csts)) {
1351 		nvme_warn_reset(dev, csts);
1352 		nvme_dev_disable(dev, false);
1353 		nvme_reset_ctrl(&dev->ctrl);
1354 		return BLK_EH_DONE;
1355 	}
1356 
1357 	/*
1358 	 * Did we miss an interrupt?
1359 	 */
1360 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1361 		nvme_poll(req->mq_hctx, NULL);
1362 	else
1363 		nvme_poll_irqdisable(nvmeq);
1364 
1365 	if (blk_mq_request_completed(req)) {
1366 		dev_warn(dev->ctrl.device,
1367 			 "I/O %d QID %d timeout, completion polled\n",
1368 			 req->tag, nvmeq->qid);
1369 		return BLK_EH_DONE;
1370 	}
1371 
1372 	/*
1373 	 * Shutdown immediately if controller times out while starting. The
1374 	 * reset work will see the pci device disabled when it gets the forced
1375 	 * cancellation error. All outstanding requests are completed on
1376 	 * shutdown, so we return BLK_EH_DONE.
1377 	 */
1378 	switch (dev->ctrl.state) {
1379 	case NVME_CTRL_CONNECTING:
1380 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1381 		fallthrough;
1382 	case NVME_CTRL_DELETING:
1383 		dev_warn_ratelimited(dev->ctrl.device,
1384 			 "I/O %d QID %d timeout, disable controller\n",
1385 			 req->tag, nvmeq->qid);
1386 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1387 		nvme_dev_disable(dev, true);
1388 		return BLK_EH_DONE;
1389 	case NVME_CTRL_RESETTING:
1390 		return BLK_EH_RESET_TIMER;
1391 	default:
1392 		break;
1393 	}
1394 
1395 	/*
1396 	 * Shutdown the controller immediately and schedule a reset if the
1397 	 * command was already aborted once before and still hasn't been
1398 	 * returned to the driver, or if this is the admin queue.
1399 	 */
1400 	if (!nvmeq->qid || iod->aborted) {
1401 		dev_warn(dev->ctrl.device,
1402 			 "I/O %d QID %d timeout, reset controller\n",
1403 			 req->tag, nvmeq->qid);
1404 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1405 		nvme_dev_disable(dev, false);
1406 		nvme_reset_ctrl(&dev->ctrl);
1407 
1408 		return BLK_EH_DONE;
1409 	}
1410 
1411 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1412 		atomic_inc(&dev->ctrl.abort_limit);
1413 		return BLK_EH_RESET_TIMER;
1414 	}
1415 	iod->aborted = true;
1416 
1417 	cmd.abort.opcode = nvme_admin_abort_cmd;
1418 	cmd.abort.cid = nvme_cid(req);
1419 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1420 
1421 	dev_warn(nvmeq->dev->ctrl.device,
1422 		"I/O %d (%s) QID %d timeout, aborting\n",
1423 		 req->tag,
1424 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1425 		 nvmeq->qid);
1426 
1427 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1428 					 BLK_MQ_REQ_NOWAIT);
1429 	if (IS_ERR(abort_req)) {
1430 		atomic_inc(&dev->ctrl.abort_limit);
1431 		return BLK_EH_RESET_TIMER;
1432 	}
1433 	nvme_init_request(abort_req, &cmd);
1434 
1435 	abort_req->end_io = abort_endio;
1436 	abort_req->end_io_data = NULL;
1437 	blk_execute_rq_nowait(abort_req, false);
1438 
1439 	/*
1440 	 * The aborted req will be completed on receiving the abort req.
1441 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1442 	 * as the device then is in a faulty state.
1443 	 */
1444 	return BLK_EH_RESET_TIMER;
1445 }
1446 
1447 static void nvme_free_queue(struct nvme_queue *nvmeq)
1448 {
1449 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1450 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1451 	if (!nvmeq->sq_cmds)
1452 		return;
1453 
1454 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1455 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1456 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1457 	} else {
1458 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1459 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1460 	}
1461 }
1462 
1463 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1464 {
1465 	int i;
1466 
1467 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1468 		dev->ctrl.queue_count--;
1469 		nvme_free_queue(&dev->queues[i]);
1470 	}
1471 }
1472 
1473 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1474 {
1475 	struct nvme_queue *nvmeq = &dev->queues[qid];
1476 
1477 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1478 		return;
1479 
1480 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1481 	mb();
1482 
1483 	nvmeq->dev->online_queues--;
1484 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1485 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1486 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1487 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1488 }
1489 
1490 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1491 {
1492 	int i;
1493 
1494 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1495 		nvme_suspend_queue(dev, i);
1496 }
1497 
1498 /*
1499  * Called only on a device that has been disabled and after all other threads
1500  * that can check this device's completion queues have synced, except
1501  * nvme_poll(). This is the last chance for the driver to see a natural
1502  * completion before nvme_cancel_request() terminates all incomplete requests.
1503  */
1504 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1505 {
1506 	int i;
1507 
1508 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1509 		spin_lock(&dev->queues[i].cq_poll_lock);
1510 		nvme_poll_cq(&dev->queues[i], NULL);
1511 		spin_unlock(&dev->queues[i].cq_poll_lock);
1512 	}
1513 }
1514 
1515 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1516 				int entry_size)
1517 {
1518 	int q_depth = dev->q_depth;
1519 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1520 					  NVME_CTRL_PAGE_SIZE);
1521 
1522 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1523 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1524 
1525 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1526 		q_depth = div_u64(mem_per_q, entry_size);
1527 
1528 		/*
1529 		 * Ensure the reduced q_depth is above some threshold where it
1530 		 * would be better to map queues in system memory with the
1531 		 * original depth
1532 		 */
1533 		if (q_depth < 64)
1534 			return -ENOMEM;
1535 	}
1536 
1537 	return q_depth;
1538 }
1539 
1540 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1541 				int qid)
1542 {
1543 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1544 
1545 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1546 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1547 		if (nvmeq->sq_cmds) {
1548 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1549 							nvmeq->sq_cmds);
1550 			if (nvmeq->sq_dma_addr) {
1551 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1552 				return 0;
1553 			}
1554 
1555 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1556 		}
1557 	}
1558 
1559 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1560 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1561 	if (!nvmeq->sq_cmds)
1562 		return -ENOMEM;
1563 	return 0;
1564 }
1565 
1566 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1567 {
1568 	struct nvme_queue *nvmeq = &dev->queues[qid];
1569 
1570 	if (dev->ctrl.queue_count > qid)
1571 		return 0;
1572 
1573 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1574 	nvmeq->q_depth = depth;
1575 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1576 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1577 	if (!nvmeq->cqes)
1578 		goto free_nvmeq;
1579 
1580 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1581 		goto free_cqdma;
1582 
1583 	nvmeq->dev = dev;
1584 	spin_lock_init(&nvmeq->sq_lock);
1585 	spin_lock_init(&nvmeq->cq_poll_lock);
1586 	nvmeq->cq_head = 0;
1587 	nvmeq->cq_phase = 1;
1588 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1589 	nvmeq->qid = qid;
1590 	dev->ctrl.queue_count++;
1591 
1592 	return 0;
1593 
1594  free_cqdma:
1595 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1596 			  nvmeq->cq_dma_addr);
1597  free_nvmeq:
1598 	return -ENOMEM;
1599 }
1600 
1601 static int queue_request_irq(struct nvme_queue *nvmeq)
1602 {
1603 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1604 	int nr = nvmeq->dev->ctrl.instance;
1605 
1606 	if (use_threaded_interrupts) {
1607 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1608 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1609 	} else {
1610 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1611 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1612 	}
1613 }
1614 
1615 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1616 {
1617 	struct nvme_dev *dev = nvmeq->dev;
1618 
1619 	nvmeq->sq_tail = 0;
1620 	nvmeq->last_sq_tail = 0;
1621 	nvmeq->cq_head = 0;
1622 	nvmeq->cq_phase = 1;
1623 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1624 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1625 	nvme_dbbuf_init(dev, nvmeq, qid);
1626 	dev->online_queues++;
1627 	wmb(); /* ensure the first interrupt sees the initialization */
1628 }
1629 
1630 /*
1631  * Try getting shutdown_lock while setting up IO queues.
1632  */
1633 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1634 {
1635 	/*
1636 	 * Give up if the lock is being held by nvme_dev_disable.
1637 	 */
1638 	if (!mutex_trylock(&dev->shutdown_lock))
1639 		return -ENODEV;
1640 
1641 	/*
1642 	 * Controller is in wrong state, fail early.
1643 	 */
1644 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1645 		mutex_unlock(&dev->shutdown_lock);
1646 		return -ENODEV;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1653 {
1654 	struct nvme_dev *dev = nvmeq->dev;
1655 	int result;
1656 	u16 vector = 0;
1657 
1658 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1659 
1660 	/*
1661 	 * A queue's vector matches the queue identifier unless the controller
1662 	 * has only one vector available.
1663 	 */
1664 	if (!polled)
1665 		vector = dev->num_vecs == 1 ? 0 : qid;
1666 	else
1667 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1668 
1669 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1670 	if (result)
1671 		return result;
1672 
1673 	result = adapter_alloc_sq(dev, qid, nvmeq);
1674 	if (result < 0)
1675 		return result;
1676 	if (result)
1677 		goto release_cq;
1678 
1679 	nvmeq->cq_vector = vector;
1680 
1681 	result = nvme_setup_io_queues_trylock(dev);
1682 	if (result)
1683 		return result;
1684 	nvme_init_queue(nvmeq, qid);
1685 	if (!polled) {
1686 		result = queue_request_irq(nvmeq);
1687 		if (result < 0)
1688 			goto release_sq;
1689 	}
1690 
1691 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1692 	mutex_unlock(&dev->shutdown_lock);
1693 	return result;
1694 
1695 release_sq:
1696 	dev->online_queues--;
1697 	mutex_unlock(&dev->shutdown_lock);
1698 	adapter_delete_sq(dev, qid);
1699 release_cq:
1700 	adapter_delete_cq(dev, qid);
1701 	return result;
1702 }
1703 
1704 static const struct blk_mq_ops nvme_mq_admin_ops = {
1705 	.queue_rq	= nvme_queue_rq,
1706 	.complete	= nvme_pci_complete_rq,
1707 	.init_hctx	= nvme_admin_init_hctx,
1708 	.init_request	= nvme_pci_init_request,
1709 	.timeout	= nvme_timeout,
1710 };
1711 
1712 static const struct blk_mq_ops nvme_mq_ops = {
1713 	.queue_rq	= nvme_queue_rq,
1714 	.queue_rqs	= nvme_queue_rqs,
1715 	.complete	= nvme_pci_complete_rq,
1716 	.commit_rqs	= nvme_commit_rqs,
1717 	.init_hctx	= nvme_init_hctx,
1718 	.init_request	= nvme_pci_init_request,
1719 	.map_queues	= nvme_pci_map_queues,
1720 	.timeout	= nvme_timeout,
1721 	.poll		= nvme_poll,
1722 };
1723 
1724 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1725 {
1726 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1727 		/*
1728 		 * If the controller was reset during removal, it's possible
1729 		 * user requests may be waiting on a stopped queue. Start the
1730 		 * queue to flush these to completion.
1731 		 */
1732 		nvme_unquiesce_admin_queue(&dev->ctrl);
1733 		nvme_remove_admin_tag_set(&dev->ctrl);
1734 	}
1735 }
1736 
1737 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1738 {
1739 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1740 }
1741 
1742 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1743 {
1744 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1745 
1746 	if (size <= dev->bar_mapped_size)
1747 		return 0;
1748 	if (size > pci_resource_len(pdev, 0))
1749 		return -ENOMEM;
1750 	if (dev->bar)
1751 		iounmap(dev->bar);
1752 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1753 	if (!dev->bar) {
1754 		dev->bar_mapped_size = 0;
1755 		return -ENOMEM;
1756 	}
1757 	dev->bar_mapped_size = size;
1758 	dev->dbs = dev->bar + NVME_REG_DBS;
1759 
1760 	return 0;
1761 }
1762 
1763 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1764 {
1765 	int result;
1766 	u32 aqa;
1767 	struct nvme_queue *nvmeq;
1768 
1769 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1770 	if (result < 0)
1771 		return result;
1772 
1773 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1774 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1775 
1776 	if (dev->subsystem &&
1777 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1778 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1779 
1780 	/*
1781 	 * If the device has been passed off to us in an enabled state, just
1782 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1783 	 * notification bits', but doing so may cause the device to complete
1784 	 * commands to the admin queue ... and we don't know what memory that
1785 	 * might be pointing at!
1786 	 */
1787 	result = nvme_disable_ctrl(&dev->ctrl, false);
1788 	if (result < 0)
1789 		return result;
1790 
1791 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1792 	if (result)
1793 		return result;
1794 
1795 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1796 
1797 	nvmeq = &dev->queues[0];
1798 	aqa = nvmeq->q_depth - 1;
1799 	aqa |= aqa << 16;
1800 
1801 	writel(aqa, dev->bar + NVME_REG_AQA);
1802 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1803 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1804 
1805 	result = nvme_enable_ctrl(&dev->ctrl);
1806 	if (result)
1807 		return result;
1808 
1809 	nvmeq->cq_vector = 0;
1810 	nvme_init_queue(nvmeq, 0);
1811 	result = queue_request_irq(nvmeq);
1812 	if (result) {
1813 		dev->online_queues--;
1814 		return result;
1815 	}
1816 
1817 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1818 	return result;
1819 }
1820 
1821 static int nvme_create_io_queues(struct nvme_dev *dev)
1822 {
1823 	unsigned i, max, rw_queues;
1824 	int ret = 0;
1825 
1826 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1827 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1828 			ret = -ENOMEM;
1829 			break;
1830 		}
1831 	}
1832 
1833 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1834 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1835 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1836 				dev->io_queues[HCTX_TYPE_READ];
1837 	} else {
1838 		rw_queues = max;
1839 	}
1840 
1841 	for (i = dev->online_queues; i <= max; i++) {
1842 		bool polled = i > rw_queues;
1843 
1844 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1845 		if (ret)
1846 			break;
1847 	}
1848 
1849 	/*
1850 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1851 	 * than the desired amount of queues, and even a controller without
1852 	 * I/O queues can still be used to issue admin commands.  This might
1853 	 * be useful to upgrade a buggy firmware for example.
1854 	 */
1855 	return ret >= 0 ? 0 : ret;
1856 }
1857 
1858 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1859 {
1860 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1861 
1862 	return 1ULL << (12 + 4 * szu);
1863 }
1864 
1865 static u32 nvme_cmb_size(struct nvme_dev *dev)
1866 {
1867 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1868 }
1869 
1870 static void nvme_map_cmb(struct nvme_dev *dev)
1871 {
1872 	u64 size, offset;
1873 	resource_size_t bar_size;
1874 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1875 	int bar;
1876 
1877 	if (dev->cmb_size)
1878 		return;
1879 
1880 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1881 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1882 
1883 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1884 	if (!dev->cmbsz)
1885 		return;
1886 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1887 
1888 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1889 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1890 	bar = NVME_CMB_BIR(dev->cmbloc);
1891 	bar_size = pci_resource_len(pdev, bar);
1892 
1893 	if (offset > bar_size)
1894 		return;
1895 
1896 	/*
1897 	 * Tell the controller about the host side address mapping the CMB,
1898 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1899 	 */
1900 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1901 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1902 			     (pci_bus_address(pdev, bar) + offset),
1903 			     dev->bar + NVME_REG_CMBMSC);
1904 	}
1905 
1906 	/*
1907 	 * Controllers may support a CMB size larger than their BAR,
1908 	 * for example, due to being behind a bridge. Reduce the CMB to
1909 	 * the reported size of the BAR
1910 	 */
1911 	if (size > bar_size - offset)
1912 		size = bar_size - offset;
1913 
1914 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1915 		dev_warn(dev->ctrl.device,
1916 			 "failed to register the CMB\n");
1917 		return;
1918 	}
1919 
1920 	dev->cmb_size = size;
1921 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1922 
1923 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1924 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1925 		pci_p2pmem_publish(pdev, true);
1926 }
1927 
1928 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1929 {
1930 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1931 	u64 dma_addr = dev->host_mem_descs_dma;
1932 	struct nvme_command c = { };
1933 	int ret;
1934 
1935 	c.features.opcode	= nvme_admin_set_features;
1936 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1937 	c.features.dword11	= cpu_to_le32(bits);
1938 	c.features.dword12	= cpu_to_le32(host_mem_size);
1939 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1940 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1941 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1942 
1943 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1944 	if (ret) {
1945 		dev_warn(dev->ctrl.device,
1946 			 "failed to set host mem (err %d, flags %#x).\n",
1947 			 ret, bits);
1948 	} else
1949 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1950 
1951 	return ret;
1952 }
1953 
1954 static void nvme_free_host_mem(struct nvme_dev *dev)
1955 {
1956 	int i;
1957 
1958 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1959 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1960 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1961 
1962 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1963 			       le64_to_cpu(desc->addr),
1964 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1965 	}
1966 
1967 	kfree(dev->host_mem_desc_bufs);
1968 	dev->host_mem_desc_bufs = NULL;
1969 	dma_free_coherent(dev->dev,
1970 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1971 			dev->host_mem_descs, dev->host_mem_descs_dma);
1972 	dev->host_mem_descs = NULL;
1973 	dev->nr_host_mem_descs = 0;
1974 }
1975 
1976 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1977 		u32 chunk_size)
1978 {
1979 	struct nvme_host_mem_buf_desc *descs;
1980 	u32 max_entries, len;
1981 	dma_addr_t descs_dma;
1982 	int i = 0;
1983 	void **bufs;
1984 	u64 size, tmp;
1985 
1986 	tmp = (preferred + chunk_size - 1);
1987 	do_div(tmp, chunk_size);
1988 	max_entries = tmp;
1989 
1990 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1991 		max_entries = dev->ctrl.hmmaxd;
1992 
1993 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1994 				   &descs_dma, GFP_KERNEL);
1995 	if (!descs)
1996 		goto out;
1997 
1998 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1999 	if (!bufs)
2000 		goto out_free_descs;
2001 
2002 	for (size = 0; size < preferred && i < max_entries; size += len) {
2003 		dma_addr_t dma_addr;
2004 
2005 		len = min_t(u64, chunk_size, preferred - size);
2006 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2007 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2008 		if (!bufs[i])
2009 			break;
2010 
2011 		descs[i].addr = cpu_to_le64(dma_addr);
2012 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2013 		i++;
2014 	}
2015 
2016 	if (!size)
2017 		goto out_free_bufs;
2018 
2019 	dev->nr_host_mem_descs = i;
2020 	dev->host_mem_size = size;
2021 	dev->host_mem_descs = descs;
2022 	dev->host_mem_descs_dma = descs_dma;
2023 	dev->host_mem_desc_bufs = bufs;
2024 	return 0;
2025 
2026 out_free_bufs:
2027 	while (--i >= 0) {
2028 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2029 
2030 		dma_free_attrs(dev->dev, size, bufs[i],
2031 			       le64_to_cpu(descs[i].addr),
2032 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2033 	}
2034 
2035 	kfree(bufs);
2036 out_free_descs:
2037 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2038 			descs_dma);
2039 out:
2040 	dev->host_mem_descs = NULL;
2041 	return -ENOMEM;
2042 }
2043 
2044 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2045 {
2046 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2047 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2048 	u64 chunk_size;
2049 
2050 	/* start big and work our way down */
2051 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2052 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2053 			if (!min || dev->host_mem_size >= min)
2054 				return 0;
2055 			nvme_free_host_mem(dev);
2056 		}
2057 	}
2058 
2059 	return -ENOMEM;
2060 }
2061 
2062 static int nvme_setup_host_mem(struct nvme_dev *dev)
2063 {
2064 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2065 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2066 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2067 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2068 	int ret;
2069 
2070 	if (!dev->ctrl.hmpre)
2071 		return 0;
2072 
2073 	preferred = min(preferred, max);
2074 	if (min > max) {
2075 		dev_warn(dev->ctrl.device,
2076 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2077 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2078 		nvme_free_host_mem(dev);
2079 		return 0;
2080 	}
2081 
2082 	/*
2083 	 * If we already have a buffer allocated check if we can reuse it.
2084 	 */
2085 	if (dev->host_mem_descs) {
2086 		if (dev->host_mem_size >= min)
2087 			enable_bits |= NVME_HOST_MEM_RETURN;
2088 		else
2089 			nvme_free_host_mem(dev);
2090 	}
2091 
2092 	if (!dev->host_mem_descs) {
2093 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2094 			dev_warn(dev->ctrl.device,
2095 				"failed to allocate host memory buffer.\n");
2096 			return 0; /* controller must work without HMB */
2097 		}
2098 
2099 		dev_info(dev->ctrl.device,
2100 			"allocated %lld MiB host memory buffer.\n",
2101 			dev->host_mem_size >> ilog2(SZ_1M));
2102 	}
2103 
2104 	ret = nvme_set_host_mem(dev, enable_bits);
2105 	if (ret)
2106 		nvme_free_host_mem(dev);
2107 	return ret;
2108 }
2109 
2110 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2111 		char *buf)
2112 {
2113 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2114 
2115 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2116 		       ndev->cmbloc, ndev->cmbsz);
2117 }
2118 static DEVICE_ATTR_RO(cmb);
2119 
2120 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2121 		char *buf)
2122 {
2123 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2124 
2125 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2126 }
2127 static DEVICE_ATTR_RO(cmbloc);
2128 
2129 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2130 		char *buf)
2131 {
2132 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2133 
2134 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2135 }
2136 static DEVICE_ATTR_RO(cmbsz);
2137 
2138 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2139 			char *buf)
2140 {
2141 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2142 
2143 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2144 }
2145 
2146 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2147 			 const char *buf, size_t count)
2148 {
2149 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2150 	bool new;
2151 	int ret;
2152 
2153 	if (kstrtobool(buf, &new) < 0)
2154 		return -EINVAL;
2155 
2156 	if (new == ndev->hmb)
2157 		return count;
2158 
2159 	if (new) {
2160 		ret = nvme_setup_host_mem(ndev);
2161 	} else {
2162 		ret = nvme_set_host_mem(ndev, 0);
2163 		if (!ret)
2164 			nvme_free_host_mem(ndev);
2165 	}
2166 
2167 	if (ret < 0)
2168 		return ret;
2169 
2170 	return count;
2171 }
2172 static DEVICE_ATTR_RW(hmb);
2173 
2174 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2175 		struct attribute *a, int n)
2176 {
2177 	struct nvme_ctrl *ctrl =
2178 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2179 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2180 
2181 	if (a == &dev_attr_cmb.attr ||
2182 	    a == &dev_attr_cmbloc.attr ||
2183 	    a == &dev_attr_cmbsz.attr) {
2184 	    	if (!dev->cmbsz)
2185 			return 0;
2186 	}
2187 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2188 		return 0;
2189 
2190 	return a->mode;
2191 }
2192 
2193 static struct attribute *nvme_pci_attrs[] = {
2194 	&dev_attr_cmb.attr,
2195 	&dev_attr_cmbloc.attr,
2196 	&dev_attr_cmbsz.attr,
2197 	&dev_attr_hmb.attr,
2198 	NULL,
2199 };
2200 
2201 static const struct attribute_group nvme_pci_dev_attrs_group = {
2202 	.attrs		= nvme_pci_attrs,
2203 	.is_visible	= nvme_pci_attrs_are_visible,
2204 };
2205 
2206 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2207 	&nvme_dev_attrs_group,
2208 	&nvme_pci_dev_attrs_group,
2209 	NULL,
2210 };
2211 
2212 /*
2213  * nirqs is the number of interrupts available for write and read
2214  * queues. The core already reserved an interrupt for the admin queue.
2215  */
2216 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2217 {
2218 	struct nvme_dev *dev = affd->priv;
2219 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2220 
2221 	/*
2222 	 * If there is no interrupt available for queues, ensure that
2223 	 * the default queue is set to 1. The affinity set size is
2224 	 * also set to one, but the irq core ignores it for this case.
2225 	 *
2226 	 * If only one interrupt is available or 'write_queue' == 0, combine
2227 	 * write and read queues.
2228 	 *
2229 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2230 	 * queue.
2231 	 */
2232 	if (!nrirqs) {
2233 		nrirqs = 1;
2234 		nr_read_queues = 0;
2235 	} else if (nrirqs == 1 || !nr_write_queues) {
2236 		nr_read_queues = 0;
2237 	} else if (nr_write_queues >= nrirqs) {
2238 		nr_read_queues = 1;
2239 	} else {
2240 		nr_read_queues = nrirqs - nr_write_queues;
2241 	}
2242 
2243 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2244 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2245 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2246 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2247 	affd->nr_sets = nr_read_queues ? 2 : 1;
2248 }
2249 
2250 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2251 {
2252 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2253 	struct irq_affinity affd = {
2254 		.pre_vectors	= 1,
2255 		.calc_sets	= nvme_calc_irq_sets,
2256 		.priv		= dev,
2257 	};
2258 	unsigned int irq_queues, poll_queues;
2259 
2260 	/*
2261 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2262 	 * left over for non-polled I/O.
2263 	 */
2264 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2265 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2266 
2267 	/*
2268 	 * Initialize for the single interrupt case, will be updated in
2269 	 * nvme_calc_irq_sets().
2270 	 */
2271 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2272 	dev->io_queues[HCTX_TYPE_READ] = 0;
2273 
2274 	/*
2275 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2276 	 * but some Apple controllers require all queues to use the first
2277 	 * vector.
2278 	 */
2279 	irq_queues = 1;
2280 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2281 		irq_queues += (nr_io_queues - poll_queues);
2282 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2283 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2284 }
2285 
2286 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2287 {
2288 	/*
2289 	 * If tags are shared with admin queue (Apple bug), then
2290 	 * make sure we only use one IO queue.
2291 	 */
2292 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2293 		return 1;
2294 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2295 }
2296 
2297 static int nvme_setup_io_queues(struct nvme_dev *dev)
2298 {
2299 	struct nvme_queue *adminq = &dev->queues[0];
2300 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2301 	unsigned int nr_io_queues;
2302 	unsigned long size;
2303 	int result;
2304 
2305 	/*
2306 	 * Sample the module parameters once at reset time so that we have
2307 	 * stable values to work with.
2308 	 */
2309 	dev->nr_write_queues = write_queues;
2310 	dev->nr_poll_queues = poll_queues;
2311 
2312 	nr_io_queues = dev->nr_allocated_queues - 1;
2313 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2314 	if (result < 0)
2315 		return result;
2316 
2317 	if (nr_io_queues == 0)
2318 		return 0;
2319 
2320 	/*
2321 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2322 	 * from set to unset. If there is a window to it is truely freed,
2323 	 * pci_free_irq_vectors() jumping into this window will crash.
2324 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2325 	 * nvme_dev_disable() path.
2326 	 */
2327 	result = nvme_setup_io_queues_trylock(dev);
2328 	if (result)
2329 		return result;
2330 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2331 		pci_free_irq(pdev, 0, adminq);
2332 
2333 	if (dev->cmb_use_sqes) {
2334 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2335 				sizeof(struct nvme_command));
2336 		if (result > 0) {
2337 			dev->q_depth = result;
2338 			dev->ctrl.sqsize = result - 1;
2339 		} else {
2340 			dev->cmb_use_sqes = false;
2341 		}
2342 	}
2343 
2344 	do {
2345 		size = db_bar_size(dev, nr_io_queues);
2346 		result = nvme_remap_bar(dev, size);
2347 		if (!result)
2348 			break;
2349 		if (!--nr_io_queues) {
2350 			result = -ENOMEM;
2351 			goto out_unlock;
2352 		}
2353 	} while (1);
2354 	adminq->q_db = dev->dbs;
2355 
2356  retry:
2357 	/* Deregister the admin queue's interrupt */
2358 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2359 		pci_free_irq(pdev, 0, adminq);
2360 
2361 	/*
2362 	 * If we enable msix early due to not intx, disable it again before
2363 	 * setting up the full range we need.
2364 	 */
2365 	pci_free_irq_vectors(pdev);
2366 
2367 	result = nvme_setup_irqs(dev, nr_io_queues);
2368 	if (result <= 0) {
2369 		result = -EIO;
2370 		goto out_unlock;
2371 	}
2372 
2373 	dev->num_vecs = result;
2374 	result = max(result - 1, 1);
2375 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2376 
2377 	/*
2378 	 * Should investigate if there's a performance win from allocating
2379 	 * more queues than interrupt vectors; it might allow the submission
2380 	 * path to scale better, even if the receive path is limited by the
2381 	 * number of interrupts.
2382 	 */
2383 	result = queue_request_irq(adminq);
2384 	if (result)
2385 		goto out_unlock;
2386 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2387 	mutex_unlock(&dev->shutdown_lock);
2388 
2389 	result = nvme_create_io_queues(dev);
2390 	if (result || dev->online_queues < 2)
2391 		return result;
2392 
2393 	if (dev->online_queues - 1 < dev->max_qid) {
2394 		nr_io_queues = dev->online_queues - 1;
2395 		nvme_delete_io_queues(dev);
2396 		result = nvme_setup_io_queues_trylock(dev);
2397 		if (result)
2398 			return result;
2399 		nvme_suspend_io_queues(dev);
2400 		goto retry;
2401 	}
2402 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2403 					dev->io_queues[HCTX_TYPE_DEFAULT],
2404 					dev->io_queues[HCTX_TYPE_READ],
2405 					dev->io_queues[HCTX_TYPE_POLL]);
2406 	return 0;
2407 out_unlock:
2408 	mutex_unlock(&dev->shutdown_lock);
2409 	return result;
2410 }
2411 
2412 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2413 					     blk_status_t error)
2414 {
2415 	struct nvme_queue *nvmeq = req->end_io_data;
2416 
2417 	blk_mq_free_request(req);
2418 	complete(&nvmeq->delete_done);
2419 	return RQ_END_IO_NONE;
2420 }
2421 
2422 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2423 					  blk_status_t error)
2424 {
2425 	struct nvme_queue *nvmeq = req->end_io_data;
2426 
2427 	if (error)
2428 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2429 
2430 	return nvme_del_queue_end(req, error);
2431 }
2432 
2433 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2434 {
2435 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2436 	struct request *req;
2437 	struct nvme_command cmd = { };
2438 
2439 	cmd.delete_queue.opcode = opcode;
2440 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2441 
2442 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2443 	if (IS_ERR(req))
2444 		return PTR_ERR(req);
2445 	nvme_init_request(req, &cmd);
2446 
2447 	if (opcode == nvme_admin_delete_cq)
2448 		req->end_io = nvme_del_cq_end;
2449 	else
2450 		req->end_io = nvme_del_queue_end;
2451 	req->end_io_data = nvmeq;
2452 
2453 	init_completion(&nvmeq->delete_done);
2454 	blk_execute_rq_nowait(req, false);
2455 	return 0;
2456 }
2457 
2458 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2459 {
2460 	int nr_queues = dev->online_queues - 1, sent = 0;
2461 	unsigned long timeout;
2462 
2463  retry:
2464 	timeout = NVME_ADMIN_TIMEOUT;
2465 	while (nr_queues > 0) {
2466 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2467 			break;
2468 		nr_queues--;
2469 		sent++;
2470 	}
2471 	while (sent) {
2472 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2473 
2474 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2475 				timeout);
2476 		if (timeout == 0)
2477 			return false;
2478 
2479 		sent--;
2480 		if (nr_queues)
2481 			goto retry;
2482 	}
2483 	return true;
2484 }
2485 
2486 static void nvme_delete_io_queues(struct nvme_dev *dev)
2487 {
2488 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2489 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2490 }
2491 
2492 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2493 {
2494 	if (dev->io_queues[HCTX_TYPE_POLL])
2495 		return 3;
2496 	if (dev->io_queues[HCTX_TYPE_READ])
2497 		return 2;
2498 	return 1;
2499 }
2500 
2501 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2502 {
2503 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2504 	/* free previously allocated queues that are no longer usable */
2505 	nvme_free_queues(dev, dev->online_queues);
2506 }
2507 
2508 static int nvme_pci_enable(struct nvme_dev *dev)
2509 {
2510 	int result = -ENOMEM;
2511 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2512 	int dma_address_bits = 64;
2513 
2514 	if (pci_enable_device_mem(pdev))
2515 		return result;
2516 
2517 	pci_set_master(pdev);
2518 
2519 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2520 		dma_address_bits = 48;
2521 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2522 		goto disable;
2523 
2524 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2525 		result = -ENODEV;
2526 		goto disable;
2527 	}
2528 
2529 	/*
2530 	 * Some devices and/or platforms don't advertise or work with INTx
2531 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2532 	 * adjust this later.
2533 	 */
2534 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2535 	if (result < 0)
2536 		goto disable;
2537 
2538 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2539 
2540 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2541 				io_queue_depth);
2542 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2543 	dev->dbs = dev->bar + 4096;
2544 
2545 	/*
2546 	 * Some Apple controllers require a non-standard SQE size.
2547 	 * Interestingly they also seem to ignore the CC:IOSQES register
2548 	 * so we don't bother updating it here.
2549 	 */
2550 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2551 		dev->io_sqes = 7;
2552 	else
2553 		dev->io_sqes = NVME_NVM_IOSQES;
2554 
2555 	/*
2556 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2557 	 * some MacBook7,1 to avoid controller resets and data loss.
2558 	 */
2559 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2560 		dev->q_depth = 2;
2561 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2562 			"set queue depth=%u to work around controller resets\n",
2563 			dev->q_depth);
2564 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2565 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2566 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2567 		dev->q_depth = 64;
2568 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2569                         "set queue depth=%u\n", dev->q_depth);
2570 	}
2571 
2572 	/*
2573 	 * Controllers with the shared tags quirk need the IO queue to be
2574 	 * big enough so that we get 32 tags for the admin queue
2575 	 */
2576 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2577 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2578 		dev->q_depth = NVME_AQ_DEPTH + 2;
2579 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2580 			 dev->q_depth);
2581 	}
2582 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2583 
2584 	nvme_map_cmb(dev);
2585 
2586 	pci_enable_pcie_error_reporting(pdev);
2587 	pci_save_state(pdev);
2588 
2589 	result = nvme_pci_configure_admin_queue(dev);
2590 	if (result)
2591 		goto free_irq;
2592 	return result;
2593 
2594  free_irq:
2595 	pci_free_irq_vectors(pdev);
2596  disable:
2597 	pci_disable_device(pdev);
2598 	return result;
2599 }
2600 
2601 static void nvme_dev_unmap(struct nvme_dev *dev)
2602 {
2603 	if (dev->bar)
2604 		iounmap(dev->bar);
2605 	pci_release_mem_regions(to_pci_dev(dev->dev));
2606 }
2607 
2608 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2609 {
2610 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2611 	u32 csts;
2612 
2613 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2614 		return true;
2615 	if (pdev->error_state != pci_channel_io_normal)
2616 		return true;
2617 
2618 	csts = readl(dev->bar + NVME_REG_CSTS);
2619 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2620 }
2621 
2622 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2623 {
2624 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2625 	bool dead;
2626 
2627 	mutex_lock(&dev->shutdown_lock);
2628 	dead = nvme_pci_ctrl_is_dead(dev);
2629 	if (dev->ctrl.state == NVME_CTRL_LIVE ||
2630 	    dev->ctrl.state == NVME_CTRL_RESETTING) {
2631 		if (pci_is_enabled(pdev))
2632 			nvme_start_freeze(&dev->ctrl);
2633 		/*
2634 		 * Give the controller a chance to complete all entered requests
2635 		 * if doing a safe shutdown.
2636 		 */
2637 		if (!dead && shutdown)
2638 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2639 	}
2640 
2641 	nvme_quiesce_io_queues(&dev->ctrl);
2642 
2643 	if (!dead && dev->ctrl.queue_count > 0) {
2644 		nvme_delete_io_queues(dev);
2645 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2646 		nvme_poll_irqdisable(&dev->queues[0]);
2647 	}
2648 	nvme_suspend_io_queues(dev);
2649 	nvme_suspend_queue(dev, 0);
2650 	pci_free_irq_vectors(pdev);
2651 	if (pci_is_enabled(pdev)) {
2652 		pci_disable_pcie_error_reporting(pdev);
2653 		pci_disable_device(pdev);
2654 	}
2655 	nvme_reap_pending_cqes(dev);
2656 
2657 	nvme_cancel_tagset(&dev->ctrl);
2658 	nvme_cancel_admin_tagset(&dev->ctrl);
2659 
2660 	/*
2661 	 * The driver will not be starting up queues again if shutting down so
2662 	 * must flush all entered requests to their failed completion to avoid
2663 	 * deadlocking blk-mq hot-cpu notifier.
2664 	 */
2665 	if (shutdown) {
2666 		nvme_unquiesce_io_queues(&dev->ctrl);
2667 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2668 			nvme_unquiesce_admin_queue(&dev->ctrl);
2669 	}
2670 	mutex_unlock(&dev->shutdown_lock);
2671 }
2672 
2673 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2674 {
2675 	if (!nvme_wait_reset(&dev->ctrl))
2676 		return -EBUSY;
2677 	nvme_dev_disable(dev, shutdown);
2678 	return 0;
2679 }
2680 
2681 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2682 {
2683 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2684 						NVME_CTRL_PAGE_SIZE,
2685 						NVME_CTRL_PAGE_SIZE, 0);
2686 	if (!dev->prp_page_pool)
2687 		return -ENOMEM;
2688 
2689 	/* Optimisation for I/Os between 4k and 128k */
2690 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2691 						256, 256, 0);
2692 	if (!dev->prp_small_pool) {
2693 		dma_pool_destroy(dev->prp_page_pool);
2694 		return -ENOMEM;
2695 	}
2696 	return 0;
2697 }
2698 
2699 static void nvme_release_prp_pools(struct nvme_dev *dev)
2700 {
2701 	dma_pool_destroy(dev->prp_page_pool);
2702 	dma_pool_destroy(dev->prp_small_pool);
2703 }
2704 
2705 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2706 {
2707 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
2708 	size_t alloc_size = sizeof(__le64 *) * npages +
2709 			    sizeof(struct scatterlist) * NVME_MAX_SEGS;
2710 
2711 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2712 	dev->iod_mempool = mempool_create_node(1,
2713 			mempool_kmalloc, mempool_kfree,
2714 			(void *)alloc_size, GFP_KERNEL,
2715 			dev_to_node(dev->dev));
2716 	if (!dev->iod_mempool)
2717 		return -ENOMEM;
2718 	return 0;
2719 }
2720 
2721 static void nvme_free_tagset(struct nvme_dev *dev)
2722 {
2723 	if (dev->tagset.tags)
2724 		nvme_remove_io_tag_set(&dev->ctrl);
2725 	dev->ctrl.tagset = NULL;
2726 }
2727 
2728 /* pairs with nvme_pci_alloc_dev */
2729 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2730 {
2731 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2732 
2733 	nvme_free_tagset(dev);
2734 	put_device(dev->dev);
2735 	kfree(dev->queues);
2736 	kfree(dev);
2737 }
2738 
2739 static void nvme_reset_work(struct work_struct *work)
2740 {
2741 	struct nvme_dev *dev =
2742 		container_of(work, struct nvme_dev, ctrl.reset_work);
2743 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2744 	int result;
2745 
2746 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2747 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2748 			 dev->ctrl.state);
2749 		return;
2750 	}
2751 
2752 	/*
2753 	 * If we're called to reset a live controller first shut it down before
2754 	 * moving on.
2755 	 */
2756 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2757 		nvme_dev_disable(dev, false);
2758 	nvme_sync_queues(&dev->ctrl);
2759 
2760 	mutex_lock(&dev->shutdown_lock);
2761 	result = nvme_pci_enable(dev);
2762 	if (result)
2763 		goto out_unlock;
2764 	nvme_unquiesce_admin_queue(&dev->ctrl);
2765 	mutex_unlock(&dev->shutdown_lock);
2766 
2767 	/*
2768 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2769 	 * initializing procedure here.
2770 	 */
2771 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2772 		dev_warn(dev->ctrl.device,
2773 			"failed to mark controller CONNECTING\n");
2774 		result = -EBUSY;
2775 		goto out;
2776 	}
2777 
2778 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2779 	if (result)
2780 		goto out;
2781 
2782 	nvme_dbbuf_dma_alloc(dev);
2783 
2784 	result = nvme_setup_host_mem(dev);
2785 	if (result < 0)
2786 		goto out;
2787 
2788 	result = nvme_setup_io_queues(dev);
2789 	if (result)
2790 		goto out;
2791 
2792 	/*
2793 	 * Freeze and update the number of I/O queues as thos might have
2794 	 * changed.  If there are no I/O queues left after this reset, keep the
2795 	 * controller around but remove all namespaces.
2796 	 */
2797 	if (dev->online_queues > 1) {
2798 		nvme_unquiesce_io_queues(&dev->ctrl);
2799 		nvme_wait_freeze(&dev->ctrl);
2800 		nvme_pci_update_nr_queues(dev);
2801 		nvme_dbbuf_set(dev);
2802 		nvme_unfreeze(&dev->ctrl);
2803 	} else {
2804 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2805 		nvme_mark_namespaces_dead(&dev->ctrl);
2806 		nvme_unquiesce_io_queues(&dev->ctrl);
2807 		nvme_remove_namespaces(&dev->ctrl);
2808 		nvme_free_tagset(dev);
2809 	}
2810 
2811 	/*
2812 	 * If only admin queue live, keep it to do further investigation or
2813 	 * recovery.
2814 	 */
2815 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2816 		dev_warn(dev->ctrl.device,
2817 			"failed to mark controller live state\n");
2818 		result = -ENODEV;
2819 		goto out;
2820 	}
2821 
2822 	nvme_start_ctrl(&dev->ctrl);
2823 	return;
2824 
2825  out_unlock:
2826 	mutex_unlock(&dev->shutdown_lock);
2827  out:
2828 	/*
2829 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2830 	 * may be holding this pci_dev's device lock.
2831 	 */
2832 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2833 		 result);
2834 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2835 	nvme_dev_disable(dev, true);
2836 	nvme_mark_namespaces_dead(&dev->ctrl);
2837 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2838 }
2839 
2840 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2841 {
2842 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2843 	return 0;
2844 }
2845 
2846 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2847 {
2848 	writel(val, to_nvme_dev(ctrl)->bar + off);
2849 	return 0;
2850 }
2851 
2852 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2853 {
2854 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2855 	return 0;
2856 }
2857 
2858 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2859 {
2860 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2861 
2862 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2863 }
2864 
2865 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2866 {
2867 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2868 	struct nvme_subsystem *subsys = ctrl->subsys;
2869 
2870 	dev_err(ctrl->device,
2871 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2872 		pdev->vendor, pdev->device,
2873 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2874 		subsys->model, nvme_strlen(subsys->firmware_rev,
2875 					   sizeof(subsys->firmware_rev)),
2876 		subsys->firmware_rev);
2877 }
2878 
2879 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2880 {
2881 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2882 
2883 	return dma_pci_p2pdma_supported(dev->dev);
2884 }
2885 
2886 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2887 	.name			= "pcie",
2888 	.module			= THIS_MODULE,
2889 	.flags			= NVME_F_METADATA_SUPPORTED,
2890 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2891 	.reg_read32		= nvme_pci_reg_read32,
2892 	.reg_write32		= nvme_pci_reg_write32,
2893 	.reg_read64		= nvme_pci_reg_read64,
2894 	.free_ctrl		= nvme_pci_free_ctrl,
2895 	.submit_async_event	= nvme_pci_submit_async_event,
2896 	.get_address		= nvme_pci_get_address,
2897 	.print_device_info	= nvme_pci_print_device_info,
2898 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2899 };
2900 
2901 static int nvme_dev_map(struct nvme_dev *dev)
2902 {
2903 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2904 
2905 	if (pci_request_mem_regions(pdev, "nvme"))
2906 		return -ENODEV;
2907 
2908 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2909 		goto release;
2910 
2911 	return 0;
2912   release:
2913 	pci_release_mem_regions(pdev);
2914 	return -ENODEV;
2915 }
2916 
2917 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2918 {
2919 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2920 		/*
2921 		 * Several Samsung devices seem to drop off the PCIe bus
2922 		 * randomly when APST is on and uses the deepest sleep state.
2923 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2924 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2925 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2926 		 * laptops.
2927 		 */
2928 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2929 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2930 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2931 			return NVME_QUIRK_NO_DEEPEST_PS;
2932 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2933 		/*
2934 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2935 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2936 		 * within few minutes after bootup on a Coffee Lake board -
2937 		 * ASUS PRIME Z370-A
2938 		 */
2939 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2940 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2941 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2942 			return NVME_QUIRK_NO_APST;
2943 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2944 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2945 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2946 		/*
2947 		 * Forcing to use host managed nvme power settings for
2948 		 * lowest idle power with quick resume latency on
2949 		 * Samsung and Toshiba SSDs based on suspend behavior
2950 		 * on Coffee Lake board for LENOVO C640
2951 		 */
2952 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2953 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2954 			return NVME_QUIRK_SIMPLE_SUSPEND;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2961 		const struct pci_device_id *id)
2962 {
2963 	unsigned long quirks = id->driver_data;
2964 	int node = dev_to_node(&pdev->dev);
2965 	struct nvme_dev *dev;
2966 	int ret = -ENOMEM;
2967 
2968 	if (node == NUMA_NO_NODE)
2969 		set_dev_node(&pdev->dev, first_memory_node);
2970 
2971 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2972 	if (!dev)
2973 		return NULL;
2974 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2975 	mutex_init(&dev->shutdown_lock);
2976 
2977 	dev->nr_write_queues = write_queues;
2978 	dev->nr_poll_queues = poll_queues;
2979 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2980 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2981 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2982 	if (!dev->queues)
2983 		goto out_free_dev;
2984 
2985 	dev->dev = get_device(&pdev->dev);
2986 
2987 	quirks |= check_vendor_combination_bug(pdev);
2988 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2989 		/*
2990 		 * Some systems use a bios work around to ask for D3 on
2991 		 * platforms that support kernel managed suspend.
2992 		 */
2993 		dev_info(&pdev->dev,
2994 			 "platform quirk: setting simple suspend\n");
2995 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2996 	}
2997 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2998 			     quirks);
2999 	if (ret)
3000 		goto out_put_device;
3001 
3002 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3003 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3004 
3005 	/*
3006 	 * Limit the max command size to prevent iod->sg allocations going
3007 	 * over a single page.
3008 	 */
3009 	dev->ctrl.max_hw_sectors = min_t(u32,
3010 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
3011 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3012 
3013 	/*
3014 	 * There is no support for SGLs for metadata (yet), so we are limited to
3015 	 * a single integrity segment for the separate metadata pointer.
3016 	 */
3017 	dev->ctrl.max_integrity_segments = 1;
3018 	return dev;
3019 
3020 out_put_device:
3021 	put_device(dev->dev);
3022 	kfree(dev->queues);
3023 out_free_dev:
3024 	kfree(dev);
3025 	return ERR_PTR(ret);
3026 }
3027 
3028 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3029 {
3030 	struct nvme_dev *dev;
3031 	int result = -ENOMEM;
3032 
3033 	dev = nvme_pci_alloc_dev(pdev, id);
3034 	if (!dev)
3035 		return -ENOMEM;
3036 
3037 	result = nvme_dev_map(dev);
3038 	if (result)
3039 		goto out_uninit_ctrl;
3040 
3041 	result = nvme_setup_prp_pools(dev);
3042 	if (result)
3043 		goto out_dev_unmap;
3044 
3045 	result = nvme_pci_alloc_iod_mempool(dev);
3046 	if (result)
3047 		goto out_release_prp_pools;
3048 
3049 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3050 
3051 	result = nvme_pci_enable(dev);
3052 	if (result)
3053 		goto out_release_iod_mempool;
3054 
3055 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3056 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3057 	if (result)
3058 		goto out_disable;
3059 
3060 	/*
3061 	 * Mark the controller as connecting before sending admin commands to
3062 	 * allow the timeout handler to do the right thing.
3063 	 */
3064 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3065 		dev_warn(dev->ctrl.device,
3066 			"failed to mark controller CONNECTING\n");
3067 		result = -EBUSY;
3068 		goto out_disable;
3069 	}
3070 
3071 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3072 	if (result)
3073 		goto out_disable;
3074 
3075 	nvme_dbbuf_dma_alloc(dev);
3076 
3077 	result = nvme_setup_host_mem(dev);
3078 	if (result < 0)
3079 		goto out_disable;
3080 
3081 	result = nvme_setup_io_queues(dev);
3082 	if (result)
3083 		goto out_disable;
3084 
3085 	if (dev->online_queues > 1) {
3086 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3087 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3088 		nvme_dbbuf_set(dev);
3089 	}
3090 
3091 	if (!dev->ctrl.tagset)
3092 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3093 
3094 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3095 		dev_warn(dev->ctrl.device,
3096 			"failed to mark controller live state\n");
3097 		result = -ENODEV;
3098 		goto out_disable;
3099 	}
3100 
3101 	pci_set_drvdata(pdev, dev);
3102 
3103 	nvme_start_ctrl(&dev->ctrl);
3104 	nvme_put_ctrl(&dev->ctrl);
3105 	return 0;
3106 
3107 out_disable:
3108 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3109 	nvme_dev_disable(dev, true);
3110 	nvme_free_host_mem(dev);
3111 	nvme_dev_remove_admin(dev);
3112 	nvme_dbbuf_dma_free(dev);
3113 	nvme_free_queues(dev, 0);
3114 out_release_iod_mempool:
3115 	mempool_destroy(dev->iod_mempool);
3116 out_release_prp_pools:
3117 	nvme_release_prp_pools(dev);
3118 out_dev_unmap:
3119 	nvme_dev_unmap(dev);
3120 out_uninit_ctrl:
3121 	nvme_uninit_ctrl(&dev->ctrl);
3122 	return result;
3123 }
3124 
3125 static void nvme_reset_prepare(struct pci_dev *pdev)
3126 {
3127 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3128 
3129 	/*
3130 	 * We don't need to check the return value from waiting for the reset
3131 	 * state as pci_dev device lock is held, making it impossible to race
3132 	 * with ->remove().
3133 	 */
3134 	nvme_disable_prepare_reset(dev, false);
3135 	nvme_sync_queues(&dev->ctrl);
3136 }
3137 
3138 static void nvme_reset_done(struct pci_dev *pdev)
3139 {
3140 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3141 
3142 	if (!nvme_try_sched_reset(&dev->ctrl))
3143 		flush_work(&dev->ctrl.reset_work);
3144 }
3145 
3146 static void nvme_shutdown(struct pci_dev *pdev)
3147 {
3148 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3149 
3150 	nvme_disable_prepare_reset(dev, true);
3151 }
3152 
3153 /*
3154  * The driver's remove may be called on a device in a partially initialized
3155  * state. This function must not have any dependencies on the device state in
3156  * order to proceed.
3157  */
3158 static void nvme_remove(struct pci_dev *pdev)
3159 {
3160 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3161 
3162 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3163 	pci_set_drvdata(pdev, NULL);
3164 
3165 	if (!pci_device_is_present(pdev)) {
3166 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3167 		nvme_dev_disable(dev, true);
3168 	}
3169 
3170 	flush_work(&dev->ctrl.reset_work);
3171 	nvme_stop_ctrl(&dev->ctrl);
3172 	nvme_remove_namespaces(&dev->ctrl);
3173 	nvme_dev_disable(dev, true);
3174 	nvme_free_host_mem(dev);
3175 	nvme_dev_remove_admin(dev);
3176 	nvme_dbbuf_dma_free(dev);
3177 	nvme_free_queues(dev, 0);
3178 	mempool_destroy(dev->iod_mempool);
3179 	nvme_release_prp_pools(dev);
3180 	nvme_dev_unmap(dev);
3181 	nvme_uninit_ctrl(&dev->ctrl);
3182 }
3183 
3184 #ifdef CONFIG_PM_SLEEP
3185 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3186 {
3187 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3188 }
3189 
3190 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3191 {
3192 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3193 }
3194 
3195 static int nvme_resume(struct device *dev)
3196 {
3197 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3198 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3199 
3200 	if (ndev->last_ps == U32_MAX ||
3201 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3202 		goto reset;
3203 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3204 		goto reset;
3205 
3206 	return 0;
3207 reset:
3208 	return nvme_try_sched_reset(ctrl);
3209 }
3210 
3211 static int nvme_suspend(struct device *dev)
3212 {
3213 	struct pci_dev *pdev = to_pci_dev(dev);
3214 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3215 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3216 	int ret = -EBUSY;
3217 
3218 	ndev->last_ps = U32_MAX;
3219 
3220 	/*
3221 	 * The platform does not remove power for a kernel managed suspend so
3222 	 * use host managed nvme power settings for lowest idle power if
3223 	 * possible. This should have quicker resume latency than a full device
3224 	 * shutdown.  But if the firmware is involved after the suspend or the
3225 	 * device does not support any non-default power states, shut down the
3226 	 * device fully.
3227 	 *
3228 	 * If ASPM is not enabled for the device, shut down the device and allow
3229 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3230 	 * down, so as to allow the platform to achieve its minimum low-power
3231 	 * state (which may not be possible if the link is up).
3232 	 */
3233 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3234 	    !pcie_aspm_enabled(pdev) ||
3235 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3236 		return nvme_disable_prepare_reset(ndev, true);
3237 
3238 	nvme_start_freeze(ctrl);
3239 	nvme_wait_freeze(ctrl);
3240 	nvme_sync_queues(ctrl);
3241 
3242 	if (ctrl->state != NVME_CTRL_LIVE)
3243 		goto unfreeze;
3244 
3245 	/*
3246 	 * Host memory access may not be successful in a system suspend state,
3247 	 * but the specification allows the controller to access memory in a
3248 	 * non-operational power state.
3249 	 */
3250 	if (ndev->hmb) {
3251 		ret = nvme_set_host_mem(ndev, 0);
3252 		if (ret < 0)
3253 			goto unfreeze;
3254 	}
3255 
3256 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3257 	if (ret < 0)
3258 		goto unfreeze;
3259 
3260 	/*
3261 	 * A saved state prevents pci pm from generically controlling the
3262 	 * device's power. If we're using protocol specific settings, we don't
3263 	 * want pci interfering.
3264 	 */
3265 	pci_save_state(pdev);
3266 
3267 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3268 	if (ret < 0)
3269 		goto unfreeze;
3270 
3271 	if (ret) {
3272 		/* discard the saved state */
3273 		pci_load_saved_state(pdev, NULL);
3274 
3275 		/*
3276 		 * Clearing npss forces a controller reset on resume. The
3277 		 * correct value will be rediscovered then.
3278 		 */
3279 		ret = nvme_disable_prepare_reset(ndev, true);
3280 		ctrl->npss = 0;
3281 	}
3282 unfreeze:
3283 	nvme_unfreeze(ctrl);
3284 	return ret;
3285 }
3286 
3287 static int nvme_simple_suspend(struct device *dev)
3288 {
3289 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3290 
3291 	return nvme_disable_prepare_reset(ndev, true);
3292 }
3293 
3294 static int nvme_simple_resume(struct device *dev)
3295 {
3296 	struct pci_dev *pdev = to_pci_dev(dev);
3297 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3298 
3299 	return nvme_try_sched_reset(&ndev->ctrl);
3300 }
3301 
3302 static const struct dev_pm_ops nvme_dev_pm_ops = {
3303 	.suspend	= nvme_suspend,
3304 	.resume		= nvme_resume,
3305 	.freeze		= nvme_simple_suspend,
3306 	.thaw		= nvme_simple_resume,
3307 	.poweroff	= nvme_simple_suspend,
3308 	.restore	= nvme_simple_resume,
3309 };
3310 #endif /* CONFIG_PM_SLEEP */
3311 
3312 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3313 						pci_channel_state_t state)
3314 {
3315 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3316 
3317 	/*
3318 	 * A frozen channel requires a reset. When detected, this method will
3319 	 * shutdown the controller to quiesce. The controller will be restarted
3320 	 * after the slot reset through driver's slot_reset callback.
3321 	 */
3322 	switch (state) {
3323 	case pci_channel_io_normal:
3324 		return PCI_ERS_RESULT_CAN_RECOVER;
3325 	case pci_channel_io_frozen:
3326 		dev_warn(dev->ctrl.device,
3327 			"frozen state error detected, reset controller\n");
3328 		nvme_dev_disable(dev, false);
3329 		return PCI_ERS_RESULT_NEED_RESET;
3330 	case pci_channel_io_perm_failure:
3331 		dev_warn(dev->ctrl.device,
3332 			"failure state error detected, request disconnect\n");
3333 		return PCI_ERS_RESULT_DISCONNECT;
3334 	}
3335 	return PCI_ERS_RESULT_NEED_RESET;
3336 }
3337 
3338 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3339 {
3340 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3341 
3342 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3343 	pci_restore_state(pdev);
3344 	nvme_reset_ctrl(&dev->ctrl);
3345 	return PCI_ERS_RESULT_RECOVERED;
3346 }
3347 
3348 static void nvme_error_resume(struct pci_dev *pdev)
3349 {
3350 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3351 
3352 	flush_work(&dev->ctrl.reset_work);
3353 }
3354 
3355 static const struct pci_error_handlers nvme_err_handler = {
3356 	.error_detected	= nvme_error_detected,
3357 	.slot_reset	= nvme_slot_reset,
3358 	.resume		= nvme_error_resume,
3359 	.reset_prepare	= nvme_reset_prepare,
3360 	.reset_done	= nvme_reset_done,
3361 };
3362 
3363 static const struct pci_device_id nvme_id_table[] = {
3364 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3365 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3366 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3367 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3368 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3369 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3370 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3371 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3372 				NVME_QUIRK_DEALLOCATE_ZEROES |
3373 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3374 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3375 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3376 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3377 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3378 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3379 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3380 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3381 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3382 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3383 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3384 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3385 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3386 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3387 				NVME_QUIRK_BOGUS_NID, },
3388 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3389 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3390 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3391 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3392 				NVME_QUIRK_BOGUS_NID, },
3393 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3394 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3395 				NVME_QUIRK_NO_NS_DESC_LIST, },
3396 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3397 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3398 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3399 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3400 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3401 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3402 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3403 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3404 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3405 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3406 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3407 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3408 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3409 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3410 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3411 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3412 				NVME_QUIRK_BOGUS_NID, },
3413 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3414 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3415 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3416 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3417 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3418 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3419 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3420 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3421 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3422 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3423 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3424 				NVME_QUIRK_BOGUS_NID, },
3425 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3426 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3427 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3428 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3429 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3430 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3431 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3432 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3433 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3434 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3435 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3436 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3437 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3438 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3439 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3440 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3441 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3443 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3444 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3445 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3446 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3447 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3448 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3449 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3450 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3451 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3452 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3453 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3454 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3455 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3456 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3457 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3458 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3459 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3460 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3461 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3462 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3463 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3464 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3465 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3466 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3467 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3468 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3469 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3470 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3471 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3472 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3473 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3474 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3475 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3476 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3477 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3478 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3479 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3480 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3481 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3482 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3483 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3484 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3485 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3486 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3487 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3488 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3489 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3490 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3491 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3492 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3493 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3494 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3495 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3496 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3497 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3498 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3499 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3500 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3501 				NVME_QUIRK_128_BYTES_SQES |
3502 				NVME_QUIRK_SHARED_TAGS |
3503 				NVME_QUIRK_SKIP_CID_GEN |
3504 				NVME_QUIRK_IDENTIFY_CNS },
3505 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3506 	{ 0, }
3507 };
3508 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3509 
3510 static struct pci_driver nvme_driver = {
3511 	.name		= "nvme",
3512 	.id_table	= nvme_id_table,
3513 	.probe		= nvme_probe,
3514 	.remove		= nvme_remove,
3515 	.shutdown	= nvme_shutdown,
3516 	.driver		= {
3517 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3518 #ifdef CONFIG_PM_SLEEP
3519 		.pm		= &nvme_dev_pm_ops,
3520 #endif
3521 	},
3522 	.sriov_configure = pci_sriov_configure_simple,
3523 	.err_handler	= &nvme_err_handler,
3524 };
3525 
3526 static int __init nvme_init(void)
3527 {
3528 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3529 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3530 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3531 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3532 	BUILD_BUG_ON(DIV_ROUND_UP(nvme_pci_npages_prp(), NVME_CTRL_PAGE_SIZE) >
3533 		     S8_MAX);
3534 
3535 	return pci_register_driver(&nvme_driver);
3536 }
3537 
3538 static void __exit nvme_exit(void)
3539 {
3540 	pci_unregister_driver(&nvme_driver);
3541 	flush_workqueue(nvme_wq);
3542 }
3543 
3544 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3545 MODULE_LICENSE("GPL");
3546 MODULE_VERSION("1.0");
3547 module_init(nvme_init);
3548 module_exit(nvme_exit);
3549