1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/cpu.h> 20 #include <linux/delay.h> 21 #include <linux/errno.h> 22 #include <linux/fs.h> 23 #include <linux/genhd.h> 24 #include <linux/hdreg.h> 25 #include <linux/idr.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/kdev_t.h> 30 #include <linux/kernel.h> 31 #include <linux/mm.h> 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/mutex.h> 35 #include <linux/pci.h> 36 #include <linux/poison.h> 37 #include <linux/ptrace.h> 38 #include <linux/sched.h> 39 #include <linux/slab.h> 40 #include <linux/t10-pi.h> 41 #include <linux/timer.h> 42 #include <linux/types.h> 43 #include <linux/io-64-nonatomic-lo-hi.h> 44 #include <asm/unaligned.h> 45 46 #include "nvme.h" 47 48 #define NVME_Q_DEPTH 1024 49 #define NVME_AQ_DEPTH 256 50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 52 53 /* 54 * We handle AEN commands ourselves and don't even let the 55 * block layer know about them. 56 */ 57 #define NVME_NR_AEN_COMMANDS 1 58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS) 59 60 static int use_threaded_interrupts; 61 module_param(use_threaded_interrupts, int, 0); 62 63 static bool use_cmb_sqes = true; 64 module_param(use_cmb_sqes, bool, 0644); 65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 66 67 static struct workqueue_struct *nvme_workq; 68 69 struct nvme_dev; 70 struct nvme_queue; 71 72 static int nvme_reset(struct nvme_dev *dev); 73 static void nvme_process_cq(struct nvme_queue *nvmeq); 74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 75 76 /* 77 * Represents an NVM Express device. Each nvme_dev is a PCI function. 78 */ 79 struct nvme_dev { 80 struct nvme_queue **queues; 81 struct blk_mq_tag_set tagset; 82 struct blk_mq_tag_set admin_tagset; 83 u32 __iomem *dbs; 84 struct device *dev; 85 struct dma_pool *prp_page_pool; 86 struct dma_pool *prp_small_pool; 87 unsigned queue_count; 88 unsigned online_queues; 89 unsigned max_qid; 90 int q_depth; 91 u32 db_stride; 92 struct msix_entry *entry; 93 void __iomem *bar; 94 struct work_struct reset_work; 95 struct work_struct scan_work; 96 struct work_struct remove_work; 97 struct work_struct async_work; 98 struct timer_list watchdog_timer; 99 struct mutex shutdown_lock; 100 bool subsystem; 101 void __iomem *cmb; 102 dma_addr_t cmb_dma_addr; 103 u64 cmb_size; 104 u32 cmbsz; 105 unsigned long flags; 106 107 #define NVME_CTRL_RESETTING 0 108 #define NVME_CTRL_REMOVING 1 109 110 struct nvme_ctrl ctrl; 111 struct completion ioq_wait; 112 }; 113 114 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 115 { 116 return container_of(ctrl, struct nvme_dev, ctrl); 117 } 118 119 /* 120 * An NVM Express queue. Each device has at least two (one for admin 121 * commands and one for I/O commands). 122 */ 123 struct nvme_queue { 124 struct device *q_dmadev; 125 struct nvme_dev *dev; 126 char irqname[24]; /* nvme4294967295-65535\0 */ 127 spinlock_t q_lock; 128 struct nvme_command *sq_cmds; 129 struct nvme_command __iomem *sq_cmds_io; 130 volatile struct nvme_completion *cqes; 131 struct blk_mq_tags **tags; 132 dma_addr_t sq_dma_addr; 133 dma_addr_t cq_dma_addr; 134 u32 __iomem *q_db; 135 u16 q_depth; 136 s16 cq_vector; 137 u16 sq_tail; 138 u16 cq_head; 139 u16 qid; 140 u8 cq_phase; 141 u8 cqe_seen; 142 }; 143 144 /* 145 * The nvme_iod describes the data in an I/O, including the list of PRP 146 * entries. You can't see it in this data structure because C doesn't let 147 * me express that. Use nvme_init_iod to ensure there's enough space 148 * allocated to store the PRP list. 149 */ 150 struct nvme_iod { 151 struct nvme_queue *nvmeq; 152 int aborted; 153 int npages; /* In the PRP list. 0 means small pool in use */ 154 int nents; /* Used in scatterlist */ 155 int length; /* Of data, in bytes */ 156 dma_addr_t first_dma; 157 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 158 struct scatterlist *sg; 159 struct scatterlist inline_sg[0]; 160 }; 161 162 /* 163 * Check we didin't inadvertently grow the command struct 164 */ 165 static inline void _nvme_check_size(void) 166 { 167 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 168 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 169 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 170 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 171 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 172 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 173 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 174 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 175 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 176 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 177 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 178 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 179 } 180 181 /* 182 * Max size of iod being embedded in the request payload 183 */ 184 #define NVME_INT_PAGES 2 185 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 186 187 /* 188 * Will slightly overestimate the number of pages needed. This is OK 189 * as it only leads to a small amount of wasted memory for the lifetime of 190 * the I/O. 191 */ 192 static int nvme_npages(unsigned size, struct nvme_dev *dev) 193 { 194 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 195 dev->ctrl.page_size); 196 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 197 } 198 199 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 200 unsigned int size, unsigned int nseg) 201 { 202 return sizeof(__le64 *) * nvme_npages(size, dev) + 203 sizeof(struct scatterlist) * nseg; 204 } 205 206 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 207 { 208 return sizeof(struct nvme_iod) + 209 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 210 } 211 212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 213 unsigned int hctx_idx) 214 { 215 struct nvme_dev *dev = data; 216 struct nvme_queue *nvmeq = dev->queues[0]; 217 218 WARN_ON(hctx_idx != 0); 219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 220 WARN_ON(nvmeq->tags); 221 222 hctx->driver_data = nvmeq; 223 nvmeq->tags = &dev->admin_tagset.tags[0]; 224 return 0; 225 } 226 227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 228 { 229 struct nvme_queue *nvmeq = hctx->driver_data; 230 231 nvmeq->tags = NULL; 232 } 233 234 static int nvme_admin_init_request(void *data, struct request *req, 235 unsigned int hctx_idx, unsigned int rq_idx, 236 unsigned int numa_node) 237 { 238 struct nvme_dev *dev = data; 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 240 struct nvme_queue *nvmeq = dev->queues[0]; 241 242 BUG_ON(!nvmeq); 243 iod->nvmeq = nvmeq; 244 return 0; 245 } 246 247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 248 unsigned int hctx_idx) 249 { 250 struct nvme_dev *dev = data; 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 252 253 if (!nvmeq->tags) 254 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 255 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 257 hctx->driver_data = nvmeq; 258 return 0; 259 } 260 261 static int nvme_init_request(void *data, struct request *req, 262 unsigned int hctx_idx, unsigned int rq_idx, 263 unsigned int numa_node) 264 { 265 struct nvme_dev *dev = data; 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 268 269 BUG_ON(!nvmeq); 270 iod->nvmeq = nvmeq; 271 return 0; 272 } 273 274 static void nvme_queue_scan(struct nvme_dev *dev) 275 { 276 /* 277 * Do not queue new scan work when a controller is reset during 278 * removal. 279 */ 280 if (test_bit(NVME_CTRL_REMOVING, &dev->flags)) 281 return; 282 queue_work(nvme_workq, &dev->scan_work); 283 } 284 285 static void nvme_complete_async_event(struct nvme_dev *dev, 286 struct nvme_completion *cqe) 287 { 288 u16 status = le16_to_cpu(cqe->status) >> 1; 289 u32 result = le32_to_cpu(cqe->result); 290 291 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) { 292 ++dev->ctrl.event_limit; 293 queue_work(nvme_workq, &dev->async_work); 294 } 295 296 if (status != NVME_SC_SUCCESS) 297 return; 298 299 switch (result & 0xff07) { 300 case NVME_AER_NOTICE_NS_CHANGED: 301 dev_info(dev->ctrl.device, "rescanning\n"); 302 nvme_queue_scan(dev); 303 default: 304 dev_warn(dev->ctrl.device, "async event result %08x\n", result); 305 } 306 } 307 308 /** 309 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 310 * @nvmeq: The queue to use 311 * @cmd: The command to send 312 * 313 * Safe to use from interrupt context 314 */ 315 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 316 struct nvme_command *cmd) 317 { 318 u16 tail = nvmeq->sq_tail; 319 320 if (nvmeq->sq_cmds_io) 321 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 322 else 323 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 324 325 if (++tail == nvmeq->q_depth) 326 tail = 0; 327 writel(tail, nvmeq->q_db); 328 nvmeq->sq_tail = tail; 329 } 330 331 static __le64 **iod_list(struct request *req) 332 { 333 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 334 return (__le64 **)(iod->sg + req->nr_phys_segments); 335 } 336 337 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev) 338 { 339 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 340 int nseg = rq->nr_phys_segments; 341 unsigned size; 342 343 if (rq->cmd_flags & REQ_DISCARD) 344 size = sizeof(struct nvme_dsm_range); 345 else 346 size = blk_rq_bytes(rq); 347 348 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 349 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 350 if (!iod->sg) 351 return BLK_MQ_RQ_QUEUE_BUSY; 352 } else { 353 iod->sg = iod->inline_sg; 354 } 355 356 iod->aborted = 0; 357 iod->npages = -1; 358 iod->nents = 0; 359 iod->length = size; 360 return 0; 361 } 362 363 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 364 { 365 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 366 const int last_prp = dev->ctrl.page_size / 8 - 1; 367 int i; 368 __le64 **list = iod_list(req); 369 dma_addr_t prp_dma = iod->first_dma; 370 371 if (iod->npages == 0) 372 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 373 for (i = 0; i < iod->npages; i++) { 374 __le64 *prp_list = list[i]; 375 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 376 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 377 prp_dma = next_prp_dma; 378 } 379 380 if (iod->sg != iod->inline_sg) 381 kfree(iod->sg); 382 } 383 384 #ifdef CONFIG_BLK_DEV_INTEGRITY 385 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 386 { 387 if (be32_to_cpu(pi->ref_tag) == v) 388 pi->ref_tag = cpu_to_be32(p); 389 } 390 391 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 392 { 393 if (be32_to_cpu(pi->ref_tag) == p) 394 pi->ref_tag = cpu_to_be32(v); 395 } 396 397 /** 398 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 399 * 400 * The virtual start sector is the one that was originally submitted by the 401 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 402 * start sector may be different. Remap protection information to match the 403 * physical LBA on writes, and back to the original seed on reads. 404 * 405 * Type 0 and 3 do not have a ref tag, so no remapping required. 406 */ 407 static void nvme_dif_remap(struct request *req, 408 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 409 { 410 struct nvme_ns *ns = req->rq_disk->private_data; 411 struct bio_integrity_payload *bip; 412 struct t10_pi_tuple *pi; 413 void *p, *pmap; 414 u32 i, nlb, ts, phys, virt; 415 416 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 417 return; 418 419 bip = bio_integrity(req->bio); 420 if (!bip) 421 return; 422 423 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 424 425 p = pmap; 426 virt = bip_get_seed(bip); 427 phys = nvme_block_nr(ns, blk_rq_pos(req)); 428 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 429 ts = ns->disk->queue->integrity.tuple_size; 430 431 for (i = 0; i < nlb; i++, virt++, phys++) { 432 pi = (struct t10_pi_tuple *)p; 433 dif_swap(phys, virt, pi); 434 p += ts; 435 } 436 kunmap_atomic(pmap); 437 } 438 #else /* CONFIG_BLK_DEV_INTEGRITY */ 439 static void nvme_dif_remap(struct request *req, 440 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 441 { 442 } 443 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 444 { 445 } 446 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 447 { 448 } 449 #endif 450 451 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, 452 int total_len) 453 { 454 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 455 struct dma_pool *pool; 456 int length = total_len; 457 struct scatterlist *sg = iod->sg; 458 int dma_len = sg_dma_len(sg); 459 u64 dma_addr = sg_dma_address(sg); 460 u32 page_size = dev->ctrl.page_size; 461 int offset = dma_addr & (page_size - 1); 462 __le64 *prp_list; 463 __le64 **list = iod_list(req); 464 dma_addr_t prp_dma; 465 int nprps, i; 466 467 length -= (page_size - offset); 468 if (length <= 0) 469 return true; 470 471 dma_len -= (page_size - offset); 472 if (dma_len) { 473 dma_addr += (page_size - offset); 474 } else { 475 sg = sg_next(sg); 476 dma_addr = sg_dma_address(sg); 477 dma_len = sg_dma_len(sg); 478 } 479 480 if (length <= page_size) { 481 iod->first_dma = dma_addr; 482 return true; 483 } 484 485 nprps = DIV_ROUND_UP(length, page_size); 486 if (nprps <= (256 / 8)) { 487 pool = dev->prp_small_pool; 488 iod->npages = 0; 489 } else { 490 pool = dev->prp_page_pool; 491 iod->npages = 1; 492 } 493 494 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 495 if (!prp_list) { 496 iod->first_dma = dma_addr; 497 iod->npages = -1; 498 return false; 499 } 500 list[0] = prp_list; 501 iod->first_dma = prp_dma; 502 i = 0; 503 for (;;) { 504 if (i == page_size >> 3) { 505 __le64 *old_prp_list = prp_list; 506 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 507 if (!prp_list) 508 return false; 509 list[iod->npages++] = prp_list; 510 prp_list[0] = old_prp_list[i - 1]; 511 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 512 i = 1; 513 } 514 prp_list[i++] = cpu_to_le64(dma_addr); 515 dma_len -= page_size; 516 dma_addr += page_size; 517 length -= page_size; 518 if (length <= 0) 519 break; 520 if (dma_len > 0) 521 continue; 522 BUG_ON(dma_len < 0); 523 sg = sg_next(sg); 524 dma_addr = sg_dma_address(sg); 525 dma_len = sg_dma_len(sg); 526 } 527 528 return true; 529 } 530 531 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 532 struct nvme_command *cmnd) 533 { 534 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 535 struct request_queue *q = req->q; 536 enum dma_data_direction dma_dir = rq_data_dir(req) ? 537 DMA_TO_DEVICE : DMA_FROM_DEVICE; 538 int ret = BLK_MQ_RQ_QUEUE_ERROR; 539 540 sg_init_table(iod->sg, req->nr_phys_segments); 541 iod->nents = blk_rq_map_sg(q, req, iod->sg); 542 if (!iod->nents) 543 goto out; 544 545 ret = BLK_MQ_RQ_QUEUE_BUSY; 546 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir)) 547 goto out; 548 549 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req))) 550 goto out_unmap; 551 552 ret = BLK_MQ_RQ_QUEUE_ERROR; 553 if (blk_integrity_rq(req)) { 554 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 555 goto out_unmap; 556 557 sg_init_table(&iod->meta_sg, 1); 558 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 559 goto out_unmap; 560 561 if (rq_data_dir(req)) 562 nvme_dif_remap(req, nvme_dif_prep); 563 564 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 565 goto out_unmap; 566 } 567 568 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 569 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma); 570 if (blk_integrity_rq(req)) 571 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 572 return BLK_MQ_RQ_QUEUE_OK; 573 574 out_unmap: 575 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 576 out: 577 return ret; 578 } 579 580 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 enum dma_data_direction dma_dir = rq_data_dir(req) ? 584 DMA_TO_DEVICE : DMA_FROM_DEVICE; 585 586 if (iod->nents) { 587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 588 if (blk_integrity_rq(req)) { 589 if (!rq_data_dir(req)) 590 nvme_dif_remap(req, nvme_dif_complete); 591 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 592 } 593 } 594 595 nvme_free_iod(dev, req); 596 } 597 598 /* 599 * We reuse the small pool to allocate the 16-byte range here as it is not 600 * worth having a special pool for these or additional cases to handle freeing 601 * the iod. 602 */ 603 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns, 604 struct request *req, struct nvme_command *cmnd) 605 { 606 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 607 struct nvme_dsm_range *range; 608 609 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC, 610 &iod->first_dma); 611 if (!range) 612 return BLK_MQ_RQ_QUEUE_BUSY; 613 iod_list(req)[0] = (__le64 *)range; 614 iod->npages = 0; 615 616 range->cattr = cpu_to_le32(0); 617 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift); 618 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 619 620 memset(cmnd, 0, sizeof(*cmnd)); 621 cmnd->dsm.opcode = nvme_cmd_dsm; 622 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 623 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma); 624 cmnd->dsm.nr = 0; 625 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 626 return BLK_MQ_RQ_QUEUE_OK; 627 } 628 629 /* 630 * NOTE: ns is NULL when called on the admin queue. 631 */ 632 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 633 const struct blk_mq_queue_data *bd) 634 { 635 struct nvme_ns *ns = hctx->queue->queuedata; 636 struct nvme_queue *nvmeq = hctx->driver_data; 637 struct nvme_dev *dev = nvmeq->dev; 638 struct request *req = bd->rq; 639 struct nvme_command cmnd; 640 int ret = BLK_MQ_RQ_QUEUE_OK; 641 642 /* 643 * If formated with metadata, require the block layer provide a buffer 644 * unless this namespace is formated such that the metadata can be 645 * stripped/generated by the controller with PRACT=1. 646 */ 647 if (ns && ns->ms && !blk_integrity_rq(req)) { 648 if (!(ns->pi_type && ns->ms == 8) && 649 req->cmd_type != REQ_TYPE_DRV_PRIV) { 650 blk_mq_end_request(req, -EFAULT); 651 return BLK_MQ_RQ_QUEUE_OK; 652 } 653 } 654 655 ret = nvme_init_iod(req, dev); 656 if (ret) 657 return ret; 658 659 if (req->cmd_flags & REQ_DISCARD) { 660 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd); 661 } else { 662 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 663 memcpy(&cmnd, req->cmd, sizeof(cmnd)); 664 else if (req->cmd_flags & REQ_FLUSH) 665 nvme_setup_flush(ns, &cmnd); 666 else 667 nvme_setup_rw(ns, req, &cmnd); 668 669 if (req->nr_phys_segments) 670 ret = nvme_map_data(dev, req, &cmnd); 671 } 672 673 if (ret) 674 goto out; 675 676 cmnd.common.command_id = req->tag; 677 blk_mq_start_request(req); 678 679 spin_lock_irq(&nvmeq->q_lock); 680 if (unlikely(nvmeq->cq_vector < 0)) { 681 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) 682 ret = BLK_MQ_RQ_QUEUE_BUSY; 683 else 684 ret = BLK_MQ_RQ_QUEUE_ERROR; 685 spin_unlock_irq(&nvmeq->q_lock); 686 goto out; 687 } 688 __nvme_submit_cmd(nvmeq, &cmnd); 689 nvme_process_cq(nvmeq); 690 spin_unlock_irq(&nvmeq->q_lock); 691 return BLK_MQ_RQ_QUEUE_OK; 692 out: 693 nvme_free_iod(dev, req); 694 return ret; 695 } 696 697 static void nvme_complete_rq(struct request *req) 698 { 699 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 700 struct nvme_dev *dev = iod->nvmeq->dev; 701 int error = 0; 702 703 nvme_unmap_data(dev, req); 704 705 if (unlikely(req->errors)) { 706 if (nvme_req_needs_retry(req, req->errors)) { 707 nvme_requeue_req(req); 708 return; 709 } 710 711 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 712 error = req->errors; 713 else 714 error = nvme_error_status(req->errors); 715 } 716 717 if (unlikely(iod->aborted)) { 718 dev_warn(dev->ctrl.device, 719 "completing aborted command with status: %04x\n", 720 req->errors); 721 } 722 723 blk_mq_end_request(req, error); 724 } 725 726 /* We read the CQE phase first to check if the rest of the entry is valid */ 727 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 728 u16 phase) 729 { 730 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 731 } 732 733 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 734 { 735 u16 head, phase; 736 737 head = nvmeq->cq_head; 738 phase = nvmeq->cq_phase; 739 740 while (nvme_cqe_valid(nvmeq, head, phase)) { 741 struct nvme_completion cqe = nvmeq->cqes[head]; 742 struct request *req; 743 744 if (++head == nvmeq->q_depth) { 745 head = 0; 746 phase = !phase; 747 } 748 749 if (tag && *tag == cqe.command_id) 750 *tag = -1; 751 752 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 753 dev_warn(nvmeq->dev->ctrl.device, 754 "invalid id %d completed on queue %d\n", 755 cqe.command_id, le16_to_cpu(cqe.sq_id)); 756 continue; 757 } 758 759 /* 760 * AEN requests are special as they don't time out and can 761 * survive any kind of queue freeze and often don't respond to 762 * aborts. We don't even bother to allocate a struct request 763 * for them but rather special case them here. 764 */ 765 if (unlikely(nvmeq->qid == 0 && 766 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 767 nvme_complete_async_event(nvmeq->dev, &cqe); 768 continue; 769 } 770 771 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 772 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) 773 memcpy(req->special, &cqe, sizeof(cqe)); 774 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 775 776 } 777 778 /* If the controller ignores the cq head doorbell and continuously 779 * writes to the queue, it is theoretically possible to wrap around 780 * the queue twice and mistakenly return IRQ_NONE. Linux only 781 * requires that 0.1% of your interrupts are handled, so this isn't 782 * a big problem. 783 */ 784 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 785 return; 786 787 if (likely(nvmeq->cq_vector >= 0)) 788 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 789 nvmeq->cq_head = head; 790 nvmeq->cq_phase = phase; 791 792 nvmeq->cqe_seen = 1; 793 } 794 795 static void nvme_process_cq(struct nvme_queue *nvmeq) 796 { 797 __nvme_process_cq(nvmeq, NULL); 798 } 799 800 static irqreturn_t nvme_irq(int irq, void *data) 801 { 802 irqreturn_t result; 803 struct nvme_queue *nvmeq = data; 804 spin_lock(&nvmeq->q_lock); 805 nvme_process_cq(nvmeq); 806 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 807 nvmeq->cqe_seen = 0; 808 spin_unlock(&nvmeq->q_lock); 809 return result; 810 } 811 812 static irqreturn_t nvme_irq_check(int irq, void *data) 813 { 814 struct nvme_queue *nvmeq = data; 815 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 816 return IRQ_WAKE_THREAD; 817 return IRQ_NONE; 818 } 819 820 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 821 { 822 struct nvme_queue *nvmeq = hctx->driver_data; 823 824 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 825 spin_lock_irq(&nvmeq->q_lock); 826 __nvme_process_cq(nvmeq, &tag); 827 spin_unlock_irq(&nvmeq->q_lock); 828 829 if (tag == -1) 830 return 1; 831 } 832 833 return 0; 834 } 835 836 static void nvme_async_event_work(struct work_struct *work) 837 { 838 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work); 839 struct nvme_queue *nvmeq = dev->queues[0]; 840 struct nvme_command c; 841 842 memset(&c, 0, sizeof(c)); 843 c.common.opcode = nvme_admin_async_event; 844 845 spin_lock_irq(&nvmeq->q_lock); 846 while (dev->ctrl.event_limit > 0) { 847 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + 848 --dev->ctrl.event_limit; 849 __nvme_submit_cmd(nvmeq, &c); 850 } 851 spin_unlock_irq(&nvmeq->q_lock); 852 } 853 854 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 855 { 856 struct nvme_command c; 857 858 memset(&c, 0, sizeof(c)); 859 c.delete_queue.opcode = opcode; 860 c.delete_queue.qid = cpu_to_le16(id); 861 862 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 863 } 864 865 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 866 struct nvme_queue *nvmeq) 867 { 868 struct nvme_command c; 869 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 870 871 /* 872 * Note: we (ab)use the fact the the prp fields survive if no data 873 * is attached to the request. 874 */ 875 memset(&c, 0, sizeof(c)); 876 c.create_cq.opcode = nvme_admin_create_cq; 877 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 878 c.create_cq.cqid = cpu_to_le16(qid); 879 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 880 c.create_cq.cq_flags = cpu_to_le16(flags); 881 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 882 883 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 884 } 885 886 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 887 struct nvme_queue *nvmeq) 888 { 889 struct nvme_command c; 890 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 891 892 /* 893 * Note: we (ab)use the fact the the prp fields survive if no data 894 * is attached to the request. 895 */ 896 memset(&c, 0, sizeof(c)); 897 c.create_sq.opcode = nvme_admin_create_sq; 898 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 899 c.create_sq.sqid = cpu_to_le16(qid); 900 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 901 c.create_sq.sq_flags = cpu_to_le16(flags); 902 c.create_sq.cqid = cpu_to_le16(qid); 903 904 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 905 } 906 907 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 908 { 909 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 910 } 911 912 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 913 { 914 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 915 } 916 917 static void abort_endio(struct request *req, int error) 918 { 919 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 920 struct nvme_queue *nvmeq = iod->nvmeq; 921 u16 status = req->errors; 922 923 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 924 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 925 blk_mq_free_request(req); 926 } 927 928 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 929 { 930 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 931 struct nvme_queue *nvmeq = iod->nvmeq; 932 struct nvme_dev *dev = nvmeq->dev; 933 struct request *abort_req; 934 struct nvme_command cmd; 935 936 /* 937 * Shutdown immediately if controller times out while starting. The 938 * reset work will see the pci device disabled when it gets the forced 939 * cancellation error. All outstanding requests are completed on 940 * shutdown, so we return BLK_EH_HANDLED. 941 */ 942 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) { 943 dev_warn(dev->ctrl.device, 944 "I/O %d QID %d timeout, disable controller\n", 945 req->tag, nvmeq->qid); 946 nvme_dev_disable(dev, false); 947 req->errors = NVME_SC_CANCELLED; 948 return BLK_EH_HANDLED; 949 } 950 951 /* 952 * Shutdown the controller immediately and schedule a reset if the 953 * command was already aborted once before and still hasn't been 954 * returned to the driver, or if this is the admin queue. 955 */ 956 if (!nvmeq->qid || iod->aborted) { 957 dev_warn(dev->ctrl.device, 958 "I/O %d QID %d timeout, reset controller\n", 959 req->tag, nvmeq->qid); 960 nvme_dev_disable(dev, false); 961 queue_work(nvme_workq, &dev->reset_work); 962 963 /* 964 * Mark the request as handled, since the inline shutdown 965 * forces all outstanding requests to complete. 966 */ 967 req->errors = NVME_SC_CANCELLED; 968 return BLK_EH_HANDLED; 969 } 970 971 iod->aborted = 1; 972 973 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 974 atomic_inc(&dev->ctrl.abort_limit); 975 return BLK_EH_RESET_TIMER; 976 } 977 978 memset(&cmd, 0, sizeof(cmd)); 979 cmd.abort.opcode = nvme_admin_abort_cmd; 980 cmd.abort.cid = req->tag; 981 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 982 983 dev_warn(nvmeq->dev->ctrl.device, 984 "I/O %d QID %d timeout, aborting\n", 985 req->tag, nvmeq->qid); 986 987 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 988 BLK_MQ_REQ_NOWAIT); 989 if (IS_ERR(abort_req)) { 990 atomic_inc(&dev->ctrl.abort_limit); 991 return BLK_EH_RESET_TIMER; 992 } 993 994 abort_req->timeout = ADMIN_TIMEOUT; 995 abort_req->end_io_data = NULL; 996 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 997 998 /* 999 * The aborted req will be completed on receiving the abort req. 1000 * We enable the timer again. If hit twice, it'll cause a device reset, 1001 * as the device then is in a faulty state. 1002 */ 1003 return BLK_EH_RESET_TIMER; 1004 } 1005 1006 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved) 1007 { 1008 struct nvme_queue *nvmeq = data; 1009 int status; 1010 1011 if (!blk_mq_request_started(req)) 1012 return; 1013 1014 dev_dbg_ratelimited(nvmeq->dev->ctrl.device, 1015 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid); 1016 1017 status = NVME_SC_ABORT_REQ; 1018 if (blk_queue_dying(req->q)) 1019 status |= NVME_SC_DNR; 1020 blk_mq_complete_request(req, status); 1021 } 1022 1023 static void nvme_free_queue(struct nvme_queue *nvmeq) 1024 { 1025 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1026 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1027 if (nvmeq->sq_cmds) 1028 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1029 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1030 kfree(nvmeq); 1031 } 1032 1033 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1034 { 1035 int i; 1036 1037 for (i = dev->queue_count - 1; i >= lowest; i--) { 1038 struct nvme_queue *nvmeq = dev->queues[i]; 1039 dev->queue_count--; 1040 dev->queues[i] = NULL; 1041 nvme_free_queue(nvmeq); 1042 } 1043 } 1044 1045 /** 1046 * nvme_suspend_queue - put queue into suspended state 1047 * @nvmeq - queue to suspend 1048 */ 1049 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1050 { 1051 int vector; 1052 1053 spin_lock_irq(&nvmeq->q_lock); 1054 if (nvmeq->cq_vector == -1) { 1055 spin_unlock_irq(&nvmeq->q_lock); 1056 return 1; 1057 } 1058 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; 1059 nvmeq->dev->online_queues--; 1060 nvmeq->cq_vector = -1; 1061 spin_unlock_irq(&nvmeq->q_lock); 1062 1063 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1064 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 1065 1066 irq_set_affinity_hint(vector, NULL); 1067 free_irq(vector, nvmeq); 1068 1069 return 0; 1070 } 1071 1072 static void nvme_clear_queue(struct nvme_queue *nvmeq) 1073 { 1074 spin_lock_irq(&nvmeq->q_lock); 1075 if (nvmeq->tags && *nvmeq->tags) 1076 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq); 1077 spin_unlock_irq(&nvmeq->q_lock); 1078 } 1079 1080 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1081 { 1082 struct nvme_queue *nvmeq = dev->queues[0]; 1083 1084 if (!nvmeq) 1085 return; 1086 if (nvme_suspend_queue(nvmeq)) 1087 return; 1088 1089 if (shutdown) 1090 nvme_shutdown_ctrl(&dev->ctrl); 1091 else 1092 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 1093 dev->bar + NVME_REG_CAP)); 1094 1095 spin_lock_irq(&nvmeq->q_lock); 1096 nvme_process_cq(nvmeq); 1097 spin_unlock_irq(&nvmeq->q_lock); 1098 } 1099 1100 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1101 int entry_size) 1102 { 1103 int q_depth = dev->q_depth; 1104 unsigned q_size_aligned = roundup(q_depth * entry_size, 1105 dev->ctrl.page_size); 1106 1107 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1108 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1109 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1110 q_depth = div_u64(mem_per_q, entry_size); 1111 1112 /* 1113 * Ensure the reduced q_depth is above some threshold where it 1114 * would be better to map queues in system memory with the 1115 * original depth 1116 */ 1117 if (q_depth < 64) 1118 return -ENOMEM; 1119 } 1120 1121 return q_depth; 1122 } 1123 1124 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1125 int qid, int depth) 1126 { 1127 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1128 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1129 dev->ctrl.page_size); 1130 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1131 nvmeq->sq_cmds_io = dev->cmb + offset; 1132 } else { 1133 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1134 &nvmeq->sq_dma_addr, GFP_KERNEL); 1135 if (!nvmeq->sq_cmds) 1136 return -ENOMEM; 1137 } 1138 1139 return 0; 1140 } 1141 1142 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1143 int depth) 1144 { 1145 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1146 if (!nvmeq) 1147 return NULL; 1148 1149 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1150 &nvmeq->cq_dma_addr, GFP_KERNEL); 1151 if (!nvmeq->cqes) 1152 goto free_nvmeq; 1153 1154 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1155 goto free_cqdma; 1156 1157 nvmeq->q_dmadev = dev->dev; 1158 nvmeq->dev = dev; 1159 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1160 dev->ctrl.instance, qid); 1161 spin_lock_init(&nvmeq->q_lock); 1162 nvmeq->cq_head = 0; 1163 nvmeq->cq_phase = 1; 1164 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1165 nvmeq->q_depth = depth; 1166 nvmeq->qid = qid; 1167 nvmeq->cq_vector = -1; 1168 dev->queues[qid] = nvmeq; 1169 dev->queue_count++; 1170 1171 return nvmeq; 1172 1173 free_cqdma: 1174 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1175 nvmeq->cq_dma_addr); 1176 free_nvmeq: 1177 kfree(nvmeq); 1178 return NULL; 1179 } 1180 1181 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1182 const char *name) 1183 { 1184 if (use_threaded_interrupts) 1185 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, 1186 nvme_irq_check, nvme_irq, IRQF_SHARED, 1187 name, nvmeq); 1188 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, 1189 IRQF_SHARED, name, nvmeq); 1190 } 1191 1192 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1193 { 1194 struct nvme_dev *dev = nvmeq->dev; 1195 1196 spin_lock_irq(&nvmeq->q_lock); 1197 nvmeq->sq_tail = 0; 1198 nvmeq->cq_head = 0; 1199 nvmeq->cq_phase = 1; 1200 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1201 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1202 dev->online_queues++; 1203 spin_unlock_irq(&nvmeq->q_lock); 1204 } 1205 1206 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1207 { 1208 struct nvme_dev *dev = nvmeq->dev; 1209 int result; 1210 1211 nvmeq->cq_vector = qid - 1; 1212 result = adapter_alloc_cq(dev, qid, nvmeq); 1213 if (result < 0) 1214 return result; 1215 1216 result = adapter_alloc_sq(dev, qid, nvmeq); 1217 if (result < 0) 1218 goto release_cq; 1219 1220 result = queue_request_irq(dev, nvmeq, nvmeq->irqname); 1221 if (result < 0) 1222 goto release_sq; 1223 1224 nvme_init_queue(nvmeq, qid); 1225 return result; 1226 1227 release_sq: 1228 adapter_delete_sq(dev, qid); 1229 release_cq: 1230 adapter_delete_cq(dev, qid); 1231 return result; 1232 } 1233 1234 static struct blk_mq_ops nvme_mq_admin_ops = { 1235 .queue_rq = nvme_queue_rq, 1236 .complete = nvme_complete_rq, 1237 .map_queue = blk_mq_map_queue, 1238 .init_hctx = nvme_admin_init_hctx, 1239 .exit_hctx = nvme_admin_exit_hctx, 1240 .init_request = nvme_admin_init_request, 1241 .timeout = nvme_timeout, 1242 }; 1243 1244 static struct blk_mq_ops nvme_mq_ops = { 1245 .queue_rq = nvme_queue_rq, 1246 .complete = nvme_complete_rq, 1247 .map_queue = blk_mq_map_queue, 1248 .init_hctx = nvme_init_hctx, 1249 .init_request = nvme_init_request, 1250 .timeout = nvme_timeout, 1251 .poll = nvme_poll, 1252 }; 1253 1254 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1255 { 1256 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1257 /* 1258 * If the controller was reset during removal, it's possible 1259 * user requests may be waiting on a stopped queue. Start the 1260 * queue to flush these to completion. 1261 */ 1262 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1263 blk_cleanup_queue(dev->ctrl.admin_q); 1264 blk_mq_free_tag_set(&dev->admin_tagset); 1265 } 1266 } 1267 1268 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1269 { 1270 if (!dev->ctrl.admin_q) { 1271 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1272 dev->admin_tagset.nr_hw_queues = 1; 1273 1274 /* 1275 * Subtract one to leave an empty queue entry for 'Full Queue' 1276 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1277 */ 1278 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1279 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1280 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1281 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1282 dev->admin_tagset.driver_data = dev; 1283 1284 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1285 return -ENOMEM; 1286 1287 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1288 if (IS_ERR(dev->ctrl.admin_q)) { 1289 blk_mq_free_tag_set(&dev->admin_tagset); 1290 return -ENOMEM; 1291 } 1292 if (!blk_get_queue(dev->ctrl.admin_q)) { 1293 nvme_dev_remove_admin(dev); 1294 dev->ctrl.admin_q = NULL; 1295 return -ENODEV; 1296 } 1297 } else 1298 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1299 1300 return 0; 1301 } 1302 1303 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1304 { 1305 int result; 1306 u32 aqa; 1307 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1308 struct nvme_queue *nvmeq; 1309 1310 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ? 1311 NVME_CAP_NSSRC(cap) : 0; 1312 1313 if (dev->subsystem && 1314 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1315 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1316 1317 result = nvme_disable_ctrl(&dev->ctrl, cap); 1318 if (result < 0) 1319 return result; 1320 1321 nvmeq = dev->queues[0]; 1322 if (!nvmeq) { 1323 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1324 if (!nvmeq) 1325 return -ENOMEM; 1326 } 1327 1328 aqa = nvmeq->q_depth - 1; 1329 aqa |= aqa << 16; 1330 1331 writel(aqa, dev->bar + NVME_REG_AQA); 1332 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1333 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1334 1335 result = nvme_enable_ctrl(&dev->ctrl, cap); 1336 if (result) 1337 goto free_nvmeq; 1338 1339 nvmeq->cq_vector = 0; 1340 result = queue_request_irq(dev, nvmeq, nvmeq->irqname); 1341 if (result) { 1342 nvmeq->cq_vector = -1; 1343 goto free_nvmeq; 1344 } 1345 1346 return result; 1347 1348 free_nvmeq: 1349 nvme_free_queues(dev, 0); 1350 return result; 1351 } 1352 1353 static void nvme_watchdog_timer(unsigned long data) 1354 { 1355 struct nvme_dev *dev = (struct nvme_dev *)data; 1356 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1357 1358 /* 1359 * Skip controllers currently under reset. 1360 */ 1361 if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) && 1362 ((csts & NVME_CSTS_CFS) || 1363 (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) { 1364 if (queue_work(nvme_workq, &dev->reset_work)) { 1365 dev_warn(dev->dev, 1366 "Failed status: 0x%x, reset controller.\n", 1367 csts); 1368 } 1369 return; 1370 } 1371 1372 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1373 } 1374 1375 static int nvme_create_io_queues(struct nvme_dev *dev) 1376 { 1377 unsigned i, max; 1378 int ret = 0; 1379 1380 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1381 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1382 ret = -ENOMEM; 1383 break; 1384 } 1385 } 1386 1387 max = min(dev->max_qid, dev->queue_count - 1); 1388 for (i = dev->online_queues; i <= max; i++) { 1389 ret = nvme_create_queue(dev->queues[i], i); 1390 if (ret) { 1391 nvme_free_queues(dev, i); 1392 break; 1393 } 1394 } 1395 1396 /* 1397 * Ignore failing Create SQ/CQ commands, we can continue with less 1398 * than the desired aount of queues, and even a controller without 1399 * I/O queues an still be used to issue admin commands. This might 1400 * be useful to upgrade a buggy firmware for example. 1401 */ 1402 return ret >= 0 ? 0 : ret; 1403 } 1404 1405 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1406 { 1407 u64 szu, size, offset; 1408 u32 cmbloc; 1409 resource_size_t bar_size; 1410 struct pci_dev *pdev = to_pci_dev(dev->dev); 1411 void __iomem *cmb; 1412 dma_addr_t dma_addr; 1413 1414 if (!use_cmb_sqes) 1415 return NULL; 1416 1417 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1418 if (!(NVME_CMB_SZ(dev->cmbsz))) 1419 return NULL; 1420 1421 cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1422 1423 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1424 size = szu * NVME_CMB_SZ(dev->cmbsz); 1425 offset = szu * NVME_CMB_OFST(cmbloc); 1426 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); 1427 1428 if (offset > bar_size) 1429 return NULL; 1430 1431 /* 1432 * Controllers may support a CMB size larger than their BAR, 1433 * for example, due to being behind a bridge. Reduce the CMB to 1434 * the reported size of the BAR 1435 */ 1436 if (size > bar_size - offset) 1437 size = bar_size - offset; 1438 1439 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; 1440 cmb = ioremap_wc(dma_addr, size); 1441 if (!cmb) 1442 return NULL; 1443 1444 dev->cmb_dma_addr = dma_addr; 1445 dev->cmb_size = size; 1446 return cmb; 1447 } 1448 1449 static inline void nvme_release_cmb(struct nvme_dev *dev) 1450 { 1451 if (dev->cmb) { 1452 iounmap(dev->cmb); 1453 dev->cmb = NULL; 1454 } 1455 } 1456 1457 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1458 { 1459 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1460 } 1461 1462 static int nvme_setup_io_queues(struct nvme_dev *dev) 1463 { 1464 struct nvme_queue *adminq = dev->queues[0]; 1465 struct pci_dev *pdev = to_pci_dev(dev->dev); 1466 int result, i, vecs, nr_io_queues, size; 1467 1468 nr_io_queues = num_possible_cpus(); 1469 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1470 if (result < 0) 1471 return result; 1472 1473 /* 1474 * Degraded controllers might return an error when setting the queue 1475 * count. We still want to be able to bring them online and offer 1476 * access to the admin queue, as that might be only way to fix them up. 1477 */ 1478 if (result > 0) { 1479 dev_err(dev->ctrl.device, 1480 "Could not set queue count (%d)\n", result); 1481 nr_io_queues = 0; 1482 result = 0; 1483 } 1484 1485 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1486 result = nvme_cmb_qdepth(dev, nr_io_queues, 1487 sizeof(struct nvme_command)); 1488 if (result > 0) 1489 dev->q_depth = result; 1490 else 1491 nvme_release_cmb(dev); 1492 } 1493 1494 size = db_bar_size(dev, nr_io_queues); 1495 if (size > 8192) { 1496 iounmap(dev->bar); 1497 do { 1498 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1499 if (dev->bar) 1500 break; 1501 if (!--nr_io_queues) 1502 return -ENOMEM; 1503 size = db_bar_size(dev, nr_io_queues); 1504 } while (1); 1505 dev->dbs = dev->bar + 4096; 1506 adminq->q_db = dev->dbs; 1507 } 1508 1509 /* Deregister the admin queue's interrupt */ 1510 free_irq(dev->entry[0].vector, adminq); 1511 1512 /* 1513 * If we enable msix early due to not intx, disable it again before 1514 * setting up the full range we need. 1515 */ 1516 if (!pdev->irq) 1517 pci_disable_msix(pdev); 1518 1519 for (i = 0; i < nr_io_queues; i++) 1520 dev->entry[i].entry = i; 1521 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); 1522 if (vecs < 0) { 1523 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); 1524 if (vecs < 0) { 1525 vecs = 1; 1526 } else { 1527 for (i = 0; i < vecs; i++) 1528 dev->entry[i].vector = i + pdev->irq; 1529 } 1530 } 1531 1532 /* 1533 * Should investigate if there's a performance win from allocating 1534 * more queues than interrupt vectors; it might allow the submission 1535 * path to scale better, even if the receive path is limited by the 1536 * number of interrupts. 1537 */ 1538 nr_io_queues = vecs; 1539 dev->max_qid = nr_io_queues; 1540 1541 result = queue_request_irq(dev, adminq, adminq->irqname); 1542 if (result) { 1543 adminq->cq_vector = -1; 1544 goto free_queues; 1545 } 1546 return nvme_create_io_queues(dev); 1547 1548 free_queues: 1549 nvme_free_queues(dev, 1); 1550 return result; 1551 } 1552 1553 static void nvme_set_irq_hints(struct nvme_dev *dev) 1554 { 1555 struct nvme_queue *nvmeq; 1556 int i; 1557 1558 for (i = 0; i < dev->online_queues; i++) { 1559 nvmeq = dev->queues[i]; 1560 1561 if (!nvmeq->tags || !(*nvmeq->tags)) 1562 continue; 1563 1564 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, 1565 blk_mq_tags_cpumask(*nvmeq->tags)); 1566 } 1567 } 1568 1569 static void nvme_dev_scan(struct work_struct *work) 1570 { 1571 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work); 1572 1573 if (!dev->tagset.tags) 1574 return; 1575 nvme_scan_namespaces(&dev->ctrl); 1576 nvme_set_irq_hints(dev); 1577 } 1578 1579 static void nvme_del_queue_end(struct request *req, int error) 1580 { 1581 struct nvme_queue *nvmeq = req->end_io_data; 1582 1583 blk_mq_free_request(req); 1584 complete(&nvmeq->dev->ioq_wait); 1585 } 1586 1587 static void nvme_del_cq_end(struct request *req, int error) 1588 { 1589 struct nvme_queue *nvmeq = req->end_io_data; 1590 1591 if (!error) { 1592 unsigned long flags; 1593 1594 spin_lock_irqsave(&nvmeq->q_lock, flags); 1595 nvme_process_cq(nvmeq); 1596 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1597 } 1598 1599 nvme_del_queue_end(req, error); 1600 } 1601 1602 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1603 { 1604 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1605 struct request *req; 1606 struct nvme_command cmd; 1607 1608 memset(&cmd, 0, sizeof(cmd)); 1609 cmd.delete_queue.opcode = opcode; 1610 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1611 1612 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 1613 if (IS_ERR(req)) 1614 return PTR_ERR(req); 1615 1616 req->timeout = ADMIN_TIMEOUT; 1617 req->end_io_data = nvmeq; 1618 1619 blk_execute_rq_nowait(q, NULL, req, false, 1620 opcode == nvme_admin_delete_cq ? 1621 nvme_del_cq_end : nvme_del_queue_end); 1622 return 0; 1623 } 1624 1625 static void nvme_disable_io_queues(struct nvme_dev *dev) 1626 { 1627 int pass; 1628 unsigned long timeout; 1629 u8 opcode = nvme_admin_delete_sq; 1630 1631 for (pass = 0; pass < 2; pass++) { 1632 int sent = 0, i = dev->queue_count - 1; 1633 1634 reinit_completion(&dev->ioq_wait); 1635 retry: 1636 timeout = ADMIN_TIMEOUT; 1637 for (; i > 0; i--) { 1638 struct nvme_queue *nvmeq = dev->queues[i]; 1639 1640 if (!pass) 1641 nvme_suspend_queue(nvmeq); 1642 if (nvme_delete_queue(nvmeq, opcode)) 1643 break; 1644 ++sent; 1645 } 1646 while (sent--) { 1647 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1648 if (timeout == 0) 1649 return; 1650 if (i) 1651 goto retry; 1652 } 1653 opcode = nvme_admin_delete_cq; 1654 } 1655 } 1656 1657 /* 1658 * Return: error value if an error occurred setting up the queues or calling 1659 * Identify Device. 0 if these succeeded, even if adding some of the 1660 * namespaces failed. At the moment, these failures are silent. TBD which 1661 * failures should be reported. 1662 */ 1663 static int nvme_dev_add(struct nvme_dev *dev) 1664 { 1665 if (!dev->ctrl.tagset) { 1666 dev->tagset.ops = &nvme_mq_ops; 1667 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1668 dev->tagset.timeout = NVME_IO_TIMEOUT; 1669 dev->tagset.numa_node = dev_to_node(dev->dev); 1670 dev->tagset.queue_depth = 1671 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1672 dev->tagset.cmd_size = nvme_cmd_size(dev); 1673 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1674 dev->tagset.driver_data = dev; 1675 1676 if (blk_mq_alloc_tag_set(&dev->tagset)) 1677 return 0; 1678 dev->ctrl.tagset = &dev->tagset; 1679 } else { 1680 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1681 1682 /* Free previously allocated queues that are no longer usable */ 1683 nvme_free_queues(dev, dev->online_queues); 1684 } 1685 1686 nvme_queue_scan(dev); 1687 return 0; 1688 } 1689 1690 static int nvme_pci_enable(struct nvme_dev *dev) 1691 { 1692 u64 cap; 1693 int result = -ENOMEM; 1694 struct pci_dev *pdev = to_pci_dev(dev->dev); 1695 1696 if (pci_enable_device_mem(pdev)) 1697 return result; 1698 1699 dev->entry[0].vector = pdev->irq; 1700 pci_set_master(pdev); 1701 1702 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1703 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1704 goto disable; 1705 1706 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1707 result = -ENODEV; 1708 goto disable; 1709 } 1710 1711 /* 1712 * Some devices don't advertse INTx interrupts, pre-enable a single 1713 * MSIX vec for setup. We'll adjust this later. 1714 */ 1715 if (!pdev->irq) { 1716 result = pci_enable_msix(pdev, dev->entry, 1); 1717 if (result < 0) 1718 goto disable; 1719 } 1720 1721 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1722 1723 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1724 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1725 dev->dbs = dev->bar + 4096; 1726 1727 /* 1728 * Temporary fix for the Apple controller found in the MacBook8,1 and 1729 * some MacBook7,1 to avoid controller resets and data loss. 1730 */ 1731 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1732 dev->q_depth = 2; 1733 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1734 "queue depth=%u to work around controller resets\n", 1735 dev->q_depth); 1736 } 1737 1738 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2)) 1739 dev->cmb = nvme_map_cmb(dev); 1740 1741 pci_enable_pcie_error_reporting(pdev); 1742 pci_save_state(pdev); 1743 return 0; 1744 1745 disable: 1746 pci_disable_device(pdev); 1747 return result; 1748 } 1749 1750 static void nvme_dev_unmap(struct nvme_dev *dev) 1751 { 1752 if (dev->bar) 1753 iounmap(dev->bar); 1754 pci_release_regions(to_pci_dev(dev->dev)); 1755 } 1756 1757 static void nvme_pci_disable(struct nvme_dev *dev) 1758 { 1759 struct pci_dev *pdev = to_pci_dev(dev->dev); 1760 1761 if (pdev->msi_enabled) 1762 pci_disable_msi(pdev); 1763 else if (pdev->msix_enabled) 1764 pci_disable_msix(pdev); 1765 1766 if (pci_is_enabled(pdev)) { 1767 pci_disable_pcie_error_reporting(pdev); 1768 pci_disable_device(pdev); 1769 } 1770 } 1771 1772 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1773 { 1774 int i; 1775 u32 csts = -1; 1776 1777 del_timer_sync(&dev->watchdog_timer); 1778 1779 mutex_lock(&dev->shutdown_lock); 1780 if (pci_is_enabled(to_pci_dev(dev->dev))) { 1781 nvme_stop_queues(&dev->ctrl); 1782 csts = readl(dev->bar + NVME_REG_CSTS); 1783 } 1784 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1785 for (i = dev->queue_count - 1; i >= 0; i--) { 1786 struct nvme_queue *nvmeq = dev->queues[i]; 1787 nvme_suspend_queue(nvmeq); 1788 } 1789 } else { 1790 nvme_disable_io_queues(dev); 1791 nvme_disable_admin_queue(dev, shutdown); 1792 } 1793 nvme_pci_disable(dev); 1794 1795 for (i = dev->queue_count - 1; i >= 0; i--) 1796 nvme_clear_queue(dev->queues[i]); 1797 mutex_unlock(&dev->shutdown_lock); 1798 } 1799 1800 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1801 { 1802 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1803 PAGE_SIZE, PAGE_SIZE, 0); 1804 if (!dev->prp_page_pool) 1805 return -ENOMEM; 1806 1807 /* Optimisation for I/Os between 4k and 128k */ 1808 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1809 256, 256, 0); 1810 if (!dev->prp_small_pool) { 1811 dma_pool_destroy(dev->prp_page_pool); 1812 return -ENOMEM; 1813 } 1814 return 0; 1815 } 1816 1817 static void nvme_release_prp_pools(struct nvme_dev *dev) 1818 { 1819 dma_pool_destroy(dev->prp_page_pool); 1820 dma_pool_destroy(dev->prp_small_pool); 1821 } 1822 1823 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1824 { 1825 struct nvme_dev *dev = to_nvme_dev(ctrl); 1826 1827 put_device(dev->dev); 1828 if (dev->tagset.tags) 1829 blk_mq_free_tag_set(&dev->tagset); 1830 if (dev->ctrl.admin_q) 1831 blk_put_queue(dev->ctrl.admin_q); 1832 kfree(dev->queues); 1833 kfree(dev->entry); 1834 kfree(dev); 1835 } 1836 1837 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1838 { 1839 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1840 1841 kref_get(&dev->ctrl.kref); 1842 nvme_dev_disable(dev, false); 1843 if (!schedule_work(&dev->remove_work)) 1844 nvme_put_ctrl(&dev->ctrl); 1845 } 1846 1847 static void nvme_reset_work(struct work_struct *work) 1848 { 1849 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1850 int result = -ENODEV; 1851 1852 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags))) 1853 goto out; 1854 1855 /* 1856 * If we're called to reset a live controller first shut it down before 1857 * moving on. 1858 */ 1859 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1860 nvme_dev_disable(dev, false); 1861 1862 set_bit(NVME_CTRL_RESETTING, &dev->flags); 1863 1864 result = nvme_pci_enable(dev); 1865 if (result) 1866 goto out; 1867 1868 result = nvme_configure_admin_queue(dev); 1869 if (result) 1870 goto out; 1871 1872 nvme_init_queue(dev->queues[0], 0); 1873 result = nvme_alloc_admin_tags(dev); 1874 if (result) 1875 goto out; 1876 1877 result = nvme_init_identify(&dev->ctrl); 1878 if (result) 1879 goto out; 1880 1881 result = nvme_setup_io_queues(dev); 1882 if (result) 1883 goto out; 1884 1885 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS; 1886 queue_work(nvme_workq, &dev->async_work); 1887 1888 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1889 1890 /* 1891 * Keep the controller around but remove all namespaces if we don't have 1892 * any working I/O queue. 1893 */ 1894 if (dev->online_queues < 2) { 1895 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1896 nvme_remove_namespaces(&dev->ctrl); 1897 } else { 1898 nvme_start_queues(&dev->ctrl); 1899 nvme_dev_add(dev); 1900 } 1901 1902 clear_bit(NVME_CTRL_RESETTING, &dev->flags); 1903 return; 1904 1905 out: 1906 nvme_remove_dead_ctrl(dev, result); 1907 } 1908 1909 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1910 { 1911 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1912 struct pci_dev *pdev = to_pci_dev(dev->dev); 1913 1914 nvme_kill_queues(&dev->ctrl); 1915 if (pci_get_drvdata(pdev)) 1916 pci_stop_and_remove_bus_device_locked(pdev); 1917 nvme_put_ctrl(&dev->ctrl); 1918 } 1919 1920 static int nvme_reset(struct nvme_dev *dev) 1921 { 1922 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1923 return -ENODEV; 1924 1925 if (!queue_work(nvme_workq, &dev->reset_work)) 1926 return -EBUSY; 1927 1928 flush_work(&dev->reset_work); 1929 return 0; 1930 } 1931 1932 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1933 { 1934 *val = readl(to_nvme_dev(ctrl)->bar + off); 1935 return 0; 1936 } 1937 1938 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1939 { 1940 writel(val, to_nvme_dev(ctrl)->bar + off); 1941 return 0; 1942 } 1943 1944 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1945 { 1946 *val = readq(to_nvme_dev(ctrl)->bar + off); 1947 return 0; 1948 } 1949 1950 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl) 1951 { 1952 struct nvme_dev *dev = to_nvme_dev(ctrl); 1953 1954 return !dev->bar || dev->online_queues < 2; 1955 } 1956 1957 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1958 { 1959 return nvme_reset(to_nvme_dev(ctrl)); 1960 } 1961 1962 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1963 .module = THIS_MODULE, 1964 .reg_read32 = nvme_pci_reg_read32, 1965 .reg_write32 = nvme_pci_reg_write32, 1966 .reg_read64 = nvme_pci_reg_read64, 1967 .io_incapable = nvme_pci_io_incapable, 1968 .reset_ctrl = nvme_pci_reset_ctrl, 1969 .free_ctrl = nvme_pci_free_ctrl, 1970 }; 1971 1972 static int nvme_dev_map(struct nvme_dev *dev) 1973 { 1974 int bars; 1975 struct pci_dev *pdev = to_pci_dev(dev->dev); 1976 1977 bars = pci_select_bars(pdev, IORESOURCE_MEM); 1978 if (!bars) 1979 return -ENODEV; 1980 if (pci_request_selected_regions(pdev, bars, "nvme")) 1981 return -ENODEV; 1982 1983 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1984 if (!dev->bar) 1985 goto release; 1986 1987 return 0; 1988 release: 1989 pci_release_regions(pdev); 1990 return -ENODEV; 1991 } 1992 1993 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1994 { 1995 int node, result = -ENOMEM; 1996 struct nvme_dev *dev; 1997 1998 node = dev_to_node(&pdev->dev); 1999 if (node == NUMA_NO_NODE) 2000 set_dev_node(&pdev->dev, 0); 2001 2002 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2003 if (!dev) 2004 return -ENOMEM; 2005 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), 2006 GFP_KERNEL, node); 2007 if (!dev->entry) 2008 goto free; 2009 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 2010 GFP_KERNEL, node); 2011 if (!dev->queues) 2012 goto free; 2013 2014 dev->dev = get_device(&pdev->dev); 2015 pci_set_drvdata(pdev, dev); 2016 2017 result = nvme_dev_map(dev); 2018 if (result) 2019 goto free; 2020 2021 INIT_WORK(&dev->scan_work, nvme_dev_scan); 2022 INIT_WORK(&dev->reset_work, nvme_reset_work); 2023 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2024 INIT_WORK(&dev->async_work, nvme_async_event_work); 2025 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 2026 (unsigned long)dev); 2027 mutex_init(&dev->shutdown_lock); 2028 init_completion(&dev->ioq_wait); 2029 2030 result = nvme_setup_prp_pools(dev); 2031 if (result) 2032 goto put_pci; 2033 2034 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2035 id->driver_data); 2036 if (result) 2037 goto release_pools; 2038 2039 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2040 2041 queue_work(nvme_workq, &dev->reset_work); 2042 return 0; 2043 2044 release_pools: 2045 nvme_release_prp_pools(dev); 2046 put_pci: 2047 put_device(dev->dev); 2048 nvme_dev_unmap(dev); 2049 free: 2050 kfree(dev->queues); 2051 kfree(dev->entry); 2052 kfree(dev); 2053 return result; 2054 } 2055 2056 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 2057 { 2058 struct nvme_dev *dev = pci_get_drvdata(pdev); 2059 2060 if (prepare) 2061 nvme_dev_disable(dev, false); 2062 else 2063 queue_work(nvme_workq, &dev->reset_work); 2064 } 2065 2066 static void nvme_shutdown(struct pci_dev *pdev) 2067 { 2068 struct nvme_dev *dev = pci_get_drvdata(pdev); 2069 nvme_dev_disable(dev, true); 2070 } 2071 2072 /* 2073 * The driver's remove may be called on a device in a partially initialized 2074 * state. This function must not have any dependencies on the device state in 2075 * order to proceed. 2076 */ 2077 static void nvme_remove(struct pci_dev *pdev) 2078 { 2079 struct nvme_dev *dev = pci_get_drvdata(pdev); 2080 2081 del_timer_sync(&dev->watchdog_timer); 2082 2083 set_bit(NVME_CTRL_REMOVING, &dev->flags); 2084 pci_set_drvdata(pdev, NULL); 2085 flush_work(&dev->async_work); 2086 flush_work(&dev->scan_work); 2087 nvme_remove_namespaces(&dev->ctrl); 2088 nvme_uninit_ctrl(&dev->ctrl); 2089 nvme_dev_disable(dev, true); 2090 flush_work(&dev->reset_work); 2091 nvme_dev_remove_admin(dev); 2092 nvme_free_queues(dev, 0); 2093 nvme_release_cmb(dev); 2094 nvme_release_prp_pools(dev); 2095 nvme_dev_unmap(dev); 2096 nvme_put_ctrl(&dev->ctrl); 2097 } 2098 2099 #ifdef CONFIG_PM_SLEEP 2100 static int nvme_suspend(struct device *dev) 2101 { 2102 struct pci_dev *pdev = to_pci_dev(dev); 2103 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2104 2105 nvme_dev_disable(ndev, true); 2106 return 0; 2107 } 2108 2109 static int nvme_resume(struct device *dev) 2110 { 2111 struct pci_dev *pdev = to_pci_dev(dev); 2112 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2113 2114 queue_work(nvme_workq, &ndev->reset_work); 2115 return 0; 2116 } 2117 #endif 2118 2119 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2120 2121 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2122 pci_channel_state_t state) 2123 { 2124 struct nvme_dev *dev = pci_get_drvdata(pdev); 2125 2126 /* 2127 * A frozen channel requires a reset. When detected, this method will 2128 * shutdown the controller to quiesce. The controller will be restarted 2129 * after the slot reset through driver's slot_reset callback. 2130 */ 2131 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state); 2132 switch (state) { 2133 case pci_channel_io_normal: 2134 return PCI_ERS_RESULT_CAN_RECOVER; 2135 case pci_channel_io_frozen: 2136 nvme_dev_disable(dev, false); 2137 return PCI_ERS_RESULT_NEED_RESET; 2138 case pci_channel_io_perm_failure: 2139 return PCI_ERS_RESULT_DISCONNECT; 2140 } 2141 return PCI_ERS_RESULT_NEED_RESET; 2142 } 2143 2144 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2145 { 2146 struct nvme_dev *dev = pci_get_drvdata(pdev); 2147 2148 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2149 pci_restore_state(pdev); 2150 queue_work(nvme_workq, &dev->reset_work); 2151 return PCI_ERS_RESULT_RECOVERED; 2152 } 2153 2154 static void nvme_error_resume(struct pci_dev *pdev) 2155 { 2156 pci_cleanup_aer_uncorrect_error_status(pdev); 2157 } 2158 2159 static const struct pci_error_handlers nvme_err_handler = { 2160 .error_detected = nvme_error_detected, 2161 .slot_reset = nvme_slot_reset, 2162 .resume = nvme_error_resume, 2163 .reset_notify = nvme_reset_notify, 2164 }; 2165 2166 /* Move to pci_ids.h later */ 2167 #define PCI_CLASS_STORAGE_EXPRESS 0x010802 2168 2169 static const struct pci_device_id nvme_id_table[] = { 2170 { PCI_VDEVICE(INTEL, 0x0953), 2171 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2172 NVME_QUIRK_DISCARD_ZEROES, }, 2173 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2174 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2175 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2176 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2177 { 0, } 2178 }; 2179 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2180 2181 static struct pci_driver nvme_driver = { 2182 .name = "nvme", 2183 .id_table = nvme_id_table, 2184 .probe = nvme_probe, 2185 .remove = nvme_remove, 2186 .shutdown = nvme_shutdown, 2187 .driver = { 2188 .pm = &nvme_dev_pm_ops, 2189 }, 2190 .err_handler = &nvme_err_handler, 2191 }; 2192 2193 static int __init nvme_init(void) 2194 { 2195 int result; 2196 2197 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2198 if (!nvme_workq) 2199 return -ENOMEM; 2200 2201 result = pci_register_driver(&nvme_driver); 2202 if (result) 2203 destroy_workqueue(nvme_workq); 2204 return result; 2205 } 2206 2207 static void __exit nvme_exit(void) 2208 { 2209 pci_unregister_driver(&nvme_driver); 2210 destroy_workqueue(nvme_workq); 2211 _nvme_check_size(); 2212 } 2213 2214 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2215 MODULE_LICENSE("GPL"); 2216 MODULE_VERSION("1.0"); 2217 module_init(nvme_init); 2218 module_exit(nvme_exit); 2219