xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 39f8e364)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/t10-pi.h>
22 #include <linux/types.h>
23 #include <linux/io-64-nonatomic-lo-hi.h>
24 #include <linux/sed-opal.h>
25 #include <linux/pci-p2pdma.h>
26 
27 #include "trace.h"
28 #include "nvme.h"
29 
30 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
31 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
32 
33 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
34 
35 /*
36  * These can be higher, but we need to ensure that any command doesn't
37  * require an sg allocation that needs more than a page of data.
38  */
39 #define NVME_MAX_KB_SZ	4096
40 #define NVME_MAX_SEGS	127
41 
42 static int use_threaded_interrupts;
43 module_param(use_threaded_interrupts, int, 0);
44 
45 static bool use_cmb_sqes = true;
46 module_param(use_cmb_sqes, bool, 0444);
47 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
48 
49 static unsigned int max_host_mem_size_mb = 128;
50 module_param(max_host_mem_size_mb, uint, 0444);
51 MODULE_PARM_DESC(max_host_mem_size_mb,
52 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
53 
54 static unsigned int sgl_threshold = SZ_32K;
55 module_param(sgl_threshold, uint, 0644);
56 MODULE_PARM_DESC(sgl_threshold,
57 		"Use SGLs when average request segment size is larger or equal to "
58 		"this size. Use 0 to disable SGLs.");
59 
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62 	.set = io_queue_depth_set,
63 	.get = param_get_int,
64 };
65 
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69 
70 static int queue_count_set(const char *val, const struct kernel_param *kp);
71 static const struct kernel_param_ops queue_count_ops = {
72 	.set = queue_count_set,
73 	.get = param_get_int,
74 };
75 
76 static int write_queues;
77 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
78 MODULE_PARM_DESC(write_queues,
79 	"Number of queues to use for writes. If not set, reads and writes "
80 	"will share a queue set.");
81 
82 static int poll_queues = 0;
83 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
84 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
85 
86 struct nvme_dev;
87 struct nvme_queue;
88 
89 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
90 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
91 
92 /*
93  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
94  */
95 struct nvme_dev {
96 	struct nvme_queue *queues;
97 	struct blk_mq_tag_set tagset;
98 	struct blk_mq_tag_set admin_tagset;
99 	u32 __iomem *dbs;
100 	struct device *dev;
101 	struct dma_pool *prp_page_pool;
102 	struct dma_pool *prp_small_pool;
103 	unsigned online_queues;
104 	unsigned max_qid;
105 	unsigned io_queues[HCTX_MAX_TYPES];
106 	unsigned int num_vecs;
107 	int q_depth;
108 	u32 db_stride;
109 	void __iomem *bar;
110 	unsigned long bar_mapped_size;
111 	struct work_struct remove_work;
112 	struct mutex shutdown_lock;
113 	bool subsystem;
114 	u64 cmb_size;
115 	bool cmb_use_sqes;
116 	u32 cmbsz;
117 	u32 cmbloc;
118 	struct nvme_ctrl ctrl;
119 
120 	mempool_t *iod_mempool;
121 
122 	/* shadow doorbell buffer support: */
123 	u32 *dbbuf_dbs;
124 	dma_addr_t dbbuf_dbs_dma_addr;
125 	u32 *dbbuf_eis;
126 	dma_addr_t dbbuf_eis_dma_addr;
127 
128 	/* host memory buffer support: */
129 	u64 host_mem_size;
130 	u32 nr_host_mem_descs;
131 	dma_addr_t host_mem_descs_dma;
132 	struct nvme_host_mem_buf_desc *host_mem_descs;
133 	void **host_mem_desc_bufs;
134 };
135 
136 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
137 {
138 	int n = 0, ret;
139 
140 	ret = kstrtoint(val, 10, &n);
141 	if (ret != 0 || n < 2)
142 		return -EINVAL;
143 
144 	return param_set_int(val, kp);
145 }
146 
147 static int queue_count_set(const char *val, const struct kernel_param *kp)
148 {
149 	int n = 0, ret;
150 
151 	ret = kstrtoint(val, 10, &n);
152 	if (ret)
153 		return ret;
154 	if (n > num_possible_cpus())
155 		n = num_possible_cpus();
156 
157 	return param_set_int(val, kp);
158 }
159 
160 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
161 {
162 	return qid * 2 * stride;
163 }
164 
165 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
166 {
167 	return (qid * 2 + 1) * stride;
168 }
169 
170 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
171 {
172 	return container_of(ctrl, struct nvme_dev, ctrl);
173 }
174 
175 /*
176  * An NVM Express queue.  Each device has at least two (one for admin
177  * commands and one for I/O commands).
178  */
179 struct nvme_queue {
180 	struct nvme_dev *dev;
181 	spinlock_t sq_lock;
182 	struct nvme_command *sq_cmds;
183 	 /* only used for poll queues: */
184 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
185 	volatile struct nvme_completion *cqes;
186 	struct blk_mq_tags **tags;
187 	dma_addr_t sq_dma_addr;
188 	dma_addr_t cq_dma_addr;
189 	u32 __iomem *q_db;
190 	u16 q_depth;
191 	u16 cq_vector;
192 	u16 sq_tail;
193 	u16 last_sq_tail;
194 	u16 cq_head;
195 	u16 last_cq_head;
196 	u16 qid;
197 	u8 cq_phase;
198 	unsigned long flags;
199 #define NVMEQ_ENABLED		0
200 #define NVMEQ_SQ_CMB		1
201 #define NVMEQ_DELETE_ERROR	2
202 #define NVMEQ_POLLED		3
203 	u32 *dbbuf_sq_db;
204 	u32 *dbbuf_cq_db;
205 	u32 *dbbuf_sq_ei;
206 	u32 *dbbuf_cq_ei;
207 	struct completion delete_done;
208 };
209 
210 /*
211  * The nvme_iod describes the data in an I/O, including the list of PRP
212  * entries.  You can't see it in this data structure because C doesn't let
213  * me express that.  Use nvme_init_iod to ensure there's enough space
214  * allocated to store the PRP list.
215  */
216 struct nvme_iod {
217 	struct nvme_request req;
218 	struct nvme_queue *nvmeq;
219 	bool use_sgl;
220 	int aborted;
221 	int npages;		/* In the PRP list. 0 means small pool in use */
222 	int nents;		/* Used in scatterlist */
223 	dma_addr_t first_dma;
224 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
225 	struct scatterlist *sg;
226 	struct scatterlist inline_sg[0];
227 };
228 
229 /*
230  * Check we didin't inadvertently grow the command struct
231  */
232 static inline void _nvme_check_size(void)
233 {
234 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
235 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
236 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
237 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
238 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
239 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
240 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
241 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
242 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
243 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
244 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
245 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
246 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
247 }
248 
249 static unsigned int max_io_queues(void)
250 {
251 	return num_possible_cpus() + write_queues + poll_queues;
252 }
253 
254 static unsigned int max_queue_count(void)
255 {
256 	/* IO queues + admin queue */
257 	return 1 + max_io_queues();
258 }
259 
260 static inline unsigned int nvme_dbbuf_size(u32 stride)
261 {
262 	return (max_queue_count() * 8 * stride);
263 }
264 
265 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
266 {
267 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
268 
269 	if (dev->dbbuf_dbs)
270 		return 0;
271 
272 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
273 					    &dev->dbbuf_dbs_dma_addr,
274 					    GFP_KERNEL);
275 	if (!dev->dbbuf_dbs)
276 		return -ENOMEM;
277 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
278 					    &dev->dbbuf_eis_dma_addr,
279 					    GFP_KERNEL);
280 	if (!dev->dbbuf_eis) {
281 		dma_free_coherent(dev->dev, mem_size,
282 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283 		dev->dbbuf_dbs = NULL;
284 		return -ENOMEM;
285 	}
286 
287 	return 0;
288 }
289 
290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
291 {
292 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
293 
294 	if (dev->dbbuf_dbs) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
297 		dev->dbbuf_dbs = NULL;
298 	}
299 	if (dev->dbbuf_eis) {
300 		dma_free_coherent(dev->dev, mem_size,
301 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
302 		dev->dbbuf_eis = NULL;
303 	}
304 }
305 
306 static void nvme_dbbuf_init(struct nvme_dev *dev,
307 			    struct nvme_queue *nvmeq, int qid)
308 {
309 	if (!dev->dbbuf_dbs || !qid)
310 		return;
311 
312 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
313 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
314 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
315 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
316 }
317 
318 static void nvme_dbbuf_set(struct nvme_dev *dev)
319 {
320 	struct nvme_command c;
321 
322 	if (!dev->dbbuf_dbs)
323 		return;
324 
325 	memset(&c, 0, sizeof(c));
326 	c.dbbuf.opcode = nvme_admin_dbbuf;
327 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
328 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
329 
330 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
331 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
332 		/* Free memory and continue on */
333 		nvme_dbbuf_dma_free(dev);
334 	}
335 }
336 
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341 
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344 					      volatile u32 *dbbuf_ei)
345 {
346 	if (dbbuf_db) {
347 		u16 old_value;
348 
349 		/*
350 		 * Ensure that the queue is written before updating
351 		 * the doorbell in memory
352 		 */
353 		wmb();
354 
355 		old_value = *dbbuf_db;
356 		*dbbuf_db = value;
357 
358 		/*
359 		 * Ensure that the doorbell is updated before reading the event
360 		 * index from memory.  The controller needs to provide similar
361 		 * ordering to ensure the envent index is updated before reading
362 		 * the doorbell.
363 		 */
364 		mb();
365 
366 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 			return false;
368 	}
369 
370 	return true;
371 }
372 
373 /*
374  * Max size of iod being embedded in the request payload
375  */
376 #define NVME_INT_PAGES		2
377 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
378 
379 /*
380  * Will slightly overestimate the number of pages needed.  This is OK
381  * as it only leads to a small amount of wasted memory for the lifetime of
382  * the I/O.
383  */
384 static int nvme_npages(unsigned size, struct nvme_dev *dev)
385 {
386 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
387 				      dev->ctrl.page_size);
388 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
389 }
390 
391 /*
392  * Calculates the number of pages needed for the SGL segments. For example a 4k
393  * page can accommodate 256 SGL descriptors.
394  */
395 static int nvme_pci_npages_sgl(unsigned int num_seg)
396 {
397 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
398 }
399 
400 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
401 		unsigned int size, unsigned int nseg, bool use_sgl)
402 {
403 	size_t alloc_size;
404 
405 	if (use_sgl)
406 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
407 	else
408 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
409 
410 	return alloc_size + sizeof(struct scatterlist) * nseg;
411 }
412 
413 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
414 {
415 	unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
416 				    NVME_INT_BYTES(dev), NVME_INT_PAGES,
417 				    use_sgl);
418 
419 	return sizeof(struct nvme_iod) + alloc_size;
420 }
421 
422 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
423 				unsigned int hctx_idx)
424 {
425 	struct nvme_dev *dev = data;
426 	struct nvme_queue *nvmeq = &dev->queues[0];
427 
428 	WARN_ON(hctx_idx != 0);
429 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
430 	WARN_ON(nvmeq->tags);
431 
432 	hctx->driver_data = nvmeq;
433 	nvmeq->tags = &dev->admin_tagset.tags[0];
434 	return 0;
435 }
436 
437 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
438 {
439 	struct nvme_queue *nvmeq = hctx->driver_data;
440 
441 	nvmeq->tags = NULL;
442 }
443 
444 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
445 			  unsigned int hctx_idx)
446 {
447 	struct nvme_dev *dev = data;
448 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
449 
450 	if (!nvmeq->tags)
451 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
452 
453 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
454 	hctx->driver_data = nvmeq;
455 	return 0;
456 }
457 
458 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
459 		unsigned int hctx_idx, unsigned int numa_node)
460 {
461 	struct nvme_dev *dev = set->driver_data;
462 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
463 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
464 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
465 
466 	BUG_ON(!nvmeq);
467 	iod->nvmeq = nvmeq;
468 
469 	nvme_req(req)->ctrl = &dev->ctrl;
470 	return 0;
471 }
472 
473 static int queue_irq_offset(struct nvme_dev *dev)
474 {
475 	/* if we have more than 1 vec, admin queue offsets us by 1 */
476 	if (dev->num_vecs > 1)
477 		return 1;
478 
479 	return 0;
480 }
481 
482 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
483 {
484 	struct nvme_dev *dev = set->driver_data;
485 	int i, qoff, offset;
486 
487 	offset = queue_irq_offset(dev);
488 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
489 		struct blk_mq_queue_map *map = &set->map[i];
490 
491 		map->nr_queues = dev->io_queues[i];
492 		if (!map->nr_queues) {
493 			BUG_ON(i == HCTX_TYPE_DEFAULT);
494 			continue;
495 		}
496 
497 		/*
498 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
499 		 * affinity), so use the regular blk-mq cpu mapping
500 		 */
501 		map->queue_offset = qoff;
502 		if (i != HCTX_TYPE_POLL)
503 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
504 		else
505 			blk_mq_map_queues(map);
506 		qoff += map->nr_queues;
507 		offset += map->nr_queues;
508 	}
509 
510 	return 0;
511 }
512 
513 /*
514  * Write sq tail if we are asked to, or if the next command would wrap.
515  */
516 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
517 {
518 	if (!write_sq) {
519 		u16 next_tail = nvmeq->sq_tail + 1;
520 
521 		if (next_tail == nvmeq->q_depth)
522 			next_tail = 0;
523 		if (next_tail != nvmeq->last_sq_tail)
524 			return;
525 	}
526 
527 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
528 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
529 		writel(nvmeq->sq_tail, nvmeq->q_db);
530 	nvmeq->last_sq_tail = nvmeq->sq_tail;
531 }
532 
533 /**
534  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
535  * @nvmeq: The queue to use
536  * @cmd: The command to send
537  * @write_sq: whether to write to the SQ doorbell
538  */
539 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
540 			    bool write_sq)
541 {
542 	spin_lock(&nvmeq->sq_lock);
543 	memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
544 	if (++nvmeq->sq_tail == nvmeq->q_depth)
545 		nvmeq->sq_tail = 0;
546 	nvme_write_sq_db(nvmeq, write_sq);
547 	spin_unlock(&nvmeq->sq_lock);
548 }
549 
550 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
551 {
552 	struct nvme_queue *nvmeq = hctx->driver_data;
553 
554 	spin_lock(&nvmeq->sq_lock);
555 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
556 		nvme_write_sq_db(nvmeq, true);
557 	spin_unlock(&nvmeq->sq_lock);
558 }
559 
560 static void **nvme_pci_iod_list(struct request *req)
561 {
562 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
563 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
564 }
565 
566 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
567 {
568 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569 	int nseg = blk_rq_nr_phys_segments(req);
570 	unsigned int avg_seg_size;
571 
572 	if (nseg == 0)
573 		return false;
574 
575 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
576 
577 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
578 		return false;
579 	if (!iod->nvmeq->qid)
580 		return false;
581 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
582 		return false;
583 	return true;
584 }
585 
586 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
587 {
588 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
589 	int nseg = blk_rq_nr_phys_segments(rq);
590 	unsigned int size = blk_rq_payload_bytes(rq);
591 
592 	iod->use_sgl = nvme_pci_use_sgls(dev, rq);
593 
594 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
595 		iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
596 		if (!iod->sg)
597 			return BLK_STS_RESOURCE;
598 	} else {
599 		iod->sg = iod->inline_sg;
600 	}
601 
602 	iod->aborted = 0;
603 	iod->npages = -1;
604 	iod->nents = 0;
605 
606 	return BLK_STS_OK;
607 }
608 
609 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
610 {
611 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
612 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
613 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
614 
615 	int i;
616 
617 	if (iod->npages == 0)
618 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
619 			dma_addr);
620 
621 	for (i = 0; i < iod->npages; i++) {
622 		void *addr = nvme_pci_iod_list(req)[i];
623 
624 		if (iod->use_sgl) {
625 			struct nvme_sgl_desc *sg_list = addr;
626 
627 			next_dma_addr =
628 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
629 		} else {
630 			__le64 *prp_list = addr;
631 
632 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
633 		}
634 
635 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
636 		dma_addr = next_dma_addr;
637 	}
638 
639 	if (iod->sg != iod->inline_sg)
640 		mempool_free(iod->sg, dev->iod_mempool);
641 }
642 
643 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
644 {
645 	int i;
646 	struct scatterlist *sg;
647 
648 	for_each_sg(sgl, sg, nents, i) {
649 		dma_addr_t phys = sg_phys(sg);
650 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
651 			"dma_address:%pad dma_length:%d\n",
652 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
653 			sg_dma_len(sg));
654 	}
655 }
656 
657 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
658 		struct request *req, struct nvme_rw_command *cmnd)
659 {
660 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
661 	struct dma_pool *pool;
662 	int length = blk_rq_payload_bytes(req);
663 	struct scatterlist *sg = iod->sg;
664 	int dma_len = sg_dma_len(sg);
665 	u64 dma_addr = sg_dma_address(sg);
666 	u32 page_size = dev->ctrl.page_size;
667 	int offset = dma_addr & (page_size - 1);
668 	__le64 *prp_list;
669 	void **list = nvme_pci_iod_list(req);
670 	dma_addr_t prp_dma;
671 	int nprps, i;
672 
673 	length -= (page_size - offset);
674 	if (length <= 0) {
675 		iod->first_dma = 0;
676 		goto done;
677 	}
678 
679 	dma_len -= (page_size - offset);
680 	if (dma_len) {
681 		dma_addr += (page_size - offset);
682 	} else {
683 		sg = sg_next(sg);
684 		dma_addr = sg_dma_address(sg);
685 		dma_len = sg_dma_len(sg);
686 	}
687 
688 	if (length <= page_size) {
689 		iod->first_dma = dma_addr;
690 		goto done;
691 	}
692 
693 	nprps = DIV_ROUND_UP(length, page_size);
694 	if (nprps <= (256 / 8)) {
695 		pool = dev->prp_small_pool;
696 		iod->npages = 0;
697 	} else {
698 		pool = dev->prp_page_pool;
699 		iod->npages = 1;
700 	}
701 
702 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
703 	if (!prp_list) {
704 		iod->first_dma = dma_addr;
705 		iod->npages = -1;
706 		return BLK_STS_RESOURCE;
707 	}
708 	list[0] = prp_list;
709 	iod->first_dma = prp_dma;
710 	i = 0;
711 	for (;;) {
712 		if (i == page_size >> 3) {
713 			__le64 *old_prp_list = prp_list;
714 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
715 			if (!prp_list)
716 				return BLK_STS_RESOURCE;
717 			list[iod->npages++] = prp_list;
718 			prp_list[0] = old_prp_list[i - 1];
719 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
720 			i = 1;
721 		}
722 		prp_list[i++] = cpu_to_le64(dma_addr);
723 		dma_len -= page_size;
724 		dma_addr += page_size;
725 		length -= page_size;
726 		if (length <= 0)
727 			break;
728 		if (dma_len > 0)
729 			continue;
730 		if (unlikely(dma_len < 0))
731 			goto bad_sgl;
732 		sg = sg_next(sg);
733 		dma_addr = sg_dma_address(sg);
734 		dma_len = sg_dma_len(sg);
735 	}
736 
737 done:
738 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
740 
741 	return BLK_STS_OK;
742 
743  bad_sgl:
744 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
745 			"Invalid SGL for payload:%d nents:%d\n",
746 			blk_rq_payload_bytes(req), iod->nents);
747 	return BLK_STS_IOERR;
748 }
749 
750 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
751 		struct scatterlist *sg)
752 {
753 	sge->addr = cpu_to_le64(sg_dma_address(sg));
754 	sge->length = cpu_to_le32(sg_dma_len(sg));
755 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
756 }
757 
758 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
759 		dma_addr_t dma_addr, int entries)
760 {
761 	sge->addr = cpu_to_le64(dma_addr);
762 	if (entries < SGES_PER_PAGE) {
763 		sge->length = cpu_to_le32(entries * sizeof(*sge));
764 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
765 	} else {
766 		sge->length = cpu_to_le32(PAGE_SIZE);
767 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
768 	}
769 }
770 
771 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
772 		struct request *req, struct nvme_rw_command *cmd, int entries)
773 {
774 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
775 	struct dma_pool *pool;
776 	struct nvme_sgl_desc *sg_list;
777 	struct scatterlist *sg = iod->sg;
778 	dma_addr_t sgl_dma;
779 	int i = 0;
780 
781 	/* setting the transfer type as SGL */
782 	cmd->flags = NVME_CMD_SGL_METABUF;
783 
784 	if (entries == 1) {
785 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
786 		return BLK_STS_OK;
787 	}
788 
789 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
790 		pool = dev->prp_small_pool;
791 		iod->npages = 0;
792 	} else {
793 		pool = dev->prp_page_pool;
794 		iod->npages = 1;
795 	}
796 
797 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
798 	if (!sg_list) {
799 		iod->npages = -1;
800 		return BLK_STS_RESOURCE;
801 	}
802 
803 	nvme_pci_iod_list(req)[0] = sg_list;
804 	iod->first_dma = sgl_dma;
805 
806 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
807 
808 	do {
809 		if (i == SGES_PER_PAGE) {
810 			struct nvme_sgl_desc *old_sg_desc = sg_list;
811 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
812 
813 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
814 			if (!sg_list)
815 				return BLK_STS_RESOURCE;
816 
817 			i = 0;
818 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
819 			sg_list[i++] = *link;
820 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
821 		}
822 
823 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
824 		sg = sg_next(sg);
825 	} while (--entries > 0);
826 
827 	return BLK_STS_OK;
828 }
829 
830 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
831 		struct nvme_command *cmnd)
832 {
833 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
834 	struct request_queue *q = req->q;
835 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
836 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
837 	blk_status_t ret = BLK_STS_IOERR;
838 	int nr_mapped;
839 
840 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
841 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
842 	if (!iod->nents)
843 		goto out;
844 
845 	ret = BLK_STS_RESOURCE;
846 
847 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
848 		nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
849 					  dma_dir);
850 	else
851 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
852 					     dma_dir,  DMA_ATTR_NO_WARN);
853 	if (!nr_mapped)
854 		goto out;
855 
856 	if (iod->use_sgl)
857 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
858 	else
859 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
860 
861 	if (ret != BLK_STS_OK)
862 		goto out_unmap;
863 
864 	ret = BLK_STS_IOERR;
865 	if (blk_integrity_rq(req)) {
866 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
867 			goto out_unmap;
868 
869 		sg_init_table(&iod->meta_sg, 1);
870 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
871 			goto out_unmap;
872 
873 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
874 			goto out_unmap;
875 
876 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
877 	}
878 
879 	return BLK_STS_OK;
880 
881 out_unmap:
882 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
883 out:
884 	return ret;
885 }
886 
887 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
888 {
889 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
890 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
891 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
892 
893 	if (iod->nents) {
894 		/* P2PDMA requests do not need to be unmapped */
895 		if (!is_pci_p2pdma_page(sg_page(iod->sg)))
896 			dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
897 
898 		if (blk_integrity_rq(req))
899 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
900 	}
901 
902 	nvme_cleanup_cmd(req);
903 	nvme_free_iod(dev, req);
904 }
905 
906 /*
907  * NOTE: ns is NULL when called on the admin queue.
908  */
909 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
910 			 const struct blk_mq_queue_data *bd)
911 {
912 	struct nvme_ns *ns = hctx->queue->queuedata;
913 	struct nvme_queue *nvmeq = hctx->driver_data;
914 	struct nvme_dev *dev = nvmeq->dev;
915 	struct request *req = bd->rq;
916 	struct nvme_command cmnd;
917 	blk_status_t ret;
918 
919 	/*
920 	 * We should not need to do this, but we're still using this to
921 	 * ensure we can drain requests on a dying queue.
922 	 */
923 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
924 		return BLK_STS_IOERR;
925 
926 	ret = nvme_setup_cmd(ns, req, &cmnd);
927 	if (ret)
928 		return ret;
929 
930 	ret = nvme_init_iod(req, dev);
931 	if (ret)
932 		goto out_free_cmd;
933 
934 	if (blk_rq_nr_phys_segments(req)) {
935 		ret = nvme_map_data(dev, req, &cmnd);
936 		if (ret)
937 			goto out_cleanup_iod;
938 	}
939 
940 	blk_mq_start_request(req);
941 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
942 	return BLK_STS_OK;
943 out_cleanup_iod:
944 	nvme_free_iod(dev, req);
945 out_free_cmd:
946 	nvme_cleanup_cmd(req);
947 	return ret;
948 }
949 
950 static void nvme_pci_complete_rq(struct request *req)
951 {
952 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
953 
954 	nvme_unmap_data(iod->nvmeq->dev, req);
955 	nvme_complete_rq(req);
956 }
957 
958 /* We read the CQE phase first to check if the rest of the entry is valid */
959 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
960 {
961 	return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
962 			nvmeq->cq_phase;
963 }
964 
965 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
966 {
967 	u16 head = nvmeq->cq_head;
968 
969 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
970 					      nvmeq->dbbuf_cq_ei))
971 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
972 }
973 
974 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
975 {
976 	volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
977 	struct request *req;
978 
979 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
980 		dev_warn(nvmeq->dev->ctrl.device,
981 			"invalid id %d completed on queue %d\n",
982 			cqe->command_id, le16_to_cpu(cqe->sq_id));
983 		return;
984 	}
985 
986 	/*
987 	 * AEN requests are special as they don't time out and can
988 	 * survive any kind of queue freeze and often don't respond to
989 	 * aborts.  We don't even bother to allocate a struct request
990 	 * for them but rather special case them here.
991 	 */
992 	if (unlikely(nvmeq->qid == 0 &&
993 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
994 		nvme_complete_async_event(&nvmeq->dev->ctrl,
995 				cqe->status, &cqe->result);
996 		return;
997 	}
998 
999 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1000 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1001 	nvme_end_request(req, cqe->status, cqe->result);
1002 }
1003 
1004 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1005 {
1006 	while (start != end) {
1007 		nvme_handle_cqe(nvmeq, start);
1008 		if (++start == nvmeq->q_depth)
1009 			start = 0;
1010 	}
1011 }
1012 
1013 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1014 {
1015 	if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1016 		nvmeq->cq_head = 0;
1017 		nvmeq->cq_phase = !nvmeq->cq_phase;
1018 	} else {
1019 		nvmeq->cq_head++;
1020 	}
1021 }
1022 
1023 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1024 				  u16 *end, unsigned int tag)
1025 {
1026 	int found = 0;
1027 
1028 	*start = nvmeq->cq_head;
1029 	while (nvme_cqe_pending(nvmeq)) {
1030 		if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1031 			found++;
1032 		nvme_update_cq_head(nvmeq);
1033 	}
1034 	*end = nvmeq->cq_head;
1035 
1036 	if (*start != *end)
1037 		nvme_ring_cq_doorbell(nvmeq);
1038 	return found;
1039 }
1040 
1041 static irqreturn_t nvme_irq(int irq, void *data)
1042 {
1043 	struct nvme_queue *nvmeq = data;
1044 	irqreturn_t ret = IRQ_NONE;
1045 	u16 start, end;
1046 
1047 	/*
1048 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1049 	 * the irq handler, even if that was on another CPU.
1050 	 */
1051 	rmb();
1052 	if (nvmeq->cq_head != nvmeq->last_cq_head)
1053 		ret = IRQ_HANDLED;
1054 	nvme_process_cq(nvmeq, &start, &end, -1);
1055 	nvmeq->last_cq_head = nvmeq->cq_head;
1056 	wmb();
1057 
1058 	if (start != end) {
1059 		nvme_complete_cqes(nvmeq, start, end);
1060 		return IRQ_HANDLED;
1061 	}
1062 
1063 	return ret;
1064 }
1065 
1066 static irqreturn_t nvme_irq_check(int irq, void *data)
1067 {
1068 	struct nvme_queue *nvmeq = data;
1069 	if (nvme_cqe_pending(nvmeq))
1070 		return IRQ_WAKE_THREAD;
1071 	return IRQ_NONE;
1072 }
1073 
1074 /*
1075  * Poll for completions any queue, including those not dedicated to polling.
1076  * Can be called from any context.
1077  */
1078 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1079 {
1080 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1081 	u16 start, end;
1082 	int found;
1083 
1084 	/*
1085 	 * For a poll queue we need to protect against the polling thread
1086 	 * using the CQ lock.  For normal interrupt driven threads we have
1087 	 * to disable the interrupt to avoid racing with it.
1088 	 */
1089 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1090 		spin_lock(&nvmeq->cq_poll_lock);
1091 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1092 		spin_unlock(&nvmeq->cq_poll_lock);
1093 	} else {
1094 		disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1095 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1096 		enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1097 	}
1098 
1099 	nvme_complete_cqes(nvmeq, start, end);
1100 	return found;
1101 }
1102 
1103 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1104 {
1105 	struct nvme_queue *nvmeq = hctx->driver_data;
1106 	u16 start, end;
1107 	bool found;
1108 
1109 	if (!nvme_cqe_pending(nvmeq))
1110 		return 0;
1111 
1112 	spin_lock(&nvmeq->cq_poll_lock);
1113 	found = nvme_process_cq(nvmeq, &start, &end, -1);
1114 	spin_unlock(&nvmeq->cq_poll_lock);
1115 
1116 	nvme_complete_cqes(nvmeq, start, end);
1117 	return found;
1118 }
1119 
1120 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1121 {
1122 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1123 	struct nvme_queue *nvmeq = &dev->queues[0];
1124 	struct nvme_command c;
1125 
1126 	memset(&c, 0, sizeof(c));
1127 	c.common.opcode = nvme_admin_async_event;
1128 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1129 	nvme_submit_cmd(nvmeq, &c, true);
1130 }
1131 
1132 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1133 {
1134 	struct nvme_command c;
1135 
1136 	memset(&c, 0, sizeof(c));
1137 	c.delete_queue.opcode = opcode;
1138 	c.delete_queue.qid = cpu_to_le16(id);
1139 
1140 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1141 }
1142 
1143 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1144 		struct nvme_queue *nvmeq, s16 vector)
1145 {
1146 	struct nvme_command c;
1147 	int flags = NVME_QUEUE_PHYS_CONTIG;
1148 
1149 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1150 		flags |= NVME_CQ_IRQ_ENABLED;
1151 
1152 	/*
1153 	 * Note: we (ab)use the fact that the prp fields survive if no data
1154 	 * is attached to the request.
1155 	 */
1156 	memset(&c, 0, sizeof(c));
1157 	c.create_cq.opcode = nvme_admin_create_cq;
1158 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1159 	c.create_cq.cqid = cpu_to_le16(qid);
1160 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1161 	c.create_cq.cq_flags = cpu_to_le16(flags);
1162 	c.create_cq.irq_vector = cpu_to_le16(vector);
1163 
1164 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1165 }
1166 
1167 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1168 						struct nvme_queue *nvmeq)
1169 {
1170 	struct nvme_ctrl *ctrl = &dev->ctrl;
1171 	struct nvme_command c;
1172 	int flags = NVME_QUEUE_PHYS_CONTIG;
1173 
1174 	/*
1175 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1176 	 * set. Since URGENT priority is zeroes, it makes all queues
1177 	 * URGENT.
1178 	 */
1179 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1180 		flags |= NVME_SQ_PRIO_MEDIUM;
1181 
1182 	/*
1183 	 * Note: we (ab)use the fact that the prp fields survive if no data
1184 	 * is attached to the request.
1185 	 */
1186 	memset(&c, 0, sizeof(c));
1187 	c.create_sq.opcode = nvme_admin_create_sq;
1188 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1189 	c.create_sq.sqid = cpu_to_le16(qid);
1190 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1191 	c.create_sq.sq_flags = cpu_to_le16(flags);
1192 	c.create_sq.cqid = cpu_to_le16(qid);
1193 
1194 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1195 }
1196 
1197 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1198 {
1199 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1200 }
1201 
1202 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1203 {
1204 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1205 }
1206 
1207 static void abort_endio(struct request *req, blk_status_t error)
1208 {
1209 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1210 	struct nvme_queue *nvmeq = iod->nvmeq;
1211 
1212 	dev_warn(nvmeq->dev->ctrl.device,
1213 		 "Abort status: 0x%x", nvme_req(req)->status);
1214 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1215 	blk_mq_free_request(req);
1216 }
1217 
1218 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1219 {
1220 
1221 	/* If true, indicates loss of adapter communication, possibly by a
1222 	 * NVMe Subsystem reset.
1223 	 */
1224 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1225 
1226 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1227 	switch (dev->ctrl.state) {
1228 	case NVME_CTRL_RESETTING:
1229 	case NVME_CTRL_CONNECTING:
1230 		return false;
1231 	default:
1232 		break;
1233 	}
1234 
1235 	/* We shouldn't reset unless the controller is on fatal error state
1236 	 * _or_ if we lost the communication with it.
1237 	 */
1238 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1239 		return false;
1240 
1241 	return true;
1242 }
1243 
1244 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1245 {
1246 	/* Read a config register to help see what died. */
1247 	u16 pci_status;
1248 	int result;
1249 
1250 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1251 				      &pci_status);
1252 	if (result == PCIBIOS_SUCCESSFUL)
1253 		dev_warn(dev->ctrl.device,
1254 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1255 			 csts, pci_status);
1256 	else
1257 		dev_warn(dev->ctrl.device,
1258 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1259 			 csts, result);
1260 }
1261 
1262 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1263 {
1264 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1265 	struct nvme_queue *nvmeq = iod->nvmeq;
1266 	struct nvme_dev *dev = nvmeq->dev;
1267 	struct request *abort_req;
1268 	struct nvme_command cmd;
1269 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1270 
1271 	/* If PCI error recovery process is happening, we cannot reset or
1272 	 * the recovery mechanism will surely fail.
1273 	 */
1274 	mb();
1275 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1276 		return BLK_EH_RESET_TIMER;
1277 
1278 	/*
1279 	 * Reset immediately if the controller is failed
1280 	 */
1281 	if (nvme_should_reset(dev, csts)) {
1282 		nvme_warn_reset(dev, csts);
1283 		nvme_dev_disable(dev, false);
1284 		nvme_reset_ctrl(&dev->ctrl);
1285 		return BLK_EH_DONE;
1286 	}
1287 
1288 	/*
1289 	 * Did we miss an interrupt?
1290 	 */
1291 	if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1292 		dev_warn(dev->ctrl.device,
1293 			 "I/O %d QID %d timeout, completion polled\n",
1294 			 req->tag, nvmeq->qid);
1295 		return BLK_EH_DONE;
1296 	}
1297 
1298 	/*
1299 	 * Shutdown immediately if controller times out while starting. The
1300 	 * reset work will see the pci device disabled when it gets the forced
1301 	 * cancellation error. All outstanding requests are completed on
1302 	 * shutdown, so we return BLK_EH_DONE.
1303 	 */
1304 	switch (dev->ctrl.state) {
1305 	case NVME_CTRL_CONNECTING:
1306 	case NVME_CTRL_RESETTING:
1307 		dev_warn_ratelimited(dev->ctrl.device,
1308 			 "I/O %d QID %d timeout, disable controller\n",
1309 			 req->tag, nvmeq->qid);
1310 		nvme_dev_disable(dev, false);
1311 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1312 		return BLK_EH_DONE;
1313 	default:
1314 		break;
1315 	}
1316 
1317 	/*
1318  	 * Shutdown the controller immediately and schedule a reset if the
1319  	 * command was already aborted once before and still hasn't been
1320  	 * returned to the driver, or if this is the admin queue.
1321 	 */
1322 	if (!nvmeq->qid || iod->aborted) {
1323 		dev_warn(dev->ctrl.device,
1324 			 "I/O %d QID %d timeout, reset controller\n",
1325 			 req->tag, nvmeq->qid);
1326 		nvme_dev_disable(dev, false);
1327 		nvme_reset_ctrl(&dev->ctrl);
1328 
1329 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1330 		return BLK_EH_DONE;
1331 	}
1332 
1333 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1334 		atomic_inc(&dev->ctrl.abort_limit);
1335 		return BLK_EH_RESET_TIMER;
1336 	}
1337 	iod->aborted = 1;
1338 
1339 	memset(&cmd, 0, sizeof(cmd));
1340 	cmd.abort.opcode = nvme_admin_abort_cmd;
1341 	cmd.abort.cid = req->tag;
1342 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1343 
1344 	dev_warn(nvmeq->dev->ctrl.device,
1345 		"I/O %d QID %d timeout, aborting\n",
1346 		 req->tag, nvmeq->qid);
1347 
1348 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1349 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1350 	if (IS_ERR(abort_req)) {
1351 		atomic_inc(&dev->ctrl.abort_limit);
1352 		return BLK_EH_RESET_TIMER;
1353 	}
1354 
1355 	abort_req->timeout = ADMIN_TIMEOUT;
1356 	abort_req->end_io_data = NULL;
1357 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1358 
1359 	/*
1360 	 * The aborted req will be completed on receiving the abort req.
1361 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1362 	 * as the device then is in a faulty state.
1363 	 */
1364 	return BLK_EH_RESET_TIMER;
1365 }
1366 
1367 static void nvme_free_queue(struct nvme_queue *nvmeq)
1368 {
1369 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth),
1370 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1371 	if (!nvmeq->sq_cmds)
1372 		return;
1373 
1374 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1375 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1376 				nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1377 	} else {
1378 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth),
1379 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1380 	}
1381 }
1382 
1383 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1384 {
1385 	int i;
1386 
1387 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1388 		dev->ctrl.queue_count--;
1389 		nvme_free_queue(&dev->queues[i]);
1390 	}
1391 }
1392 
1393 /**
1394  * nvme_suspend_queue - put queue into suspended state
1395  * @nvmeq: queue to suspend
1396  */
1397 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1398 {
1399 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1400 		return 1;
1401 
1402 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1403 	mb();
1404 
1405 	nvmeq->dev->online_queues--;
1406 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1407 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1408 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1409 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1410 	return 0;
1411 }
1412 
1413 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1414 {
1415 	int i;
1416 
1417 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1418 		nvme_suspend_queue(&dev->queues[i]);
1419 }
1420 
1421 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1422 {
1423 	struct nvme_queue *nvmeq = &dev->queues[0];
1424 
1425 	if (shutdown)
1426 		nvme_shutdown_ctrl(&dev->ctrl);
1427 	else
1428 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1429 
1430 	nvme_poll_irqdisable(nvmeq, -1);
1431 }
1432 
1433 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1434 				int entry_size)
1435 {
1436 	int q_depth = dev->q_depth;
1437 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1438 					  dev->ctrl.page_size);
1439 
1440 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1441 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1442 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1443 		q_depth = div_u64(mem_per_q, entry_size);
1444 
1445 		/*
1446 		 * Ensure the reduced q_depth is above some threshold where it
1447 		 * would be better to map queues in system memory with the
1448 		 * original depth
1449 		 */
1450 		if (q_depth < 64)
1451 			return -ENOMEM;
1452 	}
1453 
1454 	return q_depth;
1455 }
1456 
1457 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1458 				int qid, int depth)
1459 {
1460 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1461 
1462 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1463 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1464 		nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1465 						nvmeq->sq_cmds);
1466 		if (nvmeq->sq_dma_addr) {
1467 			set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1468 			return 0;
1469 		}
1470 	}
1471 
1472 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1473 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1474 	if (!nvmeq->sq_cmds)
1475 		return -ENOMEM;
1476 	return 0;
1477 }
1478 
1479 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1480 {
1481 	struct nvme_queue *nvmeq = &dev->queues[qid];
1482 
1483 	if (dev->ctrl.queue_count > qid)
1484 		return 0;
1485 
1486 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1487 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1488 	if (!nvmeq->cqes)
1489 		goto free_nvmeq;
1490 
1491 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1492 		goto free_cqdma;
1493 
1494 	nvmeq->dev = dev;
1495 	spin_lock_init(&nvmeq->sq_lock);
1496 	spin_lock_init(&nvmeq->cq_poll_lock);
1497 	nvmeq->cq_head = 0;
1498 	nvmeq->cq_phase = 1;
1499 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1500 	nvmeq->q_depth = depth;
1501 	nvmeq->qid = qid;
1502 	dev->ctrl.queue_count++;
1503 
1504 	return 0;
1505 
1506  free_cqdma:
1507 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1508 							nvmeq->cq_dma_addr);
1509  free_nvmeq:
1510 	return -ENOMEM;
1511 }
1512 
1513 static int queue_request_irq(struct nvme_queue *nvmeq)
1514 {
1515 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1516 	int nr = nvmeq->dev->ctrl.instance;
1517 
1518 	if (use_threaded_interrupts) {
1519 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1520 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1521 	} else {
1522 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1523 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1524 	}
1525 }
1526 
1527 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1528 {
1529 	struct nvme_dev *dev = nvmeq->dev;
1530 
1531 	nvmeq->sq_tail = 0;
1532 	nvmeq->last_sq_tail = 0;
1533 	nvmeq->cq_head = 0;
1534 	nvmeq->cq_phase = 1;
1535 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1536 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1537 	nvme_dbbuf_init(dev, nvmeq, qid);
1538 	dev->online_queues++;
1539 	wmb(); /* ensure the first interrupt sees the initialization */
1540 }
1541 
1542 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1543 {
1544 	struct nvme_dev *dev = nvmeq->dev;
1545 	int result;
1546 	u16 vector = 0;
1547 
1548 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1549 
1550 	/*
1551 	 * A queue's vector matches the queue identifier unless the controller
1552 	 * has only one vector available.
1553 	 */
1554 	if (!polled)
1555 		vector = dev->num_vecs == 1 ? 0 : qid;
1556 	else
1557 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1558 
1559 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1560 	if (result)
1561 		return result;
1562 
1563 	result = adapter_alloc_sq(dev, qid, nvmeq);
1564 	if (result < 0)
1565 		return result;
1566 	else if (result)
1567 		goto release_cq;
1568 
1569 	nvmeq->cq_vector = vector;
1570 	nvme_init_queue(nvmeq, qid);
1571 
1572 	if (!polled) {
1573 		nvmeq->cq_vector = vector;
1574 		result = queue_request_irq(nvmeq);
1575 		if (result < 0)
1576 			goto release_sq;
1577 	}
1578 
1579 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1580 	return result;
1581 
1582 release_sq:
1583 	dev->online_queues--;
1584 	adapter_delete_sq(dev, qid);
1585 release_cq:
1586 	adapter_delete_cq(dev, qid);
1587 	return result;
1588 }
1589 
1590 static const struct blk_mq_ops nvme_mq_admin_ops = {
1591 	.queue_rq	= nvme_queue_rq,
1592 	.complete	= nvme_pci_complete_rq,
1593 	.init_hctx	= nvme_admin_init_hctx,
1594 	.exit_hctx      = nvme_admin_exit_hctx,
1595 	.init_request	= nvme_init_request,
1596 	.timeout	= nvme_timeout,
1597 };
1598 
1599 static const struct blk_mq_ops nvme_mq_ops = {
1600 	.queue_rq	= nvme_queue_rq,
1601 	.complete	= nvme_pci_complete_rq,
1602 	.commit_rqs	= nvme_commit_rqs,
1603 	.init_hctx	= nvme_init_hctx,
1604 	.init_request	= nvme_init_request,
1605 	.map_queues	= nvme_pci_map_queues,
1606 	.timeout	= nvme_timeout,
1607 	.poll		= nvme_poll,
1608 };
1609 
1610 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1611 {
1612 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1613 		/*
1614 		 * If the controller was reset during removal, it's possible
1615 		 * user requests may be waiting on a stopped queue. Start the
1616 		 * queue to flush these to completion.
1617 		 */
1618 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1619 		blk_cleanup_queue(dev->ctrl.admin_q);
1620 		blk_mq_free_tag_set(&dev->admin_tagset);
1621 	}
1622 }
1623 
1624 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1625 {
1626 	if (!dev->ctrl.admin_q) {
1627 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1628 		dev->admin_tagset.nr_hw_queues = 1;
1629 
1630 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1631 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1632 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1633 		dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1634 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1635 		dev->admin_tagset.driver_data = dev;
1636 
1637 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1638 			return -ENOMEM;
1639 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1640 
1641 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1642 		if (IS_ERR(dev->ctrl.admin_q)) {
1643 			blk_mq_free_tag_set(&dev->admin_tagset);
1644 			return -ENOMEM;
1645 		}
1646 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1647 			nvme_dev_remove_admin(dev);
1648 			dev->ctrl.admin_q = NULL;
1649 			return -ENODEV;
1650 		}
1651 	} else
1652 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1653 
1654 	return 0;
1655 }
1656 
1657 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1658 {
1659 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1660 }
1661 
1662 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1663 {
1664 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1665 
1666 	if (size <= dev->bar_mapped_size)
1667 		return 0;
1668 	if (size > pci_resource_len(pdev, 0))
1669 		return -ENOMEM;
1670 	if (dev->bar)
1671 		iounmap(dev->bar);
1672 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1673 	if (!dev->bar) {
1674 		dev->bar_mapped_size = 0;
1675 		return -ENOMEM;
1676 	}
1677 	dev->bar_mapped_size = size;
1678 	dev->dbs = dev->bar + NVME_REG_DBS;
1679 
1680 	return 0;
1681 }
1682 
1683 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1684 {
1685 	int result;
1686 	u32 aqa;
1687 	struct nvme_queue *nvmeq;
1688 
1689 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1690 	if (result < 0)
1691 		return result;
1692 
1693 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1694 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1695 
1696 	if (dev->subsystem &&
1697 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1698 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1699 
1700 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1701 	if (result < 0)
1702 		return result;
1703 
1704 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1705 	if (result)
1706 		return result;
1707 
1708 	nvmeq = &dev->queues[0];
1709 	aqa = nvmeq->q_depth - 1;
1710 	aqa |= aqa << 16;
1711 
1712 	writel(aqa, dev->bar + NVME_REG_AQA);
1713 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1714 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1715 
1716 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1717 	if (result)
1718 		return result;
1719 
1720 	nvmeq->cq_vector = 0;
1721 	nvme_init_queue(nvmeq, 0);
1722 	result = queue_request_irq(nvmeq);
1723 	if (result) {
1724 		dev->online_queues--;
1725 		return result;
1726 	}
1727 
1728 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1729 	return result;
1730 }
1731 
1732 static int nvme_create_io_queues(struct nvme_dev *dev)
1733 {
1734 	unsigned i, max, rw_queues;
1735 	int ret = 0;
1736 
1737 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1738 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1739 			ret = -ENOMEM;
1740 			break;
1741 		}
1742 	}
1743 
1744 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1745 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1746 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1747 				dev->io_queues[HCTX_TYPE_READ];
1748 	} else {
1749 		rw_queues = max;
1750 	}
1751 
1752 	for (i = dev->online_queues; i <= max; i++) {
1753 		bool polled = i > rw_queues;
1754 
1755 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1756 		if (ret)
1757 			break;
1758 	}
1759 
1760 	/*
1761 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1762 	 * than the desired amount of queues, and even a controller without
1763 	 * I/O queues can still be used to issue admin commands.  This might
1764 	 * be useful to upgrade a buggy firmware for example.
1765 	 */
1766 	return ret >= 0 ? 0 : ret;
1767 }
1768 
1769 static ssize_t nvme_cmb_show(struct device *dev,
1770 			     struct device_attribute *attr,
1771 			     char *buf)
1772 {
1773 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1774 
1775 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1776 		       ndev->cmbloc, ndev->cmbsz);
1777 }
1778 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1779 
1780 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1781 {
1782 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1783 
1784 	return 1ULL << (12 + 4 * szu);
1785 }
1786 
1787 static u32 nvme_cmb_size(struct nvme_dev *dev)
1788 {
1789 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1790 }
1791 
1792 static void nvme_map_cmb(struct nvme_dev *dev)
1793 {
1794 	u64 size, offset;
1795 	resource_size_t bar_size;
1796 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1797 	int bar;
1798 
1799 	if (dev->cmb_size)
1800 		return;
1801 
1802 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1803 	if (!dev->cmbsz)
1804 		return;
1805 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1806 
1807 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1808 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1809 	bar = NVME_CMB_BIR(dev->cmbloc);
1810 	bar_size = pci_resource_len(pdev, bar);
1811 
1812 	if (offset > bar_size)
1813 		return;
1814 
1815 	/*
1816 	 * Controllers may support a CMB size larger than their BAR,
1817 	 * for example, due to being behind a bridge. Reduce the CMB to
1818 	 * the reported size of the BAR
1819 	 */
1820 	if (size > bar_size - offset)
1821 		size = bar_size - offset;
1822 
1823 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1824 		dev_warn(dev->ctrl.device,
1825 			 "failed to register the CMB\n");
1826 		return;
1827 	}
1828 
1829 	dev->cmb_size = size;
1830 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1831 
1832 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1833 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1834 		pci_p2pmem_publish(pdev, true);
1835 
1836 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1837 				    &dev_attr_cmb.attr, NULL))
1838 		dev_warn(dev->ctrl.device,
1839 			 "failed to add sysfs attribute for CMB\n");
1840 }
1841 
1842 static inline void nvme_release_cmb(struct nvme_dev *dev)
1843 {
1844 	if (dev->cmb_size) {
1845 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1846 					     &dev_attr_cmb.attr, NULL);
1847 		dev->cmb_size = 0;
1848 	}
1849 }
1850 
1851 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1852 {
1853 	u64 dma_addr = dev->host_mem_descs_dma;
1854 	struct nvme_command c;
1855 	int ret;
1856 
1857 	memset(&c, 0, sizeof(c));
1858 	c.features.opcode	= nvme_admin_set_features;
1859 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1860 	c.features.dword11	= cpu_to_le32(bits);
1861 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1862 					      ilog2(dev->ctrl.page_size));
1863 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1864 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1865 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1866 
1867 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1868 	if (ret) {
1869 		dev_warn(dev->ctrl.device,
1870 			 "failed to set host mem (err %d, flags %#x).\n",
1871 			 ret, bits);
1872 	}
1873 	return ret;
1874 }
1875 
1876 static void nvme_free_host_mem(struct nvme_dev *dev)
1877 {
1878 	int i;
1879 
1880 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1881 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1882 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1883 
1884 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1885 			       le64_to_cpu(desc->addr),
1886 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1887 	}
1888 
1889 	kfree(dev->host_mem_desc_bufs);
1890 	dev->host_mem_desc_bufs = NULL;
1891 	dma_free_coherent(dev->dev,
1892 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1893 			dev->host_mem_descs, dev->host_mem_descs_dma);
1894 	dev->host_mem_descs = NULL;
1895 	dev->nr_host_mem_descs = 0;
1896 }
1897 
1898 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1899 		u32 chunk_size)
1900 {
1901 	struct nvme_host_mem_buf_desc *descs;
1902 	u32 max_entries, len;
1903 	dma_addr_t descs_dma;
1904 	int i = 0;
1905 	void **bufs;
1906 	u64 size, tmp;
1907 
1908 	tmp = (preferred + chunk_size - 1);
1909 	do_div(tmp, chunk_size);
1910 	max_entries = tmp;
1911 
1912 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1913 		max_entries = dev->ctrl.hmmaxd;
1914 
1915 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1916 				   &descs_dma, GFP_KERNEL);
1917 	if (!descs)
1918 		goto out;
1919 
1920 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1921 	if (!bufs)
1922 		goto out_free_descs;
1923 
1924 	for (size = 0; size < preferred && i < max_entries; size += len) {
1925 		dma_addr_t dma_addr;
1926 
1927 		len = min_t(u64, chunk_size, preferred - size);
1928 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1929 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1930 		if (!bufs[i])
1931 			break;
1932 
1933 		descs[i].addr = cpu_to_le64(dma_addr);
1934 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1935 		i++;
1936 	}
1937 
1938 	if (!size)
1939 		goto out_free_bufs;
1940 
1941 	dev->nr_host_mem_descs = i;
1942 	dev->host_mem_size = size;
1943 	dev->host_mem_descs = descs;
1944 	dev->host_mem_descs_dma = descs_dma;
1945 	dev->host_mem_desc_bufs = bufs;
1946 	return 0;
1947 
1948 out_free_bufs:
1949 	while (--i >= 0) {
1950 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1951 
1952 		dma_free_attrs(dev->dev, size, bufs[i],
1953 			       le64_to_cpu(descs[i].addr),
1954 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1955 	}
1956 
1957 	kfree(bufs);
1958 out_free_descs:
1959 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1960 			descs_dma);
1961 out:
1962 	dev->host_mem_descs = NULL;
1963 	return -ENOMEM;
1964 }
1965 
1966 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1967 {
1968 	u32 chunk_size;
1969 
1970 	/* start big and work our way down */
1971 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1972 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1973 	     chunk_size /= 2) {
1974 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1975 			if (!min || dev->host_mem_size >= min)
1976 				return 0;
1977 			nvme_free_host_mem(dev);
1978 		}
1979 	}
1980 
1981 	return -ENOMEM;
1982 }
1983 
1984 static int nvme_setup_host_mem(struct nvme_dev *dev)
1985 {
1986 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1987 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1988 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1989 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1990 	int ret;
1991 
1992 	preferred = min(preferred, max);
1993 	if (min > max) {
1994 		dev_warn(dev->ctrl.device,
1995 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1996 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1997 		nvme_free_host_mem(dev);
1998 		return 0;
1999 	}
2000 
2001 	/*
2002 	 * If we already have a buffer allocated check if we can reuse it.
2003 	 */
2004 	if (dev->host_mem_descs) {
2005 		if (dev->host_mem_size >= min)
2006 			enable_bits |= NVME_HOST_MEM_RETURN;
2007 		else
2008 			nvme_free_host_mem(dev);
2009 	}
2010 
2011 	if (!dev->host_mem_descs) {
2012 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2013 			dev_warn(dev->ctrl.device,
2014 				"failed to allocate host memory buffer.\n");
2015 			return 0; /* controller must work without HMB */
2016 		}
2017 
2018 		dev_info(dev->ctrl.device,
2019 			"allocated %lld MiB host memory buffer.\n",
2020 			dev->host_mem_size >> ilog2(SZ_1M));
2021 	}
2022 
2023 	ret = nvme_set_host_mem(dev, enable_bits);
2024 	if (ret)
2025 		nvme_free_host_mem(dev);
2026 	return ret;
2027 }
2028 
2029 /*
2030  * nirqs is the number of interrupts available for write and read
2031  * queues. The core already reserved an interrupt for the admin queue.
2032  */
2033 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2034 {
2035 	struct nvme_dev *dev = affd->priv;
2036 	unsigned int nr_read_queues;
2037 
2038 	/*
2039 	 * If there is no interupt available for queues, ensure that
2040 	 * the default queue is set to 1. The affinity set size is
2041 	 * also set to one, but the irq core ignores it for this case.
2042 	 *
2043 	 * If only one interrupt is available or 'write_queue' == 0, combine
2044 	 * write and read queues.
2045 	 *
2046 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2047 	 * queue.
2048 	 */
2049 	if (!nrirqs) {
2050 		nrirqs = 1;
2051 		nr_read_queues = 0;
2052 	} else if (nrirqs == 1 || !write_queues) {
2053 		nr_read_queues = 0;
2054 	} else if (write_queues >= nrirqs) {
2055 		nr_read_queues = 1;
2056 	} else {
2057 		nr_read_queues = nrirqs - write_queues;
2058 	}
2059 
2060 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2061 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2062 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2063 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2064 	affd->nr_sets = nr_read_queues ? 2 : 1;
2065 }
2066 
2067 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2068 {
2069 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2070 	struct irq_affinity affd = {
2071 		.pre_vectors	= 1,
2072 		.calc_sets	= nvme_calc_irq_sets,
2073 		.priv		= dev,
2074 	};
2075 	unsigned int irq_queues, this_p_queues;
2076 
2077 	/*
2078 	 * Poll queues don't need interrupts, but we need at least one IO
2079 	 * queue left over for non-polled IO.
2080 	 */
2081 	this_p_queues = poll_queues;
2082 	if (this_p_queues >= nr_io_queues) {
2083 		this_p_queues = nr_io_queues - 1;
2084 		irq_queues = 1;
2085 	} else {
2086 		irq_queues = nr_io_queues - this_p_queues + 1;
2087 	}
2088 	dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2089 
2090 	/* Initialize for the single interrupt case */
2091 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2092 	dev->io_queues[HCTX_TYPE_READ] = 0;
2093 
2094 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2095 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2096 }
2097 
2098 static void nvme_disable_io_queues(struct nvme_dev *dev)
2099 {
2100 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2101 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2102 }
2103 
2104 static int nvme_setup_io_queues(struct nvme_dev *dev)
2105 {
2106 	struct nvme_queue *adminq = &dev->queues[0];
2107 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2108 	int result, nr_io_queues;
2109 	unsigned long size;
2110 
2111 	nr_io_queues = max_io_queues();
2112 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2113 	if (result < 0)
2114 		return result;
2115 
2116 	if (nr_io_queues == 0)
2117 		return 0;
2118 
2119 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2120 
2121 	if (dev->cmb_use_sqes) {
2122 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2123 				sizeof(struct nvme_command));
2124 		if (result > 0)
2125 			dev->q_depth = result;
2126 		else
2127 			dev->cmb_use_sqes = false;
2128 	}
2129 
2130 	do {
2131 		size = db_bar_size(dev, nr_io_queues);
2132 		result = nvme_remap_bar(dev, size);
2133 		if (!result)
2134 			break;
2135 		if (!--nr_io_queues)
2136 			return -ENOMEM;
2137 	} while (1);
2138 	adminq->q_db = dev->dbs;
2139 
2140  retry:
2141 	/* Deregister the admin queue's interrupt */
2142 	pci_free_irq(pdev, 0, adminq);
2143 
2144 	/*
2145 	 * If we enable msix early due to not intx, disable it again before
2146 	 * setting up the full range we need.
2147 	 */
2148 	pci_free_irq_vectors(pdev);
2149 
2150 	result = nvme_setup_irqs(dev, nr_io_queues);
2151 	if (result <= 0)
2152 		return -EIO;
2153 
2154 	dev->num_vecs = result;
2155 	result = max(result - 1, 1);
2156 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2157 
2158 	/*
2159 	 * Should investigate if there's a performance win from allocating
2160 	 * more queues than interrupt vectors; it might allow the submission
2161 	 * path to scale better, even if the receive path is limited by the
2162 	 * number of interrupts.
2163 	 */
2164 	result = queue_request_irq(adminq);
2165 	if (result)
2166 		return result;
2167 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2168 
2169 	result = nvme_create_io_queues(dev);
2170 	if (result || dev->online_queues < 2)
2171 		return result;
2172 
2173 	if (dev->online_queues - 1 < dev->max_qid) {
2174 		nr_io_queues = dev->online_queues - 1;
2175 		nvme_disable_io_queues(dev);
2176 		nvme_suspend_io_queues(dev);
2177 		goto retry;
2178 	}
2179 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2180 					dev->io_queues[HCTX_TYPE_DEFAULT],
2181 					dev->io_queues[HCTX_TYPE_READ],
2182 					dev->io_queues[HCTX_TYPE_POLL]);
2183 	return 0;
2184 }
2185 
2186 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2187 {
2188 	struct nvme_queue *nvmeq = req->end_io_data;
2189 
2190 	blk_mq_free_request(req);
2191 	complete(&nvmeq->delete_done);
2192 }
2193 
2194 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2195 {
2196 	struct nvme_queue *nvmeq = req->end_io_data;
2197 
2198 	if (error)
2199 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2200 
2201 	nvme_del_queue_end(req, error);
2202 }
2203 
2204 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2205 {
2206 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2207 	struct request *req;
2208 	struct nvme_command cmd;
2209 
2210 	memset(&cmd, 0, sizeof(cmd));
2211 	cmd.delete_queue.opcode = opcode;
2212 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2213 
2214 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2215 	if (IS_ERR(req))
2216 		return PTR_ERR(req);
2217 
2218 	req->timeout = ADMIN_TIMEOUT;
2219 	req->end_io_data = nvmeq;
2220 
2221 	init_completion(&nvmeq->delete_done);
2222 	blk_execute_rq_nowait(q, NULL, req, false,
2223 			opcode == nvme_admin_delete_cq ?
2224 				nvme_del_cq_end : nvme_del_queue_end);
2225 	return 0;
2226 }
2227 
2228 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2229 {
2230 	int nr_queues = dev->online_queues - 1, sent = 0;
2231 	unsigned long timeout;
2232 
2233  retry:
2234 	timeout = ADMIN_TIMEOUT;
2235 	while (nr_queues > 0) {
2236 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2237 			break;
2238 		nr_queues--;
2239 		sent++;
2240 	}
2241 	while (sent) {
2242 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2243 
2244 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2245 				timeout);
2246 		if (timeout == 0)
2247 			return false;
2248 
2249 		/* handle any remaining CQEs */
2250 		if (opcode == nvme_admin_delete_cq &&
2251 		    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2252 			nvme_poll_irqdisable(nvmeq, -1);
2253 
2254 		sent--;
2255 		if (nr_queues)
2256 			goto retry;
2257 	}
2258 	return true;
2259 }
2260 
2261 /*
2262  * return error value only when tagset allocation failed
2263  */
2264 static int nvme_dev_add(struct nvme_dev *dev)
2265 {
2266 	int ret;
2267 
2268 	if (!dev->ctrl.tagset) {
2269 		dev->tagset.ops = &nvme_mq_ops;
2270 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2271 		dev->tagset.nr_maps = 2; /* default + read */
2272 		if (dev->io_queues[HCTX_TYPE_POLL])
2273 			dev->tagset.nr_maps++;
2274 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2275 		dev->tagset.numa_node = dev_to_node(dev->dev);
2276 		dev->tagset.queue_depth =
2277 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2278 		dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2279 		if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2280 			dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2281 					nvme_pci_cmd_size(dev, true));
2282 		}
2283 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2284 		dev->tagset.driver_data = dev;
2285 
2286 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2287 		if (ret) {
2288 			dev_warn(dev->ctrl.device,
2289 				"IO queues tagset allocation failed %d\n", ret);
2290 			return ret;
2291 		}
2292 		dev->ctrl.tagset = &dev->tagset;
2293 
2294 		nvme_dbbuf_set(dev);
2295 	} else {
2296 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2297 
2298 		/* Free previously allocated queues that are no longer usable */
2299 		nvme_free_queues(dev, dev->online_queues);
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static int nvme_pci_enable(struct nvme_dev *dev)
2306 {
2307 	int result = -ENOMEM;
2308 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2309 
2310 	if (pci_enable_device_mem(pdev))
2311 		return result;
2312 
2313 	pci_set_master(pdev);
2314 
2315 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2316 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2317 		goto disable;
2318 
2319 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2320 		result = -ENODEV;
2321 		goto disable;
2322 	}
2323 
2324 	/*
2325 	 * Some devices and/or platforms don't advertise or work with INTx
2326 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2327 	 * adjust this later.
2328 	 */
2329 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2330 	if (result < 0)
2331 		return result;
2332 
2333 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2334 
2335 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2336 				io_queue_depth);
2337 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2338 	dev->dbs = dev->bar + 4096;
2339 
2340 	/*
2341 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2342 	 * some MacBook7,1 to avoid controller resets and data loss.
2343 	 */
2344 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2345 		dev->q_depth = 2;
2346 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2347 			"set queue depth=%u to work around controller resets\n",
2348 			dev->q_depth);
2349 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2350 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2351 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2352 		dev->q_depth = 64;
2353 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2354                         "set queue depth=%u\n", dev->q_depth);
2355 	}
2356 
2357 	nvme_map_cmb(dev);
2358 
2359 	pci_enable_pcie_error_reporting(pdev);
2360 	pci_save_state(pdev);
2361 	return 0;
2362 
2363  disable:
2364 	pci_disable_device(pdev);
2365 	return result;
2366 }
2367 
2368 static void nvme_dev_unmap(struct nvme_dev *dev)
2369 {
2370 	if (dev->bar)
2371 		iounmap(dev->bar);
2372 	pci_release_mem_regions(to_pci_dev(dev->dev));
2373 }
2374 
2375 static void nvme_pci_disable(struct nvme_dev *dev)
2376 {
2377 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2378 
2379 	pci_free_irq_vectors(pdev);
2380 
2381 	if (pci_is_enabled(pdev)) {
2382 		pci_disable_pcie_error_reporting(pdev);
2383 		pci_disable_device(pdev);
2384 	}
2385 }
2386 
2387 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2388 {
2389 	bool dead = true;
2390 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2391 
2392 	mutex_lock(&dev->shutdown_lock);
2393 	if (pci_is_enabled(pdev)) {
2394 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2395 
2396 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2397 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2398 			nvme_start_freeze(&dev->ctrl);
2399 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2400 			pdev->error_state  != pci_channel_io_normal);
2401 	}
2402 
2403 	/*
2404 	 * Give the controller a chance to complete all entered requests if
2405 	 * doing a safe shutdown.
2406 	 */
2407 	if (!dead) {
2408 		if (shutdown)
2409 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2410 	}
2411 
2412 	nvme_stop_queues(&dev->ctrl);
2413 
2414 	if (!dead && dev->ctrl.queue_count > 0) {
2415 		nvme_disable_io_queues(dev);
2416 		nvme_disable_admin_queue(dev, shutdown);
2417 	}
2418 	nvme_suspend_io_queues(dev);
2419 	nvme_suspend_queue(&dev->queues[0]);
2420 	nvme_pci_disable(dev);
2421 
2422 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2423 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2424 
2425 	/*
2426 	 * The driver will not be starting up queues again if shutting down so
2427 	 * must flush all entered requests to their failed completion to avoid
2428 	 * deadlocking blk-mq hot-cpu notifier.
2429 	 */
2430 	if (shutdown)
2431 		nvme_start_queues(&dev->ctrl);
2432 	mutex_unlock(&dev->shutdown_lock);
2433 }
2434 
2435 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2436 {
2437 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2438 						PAGE_SIZE, PAGE_SIZE, 0);
2439 	if (!dev->prp_page_pool)
2440 		return -ENOMEM;
2441 
2442 	/* Optimisation for I/Os between 4k and 128k */
2443 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2444 						256, 256, 0);
2445 	if (!dev->prp_small_pool) {
2446 		dma_pool_destroy(dev->prp_page_pool);
2447 		return -ENOMEM;
2448 	}
2449 	return 0;
2450 }
2451 
2452 static void nvme_release_prp_pools(struct nvme_dev *dev)
2453 {
2454 	dma_pool_destroy(dev->prp_page_pool);
2455 	dma_pool_destroy(dev->prp_small_pool);
2456 }
2457 
2458 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2459 {
2460 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2461 
2462 	nvme_dbbuf_dma_free(dev);
2463 	put_device(dev->dev);
2464 	if (dev->tagset.tags)
2465 		blk_mq_free_tag_set(&dev->tagset);
2466 	if (dev->ctrl.admin_q)
2467 		blk_put_queue(dev->ctrl.admin_q);
2468 	kfree(dev->queues);
2469 	free_opal_dev(dev->ctrl.opal_dev);
2470 	mempool_destroy(dev->iod_mempool);
2471 	kfree(dev);
2472 }
2473 
2474 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2475 {
2476 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2477 
2478 	nvme_get_ctrl(&dev->ctrl);
2479 	nvme_dev_disable(dev, false);
2480 	nvme_kill_queues(&dev->ctrl);
2481 	if (!queue_work(nvme_wq, &dev->remove_work))
2482 		nvme_put_ctrl(&dev->ctrl);
2483 }
2484 
2485 static void nvme_reset_work(struct work_struct *work)
2486 {
2487 	struct nvme_dev *dev =
2488 		container_of(work, struct nvme_dev, ctrl.reset_work);
2489 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2490 	int result = -ENODEV;
2491 	enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2492 
2493 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2494 		goto out;
2495 
2496 	/*
2497 	 * If we're called to reset a live controller first shut it down before
2498 	 * moving on.
2499 	 */
2500 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2501 		nvme_dev_disable(dev, false);
2502 
2503 	mutex_lock(&dev->shutdown_lock);
2504 	result = nvme_pci_enable(dev);
2505 	if (result)
2506 		goto out_unlock;
2507 
2508 	result = nvme_pci_configure_admin_queue(dev);
2509 	if (result)
2510 		goto out_unlock;
2511 
2512 	result = nvme_alloc_admin_tags(dev);
2513 	if (result)
2514 		goto out_unlock;
2515 
2516 	/*
2517 	 * Limit the max command size to prevent iod->sg allocations going
2518 	 * over a single page.
2519 	 */
2520 	dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2521 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2522 	mutex_unlock(&dev->shutdown_lock);
2523 
2524 	/*
2525 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2526 	 * initializing procedure here.
2527 	 */
2528 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2529 		dev_warn(dev->ctrl.device,
2530 			"failed to mark controller CONNECTING\n");
2531 		goto out;
2532 	}
2533 
2534 	result = nvme_init_identify(&dev->ctrl);
2535 	if (result)
2536 		goto out;
2537 
2538 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2539 		if (!dev->ctrl.opal_dev)
2540 			dev->ctrl.opal_dev =
2541 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2542 		else if (was_suspend)
2543 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2544 	} else {
2545 		free_opal_dev(dev->ctrl.opal_dev);
2546 		dev->ctrl.opal_dev = NULL;
2547 	}
2548 
2549 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2550 		result = nvme_dbbuf_dma_alloc(dev);
2551 		if (result)
2552 			dev_warn(dev->dev,
2553 				 "unable to allocate dma for dbbuf\n");
2554 	}
2555 
2556 	if (dev->ctrl.hmpre) {
2557 		result = nvme_setup_host_mem(dev);
2558 		if (result < 0)
2559 			goto out;
2560 	}
2561 
2562 	result = nvme_setup_io_queues(dev);
2563 	if (result)
2564 		goto out;
2565 
2566 	/*
2567 	 * Keep the controller around but remove all namespaces if we don't have
2568 	 * any working I/O queue.
2569 	 */
2570 	if (dev->online_queues < 2) {
2571 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2572 		nvme_kill_queues(&dev->ctrl);
2573 		nvme_remove_namespaces(&dev->ctrl);
2574 		new_state = NVME_CTRL_ADMIN_ONLY;
2575 	} else {
2576 		nvme_start_queues(&dev->ctrl);
2577 		nvme_wait_freeze(&dev->ctrl);
2578 		/* hit this only when allocate tagset fails */
2579 		if (nvme_dev_add(dev))
2580 			new_state = NVME_CTRL_ADMIN_ONLY;
2581 		nvme_unfreeze(&dev->ctrl);
2582 	}
2583 
2584 	/*
2585 	 * If only admin queue live, keep it to do further investigation or
2586 	 * recovery.
2587 	 */
2588 	if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2589 		dev_warn(dev->ctrl.device,
2590 			"failed to mark controller state %d\n", new_state);
2591 		goto out;
2592 	}
2593 
2594 	nvme_start_ctrl(&dev->ctrl);
2595 	return;
2596 
2597  out_unlock:
2598 	mutex_unlock(&dev->shutdown_lock);
2599  out:
2600 	nvme_remove_dead_ctrl(dev, result);
2601 }
2602 
2603 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2604 {
2605 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2606 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2607 
2608 	if (pci_get_drvdata(pdev))
2609 		device_release_driver(&pdev->dev);
2610 	nvme_put_ctrl(&dev->ctrl);
2611 }
2612 
2613 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2614 {
2615 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2616 	return 0;
2617 }
2618 
2619 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2620 {
2621 	writel(val, to_nvme_dev(ctrl)->bar + off);
2622 	return 0;
2623 }
2624 
2625 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2626 {
2627 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2628 	return 0;
2629 }
2630 
2631 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2632 {
2633 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2634 
2635 	return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2636 }
2637 
2638 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2639 	.name			= "pcie",
2640 	.module			= THIS_MODULE,
2641 	.flags			= NVME_F_METADATA_SUPPORTED |
2642 				  NVME_F_PCI_P2PDMA,
2643 	.reg_read32		= nvme_pci_reg_read32,
2644 	.reg_write32		= nvme_pci_reg_write32,
2645 	.reg_read64		= nvme_pci_reg_read64,
2646 	.free_ctrl		= nvme_pci_free_ctrl,
2647 	.submit_async_event	= nvme_pci_submit_async_event,
2648 	.get_address		= nvme_pci_get_address,
2649 };
2650 
2651 static int nvme_dev_map(struct nvme_dev *dev)
2652 {
2653 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2654 
2655 	if (pci_request_mem_regions(pdev, "nvme"))
2656 		return -ENODEV;
2657 
2658 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2659 		goto release;
2660 
2661 	return 0;
2662   release:
2663 	pci_release_mem_regions(pdev);
2664 	return -ENODEV;
2665 }
2666 
2667 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2668 {
2669 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2670 		/*
2671 		 * Several Samsung devices seem to drop off the PCIe bus
2672 		 * randomly when APST is on and uses the deepest sleep state.
2673 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2674 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2675 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2676 		 * laptops.
2677 		 */
2678 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2679 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2680 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2681 			return NVME_QUIRK_NO_DEEPEST_PS;
2682 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2683 		/*
2684 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2685 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2686 		 * within few minutes after bootup on a Coffee Lake board -
2687 		 * ASUS PRIME Z370-A
2688 		 */
2689 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2690 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2691 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2692 			return NVME_QUIRK_NO_APST;
2693 	}
2694 
2695 	return 0;
2696 }
2697 
2698 static void nvme_async_probe(void *data, async_cookie_t cookie)
2699 {
2700 	struct nvme_dev *dev = data;
2701 
2702 	nvme_reset_ctrl_sync(&dev->ctrl);
2703 	flush_work(&dev->ctrl.scan_work);
2704 	nvme_put_ctrl(&dev->ctrl);
2705 }
2706 
2707 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2708 {
2709 	int node, result = -ENOMEM;
2710 	struct nvme_dev *dev;
2711 	unsigned long quirks = id->driver_data;
2712 	size_t alloc_size;
2713 
2714 	node = dev_to_node(&pdev->dev);
2715 	if (node == NUMA_NO_NODE)
2716 		set_dev_node(&pdev->dev, first_memory_node);
2717 
2718 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2719 	if (!dev)
2720 		return -ENOMEM;
2721 
2722 	dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2723 					GFP_KERNEL, node);
2724 	if (!dev->queues)
2725 		goto free;
2726 
2727 	dev->dev = get_device(&pdev->dev);
2728 	pci_set_drvdata(pdev, dev);
2729 
2730 	result = nvme_dev_map(dev);
2731 	if (result)
2732 		goto put_pci;
2733 
2734 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2735 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2736 	mutex_init(&dev->shutdown_lock);
2737 
2738 	result = nvme_setup_prp_pools(dev);
2739 	if (result)
2740 		goto unmap;
2741 
2742 	quirks |= check_vendor_combination_bug(pdev);
2743 
2744 	/*
2745 	 * Double check that our mempool alloc size will cover the biggest
2746 	 * command we support.
2747 	 */
2748 	alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2749 						NVME_MAX_SEGS, true);
2750 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2751 
2752 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2753 						mempool_kfree,
2754 						(void *) alloc_size,
2755 						GFP_KERNEL, node);
2756 	if (!dev->iod_mempool) {
2757 		result = -ENOMEM;
2758 		goto release_pools;
2759 	}
2760 
2761 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2762 			quirks);
2763 	if (result)
2764 		goto release_mempool;
2765 
2766 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2767 
2768 	nvme_get_ctrl(&dev->ctrl);
2769 	async_schedule(nvme_async_probe, dev);
2770 
2771 	return 0;
2772 
2773  release_mempool:
2774 	mempool_destroy(dev->iod_mempool);
2775  release_pools:
2776 	nvme_release_prp_pools(dev);
2777  unmap:
2778 	nvme_dev_unmap(dev);
2779  put_pci:
2780 	put_device(dev->dev);
2781  free:
2782 	kfree(dev->queues);
2783 	kfree(dev);
2784 	return result;
2785 }
2786 
2787 static void nvme_reset_prepare(struct pci_dev *pdev)
2788 {
2789 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2790 	nvme_dev_disable(dev, false);
2791 }
2792 
2793 static void nvme_reset_done(struct pci_dev *pdev)
2794 {
2795 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2796 	nvme_reset_ctrl_sync(&dev->ctrl);
2797 }
2798 
2799 static void nvme_shutdown(struct pci_dev *pdev)
2800 {
2801 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2802 	nvme_dev_disable(dev, true);
2803 }
2804 
2805 /*
2806  * The driver's remove may be called on a device in a partially initialized
2807  * state. This function must not have any dependencies on the device state in
2808  * order to proceed.
2809  */
2810 static void nvme_remove(struct pci_dev *pdev)
2811 {
2812 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2813 
2814 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2815 	pci_set_drvdata(pdev, NULL);
2816 
2817 	if (!pci_device_is_present(pdev)) {
2818 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2819 		nvme_dev_disable(dev, true);
2820 		nvme_dev_remove_admin(dev);
2821 	}
2822 
2823 	flush_work(&dev->ctrl.reset_work);
2824 	nvme_stop_ctrl(&dev->ctrl);
2825 	nvme_remove_namespaces(&dev->ctrl);
2826 	nvme_dev_disable(dev, true);
2827 	nvme_release_cmb(dev);
2828 	nvme_free_host_mem(dev);
2829 	nvme_dev_remove_admin(dev);
2830 	nvme_free_queues(dev, 0);
2831 	nvme_uninit_ctrl(&dev->ctrl);
2832 	nvme_release_prp_pools(dev);
2833 	nvme_dev_unmap(dev);
2834 	nvme_put_ctrl(&dev->ctrl);
2835 }
2836 
2837 #ifdef CONFIG_PM_SLEEP
2838 static int nvme_suspend(struct device *dev)
2839 {
2840 	struct pci_dev *pdev = to_pci_dev(dev);
2841 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2842 
2843 	nvme_dev_disable(ndev, true);
2844 	return 0;
2845 }
2846 
2847 static int nvme_resume(struct device *dev)
2848 {
2849 	struct pci_dev *pdev = to_pci_dev(dev);
2850 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2851 
2852 	nvme_reset_ctrl(&ndev->ctrl);
2853 	return 0;
2854 }
2855 #endif
2856 
2857 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2858 
2859 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2860 						pci_channel_state_t state)
2861 {
2862 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2863 
2864 	/*
2865 	 * A frozen channel requires a reset. When detected, this method will
2866 	 * shutdown the controller to quiesce. The controller will be restarted
2867 	 * after the slot reset through driver's slot_reset callback.
2868 	 */
2869 	switch (state) {
2870 	case pci_channel_io_normal:
2871 		return PCI_ERS_RESULT_CAN_RECOVER;
2872 	case pci_channel_io_frozen:
2873 		dev_warn(dev->ctrl.device,
2874 			"frozen state error detected, reset controller\n");
2875 		nvme_dev_disable(dev, false);
2876 		return PCI_ERS_RESULT_NEED_RESET;
2877 	case pci_channel_io_perm_failure:
2878 		dev_warn(dev->ctrl.device,
2879 			"failure state error detected, request disconnect\n");
2880 		return PCI_ERS_RESULT_DISCONNECT;
2881 	}
2882 	return PCI_ERS_RESULT_NEED_RESET;
2883 }
2884 
2885 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2886 {
2887 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2888 
2889 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2890 	pci_restore_state(pdev);
2891 	nvme_reset_ctrl(&dev->ctrl);
2892 	return PCI_ERS_RESULT_RECOVERED;
2893 }
2894 
2895 static void nvme_error_resume(struct pci_dev *pdev)
2896 {
2897 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2898 
2899 	flush_work(&dev->ctrl.reset_work);
2900 }
2901 
2902 static const struct pci_error_handlers nvme_err_handler = {
2903 	.error_detected	= nvme_error_detected,
2904 	.slot_reset	= nvme_slot_reset,
2905 	.resume		= nvme_error_resume,
2906 	.reset_prepare	= nvme_reset_prepare,
2907 	.reset_done	= nvme_reset_done,
2908 };
2909 
2910 static const struct pci_device_id nvme_id_table[] = {
2911 	{ PCI_VDEVICE(INTEL, 0x0953),
2912 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2913 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2914 	{ PCI_VDEVICE(INTEL, 0x0a53),
2915 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2916 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2917 	{ PCI_VDEVICE(INTEL, 0x0a54),
2918 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2919 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2920 	{ PCI_VDEVICE(INTEL, 0x0a55),
2921 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2922 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2923 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2924 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2925 				NVME_QUIRK_MEDIUM_PRIO_SQ },
2926 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
2927 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2928 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2929 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
2930 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
2931 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2932 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2933 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2934 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2935 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
2936 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2937 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2938 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2939 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2940 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2941 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2942 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2943 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
2944 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2945 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
2946 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2947 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
2948 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2949 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2950 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2951 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2952 	{ 0, }
2953 };
2954 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2955 
2956 static struct pci_driver nvme_driver = {
2957 	.name		= "nvme",
2958 	.id_table	= nvme_id_table,
2959 	.probe		= nvme_probe,
2960 	.remove		= nvme_remove,
2961 	.shutdown	= nvme_shutdown,
2962 	.driver		= {
2963 		.pm	= &nvme_dev_pm_ops,
2964 	},
2965 	.sriov_configure = pci_sriov_configure_simple,
2966 	.err_handler	= &nvme_err_handler,
2967 };
2968 
2969 static int __init nvme_init(void)
2970 {
2971 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
2972 	return pci_register_driver(&nvme_driver);
2973 }
2974 
2975 static void __exit nvme_exit(void)
2976 {
2977 	pci_unregister_driver(&nvme_driver);
2978 	flush_workqueue(nvme_wq);
2979 	_nvme_check_size();
2980 }
2981 
2982 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2983 MODULE_LICENSE("GPL");
2984 MODULE_VERSION("1.0");
2985 module_init(nvme_init);
2986 module_exit(nvme_exit);
2987