xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 3def3387)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	dma_addr_t host_mem_descs_dma;
157 	struct nvme_host_mem_buf_desc *host_mem_descs;
158 	void **host_mem_desc_bufs;
159 	unsigned int nr_allocated_queues;
160 	unsigned int nr_write_queues;
161 	unsigned int nr_poll_queues;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 union nvme_descriptor {
220 	struct nvme_sgl_desc	*sg_list;
221 	__le64			*prp_list;
222 };
223 
224 /*
225  * The nvme_iod describes the data in an I/O.
226  *
227  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228  * to the actual struct scatterlist.
229  */
230 struct nvme_iod {
231 	struct nvme_request req;
232 	struct nvme_command cmd;
233 	bool aborted;
234 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235 				   pool in use */
236 	unsigned int dma_len;	/* length of single DMA segment mapping */
237 	dma_addr_t first_dma;
238 	dma_addr_t meta_dma;
239 	struct sg_table sgt;
240 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242 
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245 	return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247 
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250 	unsigned int mem_size = nvme_dbbuf_size(dev);
251 
252 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 		return;
254 
255 	if (dev->dbbuf_dbs) {
256 		/*
257 		 * Clear the dbbuf memory so the driver doesn't observe stale
258 		 * values from the previous instantiation.
259 		 */
260 		memset(dev->dbbuf_dbs, 0, mem_size);
261 		memset(dev->dbbuf_eis, 0, mem_size);
262 		return;
263 	}
264 
265 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 					    &dev->dbbuf_dbs_dma_addr,
267 					    GFP_KERNEL);
268 	if (!dev->dbbuf_dbs)
269 		goto fail;
270 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_eis_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_eis)
274 		goto fail_free_dbbuf_dbs;
275 	return;
276 
277 fail_free_dbbuf_dbs:
278 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 			  dev->dbbuf_dbs_dma_addr);
280 	dev->dbbuf_dbs = NULL;
281 fail:
282 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284 
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287 	unsigned int mem_size = nvme_dbbuf_size(dev);
288 
289 	if (dev->dbbuf_dbs) {
290 		dma_free_coherent(dev->dev, mem_size,
291 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 		dev->dbbuf_dbs = NULL;
293 	}
294 	if (dev->dbbuf_eis) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 		dev->dbbuf_eis = NULL;
298 	}
299 }
300 
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 			    struct nvme_queue *nvmeq, int qid)
303 {
304 	if (!dev->dbbuf_dbs || !qid)
305 		return;
306 
307 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312 
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315 	if (!nvmeq->qid)
316 		return;
317 
318 	nvmeq->dbbuf_sq_db = NULL;
319 	nvmeq->dbbuf_cq_db = NULL;
320 	nvmeq->dbbuf_sq_ei = NULL;
321 	nvmeq->dbbuf_cq_ei = NULL;
322 }
323 
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 	struct nvme_command c = { };
327 	unsigned int i;
328 
329 	if (!dev->dbbuf_dbs)
330 		return;
331 
332 	c.dbbuf.opcode = nvme_admin_dbbuf;
333 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335 
336 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 		/* Free memory and continue on */
339 		nvme_dbbuf_dma_free(dev);
340 
341 		for (i = 1; i <= dev->online_queues; i++)
342 			nvme_dbbuf_free(&dev->queues[i]);
343 	}
344 }
345 
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350 
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 					      volatile __le32 *dbbuf_ei)
354 {
355 	if (dbbuf_db) {
356 		u16 old_value, event_idx;
357 
358 		/*
359 		 * Ensure that the queue is written before updating
360 		 * the doorbell in memory
361 		 */
362 		wmb();
363 
364 		old_value = le32_to_cpu(*dbbuf_db);
365 		*dbbuf_db = cpu_to_le32(value);
366 
367 		/*
368 		 * Ensure that the doorbell is updated before reading the event
369 		 * index from memory.  The controller needs to provide similar
370 		 * ordering to ensure the envent index is updated before reading
371 		 * the doorbell.
372 		 */
373 		mb();
374 
375 		event_idx = le32_to_cpu(*dbbuf_ei);
376 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377 			return false;
378 	}
379 
380 	return true;
381 }
382 
383 /*
384  * Will slightly overestimate the number of pages needed.  This is OK
385  * as it only leads to a small amount of wasted memory for the lifetime of
386  * the I/O.
387  */
388 static int nvme_pci_npages_prp(void)
389 {
390 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = to_nvme_dev(data);
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = to_nvme_dev(data);
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 		struct request *req, unsigned int hctx_idx,
421 		unsigned int numa_node)
422 {
423 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
424 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
425 
426 	nvme_req(req)->ctrl = &dev->ctrl;
427 	nvme_req(req)->cmd = &iod->cmd;
428 	return 0;
429 }
430 
431 static int queue_irq_offset(struct nvme_dev *dev)
432 {
433 	/* if we have more than 1 vec, admin queue offsets us by 1 */
434 	if (dev->num_vecs > 1)
435 		return 1;
436 
437 	return 0;
438 }
439 
440 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
441 {
442 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
443 	int i, qoff, offset;
444 
445 	offset = queue_irq_offset(dev);
446 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
447 		struct blk_mq_queue_map *map = &set->map[i];
448 
449 		map->nr_queues = dev->io_queues[i];
450 		if (!map->nr_queues) {
451 			BUG_ON(i == HCTX_TYPE_DEFAULT);
452 			continue;
453 		}
454 
455 		/*
456 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
457 		 * affinity), so use the regular blk-mq cpu mapping
458 		 */
459 		map->queue_offset = qoff;
460 		if (i != HCTX_TYPE_POLL && offset)
461 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
462 		else
463 			blk_mq_map_queues(map);
464 		qoff += map->nr_queues;
465 		offset += map->nr_queues;
466 	}
467 }
468 
469 /*
470  * Write sq tail if we are asked to, or if the next command would wrap.
471  */
472 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
473 {
474 	if (!write_sq) {
475 		u16 next_tail = nvmeq->sq_tail + 1;
476 
477 		if (next_tail == nvmeq->q_depth)
478 			next_tail = 0;
479 		if (next_tail != nvmeq->last_sq_tail)
480 			return;
481 	}
482 
483 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
484 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
485 		writel(nvmeq->sq_tail, nvmeq->q_db);
486 	nvmeq->last_sq_tail = nvmeq->sq_tail;
487 }
488 
489 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
490 				    struct nvme_command *cmd)
491 {
492 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
493 		absolute_pointer(cmd), sizeof(*cmd));
494 	if (++nvmeq->sq_tail == nvmeq->q_depth)
495 		nvmeq->sq_tail = 0;
496 }
497 
498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 {
500 	struct nvme_queue *nvmeq = hctx->driver_data;
501 
502 	spin_lock(&nvmeq->sq_lock);
503 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504 		nvme_write_sq_db(nvmeq, true);
505 	spin_unlock(&nvmeq->sq_lock);
506 }
507 
508 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
509 				     int nseg)
510 {
511 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
512 	unsigned int avg_seg_size;
513 
514 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
515 
516 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
517 		return false;
518 	if (!nvmeq->qid)
519 		return false;
520 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
521 		return false;
522 	return true;
523 }
524 
525 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
526 {
527 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
528 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
529 	dma_addr_t dma_addr = iod->first_dma;
530 	int i;
531 
532 	for (i = 0; i < iod->nr_allocations; i++) {
533 		__le64 *prp_list = iod->list[i].prp_list;
534 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
535 
536 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
537 		dma_addr = next_dma_addr;
538 	}
539 }
540 
541 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
542 {
543 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
544 
545 	if (iod->dma_len) {
546 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
547 			       rq_dma_dir(req));
548 		return;
549 	}
550 
551 	WARN_ON_ONCE(!iod->sgt.nents);
552 
553 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
554 
555 	if (iod->nr_allocations == 0)
556 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
557 			      iod->first_dma);
558 	else if (iod->nr_allocations == 1)
559 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
560 			      iod->first_dma);
561 	else
562 		nvme_free_prps(dev, req);
563 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
564 }
565 
566 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
567 {
568 	int i;
569 	struct scatterlist *sg;
570 
571 	for_each_sg(sgl, sg, nents, i) {
572 		dma_addr_t phys = sg_phys(sg);
573 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
574 			"dma_address:%pad dma_length:%d\n",
575 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
576 			sg_dma_len(sg));
577 	}
578 }
579 
580 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
581 		struct request *req, struct nvme_rw_command *cmnd)
582 {
583 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 	struct dma_pool *pool;
585 	int length = blk_rq_payload_bytes(req);
586 	struct scatterlist *sg = iod->sgt.sgl;
587 	int dma_len = sg_dma_len(sg);
588 	u64 dma_addr = sg_dma_address(sg);
589 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
590 	__le64 *prp_list;
591 	dma_addr_t prp_dma;
592 	int nprps, i;
593 
594 	length -= (NVME_CTRL_PAGE_SIZE - offset);
595 	if (length <= 0) {
596 		iod->first_dma = 0;
597 		goto done;
598 	}
599 
600 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
601 	if (dma_len) {
602 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
603 	} else {
604 		sg = sg_next(sg);
605 		dma_addr = sg_dma_address(sg);
606 		dma_len = sg_dma_len(sg);
607 	}
608 
609 	if (length <= NVME_CTRL_PAGE_SIZE) {
610 		iod->first_dma = dma_addr;
611 		goto done;
612 	}
613 
614 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
615 	if (nprps <= (256 / 8)) {
616 		pool = dev->prp_small_pool;
617 		iod->nr_allocations = 0;
618 	} else {
619 		pool = dev->prp_page_pool;
620 		iod->nr_allocations = 1;
621 	}
622 
623 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
624 	if (!prp_list) {
625 		iod->nr_allocations = -1;
626 		return BLK_STS_RESOURCE;
627 	}
628 	iod->list[0].prp_list = prp_list;
629 	iod->first_dma = prp_dma;
630 	i = 0;
631 	for (;;) {
632 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
633 			__le64 *old_prp_list = prp_list;
634 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
635 			if (!prp_list)
636 				goto free_prps;
637 			iod->list[iod->nr_allocations++].prp_list = prp_list;
638 			prp_list[0] = old_prp_list[i - 1];
639 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
640 			i = 1;
641 		}
642 		prp_list[i++] = cpu_to_le64(dma_addr);
643 		dma_len -= NVME_CTRL_PAGE_SIZE;
644 		dma_addr += NVME_CTRL_PAGE_SIZE;
645 		length -= NVME_CTRL_PAGE_SIZE;
646 		if (length <= 0)
647 			break;
648 		if (dma_len > 0)
649 			continue;
650 		if (unlikely(dma_len < 0))
651 			goto bad_sgl;
652 		sg = sg_next(sg);
653 		dma_addr = sg_dma_address(sg);
654 		dma_len = sg_dma_len(sg);
655 	}
656 done:
657 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
658 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
659 	return BLK_STS_OK;
660 free_prps:
661 	nvme_free_prps(dev, req);
662 	return BLK_STS_RESOURCE;
663 bad_sgl:
664 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
665 			"Invalid SGL for payload:%d nents:%d\n",
666 			blk_rq_payload_bytes(req), iod->sgt.nents);
667 	return BLK_STS_IOERR;
668 }
669 
670 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
671 		struct scatterlist *sg)
672 {
673 	sge->addr = cpu_to_le64(sg_dma_address(sg));
674 	sge->length = cpu_to_le32(sg_dma_len(sg));
675 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
676 }
677 
678 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
679 		dma_addr_t dma_addr, int entries)
680 {
681 	sge->addr = cpu_to_le64(dma_addr);
682 	sge->length = cpu_to_le32(entries * sizeof(*sge));
683 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
684 }
685 
686 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
687 		struct request *req, struct nvme_rw_command *cmd)
688 {
689 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
690 	struct dma_pool *pool;
691 	struct nvme_sgl_desc *sg_list;
692 	struct scatterlist *sg = iod->sgt.sgl;
693 	unsigned int entries = iod->sgt.nents;
694 	dma_addr_t sgl_dma;
695 	int i = 0;
696 
697 	/* setting the transfer type as SGL */
698 	cmd->flags = NVME_CMD_SGL_METABUF;
699 
700 	if (entries == 1) {
701 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
702 		return BLK_STS_OK;
703 	}
704 
705 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
706 		pool = dev->prp_small_pool;
707 		iod->nr_allocations = 0;
708 	} else {
709 		pool = dev->prp_page_pool;
710 		iod->nr_allocations = 1;
711 	}
712 
713 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
714 	if (!sg_list) {
715 		iod->nr_allocations = -1;
716 		return BLK_STS_RESOURCE;
717 	}
718 
719 	iod->list[0].sg_list = sg_list;
720 	iod->first_dma = sgl_dma;
721 
722 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
723 	do {
724 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
725 		sg = sg_next(sg);
726 	} while (--entries > 0);
727 
728 	return BLK_STS_OK;
729 }
730 
731 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
732 		struct request *req, struct nvme_rw_command *cmnd,
733 		struct bio_vec *bv)
734 {
735 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
736 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
737 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
738 
739 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
740 	if (dma_mapping_error(dev->dev, iod->first_dma))
741 		return BLK_STS_RESOURCE;
742 	iod->dma_len = bv->bv_len;
743 
744 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
745 	if (bv->bv_len > first_prp_len)
746 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
747 	else
748 		cmnd->dptr.prp2 = 0;
749 	return BLK_STS_OK;
750 }
751 
752 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
753 		struct request *req, struct nvme_rw_command *cmnd,
754 		struct bio_vec *bv)
755 {
756 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757 
758 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
759 	if (dma_mapping_error(dev->dev, iod->first_dma))
760 		return BLK_STS_RESOURCE;
761 	iod->dma_len = bv->bv_len;
762 
763 	cmnd->flags = NVME_CMD_SGL_METABUF;
764 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
765 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
766 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
767 	return BLK_STS_OK;
768 }
769 
770 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
771 		struct nvme_command *cmnd)
772 {
773 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
774 	blk_status_t ret = BLK_STS_RESOURCE;
775 	int rc;
776 
777 	if (blk_rq_nr_phys_segments(req) == 1) {
778 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
779 		struct bio_vec bv = req_bvec(req);
780 
781 		if (!is_pci_p2pdma_page(bv.bv_page)) {
782 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
783 				return nvme_setup_prp_simple(dev, req,
784 							     &cmnd->rw, &bv);
785 
786 			if (nvmeq->qid && sgl_threshold &&
787 			    nvme_ctrl_sgl_supported(&dev->ctrl))
788 				return nvme_setup_sgl_simple(dev, req,
789 							     &cmnd->rw, &bv);
790 		}
791 	}
792 
793 	iod->dma_len = 0;
794 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
795 	if (!iod->sgt.sgl)
796 		return BLK_STS_RESOURCE;
797 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
798 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
799 	if (!iod->sgt.orig_nents)
800 		goto out_free_sg;
801 
802 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
803 			     DMA_ATTR_NO_WARN);
804 	if (rc) {
805 		if (rc == -EREMOTEIO)
806 			ret = BLK_STS_TARGET;
807 		goto out_free_sg;
808 	}
809 
810 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
811 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
812 	else
813 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
814 	if (ret != BLK_STS_OK)
815 		goto out_unmap_sg;
816 	return BLK_STS_OK;
817 
818 out_unmap_sg:
819 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
820 out_free_sg:
821 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
822 	return ret;
823 }
824 
825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
826 		struct nvme_command *cmnd)
827 {
828 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
829 
830 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
831 			rq_dma_dir(req), 0);
832 	if (dma_mapping_error(dev->dev, iod->meta_dma))
833 		return BLK_STS_IOERR;
834 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
835 	return BLK_STS_OK;
836 }
837 
838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
839 {
840 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 	blk_status_t ret;
842 
843 	iod->aborted = false;
844 	iod->nr_allocations = -1;
845 	iod->sgt.nents = 0;
846 
847 	ret = nvme_setup_cmd(req->q->queuedata, req);
848 	if (ret)
849 		return ret;
850 
851 	if (blk_rq_nr_phys_segments(req)) {
852 		ret = nvme_map_data(dev, req, &iod->cmd);
853 		if (ret)
854 			goto out_free_cmd;
855 	}
856 
857 	if (blk_integrity_rq(req)) {
858 		ret = nvme_map_metadata(dev, req, &iod->cmd);
859 		if (ret)
860 			goto out_unmap_data;
861 	}
862 
863 	nvme_start_request(req);
864 	return BLK_STS_OK;
865 out_unmap_data:
866 	nvme_unmap_data(dev, req);
867 out_free_cmd:
868 	nvme_cleanup_cmd(req);
869 	return ret;
870 }
871 
872 /*
873  * NOTE: ns is NULL when called on the admin queue.
874  */
875 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
876 			 const struct blk_mq_queue_data *bd)
877 {
878 	struct nvme_queue *nvmeq = hctx->driver_data;
879 	struct nvme_dev *dev = nvmeq->dev;
880 	struct request *req = bd->rq;
881 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
882 	blk_status_t ret;
883 
884 	/*
885 	 * We should not need to do this, but we're still using this to
886 	 * ensure we can drain requests on a dying queue.
887 	 */
888 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
889 		return BLK_STS_IOERR;
890 
891 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
892 		return nvme_fail_nonready_command(&dev->ctrl, req);
893 
894 	ret = nvme_prep_rq(dev, req);
895 	if (unlikely(ret))
896 		return ret;
897 	spin_lock(&nvmeq->sq_lock);
898 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
899 	nvme_write_sq_db(nvmeq, bd->last);
900 	spin_unlock(&nvmeq->sq_lock);
901 	return BLK_STS_OK;
902 }
903 
904 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
905 {
906 	spin_lock(&nvmeq->sq_lock);
907 	while (!rq_list_empty(*rqlist)) {
908 		struct request *req = rq_list_pop(rqlist);
909 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
910 
911 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
912 	}
913 	nvme_write_sq_db(nvmeq, true);
914 	spin_unlock(&nvmeq->sq_lock);
915 }
916 
917 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
918 {
919 	/*
920 	 * We should not need to do this, but we're still using this to
921 	 * ensure we can drain requests on a dying queue.
922 	 */
923 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
924 		return false;
925 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
926 		return false;
927 
928 	req->mq_hctx->tags->rqs[req->tag] = req;
929 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
930 }
931 
932 static void nvme_queue_rqs(struct request **rqlist)
933 {
934 	struct request *req, *next, *prev = NULL;
935 	struct request *requeue_list = NULL;
936 
937 	rq_list_for_each_safe(rqlist, req, next) {
938 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
939 
940 		if (!nvme_prep_rq_batch(nvmeq, req)) {
941 			/* detach 'req' and add to remainder list */
942 			rq_list_move(rqlist, &requeue_list, req, prev);
943 
944 			req = prev;
945 			if (!req)
946 				continue;
947 		}
948 
949 		if (!next || req->mq_hctx != next->mq_hctx) {
950 			/* detach rest of list, and submit */
951 			req->rq_next = NULL;
952 			nvme_submit_cmds(nvmeq, rqlist);
953 			*rqlist = next;
954 			prev = NULL;
955 		} else
956 			prev = req;
957 	}
958 
959 	*rqlist = requeue_list;
960 }
961 
962 static __always_inline void nvme_pci_unmap_rq(struct request *req)
963 {
964 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
965 	struct nvme_dev *dev = nvmeq->dev;
966 
967 	if (blk_integrity_rq(req)) {
968 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
969 
970 		dma_unmap_page(dev->dev, iod->meta_dma,
971 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
972 	}
973 
974 	if (blk_rq_nr_phys_segments(req))
975 		nvme_unmap_data(dev, req);
976 }
977 
978 static void nvme_pci_complete_rq(struct request *req)
979 {
980 	nvme_pci_unmap_rq(req);
981 	nvme_complete_rq(req);
982 }
983 
984 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
985 {
986 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
987 }
988 
989 /* We read the CQE phase first to check if the rest of the entry is valid */
990 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
991 {
992 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
993 
994 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
995 }
996 
997 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
998 {
999 	u16 head = nvmeq->cq_head;
1000 
1001 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1002 					      nvmeq->dbbuf_cq_ei))
1003 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1004 }
1005 
1006 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1007 {
1008 	if (!nvmeq->qid)
1009 		return nvmeq->dev->admin_tagset.tags[0];
1010 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1011 }
1012 
1013 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1014 				   struct io_comp_batch *iob, u16 idx)
1015 {
1016 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1017 	__u16 command_id = READ_ONCE(cqe->command_id);
1018 	struct request *req;
1019 
1020 	/*
1021 	 * AEN requests are special as they don't time out and can
1022 	 * survive any kind of queue freeze and often don't respond to
1023 	 * aborts.  We don't even bother to allocate a struct request
1024 	 * for them but rather special case them here.
1025 	 */
1026 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1027 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1028 				cqe->status, &cqe->result);
1029 		return;
1030 	}
1031 
1032 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1033 	if (unlikely(!req)) {
1034 		dev_warn(nvmeq->dev->ctrl.device,
1035 			"invalid id %d completed on queue %d\n",
1036 			command_id, le16_to_cpu(cqe->sq_id));
1037 		return;
1038 	}
1039 
1040 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1041 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1042 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1043 					nvme_pci_complete_batch))
1044 		nvme_pci_complete_rq(req);
1045 }
1046 
1047 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1048 {
1049 	u32 tmp = nvmeq->cq_head + 1;
1050 
1051 	if (tmp == nvmeq->q_depth) {
1052 		nvmeq->cq_head = 0;
1053 		nvmeq->cq_phase ^= 1;
1054 	} else {
1055 		nvmeq->cq_head = tmp;
1056 	}
1057 }
1058 
1059 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1060 			       struct io_comp_batch *iob)
1061 {
1062 	int found = 0;
1063 
1064 	while (nvme_cqe_pending(nvmeq)) {
1065 		found++;
1066 		/*
1067 		 * load-load control dependency between phase and the rest of
1068 		 * the cqe requires a full read memory barrier
1069 		 */
1070 		dma_rmb();
1071 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1072 		nvme_update_cq_head(nvmeq);
1073 	}
1074 
1075 	if (found)
1076 		nvme_ring_cq_doorbell(nvmeq);
1077 	return found;
1078 }
1079 
1080 static irqreturn_t nvme_irq(int irq, void *data)
1081 {
1082 	struct nvme_queue *nvmeq = data;
1083 	DEFINE_IO_COMP_BATCH(iob);
1084 
1085 	if (nvme_poll_cq(nvmeq, &iob)) {
1086 		if (!rq_list_empty(iob.req_list))
1087 			nvme_pci_complete_batch(&iob);
1088 		return IRQ_HANDLED;
1089 	}
1090 	return IRQ_NONE;
1091 }
1092 
1093 static irqreturn_t nvme_irq_check(int irq, void *data)
1094 {
1095 	struct nvme_queue *nvmeq = data;
1096 
1097 	if (nvme_cqe_pending(nvmeq))
1098 		return IRQ_WAKE_THREAD;
1099 	return IRQ_NONE;
1100 }
1101 
1102 /*
1103  * Poll for completions for any interrupt driven queue
1104  * Can be called from any context.
1105  */
1106 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1107 {
1108 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1109 
1110 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1111 
1112 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1113 	nvme_poll_cq(nvmeq, NULL);
1114 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1115 }
1116 
1117 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1118 {
1119 	struct nvme_queue *nvmeq = hctx->driver_data;
1120 	bool found;
1121 
1122 	if (!nvme_cqe_pending(nvmeq))
1123 		return 0;
1124 
1125 	spin_lock(&nvmeq->cq_poll_lock);
1126 	found = nvme_poll_cq(nvmeq, iob);
1127 	spin_unlock(&nvmeq->cq_poll_lock);
1128 
1129 	return found;
1130 }
1131 
1132 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1133 {
1134 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1135 	struct nvme_queue *nvmeq = &dev->queues[0];
1136 	struct nvme_command c = { };
1137 
1138 	c.common.opcode = nvme_admin_async_event;
1139 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1140 
1141 	spin_lock(&nvmeq->sq_lock);
1142 	nvme_sq_copy_cmd(nvmeq, &c);
1143 	nvme_write_sq_db(nvmeq, true);
1144 	spin_unlock(&nvmeq->sq_lock);
1145 }
1146 
1147 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1148 {
1149 	struct nvme_command c = { };
1150 
1151 	c.delete_queue.opcode = opcode;
1152 	c.delete_queue.qid = cpu_to_le16(id);
1153 
1154 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1155 }
1156 
1157 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1158 		struct nvme_queue *nvmeq, s16 vector)
1159 {
1160 	struct nvme_command c = { };
1161 	int flags = NVME_QUEUE_PHYS_CONTIG;
1162 
1163 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1164 		flags |= NVME_CQ_IRQ_ENABLED;
1165 
1166 	/*
1167 	 * Note: we (ab)use the fact that the prp fields survive if no data
1168 	 * is attached to the request.
1169 	 */
1170 	c.create_cq.opcode = nvme_admin_create_cq;
1171 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1172 	c.create_cq.cqid = cpu_to_le16(qid);
1173 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1174 	c.create_cq.cq_flags = cpu_to_le16(flags);
1175 	c.create_cq.irq_vector = cpu_to_le16(vector);
1176 
1177 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1178 }
1179 
1180 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1181 						struct nvme_queue *nvmeq)
1182 {
1183 	struct nvme_ctrl *ctrl = &dev->ctrl;
1184 	struct nvme_command c = { };
1185 	int flags = NVME_QUEUE_PHYS_CONTIG;
1186 
1187 	/*
1188 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1189 	 * set. Since URGENT priority is zeroes, it makes all queues
1190 	 * URGENT.
1191 	 */
1192 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1193 		flags |= NVME_SQ_PRIO_MEDIUM;
1194 
1195 	/*
1196 	 * Note: we (ab)use the fact that the prp fields survive if no data
1197 	 * is attached to the request.
1198 	 */
1199 	c.create_sq.opcode = nvme_admin_create_sq;
1200 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1201 	c.create_sq.sqid = cpu_to_le16(qid);
1202 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1203 	c.create_sq.sq_flags = cpu_to_le16(flags);
1204 	c.create_sq.cqid = cpu_to_le16(qid);
1205 
1206 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1207 }
1208 
1209 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1210 {
1211 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1212 }
1213 
1214 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1215 {
1216 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1217 }
1218 
1219 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1220 {
1221 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1222 
1223 	dev_warn(nvmeq->dev->ctrl.device,
1224 		 "Abort status: 0x%x", nvme_req(req)->status);
1225 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1226 	blk_mq_free_request(req);
1227 	return RQ_END_IO_NONE;
1228 }
1229 
1230 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1231 {
1232 	/* If true, indicates loss of adapter communication, possibly by a
1233 	 * NVMe Subsystem reset.
1234 	 */
1235 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1236 
1237 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1238 	switch (dev->ctrl.state) {
1239 	case NVME_CTRL_RESETTING:
1240 	case NVME_CTRL_CONNECTING:
1241 		return false;
1242 	default:
1243 		break;
1244 	}
1245 
1246 	/* We shouldn't reset unless the controller is on fatal error state
1247 	 * _or_ if we lost the communication with it.
1248 	 */
1249 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1256 {
1257 	/* Read a config register to help see what died. */
1258 	u16 pci_status;
1259 	int result;
1260 
1261 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1262 				      &pci_status);
1263 	if (result == PCIBIOS_SUCCESSFUL)
1264 		dev_warn(dev->ctrl.device,
1265 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1266 			 csts, pci_status);
1267 	else
1268 		dev_warn(dev->ctrl.device,
1269 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1270 			 csts, result);
1271 
1272 	if (csts != ~0)
1273 		return;
1274 
1275 	dev_warn(dev->ctrl.device,
1276 		 "Does your device have a faulty power saving mode enabled?\n");
1277 	dev_warn(dev->ctrl.device,
1278 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1279 }
1280 
1281 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1282 {
1283 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1284 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1285 	struct nvme_dev *dev = nvmeq->dev;
1286 	struct request *abort_req;
1287 	struct nvme_command cmd = { };
1288 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1289 
1290 	/* If PCI error recovery process is happening, we cannot reset or
1291 	 * the recovery mechanism will surely fail.
1292 	 */
1293 	mb();
1294 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1295 		return BLK_EH_RESET_TIMER;
1296 
1297 	/*
1298 	 * Reset immediately if the controller is failed
1299 	 */
1300 	if (nvme_should_reset(dev, csts)) {
1301 		nvme_warn_reset(dev, csts);
1302 		nvme_dev_disable(dev, false);
1303 		nvme_reset_ctrl(&dev->ctrl);
1304 		return BLK_EH_DONE;
1305 	}
1306 
1307 	/*
1308 	 * Did we miss an interrupt?
1309 	 */
1310 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1311 		nvme_poll(req->mq_hctx, NULL);
1312 	else
1313 		nvme_poll_irqdisable(nvmeq);
1314 
1315 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1316 		dev_warn(dev->ctrl.device,
1317 			 "I/O %d QID %d timeout, completion polled\n",
1318 			 req->tag, nvmeq->qid);
1319 		return BLK_EH_DONE;
1320 	}
1321 
1322 	/*
1323 	 * Shutdown immediately if controller times out while starting. The
1324 	 * reset work will see the pci device disabled when it gets the forced
1325 	 * cancellation error. All outstanding requests are completed on
1326 	 * shutdown, so we return BLK_EH_DONE.
1327 	 */
1328 	switch (dev->ctrl.state) {
1329 	case NVME_CTRL_CONNECTING:
1330 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1331 		fallthrough;
1332 	case NVME_CTRL_DELETING:
1333 		dev_warn_ratelimited(dev->ctrl.device,
1334 			 "I/O %d QID %d timeout, disable controller\n",
1335 			 req->tag, nvmeq->qid);
1336 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1337 		nvme_dev_disable(dev, true);
1338 		return BLK_EH_DONE;
1339 	case NVME_CTRL_RESETTING:
1340 		return BLK_EH_RESET_TIMER;
1341 	default:
1342 		break;
1343 	}
1344 
1345 	/*
1346 	 * Shutdown the controller immediately and schedule a reset if the
1347 	 * command was already aborted once before and still hasn't been
1348 	 * returned to the driver, or if this is the admin queue.
1349 	 */
1350 	if (!nvmeq->qid || iod->aborted) {
1351 		dev_warn(dev->ctrl.device,
1352 			 "I/O %d QID %d timeout, reset controller\n",
1353 			 req->tag, nvmeq->qid);
1354 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1355 		nvme_dev_disable(dev, false);
1356 		nvme_reset_ctrl(&dev->ctrl);
1357 
1358 		return BLK_EH_DONE;
1359 	}
1360 
1361 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1362 		atomic_inc(&dev->ctrl.abort_limit);
1363 		return BLK_EH_RESET_TIMER;
1364 	}
1365 	iod->aborted = true;
1366 
1367 	cmd.abort.opcode = nvme_admin_abort_cmd;
1368 	cmd.abort.cid = nvme_cid(req);
1369 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1370 
1371 	dev_warn(nvmeq->dev->ctrl.device,
1372 		"I/O %d (%s) QID %d timeout, aborting\n",
1373 		 req->tag,
1374 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1375 		 nvmeq->qid);
1376 
1377 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1378 					 BLK_MQ_REQ_NOWAIT);
1379 	if (IS_ERR(abort_req)) {
1380 		atomic_inc(&dev->ctrl.abort_limit);
1381 		return BLK_EH_RESET_TIMER;
1382 	}
1383 	nvme_init_request(abort_req, &cmd);
1384 
1385 	abort_req->end_io = abort_endio;
1386 	abort_req->end_io_data = NULL;
1387 	blk_execute_rq_nowait(abort_req, false);
1388 
1389 	/*
1390 	 * The aborted req will be completed on receiving the abort req.
1391 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1392 	 * as the device then is in a faulty state.
1393 	 */
1394 	return BLK_EH_RESET_TIMER;
1395 }
1396 
1397 static void nvme_free_queue(struct nvme_queue *nvmeq)
1398 {
1399 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1400 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1401 	if (!nvmeq->sq_cmds)
1402 		return;
1403 
1404 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1405 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1406 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1407 	} else {
1408 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1409 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1410 	}
1411 }
1412 
1413 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1414 {
1415 	int i;
1416 
1417 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1418 		dev->ctrl.queue_count--;
1419 		nvme_free_queue(&dev->queues[i]);
1420 	}
1421 }
1422 
1423 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1424 {
1425 	struct nvme_queue *nvmeq = &dev->queues[qid];
1426 
1427 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1428 		return;
1429 
1430 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1431 	mb();
1432 
1433 	nvmeq->dev->online_queues--;
1434 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1435 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1436 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1437 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1438 }
1439 
1440 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1441 {
1442 	int i;
1443 
1444 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1445 		nvme_suspend_queue(dev, i);
1446 }
1447 
1448 /*
1449  * Called only on a device that has been disabled and after all other threads
1450  * that can check this device's completion queues have synced, except
1451  * nvme_poll(). This is the last chance for the driver to see a natural
1452  * completion before nvme_cancel_request() terminates all incomplete requests.
1453  */
1454 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1455 {
1456 	int i;
1457 
1458 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1459 		spin_lock(&dev->queues[i].cq_poll_lock);
1460 		nvme_poll_cq(&dev->queues[i], NULL);
1461 		spin_unlock(&dev->queues[i].cq_poll_lock);
1462 	}
1463 }
1464 
1465 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1466 				int entry_size)
1467 {
1468 	int q_depth = dev->q_depth;
1469 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1470 					  NVME_CTRL_PAGE_SIZE);
1471 
1472 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1473 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1474 
1475 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1476 		q_depth = div_u64(mem_per_q, entry_size);
1477 
1478 		/*
1479 		 * Ensure the reduced q_depth is above some threshold where it
1480 		 * would be better to map queues in system memory with the
1481 		 * original depth
1482 		 */
1483 		if (q_depth < 64)
1484 			return -ENOMEM;
1485 	}
1486 
1487 	return q_depth;
1488 }
1489 
1490 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1491 				int qid)
1492 {
1493 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1494 
1495 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1496 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1497 		if (nvmeq->sq_cmds) {
1498 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1499 							nvmeq->sq_cmds);
1500 			if (nvmeq->sq_dma_addr) {
1501 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1502 				return 0;
1503 			}
1504 
1505 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1506 		}
1507 	}
1508 
1509 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1510 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1511 	if (!nvmeq->sq_cmds)
1512 		return -ENOMEM;
1513 	return 0;
1514 }
1515 
1516 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1517 {
1518 	struct nvme_queue *nvmeq = &dev->queues[qid];
1519 
1520 	if (dev->ctrl.queue_count > qid)
1521 		return 0;
1522 
1523 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1524 	nvmeq->q_depth = depth;
1525 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1526 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1527 	if (!nvmeq->cqes)
1528 		goto free_nvmeq;
1529 
1530 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1531 		goto free_cqdma;
1532 
1533 	nvmeq->dev = dev;
1534 	spin_lock_init(&nvmeq->sq_lock);
1535 	spin_lock_init(&nvmeq->cq_poll_lock);
1536 	nvmeq->cq_head = 0;
1537 	nvmeq->cq_phase = 1;
1538 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1539 	nvmeq->qid = qid;
1540 	dev->ctrl.queue_count++;
1541 
1542 	return 0;
1543 
1544  free_cqdma:
1545 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1546 			  nvmeq->cq_dma_addr);
1547  free_nvmeq:
1548 	return -ENOMEM;
1549 }
1550 
1551 static int queue_request_irq(struct nvme_queue *nvmeq)
1552 {
1553 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1554 	int nr = nvmeq->dev->ctrl.instance;
1555 
1556 	if (use_threaded_interrupts) {
1557 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1558 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1559 	} else {
1560 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1561 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1562 	}
1563 }
1564 
1565 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1566 {
1567 	struct nvme_dev *dev = nvmeq->dev;
1568 
1569 	nvmeq->sq_tail = 0;
1570 	nvmeq->last_sq_tail = 0;
1571 	nvmeq->cq_head = 0;
1572 	nvmeq->cq_phase = 1;
1573 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1574 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1575 	nvme_dbbuf_init(dev, nvmeq, qid);
1576 	dev->online_queues++;
1577 	wmb(); /* ensure the first interrupt sees the initialization */
1578 }
1579 
1580 /*
1581  * Try getting shutdown_lock while setting up IO queues.
1582  */
1583 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1584 {
1585 	/*
1586 	 * Give up if the lock is being held by nvme_dev_disable.
1587 	 */
1588 	if (!mutex_trylock(&dev->shutdown_lock))
1589 		return -ENODEV;
1590 
1591 	/*
1592 	 * Controller is in wrong state, fail early.
1593 	 */
1594 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1595 		mutex_unlock(&dev->shutdown_lock);
1596 		return -ENODEV;
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1603 {
1604 	struct nvme_dev *dev = nvmeq->dev;
1605 	int result;
1606 	u16 vector = 0;
1607 
1608 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1609 
1610 	/*
1611 	 * A queue's vector matches the queue identifier unless the controller
1612 	 * has only one vector available.
1613 	 */
1614 	if (!polled)
1615 		vector = dev->num_vecs == 1 ? 0 : qid;
1616 	else
1617 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1618 
1619 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1620 	if (result)
1621 		return result;
1622 
1623 	result = adapter_alloc_sq(dev, qid, nvmeq);
1624 	if (result < 0)
1625 		return result;
1626 	if (result)
1627 		goto release_cq;
1628 
1629 	nvmeq->cq_vector = vector;
1630 
1631 	result = nvme_setup_io_queues_trylock(dev);
1632 	if (result)
1633 		return result;
1634 	nvme_init_queue(nvmeq, qid);
1635 	if (!polled) {
1636 		result = queue_request_irq(nvmeq);
1637 		if (result < 0)
1638 			goto release_sq;
1639 	}
1640 
1641 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1642 	mutex_unlock(&dev->shutdown_lock);
1643 	return result;
1644 
1645 release_sq:
1646 	dev->online_queues--;
1647 	mutex_unlock(&dev->shutdown_lock);
1648 	adapter_delete_sq(dev, qid);
1649 release_cq:
1650 	adapter_delete_cq(dev, qid);
1651 	return result;
1652 }
1653 
1654 static const struct blk_mq_ops nvme_mq_admin_ops = {
1655 	.queue_rq	= nvme_queue_rq,
1656 	.complete	= nvme_pci_complete_rq,
1657 	.init_hctx	= nvme_admin_init_hctx,
1658 	.init_request	= nvme_pci_init_request,
1659 	.timeout	= nvme_timeout,
1660 };
1661 
1662 static const struct blk_mq_ops nvme_mq_ops = {
1663 	.queue_rq	= nvme_queue_rq,
1664 	.queue_rqs	= nvme_queue_rqs,
1665 	.complete	= nvme_pci_complete_rq,
1666 	.commit_rqs	= nvme_commit_rqs,
1667 	.init_hctx	= nvme_init_hctx,
1668 	.init_request	= nvme_pci_init_request,
1669 	.map_queues	= nvme_pci_map_queues,
1670 	.timeout	= nvme_timeout,
1671 	.poll		= nvme_poll,
1672 };
1673 
1674 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1675 {
1676 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1677 		/*
1678 		 * If the controller was reset during removal, it's possible
1679 		 * user requests may be waiting on a stopped queue. Start the
1680 		 * queue to flush these to completion.
1681 		 */
1682 		nvme_unquiesce_admin_queue(&dev->ctrl);
1683 		nvme_remove_admin_tag_set(&dev->ctrl);
1684 	}
1685 }
1686 
1687 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1688 {
1689 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1690 }
1691 
1692 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1693 {
1694 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1695 
1696 	if (size <= dev->bar_mapped_size)
1697 		return 0;
1698 	if (size > pci_resource_len(pdev, 0))
1699 		return -ENOMEM;
1700 	if (dev->bar)
1701 		iounmap(dev->bar);
1702 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1703 	if (!dev->bar) {
1704 		dev->bar_mapped_size = 0;
1705 		return -ENOMEM;
1706 	}
1707 	dev->bar_mapped_size = size;
1708 	dev->dbs = dev->bar + NVME_REG_DBS;
1709 
1710 	return 0;
1711 }
1712 
1713 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1714 {
1715 	int result;
1716 	u32 aqa;
1717 	struct nvme_queue *nvmeq;
1718 
1719 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1720 	if (result < 0)
1721 		return result;
1722 
1723 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1724 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1725 
1726 	if (dev->subsystem &&
1727 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1728 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1729 
1730 	/*
1731 	 * If the device has been passed off to us in an enabled state, just
1732 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1733 	 * notification bits', but doing so may cause the device to complete
1734 	 * commands to the admin queue ... and we don't know what memory that
1735 	 * might be pointing at!
1736 	 */
1737 	result = nvme_disable_ctrl(&dev->ctrl, false);
1738 	if (result < 0)
1739 		return result;
1740 
1741 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1742 	if (result)
1743 		return result;
1744 
1745 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1746 
1747 	nvmeq = &dev->queues[0];
1748 	aqa = nvmeq->q_depth - 1;
1749 	aqa |= aqa << 16;
1750 
1751 	writel(aqa, dev->bar + NVME_REG_AQA);
1752 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1753 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1754 
1755 	result = nvme_enable_ctrl(&dev->ctrl);
1756 	if (result)
1757 		return result;
1758 
1759 	nvmeq->cq_vector = 0;
1760 	nvme_init_queue(nvmeq, 0);
1761 	result = queue_request_irq(nvmeq);
1762 	if (result) {
1763 		dev->online_queues--;
1764 		return result;
1765 	}
1766 
1767 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1768 	return result;
1769 }
1770 
1771 static int nvme_create_io_queues(struct nvme_dev *dev)
1772 {
1773 	unsigned i, max, rw_queues;
1774 	int ret = 0;
1775 
1776 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1777 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1778 			ret = -ENOMEM;
1779 			break;
1780 		}
1781 	}
1782 
1783 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1784 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1785 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1786 				dev->io_queues[HCTX_TYPE_READ];
1787 	} else {
1788 		rw_queues = max;
1789 	}
1790 
1791 	for (i = dev->online_queues; i <= max; i++) {
1792 		bool polled = i > rw_queues;
1793 
1794 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1795 		if (ret)
1796 			break;
1797 	}
1798 
1799 	/*
1800 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1801 	 * than the desired amount of queues, and even a controller without
1802 	 * I/O queues can still be used to issue admin commands.  This might
1803 	 * be useful to upgrade a buggy firmware for example.
1804 	 */
1805 	return ret >= 0 ? 0 : ret;
1806 }
1807 
1808 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1809 {
1810 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1811 
1812 	return 1ULL << (12 + 4 * szu);
1813 }
1814 
1815 static u32 nvme_cmb_size(struct nvme_dev *dev)
1816 {
1817 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1818 }
1819 
1820 static void nvme_map_cmb(struct nvme_dev *dev)
1821 {
1822 	u64 size, offset;
1823 	resource_size_t bar_size;
1824 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1825 	int bar;
1826 
1827 	if (dev->cmb_size)
1828 		return;
1829 
1830 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1831 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1832 
1833 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1834 	if (!dev->cmbsz)
1835 		return;
1836 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1837 
1838 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1839 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1840 	bar = NVME_CMB_BIR(dev->cmbloc);
1841 	bar_size = pci_resource_len(pdev, bar);
1842 
1843 	if (offset > bar_size)
1844 		return;
1845 
1846 	/*
1847 	 * Tell the controller about the host side address mapping the CMB,
1848 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1849 	 */
1850 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1851 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1852 			     (pci_bus_address(pdev, bar) + offset),
1853 			     dev->bar + NVME_REG_CMBMSC);
1854 	}
1855 
1856 	/*
1857 	 * Controllers may support a CMB size larger than their BAR,
1858 	 * for example, due to being behind a bridge. Reduce the CMB to
1859 	 * the reported size of the BAR
1860 	 */
1861 	if (size > bar_size - offset)
1862 		size = bar_size - offset;
1863 
1864 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1865 		dev_warn(dev->ctrl.device,
1866 			 "failed to register the CMB\n");
1867 		return;
1868 	}
1869 
1870 	dev->cmb_size = size;
1871 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1872 
1873 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1874 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1875 		pci_p2pmem_publish(pdev, true);
1876 
1877 	nvme_update_attrs(dev);
1878 }
1879 
1880 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1881 {
1882 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1883 	u64 dma_addr = dev->host_mem_descs_dma;
1884 	struct nvme_command c = { };
1885 	int ret;
1886 
1887 	c.features.opcode	= nvme_admin_set_features;
1888 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1889 	c.features.dword11	= cpu_to_le32(bits);
1890 	c.features.dword12	= cpu_to_le32(host_mem_size);
1891 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1892 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1893 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1894 
1895 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1896 	if (ret) {
1897 		dev_warn(dev->ctrl.device,
1898 			 "failed to set host mem (err %d, flags %#x).\n",
1899 			 ret, bits);
1900 	} else
1901 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1902 
1903 	return ret;
1904 }
1905 
1906 static void nvme_free_host_mem(struct nvme_dev *dev)
1907 {
1908 	int i;
1909 
1910 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1911 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1912 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1913 
1914 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1915 			       le64_to_cpu(desc->addr),
1916 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1917 	}
1918 
1919 	kfree(dev->host_mem_desc_bufs);
1920 	dev->host_mem_desc_bufs = NULL;
1921 	dma_free_coherent(dev->dev,
1922 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1923 			dev->host_mem_descs, dev->host_mem_descs_dma);
1924 	dev->host_mem_descs = NULL;
1925 	dev->nr_host_mem_descs = 0;
1926 }
1927 
1928 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1929 		u32 chunk_size)
1930 {
1931 	struct nvme_host_mem_buf_desc *descs;
1932 	u32 max_entries, len;
1933 	dma_addr_t descs_dma;
1934 	int i = 0;
1935 	void **bufs;
1936 	u64 size, tmp;
1937 
1938 	tmp = (preferred + chunk_size - 1);
1939 	do_div(tmp, chunk_size);
1940 	max_entries = tmp;
1941 
1942 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1943 		max_entries = dev->ctrl.hmmaxd;
1944 
1945 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1946 				   &descs_dma, GFP_KERNEL);
1947 	if (!descs)
1948 		goto out;
1949 
1950 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1951 	if (!bufs)
1952 		goto out_free_descs;
1953 
1954 	for (size = 0; size < preferred && i < max_entries; size += len) {
1955 		dma_addr_t dma_addr;
1956 
1957 		len = min_t(u64, chunk_size, preferred - size);
1958 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1959 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1960 		if (!bufs[i])
1961 			break;
1962 
1963 		descs[i].addr = cpu_to_le64(dma_addr);
1964 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1965 		i++;
1966 	}
1967 
1968 	if (!size)
1969 		goto out_free_bufs;
1970 
1971 	dev->nr_host_mem_descs = i;
1972 	dev->host_mem_size = size;
1973 	dev->host_mem_descs = descs;
1974 	dev->host_mem_descs_dma = descs_dma;
1975 	dev->host_mem_desc_bufs = bufs;
1976 	return 0;
1977 
1978 out_free_bufs:
1979 	while (--i >= 0) {
1980 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1981 
1982 		dma_free_attrs(dev->dev, size, bufs[i],
1983 			       le64_to_cpu(descs[i].addr),
1984 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1985 	}
1986 
1987 	kfree(bufs);
1988 out_free_descs:
1989 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1990 			descs_dma);
1991 out:
1992 	dev->host_mem_descs = NULL;
1993 	return -ENOMEM;
1994 }
1995 
1996 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1997 {
1998 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1999 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2000 	u64 chunk_size;
2001 
2002 	/* start big and work our way down */
2003 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2004 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2005 			if (!min || dev->host_mem_size >= min)
2006 				return 0;
2007 			nvme_free_host_mem(dev);
2008 		}
2009 	}
2010 
2011 	return -ENOMEM;
2012 }
2013 
2014 static int nvme_setup_host_mem(struct nvme_dev *dev)
2015 {
2016 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2017 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2018 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2019 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2020 	int ret;
2021 
2022 	if (!dev->ctrl.hmpre)
2023 		return 0;
2024 
2025 	preferred = min(preferred, max);
2026 	if (min > max) {
2027 		dev_warn(dev->ctrl.device,
2028 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2029 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2030 		nvme_free_host_mem(dev);
2031 		return 0;
2032 	}
2033 
2034 	/*
2035 	 * If we already have a buffer allocated check if we can reuse it.
2036 	 */
2037 	if (dev->host_mem_descs) {
2038 		if (dev->host_mem_size >= min)
2039 			enable_bits |= NVME_HOST_MEM_RETURN;
2040 		else
2041 			nvme_free_host_mem(dev);
2042 	}
2043 
2044 	if (!dev->host_mem_descs) {
2045 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2046 			dev_warn(dev->ctrl.device,
2047 				"failed to allocate host memory buffer.\n");
2048 			return 0; /* controller must work without HMB */
2049 		}
2050 
2051 		dev_info(dev->ctrl.device,
2052 			"allocated %lld MiB host memory buffer.\n",
2053 			dev->host_mem_size >> ilog2(SZ_1M));
2054 	}
2055 
2056 	ret = nvme_set_host_mem(dev, enable_bits);
2057 	if (ret)
2058 		nvme_free_host_mem(dev);
2059 	return ret;
2060 }
2061 
2062 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2063 		char *buf)
2064 {
2065 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2066 
2067 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2068 		       ndev->cmbloc, ndev->cmbsz);
2069 }
2070 static DEVICE_ATTR_RO(cmb);
2071 
2072 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2073 		char *buf)
2074 {
2075 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2076 
2077 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2078 }
2079 static DEVICE_ATTR_RO(cmbloc);
2080 
2081 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2082 		char *buf)
2083 {
2084 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2085 
2086 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2087 }
2088 static DEVICE_ATTR_RO(cmbsz);
2089 
2090 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2091 			char *buf)
2092 {
2093 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2094 
2095 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2096 }
2097 
2098 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2099 			 const char *buf, size_t count)
2100 {
2101 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2102 	bool new;
2103 	int ret;
2104 
2105 	if (kstrtobool(buf, &new) < 0)
2106 		return -EINVAL;
2107 
2108 	if (new == ndev->hmb)
2109 		return count;
2110 
2111 	if (new) {
2112 		ret = nvme_setup_host_mem(ndev);
2113 	} else {
2114 		ret = nvme_set_host_mem(ndev, 0);
2115 		if (!ret)
2116 			nvme_free_host_mem(ndev);
2117 	}
2118 
2119 	if (ret < 0)
2120 		return ret;
2121 
2122 	return count;
2123 }
2124 static DEVICE_ATTR_RW(hmb);
2125 
2126 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2127 		struct attribute *a, int n)
2128 {
2129 	struct nvme_ctrl *ctrl =
2130 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2131 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2132 
2133 	if (a == &dev_attr_cmb.attr ||
2134 	    a == &dev_attr_cmbloc.attr ||
2135 	    a == &dev_attr_cmbsz.attr) {
2136 	    	if (!dev->cmbsz)
2137 			return 0;
2138 	}
2139 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2140 		return 0;
2141 
2142 	return a->mode;
2143 }
2144 
2145 static struct attribute *nvme_pci_attrs[] = {
2146 	&dev_attr_cmb.attr,
2147 	&dev_attr_cmbloc.attr,
2148 	&dev_attr_cmbsz.attr,
2149 	&dev_attr_hmb.attr,
2150 	NULL,
2151 };
2152 
2153 static const struct attribute_group nvme_pci_dev_attrs_group = {
2154 	.attrs		= nvme_pci_attrs,
2155 	.is_visible	= nvme_pci_attrs_are_visible,
2156 };
2157 
2158 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2159 	&nvme_dev_attrs_group,
2160 	&nvme_pci_dev_attrs_group,
2161 	NULL,
2162 };
2163 
2164 static void nvme_update_attrs(struct nvme_dev *dev)
2165 {
2166 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2167 }
2168 
2169 /*
2170  * nirqs is the number of interrupts available for write and read
2171  * queues. The core already reserved an interrupt for the admin queue.
2172  */
2173 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2174 {
2175 	struct nvme_dev *dev = affd->priv;
2176 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2177 
2178 	/*
2179 	 * If there is no interrupt available for queues, ensure that
2180 	 * the default queue is set to 1. The affinity set size is
2181 	 * also set to one, but the irq core ignores it for this case.
2182 	 *
2183 	 * If only one interrupt is available or 'write_queue' == 0, combine
2184 	 * write and read queues.
2185 	 *
2186 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2187 	 * queue.
2188 	 */
2189 	if (!nrirqs) {
2190 		nrirqs = 1;
2191 		nr_read_queues = 0;
2192 	} else if (nrirqs == 1 || !nr_write_queues) {
2193 		nr_read_queues = 0;
2194 	} else if (nr_write_queues >= nrirqs) {
2195 		nr_read_queues = 1;
2196 	} else {
2197 		nr_read_queues = nrirqs - nr_write_queues;
2198 	}
2199 
2200 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2201 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2202 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2203 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2204 	affd->nr_sets = nr_read_queues ? 2 : 1;
2205 }
2206 
2207 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2208 {
2209 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2210 	struct irq_affinity affd = {
2211 		.pre_vectors	= 1,
2212 		.calc_sets	= nvme_calc_irq_sets,
2213 		.priv		= dev,
2214 	};
2215 	unsigned int irq_queues, poll_queues;
2216 
2217 	/*
2218 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2219 	 * left over for non-polled I/O.
2220 	 */
2221 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2222 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2223 
2224 	/*
2225 	 * Initialize for the single interrupt case, will be updated in
2226 	 * nvme_calc_irq_sets().
2227 	 */
2228 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2229 	dev->io_queues[HCTX_TYPE_READ] = 0;
2230 
2231 	/*
2232 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2233 	 * but some Apple controllers require all queues to use the first
2234 	 * vector.
2235 	 */
2236 	irq_queues = 1;
2237 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2238 		irq_queues += (nr_io_queues - poll_queues);
2239 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2240 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2241 }
2242 
2243 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2244 {
2245 	/*
2246 	 * If tags are shared with admin queue (Apple bug), then
2247 	 * make sure we only use one IO queue.
2248 	 */
2249 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2250 		return 1;
2251 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2252 }
2253 
2254 static int nvme_setup_io_queues(struct nvme_dev *dev)
2255 {
2256 	struct nvme_queue *adminq = &dev->queues[0];
2257 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2258 	unsigned int nr_io_queues;
2259 	unsigned long size;
2260 	int result;
2261 
2262 	/*
2263 	 * Sample the module parameters once at reset time so that we have
2264 	 * stable values to work with.
2265 	 */
2266 	dev->nr_write_queues = write_queues;
2267 	dev->nr_poll_queues = poll_queues;
2268 
2269 	nr_io_queues = dev->nr_allocated_queues - 1;
2270 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2271 	if (result < 0)
2272 		return result;
2273 
2274 	if (nr_io_queues == 0)
2275 		return 0;
2276 
2277 	/*
2278 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2279 	 * from set to unset. If there is a window to it is truely freed,
2280 	 * pci_free_irq_vectors() jumping into this window will crash.
2281 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2282 	 * nvme_dev_disable() path.
2283 	 */
2284 	result = nvme_setup_io_queues_trylock(dev);
2285 	if (result)
2286 		return result;
2287 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2288 		pci_free_irq(pdev, 0, adminq);
2289 
2290 	if (dev->cmb_use_sqes) {
2291 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2292 				sizeof(struct nvme_command));
2293 		if (result > 0) {
2294 			dev->q_depth = result;
2295 			dev->ctrl.sqsize = result - 1;
2296 		} else {
2297 			dev->cmb_use_sqes = false;
2298 		}
2299 	}
2300 
2301 	do {
2302 		size = db_bar_size(dev, nr_io_queues);
2303 		result = nvme_remap_bar(dev, size);
2304 		if (!result)
2305 			break;
2306 		if (!--nr_io_queues) {
2307 			result = -ENOMEM;
2308 			goto out_unlock;
2309 		}
2310 	} while (1);
2311 	adminq->q_db = dev->dbs;
2312 
2313  retry:
2314 	/* Deregister the admin queue's interrupt */
2315 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2316 		pci_free_irq(pdev, 0, adminq);
2317 
2318 	/*
2319 	 * If we enable msix early due to not intx, disable it again before
2320 	 * setting up the full range we need.
2321 	 */
2322 	pci_free_irq_vectors(pdev);
2323 
2324 	result = nvme_setup_irqs(dev, nr_io_queues);
2325 	if (result <= 0) {
2326 		result = -EIO;
2327 		goto out_unlock;
2328 	}
2329 
2330 	dev->num_vecs = result;
2331 	result = max(result - 1, 1);
2332 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2333 
2334 	/*
2335 	 * Should investigate if there's a performance win from allocating
2336 	 * more queues than interrupt vectors; it might allow the submission
2337 	 * path to scale better, even if the receive path is limited by the
2338 	 * number of interrupts.
2339 	 */
2340 	result = queue_request_irq(adminq);
2341 	if (result)
2342 		goto out_unlock;
2343 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2344 	mutex_unlock(&dev->shutdown_lock);
2345 
2346 	result = nvme_create_io_queues(dev);
2347 	if (result || dev->online_queues < 2)
2348 		return result;
2349 
2350 	if (dev->online_queues - 1 < dev->max_qid) {
2351 		nr_io_queues = dev->online_queues - 1;
2352 		nvme_delete_io_queues(dev);
2353 		result = nvme_setup_io_queues_trylock(dev);
2354 		if (result)
2355 			return result;
2356 		nvme_suspend_io_queues(dev);
2357 		goto retry;
2358 	}
2359 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2360 					dev->io_queues[HCTX_TYPE_DEFAULT],
2361 					dev->io_queues[HCTX_TYPE_READ],
2362 					dev->io_queues[HCTX_TYPE_POLL]);
2363 	return 0;
2364 out_unlock:
2365 	mutex_unlock(&dev->shutdown_lock);
2366 	return result;
2367 }
2368 
2369 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2370 					     blk_status_t error)
2371 {
2372 	struct nvme_queue *nvmeq = req->end_io_data;
2373 
2374 	blk_mq_free_request(req);
2375 	complete(&nvmeq->delete_done);
2376 	return RQ_END_IO_NONE;
2377 }
2378 
2379 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2380 					  blk_status_t error)
2381 {
2382 	struct nvme_queue *nvmeq = req->end_io_data;
2383 
2384 	if (error)
2385 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2386 
2387 	return nvme_del_queue_end(req, error);
2388 }
2389 
2390 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2391 {
2392 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2393 	struct request *req;
2394 	struct nvme_command cmd = { };
2395 
2396 	cmd.delete_queue.opcode = opcode;
2397 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2398 
2399 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2400 	if (IS_ERR(req))
2401 		return PTR_ERR(req);
2402 	nvme_init_request(req, &cmd);
2403 
2404 	if (opcode == nvme_admin_delete_cq)
2405 		req->end_io = nvme_del_cq_end;
2406 	else
2407 		req->end_io = nvme_del_queue_end;
2408 	req->end_io_data = nvmeq;
2409 
2410 	init_completion(&nvmeq->delete_done);
2411 	blk_execute_rq_nowait(req, false);
2412 	return 0;
2413 }
2414 
2415 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2416 {
2417 	int nr_queues = dev->online_queues - 1, sent = 0;
2418 	unsigned long timeout;
2419 
2420  retry:
2421 	timeout = NVME_ADMIN_TIMEOUT;
2422 	while (nr_queues > 0) {
2423 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2424 			break;
2425 		nr_queues--;
2426 		sent++;
2427 	}
2428 	while (sent) {
2429 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2430 
2431 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2432 				timeout);
2433 		if (timeout == 0)
2434 			return false;
2435 
2436 		sent--;
2437 		if (nr_queues)
2438 			goto retry;
2439 	}
2440 	return true;
2441 }
2442 
2443 static void nvme_delete_io_queues(struct nvme_dev *dev)
2444 {
2445 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2446 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2447 }
2448 
2449 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2450 {
2451 	if (dev->io_queues[HCTX_TYPE_POLL])
2452 		return 3;
2453 	if (dev->io_queues[HCTX_TYPE_READ])
2454 		return 2;
2455 	return 1;
2456 }
2457 
2458 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2459 {
2460 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2461 	/* free previously allocated queues that are no longer usable */
2462 	nvme_free_queues(dev, dev->online_queues);
2463 }
2464 
2465 static int nvme_pci_enable(struct nvme_dev *dev)
2466 {
2467 	int result = -ENOMEM;
2468 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2469 
2470 	if (pci_enable_device_mem(pdev))
2471 		return result;
2472 
2473 	pci_set_master(pdev);
2474 
2475 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2476 		result = -ENODEV;
2477 		goto disable;
2478 	}
2479 
2480 	/*
2481 	 * Some devices and/or platforms don't advertise or work with INTx
2482 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2483 	 * adjust this later.
2484 	 */
2485 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2486 	if (result < 0)
2487 		goto disable;
2488 
2489 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2490 
2491 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2492 				io_queue_depth);
2493 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2494 	dev->dbs = dev->bar + 4096;
2495 
2496 	/*
2497 	 * Some Apple controllers require a non-standard SQE size.
2498 	 * Interestingly they also seem to ignore the CC:IOSQES register
2499 	 * so we don't bother updating it here.
2500 	 */
2501 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2502 		dev->io_sqes = 7;
2503 	else
2504 		dev->io_sqes = NVME_NVM_IOSQES;
2505 
2506 	/*
2507 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2508 	 * some MacBook7,1 to avoid controller resets and data loss.
2509 	 */
2510 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2511 		dev->q_depth = 2;
2512 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2513 			"set queue depth=%u to work around controller resets\n",
2514 			dev->q_depth);
2515 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2516 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2517 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2518 		dev->q_depth = 64;
2519 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2520                         "set queue depth=%u\n", dev->q_depth);
2521 	}
2522 
2523 	/*
2524 	 * Controllers with the shared tags quirk need the IO queue to be
2525 	 * big enough so that we get 32 tags for the admin queue
2526 	 */
2527 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2528 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2529 		dev->q_depth = NVME_AQ_DEPTH + 2;
2530 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2531 			 dev->q_depth);
2532 	}
2533 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2534 
2535 	nvme_map_cmb(dev);
2536 
2537 	pci_save_state(pdev);
2538 
2539 	result = nvme_pci_configure_admin_queue(dev);
2540 	if (result)
2541 		goto free_irq;
2542 	return result;
2543 
2544  free_irq:
2545 	pci_free_irq_vectors(pdev);
2546  disable:
2547 	pci_disable_device(pdev);
2548 	return result;
2549 }
2550 
2551 static void nvme_dev_unmap(struct nvme_dev *dev)
2552 {
2553 	if (dev->bar)
2554 		iounmap(dev->bar);
2555 	pci_release_mem_regions(to_pci_dev(dev->dev));
2556 }
2557 
2558 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2559 {
2560 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2561 	u32 csts;
2562 
2563 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2564 		return true;
2565 	if (pdev->error_state != pci_channel_io_normal)
2566 		return true;
2567 
2568 	csts = readl(dev->bar + NVME_REG_CSTS);
2569 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2570 }
2571 
2572 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2573 {
2574 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2575 	bool dead;
2576 
2577 	mutex_lock(&dev->shutdown_lock);
2578 	dead = nvme_pci_ctrl_is_dead(dev);
2579 	if (dev->ctrl.state == NVME_CTRL_LIVE ||
2580 	    dev->ctrl.state == NVME_CTRL_RESETTING) {
2581 		if (pci_is_enabled(pdev))
2582 			nvme_start_freeze(&dev->ctrl);
2583 		/*
2584 		 * Give the controller a chance to complete all entered requests
2585 		 * if doing a safe shutdown.
2586 		 */
2587 		if (!dead && shutdown)
2588 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2589 	}
2590 
2591 	nvme_quiesce_io_queues(&dev->ctrl);
2592 
2593 	if (!dead && dev->ctrl.queue_count > 0) {
2594 		nvme_delete_io_queues(dev);
2595 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2596 		nvme_poll_irqdisable(&dev->queues[0]);
2597 	}
2598 	nvme_suspend_io_queues(dev);
2599 	nvme_suspend_queue(dev, 0);
2600 	pci_free_irq_vectors(pdev);
2601 	if (pci_is_enabled(pdev))
2602 		pci_disable_device(pdev);
2603 	nvme_reap_pending_cqes(dev);
2604 
2605 	nvme_cancel_tagset(&dev->ctrl);
2606 	nvme_cancel_admin_tagset(&dev->ctrl);
2607 
2608 	/*
2609 	 * The driver will not be starting up queues again if shutting down so
2610 	 * must flush all entered requests to their failed completion to avoid
2611 	 * deadlocking blk-mq hot-cpu notifier.
2612 	 */
2613 	if (shutdown) {
2614 		nvme_unquiesce_io_queues(&dev->ctrl);
2615 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2616 			nvme_unquiesce_admin_queue(&dev->ctrl);
2617 	}
2618 	mutex_unlock(&dev->shutdown_lock);
2619 }
2620 
2621 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2622 {
2623 	if (!nvme_wait_reset(&dev->ctrl))
2624 		return -EBUSY;
2625 	nvme_dev_disable(dev, shutdown);
2626 	return 0;
2627 }
2628 
2629 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2630 {
2631 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2632 						NVME_CTRL_PAGE_SIZE,
2633 						NVME_CTRL_PAGE_SIZE, 0);
2634 	if (!dev->prp_page_pool)
2635 		return -ENOMEM;
2636 
2637 	/* Optimisation for I/Os between 4k and 128k */
2638 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2639 						256, 256, 0);
2640 	if (!dev->prp_small_pool) {
2641 		dma_pool_destroy(dev->prp_page_pool);
2642 		return -ENOMEM;
2643 	}
2644 	return 0;
2645 }
2646 
2647 static void nvme_release_prp_pools(struct nvme_dev *dev)
2648 {
2649 	dma_pool_destroy(dev->prp_page_pool);
2650 	dma_pool_destroy(dev->prp_small_pool);
2651 }
2652 
2653 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2654 {
2655 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2656 
2657 	dev->iod_mempool = mempool_create_node(1,
2658 			mempool_kmalloc, mempool_kfree,
2659 			(void *)alloc_size, GFP_KERNEL,
2660 			dev_to_node(dev->dev));
2661 	if (!dev->iod_mempool)
2662 		return -ENOMEM;
2663 	return 0;
2664 }
2665 
2666 static void nvme_free_tagset(struct nvme_dev *dev)
2667 {
2668 	if (dev->tagset.tags)
2669 		nvme_remove_io_tag_set(&dev->ctrl);
2670 	dev->ctrl.tagset = NULL;
2671 }
2672 
2673 /* pairs with nvme_pci_alloc_dev */
2674 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2675 {
2676 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2677 
2678 	nvme_free_tagset(dev);
2679 	put_device(dev->dev);
2680 	kfree(dev->queues);
2681 	kfree(dev);
2682 }
2683 
2684 static void nvme_reset_work(struct work_struct *work)
2685 {
2686 	struct nvme_dev *dev =
2687 		container_of(work, struct nvme_dev, ctrl.reset_work);
2688 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2689 	int result;
2690 
2691 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2692 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2693 			 dev->ctrl.state);
2694 		return;
2695 	}
2696 
2697 	/*
2698 	 * If we're called to reset a live controller first shut it down before
2699 	 * moving on.
2700 	 */
2701 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2702 		nvme_dev_disable(dev, false);
2703 	nvme_sync_queues(&dev->ctrl);
2704 
2705 	mutex_lock(&dev->shutdown_lock);
2706 	result = nvme_pci_enable(dev);
2707 	if (result)
2708 		goto out_unlock;
2709 	nvme_unquiesce_admin_queue(&dev->ctrl);
2710 	mutex_unlock(&dev->shutdown_lock);
2711 
2712 	/*
2713 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2714 	 * initializing procedure here.
2715 	 */
2716 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2717 		dev_warn(dev->ctrl.device,
2718 			"failed to mark controller CONNECTING\n");
2719 		result = -EBUSY;
2720 		goto out;
2721 	}
2722 
2723 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2724 	if (result)
2725 		goto out;
2726 
2727 	nvme_dbbuf_dma_alloc(dev);
2728 
2729 	result = nvme_setup_host_mem(dev);
2730 	if (result < 0)
2731 		goto out;
2732 
2733 	result = nvme_setup_io_queues(dev);
2734 	if (result)
2735 		goto out;
2736 
2737 	/*
2738 	 * Freeze and update the number of I/O queues as thos might have
2739 	 * changed.  If there are no I/O queues left after this reset, keep the
2740 	 * controller around but remove all namespaces.
2741 	 */
2742 	if (dev->online_queues > 1) {
2743 		nvme_unquiesce_io_queues(&dev->ctrl);
2744 		nvme_wait_freeze(&dev->ctrl);
2745 		nvme_pci_update_nr_queues(dev);
2746 		nvme_dbbuf_set(dev);
2747 		nvme_unfreeze(&dev->ctrl);
2748 	} else {
2749 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2750 		nvme_mark_namespaces_dead(&dev->ctrl);
2751 		nvme_unquiesce_io_queues(&dev->ctrl);
2752 		nvme_remove_namespaces(&dev->ctrl);
2753 		nvme_free_tagset(dev);
2754 	}
2755 
2756 	/*
2757 	 * If only admin queue live, keep it to do further investigation or
2758 	 * recovery.
2759 	 */
2760 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2761 		dev_warn(dev->ctrl.device,
2762 			"failed to mark controller live state\n");
2763 		result = -ENODEV;
2764 		goto out;
2765 	}
2766 
2767 	nvme_start_ctrl(&dev->ctrl);
2768 	return;
2769 
2770  out_unlock:
2771 	mutex_unlock(&dev->shutdown_lock);
2772  out:
2773 	/*
2774 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2775 	 * may be holding this pci_dev's device lock.
2776 	 */
2777 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2778 		 result);
2779 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2780 	nvme_dev_disable(dev, true);
2781 	nvme_mark_namespaces_dead(&dev->ctrl);
2782 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2783 }
2784 
2785 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2786 {
2787 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2788 	return 0;
2789 }
2790 
2791 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2792 {
2793 	writel(val, to_nvme_dev(ctrl)->bar + off);
2794 	return 0;
2795 }
2796 
2797 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2798 {
2799 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2800 	return 0;
2801 }
2802 
2803 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2804 {
2805 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2806 
2807 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2808 }
2809 
2810 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2811 {
2812 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2813 	struct nvme_subsystem *subsys = ctrl->subsys;
2814 
2815 	dev_err(ctrl->device,
2816 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2817 		pdev->vendor, pdev->device,
2818 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2819 		subsys->model, nvme_strlen(subsys->firmware_rev,
2820 					   sizeof(subsys->firmware_rev)),
2821 		subsys->firmware_rev);
2822 }
2823 
2824 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2825 {
2826 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2827 
2828 	return dma_pci_p2pdma_supported(dev->dev);
2829 }
2830 
2831 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2832 	.name			= "pcie",
2833 	.module			= THIS_MODULE,
2834 	.flags			= NVME_F_METADATA_SUPPORTED,
2835 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2836 	.reg_read32		= nvme_pci_reg_read32,
2837 	.reg_write32		= nvme_pci_reg_write32,
2838 	.reg_read64		= nvme_pci_reg_read64,
2839 	.free_ctrl		= nvme_pci_free_ctrl,
2840 	.submit_async_event	= nvme_pci_submit_async_event,
2841 	.get_address		= nvme_pci_get_address,
2842 	.print_device_info	= nvme_pci_print_device_info,
2843 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2844 };
2845 
2846 static int nvme_dev_map(struct nvme_dev *dev)
2847 {
2848 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2849 
2850 	if (pci_request_mem_regions(pdev, "nvme"))
2851 		return -ENODEV;
2852 
2853 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2854 		goto release;
2855 
2856 	return 0;
2857   release:
2858 	pci_release_mem_regions(pdev);
2859 	return -ENODEV;
2860 }
2861 
2862 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2863 {
2864 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2865 		/*
2866 		 * Several Samsung devices seem to drop off the PCIe bus
2867 		 * randomly when APST is on and uses the deepest sleep state.
2868 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2869 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2870 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2871 		 * laptops.
2872 		 */
2873 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2874 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2875 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2876 			return NVME_QUIRK_NO_DEEPEST_PS;
2877 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2878 		/*
2879 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2880 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2881 		 * within few minutes after bootup on a Coffee Lake board -
2882 		 * ASUS PRIME Z370-A
2883 		 */
2884 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2885 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2886 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2887 			return NVME_QUIRK_NO_APST;
2888 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2889 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2890 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2891 		/*
2892 		 * Forcing to use host managed nvme power settings for
2893 		 * lowest idle power with quick resume latency on
2894 		 * Samsung and Toshiba SSDs based on suspend behavior
2895 		 * on Coffee Lake board for LENOVO C640
2896 		 */
2897 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2898 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2899 			return NVME_QUIRK_SIMPLE_SUSPEND;
2900 	}
2901 
2902 	return 0;
2903 }
2904 
2905 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2906 		const struct pci_device_id *id)
2907 {
2908 	unsigned long quirks = id->driver_data;
2909 	int node = dev_to_node(&pdev->dev);
2910 	struct nvme_dev *dev;
2911 	int ret = -ENOMEM;
2912 
2913 	if (node == NUMA_NO_NODE)
2914 		set_dev_node(&pdev->dev, first_memory_node);
2915 
2916 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2917 	if (!dev)
2918 		return ERR_PTR(-ENOMEM);
2919 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2920 	mutex_init(&dev->shutdown_lock);
2921 
2922 	dev->nr_write_queues = write_queues;
2923 	dev->nr_poll_queues = poll_queues;
2924 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2925 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2926 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2927 	if (!dev->queues)
2928 		goto out_free_dev;
2929 
2930 	dev->dev = get_device(&pdev->dev);
2931 
2932 	quirks |= check_vendor_combination_bug(pdev);
2933 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2934 		/*
2935 		 * Some systems use a bios work around to ask for D3 on
2936 		 * platforms that support kernel managed suspend.
2937 		 */
2938 		dev_info(&pdev->dev,
2939 			 "platform quirk: setting simple suspend\n");
2940 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2941 	}
2942 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2943 			     quirks);
2944 	if (ret)
2945 		goto out_put_device;
2946 
2947 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2948 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2949 	else
2950 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2951 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2952 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2953 
2954 	/*
2955 	 * Limit the max command size to prevent iod->sg allocations going
2956 	 * over a single page.
2957 	 */
2958 	dev->ctrl.max_hw_sectors = min_t(u32,
2959 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2960 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2961 
2962 	/*
2963 	 * There is no support for SGLs for metadata (yet), so we are limited to
2964 	 * a single integrity segment for the separate metadata pointer.
2965 	 */
2966 	dev->ctrl.max_integrity_segments = 1;
2967 	return dev;
2968 
2969 out_put_device:
2970 	put_device(dev->dev);
2971 	kfree(dev->queues);
2972 out_free_dev:
2973 	kfree(dev);
2974 	return ERR_PTR(ret);
2975 }
2976 
2977 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2978 {
2979 	struct nvme_dev *dev;
2980 	int result = -ENOMEM;
2981 
2982 	dev = nvme_pci_alloc_dev(pdev, id);
2983 	if (IS_ERR(dev))
2984 		return PTR_ERR(dev);
2985 
2986 	result = nvme_dev_map(dev);
2987 	if (result)
2988 		goto out_uninit_ctrl;
2989 
2990 	result = nvme_setup_prp_pools(dev);
2991 	if (result)
2992 		goto out_dev_unmap;
2993 
2994 	result = nvme_pci_alloc_iod_mempool(dev);
2995 	if (result)
2996 		goto out_release_prp_pools;
2997 
2998 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2999 
3000 	result = nvme_pci_enable(dev);
3001 	if (result)
3002 		goto out_release_iod_mempool;
3003 
3004 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3005 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3006 	if (result)
3007 		goto out_disable;
3008 
3009 	/*
3010 	 * Mark the controller as connecting before sending admin commands to
3011 	 * allow the timeout handler to do the right thing.
3012 	 */
3013 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3014 		dev_warn(dev->ctrl.device,
3015 			"failed to mark controller CONNECTING\n");
3016 		result = -EBUSY;
3017 		goto out_disable;
3018 	}
3019 
3020 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3021 	if (result)
3022 		goto out_disable;
3023 
3024 	nvme_dbbuf_dma_alloc(dev);
3025 
3026 	result = nvme_setup_host_mem(dev);
3027 	if (result < 0)
3028 		goto out_disable;
3029 
3030 	result = nvme_setup_io_queues(dev);
3031 	if (result)
3032 		goto out_disable;
3033 
3034 	if (dev->online_queues > 1) {
3035 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3036 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3037 		nvme_dbbuf_set(dev);
3038 	}
3039 
3040 	if (!dev->ctrl.tagset)
3041 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3042 
3043 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3044 		dev_warn(dev->ctrl.device,
3045 			"failed to mark controller live state\n");
3046 		result = -ENODEV;
3047 		goto out_disable;
3048 	}
3049 
3050 	pci_set_drvdata(pdev, dev);
3051 
3052 	nvme_start_ctrl(&dev->ctrl);
3053 	nvme_put_ctrl(&dev->ctrl);
3054 	flush_work(&dev->ctrl.scan_work);
3055 	return 0;
3056 
3057 out_disable:
3058 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3059 	nvme_dev_disable(dev, true);
3060 	nvme_free_host_mem(dev);
3061 	nvme_dev_remove_admin(dev);
3062 	nvme_dbbuf_dma_free(dev);
3063 	nvme_free_queues(dev, 0);
3064 out_release_iod_mempool:
3065 	mempool_destroy(dev->iod_mempool);
3066 out_release_prp_pools:
3067 	nvme_release_prp_pools(dev);
3068 out_dev_unmap:
3069 	nvme_dev_unmap(dev);
3070 out_uninit_ctrl:
3071 	nvme_uninit_ctrl(&dev->ctrl);
3072 	nvme_put_ctrl(&dev->ctrl);
3073 	return result;
3074 }
3075 
3076 static void nvme_reset_prepare(struct pci_dev *pdev)
3077 {
3078 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3079 
3080 	/*
3081 	 * We don't need to check the return value from waiting for the reset
3082 	 * state as pci_dev device lock is held, making it impossible to race
3083 	 * with ->remove().
3084 	 */
3085 	nvme_disable_prepare_reset(dev, false);
3086 	nvme_sync_queues(&dev->ctrl);
3087 }
3088 
3089 static void nvme_reset_done(struct pci_dev *pdev)
3090 {
3091 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3092 
3093 	if (!nvme_try_sched_reset(&dev->ctrl))
3094 		flush_work(&dev->ctrl.reset_work);
3095 }
3096 
3097 static void nvme_shutdown(struct pci_dev *pdev)
3098 {
3099 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3100 
3101 	nvme_disable_prepare_reset(dev, true);
3102 }
3103 
3104 /*
3105  * The driver's remove may be called on a device in a partially initialized
3106  * state. This function must not have any dependencies on the device state in
3107  * order to proceed.
3108  */
3109 static void nvme_remove(struct pci_dev *pdev)
3110 {
3111 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3112 
3113 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3114 	pci_set_drvdata(pdev, NULL);
3115 
3116 	if (!pci_device_is_present(pdev)) {
3117 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3118 		nvme_dev_disable(dev, true);
3119 	}
3120 
3121 	flush_work(&dev->ctrl.reset_work);
3122 	nvme_stop_ctrl(&dev->ctrl);
3123 	nvme_remove_namespaces(&dev->ctrl);
3124 	nvme_dev_disable(dev, true);
3125 	nvme_free_host_mem(dev);
3126 	nvme_dev_remove_admin(dev);
3127 	nvme_dbbuf_dma_free(dev);
3128 	nvme_free_queues(dev, 0);
3129 	mempool_destroy(dev->iod_mempool);
3130 	nvme_release_prp_pools(dev);
3131 	nvme_dev_unmap(dev);
3132 	nvme_uninit_ctrl(&dev->ctrl);
3133 }
3134 
3135 #ifdef CONFIG_PM_SLEEP
3136 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3137 {
3138 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3139 }
3140 
3141 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3142 {
3143 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3144 }
3145 
3146 static int nvme_resume(struct device *dev)
3147 {
3148 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3149 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3150 
3151 	if (ndev->last_ps == U32_MAX ||
3152 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3153 		goto reset;
3154 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3155 		goto reset;
3156 
3157 	return 0;
3158 reset:
3159 	return nvme_try_sched_reset(ctrl);
3160 }
3161 
3162 static int nvme_suspend(struct device *dev)
3163 {
3164 	struct pci_dev *pdev = to_pci_dev(dev);
3165 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3166 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3167 	int ret = -EBUSY;
3168 
3169 	ndev->last_ps = U32_MAX;
3170 
3171 	/*
3172 	 * The platform does not remove power for a kernel managed suspend so
3173 	 * use host managed nvme power settings for lowest idle power if
3174 	 * possible. This should have quicker resume latency than a full device
3175 	 * shutdown.  But if the firmware is involved after the suspend or the
3176 	 * device does not support any non-default power states, shut down the
3177 	 * device fully.
3178 	 *
3179 	 * If ASPM is not enabled for the device, shut down the device and allow
3180 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3181 	 * down, so as to allow the platform to achieve its minimum low-power
3182 	 * state (which may not be possible if the link is up).
3183 	 */
3184 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3185 	    !pcie_aspm_enabled(pdev) ||
3186 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3187 		return nvme_disable_prepare_reset(ndev, true);
3188 
3189 	nvme_start_freeze(ctrl);
3190 	nvme_wait_freeze(ctrl);
3191 	nvme_sync_queues(ctrl);
3192 
3193 	if (ctrl->state != NVME_CTRL_LIVE)
3194 		goto unfreeze;
3195 
3196 	/*
3197 	 * Host memory access may not be successful in a system suspend state,
3198 	 * but the specification allows the controller to access memory in a
3199 	 * non-operational power state.
3200 	 */
3201 	if (ndev->hmb) {
3202 		ret = nvme_set_host_mem(ndev, 0);
3203 		if (ret < 0)
3204 			goto unfreeze;
3205 	}
3206 
3207 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3208 	if (ret < 0)
3209 		goto unfreeze;
3210 
3211 	/*
3212 	 * A saved state prevents pci pm from generically controlling the
3213 	 * device's power. If we're using protocol specific settings, we don't
3214 	 * want pci interfering.
3215 	 */
3216 	pci_save_state(pdev);
3217 
3218 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3219 	if (ret < 0)
3220 		goto unfreeze;
3221 
3222 	if (ret) {
3223 		/* discard the saved state */
3224 		pci_load_saved_state(pdev, NULL);
3225 
3226 		/*
3227 		 * Clearing npss forces a controller reset on resume. The
3228 		 * correct value will be rediscovered then.
3229 		 */
3230 		ret = nvme_disable_prepare_reset(ndev, true);
3231 		ctrl->npss = 0;
3232 	}
3233 unfreeze:
3234 	nvme_unfreeze(ctrl);
3235 	return ret;
3236 }
3237 
3238 static int nvme_simple_suspend(struct device *dev)
3239 {
3240 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3241 
3242 	return nvme_disable_prepare_reset(ndev, true);
3243 }
3244 
3245 static int nvme_simple_resume(struct device *dev)
3246 {
3247 	struct pci_dev *pdev = to_pci_dev(dev);
3248 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3249 
3250 	return nvme_try_sched_reset(&ndev->ctrl);
3251 }
3252 
3253 static const struct dev_pm_ops nvme_dev_pm_ops = {
3254 	.suspend	= nvme_suspend,
3255 	.resume		= nvme_resume,
3256 	.freeze		= nvme_simple_suspend,
3257 	.thaw		= nvme_simple_resume,
3258 	.poweroff	= nvme_simple_suspend,
3259 	.restore	= nvme_simple_resume,
3260 };
3261 #endif /* CONFIG_PM_SLEEP */
3262 
3263 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3264 						pci_channel_state_t state)
3265 {
3266 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3267 
3268 	/*
3269 	 * A frozen channel requires a reset. When detected, this method will
3270 	 * shutdown the controller to quiesce. The controller will be restarted
3271 	 * after the slot reset through driver's slot_reset callback.
3272 	 */
3273 	switch (state) {
3274 	case pci_channel_io_normal:
3275 		return PCI_ERS_RESULT_CAN_RECOVER;
3276 	case pci_channel_io_frozen:
3277 		dev_warn(dev->ctrl.device,
3278 			"frozen state error detected, reset controller\n");
3279 		nvme_dev_disable(dev, false);
3280 		return PCI_ERS_RESULT_NEED_RESET;
3281 	case pci_channel_io_perm_failure:
3282 		dev_warn(dev->ctrl.device,
3283 			"failure state error detected, request disconnect\n");
3284 		return PCI_ERS_RESULT_DISCONNECT;
3285 	}
3286 	return PCI_ERS_RESULT_NEED_RESET;
3287 }
3288 
3289 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3290 {
3291 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3292 
3293 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3294 	pci_restore_state(pdev);
3295 	nvme_reset_ctrl(&dev->ctrl);
3296 	return PCI_ERS_RESULT_RECOVERED;
3297 }
3298 
3299 static void nvme_error_resume(struct pci_dev *pdev)
3300 {
3301 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3302 
3303 	flush_work(&dev->ctrl.reset_work);
3304 }
3305 
3306 static const struct pci_error_handlers nvme_err_handler = {
3307 	.error_detected	= nvme_error_detected,
3308 	.slot_reset	= nvme_slot_reset,
3309 	.resume		= nvme_error_resume,
3310 	.reset_prepare	= nvme_reset_prepare,
3311 	.reset_done	= nvme_reset_done,
3312 };
3313 
3314 static const struct pci_device_id nvme_id_table[] = {
3315 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3316 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3317 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3318 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3319 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3320 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3321 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3322 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3323 				NVME_QUIRK_DEALLOCATE_ZEROES |
3324 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3325 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3326 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3327 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3328 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3329 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3330 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3331 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3332 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3333 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3334 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3335 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3336 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3337 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3338 				NVME_QUIRK_BOGUS_NID, },
3339 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3340 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3341 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3342 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3343 				NVME_QUIRK_BOGUS_NID, },
3344 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3345 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3346 				NVME_QUIRK_NO_NS_DESC_LIST, },
3347 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3348 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3349 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3350 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3351 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3352 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3353 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3354 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3355 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3356 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3357 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3358 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3359 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3360 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3361 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3362 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3363 				NVME_QUIRK_BOGUS_NID, },
3364 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3365 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3366 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3367 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3368 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3369 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3370 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3371 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3372 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3373 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3374 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3375 				NVME_QUIRK_BOGUS_NID, },
3376 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3377 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3378 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3379 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3380 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3381 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3382 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3383 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3384 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3385 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3386 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3387 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3388 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3389 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3390 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3391 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3392 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3393 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3394 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3395 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3396 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3397 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3398 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3399 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3400 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3401 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3402 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3403 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3404 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3405 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3406 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3407 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3408 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3409 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3410 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3411 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3412 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3413 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3414 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3415 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3416 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3417 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3418 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3419 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3420 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3421 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3422 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3423 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3424 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3425 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3426 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3427 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3428 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3429 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3430 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3431 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3432 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3433 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3434 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3435 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3436 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3437 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3438 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3439 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3440 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3441 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3442 		.driver_data = NVME_QUIRK_BOGUS_NID |
3443 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3444 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3445 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3446 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3447 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3448 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3449 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3450 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3451 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3452 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3453 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3454 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3455 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3456 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3457 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3458 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3459 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3460 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3461 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3462 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3463 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3464 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3465 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3466 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3467 				NVME_QUIRK_128_BYTES_SQES |
3468 				NVME_QUIRK_SHARED_TAGS |
3469 				NVME_QUIRK_SKIP_CID_GEN |
3470 				NVME_QUIRK_IDENTIFY_CNS },
3471 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3472 	{ 0, }
3473 };
3474 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3475 
3476 static struct pci_driver nvme_driver = {
3477 	.name		= "nvme",
3478 	.id_table	= nvme_id_table,
3479 	.probe		= nvme_probe,
3480 	.remove		= nvme_remove,
3481 	.shutdown	= nvme_shutdown,
3482 	.driver		= {
3483 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3484 #ifdef CONFIG_PM_SLEEP
3485 		.pm		= &nvme_dev_pm_ops,
3486 #endif
3487 	},
3488 	.sriov_configure = pci_sriov_configure_simple,
3489 	.err_handler	= &nvme_err_handler,
3490 };
3491 
3492 static int __init nvme_init(void)
3493 {
3494 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3495 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3496 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3497 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3498 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3499 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3500 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3501 
3502 	return pci_register_driver(&nvme_driver);
3503 }
3504 
3505 static void __exit nvme_exit(void)
3506 {
3507 	pci_unregister_driver(&nvme_driver);
3508 	flush_workqueue(nvme_wq);
3509 }
3510 
3511 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3512 MODULE_LICENSE("GPL");
3513 MODULE_VERSION("1.0");
3514 module_init(nvme_init);
3515 module_exit(nvme_exit);
3516