1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/kstrtox.h> 19 #include <linux/memremap.h> 20 #include <linux/mm.h> 21 #include <linux/module.h> 22 #include <linux/mutex.h> 23 #include <linux/once.h> 24 #include <linux/pci.h> 25 #include <linux/suspend.h> 26 #include <linux/t10-pi.h> 27 #include <linux/types.h> 28 #include <linux/io-64-nonatomic-lo-hi.h> 29 #include <linux/io-64-nonatomic-hi-lo.h> 30 #include <linux/sed-opal.h> 31 #include <linux/pci-p2pdma.h> 32 33 #include "trace.h" 34 #include "nvme.h" 35 36 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 37 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 38 39 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 40 41 /* 42 * These can be higher, but we need to ensure that any command doesn't 43 * require an sg allocation that needs more than a page of data. 44 */ 45 #define NVME_MAX_KB_SZ 8192 46 #define NVME_MAX_SEGS 128 47 #define NVME_MAX_NR_ALLOCATIONS 5 48 49 static int use_threaded_interrupts; 50 module_param(use_threaded_interrupts, int, 0444); 51 52 static bool use_cmb_sqes = true; 53 module_param(use_cmb_sqes, bool, 0444); 54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 55 56 static unsigned int max_host_mem_size_mb = 128; 57 module_param(max_host_mem_size_mb, uint, 0444); 58 MODULE_PARM_DESC(max_host_mem_size_mb, 59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 60 61 static unsigned int sgl_threshold = SZ_32K; 62 module_param(sgl_threshold, uint, 0644); 63 MODULE_PARM_DESC(sgl_threshold, 64 "Use SGLs when average request segment size is larger or equal to " 65 "this size. Use 0 to disable SGLs."); 66 67 #define NVME_PCI_MIN_QUEUE_SIZE 2 68 #define NVME_PCI_MAX_QUEUE_SIZE 4095 69 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 70 static const struct kernel_param_ops io_queue_depth_ops = { 71 .set = io_queue_depth_set, 72 .get = param_get_uint, 73 }; 74 75 static unsigned int io_queue_depth = 1024; 76 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 77 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 78 79 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 80 { 81 unsigned int n; 82 int ret; 83 84 ret = kstrtouint(val, 10, &n); 85 if (ret != 0 || n > num_possible_cpus()) 86 return -EINVAL; 87 return param_set_uint(val, kp); 88 } 89 90 static const struct kernel_param_ops io_queue_count_ops = { 91 .set = io_queue_count_set, 92 .get = param_get_uint, 93 }; 94 95 static unsigned int write_queues; 96 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 97 MODULE_PARM_DESC(write_queues, 98 "Number of queues to use for writes. If not set, reads and writes " 99 "will share a queue set."); 100 101 static unsigned int poll_queues; 102 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 103 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 104 105 static bool noacpi; 106 module_param(noacpi, bool, 0444); 107 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 108 109 struct nvme_dev; 110 struct nvme_queue; 111 112 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 113 static void nvme_delete_io_queues(struct nvme_dev *dev); 114 static void nvme_update_attrs(struct nvme_dev *dev); 115 116 /* 117 * Represents an NVM Express device. Each nvme_dev is a PCI function. 118 */ 119 struct nvme_dev { 120 struct nvme_queue *queues; 121 struct blk_mq_tag_set tagset; 122 struct blk_mq_tag_set admin_tagset; 123 u32 __iomem *dbs; 124 struct device *dev; 125 struct dma_pool *prp_page_pool; 126 struct dma_pool *prp_small_pool; 127 unsigned online_queues; 128 unsigned max_qid; 129 unsigned io_queues[HCTX_MAX_TYPES]; 130 unsigned int num_vecs; 131 u32 q_depth; 132 int io_sqes; 133 u32 db_stride; 134 void __iomem *bar; 135 unsigned long bar_mapped_size; 136 struct mutex shutdown_lock; 137 bool subsystem; 138 u64 cmb_size; 139 bool cmb_use_sqes; 140 u32 cmbsz; 141 u32 cmbloc; 142 struct nvme_ctrl ctrl; 143 u32 last_ps; 144 bool hmb; 145 146 mempool_t *iod_mempool; 147 148 /* shadow doorbell buffer support: */ 149 __le32 *dbbuf_dbs; 150 dma_addr_t dbbuf_dbs_dma_addr; 151 __le32 *dbbuf_eis; 152 dma_addr_t dbbuf_eis_dma_addr; 153 154 /* host memory buffer support: */ 155 u64 host_mem_size; 156 u32 nr_host_mem_descs; 157 dma_addr_t host_mem_descs_dma; 158 struct nvme_host_mem_buf_desc *host_mem_descs; 159 void **host_mem_desc_bufs; 160 unsigned int nr_allocated_queues; 161 unsigned int nr_write_queues; 162 unsigned int nr_poll_queues; 163 }; 164 165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 166 { 167 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 168 NVME_PCI_MAX_QUEUE_SIZE); 169 } 170 171 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 172 { 173 return qid * 2 * stride; 174 } 175 176 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 177 { 178 return (qid * 2 + 1) * stride; 179 } 180 181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 182 { 183 return container_of(ctrl, struct nvme_dev, ctrl); 184 } 185 186 /* 187 * An NVM Express queue. Each device has at least two (one for admin 188 * commands and one for I/O commands). 189 */ 190 struct nvme_queue { 191 struct nvme_dev *dev; 192 spinlock_t sq_lock; 193 void *sq_cmds; 194 /* only used for poll queues: */ 195 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 196 struct nvme_completion *cqes; 197 dma_addr_t sq_dma_addr; 198 dma_addr_t cq_dma_addr; 199 u32 __iomem *q_db; 200 u32 q_depth; 201 u16 cq_vector; 202 u16 sq_tail; 203 u16 last_sq_tail; 204 u16 cq_head; 205 u16 qid; 206 u8 cq_phase; 207 u8 sqes; 208 unsigned long flags; 209 #define NVMEQ_ENABLED 0 210 #define NVMEQ_SQ_CMB 1 211 #define NVMEQ_DELETE_ERROR 2 212 #define NVMEQ_POLLED 3 213 __le32 *dbbuf_sq_db; 214 __le32 *dbbuf_cq_db; 215 __le32 *dbbuf_sq_ei; 216 __le32 *dbbuf_cq_ei; 217 struct completion delete_done; 218 }; 219 220 union nvme_descriptor { 221 struct nvme_sgl_desc *sg_list; 222 __le64 *prp_list; 223 }; 224 225 /* 226 * The nvme_iod describes the data in an I/O. 227 * 228 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 229 * to the actual struct scatterlist. 230 */ 231 struct nvme_iod { 232 struct nvme_request req; 233 struct nvme_command cmd; 234 bool aborted; 235 s8 nr_allocations; /* PRP list pool allocations. 0 means small 236 pool in use */ 237 unsigned int dma_len; /* length of single DMA segment mapping */ 238 dma_addr_t first_dma; 239 dma_addr_t meta_dma; 240 struct sg_table sgt; 241 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 242 }; 243 244 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 245 { 246 return dev->nr_allocated_queues * 8 * dev->db_stride; 247 } 248 249 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 250 { 251 unsigned int mem_size = nvme_dbbuf_size(dev); 252 253 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 254 return; 255 256 if (dev->dbbuf_dbs) { 257 /* 258 * Clear the dbbuf memory so the driver doesn't observe stale 259 * values from the previous instantiation. 260 */ 261 memset(dev->dbbuf_dbs, 0, mem_size); 262 memset(dev->dbbuf_eis, 0, mem_size); 263 return; 264 } 265 266 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 267 &dev->dbbuf_dbs_dma_addr, 268 GFP_KERNEL); 269 if (!dev->dbbuf_dbs) 270 goto fail; 271 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 272 &dev->dbbuf_eis_dma_addr, 273 GFP_KERNEL); 274 if (!dev->dbbuf_eis) 275 goto fail_free_dbbuf_dbs; 276 return; 277 278 fail_free_dbbuf_dbs: 279 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 280 dev->dbbuf_dbs_dma_addr); 281 dev->dbbuf_dbs = NULL; 282 fail: 283 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 284 } 285 286 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 287 { 288 unsigned int mem_size = nvme_dbbuf_size(dev); 289 290 if (dev->dbbuf_dbs) { 291 dma_free_coherent(dev->dev, mem_size, 292 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 293 dev->dbbuf_dbs = NULL; 294 } 295 if (dev->dbbuf_eis) { 296 dma_free_coherent(dev->dev, mem_size, 297 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 298 dev->dbbuf_eis = NULL; 299 } 300 } 301 302 static void nvme_dbbuf_init(struct nvme_dev *dev, 303 struct nvme_queue *nvmeq, int qid) 304 { 305 if (!dev->dbbuf_dbs || !qid) 306 return; 307 308 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 311 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 312 } 313 314 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 315 { 316 if (!nvmeq->qid) 317 return; 318 319 nvmeq->dbbuf_sq_db = NULL; 320 nvmeq->dbbuf_cq_db = NULL; 321 nvmeq->dbbuf_sq_ei = NULL; 322 nvmeq->dbbuf_cq_ei = NULL; 323 } 324 325 static void nvme_dbbuf_set(struct nvme_dev *dev) 326 { 327 struct nvme_command c = { }; 328 unsigned int i; 329 330 if (!dev->dbbuf_dbs) 331 return; 332 333 c.dbbuf.opcode = nvme_admin_dbbuf; 334 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 335 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 336 337 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 338 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 339 /* Free memory and continue on */ 340 nvme_dbbuf_dma_free(dev); 341 342 for (i = 1; i <= dev->online_queues; i++) 343 nvme_dbbuf_free(&dev->queues[i]); 344 } 345 } 346 347 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 348 { 349 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 350 } 351 352 /* Update dbbuf and return true if an MMIO is required */ 353 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 354 volatile __le32 *dbbuf_ei) 355 { 356 if (dbbuf_db) { 357 u16 old_value, event_idx; 358 359 /* 360 * Ensure that the queue is written before updating 361 * the doorbell in memory 362 */ 363 wmb(); 364 365 old_value = le32_to_cpu(*dbbuf_db); 366 *dbbuf_db = cpu_to_le32(value); 367 368 /* 369 * Ensure that the doorbell is updated before reading the event 370 * index from memory. The controller needs to provide similar 371 * ordering to ensure the envent index is updated before reading 372 * the doorbell. 373 */ 374 mb(); 375 376 event_idx = le32_to_cpu(*dbbuf_ei); 377 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 378 return false; 379 } 380 381 return true; 382 } 383 384 /* 385 * Will slightly overestimate the number of pages needed. This is OK 386 * as it only leads to a small amount of wasted memory for the lifetime of 387 * the I/O. 388 */ 389 static int nvme_pci_npages_prp(void) 390 { 391 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 392 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 393 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 394 } 395 396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 397 unsigned int hctx_idx) 398 { 399 struct nvme_dev *dev = to_nvme_dev(data); 400 struct nvme_queue *nvmeq = &dev->queues[0]; 401 402 WARN_ON(hctx_idx != 0); 403 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 404 405 hctx->driver_data = nvmeq; 406 return 0; 407 } 408 409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 410 unsigned int hctx_idx) 411 { 412 struct nvme_dev *dev = to_nvme_dev(data); 413 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 414 415 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 416 hctx->driver_data = nvmeq; 417 return 0; 418 } 419 420 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 421 struct request *req, unsigned int hctx_idx, 422 unsigned int numa_node) 423 { 424 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 426 427 nvme_req(req)->ctrl = &dev->ctrl; 428 nvme_req(req)->cmd = &iod->cmd; 429 return 0; 430 } 431 432 static int queue_irq_offset(struct nvme_dev *dev) 433 { 434 /* if we have more than 1 vec, admin queue offsets us by 1 */ 435 if (dev->num_vecs > 1) 436 return 1; 437 438 return 0; 439 } 440 441 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 442 { 443 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 444 int i, qoff, offset; 445 446 offset = queue_irq_offset(dev); 447 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 448 struct blk_mq_queue_map *map = &set->map[i]; 449 450 map->nr_queues = dev->io_queues[i]; 451 if (!map->nr_queues) { 452 BUG_ON(i == HCTX_TYPE_DEFAULT); 453 continue; 454 } 455 456 /* 457 * The poll queue(s) doesn't have an IRQ (and hence IRQ 458 * affinity), so use the regular blk-mq cpu mapping 459 */ 460 map->queue_offset = qoff; 461 if (i != HCTX_TYPE_POLL && offset) 462 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 463 else 464 blk_mq_map_queues(map); 465 qoff += map->nr_queues; 466 offset += map->nr_queues; 467 } 468 } 469 470 /* 471 * Write sq tail if we are asked to, or if the next command would wrap. 472 */ 473 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 474 { 475 if (!write_sq) { 476 u16 next_tail = nvmeq->sq_tail + 1; 477 478 if (next_tail == nvmeq->q_depth) 479 next_tail = 0; 480 if (next_tail != nvmeq->last_sq_tail) 481 return; 482 } 483 484 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 485 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 486 writel(nvmeq->sq_tail, nvmeq->q_db); 487 nvmeq->last_sq_tail = nvmeq->sq_tail; 488 } 489 490 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 491 struct nvme_command *cmd) 492 { 493 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 494 absolute_pointer(cmd), sizeof(*cmd)); 495 if (++nvmeq->sq_tail == nvmeq->q_depth) 496 nvmeq->sq_tail = 0; 497 } 498 499 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 500 { 501 struct nvme_queue *nvmeq = hctx->driver_data; 502 503 spin_lock(&nvmeq->sq_lock); 504 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 505 nvme_write_sq_db(nvmeq, true); 506 spin_unlock(&nvmeq->sq_lock); 507 } 508 509 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 510 int nseg) 511 { 512 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 513 unsigned int avg_seg_size; 514 515 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 516 517 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 518 return false; 519 if (!nvmeq->qid) 520 return false; 521 if (!sgl_threshold || avg_seg_size < sgl_threshold) 522 return false; 523 return true; 524 } 525 526 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 527 { 528 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 529 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 530 dma_addr_t dma_addr = iod->first_dma; 531 int i; 532 533 for (i = 0; i < iod->nr_allocations; i++) { 534 __le64 *prp_list = iod->list[i].prp_list; 535 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 536 537 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 538 dma_addr = next_dma_addr; 539 } 540 } 541 542 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 543 { 544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 545 546 if (iod->dma_len) { 547 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 548 rq_dma_dir(req)); 549 return; 550 } 551 552 WARN_ON_ONCE(!iod->sgt.nents); 553 554 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 555 556 if (iod->nr_allocations == 0) 557 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 558 iod->first_dma); 559 else if (iod->nr_allocations == 1) 560 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 561 iod->first_dma); 562 else 563 nvme_free_prps(dev, req); 564 mempool_free(iod->sgt.sgl, dev->iod_mempool); 565 } 566 567 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 568 { 569 int i; 570 struct scatterlist *sg; 571 572 for_each_sg(sgl, sg, nents, i) { 573 dma_addr_t phys = sg_phys(sg); 574 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 575 "dma_address:%pad dma_length:%d\n", 576 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 577 sg_dma_len(sg)); 578 } 579 } 580 581 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 582 struct request *req, struct nvme_rw_command *cmnd) 583 { 584 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 585 struct dma_pool *pool; 586 int length = blk_rq_payload_bytes(req); 587 struct scatterlist *sg = iod->sgt.sgl; 588 int dma_len = sg_dma_len(sg); 589 u64 dma_addr = sg_dma_address(sg); 590 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 591 __le64 *prp_list; 592 dma_addr_t prp_dma; 593 int nprps, i; 594 595 length -= (NVME_CTRL_PAGE_SIZE - offset); 596 if (length <= 0) { 597 iod->first_dma = 0; 598 goto done; 599 } 600 601 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 602 if (dma_len) { 603 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 604 } else { 605 sg = sg_next(sg); 606 dma_addr = sg_dma_address(sg); 607 dma_len = sg_dma_len(sg); 608 } 609 610 if (length <= NVME_CTRL_PAGE_SIZE) { 611 iod->first_dma = dma_addr; 612 goto done; 613 } 614 615 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 616 if (nprps <= (256 / 8)) { 617 pool = dev->prp_small_pool; 618 iod->nr_allocations = 0; 619 } else { 620 pool = dev->prp_page_pool; 621 iod->nr_allocations = 1; 622 } 623 624 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 625 if (!prp_list) { 626 iod->nr_allocations = -1; 627 return BLK_STS_RESOURCE; 628 } 629 iod->list[0].prp_list = prp_list; 630 iod->first_dma = prp_dma; 631 i = 0; 632 for (;;) { 633 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 634 __le64 *old_prp_list = prp_list; 635 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 636 if (!prp_list) 637 goto free_prps; 638 iod->list[iod->nr_allocations++].prp_list = prp_list; 639 prp_list[0] = old_prp_list[i - 1]; 640 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 641 i = 1; 642 } 643 prp_list[i++] = cpu_to_le64(dma_addr); 644 dma_len -= NVME_CTRL_PAGE_SIZE; 645 dma_addr += NVME_CTRL_PAGE_SIZE; 646 length -= NVME_CTRL_PAGE_SIZE; 647 if (length <= 0) 648 break; 649 if (dma_len > 0) 650 continue; 651 if (unlikely(dma_len < 0)) 652 goto bad_sgl; 653 sg = sg_next(sg); 654 dma_addr = sg_dma_address(sg); 655 dma_len = sg_dma_len(sg); 656 } 657 done: 658 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 659 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 660 return BLK_STS_OK; 661 free_prps: 662 nvme_free_prps(dev, req); 663 return BLK_STS_RESOURCE; 664 bad_sgl: 665 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 666 "Invalid SGL for payload:%d nents:%d\n", 667 blk_rq_payload_bytes(req), iod->sgt.nents); 668 return BLK_STS_IOERR; 669 } 670 671 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 672 struct scatterlist *sg) 673 { 674 sge->addr = cpu_to_le64(sg_dma_address(sg)); 675 sge->length = cpu_to_le32(sg_dma_len(sg)); 676 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 677 } 678 679 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 680 dma_addr_t dma_addr, int entries) 681 { 682 sge->addr = cpu_to_le64(dma_addr); 683 sge->length = cpu_to_le32(entries * sizeof(*sge)); 684 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 685 } 686 687 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 688 struct request *req, struct nvme_rw_command *cmd) 689 { 690 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 691 struct dma_pool *pool; 692 struct nvme_sgl_desc *sg_list; 693 struct scatterlist *sg = iod->sgt.sgl; 694 unsigned int entries = iod->sgt.nents; 695 dma_addr_t sgl_dma; 696 int i = 0; 697 698 /* setting the transfer type as SGL */ 699 cmd->flags = NVME_CMD_SGL_METABUF; 700 701 if (entries == 1) { 702 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 703 return BLK_STS_OK; 704 } 705 706 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 707 pool = dev->prp_small_pool; 708 iod->nr_allocations = 0; 709 } else { 710 pool = dev->prp_page_pool; 711 iod->nr_allocations = 1; 712 } 713 714 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 715 if (!sg_list) { 716 iod->nr_allocations = -1; 717 return BLK_STS_RESOURCE; 718 } 719 720 iod->list[0].sg_list = sg_list; 721 iod->first_dma = sgl_dma; 722 723 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 724 do { 725 nvme_pci_sgl_set_data(&sg_list[i++], sg); 726 sg = sg_next(sg); 727 } while (--entries > 0); 728 729 return BLK_STS_OK; 730 } 731 732 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 733 struct request *req, struct nvme_rw_command *cmnd, 734 struct bio_vec *bv) 735 { 736 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 737 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 738 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 739 740 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 741 if (dma_mapping_error(dev->dev, iod->first_dma)) 742 return BLK_STS_RESOURCE; 743 iod->dma_len = bv->bv_len; 744 745 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 746 if (bv->bv_len > first_prp_len) 747 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 748 else 749 cmnd->dptr.prp2 = 0; 750 return BLK_STS_OK; 751 } 752 753 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 754 struct request *req, struct nvme_rw_command *cmnd, 755 struct bio_vec *bv) 756 { 757 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 758 759 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 760 if (dma_mapping_error(dev->dev, iod->first_dma)) 761 return BLK_STS_RESOURCE; 762 iod->dma_len = bv->bv_len; 763 764 cmnd->flags = NVME_CMD_SGL_METABUF; 765 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 766 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 767 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 768 return BLK_STS_OK; 769 } 770 771 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 772 struct nvme_command *cmnd) 773 { 774 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 775 blk_status_t ret = BLK_STS_RESOURCE; 776 int rc; 777 778 if (blk_rq_nr_phys_segments(req) == 1) { 779 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 780 struct bio_vec bv = req_bvec(req); 781 782 if (!is_pci_p2pdma_page(bv.bv_page)) { 783 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 784 return nvme_setup_prp_simple(dev, req, 785 &cmnd->rw, &bv); 786 787 if (nvmeq->qid && sgl_threshold && 788 nvme_ctrl_sgl_supported(&dev->ctrl)) 789 return nvme_setup_sgl_simple(dev, req, 790 &cmnd->rw, &bv); 791 } 792 } 793 794 iod->dma_len = 0; 795 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 796 if (!iod->sgt.sgl) 797 return BLK_STS_RESOURCE; 798 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 799 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 800 if (!iod->sgt.orig_nents) 801 goto out_free_sg; 802 803 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 804 DMA_ATTR_NO_WARN); 805 if (rc) { 806 if (rc == -EREMOTEIO) 807 ret = BLK_STS_TARGET; 808 goto out_free_sg; 809 } 810 811 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 812 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 813 else 814 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 815 if (ret != BLK_STS_OK) 816 goto out_unmap_sg; 817 return BLK_STS_OK; 818 819 out_unmap_sg: 820 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 821 out_free_sg: 822 mempool_free(iod->sgt.sgl, dev->iod_mempool); 823 return ret; 824 } 825 826 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 827 struct nvme_command *cmnd) 828 { 829 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 830 831 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 832 rq_dma_dir(req), 0); 833 if (dma_mapping_error(dev->dev, iod->meta_dma)) 834 return BLK_STS_IOERR; 835 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 836 return BLK_STS_OK; 837 } 838 839 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 840 { 841 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 842 blk_status_t ret; 843 844 iod->aborted = false; 845 iod->nr_allocations = -1; 846 iod->sgt.nents = 0; 847 848 ret = nvme_setup_cmd(req->q->queuedata, req); 849 if (ret) 850 return ret; 851 852 if (blk_rq_nr_phys_segments(req)) { 853 ret = nvme_map_data(dev, req, &iod->cmd); 854 if (ret) 855 goto out_free_cmd; 856 } 857 858 if (blk_integrity_rq(req)) { 859 ret = nvme_map_metadata(dev, req, &iod->cmd); 860 if (ret) 861 goto out_unmap_data; 862 } 863 864 nvme_start_request(req); 865 return BLK_STS_OK; 866 out_unmap_data: 867 nvme_unmap_data(dev, req); 868 out_free_cmd: 869 nvme_cleanup_cmd(req); 870 return ret; 871 } 872 873 /* 874 * NOTE: ns is NULL when called on the admin queue. 875 */ 876 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 877 const struct blk_mq_queue_data *bd) 878 { 879 struct nvme_queue *nvmeq = hctx->driver_data; 880 struct nvme_dev *dev = nvmeq->dev; 881 struct request *req = bd->rq; 882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 883 blk_status_t ret; 884 885 /* 886 * We should not need to do this, but we're still using this to 887 * ensure we can drain requests on a dying queue. 888 */ 889 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 890 return BLK_STS_IOERR; 891 892 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 893 return nvme_fail_nonready_command(&dev->ctrl, req); 894 895 ret = nvme_prep_rq(dev, req); 896 if (unlikely(ret)) 897 return ret; 898 spin_lock(&nvmeq->sq_lock); 899 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 900 nvme_write_sq_db(nvmeq, bd->last); 901 spin_unlock(&nvmeq->sq_lock); 902 return BLK_STS_OK; 903 } 904 905 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 906 { 907 spin_lock(&nvmeq->sq_lock); 908 while (!rq_list_empty(*rqlist)) { 909 struct request *req = rq_list_pop(rqlist); 910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 911 912 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 913 } 914 nvme_write_sq_db(nvmeq, true); 915 spin_unlock(&nvmeq->sq_lock); 916 } 917 918 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 919 { 920 /* 921 * We should not need to do this, but we're still using this to 922 * ensure we can drain requests on a dying queue. 923 */ 924 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 925 return false; 926 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 927 return false; 928 929 req->mq_hctx->tags->rqs[req->tag] = req; 930 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 931 } 932 933 static void nvme_queue_rqs(struct request **rqlist) 934 { 935 struct request *req, *next, *prev = NULL; 936 struct request *requeue_list = NULL; 937 938 rq_list_for_each_safe(rqlist, req, next) { 939 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 940 941 if (!nvme_prep_rq_batch(nvmeq, req)) { 942 /* detach 'req' and add to remainder list */ 943 rq_list_move(rqlist, &requeue_list, req, prev); 944 945 req = prev; 946 if (!req) 947 continue; 948 } 949 950 if (!next || req->mq_hctx != next->mq_hctx) { 951 /* detach rest of list, and submit */ 952 req->rq_next = NULL; 953 nvme_submit_cmds(nvmeq, rqlist); 954 *rqlist = next; 955 prev = NULL; 956 } else 957 prev = req; 958 } 959 960 *rqlist = requeue_list; 961 } 962 963 static __always_inline void nvme_pci_unmap_rq(struct request *req) 964 { 965 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 966 struct nvme_dev *dev = nvmeq->dev; 967 968 if (blk_integrity_rq(req)) { 969 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 970 971 dma_unmap_page(dev->dev, iod->meta_dma, 972 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 973 } 974 975 if (blk_rq_nr_phys_segments(req)) 976 nvme_unmap_data(dev, req); 977 } 978 979 static void nvme_pci_complete_rq(struct request *req) 980 { 981 nvme_pci_unmap_rq(req); 982 nvme_complete_rq(req); 983 } 984 985 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 986 { 987 nvme_complete_batch(iob, nvme_pci_unmap_rq); 988 } 989 990 /* We read the CQE phase first to check if the rest of the entry is valid */ 991 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 992 { 993 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 994 995 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 996 } 997 998 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 999 { 1000 u16 head = nvmeq->cq_head; 1001 1002 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1003 nvmeq->dbbuf_cq_ei)) 1004 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1005 } 1006 1007 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1008 { 1009 if (!nvmeq->qid) 1010 return nvmeq->dev->admin_tagset.tags[0]; 1011 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1012 } 1013 1014 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1015 struct io_comp_batch *iob, u16 idx) 1016 { 1017 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1018 __u16 command_id = READ_ONCE(cqe->command_id); 1019 struct request *req; 1020 1021 /* 1022 * AEN requests are special as they don't time out and can 1023 * survive any kind of queue freeze and often don't respond to 1024 * aborts. We don't even bother to allocate a struct request 1025 * for them but rather special case them here. 1026 */ 1027 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1028 nvme_complete_async_event(&nvmeq->dev->ctrl, 1029 cqe->status, &cqe->result); 1030 return; 1031 } 1032 1033 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1034 if (unlikely(!req)) { 1035 dev_warn(nvmeq->dev->ctrl.device, 1036 "invalid id %d completed on queue %d\n", 1037 command_id, le16_to_cpu(cqe->sq_id)); 1038 return; 1039 } 1040 1041 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1042 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1043 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1044 nvme_pci_complete_batch)) 1045 nvme_pci_complete_rq(req); 1046 } 1047 1048 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1049 { 1050 u32 tmp = nvmeq->cq_head + 1; 1051 1052 if (tmp == nvmeq->q_depth) { 1053 nvmeq->cq_head = 0; 1054 nvmeq->cq_phase ^= 1; 1055 } else { 1056 nvmeq->cq_head = tmp; 1057 } 1058 } 1059 1060 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1061 struct io_comp_batch *iob) 1062 { 1063 int found = 0; 1064 1065 while (nvme_cqe_pending(nvmeq)) { 1066 found++; 1067 /* 1068 * load-load control dependency between phase and the rest of 1069 * the cqe requires a full read memory barrier 1070 */ 1071 dma_rmb(); 1072 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1073 nvme_update_cq_head(nvmeq); 1074 } 1075 1076 if (found) 1077 nvme_ring_cq_doorbell(nvmeq); 1078 return found; 1079 } 1080 1081 static irqreturn_t nvme_irq(int irq, void *data) 1082 { 1083 struct nvme_queue *nvmeq = data; 1084 DEFINE_IO_COMP_BATCH(iob); 1085 1086 if (nvme_poll_cq(nvmeq, &iob)) { 1087 if (!rq_list_empty(iob.req_list)) 1088 nvme_pci_complete_batch(&iob); 1089 return IRQ_HANDLED; 1090 } 1091 return IRQ_NONE; 1092 } 1093 1094 static irqreturn_t nvme_irq_check(int irq, void *data) 1095 { 1096 struct nvme_queue *nvmeq = data; 1097 1098 if (nvme_cqe_pending(nvmeq)) 1099 return IRQ_WAKE_THREAD; 1100 return IRQ_NONE; 1101 } 1102 1103 /* 1104 * Poll for completions for any interrupt driven queue 1105 * Can be called from any context. 1106 */ 1107 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1108 { 1109 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1110 1111 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1112 1113 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1114 nvme_poll_cq(nvmeq, NULL); 1115 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1116 } 1117 1118 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1119 { 1120 struct nvme_queue *nvmeq = hctx->driver_data; 1121 bool found; 1122 1123 if (!nvme_cqe_pending(nvmeq)) 1124 return 0; 1125 1126 spin_lock(&nvmeq->cq_poll_lock); 1127 found = nvme_poll_cq(nvmeq, iob); 1128 spin_unlock(&nvmeq->cq_poll_lock); 1129 1130 return found; 1131 } 1132 1133 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1134 { 1135 struct nvme_dev *dev = to_nvme_dev(ctrl); 1136 struct nvme_queue *nvmeq = &dev->queues[0]; 1137 struct nvme_command c = { }; 1138 1139 c.common.opcode = nvme_admin_async_event; 1140 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1141 1142 spin_lock(&nvmeq->sq_lock); 1143 nvme_sq_copy_cmd(nvmeq, &c); 1144 nvme_write_sq_db(nvmeq, true); 1145 spin_unlock(&nvmeq->sq_lock); 1146 } 1147 1148 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1149 { 1150 struct nvme_command c = { }; 1151 1152 c.delete_queue.opcode = opcode; 1153 c.delete_queue.qid = cpu_to_le16(id); 1154 1155 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1156 } 1157 1158 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1159 struct nvme_queue *nvmeq, s16 vector) 1160 { 1161 struct nvme_command c = { }; 1162 int flags = NVME_QUEUE_PHYS_CONTIG; 1163 1164 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1165 flags |= NVME_CQ_IRQ_ENABLED; 1166 1167 /* 1168 * Note: we (ab)use the fact that the prp fields survive if no data 1169 * is attached to the request. 1170 */ 1171 c.create_cq.opcode = nvme_admin_create_cq; 1172 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1173 c.create_cq.cqid = cpu_to_le16(qid); 1174 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1175 c.create_cq.cq_flags = cpu_to_le16(flags); 1176 c.create_cq.irq_vector = cpu_to_le16(vector); 1177 1178 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1179 } 1180 1181 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1182 struct nvme_queue *nvmeq) 1183 { 1184 struct nvme_ctrl *ctrl = &dev->ctrl; 1185 struct nvme_command c = { }; 1186 int flags = NVME_QUEUE_PHYS_CONTIG; 1187 1188 /* 1189 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1190 * set. Since URGENT priority is zeroes, it makes all queues 1191 * URGENT. 1192 */ 1193 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1194 flags |= NVME_SQ_PRIO_MEDIUM; 1195 1196 /* 1197 * Note: we (ab)use the fact that the prp fields survive if no data 1198 * is attached to the request. 1199 */ 1200 c.create_sq.opcode = nvme_admin_create_sq; 1201 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1202 c.create_sq.sqid = cpu_to_le16(qid); 1203 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1204 c.create_sq.sq_flags = cpu_to_le16(flags); 1205 c.create_sq.cqid = cpu_to_le16(qid); 1206 1207 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1208 } 1209 1210 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1211 { 1212 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1213 } 1214 1215 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1216 { 1217 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1218 } 1219 1220 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1221 { 1222 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1223 1224 dev_warn(nvmeq->dev->ctrl.device, 1225 "Abort status: 0x%x", nvme_req(req)->status); 1226 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1227 blk_mq_free_request(req); 1228 return RQ_END_IO_NONE; 1229 } 1230 1231 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1232 { 1233 /* If true, indicates loss of adapter communication, possibly by a 1234 * NVMe Subsystem reset. 1235 */ 1236 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1237 1238 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1239 switch (dev->ctrl.state) { 1240 case NVME_CTRL_RESETTING: 1241 case NVME_CTRL_CONNECTING: 1242 return false; 1243 default: 1244 break; 1245 } 1246 1247 /* We shouldn't reset unless the controller is on fatal error state 1248 * _or_ if we lost the communication with it. 1249 */ 1250 if (!(csts & NVME_CSTS_CFS) && !nssro) 1251 return false; 1252 1253 return true; 1254 } 1255 1256 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1257 { 1258 /* Read a config register to help see what died. */ 1259 u16 pci_status; 1260 int result; 1261 1262 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1263 &pci_status); 1264 if (result == PCIBIOS_SUCCESSFUL) 1265 dev_warn(dev->ctrl.device, 1266 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1267 csts, pci_status); 1268 else 1269 dev_warn(dev->ctrl.device, 1270 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1271 csts, result); 1272 1273 if (csts != ~0) 1274 return; 1275 1276 dev_warn(dev->ctrl.device, 1277 "Does your device have a faulty power saving mode enabled?\n"); 1278 dev_warn(dev->ctrl.device, 1279 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1280 } 1281 1282 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1283 { 1284 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1285 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1286 struct nvme_dev *dev = nvmeq->dev; 1287 struct request *abort_req; 1288 struct nvme_command cmd = { }; 1289 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1290 1291 /* If PCI error recovery process is happening, we cannot reset or 1292 * the recovery mechanism will surely fail. 1293 */ 1294 mb(); 1295 if (pci_channel_offline(to_pci_dev(dev->dev))) 1296 return BLK_EH_RESET_TIMER; 1297 1298 /* 1299 * Reset immediately if the controller is failed 1300 */ 1301 if (nvme_should_reset(dev, csts)) { 1302 nvme_warn_reset(dev, csts); 1303 nvme_dev_disable(dev, false); 1304 nvme_reset_ctrl(&dev->ctrl); 1305 return BLK_EH_DONE; 1306 } 1307 1308 /* 1309 * Did we miss an interrupt? 1310 */ 1311 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1312 nvme_poll(req->mq_hctx, NULL); 1313 else 1314 nvme_poll_irqdisable(nvmeq); 1315 1316 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1317 dev_warn(dev->ctrl.device, 1318 "I/O %d QID %d timeout, completion polled\n", 1319 req->tag, nvmeq->qid); 1320 return BLK_EH_DONE; 1321 } 1322 1323 /* 1324 * Shutdown immediately if controller times out while starting. The 1325 * reset work will see the pci device disabled when it gets the forced 1326 * cancellation error. All outstanding requests are completed on 1327 * shutdown, so we return BLK_EH_DONE. 1328 */ 1329 switch (dev->ctrl.state) { 1330 case NVME_CTRL_CONNECTING: 1331 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1332 fallthrough; 1333 case NVME_CTRL_DELETING: 1334 dev_warn_ratelimited(dev->ctrl.device, 1335 "I/O %d QID %d timeout, disable controller\n", 1336 req->tag, nvmeq->qid); 1337 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1338 nvme_dev_disable(dev, true); 1339 return BLK_EH_DONE; 1340 case NVME_CTRL_RESETTING: 1341 return BLK_EH_RESET_TIMER; 1342 default: 1343 break; 1344 } 1345 1346 /* 1347 * Shutdown the controller immediately and schedule a reset if the 1348 * command was already aborted once before and still hasn't been 1349 * returned to the driver, or if this is the admin queue. 1350 */ 1351 if (!nvmeq->qid || iod->aborted) { 1352 dev_warn(dev->ctrl.device, 1353 "I/O %d QID %d timeout, reset controller\n", 1354 req->tag, nvmeq->qid); 1355 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1356 nvme_dev_disable(dev, false); 1357 nvme_reset_ctrl(&dev->ctrl); 1358 1359 return BLK_EH_DONE; 1360 } 1361 1362 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1363 atomic_inc(&dev->ctrl.abort_limit); 1364 return BLK_EH_RESET_TIMER; 1365 } 1366 iod->aborted = true; 1367 1368 cmd.abort.opcode = nvme_admin_abort_cmd; 1369 cmd.abort.cid = nvme_cid(req); 1370 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1371 1372 dev_warn(nvmeq->dev->ctrl.device, 1373 "I/O %d (%s) QID %d timeout, aborting\n", 1374 req->tag, 1375 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1376 nvmeq->qid); 1377 1378 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1379 BLK_MQ_REQ_NOWAIT); 1380 if (IS_ERR(abort_req)) { 1381 atomic_inc(&dev->ctrl.abort_limit); 1382 return BLK_EH_RESET_TIMER; 1383 } 1384 nvme_init_request(abort_req, &cmd); 1385 1386 abort_req->end_io = abort_endio; 1387 abort_req->end_io_data = NULL; 1388 blk_execute_rq_nowait(abort_req, false); 1389 1390 /* 1391 * The aborted req will be completed on receiving the abort req. 1392 * We enable the timer again. If hit twice, it'll cause a device reset, 1393 * as the device then is in a faulty state. 1394 */ 1395 return BLK_EH_RESET_TIMER; 1396 } 1397 1398 static void nvme_free_queue(struct nvme_queue *nvmeq) 1399 { 1400 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1401 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1402 if (!nvmeq->sq_cmds) 1403 return; 1404 1405 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1406 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1407 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1408 } else { 1409 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1410 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1411 } 1412 } 1413 1414 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1415 { 1416 int i; 1417 1418 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1419 dev->ctrl.queue_count--; 1420 nvme_free_queue(&dev->queues[i]); 1421 } 1422 } 1423 1424 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1425 { 1426 struct nvme_queue *nvmeq = &dev->queues[qid]; 1427 1428 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1429 return; 1430 1431 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1432 mb(); 1433 1434 nvmeq->dev->online_queues--; 1435 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1436 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1437 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1438 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1439 } 1440 1441 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1442 { 1443 int i; 1444 1445 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1446 nvme_suspend_queue(dev, i); 1447 } 1448 1449 /* 1450 * Called only on a device that has been disabled and after all other threads 1451 * that can check this device's completion queues have synced, except 1452 * nvme_poll(). This is the last chance for the driver to see a natural 1453 * completion before nvme_cancel_request() terminates all incomplete requests. 1454 */ 1455 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1456 { 1457 int i; 1458 1459 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1460 spin_lock(&dev->queues[i].cq_poll_lock); 1461 nvme_poll_cq(&dev->queues[i], NULL); 1462 spin_unlock(&dev->queues[i].cq_poll_lock); 1463 } 1464 } 1465 1466 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1467 int entry_size) 1468 { 1469 int q_depth = dev->q_depth; 1470 unsigned q_size_aligned = roundup(q_depth * entry_size, 1471 NVME_CTRL_PAGE_SIZE); 1472 1473 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1474 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1475 1476 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1477 q_depth = div_u64(mem_per_q, entry_size); 1478 1479 /* 1480 * Ensure the reduced q_depth is above some threshold where it 1481 * would be better to map queues in system memory with the 1482 * original depth 1483 */ 1484 if (q_depth < 64) 1485 return -ENOMEM; 1486 } 1487 1488 return q_depth; 1489 } 1490 1491 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1492 int qid) 1493 { 1494 struct pci_dev *pdev = to_pci_dev(dev->dev); 1495 1496 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1497 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1498 if (nvmeq->sq_cmds) { 1499 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1500 nvmeq->sq_cmds); 1501 if (nvmeq->sq_dma_addr) { 1502 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1503 return 0; 1504 } 1505 1506 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1507 } 1508 } 1509 1510 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1511 &nvmeq->sq_dma_addr, GFP_KERNEL); 1512 if (!nvmeq->sq_cmds) 1513 return -ENOMEM; 1514 return 0; 1515 } 1516 1517 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1518 { 1519 struct nvme_queue *nvmeq = &dev->queues[qid]; 1520 1521 if (dev->ctrl.queue_count > qid) 1522 return 0; 1523 1524 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1525 nvmeq->q_depth = depth; 1526 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1527 &nvmeq->cq_dma_addr, GFP_KERNEL); 1528 if (!nvmeq->cqes) 1529 goto free_nvmeq; 1530 1531 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1532 goto free_cqdma; 1533 1534 nvmeq->dev = dev; 1535 spin_lock_init(&nvmeq->sq_lock); 1536 spin_lock_init(&nvmeq->cq_poll_lock); 1537 nvmeq->cq_head = 0; 1538 nvmeq->cq_phase = 1; 1539 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1540 nvmeq->qid = qid; 1541 dev->ctrl.queue_count++; 1542 1543 return 0; 1544 1545 free_cqdma: 1546 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1547 nvmeq->cq_dma_addr); 1548 free_nvmeq: 1549 return -ENOMEM; 1550 } 1551 1552 static int queue_request_irq(struct nvme_queue *nvmeq) 1553 { 1554 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1555 int nr = nvmeq->dev->ctrl.instance; 1556 1557 if (use_threaded_interrupts) { 1558 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1559 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1560 } else { 1561 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1562 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1563 } 1564 } 1565 1566 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1567 { 1568 struct nvme_dev *dev = nvmeq->dev; 1569 1570 nvmeq->sq_tail = 0; 1571 nvmeq->last_sq_tail = 0; 1572 nvmeq->cq_head = 0; 1573 nvmeq->cq_phase = 1; 1574 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1575 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1576 nvme_dbbuf_init(dev, nvmeq, qid); 1577 dev->online_queues++; 1578 wmb(); /* ensure the first interrupt sees the initialization */ 1579 } 1580 1581 /* 1582 * Try getting shutdown_lock while setting up IO queues. 1583 */ 1584 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1585 { 1586 /* 1587 * Give up if the lock is being held by nvme_dev_disable. 1588 */ 1589 if (!mutex_trylock(&dev->shutdown_lock)) 1590 return -ENODEV; 1591 1592 /* 1593 * Controller is in wrong state, fail early. 1594 */ 1595 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1596 mutex_unlock(&dev->shutdown_lock); 1597 return -ENODEV; 1598 } 1599 1600 return 0; 1601 } 1602 1603 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1604 { 1605 struct nvme_dev *dev = nvmeq->dev; 1606 int result; 1607 u16 vector = 0; 1608 1609 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1610 1611 /* 1612 * A queue's vector matches the queue identifier unless the controller 1613 * has only one vector available. 1614 */ 1615 if (!polled) 1616 vector = dev->num_vecs == 1 ? 0 : qid; 1617 else 1618 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1619 1620 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1621 if (result) 1622 return result; 1623 1624 result = adapter_alloc_sq(dev, qid, nvmeq); 1625 if (result < 0) 1626 return result; 1627 if (result) 1628 goto release_cq; 1629 1630 nvmeq->cq_vector = vector; 1631 1632 result = nvme_setup_io_queues_trylock(dev); 1633 if (result) 1634 return result; 1635 nvme_init_queue(nvmeq, qid); 1636 if (!polled) { 1637 result = queue_request_irq(nvmeq); 1638 if (result < 0) 1639 goto release_sq; 1640 } 1641 1642 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1643 mutex_unlock(&dev->shutdown_lock); 1644 return result; 1645 1646 release_sq: 1647 dev->online_queues--; 1648 mutex_unlock(&dev->shutdown_lock); 1649 adapter_delete_sq(dev, qid); 1650 release_cq: 1651 adapter_delete_cq(dev, qid); 1652 return result; 1653 } 1654 1655 static const struct blk_mq_ops nvme_mq_admin_ops = { 1656 .queue_rq = nvme_queue_rq, 1657 .complete = nvme_pci_complete_rq, 1658 .init_hctx = nvme_admin_init_hctx, 1659 .init_request = nvme_pci_init_request, 1660 .timeout = nvme_timeout, 1661 }; 1662 1663 static const struct blk_mq_ops nvme_mq_ops = { 1664 .queue_rq = nvme_queue_rq, 1665 .queue_rqs = nvme_queue_rqs, 1666 .complete = nvme_pci_complete_rq, 1667 .commit_rqs = nvme_commit_rqs, 1668 .init_hctx = nvme_init_hctx, 1669 .init_request = nvme_pci_init_request, 1670 .map_queues = nvme_pci_map_queues, 1671 .timeout = nvme_timeout, 1672 .poll = nvme_poll, 1673 }; 1674 1675 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1676 { 1677 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1678 /* 1679 * If the controller was reset during removal, it's possible 1680 * user requests may be waiting on a stopped queue. Start the 1681 * queue to flush these to completion. 1682 */ 1683 nvme_unquiesce_admin_queue(&dev->ctrl); 1684 nvme_remove_admin_tag_set(&dev->ctrl); 1685 } 1686 } 1687 1688 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1689 { 1690 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1691 } 1692 1693 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1694 { 1695 struct pci_dev *pdev = to_pci_dev(dev->dev); 1696 1697 if (size <= dev->bar_mapped_size) 1698 return 0; 1699 if (size > pci_resource_len(pdev, 0)) 1700 return -ENOMEM; 1701 if (dev->bar) 1702 iounmap(dev->bar); 1703 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1704 if (!dev->bar) { 1705 dev->bar_mapped_size = 0; 1706 return -ENOMEM; 1707 } 1708 dev->bar_mapped_size = size; 1709 dev->dbs = dev->bar + NVME_REG_DBS; 1710 1711 return 0; 1712 } 1713 1714 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1715 { 1716 int result; 1717 u32 aqa; 1718 struct nvme_queue *nvmeq; 1719 1720 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1721 if (result < 0) 1722 return result; 1723 1724 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1725 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1726 1727 if (dev->subsystem && 1728 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1729 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1730 1731 /* 1732 * If the device has been passed off to us in an enabled state, just 1733 * clear the enabled bit. The spec says we should set the 'shutdown 1734 * notification bits', but doing so may cause the device to complete 1735 * commands to the admin queue ... and we don't know what memory that 1736 * might be pointing at! 1737 */ 1738 result = nvme_disable_ctrl(&dev->ctrl, false); 1739 if (result < 0) 1740 return result; 1741 1742 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1743 if (result) 1744 return result; 1745 1746 dev->ctrl.numa_node = dev_to_node(dev->dev); 1747 1748 nvmeq = &dev->queues[0]; 1749 aqa = nvmeq->q_depth - 1; 1750 aqa |= aqa << 16; 1751 1752 writel(aqa, dev->bar + NVME_REG_AQA); 1753 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1754 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1755 1756 result = nvme_enable_ctrl(&dev->ctrl); 1757 if (result) 1758 return result; 1759 1760 nvmeq->cq_vector = 0; 1761 nvme_init_queue(nvmeq, 0); 1762 result = queue_request_irq(nvmeq); 1763 if (result) { 1764 dev->online_queues--; 1765 return result; 1766 } 1767 1768 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1769 return result; 1770 } 1771 1772 static int nvme_create_io_queues(struct nvme_dev *dev) 1773 { 1774 unsigned i, max, rw_queues; 1775 int ret = 0; 1776 1777 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1778 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1779 ret = -ENOMEM; 1780 break; 1781 } 1782 } 1783 1784 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1785 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1786 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1787 dev->io_queues[HCTX_TYPE_READ]; 1788 } else { 1789 rw_queues = max; 1790 } 1791 1792 for (i = dev->online_queues; i <= max; i++) { 1793 bool polled = i > rw_queues; 1794 1795 ret = nvme_create_queue(&dev->queues[i], i, polled); 1796 if (ret) 1797 break; 1798 } 1799 1800 /* 1801 * Ignore failing Create SQ/CQ commands, we can continue with less 1802 * than the desired amount of queues, and even a controller without 1803 * I/O queues can still be used to issue admin commands. This might 1804 * be useful to upgrade a buggy firmware for example. 1805 */ 1806 return ret >= 0 ? 0 : ret; 1807 } 1808 1809 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1810 { 1811 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1812 1813 return 1ULL << (12 + 4 * szu); 1814 } 1815 1816 static u32 nvme_cmb_size(struct nvme_dev *dev) 1817 { 1818 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1819 } 1820 1821 static void nvme_map_cmb(struct nvme_dev *dev) 1822 { 1823 u64 size, offset; 1824 resource_size_t bar_size; 1825 struct pci_dev *pdev = to_pci_dev(dev->dev); 1826 int bar; 1827 1828 if (dev->cmb_size) 1829 return; 1830 1831 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1832 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1833 1834 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1835 if (!dev->cmbsz) 1836 return; 1837 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1838 1839 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1840 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1841 bar = NVME_CMB_BIR(dev->cmbloc); 1842 bar_size = pci_resource_len(pdev, bar); 1843 1844 if (offset > bar_size) 1845 return; 1846 1847 /* 1848 * Tell the controller about the host side address mapping the CMB, 1849 * and enable CMB decoding for the NVMe 1.4+ scheme: 1850 */ 1851 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1852 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1853 (pci_bus_address(pdev, bar) + offset), 1854 dev->bar + NVME_REG_CMBMSC); 1855 } 1856 1857 /* 1858 * Controllers may support a CMB size larger than their BAR, 1859 * for example, due to being behind a bridge. Reduce the CMB to 1860 * the reported size of the BAR 1861 */ 1862 if (size > bar_size - offset) 1863 size = bar_size - offset; 1864 1865 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1866 dev_warn(dev->ctrl.device, 1867 "failed to register the CMB\n"); 1868 return; 1869 } 1870 1871 dev->cmb_size = size; 1872 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1873 1874 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1875 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1876 pci_p2pmem_publish(pdev, true); 1877 1878 nvme_update_attrs(dev); 1879 } 1880 1881 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1882 { 1883 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1884 u64 dma_addr = dev->host_mem_descs_dma; 1885 struct nvme_command c = { }; 1886 int ret; 1887 1888 c.features.opcode = nvme_admin_set_features; 1889 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1890 c.features.dword11 = cpu_to_le32(bits); 1891 c.features.dword12 = cpu_to_le32(host_mem_size); 1892 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1893 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1894 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1895 1896 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1897 if (ret) { 1898 dev_warn(dev->ctrl.device, 1899 "failed to set host mem (err %d, flags %#x).\n", 1900 ret, bits); 1901 } else 1902 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1903 1904 return ret; 1905 } 1906 1907 static void nvme_free_host_mem(struct nvme_dev *dev) 1908 { 1909 int i; 1910 1911 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1912 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1913 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1914 1915 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1916 le64_to_cpu(desc->addr), 1917 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1918 } 1919 1920 kfree(dev->host_mem_desc_bufs); 1921 dev->host_mem_desc_bufs = NULL; 1922 dma_free_coherent(dev->dev, 1923 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1924 dev->host_mem_descs, dev->host_mem_descs_dma); 1925 dev->host_mem_descs = NULL; 1926 dev->nr_host_mem_descs = 0; 1927 } 1928 1929 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1930 u32 chunk_size) 1931 { 1932 struct nvme_host_mem_buf_desc *descs; 1933 u32 max_entries, len; 1934 dma_addr_t descs_dma; 1935 int i = 0; 1936 void **bufs; 1937 u64 size, tmp; 1938 1939 tmp = (preferred + chunk_size - 1); 1940 do_div(tmp, chunk_size); 1941 max_entries = tmp; 1942 1943 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1944 max_entries = dev->ctrl.hmmaxd; 1945 1946 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1947 &descs_dma, GFP_KERNEL); 1948 if (!descs) 1949 goto out; 1950 1951 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1952 if (!bufs) 1953 goto out_free_descs; 1954 1955 for (size = 0; size < preferred && i < max_entries; size += len) { 1956 dma_addr_t dma_addr; 1957 1958 len = min_t(u64, chunk_size, preferred - size); 1959 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1960 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1961 if (!bufs[i]) 1962 break; 1963 1964 descs[i].addr = cpu_to_le64(dma_addr); 1965 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1966 i++; 1967 } 1968 1969 if (!size) 1970 goto out_free_bufs; 1971 1972 dev->nr_host_mem_descs = i; 1973 dev->host_mem_size = size; 1974 dev->host_mem_descs = descs; 1975 dev->host_mem_descs_dma = descs_dma; 1976 dev->host_mem_desc_bufs = bufs; 1977 return 0; 1978 1979 out_free_bufs: 1980 while (--i >= 0) { 1981 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1982 1983 dma_free_attrs(dev->dev, size, bufs[i], 1984 le64_to_cpu(descs[i].addr), 1985 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1986 } 1987 1988 kfree(bufs); 1989 out_free_descs: 1990 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1991 descs_dma); 1992 out: 1993 dev->host_mem_descs = NULL; 1994 return -ENOMEM; 1995 } 1996 1997 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1998 { 1999 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2000 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2001 u64 chunk_size; 2002 2003 /* start big and work our way down */ 2004 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2005 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2006 if (!min || dev->host_mem_size >= min) 2007 return 0; 2008 nvme_free_host_mem(dev); 2009 } 2010 } 2011 2012 return -ENOMEM; 2013 } 2014 2015 static int nvme_setup_host_mem(struct nvme_dev *dev) 2016 { 2017 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2018 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2019 u64 min = (u64)dev->ctrl.hmmin * 4096; 2020 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2021 int ret; 2022 2023 if (!dev->ctrl.hmpre) 2024 return 0; 2025 2026 preferred = min(preferred, max); 2027 if (min > max) { 2028 dev_warn(dev->ctrl.device, 2029 "min host memory (%lld MiB) above limit (%d MiB).\n", 2030 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2031 nvme_free_host_mem(dev); 2032 return 0; 2033 } 2034 2035 /* 2036 * If we already have a buffer allocated check if we can reuse it. 2037 */ 2038 if (dev->host_mem_descs) { 2039 if (dev->host_mem_size >= min) 2040 enable_bits |= NVME_HOST_MEM_RETURN; 2041 else 2042 nvme_free_host_mem(dev); 2043 } 2044 2045 if (!dev->host_mem_descs) { 2046 if (nvme_alloc_host_mem(dev, min, preferred)) { 2047 dev_warn(dev->ctrl.device, 2048 "failed to allocate host memory buffer.\n"); 2049 return 0; /* controller must work without HMB */ 2050 } 2051 2052 dev_info(dev->ctrl.device, 2053 "allocated %lld MiB host memory buffer.\n", 2054 dev->host_mem_size >> ilog2(SZ_1M)); 2055 } 2056 2057 ret = nvme_set_host_mem(dev, enable_bits); 2058 if (ret) 2059 nvme_free_host_mem(dev); 2060 return ret; 2061 } 2062 2063 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2064 char *buf) 2065 { 2066 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2067 2068 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2069 ndev->cmbloc, ndev->cmbsz); 2070 } 2071 static DEVICE_ATTR_RO(cmb); 2072 2073 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2074 char *buf) 2075 { 2076 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2077 2078 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2079 } 2080 static DEVICE_ATTR_RO(cmbloc); 2081 2082 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2083 char *buf) 2084 { 2085 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2086 2087 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2088 } 2089 static DEVICE_ATTR_RO(cmbsz); 2090 2091 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2092 char *buf) 2093 { 2094 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2095 2096 return sysfs_emit(buf, "%d\n", ndev->hmb); 2097 } 2098 2099 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2100 const char *buf, size_t count) 2101 { 2102 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2103 bool new; 2104 int ret; 2105 2106 if (kstrtobool(buf, &new) < 0) 2107 return -EINVAL; 2108 2109 if (new == ndev->hmb) 2110 return count; 2111 2112 if (new) { 2113 ret = nvme_setup_host_mem(ndev); 2114 } else { 2115 ret = nvme_set_host_mem(ndev, 0); 2116 if (!ret) 2117 nvme_free_host_mem(ndev); 2118 } 2119 2120 if (ret < 0) 2121 return ret; 2122 2123 return count; 2124 } 2125 static DEVICE_ATTR_RW(hmb); 2126 2127 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2128 struct attribute *a, int n) 2129 { 2130 struct nvme_ctrl *ctrl = 2131 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2132 struct nvme_dev *dev = to_nvme_dev(ctrl); 2133 2134 if (a == &dev_attr_cmb.attr || 2135 a == &dev_attr_cmbloc.attr || 2136 a == &dev_attr_cmbsz.attr) { 2137 if (!dev->cmbsz) 2138 return 0; 2139 } 2140 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2141 return 0; 2142 2143 return a->mode; 2144 } 2145 2146 static struct attribute *nvme_pci_attrs[] = { 2147 &dev_attr_cmb.attr, 2148 &dev_attr_cmbloc.attr, 2149 &dev_attr_cmbsz.attr, 2150 &dev_attr_hmb.attr, 2151 NULL, 2152 }; 2153 2154 static const struct attribute_group nvme_pci_dev_attrs_group = { 2155 .attrs = nvme_pci_attrs, 2156 .is_visible = nvme_pci_attrs_are_visible, 2157 }; 2158 2159 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2160 &nvme_dev_attrs_group, 2161 &nvme_pci_dev_attrs_group, 2162 NULL, 2163 }; 2164 2165 static void nvme_update_attrs(struct nvme_dev *dev) 2166 { 2167 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2168 } 2169 2170 /* 2171 * nirqs is the number of interrupts available for write and read 2172 * queues. The core already reserved an interrupt for the admin queue. 2173 */ 2174 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2175 { 2176 struct nvme_dev *dev = affd->priv; 2177 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2178 2179 /* 2180 * If there is no interrupt available for queues, ensure that 2181 * the default queue is set to 1. The affinity set size is 2182 * also set to one, but the irq core ignores it for this case. 2183 * 2184 * If only one interrupt is available or 'write_queue' == 0, combine 2185 * write and read queues. 2186 * 2187 * If 'write_queues' > 0, ensure it leaves room for at least one read 2188 * queue. 2189 */ 2190 if (!nrirqs) { 2191 nrirqs = 1; 2192 nr_read_queues = 0; 2193 } else if (nrirqs == 1 || !nr_write_queues) { 2194 nr_read_queues = 0; 2195 } else if (nr_write_queues >= nrirqs) { 2196 nr_read_queues = 1; 2197 } else { 2198 nr_read_queues = nrirqs - nr_write_queues; 2199 } 2200 2201 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2202 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2203 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2204 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2205 affd->nr_sets = nr_read_queues ? 2 : 1; 2206 } 2207 2208 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2209 { 2210 struct pci_dev *pdev = to_pci_dev(dev->dev); 2211 struct irq_affinity affd = { 2212 .pre_vectors = 1, 2213 .calc_sets = nvme_calc_irq_sets, 2214 .priv = dev, 2215 }; 2216 unsigned int irq_queues, poll_queues; 2217 2218 /* 2219 * Poll queues don't need interrupts, but we need at least one I/O queue 2220 * left over for non-polled I/O. 2221 */ 2222 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2223 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2224 2225 /* 2226 * Initialize for the single interrupt case, will be updated in 2227 * nvme_calc_irq_sets(). 2228 */ 2229 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2230 dev->io_queues[HCTX_TYPE_READ] = 0; 2231 2232 /* 2233 * We need interrupts for the admin queue and each non-polled I/O queue, 2234 * but some Apple controllers require all queues to use the first 2235 * vector. 2236 */ 2237 irq_queues = 1; 2238 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2239 irq_queues += (nr_io_queues - poll_queues); 2240 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2241 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2242 } 2243 2244 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2245 { 2246 /* 2247 * If tags are shared with admin queue (Apple bug), then 2248 * make sure we only use one IO queue. 2249 */ 2250 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2251 return 1; 2252 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2253 } 2254 2255 static int nvme_setup_io_queues(struct nvme_dev *dev) 2256 { 2257 struct nvme_queue *adminq = &dev->queues[0]; 2258 struct pci_dev *pdev = to_pci_dev(dev->dev); 2259 unsigned int nr_io_queues; 2260 unsigned long size; 2261 int result; 2262 2263 /* 2264 * Sample the module parameters once at reset time so that we have 2265 * stable values to work with. 2266 */ 2267 dev->nr_write_queues = write_queues; 2268 dev->nr_poll_queues = poll_queues; 2269 2270 nr_io_queues = dev->nr_allocated_queues - 1; 2271 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2272 if (result < 0) 2273 return result; 2274 2275 if (nr_io_queues == 0) 2276 return 0; 2277 2278 /* 2279 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2280 * from set to unset. If there is a window to it is truely freed, 2281 * pci_free_irq_vectors() jumping into this window will crash. 2282 * And take lock to avoid racing with pci_free_irq_vectors() in 2283 * nvme_dev_disable() path. 2284 */ 2285 result = nvme_setup_io_queues_trylock(dev); 2286 if (result) 2287 return result; 2288 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2289 pci_free_irq(pdev, 0, adminq); 2290 2291 if (dev->cmb_use_sqes) { 2292 result = nvme_cmb_qdepth(dev, nr_io_queues, 2293 sizeof(struct nvme_command)); 2294 if (result > 0) { 2295 dev->q_depth = result; 2296 dev->ctrl.sqsize = result - 1; 2297 } else { 2298 dev->cmb_use_sqes = false; 2299 } 2300 } 2301 2302 do { 2303 size = db_bar_size(dev, nr_io_queues); 2304 result = nvme_remap_bar(dev, size); 2305 if (!result) 2306 break; 2307 if (!--nr_io_queues) { 2308 result = -ENOMEM; 2309 goto out_unlock; 2310 } 2311 } while (1); 2312 adminq->q_db = dev->dbs; 2313 2314 retry: 2315 /* Deregister the admin queue's interrupt */ 2316 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2317 pci_free_irq(pdev, 0, adminq); 2318 2319 /* 2320 * If we enable msix early due to not intx, disable it again before 2321 * setting up the full range we need. 2322 */ 2323 pci_free_irq_vectors(pdev); 2324 2325 result = nvme_setup_irqs(dev, nr_io_queues); 2326 if (result <= 0) { 2327 result = -EIO; 2328 goto out_unlock; 2329 } 2330 2331 dev->num_vecs = result; 2332 result = max(result - 1, 1); 2333 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2334 2335 /* 2336 * Should investigate if there's a performance win from allocating 2337 * more queues than interrupt vectors; it might allow the submission 2338 * path to scale better, even if the receive path is limited by the 2339 * number of interrupts. 2340 */ 2341 result = queue_request_irq(adminq); 2342 if (result) 2343 goto out_unlock; 2344 set_bit(NVMEQ_ENABLED, &adminq->flags); 2345 mutex_unlock(&dev->shutdown_lock); 2346 2347 result = nvme_create_io_queues(dev); 2348 if (result || dev->online_queues < 2) 2349 return result; 2350 2351 if (dev->online_queues - 1 < dev->max_qid) { 2352 nr_io_queues = dev->online_queues - 1; 2353 nvme_delete_io_queues(dev); 2354 result = nvme_setup_io_queues_trylock(dev); 2355 if (result) 2356 return result; 2357 nvme_suspend_io_queues(dev); 2358 goto retry; 2359 } 2360 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2361 dev->io_queues[HCTX_TYPE_DEFAULT], 2362 dev->io_queues[HCTX_TYPE_READ], 2363 dev->io_queues[HCTX_TYPE_POLL]); 2364 return 0; 2365 out_unlock: 2366 mutex_unlock(&dev->shutdown_lock); 2367 return result; 2368 } 2369 2370 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2371 blk_status_t error) 2372 { 2373 struct nvme_queue *nvmeq = req->end_io_data; 2374 2375 blk_mq_free_request(req); 2376 complete(&nvmeq->delete_done); 2377 return RQ_END_IO_NONE; 2378 } 2379 2380 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2381 blk_status_t error) 2382 { 2383 struct nvme_queue *nvmeq = req->end_io_data; 2384 2385 if (error) 2386 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2387 2388 return nvme_del_queue_end(req, error); 2389 } 2390 2391 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2392 { 2393 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2394 struct request *req; 2395 struct nvme_command cmd = { }; 2396 2397 cmd.delete_queue.opcode = opcode; 2398 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2399 2400 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2401 if (IS_ERR(req)) 2402 return PTR_ERR(req); 2403 nvme_init_request(req, &cmd); 2404 2405 if (opcode == nvme_admin_delete_cq) 2406 req->end_io = nvme_del_cq_end; 2407 else 2408 req->end_io = nvme_del_queue_end; 2409 req->end_io_data = nvmeq; 2410 2411 init_completion(&nvmeq->delete_done); 2412 blk_execute_rq_nowait(req, false); 2413 return 0; 2414 } 2415 2416 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2417 { 2418 int nr_queues = dev->online_queues - 1, sent = 0; 2419 unsigned long timeout; 2420 2421 retry: 2422 timeout = NVME_ADMIN_TIMEOUT; 2423 while (nr_queues > 0) { 2424 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2425 break; 2426 nr_queues--; 2427 sent++; 2428 } 2429 while (sent) { 2430 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2431 2432 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2433 timeout); 2434 if (timeout == 0) 2435 return false; 2436 2437 sent--; 2438 if (nr_queues) 2439 goto retry; 2440 } 2441 return true; 2442 } 2443 2444 static void nvme_delete_io_queues(struct nvme_dev *dev) 2445 { 2446 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2447 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2448 } 2449 2450 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2451 { 2452 if (dev->io_queues[HCTX_TYPE_POLL]) 2453 return 3; 2454 if (dev->io_queues[HCTX_TYPE_READ]) 2455 return 2; 2456 return 1; 2457 } 2458 2459 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2460 { 2461 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2462 /* free previously allocated queues that are no longer usable */ 2463 nvme_free_queues(dev, dev->online_queues); 2464 } 2465 2466 static int nvme_pci_enable(struct nvme_dev *dev) 2467 { 2468 int result = -ENOMEM; 2469 struct pci_dev *pdev = to_pci_dev(dev->dev); 2470 2471 if (pci_enable_device_mem(pdev)) 2472 return result; 2473 2474 pci_set_master(pdev); 2475 2476 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2477 result = -ENODEV; 2478 goto disable; 2479 } 2480 2481 /* 2482 * Some devices and/or platforms don't advertise or work with INTx 2483 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2484 * adjust this later. 2485 */ 2486 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2487 if (result < 0) 2488 goto disable; 2489 2490 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2491 2492 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2493 io_queue_depth); 2494 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2495 dev->dbs = dev->bar + 4096; 2496 2497 /* 2498 * Some Apple controllers require a non-standard SQE size. 2499 * Interestingly they also seem to ignore the CC:IOSQES register 2500 * so we don't bother updating it here. 2501 */ 2502 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2503 dev->io_sqes = 7; 2504 else 2505 dev->io_sqes = NVME_NVM_IOSQES; 2506 2507 /* 2508 * Temporary fix for the Apple controller found in the MacBook8,1 and 2509 * some MacBook7,1 to avoid controller resets and data loss. 2510 */ 2511 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2512 dev->q_depth = 2; 2513 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2514 "set queue depth=%u to work around controller resets\n", 2515 dev->q_depth); 2516 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2517 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2518 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2519 dev->q_depth = 64; 2520 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2521 "set queue depth=%u\n", dev->q_depth); 2522 } 2523 2524 /* 2525 * Controllers with the shared tags quirk need the IO queue to be 2526 * big enough so that we get 32 tags for the admin queue 2527 */ 2528 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2529 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2530 dev->q_depth = NVME_AQ_DEPTH + 2; 2531 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2532 dev->q_depth); 2533 } 2534 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2535 2536 nvme_map_cmb(dev); 2537 2538 pci_enable_pcie_error_reporting(pdev); 2539 pci_save_state(pdev); 2540 2541 result = nvme_pci_configure_admin_queue(dev); 2542 if (result) 2543 goto free_irq; 2544 return result; 2545 2546 free_irq: 2547 pci_free_irq_vectors(pdev); 2548 disable: 2549 pci_disable_device(pdev); 2550 return result; 2551 } 2552 2553 static void nvme_dev_unmap(struct nvme_dev *dev) 2554 { 2555 if (dev->bar) 2556 iounmap(dev->bar); 2557 pci_release_mem_regions(to_pci_dev(dev->dev)); 2558 } 2559 2560 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2561 { 2562 struct pci_dev *pdev = to_pci_dev(dev->dev); 2563 u32 csts; 2564 2565 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2566 return true; 2567 if (pdev->error_state != pci_channel_io_normal) 2568 return true; 2569 2570 csts = readl(dev->bar + NVME_REG_CSTS); 2571 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2572 } 2573 2574 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2575 { 2576 struct pci_dev *pdev = to_pci_dev(dev->dev); 2577 bool dead; 2578 2579 mutex_lock(&dev->shutdown_lock); 2580 dead = nvme_pci_ctrl_is_dead(dev); 2581 if (dev->ctrl.state == NVME_CTRL_LIVE || 2582 dev->ctrl.state == NVME_CTRL_RESETTING) { 2583 if (pci_is_enabled(pdev)) 2584 nvme_start_freeze(&dev->ctrl); 2585 /* 2586 * Give the controller a chance to complete all entered requests 2587 * if doing a safe shutdown. 2588 */ 2589 if (!dead && shutdown) 2590 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2591 } 2592 2593 nvme_quiesce_io_queues(&dev->ctrl); 2594 2595 if (!dead && dev->ctrl.queue_count > 0) { 2596 nvme_delete_io_queues(dev); 2597 nvme_disable_ctrl(&dev->ctrl, shutdown); 2598 nvme_poll_irqdisable(&dev->queues[0]); 2599 } 2600 nvme_suspend_io_queues(dev); 2601 nvme_suspend_queue(dev, 0); 2602 pci_free_irq_vectors(pdev); 2603 if (pci_is_enabled(pdev)) { 2604 pci_disable_pcie_error_reporting(pdev); 2605 pci_disable_device(pdev); 2606 } 2607 nvme_reap_pending_cqes(dev); 2608 2609 nvme_cancel_tagset(&dev->ctrl); 2610 nvme_cancel_admin_tagset(&dev->ctrl); 2611 2612 /* 2613 * The driver will not be starting up queues again if shutting down so 2614 * must flush all entered requests to their failed completion to avoid 2615 * deadlocking blk-mq hot-cpu notifier. 2616 */ 2617 if (shutdown) { 2618 nvme_unquiesce_io_queues(&dev->ctrl); 2619 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2620 nvme_unquiesce_admin_queue(&dev->ctrl); 2621 } 2622 mutex_unlock(&dev->shutdown_lock); 2623 } 2624 2625 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2626 { 2627 if (!nvme_wait_reset(&dev->ctrl)) 2628 return -EBUSY; 2629 nvme_dev_disable(dev, shutdown); 2630 return 0; 2631 } 2632 2633 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2634 { 2635 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2636 NVME_CTRL_PAGE_SIZE, 2637 NVME_CTRL_PAGE_SIZE, 0); 2638 if (!dev->prp_page_pool) 2639 return -ENOMEM; 2640 2641 /* Optimisation for I/Os between 4k and 128k */ 2642 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2643 256, 256, 0); 2644 if (!dev->prp_small_pool) { 2645 dma_pool_destroy(dev->prp_page_pool); 2646 return -ENOMEM; 2647 } 2648 return 0; 2649 } 2650 2651 static void nvme_release_prp_pools(struct nvme_dev *dev) 2652 { 2653 dma_pool_destroy(dev->prp_page_pool); 2654 dma_pool_destroy(dev->prp_small_pool); 2655 } 2656 2657 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2658 { 2659 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2660 2661 dev->iod_mempool = mempool_create_node(1, 2662 mempool_kmalloc, mempool_kfree, 2663 (void *)alloc_size, GFP_KERNEL, 2664 dev_to_node(dev->dev)); 2665 if (!dev->iod_mempool) 2666 return -ENOMEM; 2667 return 0; 2668 } 2669 2670 static void nvme_free_tagset(struct nvme_dev *dev) 2671 { 2672 if (dev->tagset.tags) 2673 nvme_remove_io_tag_set(&dev->ctrl); 2674 dev->ctrl.tagset = NULL; 2675 } 2676 2677 /* pairs with nvme_pci_alloc_dev */ 2678 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2679 { 2680 struct nvme_dev *dev = to_nvme_dev(ctrl); 2681 2682 nvme_free_tagset(dev); 2683 put_device(dev->dev); 2684 kfree(dev->queues); 2685 kfree(dev); 2686 } 2687 2688 static void nvme_reset_work(struct work_struct *work) 2689 { 2690 struct nvme_dev *dev = 2691 container_of(work, struct nvme_dev, ctrl.reset_work); 2692 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2693 int result; 2694 2695 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2696 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2697 dev->ctrl.state); 2698 return; 2699 } 2700 2701 /* 2702 * If we're called to reset a live controller first shut it down before 2703 * moving on. 2704 */ 2705 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2706 nvme_dev_disable(dev, false); 2707 nvme_sync_queues(&dev->ctrl); 2708 2709 mutex_lock(&dev->shutdown_lock); 2710 result = nvme_pci_enable(dev); 2711 if (result) 2712 goto out_unlock; 2713 nvme_unquiesce_admin_queue(&dev->ctrl); 2714 mutex_unlock(&dev->shutdown_lock); 2715 2716 /* 2717 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2718 * initializing procedure here. 2719 */ 2720 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2721 dev_warn(dev->ctrl.device, 2722 "failed to mark controller CONNECTING\n"); 2723 result = -EBUSY; 2724 goto out; 2725 } 2726 2727 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2728 if (result) 2729 goto out; 2730 2731 nvme_dbbuf_dma_alloc(dev); 2732 2733 result = nvme_setup_host_mem(dev); 2734 if (result < 0) 2735 goto out; 2736 2737 result = nvme_setup_io_queues(dev); 2738 if (result) 2739 goto out; 2740 2741 /* 2742 * Freeze and update the number of I/O queues as thos might have 2743 * changed. If there are no I/O queues left after this reset, keep the 2744 * controller around but remove all namespaces. 2745 */ 2746 if (dev->online_queues > 1) { 2747 nvme_unquiesce_io_queues(&dev->ctrl); 2748 nvme_wait_freeze(&dev->ctrl); 2749 nvme_pci_update_nr_queues(dev); 2750 nvme_dbbuf_set(dev); 2751 nvme_unfreeze(&dev->ctrl); 2752 } else { 2753 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2754 nvme_mark_namespaces_dead(&dev->ctrl); 2755 nvme_unquiesce_io_queues(&dev->ctrl); 2756 nvme_remove_namespaces(&dev->ctrl); 2757 nvme_free_tagset(dev); 2758 } 2759 2760 /* 2761 * If only admin queue live, keep it to do further investigation or 2762 * recovery. 2763 */ 2764 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2765 dev_warn(dev->ctrl.device, 2766 "failed to mark controller live state\n"); 2767 result = -ENODEV; 2768 goto out; 2769 } 2770 2771 nvme_start_ctrl(&dev->ctrl); 2772 return; 2773 2774 out_unlock: 2775 mutex_unlock(&dev->shutdown_lock); 2776 out: 2777 /* 2778 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2779 * may be holding this pci_dev's device lock. 2780 */ 2781 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2782 result); 2783 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2784 nvme_dev_disable(dev, true); 2785 nvme_mark_namespaces_dead(&dev->ctrl); 2786 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2787 } 2788 2789 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2790 { 2791 *val = readl(to_nvme_dev(ctrl)->bar + off); 2792 return 0; 2793 } 2794 2795 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2796 { 2797 writel(val, to_nvme_dev(ctrl)->bar + off); 2798 return 0; 2799 } 2800 2801 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2802 { 2803 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2804 return 0; 2805 } 2806 2807 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2808 { 2809 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2810 2811 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2812 } 2813 2814 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2815 { 2816 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2817 struct nvme_subsystem *subsys = ctrl->subsys; 2818 2819 dev_err(ctrl->device, 2820 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2821 pdev->vendor, pdev->device, 2822 nvme_strlen(subsys->model, sizeof(subsys->model)), 2823 subsys->model, nvme_strlen(subsys->firmware_rev, 2824 sizeof(subsys->firmware_rev)), 2825 subsys->firmware_rev); 2826 } 2827 2828 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2829 { 2830 struct nvme_dev *dev = to_nvme_dev(ctrl); 2831 2832 return dma_pci_p2pdma_supported(dev->dev); 2833 } 2834 2835 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2836 .name = "pcie", 2837 .module = THIS_MODULE, 2838 .flags = NVME_F_METADATA_SUPPORTED, 2839 .dev_attr_groups = nvme_pci_dev_attr_groups, 2840 .reg_read32 = nvme_pci_reg_read32, 2841 .reg_write32 = nvme_pci_reg_write32, 2842 .reg_read64 = nvme_pci_reg_read64, 2843 .free_ctrl = nvme_pci_free_ctrl, 2844 .submit_async_event = nvme_pci_submit_async_event, 2845 .get_address = nvme_pci_get_address, 2846 .print_device_info = nvme_pci_print_device_info, 2847 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2848 }; 2849 2850 static int nvme_dev_map(struct nvme_dev *dev) 2851 { 2852 struct pci_dev *pdev = to_pci_dev(dev->dev); 2853 2854 if (pci_request_mem_regions(pdev, "nvme")) 2855 return -ENODEV; 2856 2857 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2858 goto release; 2859 2860 return 0; 2861 release: 2862 pci_release_mem_regions(pdev); 2863 return -ENODEV; 2864 } 2865 2866 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2867 { 2868 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2869 /* 2870 * Several Samsung devices seem to drop off the PCIe bus 2871 * randomly when APST is on and uses the deepest sleep state. 2872 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2873 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2874 * 950 PRO 256GB", but it seems to be restricted to two Dell 2875 * laptops. 2876 */ 2877 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2878 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2879 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2880 return NVME_QUIRK_NO_DEEPEST_PS; 2881 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2882 /* 2883 * Samsung SSD 960 EVO drops off the PCIe bus after system 2884 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2885 * within few minutes after bootup on a Coffee Lake board - 2886 * ASUS PRIME Z370-A 2887 */ 2888 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2889 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2890 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2891 return NVME_QUIRK_NO_APST; 2892 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2893 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2894 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2895 /* 2896 * Forcing to use host managed nvme power settings for 2897 * lowest idle power with quick resume latency on 2898 * Samsung and Toshiba SSDs based on suspend behavior 2899 * on Coffee Lake board for LENOVO C640 2900 */ 2901 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2902 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2903 return NVME_QUIRK_SIMPLE_SUSPEND; 2904 } 2905 2906 return 0; 2907 } 2908 2909 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2910 const struct pci_device_id *id) 2911 { 2912 unsigned long quirks = id->driver_data; 2913 int node = dev_to_node(&pdev->dev); 2914 struct nvme_dev *dev; 2915 int ret = -ENOMEM; 2916 2917 if (node == NUMA_NO_NODE) 2918 set_dev_node(&pdev->dev, first_memory_node); 2919 2920 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2921 if (!dev) 2922 return ERR_PTR(-ENOMEM); 2923 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2924 mutex_init(&dev->shutdown_lock); 2925 2926 dev->nr_write_queues = write_queues; 2927 dev->nr_poll_queues = poll_queues; 2928 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2929 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2930 sizeof(struct nvme_queue), GFP_KERNEL, node); 2931 if (!dev->queues) 2932 goto out_free_dev; 2933 2934 dev->dev = get_device(&pdev->dev); 2935 2936 quirks |= check_vendor_combination_bug(pdev); 2937 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 2938 /* 2939 * Some systems use a bios work around to ask for D3 on 2940 * platforms that support kernel managed suspend. 2941 */ 2942 dev_info(&pdev->dev, 2943 "platform quirk: setting simple suspend\n"); 2944 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2945 } 2946 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2947 quirks); 2948 if (ret) 2949 goto out_put_device; 2950 2951 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2952 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2953 else 2954 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2955 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 2956 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 2957 2958 /* 2959 * Limit the max command size to prevent iod->sg allocations going 2960 * over a single page. 2961 */ 2962 dev->ctrl.max_hw_sectors = min_t(u32, 2963 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9); 2964 dev->ctrl.max_segments = NVME_MAX_SEGS; 2965 2966 /* 2967 * There is no support for SGLs for metadata (yet), so we are limited to 2968 * a single integrity segment for the separate metadata pointer. 2969 */ 2970 dev->ctrl.max_integrity_segments = 1; 2971 return dev; 2972 2973 out_put_device: 2974 put_device(dev->dev); 2975 kfree(dev->queues); 2976 out_free_dev: 2977 kfree(dev); 2978 return ERR_PTR(ret); 2979 } 2980 2981 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2982 { 2983 struct nvme_dev *dev; 2984 int result = -ENOMEM; 2985 2986 dev = nvme_pci_alloc_dev(pdev, id); 2987 if (IS_ERR(dev)) 2988 return PTR_ERR(dev); 2989 2990 result = nvme_dev_map(dev); 2991 if (result) 2992 goto out_uninit_ctrl; 2993 2994 result = nvme_setup_prp_pools(dev); 2995 if (result) 2996 goto out_dev_unmap; 2997 2998 result = nvme_pci_alloc_iod_mempool(dev); 2999 if (result) 3000 goto out_release_prp_pools; 3001 3002 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3003 3004 result = nvme_pci_enable(dev); 3005 if (result) 3006 goto out_release_iod_mempool; 3007 3008 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3009 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3010 if (result) 3011 goto out_disable; 3012 3013 /* 3014 * Mark the controller as connecting before sending admin commands to 3015 * allow the timeout handler to do the right thing. 3016 */ 3017 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3018 dev_warn(dev->ctrl.device, 3019 "failed to mark controller CONNECTING\n"); 3020 result = -EBUSY; 3021 goto out_disable; 3022 } 3023 3024 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3025 if (result) 3026 goto out_disable; 3027 3028 nvme_dbbuf_dma_alloc(dev); 3029 3030 result = nvme_setup_host_mem(dev); 3031 if (result < 0) 3032 goto out_disable; 3033 3034 result = nvme_setup_io_queues(dev); 3035 if (result) 3036 goto out_disable; 3037 3038 if (dev->online_queues > 1) { 3039 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3040 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3041 nvme_dbbuf_set(dev); 3042 } 3043 3044 if (!dev->ctrl.tagset) 3045 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3046 3047 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3048 dev_warn(dev->ctrl.device, 3049 "failed to mark controller live state\n"); 3050 result = -ENODEV; 3051 goto out_disable; 3052 } 3053 3054 pci_set_drvdata(pdev, dev); 3055 3056 nvme_start_ctrl(&dev->ctrl); 3057 nvme_put_ctrl(&dev->ctrl); 3058 flush_work(&dev->ctrl.scan_work); 3059 return 0; 3060 3061 out_disable: 3062 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3063 nvme_dev_disable(dev, true); 3064 nvme_free_host_mem(dev); 3065 nvme_dev_remove_admin(dev); 3066 nvme_dbbuf_dma_free(dev); 3067 nvme_free_queues(dev, 0); 3068 out_release_iod_mempool: 3069 mempool_destroy(dev->iod_mempool); 3070 out_release_prp_pools: 3071 nvme_release_prp_pools(dev); 3072 out_dev_unmap: 3073 nvme_dev_unmap(dev); 3074 out_uninit_ctrl: 3075 nvme_uninit_ctrl(&dev->ctrl); 3076 nvme_put_ctrl(&dev->ctrl); 3077 return result; 3078 } 3079 3080 static void nvme_reset_prepare(struct pci_dev *pdev) 3081 { 3082 struct nvme_dev *dev = pci_get_drvdata(pdev); 3083 3084 /* 3085 * We don't need to check the return value from waiting for the reset 3086 * state as pci_dev device lock is held, making it impossible to race 3087 * with ->remove(). 3088 */ 3089 nvme_disable_prepare_reset(dev, false); 3090 nvme_sync_queues(&dev->ctrl); 3091 } 3092 3093 static void nvme_reset_done(struct pci_dev *pdev) 3094 { 3095 struct nvme_dev *dev = pci_get_drvdata(pdev); 3096 3097 if (!nvme_try_sched_reset(&dev->ctrl)) 3098 flush_work(&dev->ctrl.reset_work); 3099 } 3100 3101 static void nvme_shutdown(struct pci_dev *pdev) 3102 { 3103 struct nvme_dev *dev = pci_get_drvdata(pdev); 3104 3105 nvme_disable_prepare_reset(dev, true); 3106 } 3107 3108 /* 3109 * The driver's remove may be called on a device in a partially initialized 3110 * state. This function must not have any dependencies on the device state in 3111 * order to proceed. 3112 */ 3113 static void nvme_remove(struct pci_dev *pdev) 3114 { 3115 struct nvme_dev *dev = pci_get_drvdata(pdev); 3116 3117 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3118 pci_set_drvdata(pdev, NULL); 3119 3120 if (!pci_device_is_present(pdev)) { 3121 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3122 nvme_dev_disable(dev, true); 3123 } 3124 3125 flush_work(&dev->ctrl.reset_work); 3126 nvme_stop_ctrl(&dev->ctrl); 3127 nvme_remove_namespaces(&dev->ctrl); 3128 nvme_dev_disable(dev, true); 3129 nvme_free_host_mem(dev); 3130 nvme_dev_remove_admin(dev); 3131 nvme_dbbuf_dma_free(dev); 3132 nvme_free_queues(dev, 0); 3133 mempool_destroy(dev->iod_mempool); 3134 nvme_release_prp_pools(dev); 3135 nvme_dev_unmap(dev); 3136 nvme_uninit_ctrl(&dev->ctrl); 3137 } 3138 3139 #ifdef CONFIG_PM_SLEEP 3140 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3141 { 3142 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3143 } 3144 3145 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3146 { 3147 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3148 } 3149 3150 static int nvme_resume(struct device *dev) 3151 { 3152 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3153 struct nvme_ctrl *ctrl = &ndev->ctrl; 3154 3155 if (ndev->last_ps == U32_MAX || 3156 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3157 goto reset; 3158 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3159 goto reset; 3160 3161 return 0; 3162 reset: 3163 return nvme_try_sched_reset(ctrl); 3164 } 3165 3166 static int nvme_suspend(struct device *dev) 3167 { 3168 struct pci_dev *pdev = to_pci_dev(dev); 3169 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3170 struct nvme_ctrl *ctrl = &ndev->ctrl; 3171 int ret = -EBUSY; 3172 3173 ndev->last_ps = U32_MAX; 3174 3175 /* 3176 * The platform does not remove power for a kernel managed suspend so 3177 * use host managed nvme power settings for lowest idle power if 3178 * possible. This should have quicker resume latency than a full device 3179 * shutdown. But if the firmware is involved after the suspend or the 3180 * device does not support any non-default power states, shut down the 3181 * device fully. 3182 * 3183 * If ASPM is not enabled for the device, shut down the device and allow 3184 * the PCI bus layer to put it into D3 in order to take the PCIe link 3185 * down, so as to allow the platform to achieve its minimum low-power 3186 * state (which may not be possible if the link is up). 3187 */ 3188 if (pm_suspend_via_firmware() || !ctrl->npss || 3189 !pcie_aspm_enabled(pdev) || 3190 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3191 return nvme_disable_prepare_reset(ndev, true); 3192 3193 nvme_start_freeze(ctrl); 3194 nvme_wait_freeze(ctrl); 3195 nvme_sync_queues(ctrl); 3196 3197 if (ctrl->state != NVME_CTRL_LIVE) 3198 goto unfreeze; 3199 3200 /* 3201 * Host memory access may not be successful in a system suspend state, 3202 * but the specification allows the controller to access memory in a 3203 * non-operational power state. 3204 */ 3205 if (ndev->hmb) { 3206 ret = nvme_set_host_mem(ndev, 0); 3207 if (ret < 0) 3208 goto unfreeze; 3209 } 3210 3211 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3212 if (ret < 0) 3213 goto unfreeze; 3214 3215 /* 3216 * A saved state prevents pci pm from generically controlling the 3217 * device's power. If we're using protocol specific settings, we don't 3218 * want pci interfering. 3219 */ 3220 pci_save_state(pdev); 3221 3222 ret = nvme_set_power_state(ctrl, ctrl->npss); 3223 if (ret < 0) 3224 goto unfreeze; 3225 3226 if (ret) { 3227 /* discard the saved state */ 3228 pci_load_saved_state(pdev, NULL); 3229 3230 /* 3231 * Clearing npss forces a controller reset on resume. The 3232 * correct value will be rediscovered then. 3233 */ 3234 ret = nvme_disable_prepare_reset(ndev, true); 3235 ctrl->npss = 0; 3236 } 3237 unfreeze: 3238 nvme_unfreeze(ctrl); 3239 return ret; 3240 } 3241 3242 static int nvme_simple_suspend(struct device *dev) 3243 { 3244 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3245 3246 return nvme_disable_prepare_reset(ndev, true); 3247 } 3248 3249 static int nvme_simple_resume(struct device *dev) 3250 { 3251 struct pci_dev *pdev = to_pci_dev(dev); 3252 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3253 3254 return nvme_try_sched_reset(&ndev->ctrl); 3255 } 3256 3257 static const struct dev_pm_ops nvme_dev_pm_ops = { 3258 .suspend = nvme_suspend, 3259 .resume = nvme_resume, 3260 .freeze = nvme_simple_suspend, 3261 .thaw = nvme_simple_resume, 3262 .poweroff = nvme_simple_suspend, 3263 .restore = nvme_simple_resume, 3264 }; 3265 #endif /* CONFIG_PM_SLEEP */ 3266 3267 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3268 pci_channel_state_t state) 3269 { 3270 struct nvme_dev *dev = pci_get_drvdata(pdev); 3271 3272 /* 3273 * A frozen channel requires a reset. When detected, this method will 3274 * shutdown the controller to quiesce. The controller will be restarted 3275 * after the slot reset through driver's slot_reset callback. 3276 */ 3277 switch (state) { 3278 case pci_channel_io_normal: 3279 return PCI_ERS_RESULT_CAN_RECOVER; 3280 case pci_channel_io_frozen: 3281 dev_warn(dev->ctrl.device, 3282 "frozen state error detected, reset controller\n"); 3283 nvme_dev_disable(dev, false); 3284 return PCI_ERS_RESULT_NEED_RESET; 3285 case pci_channel_io_perm_failure: 3286 dev_warn(dev->ctrl.device, 3287 "failure state error detected, request disconnect\n"); 3288 return PCI_ERS_RESULT_DISCONNECT; 3289 } 3290 return PCI_ERS_RESULT_NEED_RESET; 3291 } 3292 3293 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3294 { 3295 struct nvme_dev *dev = pci_get_drvdata(pdev); 3296 3297 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3298 pci_restore_state(pdev); 3299 nvme_reset_ctrl(&dev->ctrl); 3300 return PCI_ERS_RESULT_RECOVERED; 3301 } 3302 3303 static void nvme_error_resume(struct pci_dev *pdev) 3304 { 3305 struct nvme_dev *dev = pci_get_drvdata(pdev); 3306 3307 flush_work(&dev->ctrl.reset_work); 3308 } 3309 3310 static const struct pci_error_handlers nvme_err_handler = { 3311 .error_detected = nvme_error_detected, 3312 .slot_reset = nvme_slot_reset, 3313 .resume = nvme_error_resume, 3314 .reset_prepare = nvme_reset_prepare, 3315 .reset_done = nvme_reset_done, 3316 }; 3317 3318 static const struct pci_device_id nvme_id_table[] = { 3319 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3320 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3321 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3322 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3323 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3324 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3325 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3326 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3327 NVME_QUIRK_DEALLOCATE_ZEROES | 3328 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3329 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3330 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3331 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3332 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3333 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3334 NVME_QUIRK_MEDIUM_PRIO_SQ | 3335 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3336 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3337 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3338 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3339 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3340 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3341 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3342 NVME_QUIRK_BOGUS_NID, }, 3343 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3344 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3345 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3346 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3347 NVME_QUIRK_BOGUS_NID, }, 3348 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3349 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3350 NVME_QUIRK_NO_NS_DESC_LIST, }, 3351 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3352 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3353 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3354 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3355 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3356 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3357 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3358 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3359 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3360 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3361 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3362 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3363 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3364 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3365 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3366 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3367 NVME_QUIRK_BOGUS_NID, }, 3368 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3369 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3370 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3371 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3372 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3373 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3374 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3375 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3376 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3377 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3378 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3379 NVME_QUIRK_BOGUS_NID, }, 3380 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3381 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3382 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3383 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3384 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3385 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3386 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3387 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3388 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3389 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3390 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3391 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3392 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3393 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3394 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3395 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3396 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3397 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3398 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3399 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3400 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3401 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3402 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3403 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3404 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3405 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3406 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3407 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3408 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3409 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3410 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3411 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3412 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3413 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3414 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3415 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3416 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3417 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3418 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3419 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3420 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3421 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3422 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3423 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3424 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3425 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3426 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3427 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3428 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3429 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3430 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3431 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3432 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3433 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3434 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3435 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3436 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3437 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3438 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3439 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3440 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3441 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3442 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3443 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3444 .driver_data = NVME_QUIRK_BOGUS_NID | 3445 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3446 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3447 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3448 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3449 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3450 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3451 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3452 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3453 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3454 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3455 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3456 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3457 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3458 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3459 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3460 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3461 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3462 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3463 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3464 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3465 NVME_QUIRK_128_BYTES_SQES | 3466 NVME_QUIRK_SHARED_TAGS | 3467 NVME_QUIRK_SKIP_CID_GEN | 3468 NVME_QUIRK_IDENTIFY_CNS }, 3469 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3470 { 0, } 3471 }; 3472 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3473 3474 static struct pci_driver nvme_driver = { 3475 .name = "nvme", 3476 .id_table = nvme_id_table, 3477 .probe = nvme_probe, 3478 .remove = nvme_remove, 3479 .shutdown = nvme_shutdown, 3480 .driver = { 3481 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3482 #ifdef CONFIG_PM_SLEEP 3483 .pm = &nvme_dev_pm_ops, 3484 #endif 3485 }, 3486 .sriov_configure = pci_sriov_configure_simple, 3487 .err_handler = &nvme_err_handler, 3488 }; 3489 3490 static int __init nvme_init(void) 3491 { 3492 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3493 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3494 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3495 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3496 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3497 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3498 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3499 3500 return pci_register_driver(&nvme_driver); 3501 } 3502 3503 static void __exit nvme_exit(void) 3504 { 3505 pci_unregister_driver(&nvme_driver); 3506 flush_workqueue(nvme_wq); 3507 } 3508 3509 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3510 MODULE_LICENSE("GPL"); 3511 MODULE_VERSION("1.0"); 3512 module_init(nvme_init); 3513 module_exit(nvme_exit); 3514