1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/once.h> 21 #include <linux/pci.h> 22 #include <linux/suspend.h> 23 #include <linux/t10-pi.h> 24 #include <linux/types.h> 25 #include <linux/io-64-nonatomic-lo-hi.h> 26 #include <linux/sed-opal.h> 27 #include <linux/pci-p2pdma.h> 28 29 #include "trace.h" 30 #include "nvme.h" 31 32 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 33 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 34 35 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 36 37 /* 38 * These can be higher, but we need to ensure that any command doesn't 39 * require an sg allocation that needs more than a page of data. 40 */ 41 #define NVME_MAX_KB_SZ 4096 42 #define NVME_MAX_SEGS 127 43 44 static int use_threaded_interrupts; 45 module_param(use_threaded_interrupts, int, 0); 46 47 static bool use_cmb_sqes = true; 48 module_param(use_cmb_sqes, bool, 0444); 49 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 50 51 static unsigned int max_host_mem_size_mb = 128; 52 module_param(max_host_mem_size_mb, uint, 0444); 53 MODULE_PARM_DESC(max_host_mem_size_mb, 54 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 55 56 static unsigned int sgl_threshold = SZ_32K; 57 module_param(sgl_threshold, uint, 0644); 58 MODULE_PARM_DESC(sgl_threshold, 59 "Use SGLs when average request segment size is larger or equal to " 60 "this size. Use 0 to disable SGLs."); 61 62 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 63 static const struct kernel_param_ops io_queue_depth_ops = { 64 .set = io_queue_depth_set, 65 .get = param_get_uint, 66 }; 67 68 static unsigned int io_queue_depth = 1024; 69 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 70 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 71 72 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 73 { 74 unsigned int n; 75 int ret; 76 77 ret = kstrtouint(val, 10, &n); 78 if (ret != 0 || n > num_possible_cpus()) 79 return -EINVAL; 80 return param_set_uint(val, kp); 81 } 82 83 static const struct kernel_param_ops io_queue_count_ops = { 84 .set = io_queue_count_set, 85 .get = param_get_uint, 86 }; 87 88 static unsigned int write_queues; 89 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 90 MODULE_PARM_DESC(write_queues, 91 "Number of queues to use for writes. If not set, reads and writes " 92 "will share a queue set."); 93 94 static unsigned int poll_queues; 95 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 96 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 97 98 static bool noacpi; 99 module_param(noacpi, bool, 0444); 100 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 101 102 struct nvme_dev; 103 struct nvme_queue; 104 105 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 106 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 107 108 /* 109 * Represents an NVM Express device. Each nvme_dev is a PCI function. 110 */ 111 struct nvme_dev { 112 struct nvme_queue *queues; 113 struct blk_mq_tag_set tagset; 114 struct blk_mq_tag_set admin_tagset; 115 u32 __iomem *dbs; 116 struct device *dev; 117 struct dma_pool *prp_page_pool; 118 struct dma_pool *prp_small_pool; 119 unsigned online_queues; 120 unsigned max_qid; 121 unsigned io_queues[HCTX_MAX_TYPES]; 122 unsigned int num_vecs; 123 u32 q_depth; 124 int io_sqes; 125 u32 db_stride; 126 void __iomem *bar; 127 unsigned long bar_mapped_size; 128 struct work_struct remove_work; 129 struct mutex shutdown_lock; 130 bool subsystem; 131 u64 cmb_size; 132 bool cmb_use_sqes; 133 u32 cmbsz; 134 u32 cmbloc; 135 struct nvme_ctrl ctrl; 136 u32 last_ps; 137 138 mempool_t *iod_mempool; 139 140 /* shadow doorbell buffer support: */ 141 u32 *dbbuf_dbs; 142 dma_addr_t dbbuf_dbs_dma_addr; 143 u32 *dbbuf_eis; 144 dma_addr_t dbbuf_eis_dma_addr; 145 146 /* host memory buffer support: */ 147 u64 host_mem_size; 148 u32 nr_host_mem_descs; 149 dma_addr_t host_mem_descs_dma; 150 struct nvme_host_mem_buf_desc *host_mem_descs; 151 void **host_mem_desc_bufs; 152 unsigned int nr_allocated_queues; 153 unsigned int nr_write_queues; 154 unsigned int nr_poll_queues; 155 }; 156 157 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 158 { 159 int ret; 160 u32 n; 161 162 ret = kstrtou32(val, 10, &n); 163 if (ret != 0 || n < 2) 164 return -EINVAL; 165 166 return param_set_uint(val, kp); 167 } 168 169 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 170 { 171 return qid * 2 * stride; 172 } 173 174 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 175 { 176 return (qid * 2 + 1) * stride; 177 } 178 179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 180 { 181 return container_of(ctrl, struct nvme_dev, ctrl); 182 } 183 184 /* 185 * An NVM Express queue. Each device has at least two (one for admin 186 * commands and one for I/O commands). 187 */ 188 struct nvme_queue { 189 struct nvme_dev *dev; 190 spinlock_t sq_lock; 191 void *sq_cmds; 192 /* only used for poll queues: */ 193 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 194 struct nvme_completion *cqes; 195 dma_addr_t sq_dma_addr; 196 dma_addr_t cq_dma_addr; 197 u32 __iomem *q_db; 198 u32 q_depth; 199 u16 cq_vector; 200 u16 sq_tail; 201 u16 last_sq_tail; 202 u16 cq_head; 203 u16 qid; 204 u8 cq_phase; 205 u8 sqes; 206 unsigned long flags; 207 #define NVMEQ_ENABLED 0 208 #define NVMEQ_SQ_CMB 1 209 #define NVMEQ_DELETE_ERROR 2 210 #define NVMEQ_POLLED 3 211 u32 *dbbuf_sq_db; 212 u32 *dbbuf_cq_db; 213 u32 *dbbuf_sq_ei; 214 u32 *dbbuf_cq_ei; 215 struct completion delete_done; 216 }; 217 218 /* 219 * The nvme_iod describes the data in an I/O. 220 * 221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 222 * to the actual struct scatterlist. 223 */ 224 struct nvme_iod { 225 struct nvme_request req; 226 struct nvme_queue *nvmeq; 227 bool use_sgl; 228 int aborted; 229 int npages; /* In the PRP list. 0 means small pool in use */ 230 int nents; /* Used in scatterlist */ 231 dma_addr_t first_dma; 232 unsigned int dma_len; /* length of single DMA segment mapping */ 233 dma_addr_t meta_dma; 234 struct scatterlist *sg; 235 }; 236 237 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 238 { 239 return dev->nr_allocated_queues * 8 * dev->db_stride; 240 } 241 242 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 243 { 244 unsigned int mem_size = nvme_dbbuf_size(dev); 245 246 if (dev->dbbuf_dbs) 247 return 0; 248 249 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 250 &dev->dbbuf_dbs_dma_addr, 251 GFP_KERNEL); 252 if (!dev->dbbuf_dbs) 253 return -ENOMEM; 254 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 255 &dev->dbbuf_eis_dma_addr, 256 GFP_KERNEL); 257 if (!dev->dbbuf_eis) { 258 dma_free_coherent(dev->dev, mem_size, 259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 260 dev->dbbuf_dbs = NULL; 261 return -ENOMEM; 262 } 263 264 return 0; 265 } 266 267 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 268 { 269 unsigned int mem_size = nvme_dbbuf_size(dev); 270 271 if (dev->dbbuf_dbs) { 272 dma_free_coherent(dev->dev, mem_size, 273 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 274 dev->dbbuf_dbs = NULL; 275 } 276 if (dev->dbbuf_eis) { 277 dma_free_coherent(dev->dev, mem_size, 278 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 279 dev->dbbuf_eis = NULL; 280 } 281 } 282 283 static void nvme_dbbuf_init(struct nvme_dev *dev, 284 struct nvme_queue *nvmeq, int qid) 285 { 286 if (!dev->dbbuf_dbs || !qid) 287 return; 288 289 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 290 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 291 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 292 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 293 } 294 295 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 296 { 297 if (!nvmeq->qid) 298 return; 299 300 nvmeq->dbbuf_sq_db = NULL; 301 nvmeq->dbbuf_cq_db = NULL; 302 nvmeq->dbbuf_sq_ei = NULL; 303 nvmeq->dbbuf_cq_ei = NULL; 304 } 305 306 static void nvme_dbbuf_set(struct nvme_dev *dev) 307 { 308 struct nvme_command c; 309 unsigned int i; 310 311 if (!dev->dbbuf_dbs) 312 return; 313 314 memset(&c, 0, sizeof(c)); 315 c.dbbuf.opcode = nvme_admin_dbbuf; 316 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 317 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 318 319 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 320 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 321 /* Free memory and continue on */ 322 nvme_dbbuf_dma_free(dev); 323 324 for (i = 1; i <= dev->online_queues; i++) 325 nvme_dbbuf_free(&dev->queues[i]); 326 } 327 } 328 329 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 330 { 331 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 332 } 333 334 /* Update dbbuf and return true if an MMIO is required */ 335 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 336 volatile u32 *dbbuf_ei) 337 { 338 if (dbbuf_db) { 339 u16 old_value; 340 341 /* 342 * Ensure that the queue is written before updating 343 * the doorbell in memory 344 */ 345 wmb(); 346 347 old_value = *dbbuf_db; 348 *dbbuf_db = value; 349 350 /* 351 * Ensure that the doorbell is updated before reading the event 352 * index from memory. The controller needs to provide similar 353 * ordering to ensure the envent index is updated before reading 354 * the doorbell. 355 */ 356 mb(); 357 358 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 359 return false; 360 } 361 362 return true; 363 } 364 365 /* 366 * Will slightly overestimate the number of pages needed. This is OK 367 * as it only leads to a small amount of wasted memory for the lifetime of 368 * the I/O. 369 */ 370 static int nvme_pci_npages_prp(void) 371 { 372 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 373 NVME_CTRL_PAGE_SIZE); 374 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 375 } 376 377 /* 378 * Calculates the number of pages needed for the SGL segments. For example a 4k 379 * page can accommodate 256 SGL descriptors. 380 */ 381 static int nvme_pci_npages_sgl(void) 382 { 383 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 384 PAGE_SIZE); 385 } 386 387 static size_t nvme_pci_iod_alloc_size(void) 388 { 389 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 390 391 return sizeof(__le64 *) * npages + 392 sizeof(struct scatterlist) * NVME_MAX_SEGS; 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = data; 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = data; 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 420 unsigned int hctx_idx, unsigned int numa_node) 421 { 422 struct nvme_dev *dev = set->driver_data; 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 425 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 426 427 BUG_ON(!nvmeq); 428 iod->nvmeq = nvmeq; 429 430 nvme_req(req)->ctrl = &dev->ctrl; 431 return 0; 432 } 433 434 static int queue_irq_offset(struct nvme_dev *dev) 435 { 436 /* if we have more than 1 vec, admin queue offsets us by 1 */ 437 if (dev->num_vecs > 1) 438 return 1; 439 440 return 0; 441 } 442 443 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 444 { 445 struct nvme_dev *dev = set->driver_data; 446 int i, qoff, offset; 447 448 offset = queue_irq_offset(dev); 449 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 450 struct blk_mq_queue_map *map = &set->map[i]; 451 452 map->nr_queues = dev->io_queues[i]; 453 if (!map->nr_queues) { 454 BUG_ON(i == HCTX_TYPE_DEFAULT); 455 continue; 456 } 457 458 /* 459 * The poll queue(s) doesn't have an IRQ (and hence IRQ 460 * affinity), so use the regular blk-mq cpu mapping 461 */ 462 map->queue_offset = qoff; 463 if (i != HCTX_TYPE_POLL && offset) 464 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 465 else 466 blk_mq_map_queues(map); 467 qoff += map->nr_queues; 468 offset += map->nr_queues; 469 } 470 471 return 0; 472 } 473 474 /* 475 * Write sq tail if we are asked to, or if the next command would wrap. 476 */ 477 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 478 { 479 if (!write_sq) { 480 u16 next_tail = nvmeq->sq_tail + 1; 481 482 if (next_tail == nvmeq->q_depth) 483 next_tail = 0; 484 if (next_tail != nvmeq->last_sq_tail) 485 return; 486 } 487 488 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 489 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 490 writel(nvmeq->sq_tail, nvmeq->q_db); 491 nvmeq->last_sq_tail = nvmeq->sq_tail; 492 } 493 494 /** 495 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 496 * @nvmeq: The queue to use 497 * @cmd: The command to send 498 * @write_sq: whether to write to the SQ doorbell 499 */ 500 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 501 bool write_sq) 502 { 503 spin_lock(&nvmeq->sq_lock); 504 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 505 cmd, sizeof(*cmd)); 506 if (++nvmeq->sq_tail == nvmeq->q_depth) 507 nvmeq->sq_tail = 0; 508 nvme_write_sq_db(nvmeq, write_sq); 509 spin_unlock(&nvmeq->sq_lock); 510 } 511 512 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 513 { 514 struct nvme_queue *nvmeq = hctx->driver_data; 515 516 spin_lock(&nvmeq->sq_lock); 517 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 518 nvme_write_sq_db(nvmeq, true); 519 spin_unlock(&nvmeq->sq_lock); 520 } 521 522 static void **nvme_pci_iod_list(struct request *req) 523 { 524 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 525 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 526 } 527 528 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 529 { 530 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 531 int nseg = blk_rq_nr_phys_segments(req); 532 unsigned int avg_seg_size; 533 534 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 535 536 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 537 return false; 538 if (!iod->nvmeq->qid) 539 return false; 540 if (!sgl_threshold || avg_seg_size < sgl_threshold) 541 return false; 542 return true; 543 } 544 545 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 546 { 547 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 548 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 549 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 550 int i; 551 552 if (iod->dma_len) { 553 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, 554 rq_dma_dir(req)); 555 return; 556 } 557 558 WARN_ON_ONCE(!iod->nents); 559 560 if (is_pci_p2pdma_page(sg_page(iod->sg))) 561 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 562 rq_dma_dir(req)); 563 else 564 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 565 566 567 if (iod->npages == 0) 568 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 569 dma_addr); 570 571 for (i = 0; i < iod->npages; i++) { 572 void *addr = nvme_pci_iod_list(req)[i]; 573 574 if (iod->use_sgl) { 575 struct nvme_sgl_desc *sg_list = addr; 576 577 next_dma_addr = 578 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 579 } else { 580 __le64 *prp_list = addr; 581 582 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 583 } 584 585 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 586 dma_addr = next_dma_addr; 587 } 588 589 mempool_free(iod->sg, dev->iod_mempool); 590 } 591 592 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 593 { 594 int i; 595 struct scatterlist *sg; 596 597 for_each_sg(sgl, sg, nents, i) { 598 dma_addr_t phys = sg_phys(sg); 599 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 600 "dma_address:%pad dma_length:%d\n", 601 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 602 sg_dma_len(sg)); 603 } 604 } 605 606 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 607 struct request *req, struct nvme_rw_command *cmnd) 608 { 609 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 610 struct dma_pool *pool; 611 int length = blk_rq_payload_bytes(req); 612 struct scatterlist *sg = iod->sg; 613 int dma_len = sg_dma_len(sg); 614 u64 dma_addr = sg_dma_address(sg); 615 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 616 __le64 *prp_list; 617 void **list = nvme_pci_iod_list(req); 618 dma_addr_t prp_dma; 619 int nprps, i; 620 621 length -= (NVME_CTRL_PAGE_SIZE - offset); 622 if (length <= 0) { 623 iod->first_dma = 0; 624 goto done; 625 } 626 627 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 628 if (dma_len) { 629 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 630 } else { 631 sg = sg_next(sg); 632 dma_addr = sg_dma_address(sg); 633 dma_len = sg_dma_len(sg); 634 } 635 636 if (length <= NVME_CTRL_PAGE_SIZE) { 637 iod->first_dma = dma_addr; 638 goto done; 639 } 640 641 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 642 if (nprps <= (256 / 8)) { 643 pool = dev->prp_small_pool; 644 iod->npages = 0; 645 } else { 646 pool = dev->prp_page_pool; 647 iod->npages = 1; 648 } 649 650 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 651 if (!prp_list) { 652 iod->first_dma = dma_addr; 653 iod->npages = -1; 654 return BLK_STS_RESOURCE; 655 } 656 list[0] = prp_list; 657 iod->first_dma = prp_dma; 658 i = 0; 659 for (;;) { 660 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 661 __le64 *old_prp_list = prp_list; 662 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 663 if (!prp_list) 664 return BLK_STS_RESOURCE; 665 list[iod->npages++] = prp_list; 666 prp_list[0] = old_prp_list[i - 1]; 667 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 668 i = 1; 669 } 670 prp_list[i++] = cpu_to_le64(dma_addr); 671 dma_len -= NVME_CTRL_PAGE_SIZE; 672 dma_addr += NVME_CTRL_PAGE_SIZE; 673 length -= NVME_CTRL_PAGE_SIZE; 674 if (length <= 0) 675 break; 676 if (dma_len > 0) 677 continue; 678 if (unlikely(dma_len < 0)) 679 goto bad_sgl; 680 sg = sg_next(sg); 681 dma_addr = sg_dma_address(sg); 682 dma_len = sg_dma_len(sg); 683 } 684 685 done: 686 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 687 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 688 689 return BLK_STS_OK; 690 691 bad_sgl: 692 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 693 "Invalid SGL for payload:%d nents:%d\n", 694 blk_rq_payload_bytes(req), iod->nents); 695 return BLK_STS_IOERR; 696 } 697 698 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 699 struct scatterlist *sg) 700 { 701 sge->addr = cpu_to_le64(sg_dma_address(sg)); 702 sge->length = cpu_to_le32(sg_dma_len(sg)); 703 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 704 } 705 706 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 707 dma_addr_t dma_addr, int entries) 708 { 709 sge->addr = cpu_to_le64(dma_addr); 710 if (entries < SGES_PER_PAGE) { 711 sge->length = cpu_to_le32(entries * sizeof(*sge)); 712 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 713 } else { 714 sge->length = cpu_to_le32(PAGE_SIZE); 715 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 716 } 717 } 718 719 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 720 struct request *req, struct nvme_rw_command *cmd, int entries) 721 { 722 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 723 struct dma_pool *pool; 724 struct nvme_sgl_desc *sg_list; 725 struct scatterlist *sg = iod->sg; 726 dma_addr_t sgl_dma; 727 int i = 0; 728 729 /* setting the transfer type as SGL */ 730 cmd->flags = NVME_CMD_SGL_METABUF; 731 732 if (entries == 1) { 733 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 734 return BLK_STS_OK; 735 } 736 737 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 738 pool = dev->prp_small_pool; 739 iod->npages = 0; 740 } else { 741 pool = dev->prp_page_pool; 742 iod->npages = 1; 743 } 744 745 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 746 if (!sg_list) { 747 iod->npages = -1; 748 return BLK_STS_RESOURCE; 749 } 750 751 nvme_pci_iod_list(req)[0] = sg_list; 752 iod->first_dma = sgl_dma; 753 754 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 755 756 do { 757 if (i == SGES_PER_PAGE) { 758 struct nvme_sgl_desc *old_sg_desc = sg_list; 759 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 760 761 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 762 if (!sg_list) 763 return BLK_STS_RESOURCE; 764 765 i = 0; 766 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 767 sg_list[i++] = *link; 768 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 769 } 770 771 nvme_pci_sgl_set_data(&sg_list[i++], sg); 772 sg = sg_next(sg); 773 } while (--entries > 0); 774 775 return BLK_STS_OK; 776 } 777 778 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 779 struct request *req, struct nvme_rw_command *cmnd, 780 struct bio_vec *bv) 781 { 782 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 783 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 784 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 785 786 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 787 if (dma_mapping_error(dev->dev, iod->first_dma)) 788 return BLK_STS_RESOURCE; 789 iod->dma_len = bv->bv_len; 790 791 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 792 if (bv->bv_len > first_prp_len) 793 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 794 return BLK_STS_OK; 795 } 796 797 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 798 struct request *req, struct nvme_rw_command *cmnd, 799 struct bio_vec *bv) 800 { 801 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 802 803 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 804 if (dma_mapping_error(dev->dev, iod->first_dma)) 805 return BLK_STS_RESOURCE; 806 iod->dma_len = bv->bv_len; 807 808 cmnd->flags = NVME_CMD_SGL_METABUF; 809 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 810 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 811 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 812 return BLK_STS_OK; 813 } 814 815 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 816 struct nvme_command *cmnd) 817 { 818 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 819 blk_status_t ret = BLK_STS_RESOURCE; 820 int nr_mapped; 821 822 if (blk_rq_nr_phys_segments(req) == 1) { 823 struct bio_vec bv = req_bvec(req); 824 825 if (!is_pci_p2pdma_page(bv.bv_page)) { 826 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 827 return nvme_setup_prp_simple(dev, req, 828 &cmnd->rw, &bv); 829 830 if (iod->nvmeq->qid && 831 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 832 return nvme_setup_sgl_simple(dev, req, 833 &cmnd->rw, &bv); 834 } 835 } 836 837 iod->dma_len = 0; 838 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 839 if (!iod->sg) 840 return BLK_STS_RESOURCE; 841 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 842 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 843 if (!iod->nents) 844 goto out; 845 846 if (is_pci_p2pdma_page(sg_page(iod->sg))) 847 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 848 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 849 else 850 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 851 rq_dma_dir(req), DMA_ATTR_NO_WARN); 852 if (!nr_mapped) 853 goto out; 854 855 iod->use_sgl = nvme_pci_use_sgls(dev, req); 856 if (iod->use_sgl) 857 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 858 else 859 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 860 out: 861 if (ret != BLK_STS_OK) 862 nvme_unmap_data(dev, req); 863 return ret; 864 } 865 866 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 867 struct nvme_command *cmnd) 868 { 869 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 870 871 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 872 rq_dma_dir(req), 0); 873 if (dma_mapping_error(dev->dev, iod->meta_dma)) 874 return BLK_STS_IOERR; 875 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 876 return BLK_STS_OK; 877 } 878 879 /* 880 * NOTE: ns is NULL when called on the admin queue. 881 */ 882 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 883 const struct blk_mq_queue_data *bd) 884 { 885 struct nvme_ns *ns = hctx->queue->queuedata; 886 struct nvme_queue *nvmeq = hctx->driver_data; 887 struct nvme_dev *dev = nvmeq->dev; 888 struct request *req = bd->rq; 889 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 890 struct nvme_command cmnd; 891 blk_status_t ret; 892 893 iod->aborted = 0; 894 iod->npages = -1; 895 iod->nents = 0; 896 897 /* 898 * We should not need to do this, but we're still using this to 899 * ensure we can drain requests on a dying queue. 900 */ 901 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 902 return BLK_STS_IOERR; 903 904 ret = nvme_setup_cmd(ns, req, &cmnd); 905 if (ret) 906 return ret; 907 908 if (blk_rq_nr_phys_segments(req)) { 909 ret = nvme_map_data(dev, req, &cmnd); 910 if (ret) 911 goto out_free_cmd; 912 } 913 914 if (blk_integrity_rq(req)) { 915 ret = nvme_map_metadata(dev, req, &cmnd); 916 if (ret) 917 goto out_unmap_data; 918 } 919 920 blk_mq_start_request(req); 921 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 922 return BLK_STS_OK; 923 out_unmap_data: 924 nvme_unmap_data(dev, req); 925 out_free_cmd: 926 nvme_cleanup_cmd(req); 927 return ret; 928 } 929 930 static void nvme_pci_complete_rq(struct request *req) 931 { 932 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 933 struct nvme_dev *dev = iod->nvmeq->dev; 934 935 if (blk_integrity_rq(req)) 936 dma_unmap_page(dev->dev, iod->meta_dma, 937 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 938 if (blk_rq_nr_phys_segments(req)) 939 nvme_unmap_data(dev, req); 940 nvme_complete_rq(req); 941 } 942 943 /* We read the CQE phase first to check if the rest of the entry is valid */ 944 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 945 { 946 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 947 948 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 949 } 950 951 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 952 { 953 u16 head = nvmeq->cq_head; 954 955 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 956 nvmeq->dbbuf_cq_ei)) 957 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 958 } 959 960 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 961 { 962 if (!nvmeq->qid) 963 return nvmeq->dev->admin_tagset.tags[0]; 964 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 965 } 966 967 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 968 { 969 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 970 struct request *req; 971 972 /* 973 * AEN requests are special as they don't time out and can 974 * survive any kind of queue freeze and often don't respond to 975 * aborts. We don't even bother to allocate a struct request 976 * for them but rather special case them here. 977 */ 978 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { 979 nvme_complete_async_event(&nvmeq->dev->ctrl, 980 cqe->status, &cqe->result); 981 return; 982 } 983 984 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); 985 if (unlikely(!req)) { 986 dev_warn(nvmeq->dev->ctrl.device, 987 "invalid id %d completed on queue %d\n", 988 cqe->command_id, le16_to_cpu(cqe->sq_id)); 989 return; 990 } 991 992 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 993 if (!nvme_try_complete_req(req, cqe->status, cqe->result)) 994 nvme_pci_complete_rq(req); 995 } 996 997 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 998 { 999 u16 tmp = nvmeq->cq_head + 1; 1000 1001 if (tmp == nvmeq->q_depth) { 1002 nvmeq->cq_head = 0; 1003 nvmeq->cq_phase ^= 1; 1004 } else { 1005 nvmeq->cq_head = tmp; 1006 } 1007 } 1008 1009 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 1010 { 1011 int found = 0; 1012 1013 while (nvme_cqe_pending(nvmeq)) { 1014 found++; 1015 /* 1016 * load-load control dependency between phase and the rest of 1017 * the cqe requires a full read memory barrier 1018 */ 1019 dma_rmb(); 1020 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 1021 nvme_update_cq_head(nvmeq); 1022 } 1023 1024 if (found) 1025 nvme_ring_cq_doorbell(nvmeq); 1026 return found; 1027 } 1028 1029 static irqreturn_t nvme_irq(int irq, void *data) 1030 { 1031 struct nvme_queue *nvmeq = data; 1032 irqreturn_t ret = IRQ_NONE; 1033 1034 /* 1035 * The rmb/wmb pair ensures we see all updates from a previous run of 1036 * the irq handler, even if that was on another CPU. 1037 */ 1038 rmb(); 1039 if (nvme_process_cq(nvmeq)) 1040 ret = IRQ_HANDLED; 1041 wmb(); 1042 1043 return ret; 1044 } 1045 1046 static irqreturn_t nvme_irq_check(int irq, void *data) 1047 { 1048 struct nvme_queue *nvmeq = data; 1049 1050 if (nvme_cqe_pending(nvmeq)) 1051 return IRQ_WAKE_THREAD; 1052 return IRQ_NONE; 1053 } 1054 1055 /* 1056 * Poll for completions for any interrupt driven queue 1057 * Can be called from any context. 1058 */ 1059 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1060 { 1061 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1062 1063 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1064 1065 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1066 nvme_process_cq(nvmeq); 1067 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1068 } 1069 1070 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1071 { 1072 struct nvme_queue *nvmeq = hctx->driver_data; 1073 bool found; 1074 1075 if (!nvme_cqe_pending(nvmeq)) 1076 return 0; 1077 1078 spin_lock(&nvmeq->cq_poll_lock); 1079 found = nvme_process_cq(nvmeq); 1080 spin_unlock(&nvmeq->cq_poll_lock); 1081 1082 return found; 1083 } 1084 1085 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1086 { 1087 struct nvme_dev *dev = to_nvme_dev(ctrl); 1088 struct nvme_queue *nvmeq = &dev->queues[0]; 1089 struct nvme_command c; 1090 1091 memset(&c, 0, sizeof(c)); 1092 c.common.opcode = nvme_admin_async_event; 1093 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1094 nvme_submit_cmd(nvmeq, &c, true); 1095 } 1096 1097 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1098 { 1099 struct nvme_command c; 1100 1101 memset(&c, 0, sizeof(c)); 1102 c.delete_queue.opcode = opcode; 1103 c.delete_queue.qid = cpu_to_le16(id); 1104 1105 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1106 } 1107 1108 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1109 struct nvme_queue *nvmeq, s16 vector) 1110 { 1111 struct nvme_command c; 1112 int flags = NVME_QUEUE_PHYS_CONTIG; 1113 1114 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1115 flags |= NVME_CQ_IRQ_ENABLED; 1116 1117 /* 1118 * Note: we (ab)use the fact that the prp fields survive if no data 1119 * is attached to the request. 1120 */ 1121 memset(&c, 0, sizeof(c)); 1122 c.create_cq.opcode = nvme_admin_create_cq; 1123 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1124 c.create_cq.cqid = cpu_to_le16(qid); 1125 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1126 c.create_cq.cq_flags = cpu_to_le16(flags); 1127 c.create_cq.irq_vector = cpu_to_le16(vector); 1128 1129 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1130 } 1131 1132 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1133 struct nvme_queue *nvmeq) 1134 { 1135 struct nvme_ctrl *ctrl = &dev->ctrl; 1136 struct nvme_command c; 1137 int flags = NVME_QUEUE_PHYS_CONTIG; 1138 1139 /* 1140 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1141 * set. Since URGENT priority is zeroes, it makes all queues 1142 * URGENT. 1143 */ 1144 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1145 flags |= NVME_SQ_PRIO_MEDIUM; 1146 1147 /* 1148 * Note: we (ab)use the fact that the prp fields survive if no data 1149 * is attached to the request. 1150 */ 1151 memset(&c, 0, sizeof(c)); 1152 c.create_sq.opcode = nvme_admin_create_sq; 1153 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1154 c.create_sq.sqid = cpu_to_le16(qid); 1155 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1156 c.create_sq.sq_flags = cpu_to_le16(flags); 1157 c.create_sq.cqid = cpu_to_le16(qid); 1158 1159 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1160 } 1161 1162 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1163 { 1164 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1165 } 1166 1167 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1168 { 1169 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1170 } 1171 1172 static void abort_endio(struct request *req, blk_status_t error) 1173 { 1174 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1175 struct nvme_queue *nvmeq = iod->nvmeq; 1176 1177 dev_warn(nvmeq->dev->ctrl.device, 1178 "Abort status: 0x%x", nvme_req(req)->status); 1179 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1180 blk_mq_free_request(req); 1181 } 1182 1183 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1184 { 1185 /* If true, indicates loss of adapter communication, possibly by a 1186 * NVMe Subsystem reset. 1187 */ 1188 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1189 1190 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1191 switch (dev->ctrl.state) { 1192 case NVME_CTRL_RESETTING: 1193 case NVME_CTRL_CONNECTING: 1194 return false; 1195 default: 1196 break; 1197 } 1198 1199 /* We shouldn't reset unless the controller is on fatal error state 1200 * _or_ if we lost the communication with it. 1201 */ 1202 if (!(csts & NVME_CSTS_CFS) && !nssro) 1203 return false; 1204 1205 return true; 1206 } 1207 1208 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1209 { 1210 /* Read a config register to help see what died. */ 1211 u16 pci_status; 1212 int result; 1213 1214 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1215 &pci_status); 1216 if (result == PCIBIOS_SUCCESSFUL) 1217 dev_warn(dev->ctrl.device, 1218 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1219 csts, pci_status); 1220 else 1221 dev_warn(dev->ctrl.device, 1222 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1223 csts, result); 1224 } 1225 1226 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1227 { 1228 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1229 struct nvme_queue *nvmeq = iod->nvmeq; 1230 struct nvme_dev *dev = nvmeq->dev; 1231 struct request *abort_req; 1232 struct nvme_command cmd; 1233 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1234 1235 /* If PCI error recovery process is happening, we cannot reset or 1236 * the recovery mechanism will surely fail. 1237 */ 1238 mb(); 1239 if (pci_channel_offline(to_pci_dev(dev->dev))) 1240 return BLK_EH_RESET_TIMER; 1241 1242 /* 1243 * Reset immediately if the controller is failed 1244 */ 1245 if (nvme_should_reset(dev, csts)) { 1246 nvme_warn_reset(dev, csts); 1247 nvme_dev_disable(dev, false); 1248 nvme_reset_ctrl(&dev->ctrl); 1249 return BLK_EH_DONE; 1250 } 1251 1252 /* 1253 * Did we miss an interrupt? 1254 */ 1255 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1256 nvme_poll(req->mq_hctx); 1257 else 1258 nvme_poll_irqdisable(nvmeq); 1259 1260 if (blk_mq_request_completed(req)) { 1261 dev_warn(dev->ctrl.device, 1262 "I/O %d QID %d timeout, completion polled\n", 1263 req->tag, nvmeq->qid); 1264 return BLK_EH_DONE; 1265 } 1266 1267 /* 1268 * Shutdown immediately if controller times out while starting. The 1269 * reset work will see the pci device disabled when it gets the forced 1270 * cancellation error. All outstanding requests are completed on 1271 * shutdown, so we return BLK_EH_DONE. 1272 */ 1273 switch (dev->ctrl.state) { 1274 case NVME_CTRL_CONNECTING: 1275 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1276 fallthrough; 1277 case NVME_CTRL_DELETING: 1278 dev_warn_ratelimited(dev->ctrl.device, 1279 "I/O %d QID %d timeout, disable controller\n", 1280 req->tag, nvmeq->qid); 1281 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1282 nvme_dev_disable(dev, true); 1283 return BLK_EH_DONE; 1284 case NVME_CTRL_RESETTING: 1285 return BLK_EH_RESET_TIMER; 1286 default: 1287 break; 1288 } 1289 1290 /* 1291 * Shutdown the controller immediately and schedule a reset if the 1292 * command was already aborted once before and still hasn't been 1293 * returned to the driver, or if this is the admin queue. 1294 */ 1295 if (!nvmeq->qid || iod->aborted) { 1296 dev_warn(dev->ctrl.device, 1297 "I/O %d QID %d timeout, reset controller\n", 1298 req->tag, nvmeq->qid); 1299 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1300 nvme_dev_disable(dev, false); 1301 nvme_reset_ctrl(&dev->ctrl); 1302 1303 return BLK_EH_DONE; 1304 } 1305 1306 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1307 atomic_inc(&dev->ctrl.abort_limit); 1308 return BLK_EH_RESET_TIMER; 1309 } 1310 iod->aborted = 1; 1311 1312 memset(&cmd, 0, sizeof(cmd)); 1313 cmd.abort.opcode = nvme_admin_abort_cmd; 1314 cmd.abort.cid = req->tag; 1315 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1316 1317 dev_warn(nvmeq->dev->ctrl.device, 1318 "I/O %d QID %d timeout, aborting\n", 1319 req->tag, nvmeq->qid); 1320 1321 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1322 BLK_MQ_REQ_NOWAIT); 1323 if (IS_ERR(abort_req)) { 1324 atomic_inc(&dev->ctrl.abort_limit); 1325 return BLK_EH_RESET_TIMER; 1326 } 1327 1328 abort_req->end_io_data = NULL; 1329 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1330 1331 /* 1332 * The aborted req will be completed on receiving the abort req. 1333 * We enable the timer again. If hit twice, it'll cause a device reset, 1334 * as the device then is in a faulty state. 1335 */ 1336 return BLK_EH_RESET_TIMER; 1337 } 1338 1339 static void nvme_free_queue(struct nvme_queue *nvmeq) 1340 { 1341 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1342 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1343 if (!nvmeq->sq_cmds) 1344 return; 1345 1346 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1347 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1348 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1349 } else { 1350 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1351 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1352 } 1353 } 1354 1355 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1356 { 1357 int i; 1358 1359 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1360 dev->ctrl.queue_count--; 1361 nvme_free_queue(&dev->queues[i]); 1362 } 1363 } 1364 1365 /** 1366 * nvme_suspend_queue - put queue into suspended state 1367 * @nvmeq: queue to suspend 1368 */ 1369 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1370 { 1371 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1372 return 1; 1373 1374 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1375 mb(); 1376 1377 nvmeq->dev->online_queues--; 1378 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1379 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1380 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1381 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1382 return 0; 1383 } 1384 1385 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1386 { 1387 int i; 1388 1389 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1390 nvme_suspend_queue(&dev->queues[i]); 1391 } 1392 1393 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1394 { 1395 struct nvme_queue *nvmeq = &dev->queues[0]; 1396 1397 if (shutdown) 1398 nvme_shutdown_ctrl(&dev->ctrl); 1399 else 1400 nvme_disable_ctrl(&dev->ctrl); 1401 1402 nvme_poll_irqdisable(nvmeq); 1403 } 1404 1405 /* 1406 * Called only on a device that has been disabled and after all other threads 1407 * that can check this device's completion queues have synced, except 1408 * nvme_poll(). This is the last chance for the driver to see a natural 1409 * completion before nvme_cancel_request() terminates all incomplete requests. 1410 */ 1411 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1412 { 1413 int i; 1414 1415 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1416 spin_lock(&dev->queues[i].cq_poll_lock); 1417 nvme_process_cq(&dev->queues[i]); 1418 spin_unlock(&dev->queues[i].cq_poll_lock); 1419 } 1420 } 1421 1422 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1423 int entry_size) 1424 { 1425 int q_depth = dev->q_depth; 1426 unsigned q_size_aligned = roundup(q_depth * entry_size, 1427 NVME_CTRL_PAGE_SIZE); 1428 1429 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1430 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1431 1432 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1433 q_depth = div_u64(mem_per_q, entry_size); 1434 1435 /* 1436 * Ensure the reduced q_depth is above some threshold where it 1437 * would be better to map queues in system memory with the 1438 * original depth 1439 */ 1440 if (q_depth < 64) 1441 return -ENOMEM; 1442 } 1443 1444 return q_depth; 1445 } 1446 1447 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1448 int qid) 1449 { 1450 struct pci_dev *pdev = to_pci_dev(dev->dev); 1451 1452 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1453 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1454 if (nvmeq->sq_cmds) { 1455 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1456 nvmeq->sq_cmds); 1457 if (nvmeq->sq_dma_addr) { 1458 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1459 return 0; 1460 } 1461 1462 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1463 } 1464 } 1465 1466 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1467 &nvmeq->sq_dma_addr, GFP_KERNEL); 1468 if (!nvmeq->sq_cmds) 1469 return -ENOMEM; 1470 return 0; 1471 } 1472 1473 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1474 { 1475 struct nvme_queue *nvmeq = &dev->queues[qid]; 1476 1477 if (dev->ctrl.queue_count > qid) 1478 return 0; 1479 1480 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1481 nvmeq->q_depth = depth; 1482 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1483 &nvmeq->cq_dma_addr, GFP_KERNEL); 1484 if (!nvmeq->cqes) 1485 goto free_nvmeq; 1486 1487 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1488 goto free_cqdma; 1489 1490 nvmeq->dev = dev; 1491 spin_lock_init(&nvmeq->sq_lock); 1492 spin_lock_init(&nvmeq->cq_poll_lock); 1493 nvmeq->cq_head = 0; 1494 nvmeq->cq_phase = 1; 1495 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1496 nvmeq->qid = qid; 1497 dev->ctrl.queue_count++; 1498 1499 return 0; 1500 1501 free_cqdma: 1502 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1503 nvmeq->cq_dma_addr); 1504 free_nvmeq: 1505 return -ENOMEM; 1506 } 1507 1508 static int queue_request_irq(struct nvme_queue *nvmeq) 1509 { 1510 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1511 int nr = nvmeq->dev->ctrl.instance; 1512 1513 if (use_threaded_interrupts) { 1514 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1515 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1516 } else { 1517 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1518 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1519 } 1520 } 1521 1522 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1523 { 1524 struct nvme_dev *dev = nvmeq->dev; 1525 1526 nvmeq->sq_tail = 0; 1527 nvmeq->last_sq_tail = 0; 1528 nvmeq->cq_head = 0; 1529 nvmeq->cq_phase = 1; 1530 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1531 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1532 nvme_dbbuf_init(dev, nvmeq, qid); 1533 dev->online_queues++; 1534 wmb(); /* ensure the first interrupt sees the initialization */ 1535 } 1536 1537 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1538 { 1539 struct nvme_dev *dev = nvmeq->dev; 1540 int result; 1541 u16 vector = 0; 1542 1543 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1544 1545 /* 1546 * A queue's vector matches the queue identifier unless the controller 1547 * has only one vector available. 1548 */ 1549 if (!polled) 1550 vector = dev->num_vecs == 1 ? 0 : qid; 1551 else 1552 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1553 1554 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1555 if (result) 1556 return result; 1557 1558 result = adapter_alloc_sq(dev, qid, nvmeq); 1559 if (result < 0) 1560 return result; 1561 if (result) 1562 goto release_cq; 1563 1564 nvmeq->cq_vector = vector; 1565 nvme_init_queue(nvmeq, qid); 1566 1567 if (!polled) { 1568 result = queue_request_irq(nvmeq); 1569 if (result < 0) 1570 goto release_sq; 1571 } 1572 1573 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1574 return result; 1575 1576 release_sq: 1577 dev->online_queues--; 1578 adapter_delete_sq(dev, qid); 1579 release_cq: 1580 adapter_delete_cq(dev, qid); 1581 return result; 1582 } 1583 1584 static const struct blk_mq_ops nvme_mq_admin_ops = { 1585 .queue_rq = nvme_queue_rq, 1586 .complete = nvme_pci_complete_rq, 1587 .init_hctx = nvme_admin_init_hctx, 1588 .init_request = nvme_init_request, 1589 .timeout = nvme_timeout, 1590 }; 1591 1592 static const struct blk_mq_ops nvme_mq_ops = { 1593 .queue_rq = nvme_queue_rq, 1594 .complete = nvme_pci_complete_rq, 1595 .commit_rqs = nvme_commit_rqs, 1596 .init_hctx = nvme_init_hctx, 1597 .init_request = nvme_init_request, 1598 .map_queues = nvme_pci_map_queues, 1599 .timeout = nvme_timeout, 1600 .poll = nvme_poll, 1601 }; 1602 1603 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1604 { 1605 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1606 /* 1607 * If the controller was reset during removal, it's possible 1608 * user requests may be waiting on a stopped queue. Start the 1609 * queue to flush these to completion. 1610 */ 1611 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1612 blk_cleanup_queue(dev->ctrl.admin_q); 1613 blk_mq_free_tag_set(&dev->admin_tagset); 1614 } 1615 } 1616 1617 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1618 { 1619 if (!dev->ctrl.admin_q) { 1620 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1621 dev->admin_tagset.nr_hw_queues = 1; 1622 1623 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1624 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1625 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1626 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1627 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1628 dev->admin_tagset.driver_data = dev; 1629 1630 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1631 return -ENOMEM; 1632 dev->ctrl.admin_tagset = &dev->admin_tagset; 1633 1634 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1635 if (IS_ERR(dev->ctrl.admin_q)) { 1636 blk_mq_free_tag_set(&dev->admin_tagset); 1637 return -ENOMEM; 1638 } 1639 if (!blk_get_queue(dev->ctrl.admin_q)) { 1640 nvme_dev_remove_admin(dev); 1641 dev->ctrl.admin_q = NULL; 1642 return -ENODEV; 1643 } 1644 } else 1645 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1646 1647 return 0; 1648 } 1649 1650 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1651 { 1652 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1653 } 1654 1655 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1656 { 1657 struct pci_dev *pdev = to_pci_dev(dev->dev); 1658 1659 if (size <= dev->bar_mapped_size) 1660 return 0; 1661 if (size > pci_resource_len(pdev, 0)) 1662 return -ENOMEM; 1663 if (dev->bar) 1664 iounmap(dev->bar); 1665 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1666 if (!dev->bar) { 1667 dev->bar_mapped_size = 0; 1668 return -ENOMEM; 1669 } 1670 dev->bar_mapped_size = size; 1671 dev->dbs = dev->bar + NVME_REG_DBS; 1672 1673 return 0; 1674 } 1675 1676 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1677 { 1678 int result; 1679 u32 aqa; 1680 struct nvme_queue *nvmeq; 1681 1682 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1683 if (result < 0) 1684 return result; 1685 1686 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1687 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1688 1689 if (dev->subsystem && 1690 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1691 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1692 1693 result = nvme_disable_ctrl(&dev->ctrl); 1694 if (result < 0) 1695 return result; 1696 1697 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1698 if (result) 1699 return result; 1700 1701 dev->ctrl.numa_node = dev_to_node(dev->dev); 1702 1703 nvmeq = &dev->queues[0]; 1704 aqa = nvmeq->q_depth - 1; 1705 aqa |= aqa << 16; 1706 1707 writel(aqa, dev->bar + NVME_REG_AQA); 1708 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1709 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1710 1711 result = nvme_enable_ctrl(&dev->ctrl); 1712 if (result) 1713 return result; 1714 1715 nvmeq->cq_vector = 0; 1716 nvme_init_queue(nvmeq, 0); 1717 result = queue_request_irq(nvmeq); 1718 if (result) { 1719 dev->online_queues--; 1720 return result; 1721 } 1722 1723 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1724 return result; 1725 } 1726 1727 static int nvme_create_io_queues(struct nvme_dev *dev) 1728 { 1729 unsigned i, max, rw_queues; 1730 int ret = 0; 1731 1732 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1733 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1734 ret = -ENOMEM; 1735 break; 1736 } 1737 } 1738 1739 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1740 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1741 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1742 dev->io_queues[HCTX_TYPE_READ]; 1743 } else { 1744 rw_queues = max; 1745 } 1746 1747 for (i = dev->online_queues; i <= max; i++) { 1748 bool polled = i > rw_queues; 1749 1750 ret = nvme_create_queue(&dev->queues[i], i, polled); 1751 if (ret) 1752 break; 1753 } 1754 1755 /* 1756 * Ignore failing Create SQ/CQ commands, we can continue with less 1757 * than the desired amount of queues, and even a controller without 1758 * I/O queues can still be used to issue admin commands. This might 1759 * be useful to upgrade a buggy firmware for example. 1760 */ 1761 return ret >= 0 ? 0 : ret; 1762 } 1763 1764 static ssize_t nvme_cmb_show(struct device *dev, 1765 struct device_attribute *attr, 1766 char *buf) 1767 { 1768 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1769 1770 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1771 ndev->cmbloc, ndev->cmbsz); 1772 } 1773 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1774 1775 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1776 { 1777 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1778 1779 return 1ULL << (12 + 4 * szu); 1780 } 1781 1782 static u32 nvme_cmb_size(struct nvme_dev *dev) 1783 { 1784 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1785 } 1786 1787 static void nvme_map_cmb(struct nvme_dev *dev) 1788 { 1789 u64 size, offset; 1790 resource_size_t bar_size; 1791 struct pci_dev *pdev = to_pci_dev(dev->dev); 1792 int bar; 1793 1794 if (dev->cmb_size) 1795 return; 1796 1797 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1798 if (!dev->cmbsz) 1799 return; 1800 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1801 1802 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1803 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1804 bar = NVME_CMB_BIR(dev->cmbloc); 1805 bar_size = pci_resource_len(pdev, bar); 1806 1807 if (offset > bar_size) 1808 return; 1809 1810 /* 1811 * Controllers may support a CMB size larger than their BAR, 1812 * for example, due to being behind a bridge. Reduce the CMB to 1813 * the reported size of the BAR 1814 */ 1815 if (size > bar_size - offset) 1816 size = bar_size - offset; 1817 1818 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1819 dev_warn(dev->ctrl.device, 1820 "failed to register the CMB\n"); 1821 return; 1822 } 1823 1824 dev->cmb_size = size; 1825 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1826 1827 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1828 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1829 pci_p2pmem_publish(pdev, true); 1830 1831 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1832 &dev_attr_cmb.attr, NULL)) 1833 dev_warn(dev->ctrl.device, 1834 "failed to add sysfs attribute for CMB\n"); 1835 } 1836 1837 static inline void nvme_release_cmb(struct nvme_dev *dev) 1838 { 1839 if (dev->cmb_size) { 1840 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1841 &dev_attr_cmb.attr, NULL); 1842 dev->cmb_size = 0; 1843 } 1844 } 1845 1846 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1847 { 1848 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1849 u64 dma_addr = dev->host_mem_descs_dma; 1850 struct nvme_command c; 1851 int ret; 1852 1853 memset(&c, 0, sizeof(c)); 1854 c.features.opcode = nvme_admin_set_features; 1855 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1856 c.features.dword11 = cpu_to_le32(bits); 1857 c.features.dword12 = cpu_to_le32(host_mem_size); 1858 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1859 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1860 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1861 1862 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1863 if (ret) { 1864 dev_warn(dev->ctrl.device, 1865 "failed to set host mem (err %d, flags %#x).\n", 1866 ret, bits); 1867 } 1868 return ret; 1869 } 1870 1871 static void nvme_free_host_mem(struct nvme_dev *dev) 1872 { 1873 int i; 1874 1875 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1876 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1877 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1878 1879 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1880 le64_to_cpu(desc->addr), 1881 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1882 } 1883 1884 kfree(dev->host_mem_desc_bufs); 1885 dev->host_mem_desc_bufs = NULL; 1886 dma_free_coherent(dev->dev, 1887 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1888 dev->host_mem_descs, dev->host_mem_descs_dma); 1889 dev->host_mem_descs = NULL; 1890 dev->nr_host_mem_descs = 0; 1891 } 1892 1893 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1894 u32 chunk_size) 1895 { 1896 struct nvme_host_mem_buf_desc *descs; 1897 u32 max_entries, len; 1898 dma_addr_t descs_dma; 1899 int i = 0; 1900 void **bufs; 1901 u64 size, tmp; 1902 1903 tmp = (preferred + chunk_size - 1); 1904 do_div(tmp, chunk_size); 1905 max_entries = tmp; 1906 1907 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1908 max_entries = dev->ctrl.hmmaxd; 1909 1910 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1911 &descs_dma, GFP_KERNEL); 1912 if (!descs) 1913 goto out; 1914 1915 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1916 if (!bufs) 1917 goto out_free_descs; 1918 1919 for (size = 0; size < preferred && i < max_entries; size += len) { 1920 dma_addr_t dma_addr; 1921 1922 len = min_t(u64, chunk_size, preferred - size); 1923 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1924 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1925 if (!bufs[i]) 1926 break; 1927 1928 descs[i].addr = cpu_to_le64(dma_addr); 1929 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1930 i++; 1931 } 1932 1933 if (!size) 1934 goto out_free_bufs; 1935 1936 dev->nr_host_mem_descs = i; 1937 dev->host_mem_size = size; 1938 dev->host_mem_descs = descs; 1939 dev->host_mem_descs_dma = descs_dma; 1940 dev->host_mem_desc_bufs = bufs; 1941 return 0; 1942 1943 out_free_bufs: 1944 while (--i >= 0) { 1945 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1946 1947 dma_free_attrs(dev->dev, size, bufs[i], 1948 le64_to_cpu(descs[i].addr), 1949 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1950 } 1951 1952 kfree(bufs); 1953 out_free_descs: 1954 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1955 descs_dma); 1956 out: 1957 dev->host_mem_descs = NULL; 1958 return -ENOMEM; 1959 } 1960 1961 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1962 { 1963 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1964 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1965 u64 chunk_size; 1966 1967 /* start big and work our way down */ 1968 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 1969 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1970 if (!min || dev->host_mem_size >= min) 1971 return 0; 1972 nvme_free_host_mem(dev); 1973 } 1974 } 1975 1976 return -ENOMEM; 1977 } 1978 1979 static int nvme_setup_host_mem(struct nvme_dev *dev) 1980 { 1981 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1982 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1983 u64 min = (u64)dev->ctrl.hmmin * 4096; 1984 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1985 int ret; 1986 1987 preferred = min(preferred, max); 1988 if (min > max) { 1989 dev_warn(dev->ctrl.device, 1990 "min host memory (%lld MiB) above limit (%d MiB).\n", 1991 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1992 nvme_free_host_mem(dev); 1993 return 0; 1994 } 1995 1996 /* 1997 * If we already have a buffer allocated check if we can reuse it. 1998 */ 1999 if (dev->host_mem_descs) { 2000 if (dev->host_mem_size >= min) 2001 enable_bits |= NVME_HOST_MEM_RETURN; 2002 else 2003 nvme_free_host_mem(dev); 2004 } 2005 2006 if (!dev->host_mem_descs) { 2007 if (nvme_alloc_host_mem(dev, min, preferred)) { 2008 dev_warn(dev->ctrl.device, 2009 "failed to allocate host memory buffer.\n"); 2010 return 0; /* controller must work without HMB */ 2011 } 2012 2013 dev_info(dev->ctrl.device, 2014 "allocated %lld MiB host memory buffer.\n", 2015 dev->host_mem_size >> ilog2(SZ_1M)); 2016 } 2017 2018 ret = nvme_set_host_mem(dev, enable_bits); 2019 if (ret) 2020 nvme_free_host_mem(dev); 2021 return ret; 2022 } 2023 2024 /* 2025 * nirqs is the number of interrupts available for write and read 2026 * queues. The core already reserved an interrupt for the admin queue. 2027 */ 2028 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2029 { 2030 struct nvme_dev *dev = affd->priv; 2031 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2032 2033 /* 2034 * If there is no interrupt available for queues, ensure that 2035 * the default queue is set to 1. The affinity set size is 2036 * also set to one, but the irq core ignores it for this case. 2037 * 2038 * If only one interrupt is available or 'write_queue' == 0, combine 2039 * write and read queues. 2040 * 2041 * If 'write_queues' > 0, ensure it leaves room for at least one read 2042 * queue. 2043 */ 2044 if (!nrirqs) { 2045 nrirqs = 1; 2046 nr_read_queues = 0; 2047 } else if (nrirqs == 1 || !nr_write_queues) { 2048 nr_read_queues = 0; 2049 } else if (nr_write_queues >= nrirqs) { 2050 nr_read_queues = 1; 2051 } else { 2052 nr_read_queues = nrirqs - nr_write_queues; 2053 } 2054 2055 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2056 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2057 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2058 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2059 affd->nr_sets = nr_read_queues ? 2 : 1; 2060 } 2061 2062 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2063 { 2064 struct pci_dev *pdev = to_pci_dev(dev->dev); 2065 struct irq_affinity affd = { 2066 .pre_vectors = 1, 2067 .calc_sets = nvme_calc_irq_sets, 2068 .priv = dev, 2069 }; 2070 unsigned int irq_queues, poll_queues; 2071 2072 /* 2073 * Poll queues don't need interrupts, but we need at least one I/O queue 2074 * left over for non-polled I/O. 2075 */ 2076 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2077 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2078 2079 /* 2080 * Initialize for the single interrupt case, will be updated in 2081 * nvme_calc_irq_sets(). 2082 */ 2083 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2084 dev->io_queues[HCTX_TYPE_READ] = 0; 2085 2086 /* 2087 * We need interrupts for the admin queue and each non-polled I/O queue, 2088 * but some Apple controllers require all queues to use the first 2089 * vector. 2090 */ 2091 irq_queues = 1; 2092 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2093 irq_queues += (nr_io_queues - poll_queues); 2094 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2095 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2096 } 2097 2098 static void nvme_disable_io_queues(struct nvme_dev *dev) 2099 { 2100 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2101 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2102 } 2103 2104 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2105 { 2106 /* 2107 * If tags are shared with admin queue (Apple bug), then 2108 * make sure we only use one IO queue. 2109 */ 2110 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2111 return 1; 2112 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2113 } 2114 2115 static int nvme_setup_io_queues(struct nvme_dev *dev) 2116 { 2117 struct nvme_queue *adminq = &dev->queues[0]; 2118 struct pci_dev *pdev = to_pci_dev(dev->dev); 2119 unsigned int nr_io_queues; 2120 unsigned long size; 2121 int result; 2122 2123 /* 2124 * Sample the module parameters once at reset time so that we have 2125 * stable values to work with. 2126 */ 2127 dev->nr_write_queues = write_queues; 2128 dev->nr_poll_queues = poll_queues; 2129 2130 nr_io_queues = dev->nr_allocated_queues - 1; 2131 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2132 if (result < 0) 2133 return result; 2134 2135 if (nr_io_queues == 0) 2136 return 0; 2137 2138 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2139 2140 if (dev->cmb_use_sqes) { 2141 result = nvme_cmb_qdepth(dev, nr_io_queues, 2142 sizeof(struct nvme_command)); 2143 if (result > 0) 2144 dev->q_depth = result; 2145 else 2146 dev->cmb_use_sqes = false; 2147 } 2148 2149 do { 2150 size = db_bar_size(dev, nr_io_queues); 2151 result = nvme_remap_bar(dev, size); 2152 if (!result) 2153 break; 2154 if (!--nr_io_queues) 2155 return -ENOMEM; 2156 } while (1); 2157 adminq->q_db = dev->dbs; 2158 2159 retry: 2160 /* Deregister the admin queue's interrupt */ 2161 pci_free_irq(pdev, 0, adminq); 2162 2163 /* 2164 * If we enable msix early due to not intx, disable it again before 2165 * setting up the full range we need. 2166 */ 2167 pci_free_irq_vectors(pdev); 2168 2169 result = nvme_setup_irqs(dev, nr_io_queues); 2170 if (result <= 0) 2171 return -EIO; 2172 2173 dev->num_vecs = result; 2174 result = max(result - 1, 1); 2175 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2176 2177 /* 2178 * Should investigate if there's a performance win from allocating 2179 * more queues than interrupt vectors; it might allow the submission 2180 * path to scale better, even if the receive path is limited by the 2181 * number of interrupts. 2182 */ 2183 result = queue_request_irq(adminq); 2184 if (result) 2185 return result; 2186 set_bit(NVMEQ_ENABLED, &adminq->flags); 2187 2188 result = nvme_create_io_queues(dev); 2189 if (result || dev->online_queues < 2) 2190 return result; 2191 2192 if (dev->online_queues - 1 < dev->max_qid) { 2193 nr_io_queues = dev->online_queues - 1; 2194 nvme_disable_io_queues(dev); 2195 nvme_suspend_io_queues(dev); 2196 goto retry; 2197 } 2198 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2199 dev->io_queues[HCTX_TYPE_DEFAULT], 2200 dev->io_queues[HCTX_TYPE_READ], 2201 dev->io_queues[HCTX_TYPE_POLL]); 2202 return 0; 2203 } 2204 2205 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2206 { 2207 struct nvme_queue *nvmeq = req->end_io_data; 2208 2209 blk_mq_free_request(req); 2210 complete(&nvmeq->delete_done); 2211 } 2212 2213 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2214 { 2215 struct nvme_queue *nvmeq = req->end_io_data; 2216 2217 if (error) 2218 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2219 2220 nvme_del_queue_end(req, error); 2221 } 2222 2223 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2224 { 2225 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2226 struct request *req; 2227 struct nvme_command cmd; 2228 2229 memset(&cmd, 0, sizeof(cmd)); 2230 cmd.delete_queue.opcode = opcode; 2231 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2232 2233 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 2234 if (IS_ERR(req)) 2235 return PTR_ERR(req); 2236 2237 req->end_io_data = nvmeq; 2238 2239 init_completion(&nvmeq->delete_done); 2240 blk_execute_rq_nowait(q, NULL, req, false, 2241 opcode == nvme_admin_delete_cq ? 2242 nvme_del_cq_end : nvme_del_queue_end); 2243 return 0; 2244 } 2245 2246 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2247 { 2248 int nr_queues = dev->online_queues - 1, sent = 0; 2249 unsigned long timeout; 2250 2251 retry: 2252 timeout = NVME_ADMIN_TIMEOUT; 2253 while (nr_queues > 0) { 2254 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2255 break; 2256 nr_queues--; 2257 sent++; 2258 } 2259 while (sent) { 2260 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2261 2262 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2263 timeout); 2264 if (timeout == 0) 2265 return false; 2266 2267 sent--; 2268 if (nr_queues) 2269 goto retry; 2270 } 2271 return true; 2272 } 2273 2274 static void nvme_dev_add(struct nvme_dev *dev) 2275 { 2276 int ret; 2277 2278 if (!dev->ctrl.tagset) { 2279 dev->tagset.ops = &nvme_mq_ops; 2280 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2281 dev->tagset.nr_maps = 2; /* default + read */ 2282 if (dev->io_queues[HCTX_TYPE_POLL]) 2283 dev->tagset.nr_maps++; 2284 dev->tagset.timeout = NVME_IO_TIMEOUT; 2285 dev->tagset.numa_node = dev->ctrl.numa_node; 2286 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2287 BLK_MQ_MAX_DEPTH) - 1; 2288 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2289 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2290 dev->tagset.driver_data = dev; 2291 2292 /* 2293 * Some Apple controllers requires tags to be unique 2294 * across admin and IO queue, so reserve the first 32 2295 * tags of the IO queue. 2296 */ 2297 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2298 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2299 2300 ret = blk_mq_alloc_tag_set(&dev->tagset); 2301 if (ret) { 2302 dev_warn(dev->ctrl.device, 2303 "IO queues tagset allocation failed %d\n", ret); 2304 return; 2305 } 2306 dev->ctrl.tagset = &dev->tagset; 2307 } else { 2308 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2309 2310 /* Free previously allocated queues that are no longer usable */ 2311 nvme_free_queues(dev, dev->online_queues); 2312 } 2313 2314 nvme_dbbuf_set(dev); 2315 } 2316 2317 static int nvme_pci_enable(struct nvme_dev *dev) 2318 { 2319 int result = -ENOMEM; 2320 struct pci_dev *pdev = to_pci_dev(dev->dev); 2321 2322 if (pci_enable_device_mem(pdev)) 2323 return result; 2324 2325 pci_set_master(pdev); 2326 2327 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2328 goto disable; 2329 2330 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2331 result = -ENODEV; 2332 goto disable; 2333 } 2334 2335 /* 2336 * Some devices and/or platforms don't advertise or work with INTx 2337 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2338 * adjust this later. 2339 */ 2340 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2341 if (result < 0) 2342 return result; 2343 2344 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2345 2346 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2347 io_queue_depth); 2348 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2349 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2350 dev->dbs = dev->bar + 4096; 2351 2352 /* 2353 * Some Apple controllers require a non-standard SQE size. 2354 * Interestingly they also seem to ignore the CC:IOSQES register 2355 * so we don't bother updating it here. 2356 */ 2357 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2358 dev->io_sqes = 7; 2359 else 2360 dev->io_sqes = NVME_NVM_IOSQES; 2361 2362 /* 2363 * Temporary fix for the Apple controller found in the MacBook8,1 and 2364 * some MacBook7,1 to avoid controller resets and data loss. 2365 */ 2366 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2367 dev->q_depth = 2; 2368 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2369 "set queue depth=%u to work around controller resets\n", 2370 dev->q_depth); 2371 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2372 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2373 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2374 dev->q_depth = 64; 2375 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2376 "set queue depth=%u\n", dev->q_depth); 2377 } 2378 2379 /* 2380 * Controllers with the shared tags quirk need the IO queue to be 2381 * big enough so that we get 32 tags for the admin queue 2382 */ 2383 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2384 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2385 dev->q_depth = NVME_AQ_DEPTH + 2; 2386 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2387 dev->q_depth); 2388 } 2389 2390 2391 nvme_map_cmb(dev); 2392 2393 pci_enable_pcie_error_reporting(pdev); 2394 pci_save_state(pdev); 2395 return 0; 2396 2397 disable: 2398 pci_disable_device(pdev); 2399 return result; 2400 } 2401 2402 static void nvme_dev_unmap(struct nvme_dev *dev) 2403 { 2404 if (dev->bar) 2405 iounmap(dev->bar); 2406 pci_release_mem_regions(to_pci_dev(dev->dev)); 2407 } 2408 2409 static void nvme_pci_disable(struct nvme_dev *dev) 2410 { 2411 struct pci_dev *pdev = to_pci_dev(dev->dev); 2412 2413 pci_free_irq_vectors(pdev); 2414 2415 if (pci_is_enabled(pdev)) { 2416 pci_disable_pcie_error_reporting(pdev); 2417 pci_disable_device(pdev); 2418 } 2419 } 2420 2421 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2422 { 2423 bool dead = true, freeze = false; 2424 struct pci_dev *pdev = to_pci_dev(dev->dev); 2425 2426 mutex_lock(&dev->shutdown_lock); 2427 if (pci_is_enabled(pdev)) { 2428 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2429 2430 if (dev->ctrl.state == NVME_CTRL_LIVE || 2431 dev->ctrl.state == NVME_CTRL_RESETTING) { 2432 freeze = true; 2433 nvme_start_freeze(&dev->ctrl); 2434 } 2435 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2436 pdev->error_state != pci_channel_io_normal); 2437 } 2438 2439 /* 2440 * Give the controller a chance to complete all entered requests if 2441 * doing a safe shutdown. 2442 */ 2443 if (!dead && shutdown && freeze) 2444 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2445 2446 nvme_stop_queues(&dev->ctrl); 2447 2448 if (!dead && dev->ctrl.queue_count > 0) { 2449 nvme_disable_io_queues(dev); 2450 nvme_disable_admin_queue(dev, shutdown); 2451 } 2452 nvme_suspend_io_queues(dev); 2453 nvme_suspend_queue(&dev->queues[0]); 2454 nvme_pci_disable(dev); 2455 nvme_reap_pending_cqes(dev); 2456 2457 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2458 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2459 blk_mq_tagset_wait_completed_request(&dev->tagset); 2460 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2461 2462 /* 2463 * The driver will not be starting up queues again if shutting down so 2464 * must flush all entered requests to their failed completion to avoid 2465 * deadlocking blk-mq hot-cpu notifier. 2466 */ 2467 if (shutdown) { 2468 nvme_start_queues(&dev->ctrl); 2469 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2470 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2471 } 2472 mutex_unlock(&dev->shutdown_lock); 2473 } 2474 2475 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2476 { 2477 if (!nvme_wait_reset(&dev->ctrl)) 2478 return -EBUSY; 2479 nvme_dev_disable(dev, shutdown); 2480 return 0; 2481 } 2482 2483 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2484 { 2485 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2486 NVME_CTRL_PAGE_SIZE, 2487 NVME_CTRL_PAGE_SIZE, 0); 2488 if (!dev->prp_page_pool) 2489 return -ENOMEM; 2490 2491 /* Optimisation for I/Os between 4k and 128k */ 2492 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2493 256, 256, 0); 2494 if (!dev->prp_small_pool) { 2495 dma_pool_destroy(dev->prp_page_pool); 2496 return -ENOMEM; 2497 } 2498 return 0; 2499 } 2500 2501 static void nvme_release_prp_pools(struct nvme_dev *dev) 2502 { 2503 dma_pool_destroy(dev->prp_page_pool); 2504 dma_pool_destroy(dev->prp_small_pool); 2505 } 2506 2507 static void nvme_free_tagset(struct nvme_dev *dev) 2508 { 2509 if (dev->tagset.tags) 2510 blk_mq_free_tag_set(&dev->tagset); 2511 dev->ctrl.tagset = NULL; 2512 } 2513 2514 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2515 { 2516 struct nvme_dev *dev = to_nvme_dev(ctrl); 2517 2518 nvme_dbbuf_dma_free(dev); 2519 nvme_free_tagset(dev); 2520 if (dev->ctrl.admin_q) 2521 blk_put_queue(dev->ctrl.admin_q); 2522 free_opal_dev(dev->ctrl.opal_dev); 2523 mempool_destroy(dev->iod_mempool); 2524 put_device(dev->dev); 2525 kfree(dev->queues); 2526 kfree(dev); 2527 } 2528 2529 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2530 { 2531 /* 2532 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2533 * may be holding this pci_dev's device lock. 2534 */ 2535 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2536 nvme_get_ctrl(&dev->ctrl); 2537 nvme_dev_disable(dev, false); 2538 nvme_kill_queues(&dev->ctrl); 2539 if (!queue_work(nvme_wq, &dev->remove_work)) 2540 nvme_put_ctrl(&dev->ctrl); 2541 } 2542 2543 static void nvme_reset_work(struct work_struct *work) 2544 { 2545 struct nvme_dev *dev = 2546 container_of(work, struct nvme_dev, ctrl.reset_work); 2547 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2548 int result; 2549 2550 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2551 result = -ENODEV; 2552 goto out; 2553 } 2554 2555 /* 2556 * If we're called to reset a live controller first shut it down before 2557 * moving on. 2558 */ 2559 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2560 nvme_dev_disable(dev, false); 2561 nvme_sync_queues(&dev->ctrl); 2562 2563 mutex_lock(&dev->shutdown_lock); 2564 result = nvme_pci_enable(dev); 2565 if (result) 2566 goto out_unlock; 2567 2568 result = nvme_pci_configure_admin_queue(dev); 2569 if (result) 2570 goto out_unlock; 2571 2572 result = nvme_alloc_admin_tags(dev); 2573 if (result) 2574 goto out_unlock; 2575 2576 /* 2577 * Limit the max command size to prevent iod->sg allocations going 2578 * over a single page. 2579 */ 2580 dev->ctrl.max_hw_sectors = min_t(u32, 2581 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2582 dev->ctrl.max_segments = NVME_MAX_SEGS; 2583 2584 /* 2585 * Don't limit the IOMMU merged segment size. 2586 */ 2587 dma_set_max_seg_size(dev->dev, 0xffffffff); 2588 2589 mutex_unlock(&dev->shutdown_lock); 2590 2591 /* 2592 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2593 * initializing procedure here. 2594 */ 2595 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2596 dev_warn(dev->ctrl.device, 2597 "failed to mark controller CONNECTING\n"); 2598 result = -EBUSY; 2599 goto out; 2600 } 2601 2602 /* 2603 * We do not support an SGL for metadata (yet), so we are limited to a 2604 * single integrity segment for the separate metadata pointer. 2605 */ 2606 dev->ctrl.max_integrity_segments = 1; 2607 2608 result = nvme_init_identify(&dev->ctrl); 2609 if (result) 2610 goto out; 2611 2612 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2613 if (!dev->ctrl.opal_dev) 2614 dev->ctrl.opal_dev = 2615 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2616 else if (was_suspend) 2617 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2618 } else { 2619 free_opal_dev(dev->ctrl.opal_dev); 2620 dev->ctrl.opal_dev = NULL; 2621 } 2622 2623 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2624 result = nvme_dbbuf_dma_alloc(dev); 2625 if (result) 2626 dev_warn(dev->dev, 2627 "unable to allocate dma for dbbuf\n"); 2628 } 2629 2630 if (dev->ctrl.hmpre) { 2631 result = nvme_setup_host_mem(dev); 2632 if (result < 0) 2633 goto out; 2634 } 2635 2636 result = nvme_setup_io_queues(dev); 2637 if (result) 2638 goto out; 2639 2640 /* 2641 * Keep the controller around but remove all namespaces if we don't have 2642 * any working I/O queue. 2643 */ 2644 if (dev->online_queues < 2) { 2645 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2646 nvme_kill_queues(&dev->ctrl); 2647 nvme_remove_namespaces(&dev->ctrl); 2648 nvme_free_tagset(dev); 2649 } else { 2650 nvme_start_queues(&dev->ctrl); 2651 nvme_wait_freeze(&dev->ctrl); 2652 nvme_dev_add(dev); 2653 nvme_unfreeze(&dev->ctrl); 2654 } 2655 2656 /* 2657 * If only admin queue live, keep it to do further investigation or 2658 * recovery. 2659 */ 2660 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2661 dev_warn(dev->ctrl.device, 2662 "failed to mark controller live state\n"); 2663 result = -ENODEV; 2664 goto out; 2665 } 2666 2667 nvme_start_ctrl(&dev->ctrl); 2668 return; 2669 2670 out_unlock: 2671 mutex_unlock(&dev->shutdown_lock); 2672 out: 2673 if (result) 2674 dev_warn(dev->ctrl.device, 2675 "Removing after probe failure status: %d\n", result); 2676 nvme_remove_dead_ctrl(dev); 2677 } 2678 2679 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2680 { 2681 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2682 struct pci_dev *pdev = to_pci_dev(dev->dev); 2683 2684 if (pci_get_drvdata(pdev)) 2685 device_release_driver(&pdev->dev); 2686 nvme_put_ctrl(&dev->ctrl); 2687 } 2688 2689 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2690 { 2691 *val = readl(to_nvme_dev(ctrl)->bar + off); 2692 return 0; 2693 } 2694 2695 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2696 { 2697 writel(val, to_nvme_dev(ctrl)->bar + off); 2698 return 0; 2699 } 2700 2701 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2702 { 2703 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2704 return 0; 2705 } 2706 2707 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2708 { 2709 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2710 2711 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2712 } 2713 2714 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2715 .name = "pcie", 2716 .module = THIS_MODULE, 2717 .flags = NVME_F_METADATA_SUPPORTED | 2718 NVME_F_PCI_P2PDMA, 2719 .reg_read32 = nvme_pci_reg_read32, 2720 .reg_write32 = nvme_pci_reg_write32, 2721 .reg_read64 = nvme_pci_reg_read64, 2722 .free_ctrl = nvme_pci_free_ctrl, 2723 .submit_async_event = nvme_pci_submit_async_event, 2724 .get_address = nvme_pci_get_address, 2725 }; 2726 2727 static int nvme_dev_map(struct nvme_dev *dev) 2728 { 2729 struct pci_dev *pdev = to_pci_dev(dev->dev); 2730 2731 if (pci_request_mem_regions(pdev, "nvme")) 2732 return -ENODEV; 2733 2734 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2735 goto release; 2736 2737 return 0; 2738 release: 2739 pci_release_mem_regions(pdev); 2740 return -ENODEV; 2741 } 2742 2743 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2744 { 2745 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2746 /* 2747 * Several Samsung devices seem to drop off the PCIe bus 2748 * randomly when APST is on and uses the deepest sleep state. 2749 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2750 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2751 * 950 PRO 256GB", but it seems to be restricted to two Dell 2752 * laptops. 2753 */ 2754 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2755 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2756 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2757 return NVME_QUIRK_NO_DEEPEST_PS; 2758 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2759 /* 2760 * Samsung SSD 960 EVO drops off the PCIe bus after system 2761 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2762 * within few minutes after bootup on a Coffee Lake board - 2763 * ASUS PRIME Z370-A 2764 */ 2765 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2766 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2767 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2768 return NVME_QUIRK_NO_APST; 2769 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2770 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2771 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2772 /* 2773 * Forcing to use host managed nvme power settings for 2774 * lowest idle power with quick resume latency on 2775 * Samsung and Toshiba SSDs based on suspend behavior 2776 * on Coffee Lake board for LENOVO C640 2777 */ 2778 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2779 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2780 return NVME_QUIRK_SIMPLE_SUSPEND; 2781 } 2782 2783 return 0; 2784 } 2785 2786 #ifdef CONFIG_ACPI 2787 static bool nvme_acpi_storage_d3(struct pci_dev *dev) 2788 { 2789 struct acpi_device *adev; 2790 struct pci_dev *root; 2791 acpi_handle handle; 2792 acpi_status status; 2793 u8 val; 2794 2795 /* 2796 * Look for _DSD property specifying that the storage device on the port 2797 * must use D3 to support deep platform power savings during 2798 * suspend-to-idle. 2799 */ 2800 root = pcie_find_root_port(dev); 2801 if (!root) 2802 return false; 2803 2804 adev = ACPI_COMPANION(&root->dev); 2805 if (!adev) 2806 return false; 2807 2808 /* 2809 * The property is defined in the PXSX device for South complex ports 2810 * and in the PEGP device for North complex ports. 2811 */ 2812 status = acpi_get_handle(adev->handle, "PXSX", &handle); 2813 if (ACPI_FAILURE(status)) { 2814 status = acpi_get_handle(adev->handle, "PEGP", &handle); 2815 if (ACPI_FAILURE(status)) 2816 return false; 2817 } 2818 2819 if (acpi_bus_get_device(handle, &adev)) 2820 return false; 2821 2822 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 2823 &val)) 2824 return false; 2825 return val == 1; 2826 } 2827 #else 2828 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev) 2829 { 2830 return false; 2831 } 2832 #endif /* CONFIG_ACPI */ 2833 2834 static void nvme_async_probe(void *data, async_cookie_t cookie) 2835 { 2836 struct nvme_dev *dev = data; 2837 2838 flush_work(&dev->ctrl.reset_work); 2839 flush_work(&dev->ctrl.scan_work); 2840 nvme_put_ctrl(&dev->ctrl); 2841 } 2842 2843 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2844 { 2845 int node, result = -ENOMEM; 2846 struct nvme_dev *dev; 2847 unsigned long quirks = id->driver_data; 2848 size_t alloc_size; 2849 2850 node = dev_to_node(&pdev->dev); 2851 if (node == NUMA_NO_NODE) 2852 set_dev_node(&pdev->dev, first_memory_node); 2853 2854 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2855 if (!dev) 2856 return -ENOMEM; 2857 2858 dev->nr_write_queues = write_queues; 2859 dev->nr_poll_queues = poll_queues; 2860 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2861 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2862 sizeof(struct nvme_queue), GFP_KERNEL, node); 2863 if (!dev->queues) 2864 goto free; 2865 2866 dev->dev = get_device(&pdev->dev); 2867 pci_set_drvdata(pdev, dev); 2868 2869 result = nvme_dev_map(dev); 2870 if (result) 2871 goto put_pci; 2872 2873 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2874 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2875 mutex_init(&dev->shutdown_lock); 2876 2877 result = nvme_setup_prp_pools(dev); 2878 if (result) 2879 goto unmap; 2880 2881 quirks |= check_vendor_combination_bug(pdev); 2882 2883 if (!noacpi && nvme_acpi_storage_d3(pdev)) { 2884 /* 2885 * Some systems use a bios work around to ask for D3 on 2886 * platforms that support kernel managed suspend. 2887 */ 2888 dev_info(&pdev->dev, 2889 "platform quirk: setting simple suspend\n"); 2890 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2891 } 2892 2893 /* 2894 * Double check that our mempool alloc size will cover the biggest 2895 * command we support. 2896 */ 2897 alloc_size = nvme_pci_iod_alloc_size(); 2898 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2899 2900 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2901 mempool_kfree, 2902 (void *) alloc_size, 2903 GFP_KERNEL, node); 2904 if (!dev->iod_mempool) { 2905 result = -ENOMEM; 2906 goto release_pools; 2907 } 2908 2909 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2910 quirks); 2911 if (result) 2912 goto release_mempool; 2913 2914 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2915 2916 nvme_reset_ctrl(&dev->ctrl); 2917 async_schedule(nvme_async_probe, dev); 2918 2919 return 0; 2920 2921 release_mempool: 2922 mempool_destroy(dev->iod_mempool); 2923 release_pools: 2924 nvme_release_prp_pools(dev); 2925 unmap: 2926 nvme_dev_unmap(dev); 2927 put_pci: 2928 put_device(dev->dev); 2929 free: 2930 kfree(dev->queues); 2931 kfree(dev); 2932 return result; 2933 } 2934 2935 static void nvme_reset_prepare(struct pci_dev *pdev) 2936 { 2937 struct nvme_dev *dev = pci_get_drvdata(pdev); 2938 2939 /* 2940 * We don't need to check the return value from waiting for the reset 2941 * state as pci_dev device lock is held, making it impossible to race 2942 * with ->remove(). 2943 */ 2944 nvme_disable_prepare_reset(dev, false); 2945 nvme_sync_queues(&dev->ctrl); 2946 } 2947 2948 static void nvme_reset_done(struct pci_dev *pdev) 2949 { 2950 struct nvme_dev *dev = pci_get_drvdata(pdev); 2951 2952 if (!nvme_try_sched_reset(&dev->ctrl)) 2953 flush_work(&dev->ctrl.reset_work); 2954 } 2955 2956 static void nvme_shutdown(struct pci_dev *pdev) 2957 { 2958 struct nvme_dev *dev = pci_get_drvdata(pdev); 2959 2960 nvme_disable_prepare_reset(dev, true); 2961 } 2962 2963 /* 2964 * The driver's remove may be called on a device in a partially initialized 2965 * state. This function must not have any dependencies on the device state in 2966 * order to proceed. 2967 */ 2968 static void nvme_remove(struct pci_dev *pdev) 2969 { 2970 struct nvme_dev *dev = pci_get_drvdata(pdev); 2971 2972 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2973 pci_set_drvdata(pdev, NULL); 2974 2975 if (!pci_device_is_present(pdev)) { 2976 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2977 nvme_dev_disable(dev, true); 2978 nvme_dev_remove_admin(dev); 2979 } 2980 2981 flush_work(&dev->ctrl.reset_work); 2982 nvme_stop_ctrl(&dev->ctrl); 2983 nvme_remove_namespaces(&dev->ctrl); 2984 nvme_dev_disable(dev, true); 2985 nvme_release_cmb(dev); 2986 nvme_free_host_mem(dev); 2987 nvme_dev_remove_admin(dev); 2988 nvme_free_queues(dev, 0); 2989 nvme_release_prp_pools(dev); 2990 nvme_dev_unmap(dev); 2991 nvme_uninit_ctrl(&dev->ctrl); 2992 } 2993 2994 #ifdef CONFIG_PM_SLEEP 2995 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2996 { 2997 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2998 } 2999 3000 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3001 { 3002 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3003 } 3004 3005 static int nvme_resume(struct device *dev) 3006 { 3007 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3008 struct nvme_ctrl *ctrl = &ndev->ctrl; 3009 3010 if (ndev->last_ps == U32_MAX || 3011 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3012 return nvme_try_sched_reset(&ndev->ctrl); 3013 return 0; 3014 } 3015 3016 static int nvme_suspend(struct device *dev) 3017 { 3018 struct pci_dev *pdev = to_pci_dev(dev); 3019 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3020 struct nvme_ctrl *ctrl = &ndev->ctrl; 3021 int ret = -EBUSY; 3022 3023 ndev->last_ps = U32_MAX; 3024 3025 /* 3026 * The platform does not remove power for a kernel managed suspend so 3027 * use host managed nvme power settings for lowest idle power if 3028 * possible. This should have quicker resume latency than a full device 3029 * shutdown. But if the firmware is involved after the suspend or the 3030 * device does not support any non-default power states, shut down the 3031 * device fully. 3032 * 3033 * If ASPM is not enabled for the device, shut down the device and allow 3034 * the PCI bus layer to put it into D3 in order to take the PCIe link 3035 * down, so as to allow the platform to achieve its minimum low-power 3036 * state (which may not be possible if the link is up). 3037 * 3038 * If a host memory buffer is enabled, shut down the device as the NVMe 3039 * specification allows the device to access the host memory buffer in 3040 * host DRAM from all power states, but hosts will fail access to DRAM 3041 * during S3. 3042 */ 3043 if (pm_suspend_via_firmware() || !ctrl->npss || 3044 !pcie_aspm_enabled(pdev) || 3045 ndev->nr_host_mem_descs || 3046 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3047 return nvme_disable_prepare_reset(ndev, true); 3048 3049 nvme_start_freeze(ctrl); 3050 nvme_wait_freeze(ctrl); 3051 nvme_sync_queues(ctrl); 3052 3053 if (ctrl->state != NVME_CTRL_LIVE) 3054 goto unfreeze; 3055 3056 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3057 if (ret < 0) 3058 goto unfreeze; 3059 3060 /* 3061 * A saved state prevents pci pm from generically controlling the 3062 * device's power. If we're using protocol specific settings, we don't 3063 * want pci interfering. 3064 */ 3065 pci_save_state(pdev); 3066 3067 ret = nvme_set_power_state(ctrl, ctrl->npss); 3068 if (ret < 0) 3069 goto unfreeze; 3070 3071 if (ret) { 3072 /* discard the saved state */ 3073 pci_load_saved_state(pdev, NULL); 3074 3075 /* 3076 * Clearing npss forces a controller reset on resume. The 3077 * correct value will be rediscovered then. 3078 */ 3079 ret = nvme_disable_prepare_reset(ndev, true); 3080 ctrl->npss = 0; 3081 } 3082 unfreeze: 3083 nvme_unfreeze(ctrl); 3084 return ret; 3085 } 3086 3087 static int nvme_simple_suspend(struct device *dev) 3088 { 3089 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3090 3091 return nvme_disable_prepare_reset(ndev, true); 3092 } 3093 3094 static int nvme_simple_resume(struct device *dev) 3095 { 3096 struct pci_dev *pdev = to_pci_dev(dev); 3097 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3098 3099 return nvme_try_sched_reset(&ndev->ctrl); 3100 } 3101 3102 static const struct dev_pm_ops nvme_dev_pm_ops = { 3103 .suspend = nvme_suspend, 3104 .resume = nvme_resume, 3105 .freeze = nvme_simple_suspend, 3106 .thaw = nvme_simple_resume, 3107 .poweroff = nvme_simple_suspend, 3108 .restore = nvme_simple_resume, 3109 }; 3110 #endif /* CONFIG_PM_SLEEP */ 3111 3112 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3113 pci_channel_state_t state) 3114 { 3115 struct nvme_dev *dev = pci_get_drvdata(pdev); 3116 3117 /* 3118 * A frozen channel requires a reset. When detected, this method will 3119 * shutdown the controller to quiesce. The controller will be restarted 3120 * after the slot reset through driver's slot_reset callback. 3121 */ 3122 switch (state) { 3123 case pci_channel_io_normal: 3124 return PCI_ERS_RESULT_CAN_RECOVER; 3125 case pci_channel_io_frozen: 3126 dev_warn(dev->ctrl.device, 3127 "frozen state error detected, reset controller\n"); 3128 nvme_dev_disable(dev, false); 3129 return PCI_ERS_RESULT_NEED_RESET; 3130 case pci_channel_io_perm_failure: 3131 dev_warn(dev->ctrl.device, 3132 "failure state error detected, request disconnect\n"); 3133 return PCI_ERS_RESULT_DISCONNECT; 3134 } 3135 return PCI_ERS_RESULT_NEED_RESET; 3136 } 3137 3138 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3139 { 3140 struct nvme_dev *dev = pci_get_drvdata(pdev); 3141 3142 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3143 pci_restore_state(pdev); 3144 nvme_reset_ctrl(&dev->ctrl); 3145 return PCI_ERS_RESULT_RECOVERED; 3146 } 3147 3148 static void nvme_error_resume(struct pci_dev *pdev) 3149 { 3150 struct nvme_dev *dev = pci_get_drvdata(pdev); 3151 3152 flush_work(&dev->ctrl.reset_work); 3153 } 3154 3155 static const struct pci_error_handlers nvme_err_handler = { 3156 .error_detected = nvme_error_detected, 3157 .slot_reset = nvme_slot_reset, 3158 .resume = nvme_error_resume, 3159 .reset_prepare = nvme_reset_prepare, 3160 .reset_done = nvme_reset_done, 3161 }; 3162 3163 static const struct pci_device_id nvme_id_table[] = { 3164 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3165 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3166 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3167 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3168 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3169 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3170 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3171 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3172 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3173 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3174 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3175 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3176 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3177 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3178 NVME_QUIRK_MEDIUM_PRIO_SQ | 3179 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3180 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3181 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3182 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3183 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3184 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3185 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3186 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3187 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3188 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3189 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3190 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3191 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3192 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3193 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3194 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3195 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3196 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3197 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3198 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3199 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3200 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3201 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3202 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3203 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3204 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3205 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3206 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3207 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3208 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3209 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3210 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3211 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3212 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3213 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3214 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3215 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3216 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3217 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3218 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3219 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3220 NVME_QUIRK_128_BYTES_SQES | 3221 NVME_QUIRK_SHARED_TAGS }, 3222 3223 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3224 { 0, } 3225 }; 3226 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3227 3228 static struct pci_driver nvme_driver = { 3229 .name = "nvme", 3230 .id_table = nvme_id_table, 3231 .probe = nvme_probe, 3232 .remove = nvme_remove, 3233 .shutdown = nvme_shutdown, 3234 #ifdef CONFIG_PM_SLEEP 3235 .driver = { 3236 .pm = &nvme_dev_pm_ops, 3237 }, 3238 #endif 3239 .sriov_configure = pci_sriov_configure_simple, 3240 .err_handler = &nvme_err_handler, 3241 }; 3242 3243 static int __init nvme_init(void) 3244 { 3245 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3246 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3247 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3248 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3249 3250 return pci_register_driver(&nvme_driver); 3251 } 3252 3253 static void __exit nvme_exit(void) 3254 { 3255 pci_unregister_driver(&nvme_driver); 3256 flush_workqueue(nvme_wq); 3257 } 3258 3259 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3260 MODULE_LICENSE("GPL"); 3261 MODULE_VERSION("1.0"); 3262 module_init(nvme_init); 3263 module_exit(nvme_exit); 3264