xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kstrtox.h>
19 #include <linux/memremap.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/once.h>
24 #include <linux/pci.h>
25 #include <linux/suspend.h>
26 #include <linux/t10-pi.h>
27 #include <linux/types.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 #include <linux/sed-opal.h>
31 #include <linux/pci-p2pdma.h>
32 
33 #include "trace.h"
34 #include "nvme.h"
35 
36 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
37 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
38 
39 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40 
41 /*
42  * These can be higher, but we need to ensure that any command doesn't
43  * require an sg allocation that needs more than a page of data.
44  */
45 #define NVME_MAX_KB_SZ	8192
46 #define NVME_MAX_SEGS	128
47 #define NVME_MAX_NR_ALLOCATIONS	5
48 
49 static int use_threaded_interrupts;
50 module_param(use_threaded_interrupts, int, 0444);
51 
52 static bool use_cmb_sqes = true;
53 module_param(use_cmb_sqes, bool, 0444);
54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55 
56 static unsigned int max_host_mem_size_mb = 128;
57 module_param(max_host_mem_size_mb, uint, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb,
59 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60 
61 static unsigned int sgl_threshold = SZ_32K;
62 module_param(sgl_threshold, uint, 0644);
63 MODULE_PARM_DESC(sgl_threshold,
64 		"Use SGLs when average request segment size is larger or equal to "
65 		"this size. Use 0 to disable SGLs.");
66 
67 #define NVME_PCI_MIN_QUEUE_SIZE 2
68 #define NVME_PCI_MAX_QUEUE_SIZE 4095
69 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
70 static const struct kernel_param_ops io_queue_depth_ops = {
71 	.set = io_queue_depth_set,
72 	.get = param_get_uint,
73 };
74 
75 static unsigned int io_queue_depth = 1024;
76 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
77 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
78 
79 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
80 {
81 	unsigned int n;
82 	int ret;
83 
84 	ret = kstrtouint(val, 10, &n);
85 	if (ret != 0 || n > num_possible_cpus())
86 		return -EINVAL;
87 	return param_set_uint(val, kp);
88 }
89 
90 static const struct kernel_param_ops io_queue_count_ops = {
91 	.set = io_queue_count_set,
92 	.get = param_get_uint,
93 };
94 
95 static unsigned int write_queues;
96 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
97 MODULE_PARM_DESC(write_queues,
98 	"Number of queues to use for writes. If not set, reads and writes "
99 	"will share a queue set.");
100 
101 static unsigned int poll_queues;
102 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
103 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
104 
105 static bool noacpi;
106 module_param(noacpi, bool, 0444);
107 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
108 
109 struct nvme_dev;
110 struct nvme_queue;
111 
112 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
113 static void nvme_delete_io_queues(struct nvme_dev *dev);
114 static void nvme_update_attrs(struct nvme_dev *dev);
115 
116 /*
117  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
118  */
119 struct nvme_dev {
120 	struct nvme_queue *queues;
121 	struct blk_mq_tag_set tagset;
122 	struct blk_mq_tag_set admin_tagset;
123 	u32 __iomem *dbs;
124 	struct device *dev;
125 	struct dma_pool *prp_page_pool;
126 	struct dma_pool *prp_small_pool;
127 	unsigned online_queues;
128 	unsigned max_qid;
129 	unsigned io_queues[HCTX_MAX_TYPES];
130 	unsigned int num_vecs;
131 	u32 q_depth;
132 	int io_sqes;
133 	u32 db_stride;
134 	void __iomem *bar;
135 	unsigned long bar_mapped_size;
136 	struct mutex shutdown_lock;
137 	bool subsystem;
138 	u64 cmb_size;
139 	bool cmb_use_sqes;
140 	u32 cmbsz;
141 	u32 cmbloc;
142 	struct nvme_ctrl ctrl;
143 	u32 last_ps;
144 	bool hmb;
145 
146 	mempool_t *iod_mempool;
147 
148 	/* shadow doorbell buffer support: */
149 	__le32 *dbbuf_dbs;
150 	dma_addr_t dbbuf_dbs_dma_addr;
151 	__le32 *dbbuf_eis;
152 	dma_addr_t dbbuf_eis_dma_addr;
153 
154 	/* host memory buffer support: */
155 	u64 host_mem_size;
156 	u32 nr_host_mem_descs;
157 	dma_addr_t host_mem_descs_dma;
158 	struct nvme_host_mem_buf_desc *host_mem_descs;
159 	void **host_mem_desc_bufs;
160 	unsigned int nr_allocated_queues;
161 	unsigned int nr_write_queues;
162 	unsigned int nr_poll_queues;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	__le32 *dbbuf_sq_db;
214 	__le32 *dbbuf_cq_db;
215 	__le32 *dbbuf_sq_ei;
216 	__le32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 union nvme_descriptor {
221 	struct nvme_sgl_desc	*sg_list;
222 	__le64			*prp_list;
223 };
224 
225 /*
226  * The nvme_iod describes the data in an I/O.
227  *
228  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
229  * to the actual struct scatterlist.
230  */
231 struct nvme_iod {
232 	struct nvme_request req;
233 	struct nvme_command cmd;
234 	bool aborted;
235 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
236 				   pool in use */
237 	unsigned int dma_len;	/* length of single DMA segment mapping */
238 	dma_addr_t first_dma;
239 	dma_addr_t meta_dma;
240 	struct sg_table sgt;
241 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
242 };
243 
244 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
245 {
246 	return dev->nr_allocated_queues * 8 * dev->db_stride;
247 }
248 
249 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
250 {
251 	unsigned int mem_size = nvme_dbbuf_size(dev);
252 
253 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
254 		return;
255 
256 	if (dev->dbbuf_dbs) {
257 		/*
258 		 * Clear the dbbuf memory so the driver doesn't observe stale
259 		 * values from the previous instantiation.
260 		 */
261 		memset(dev->dbbuf_dbs, 0, mem_size);
262 		memset(dev->dbbuf_eis, 0, mem_size);
263 		return;
264 	}
265 
266 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
267 					    &dev->dbbuf_dbs_dma_addr,
268 					    GFP_KERNEL);
269 	if (!dev->dbbuf_dbs)
270 		goto fail;
271 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
272 					    &dev->dbbuf_eis_dma_addr,
273 					    GFP_KERNEL);
274 	if (!dev->dbbuf_eis)
275 		goto fail_free_dbbuf_dbs;
276 	return;
277 
278 fail_free_dbbuf_dbs:
279 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
280 			  dev->dbbuf_dbs_dma_addr);
281 	dev->dbbuf_dbs = NULL;
282 fail:
283 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
284 }
285 
286 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
287 {
288 	unsigned int mem_size = nvme_dbbuf_size(dev);
289 
290 	if (dev->dbbuf_dbs) {
291 		dma_free_coherent(dev->dev, mem_size,
292 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
293 		dev->dbbuf_dbs = NULL;
294 	}
295 	if (dev->dbbuf_eis) {
296 		dma_free_coherent(dev->dev, mem_size,
297 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
298 		dev->dbbuf_eis = NULL;
299 	}
300 }
301 
302 static void nvme_dbbuf_init(struct nvme_dev *dev,
303 			    struct nvme_queue *nvmeq, int qid)
304 {
305 	if (!dev->dbbuf_dbs || !qid)
306 		return;
307 
308 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
311 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
312 }
313 
314 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
315 {
316 	if (!nvmeq->qid)
317 		return;
318 
319 	nvmeq->dbbuf_sq_db = NULL;
320 	nvmeq->dbbuf_cq_db = NULL;
321 	nvmeq->dbbuf_sq_ei = NULL;
322 	nvmeq->dbbuf_cq_ei = NULL;
323 }
324 
325 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 {
327 	struct nvme_command c = { };
328 	unsigned int i;
329 
330 	if (!dev->dbbuf_dbs)
331 		return;
332 
333 	c.dbbuf.opcode = nvme_admin_dbbuf;
334 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336 
337 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
338 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
339 		/* Free memory and continue on */
340 		nvme_dbbuf_dma_free(dev);
341 
342 		for (i = 1; i <= dev->online_queues; i++)
343 			nvme_dbbuf_free(&dev->queues[i]);
344 	}
345 }
346 
347 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
348 {
349 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
350 }
351 
352 /* Update dbbuf and return true if an MMIO is required */
353 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
354 					      volatile __le32 *dbbuf_ei)
355 {
356 	if (dbbuf_db) {
357 		u16 old_value, event_idx;
358 
359 		/*
360 		 * Ensure that the queue is written before updating
361 		 * the doorbell in memory
362 		 */
363 		wmb();
364 
365 		old_value = le32_to_cpu(*dbbuf_db);
366 		*dbbuf_db = cpu_to_le32(value);
367 
368 		/*
369 		 * Ensure that the doorbell is updated before reading the event
370 		 * index from memory.  The controller needs to provide similar
371 		 * ordering to ensure the envent index is updated before reading
372 		 * the doorbell.
373 		 */
374 		mb();
375 
376 		event_idx = le32_to_cpu(*dbbuf_ei);
377 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
378 			return false;
379 	}
380 
381 	return true;
382 }
383 
384 /*
385  * Will slightly overestimate the number of pages needed.  This is OK
386  * as it only leads to a small amount of wasted memory for the lifetime of
387  * the I/O.
388  */
389 static int nvme_pci_npages_prp(void)
390 {
391 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
392 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
393 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
394 }
395 
396 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
397 				unsigned int hctx_idx)
398 {
399 	struct nvme_dev *dev = to_nvme_dev(data);
400 	struct nvme_queue *nvmeq = &dev->queues[0];
401 
402 	WARN_ON(hctx_idx != 0);
403 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
404 
405 	hctx->driver_data = nvmeq;
406 	return 0;
407 }
408 
409 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
410 			  unsigned int hctx_idx)
411 {
412 	struct nvme_dev *dev = to_nvme_dev(data);
413 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
414 
415 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
416 	hctx->driver_data = nvmeq;
417 	return 0;
418 }
419 
420 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
421 		struct request *req, unsigned int hctx_idx,
422 		unsigned int numa_node)
423 {
424 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
425 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 
427 	nvme_req(req)->ctrl = &dev->ctrl;
428 	nvme_req(req)->cmd = &iod->cmd;
429 	return 0;
430 }
431 
432 static int queue_irq_offset(struct nvme_dev *dev)
433 {
434 	/* if we have more than 1 vec, admin queue offsets us by 1 */
435 	if (dev->num_vecs > 1)
436 		return 1;
437 
438 	return 0;
439 }
440 
441 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
442 {
443 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
444 	int i, qoff, offset;
445 
446 	offset = queue_irq_offset(dev);
447 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
448 		struct blk_mq_queue_map *map = &set->map[i];
449 
450 		map->nr_queues = dev->io_queues[i];
451 		if (!map->nr_queues) {
452 			BUG_ON(i == HCTX_TYPE_DEFAULT);
453 			continue;
454 		}
455 
456 		/*
457 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
458 		 * affinity), so use the regular blk-mq cpu mapping
459 		 */
460 		map->queue_offset = qoff;
461 		if (i != HCTX_TYPE_POLL && offset)
462 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
463 		else
464 			blk_mq_map_queues(map);
465 		qoff += map->nr_queues;
466 		offset += map->nr_queues;
467 	}
468 }
469 
470 /*
471  * Write sq tail if we are asked to, or if the next command would wrap.
472  */
473 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
474 {
475 	if (!write_sq) {
476 		u16 next_tail = nvmeq->sq_tail + 1;
477 
478 		if (next_tail == nvmeq->q_depth)
479 			next_tail = 0;
480 		if (next_tail != nvmeq->last_sq_tail)
481 			return;
482 	}
483 
484 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
485 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
486 		writel(nvmeq->sq_tail, nvmeq->q_db);
487 	nvmeq->last_sq_tail = nvmeq->sq_tail;
488 }
489 
490 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
491 				    struct nvme_command *cmd)
492 {
493 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
494 		absolute_pointer(cmd), sizeof(*cmd));
495 	if (++nvmeq->sq_tail == nvmeq->q_depth)
496 		nvmeq->sq_tail = 0;
497 }
498 
499 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
500 {
501 	struct nvme_queue *nvmeq = hctx->driver_data;
502 
503 	spin_lock(&nvmeq->sq_lock);
504 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
505 		nvme_write_sq_db(nvmeq, true);
506 	spin_unlock(&nvmeq->sq_lock);
507 }
508 
509 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
510 				     int nseg)
511 {
512 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
513 	unsigned int avg_seg_size;
514 
515 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
516 
517 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
518 		return false;
519 	if (!nvmeq->qid)
520 		return false;
521 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
522 		return false;
523 	return true;
524 }
525 
526 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
527 {
528 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
529 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
530 	dma_addr_t dma_addr = iod->first_dma;
531 	int i;
532 
533 	for (i = 0; i < iod->nr_allocations; i++) {
534 		__le64 *prp_list = iod->list[i].prp_list;
535 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
536 
537 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
538 		dma_addr = next_dma_addr;
539 	}
540 }
541 
542 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
543 {
544 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 
546 	if (iod->dma_len) {
547 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
548 			       rq_dma_dir(req));
549 		return;
550 	}
551 
552 	WARN_ON_ONCE(!iod->sgt.nents);
553 
554 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
555 
556 	if (iod->nr_allocations == 0)
557 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
558 			      iod->first_dma);
559 	else if (iod->nr_allocations == 1)
560 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
561 			      iod->first_dma);
562 	else
563 		nvme_free_prps(dev, req);
564 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
565 }
566 
567 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
568 {
569 	int i;
570 	struct scatterlist *sg;
571 
572 	for_each_sg(sgl, sg, nents, i) {
573 		dma_addr_t phys = sg_phys(sg);
574 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
575 			"dma_address:%pad dma_length:%d\n",
576 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
577 			sg_dma_len(sg));
578 	}
579 }
580 
581 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
582 		struct request *req, struct nvme_rw_command *cmnd)
583 {
584 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
585 	struct dma_pool *pool;
586 	int length = blk_rq_payload_bytes(req);
587 	struct scatterlist *sg = iod->sgt.sgl;
588 	int dma_len = sg_dma_len(sg);
589 	u64 dma_addr = sg_dma_address(sg);
590 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
591 	__le64 *prp_list;
592 	dma_addr_t prp_dma;
593 	int nprps, i;
594 
595 	length -= (NVME_CTRL_PAGE_SIZE - offset);
596 	if (length <= 0) {
597 		iod->first_dma = 0;
598 		goto done;
599 	}
600 
601 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
602 	if (dma_len) {
603 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
604 	} else {
605 		sg = sg_next(sg);
606 		dma_addr = sg_dma_address(sg);
607 		dma_len = sg_dma_len(sg);
608 	}
609 
610 	if (length <= NVME_CTRL_PAGE_SIZE) {
611 		iod->first_dma = dma_addr;
612 		goto done;
613 	}
614 
615 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
616 	if (nprps <= (256 / 8)) {
617 		pool = dev->prp_small_pool;
618 		iod->nr_allocations = 0;
619 	} else {
620 		pool = dev->prp_page_pool;
621 		iod->nr_allocations = 1;
622 	}
623 
624 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
625 	if (!prp_list) {
626 		iod->nr_allocations = -1;
627 		return BLK_STS_RESOURCE;
628 	}
629 	iod->list[0].prp_list = prp_list;
630 	iod->first_dma = prp_dma;
631 	i = 0;
632 	for (;;) {
633 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
634 			__le64 *old_prp_list = prp_list;
635 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
636 			if (!prp_list)
637 				goto free_prps;
638 			iod->list[iod->nr_allocations++].prp_list = prp_list;
639 			prp_list[0] = old_prp_list[i - 1];
640 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
641 			i = 1;
642 		}
643 		prp_list[i++] = cpu_to_le64(dma_addr);
644 		dma_len -= NVME_CTRL_PAGE_SIZE;
645 		dma_addr += NVME_CTRL_PAGE_SIZE;
646 		length -= NVME_CTRL_PAGE_SIZE;
647 		if (length <= 0)
648 			break;
649 		if (dma_len > 0)
650 			continue;
651 		if (unlikely(dma_len < 0))
652 			goto bad_sgl;
653 		sg = sg_next(sg);
654 		dma_addr = sg_dma_address(sg);
655 		dma_len = sg_dma_len(sg);
656 	}
657 done:
658 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
659 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
660 	return BLK_STS_OK;
661 free_prps:
662 	nvme_free_prps(dev, req);
663 	return BLK_STS_RESOURCE;
664 bad_sgl:
665 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
666 			"Invalid SGL for payload:%d nents:%d\n",
667 			blk_rq_payload_bytes(req), iod->sgt.nents);
668 	return BLK_STS_IOERR;
669 }
670 
671 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
672 		struct scatterlist *sg)
673 {
674 	sge->addr = cpu_to_le64(sg_dma_address(sg));
675 	sge->length = cpu_to_le32(sg_dma_len(sg));
676 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
677 }
678 
679 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
680 		dma_addr_t dma_addr, int entries)
681 {
682 	sge->addr = cpu_to_le64(dma_addr);
683 	sge->length = cpu_to_le32(entries * sizeof(*sge));
684 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
685 }
686 
687 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
688 		struct request *req, struct nvme_rw_command *cmd)
689 {
690 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
691 	struct dma_pool *pool;
692 	struct nvme_sgl_desc *sg_list;
693 	struct scatterlist *sg = iod->sgt.sgl;
694 	unsigned int entries = iod->sgt.nents;
695 	dma_addr_t sgl_dma;
696 	int i = 0;
697 
698 	/* setting the transfer type as SGL */
699 	cmd->flags = NVME_CMD_SGL_METABUF;
700 
701 	if (entries == 1) {
702 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
703 		return BLK_STS_OK;
704 	}
705 
706 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
707 		pool = dev->prp_small_pool;
708 		iod->nr_allocations = 0;
709 	} else {
710 		pool = dev->prp_page_pool;
711 		iod->nr_allocations = 1;
712 	}
713 
714 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
715 	if (!sg_list) {
716 		iod->nr_allocations = -1;
717 		return BLK_STS_RESOURCE;
718 	}
719 
720 	iod->list[0].sg_list = sg_list;
721 	iod->first_dma = sgl_dma;
722 
723 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
724 	do {
725 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
726 		sg = sg_next(sg);
727 	} while (--entries > 0);
728 
729 	return BLK_STS_OK;
730 }
731 
732 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
733 		struct request *req, struct nvme_rw_command *cmnd,
734 		struct bio_vec *bv)
735 {
736 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
737 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
738 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
739 
740 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
741 	if (dma_mapping_error(dev->dev, iod->first_dma))
742 		return BLK_STS_RESOURCE;
743 	iod->dma_len = bv->bv_len;
744 
745 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
746 	if (bv->bv_len > first_prp_len)
747 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
748 	else
749 		cmnd->dptr.prp2 = 0;
750 	return BLK_STS_OK;
751 }
752 
753 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
754 		struct request *req, struct nvme_rw_command *cmnd,
755 		struct bio_vec *bv)
756 {
757 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
758 
759 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
760 	if (dma_mapping_error(dev->dev, iod->first_dma))
761 		return BLK_STS_RESOURCE;
762 	iod->dma_len = bv->bv_len;
763 
764 	cmnd->flags = NVME_CMD_SGL_METABUF;
765 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
766 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
767 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
768 	return BLK_STS_OK;
769 }
770 
771 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
772 		struct nvme_command *cmnd)
773 {
774 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
775 	blk_status_t ret = BLK_STS_RESOURCE;
776 	int rc;
777 
778 	if (blk_rq_nr_phys_segments(req) == 1) {
779 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
780 		struct bio_vec bv = req_bvec(req);
781 
782 		if (!is_pci_p2pdma_page(bv.bv_page)) {
783 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
784 				return nvme_setup_prp_simple(dev, req,
785 							     &cmnd->rw, &bv);
786 
787 			if (nvmeq->qid && sgl_threshold &&
788 			    nvme_ctrl_sgl_supported(&dev->ctrl))
789 				return nvme_setup_sgl_simple(dev, req,
790 							     &cmnd->rw, &bv);
791 		}
792 	}
793 
794 	iod->dma_len = 0;
795 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
796 	if (!iod->sgt.sgl)
797 		return BLK_STS_RESOURCE;
798 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
799 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
800 	if (!iod->sgt.orig_nents)
801 		goto out_free_sg;
802 
803 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
804 			     DMA_ATTR_NO_WARN);
805 	if (rc) {
806 		if (rc == -EREMOTEIO)
807 			ret = BLK_STS_TARGET;
808 		goto out_free_sg;
809 	}
810 
811 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
812 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
813 	else
814 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
815 	if (ret != BLK_STS_OK)
816 		goto out_unmap_sg;
817 	return BLK_STS_OK;
818 
819 out_unmap_sg:
820 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
821 out_free_sg:
822 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
823 	return ret;
824 }
825 
826 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
827 		struct nvme_command *cmnd)
828 {
829 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 
831 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
832 			rq_dma_dir(req), 0);
833 	if (dma_mapping_error(dev->dev, iod->meta_dma))
834 		return BLK_STS_IOERR;
835 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
836 	return BLK_STS_OK;
837 }
838 
839 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 	blk_status_t ret;
843 
844 	iod->aborted = false;
845 	iod->nr_allocations = -1;
846 	iod->sgt.nents = 0;
847 
848 	ret = nvme_setup_cmd(req->q->queuedata, req);
849 	if (ret)
850 		return ret;
851 
852 	if (blk_rq_nr_phys_segments(req)) {
853 		ret = nvme_map_data(dev, req, &iod->cmd);
854 		if (ret)
855 			goto out_free_cmd;
856 	}
857 
858 	if (blk_integrity_rq(req)) {
859 		ret = nvme_map_metadata(dev, req, &iod->cmd);
860 		if (ret)
861 			goto out_unmap_data;
862 	}
863 
864 	nvme_start_request(req);
865 	return BLK_STS_OK;
866 out_unmap_data:
867 	nvme_unmap_data(dev, req);
868 out_free_cmd:
869 	nvme_cleanup_cmd(req);
870 	return ret;
871 }
872 
873 /*
874  * NOTE: ns is NULL when called on the admin queue.
875  */
876 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
877 			 const struct blk_mq_queue_data *bd)
878 {
879 	struct nvme_queue *nvmeq = hctx->driver_data;
880 	struct nvme_dev *dev = nvmeq->dev;
881 	struct request *req = bd->rq;
882 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
883 	blk_status_t ret;
884 
885 	/*
886 	 * We should not need to do this, but we're still using this to
887 	 * ensure we can drain requests on a dying queue.
888 	 */
889 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
890 		return BLK_STS_IOERR;
891 
892 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
893 		return nvme_fail_nonready_command(&dev->ctrl, req);
894 
895 	ret = nvme_prep_rq(dev, req);
896 	if (unlikely(ret))
897 		return ret;
898 	spin_lock(&nvmeq->sq_lock);
899 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
900 	nvme_write_sq_db(nvmeq, bd->last);
901 	spin_unlock(&nvmeq->sq_lock);
902 	return BLK_STS_OK;
903 }
904 
905 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
906 {
907 	spin_lock(&nvmeq->sq_lock);
908 	while (!rq_list_empty(*rqlist)) {
909 		struct request *req = rq_list_pop(rqlist);
910 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911 
912 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
913 	}
914 	nvme_write_sq_db(nvmeq, true);
915 	spin_unlock(&nvmeq->sq_lock);
916 }
917 
918 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
919 {
920 	/*
921 	 * We should not need to do this, but we're still using this to
922 	 * ensure we can drain requests on a dying queue.
923 	 */
924 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
925 		return false;
926 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
927 		return false;
928 
929 	req->mq_hctx->tags->rqs[req->tag] = req;
930 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
931 }
932 
933 static void nvme_queue_rqs(struct request **rqlist)
934 {
935 	struct request *req, *next, *prev = NULL;
936 	struct request *requeue_list = NULL;
937 
938 	rq_list_for_each_safe(rqlist, req, next) {
939 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
940 
941 		if (!nvme_prep_rq_batch(nvmeq, req)) {
942 			/* detach 'req' and add to remainder list */
943 			rq_list_move(rqlist, &requeue_list, req, prev);
944 
945 			req = prev;
946 			if (!req)
947 				continue;
948 		}
949 
950 		if (!next || req->mq_hctx != next->mq_hctx) {
951 			/* detach rest of list, and submit */
952 			req->rq_next = NULL;
953 			nvme_submit_cmds(nvmeq, rqlist);
954 			*rqlist = next;
955 			prev = NULL;
956 		} else
957 			prev = req;
958 	}
959 
960 	*rqlist = requeue_list;
961 }
962 
963 static __always_inline void nvme_pci_unmap_rq(struct request *req)
964 {
965 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
966 	struct nvme_dev *dev = nvmeq->dev;
967 
968 	if (blk_integrity_rq(req)) {
969 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
970 
971 		dma_unmap_page(dev->dev, iod->meta_dma,
972 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
973 	}
974 
975 	if (blk_rq_nr_phys_segments(req))
976 		nvme_unmap_data(dev, req);
977 }
978 
979 static void nvme_pci_complete_rq(struct request *req)
980 {
981 	nvme_pci_unmap_rq(req);
982 	nvme_complete_rq(req);
983 }
984 
985 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
986 {
987 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
988 }
989 
990 /* We read the CQE phase first to check if the rest of the entry is valid */
991 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
992 {
993 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
994 
995 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
996 }
997 
998 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
999 {
1000 	u16 head = nvmeq->cq_head;
1001 
1002 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1003 					      nvmeq->dbbuf_cq_ei))
1004 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1005 }
1006 
1007 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1008 {
1009 	if (!nvmeq->qid)
1010 		return nvmeq->dev->admin_tagset.tags[0];
1011 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1012 }
1013 
1014 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1015 				   struct io_comp_batch *iob, u16 idx)
1016 {
1017 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1018 	__u16 command_id = READ_ONCE(cqe->command_id);
1019 	struct request *req;
1020 
1021 	/*
1022 	 * AEN requests are special as they don't time out and can
1023 	 * survive any kind of queue freeze and often don't respond to
1024 	 * aborts.  We don't even bother to allocate a struct request
1025 	 * for them but rather special case them here.
1026 	 */
1027 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1028 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1029 				cqe->status, &cqe->result);
1030 		return;
1031 	}
1032 
1033 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1034 	if (unlikely(!req)) {
1035 		dev_warn(nvmeq->dev->ctrl.device,
1036 			"invalid id %d completed on queue %d\n",
1037 			command_id, le16_to_cpu(cqe->sq_id));
1038 		return;
1039 	}
1040 
1041 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1042 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1043 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1044 					nvme_pci_complete_batch))
1045 		nvme_pci_complete_rq(req);
1046 }
1047 
1048 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1049 {
1050 	u32 tmp = nvmeq->cq_head + 1;
1051 
1052 	if (tmp == nvmeq->q_depth) {
1053 		nvmeq->cq_head = 0;
1054 		nvmeq->cq_phase ^= 1;
1055 	} else {
1056 		nvmeq->cq_head = tmp;
1057 	}
1058 }
1059 
1060 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1061 			       struct io_comp_batch *iob)
1062 {
1063 	int found = 0;
1064 
1065 	while (nvme_cqe_pending(nvmeq)) {
1066 		found++;
1067 		/*
1068 		 * load-load control dependency between phase and the rest of
1069 		 * the cqe requires a full read memory barrier
1070 		 */
1071 		dma_rmb();
1072 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1073 		nvme_update_cq_head(nvmeq);
1074 	}
1075 
1076 	if (found)
1077 		nvme_ring_cq_doorbell(nvmeq);
1078 	return found;
1079 }
1080 
1081 static irqreturn_t nvme_irq(int irq, void *data)
1082 {
1083 	struct nvme_queue *nvmeq = data;
1084 	DEFINE_IO_COMP_BATCH(iob);
1085 
1086 	if (nvme_poll_cq(nvmeq, &iob)) {
1087 		if (!rq_list_empty(iob.req_list))
1088 			nvme_pci_complete_batch(&iob);
1089 		return IRQ_HANDLED;
1090 	}
1091 	return IRQ_NONE;
1092 }
1093 
1094 static irqreturn_t nvme_irq_check(int irq, void *data)
1095 {
1096 	struct nvme_queue *nvmeq = data;
1097 
1098 	if (nvme_cqe_pending(nvmeq))
1099 		return IRQ_WAKE_THREAD;
1100 	return IRQ_NONE;
1101 }
1102 
1103 /*
1104  * Poll for completions for any interrupt driven queue
1105  * Can be called from any context.
1106  */
1107 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1108 {
1109 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1110 
1111 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1112 
1113 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1114 	nvme_poll_cq(nvmeq, NULL);
1115 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1116 }
1117 
1118 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1119 {
1120 	struct nvme_queue *nvmeq = hctx->driver_data;
1121 	bool found;
1122 
1123 	if (!nvme_cqe_pending(nvmeq))
1124 		return 0;
1125 
1126 	spin_lock(&nvmeq->cq_poll_lock);
1127 	found = nvme_poll_cq(nvmeq, iob);
1128 	spin_unlock(&nvmeq->cq_poll_lock);
1129 
1130 	return found;
1131 }
1132 
1133 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1134 {
1135 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1136 	struct nvme_queue *nvmeq = &dev->queues[0];
1137 	struct nvme_command c = { };
1138 
1139 	c.common.opcode = nvme_admin_async_event;
1140 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1141 
1142 	spin_lock(&nvmeq->sq_lock);
1143 	nvme_sq_copy_cmd(nvmeq, &c);
1144 	nvme_write_sq_db(nvmeq, true);
1145 	spin_unlock(&nvmeq->sq_lock);
1146 }
1147 
1148 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1149 {
1150 	struct nvme_command c = { };
1151 
1152 	c.delete_queue.opcode = opcode;
1153 	c.delete_queue.qid = cpu_to_le16(id);
1154 
1155 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1156 }
1157 
1158 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1159 		struct nvme_queue *nvmeq, s16 vector)
1160 {
1161 	struct nvme_command c = { };
1162 	int flags = NVME_QUEUE_PHYS_CONTIG;
1163 
1164 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1165 		flags |= NVME_CQ_IRQ_ENABLED;
1166 
1167 	/*
1168 	 * Note: we (ab)use the fact that the prp fields survive if no data
1169 	 * is attached to the request.
1170 	 */
1171 	c.create_cq.opcode = nvme_admin_create_cq;
1172 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1173 	c.create_cq.cqid = cpu_to_le16(qid);
1174 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1175 	c.create_cq.cq_flags = cpu_to_le16(flags);
1176 	c.create_cq.irq_vector = cpu_to_le16(vector);
1177 
1178 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1179 }
1180 
1181 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1182 						struct nvme_queue *nvmeq)
1183 {
1184 	struct nvme_ctrl *ctrl = &dev->ctrl;
1185 	struct nvme_command c = { };
1186 	int flags = NVME_QUEUE_PHYS_CONTIG;
1187 
1188 	/*
1189 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1190 	 * set. Since URGENT priority is zeroes, it makes all queues
1191 	 * URGENT.
1192 	 */
1193 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1194 		flags |= NVME_SQ_PRIO_MEDIUM;
1195 
1196 	/*
1197 	 * Note: we (ab)use the fact that the prp fields survive if no data
1198 	 * is attached to the request.
1199 	 */
1200 	c.create_sq.opcode = nvme_admin_create_sq;
1201 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1202 	c.create_sq.sqid = cpu_to_le16(qid);
1203 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1204 	c.create_sq.sq_flags = cpu_to_le16(flags);
1205 	c.create_sq.cqid = cpu_to_le16(qid);
1206 
1207 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1208 }
1209 
1210 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1211 {
1212 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1213 }
1214 
1215 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1216 {
1217 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1218 }
1219 
1220 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1221 {
1222 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1223 
1224 	dev_warn(nvmeq->dev->ctrl.device,
1225 		 "Abort status: 0x%x", nvme_req(req)->status);
1226 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1227 	blk_mq_free_request(req);
1228 	return RQ_END_IO_NONE;
1229 }
1230 
1231 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1232 {
1233 	/* If true, indicates loss of adapter communication, possibly by a
1234 	 * NVMe Subsystem reset.
1235 	 */
1236 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1237 
1238 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1239 	switch (dev->ctrl.state) {
1240 	case NVME_CTRL_RESETTING:
1241 	case NVME_CTRL_CONNECTING:
1242 		return false;
1243 	default:
1244 		break;
1245 	}
1246 
1247 	/* We shouldn't reset unless the controller is on fatal error state
1248 	 * _or_ if we lost the communication with it.
1249 	 */
1250 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1251 		return false;
1252 
1253 	return true;
1254 }
1255 
1256 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1257 {
1258 	/* Read a config register to help see what died. */
1259 	u16 pci_status;
1260 	int result;
1261 
1262 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1263 				      &pci_status);
1264 	if (result == PCIBIOS_SUCCESSFUL)
1265 		dev_warn(dev->ctrl.device,
1266 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1267 			 csts, pci_status);
1268 	else
1269 		dev_warn(dev->ctrl.device,
1270 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1271 			 csts, result);
1272 
1273 	if (csts != ~0)
1274 		return;
1275 
1276 	dev_warn(dev->ctrl.device,
1277 		 "Does your device have a faulty power saving mode enabled?\n");
1278 	dev_warn(dev->ctrl.device,
1279 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1280 }
1281 
1282 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1283 {
1284 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1285 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1286 	struct nvme_dev *dev = nvmeq->dev;
1287 	struct request *abort_req;
1288 	struct nvme_command cmd = { };
1289 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1290 
1291 	/* If PCI error recovery process is happening, we cannot reset or
1292 	 * the recovery mechanism will surely fail.
1293 	 */
1294 	mb();
1295 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1296 		return BLK_EH_RESET_TIMER;
1297 
1298 	/*
1299 	 * Reset immediately if the controller is failed
1300 	 */
1301 	if (nvme_should_reset(dev, csts)) {
1302 		nvme_warn_reset(dev, csts);
1303 		nvme_dev_disable(dev, false);
1304 		nvme_reset_ctrl(&dev->ctrl);
1305 		return BLK_EH_DONE;
1306 	}
1307 
1308 	/*
1309 	 * Did we miss an interrupt?
1310 	 */
1311 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1312 		nvme_poll(req->mq_hctx, NULL);
1313 	else
1314 		nvme_poll_irqdisable(nvmeq);
1315 
1316 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1317 		dev_warn(dev->ctrl.device,
1318 			 "I/O %d QID %d timeout, completion polled\n",
1319 			 req->tag, nvmeq->qid);
1320 		return BLK_EH_DONE;
1321 	}
1322 
1323 	/*
1324 	 * Shutdown immediately if controller times out while starting. The
1325 	 * reset work will see the pci device disabled when it gets the forced
1326 	 * cancellation error. All outstanding requests are completed on
1327 	 * shutdown, so we return BLK_EH_DONE.
1328 	 */
1329 	switch (dev->ctrl.state) {
1330 	case NVME_CTRL_CONNECTING:
1331 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1332 		fallthrough;
1333 	case NVME_CTRL_DELETING:
1334 		dev_warn_ratelimited(dev->ctrl.device,
1335 			 "I/O %d QID %d timeout, disable controller\n",
1336 			 req->tag, nvmeq->qid);
1337 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1338 		nvme_dev_disable(dev, true);
1339 		return BLK_EH_DONE;
1340 	case NVME_CTRL_RESETTING:
1341 		return BLK_EH_RESET_TIMER;
1342 	default:
1343 		break;
1344 	}
1345 
1346 	/*
1347 	 * Shutdown the controller immediately and schedule a reset if the
1348 	 * command was already aborted once before and still hasn't been
1349 	 * returned to the driver, or if this is the admin queue.
1350 	 */
1351 	if (!nvmeq->qid || iod->aborted) {
1352 		dev_warn(dev->ctrl.device,
1353 			 "I/O %d QID %d timeout, reset controller\n",
1354 			 req->tag, nvmeq->qid);
1355 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1356 		nvme_dev_disable(dev, false);
1357 		nvme_reset_ctrl(&dev->ctrl);
1358 
1359 		return BLK_EH_DONE;
1360 	}
1361 
1362 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1363 		atomic_inc(&dev->ctrl.abort_limit);
1364 		return BLK_EH_RESET_TIMER;
1365 	}
1366 	iod->aborted = true;
1367 
1368 	cmd.abort.opcode = nvme_admin_abort_cmd;
1369 	cmd.abort.cid = nvme_cid(req);
1370 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1371 
1372 	dev_warn(nvmeq->dev->ctrl.device,
1373 		"I/O %d (%s) QID %d timeout, aborting\n",
1374 		 req->tag,
1375 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1376 		 nvmeq->qid);
1377 
1378 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1379 					 BLK_MQ_REQ_NOWAIT);
1380 	if (IS_ERR(abort_req)) {
1381 		atomic_inc(&dev->ctrl.abort_limit);
1382 		return BLK_EH_RESET_TIMER;
1383 	}
1384 	nvme_init_request(abort_req, &cmd);
1385 
1386 	abort_req->end_io = abort_endio;
1387 	abort_req->end_io_data = NULL;
1388 	blk_execute_rq_nowait(abort_req, false);
1389 
1390 	/*
1391 	 * The aborted req will be completed on receiving the abort req.
1392 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1393 	 * as the device then is in a faulty state.
1394 	 */
1395 	return BLK_EH_RESET_TIMER;
1396 }
1397 
1398 static void nvme_free_queue(struct nvme_queue *nvmeq)
1399 {
1400 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1401 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1402 	if (!nvmeq->sq_cmds)
1403 		return;
1404 
1405 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1406 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1407 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1408 	} else {
1409 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1410 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1411 	}
1412 }
1413 
1414 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1415 {
1416 	int i;
1417 
1418 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1419 		dev->ctrl.queue_count--;
1420 		nvme_free_queue(&dev->queues[i]);
1421 	}
1422 }
1423 
1424 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1425 {
1426 	struct nvme_queue *nvmeq = &dev->queues[qid];
1427 
1428 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1429 		return;
1430 
1431 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1432 	mb();
1433 
1434 	nvmeq->dev->online_queues--;
1435 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1436 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1437 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1438 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1439 }
1440 
1441 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1442 {
1443 	int i;
1444 
1445 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1446 		nvme_suspend_queue(dev, i);
1447 }
1448 
1449 /*
1450  * Called only on a device that has been disabled and after all other threads
1451  * that can check this device's completion queues have synced, except
1452  * nvme_poll(). This is the last chance for the driver to see a natural
1453  * completion before nvme_cancel_request() terminates all incomplete requests.
1454  */
1455 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1456 {
1457 	int i;
1458 
1459 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1460 		spin_lock(&dev->queues[i].cq_poll_lock);
1461 		nvme_poll_cq(&dev->queues[i], NULL);
1462 		spin_unlock(&dev->queues[i].cq_poll_lock);
1463 	}
1464 }
1465 
1466 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1467 				int entry_size)
1468 {
1469 	int q_depth = dev->q_depth;
1470 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1471 					  NVME_CTRL_PAGE_SIZE);
1472 
1473 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1474 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1475 
1476 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1477 		q_depth = div_u64(mem_per_q, entry_size);
1478 
1479 		/*
1480 		 * Ensure the reduced q_depth is above some threshold where it
1481 		 * would be better to map queues in system memory with the
1482 		 * original depth
1483 		 */
1484 		if (q_depth < 64)
1485 			return -ENOMEM;
1486 	}
1487 
1488 	return q_depth;
1489 }
1490 
1491 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1492 				int qid)
1493 {
1494 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1495 
1496 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1497 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1498 		if (nvmeq->sq_cmds) {
1499 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1500 							nvmeq->sq_cmds);
1501 			if (nvmeq->sq_dma_addr) {
1502 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1503 				return 0;
1504 			}
1505 
1506 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1507 		}
1508 	}
1509 
1510 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1511 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1512 	if (!nvmeq->sq_cmds)
1513 		return -ENOMEM;
1514 	return 0;
1515 }
1516 
1517 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1518 {
1519 	struct nvme_queue *nvmeq = &dev->queues[qid];
1520 
1521 	if (dev->ctrl.queue_count > qid)
1522 		return 0;
1523 
1524 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1525 	nvmeq->q_depth = depth;
1526 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1527 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1528 	if (!nvmeq->cqes)
1529 		goto free_nvmeq;
1530 
1531 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1532 		goto free_cqdma;
1533 
1534 	nvmeq->dev = dev;
1535 	spin_lock_init(&nvmeq->sq_lock);
1536 	spin_lock_init(&nvmeq->cq_poll_lock);
1537 	nvmeq->cq_head = 0;
1538 	nvmeq->cq_phase = 1;
1539 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1540 	nvmeq->qid = qid;
1541 	dev->ctrl.queue_count++;
1542 
1543 	return 0;
1544 
1545  free_cqdma:
1546 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1547 			  nvmeq->cq_dma_addr);
1548  free_nvmeq:
1549 	return -ENOMEM;
1550 }
1551 
1552 static int queue_request_irq(struct nvme_queue *nvmeq)
1553 {
1554 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1555 	int nr = nvmeq->dev->ctrl.instance;
1556 
1557 	if (use_threaded_interrupts) {
1558 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1559 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1560 	} else {
1561 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1562 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1563 	}
1564 }
1565 
1566 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1567 {
1568 	struct nvme_dev *dev = nvmeq->dev;
1569 
1570 	nvmeq->sq_tail = 0;
1571 	nvmeq->last_sq_tail = 0;
1572 	nvmeq->cq_head = 0;
1573 	nvmeq->cq_phase = 1;
1574 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1575 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1576 	nvme_dbbuf_init(dev, nvmeq, qid);
1577 	dev->online_queues++;
1578 	wmb(); /* ensure the first interrupt sees the initialization */
1579 }
1580 
1581 /*
1582  * Try getting shutdown_lock while setting up IO queues.
1583  */
1584 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1585 {
1586 	/*
1587 	 * Give up if the lock is being held by nvme_dev_disable.
1588 	 */
1589 	if (!mutex_trylock(&dev->shutdown_lock))
1590 		return -ENODEV;
1591 
1592 	/*
1593 	 * Controller is in wrong state, fail early.
1594 	 */
1595 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1596 		mutex_unlock(&dev->shutdown_lock);
1597 		return -ENODEV;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1604 {
1605 	struct nvme_dev *dev = nvmeq->dev;
1606 	int result;
1607 	u16 vector = 0;
1608 
1609 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1610 
1611 	/*
1612 	 * A queue's vector matches the queue identifier unless the controller
1613 	 * has only one vector available.
1614 	 */
1615 	if (!polled)
1616 		vector = dev->num_vecs == 1 ? 0 : qid;
1617 	else
1618 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1619 
1620 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1621 	if (result)
1622 		return result;
1623 
1624 	result = adapter_alloc_sq(dev, qid, nvmeq);
1625 	if (result < 0)
1626 		return result;
1627 	if (result)
1628 		goto release_cq;
1629 
1630 	nvmeq->cq_vector = vector;
1631 
1632 	result = nvme_setup_io_queues_trylock(dev);
1633 	if (result)
1634 		return result;
1635 	nvme_init_queue(nvmeq, qid);
1636 	if (!polled) {
1637 		result = queue_request_irq(nvmeq);
1638 		if (result < 0)
1639 			goto release_sq;
1640 	}
1641 
1642 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1643 	mutex_unlock(&dev->shutdown_lock);
1644 	return result;
1645 
1646 release_sq:
1647 	dev->online_queues--;
1648 	mutex_unlock(&dev->shutdown_lock);
1649 	adapter_delete_sq(dev, qid);
1650 release_cq:
1651 	adapter_delete_cq(dev, qid);
1652 	return result;
1653 }
1654 
1655 static const struct blk_mq_ops nvme_mq_admin_ops = {
1656 	.queue_rq	= nvme_queue_rq,
1657 	.complete	= nvme_pci_complete_rq,
1658 	.init_hctx	= nvme_admin_init_hctx,
1659 	.init_request	= nvme_pci_init_request,
1660 	.timeout	= nvme_timeout,
1661 };
1662 
1663 static const struct blk_mq_ops nvme_mq_ops = {
1664 	.queue_rq	= nvme_queue_rq,
1665 	.queue_rqs	= nvme_queue_rqs,
1666 	.complete	= nvme_pci_complete_rq,
1667 	.commit_rqs	= nvme_commit_rqs,
1668 	.init_hctx	= nvme_init_hctx,
1669 	.init_request	= nvme_pci_init_request,
1670 	.map_queues	= nvme_pci_map_queues,
1671 	.timeout	= nvme_timeout,
1672 	.poll		= nvme_poll,
1673 };
1674 
1675 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1676 {
1677 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1678 		/*
1679 		 * If the controller was reset during removal, it's possible
1680 		 * user requests may be waiting on a stopped queue. Start the
1681 		 * queue to flush these to completion.
1682 		 */
1683 		nvme_unquiesce_admin_queue(&dev->ctrl);
1684 		nvme_remove_admin_tag_set(&dev->ctrl);
1685 	}
1686 }
1687 
1688 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1689 {
1690 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1691 }
1692 
1693 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1694 {
1695 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1696 
1697 	if (size <= dev->bar_mapped_size)
1698 		return 0;
1699 	if (size > pci_resource_len(pdev, 0))
1700 		return -ENOMEM;
1701 	if (dev->bar)
1702 		iounmap(dev->bar);
1703 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1704 	if (!dev->bar) {
1705 		dev->bar_mapped_size = 0;
1706 		return -ENOMEM;
1707 	}
1708 	dev->bar_mapped_size = size;
1709 	dev->dbs = dev->bar + NVME_REG_DBS;
1710 
1711 	return 0;
1712 }
1713 
1714 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1715 {
1716 	int result;
1717 	u32 aqa;
1718 	struct nvme_queue *nvmeq;
1719 
1720 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1721 	if (result < 0)
1722 		return result;
1723 
1724 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1725 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1726 
1727 	if (dev->subsystem &&
1728 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1729 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1730 
1731 	/*
1732 	 * If the device has been passed off to us in an enabled state, just
1733 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1734 	 * notification bits', but doing so may cause the device to complete
1735 	 * commands to the admin queue ... and we don't know what memory that
1736 	 * might be pointing at!
1737 	 */
1738 	result = nvme_disable_ctrl(&dev->ctrl, false);
1739 	if (result < 0)
1740 		return result;
1741 
1742 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1743 	if (result)
1744 		return result;
1745 
1746 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1747 
1748 	nvmeq = &dev->queues[0];
1749 	aqa = nvmeq->q_depth - 1;
1750 	aqa |= aqa << 16;
1751 
1752 	writel(aqa, dev->bar + NVME_REG_AQA);
1753 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1754 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1755 
1756 	result = nvme_enable_ctrl(&dev->ctrl);
1757 	if (result)
1758 		return result;
1759 
1760 	nvmeq->cq_vector = 0;
1761 	nvme_init_queue(nvmeq, 0);
1762 	result = queue_request_irq(nvmeq);
1763 	if (result) {
1764 		dev->online_queues--;
1765 		return result;
1766 	}
1767 
1768 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1769 	return result;
1770 }
1771 
1772 static int nvme_create_io_queues(struct nvme_dev *dev)
1773 {
1774 	unsigned i, max, rw_queues;
1775 	int ret = 0;
1776 
1777 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1778 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1779 			ret = -ENOMEM;
1780 			break;
1781 		}
1782 	}
1783 
1784 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1785 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1786 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1787 				dev->io_queues[HCTX_TYPE_READ];
1788 	} else {
1789 		rw_queues = max;
1790 	}
1791 
1792 	for (i = dev->online_queues; i <= max; i++) {
1793 		bool polled = i > rw_queues;
1794 
1795 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1796 		if (ret)
1797 			break;
1798 	}
1799 
1800 	/*
1801 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1802 	 * than the desired amount of queues, and even a controller without
1803 	 * I/O queues can still be used to issue admin commands.  This might
1804 	 * be useful to upgrade a buggy firmware for example.
1805 	 */
1806 	return ret >= 0 ? 0 : ret;
1807 }
1808 
1809 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1810 {
1811 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1812 
1813 	return 1ULL << (12 + 4 * szu);
1814 }
1815 
1816 static u32 nvme_cmb_size(struct nvme_dev *dev)
1817 {
1818 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1819 }
1820 
1821 static void nvme_map_cmb(struct nvme_dev *dev)
1822 {
1823 	u64 size, offset;
1824 	resource_size_t bar_size;
1825 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1826 	int bar;
1827 
1828 	if (dev->cmb_size)
1829 		return;
1830 
1831 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1832 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1833 
1834 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1835 	if (!dev->cmbsz)
1836 		return;
1837 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1838 
1839 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1840 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1841 	bar = NVME_CMB_BIR(dev->cmbloc);
1842 	bar_size = pci_resource_len(pdev, bar);
1843 
1844 	if (offset > bar_size)
1845 		return;
1846 
1847 	/*
1848 	 * Tell the controller about the host side address mapping the CMB,
1849 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1850 	 */
1851 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1852 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1853 			     (pci_bus_address(pdev, bar) + offset),
1854 			     dev->bar + NVME_REG_CMBMSC);
1855 	}
1856 
1857 	/*
1858 	 * Controllers may support a CMB size larger than their BAR,
1859 	 * for example, due to being behind a bridge. Reduce the CMB to
1860 	 * the reported size of the BAR
1861 	 */
1862 	if (size > bar_size - offset)
1863 		size = bar_size - offset;
1864 
1865 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1866 		dev_warn(dev->ctrl.device,
1867 			 "failed to register the CMB\n");
1868 		return;
1869 	}
1870 
1871 	dev->cmb_size = size;
1872 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1873 
1874 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1875 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1876 		pci_p2pmem_publish(pdev, true);
1877 
1878 	nvme_update_attrs(dev);
1879 }
1880 
1881 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1882 {
1883 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1884 	u64 dma_addr = dev->host_mem_descs_dma;
1885 	struct nvme_command c = { };
1886 	int ret;
1887 
1888 	c.features.opcode	= nvme_admin_set_features;
1889 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1890 	c.features.dword11	= cpu_to_le32(bits);
1891 	c.features.dword12	= cpu_to_le32(host_mem_size);
1892 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1893 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1894 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1895 
1896 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1897 	if (ret) {
1898 		dev_warn(dev->ctrl.device,
1899 			 "failed to set host mem (err %d, flags %#x).\n",
1900 			 ret, bits);
1901 	} else
1902 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1903 
1904 	return ret;
1905 }
1906 
1907 static void nvme_free_host_mem(struct nvme_dev *dev)
1908 {
1909 	int i;
1910 
1911 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1912 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1913 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1914 
1915 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1916 			       le64_to_cpu(desc->addr),
1917 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1918 	}
1919 
1920 	kfree(dev->host_mem_desc_bufs);
1921 	dev->host_mem_desc_bufs = NULL;
1922 	dma_free_coherent(dev->dev,
1923 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1924 			dev->host_mem_descs, dev->host_mem_descs_dma);
1925 	dev->host_mem_descs = NULL;
1926 	dev->nr_host_mem_descs = 0;
1927 }
1928 
1929 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1930 		u32 chunk_size)
1931 {
1932 	struct nvme_host_mem_buf_desc *descs;
1933 	u32 max_entries, len;
1934 	dma_addr_t descs_dma;
1935 	int i = 0;
1936 	void **bufs;
1937 	u64 size, tmp;
1938 
1939 	tmp = (preferred + chunk_size - 1);
1940 	do_div(tmp, chunk_size);
1941 	max_entries = tmp;
1942 
1943 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1944 		max_entries = dev->ctrl.hmmaxd;
1945 
1946 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1947 				   &descs_dma, GFP_KERNEL);
1948 	if (!descs)
1949 		goto out;
1950 
1951 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1952 	if (!bufs)
1953 		goto out_free_descs;
1954 
1955 	for (size = 0; size < preferred && i < max_entries; size += len) {
1956 		dma_addr_t dma_addr;
1957 
1958 		len = min_t(u64, chunk_size, preferred - size);
1959 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1960 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1961 		if (!bufs[i])
1962 			break;
1963 
1964 		descs[i].addr = cpu_to_le64(dma_addr);
1965 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1966 		i++;
1967 	}
1968 
1969 	if (!size)
1970 		goto out_free_bufs;
1971 
1972 	dev->nr_host_mem_descs = i;
1973 	dev->host_mem_size = size;
1974 	dev->host_mem_descs = descs;
1975 	dev->host_mem_descs_dma = descs_dma;
1976 	dev->host_mem_desc_bufs = bufs;
1977 	return 0;
1978 
1979 out_free_bufs:
1980 	while (--i >= 0) {
1981 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1982 
1983 		dma_free_attrs(dev->dev, size, bufs[i],
1984 			       le64_to_cpu(descs[i].addr),
1985 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1986 	}
1987 
1988 	kfree(bufs);
1989 out_free_descs:
1990 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1991 			descs_dma);
1992 out:
1993 	dev->host_mem_descs = NULL;
1994 	return -ENOMEM;
1995 }
1996 
1997 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1998 {
1999 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2000 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2001 	u64 chunk_size;
2002 
2003 	/* start big and work our way down */
2004 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2005 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2006 			if (!min || dev->host_mem_size >= min)
2007 				return 0;
2008 			nvme_free_host_mem(dev);
2009 		}
2010 	}
2011 
2012 	return -ENOMEM;
2013 }
2014 
2015 static int nvme_setup_host_mem(struct nvme_dev *dev)
2016 {
2017 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2018 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2019 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2020 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2021 	int ret;
2022 
2023 	if (!dev->ctrl.hmpre)
2024 		return 0;
2025 
2026 	preferred = min(preferred, max);
2027 	if (min > max) {
2028 		dev_warn(dev->ctrl.device,
2029 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2030 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2031 		nvme_free_host_mem(dev);
2032 		return 0;
2033 	}
2034 
2035 	/*
2036 	 * If we already have a buffer allocated check if we can reuse it.
2037 	 */
2038 	if (dev->host_mem_descs) {
2039 		if (dev->host_mem_size >= min)
2040 			enable_bits |= NVME_HOST_MEM_RETURN;
2041 		else
2042 			nvme_free_host_mem(dev);
2043 	}
2044 
2045 	if (!dev->host_mem_descs) {
2046 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2047 			dev_warn(dev->ctrl.device,
2048 				"failed to allocate host memory buffer.\n");
2049 			return 0; /* controller must work without HMB */
2050 		}
2051 
2052 		dev_info(dev->ctrl.device,
2053 			"allocated %lld MiB host memory buffer.\n",
2054 			dev->host_mem_size >> ilog2(SZ_1M));
2055 	}
2056 
2057 	ret = nvme_set_host_mem(dev, enable_bits);
2058 	if (ret)
2059 		nvme_free_host_mem(dev);
2060 	return ret;
2061 }
2062 
2063 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2064 		char *buf)
2065 {
2066 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2067 
2068 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2069 		       ndev->cmbloc, ndev->cmbsz);
2070 }
2071 static DEVICE_ATTR_RO(cmb);
2072 
2073 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2074 		char *buf)
2075 {
2076 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2077 
2078 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2079 }
2080 static DEVICE_ATTR_RO(cmbloc);
2081 
2082 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2083 		char *buf)
2084 {
2085 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2086 
2087 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2088 }
2089 static DEVICE_ATTR_RO(cmbsz);
2090 
2091 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2092 			char *buf)
2093 {
2094 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2095 
2096 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2097 }
2098 
2099 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2100 			 const char *buf, size_t count)
2101 {
2102 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2103 	bool new;
2104 	int ret;
2105 
2106 	if (kstrtobool(buf, &new) < 0)
2107 		return -EINVAL;
2108 
2109 	if (new == ndev->hmb)
2110 		return count;
2111 
2112 	if (new) {
2113 		ret = nvme_setup_host_mem(ndev);
2114 	} else {
2115 		ret = nvme_set_host_mem(ndev, 0);
2116 		if (!ret)
2117 			nvme_free_host_mem(ndev);
2118 	}
2119 
2120 	if (ret < 0)
2121 		return ret;
2122 
2123 	return count;
2124 }
2125 static DEVICE_ATTR_RW(hmb);
2126 
2127 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2128 		struct attribute *a, int n)
2129 {
2130 	struct nvme_ctrl *ctrl =
2131 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2132 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2133 
2134 	if (a == &dev_attr_cmb.attr ||
2135 	    a == &dev_attr_cmbloc.attr ||
2136 	    a == &dev_attr_cmbsz.attr) {
2137 	    	if (!dev->cmbsz)
2138 			return 0;
2139 	}
2140 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2141 		return 0;
2142 
2143 	return a->mode;
2144 }
2145 
2146 static struct attribute *nvme_pci_attrs[] = {
2147 	&dev_attr_cmb.attr,
2148 	&dev_attr_cmbloc.attr,
2149 	&dev_attr_cmbsz.attr,
2150 	&dev_attr_hmb.attr,
2151 	NULL,
2152 };
2153 
2154 static const struct attribute_group nvme_pci_dev_attrs_group = {
2155 	.attrs		= nvme_pci_attrs,
2156 	.is_visible	= nvme_pci_attrs_are_visible,
2157 };
2158 
2159 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2160 	&nvme_dev_attrs_group,
2161 	&nvme_pci_dev_attrs_group,
2162 	NULL,
2163 };
2164 
2165 static void nvme_update_attrs(struct nvme_dev *dev)
2166 {
2167 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2168 }
2169 
2170 /*
2171  * nirqs is the number of interrupts available for write and read
2172  * queues. The core already reserved an interrupt for the admin queue.
2173  */
2174 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2175 {
2176 	struct nvme_dev *dev = affd->priv;
2177 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2178 
2179 	/*
2180 	 * If there is no interrupt available for queues, ensure that
2181 	 * the default queue is set to 1. The affinity set size is
2182 	 * also set to one, but the irq core ignores it for this case.
2183 	 *
2184 	 * If only one interrupt is available or 'write_queue' == 0, combine
2185 	 * write and read queues.
2186 	 *
2187 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2188 	 * queue.
2189 	 */
2190 	if (!nrirqs) {
2191 		nrirqs = 1;
2192 		nr_read_queues = 0;
2193 	} else if (nrirqs == 1 || !nr_write_queues) {
2194 		nr_read_queues = 0;
2195 	} else if (nr_write_queues >= nrirqs) {
2196 		nr_read_queues = 1;
2197 	} else {
2198 		nr_read_queues = nrirqs - nr_write_queues;
2199 	}
2200 
2201 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2202 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2203 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2204 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2205 	affd->nr_sets = nr_read_queues ? 2 : 1;
2206 }
2207 
2208 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2209 {
2210 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2211 	struct irq_affinity affd = {
2212 		.pre_vectors	= 1,
2213 		.calc_sets	= nvme_calc_irq_sets,
2214 		.priv		= dev,
2215 	};
2216 	unsigned int irq_queues, poll_queues;
2217 
2218 	/*
2219 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2220 	 * left over for non-polled I/O.
2221 	 */
2222 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2223 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2224 
2225 	/*
2226 	 * Initialize for the single interrupt case, will be updated in
2227 	 * nvme_calc_irq_sets().
2228 	 */
2229 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2230 	dev->io_queues[HCTX_TYPE_READ] = 0;
2231 
2232 	/*
2233 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2234 	 * but some Apple controllers require all queues to use the first
2235 	 * vector.
2236 	 */
2237 	irq_queues = 1;
2238 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2239 		irq_queues += (nr_io_queues - poll_queues);
2240 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2241 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2242 }
2243 
2244 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2245 {
2246 	/*
2247 	 * If tags are shared with admin queue (Apple bug), then
2248 	 * make sure we only use one IO queue.
2249 	 */
2250 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2251 		return 1;
2252 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2253 }
2254 
2255 static int nvme_setup_io_queues(struct nvme_dev *dev)
2256 {
2257 	struct nvme_queue *adminq = &dev->queues[0];
2258 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2259 	unsigned int nr_io_queues;
2260 	unsigned long size;
2261 	int result;
2262 
2263 	/*
2264 	 * Sample the module parameters once at reset time so that we have
2265 	 * stable values to work with.
2266 	 */
2267 	dev->nr_write_queues = write_queues;
2268 	dev->nr_poll_queues = poll_queues;
2269 
2270 	nr_io_queues = dev->nr_allocated_queues - 1;
2271 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2272 	if (result < 0)
2273 		return result;
2274 
2275 	if (nr_io_queues == 0)
2276 		return 0;
2277 
2278 	/*
2279 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2280 	 * from set to unset. If there is a window to it is truely freed,
2281 	 * pci_free_irq_vectors() jumping into this window will crash.
2282 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2283 	 * nvme_dev_disable() path.
2284 	 */
2285 	result = nvme_setup_io_queues_trylock(dev);
2286 	if (result)
2287 		return result;
2288 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2289 		pci_free_irq(pdev, 0, adminq);
2290 
2291 	if (dev->cmb_use_sqes) {
2292 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2293 				sizeof(struct nvme_command));
2294 		if (result > 0) {
2295 			dev->q_depth = result;
2296 			dev->ctrl.sqsize = result - 1;
2297 		} else {
2298 			dev->cmb_use_sqes = false;
2299 		}
2300 	}
2301 
2302 	do {
2303 		size = db_bar_size(dev, nr_io_queues);
2304 		result = nvme_remap_bar(dev, size);
2305 		if (!result)
2306 			break;
2307 		if (!--nr_io_queues) {
2308 			result = -ENOMEM;
2309 			goto out_unlock;
2310 		}
2311 	} while (1);
2312 	adminq->q_db = dev->dbs;
2313 
2314  retry:
2315 	/* Deregister the admin queue's interrupt */
2316 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2317 		pci_free_irq(pdev, 0, adminq);
2318 
2319 	/*
2320 	 * If we enable msix early due to not intx, disable it again before
2321 	 * setting up the full range we need.
2322 	 */
2323 	pci_free_irq_vectors(pdev);
2324 
2325 	result = nvme_setup_irqs(dev, nr_io_queues);
2326 	if (result <= 0) {
2327 		result = -EIO;
2328 		goto out_unlock;
2329 	}
2330 
2331 	dev->num_vecs = result;
2332 	result = max(result - 1, 1);
2333 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2334 
2335 	/*
2336 	 * Should investigate if there's a performance win from allocating
2337 	 * more queues than interrupt vectors; it might allow the submission
2338 	 * path to scale better, even if the receive path is limited by the
2339 	 * number of interrupts.
2340 	 */
2341 	result = queue_request_irq(adminq);
2342 	if (result)
2343 		goto out_unlock;
2344 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2345 	mutex_unlock(&dev->shutdown_lock);
2346 
2347 	result = nvme_create_io_queues(dev);
2348 	if (result || dev->online_queues < 2)
2349 		return result;
2350 
2351 	if (dev->online_queues - 1 < dev->max_qid) {
2352 		nr_io_queues = dev->online_queues - 1;
2353 		nvme_delete_io_queues(dev);
2354 		result = nvme_setup_io_queues_trylock(dev);
2355 		if (result)
2356 			return result;
2357 		nvme_suspend_io_queues(dev);
2358 		goto retry;
2359 	}
2360 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2361 					dev->io_queues[HCTX_TYPE_DEFAULT],
2362 					dev->io_queues[HCTX_TYPE_READ],
2363 					dev->io_queues[HCTX_TYPE_POLL]);
2364 	return 0;
2365 out_unlock:
2366 	mutex_unlock(&dev->shutdown_lock);
2367 	return result;
2368 }
2369 
2370 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2371 					     blk_status_t error)
2372 {
2373 	struct nvme_queue *nvmeq = req->end_io_data;
2374 
2375 	blk_mq_free_request(req);
2376 	complete(&nvmeq->delete_done);
2377 	return RQ_END_IO_NONE;
2378 }
2379 
2380 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2381 					  blk_status_t error)
2382 {
2383 	struct nvme_queue *nvmeq = req->end_io_data;
2384 
2385 	if (error)
2386 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2387 
2388 	return nvme_del_queue_end(req, error);
2389 }
2390 
2391 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2392 {
2393 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2394 	struct request *req;
2395 	struct nvme_command cmd = { };
2396 
2397 	cmd.delete_queue.opcode = opcode;
2398 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2399 
2400 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2401 	if (IS_ERR(req))
2402 		return PTR_ERR(req);
2403 	nvme_init_request(req, &cmd);
2404 
2405 	if (opcode == nvme_admin_delete_cq)
2406 		req->end_io = nvme_del_cq_end;
2407 	else
2408 		req->end_io = nvme_del_queue_end;
2409 	req->end_io_data = nvmeq;
2410 
2411 	init_completion(&nvmeq->delete_done);
2412 	blk_execute_rq_nowait(req, false);
2413 	return 0;
2414 }
2415 
2416 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2417 {
2418 	int nr_queues = dev->online_queues - 1, sent = 0;
2419 	unsigned long timeout;
2420 
2421  retry:
2422 	timeout = NVME_ADMIN_TIMEOUT;
2423 	while (nr_queues > 0) {
2424 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2425 			break;
2426 		nr_queues--;
2427 		sent++;
2428 	}
2429 	while (sent) {
2430 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2431 
2432 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2433 				timeout);
2434 		if (timeout == 0)
2435 			return false;
2436 
2437 		sent--;
2438 		if (nr_queues)
2439 			goto retry;
2440 	}
2441 	return true;
2442 }
2443 
2444 static void nvme_delete_io_queues(struct nvme_dev *dev)
2445 {
2446 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2447 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2448 }
2449 
2450 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2451 {
2452 	if (dev->io_queues[HCTX_TYPE_POLL])
2453 		return 3;
2454 	if (dev->io_queues[HCTX_TYPE_READ])
2455 		return 2;
2456 	return 1;
2457 }
2458 
2459 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2460 {
2461 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2462 	/* free previously allocated queues that are no longer usable */
2463 	nvme_free_queues(dev, dev->online_queues);
2464 }
2465 
2466 static int nvme_pci_enable(struct nvme_dev *dev)
2467 {
2468 	int result = -ENOMEM;
2469 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2470 
2471 	if (pci_enable_device_mem(pdev))
2472 		return result;
2473 
2474 	pci_set_master(pdev);
2475 
2476 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2477 		result = -ENODEV;
2478 		goto disable;
2479 	}
2480 
2481 	/*
2482 	 * Some devices and/or platforms don't advertise or work with INTx
2483 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2484 	 * adjust this later.
2485 	 */
2486 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2487 	if (result < 0)
2488 		goto disable;
2489 
2490 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2491 
2492 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2493 				io_queue_depth);
2494 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2495 	dev->dbs = dev->bar + 4096;
2496 
2497 	/*
2498 	 * Some Apple controllers require a non-standard SQE size.
2499 	 * Interestingly they also seem to ignore the CC:IOSQES register
2500 	 * so we don't bother updating it here.
2501 	 */
2502 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2503 		dev->io_sqes = 7;
2504 	else
2505 		dev->io_sqes = NVME_NVM_IOSQES;
2506 
2507 	/*
2508 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2509 	 * some MacBook7,1 to avoid controller resets and data loss.
2510 	 */
2511 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2512 		dev->q_depth = 2;
2513 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2514 			"set queue depth=%u to work around controller resets\n",
2515 			dev->q_depth);
2516 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2517 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2518 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2519 		dev->q_depth = 64;
2520 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2521                         "set queue depth=%u\n", dev->q_depth);
2522 	}
2523 
2524 	/*
2525 	 * Controllers with the shared tags quirk need the IO queue to be
2526 	 * big enough so that we get 32 tags for the admin queue
2527 	 */
2528 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2529 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2530 		dev->q_depth = NVME_AQ_DEPTH + 2;
2531 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2532 			 dev->q_depth);
2533 	}
2534 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2535 
2536 	nvme_map_cmb(dev);
2537 
2538 	pci_enable_pcie_error_reporting(pdev);
2539 	pci_save_state(pdev);
2540 
2541 	result = nvme_pci_configure_admin_queue(dev);
2542 	if (result)
2543 		goto free_irq;
2544 	return result;
2545 
2546  free_irq:
2547 	pci_free_irq_vectors(pdev);
2548  disable:
2549 	pci_disable_device(pdev);
2550 	return result;
2551 }
2552 
2553 static void nvme_dev_unmap(struct nvme_dev *dev)
2554 {
2555 	if (dev->bar)
2556 		iounmap(dev->bar);
2557 	pci_release_mem_regions(to_pci_dev(dev->dev));
2558 }
2559 
2560 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2561 {
2562 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2563 	u32 csts;
2564 
2565 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2566 		return true;
2567 	if (pdev->error_state != pci_channel_io_normal)
2568 		return true;
2569 
2570 	csts = readl(dev->bar + NVME_REG_CSTS);
2571 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2572 }
2573 
2574 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2575 {
2576 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2577 	bool dead;
2578 
2579 	mutex_lock(&dev->shutdown_lock);
2580 	dead = nvme_pci_ctrl_is_dead(dev);
2581 	if (dev->ctrl.state == NVME_CTRL_LIVE ||
2582 	    dev->ctrl.state == NVME_CTRL_RESETTING) {
2583 		if (pci_is_enabled(pdev))
2584 			nvme_start_freeze(&dev->ctrl);
2585 		/*
2586 		 * Give the controller a chance to complete all entered requests
2587 		 * if doing a safe shutdown.
2588 		 */
2589 		if (!dead && shutdown)
2590 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2591 	}
2592 
2593 	nvme_quiesce_io_queues(&dev->ctrl);
2594 
2595 	if (!dead && dev->ctrl.queue_count > 0) {
2596 		nvme_delete_io_queues(dev);
2597 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2598 		nvme_poll_irqdisable(&dev->queues[0]);
2599 	}
2600 	nvme_suspend_io_queues(dev);
2601 	nvme_suspend_queue(dev, 0);
2602 	pci_free_irq_vectors(pdev);
2603 	if (pci_is_enabled(pdev)) {
2604 		pci_disable_pcie_error_reporting(pdev);
2605 		pci_disable_device(pdev);
2606 	}
2607 	nvme_reap_pending_cqes(dev);
2608 
2609 	nvme_cancel_tagset(&dev->ctrl);
2610 	nvme_cancel_admin_tagset(&dev->ctrl);
2611 
2612 	/*
2613 	 * The driver will not be starting up queues again if shutting down so
2614 	 * must flush all entered requests to their failed completion to avoid
2615 	 * deadlocking blk-mq hot-cpu notifier.
2616 	 */
2617 	if (shutdown) {
2618 		nvme_unquiesce_io_queues(&dev->ctrl);
2619 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2620 			nvme_unquiesce_admin_queue(&dev->ctrl);
2621 	}
2622 	mutex_unlock(&dev->shutdown_lock);
2623 }
2624 
2625 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2626 {
2627 	if (!nvme_wait_reset(&dev->ctrl))
2628 		return -EBUSY;
2629 	nvme_dev_disable(dev, shutdown);
2630 	return 0;
2631 }
2632 
2633 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2634 {
2635 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2636 						NVME_CTRL_PAGE_SIZE,
2637 						NVME_CTRL_PAGE_SIZE, 0);
2638 	if (!dev->prp_page_pool)
2639 		return -ENOMEM;
2640 
2641 	/* Optimisation for I/Os between 4k and 128k */
2642 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2643 						256, 256, 0);
2644 	if (!dev->prp_small_pool) {
2645 		dma_pool_destroy(dev->prp_page_pool);
2646 		return -ENOMEM;
2647 	}
2648 	return 0;
2649 }
2650 
2651 static void nvme_release_prp_pools(struct nvme_dev *dev)
2652 {
2653 	dma_pool_destroy(dev->prp_page_pool);
2654 	dma_pool_destroy(dev->prp_small_pool);
2655 }
2656 
2657 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2658 {
2659 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2660 
2661 	dev->iod_mempool = mempool_create_node(1,
2662 			mempool_kmalloc, mempool_kfree,
2663 			(void *)alloc_size, GFP_KERNEL,
2664 			dev_to_node(dev->dev));
2665 	if (!dev->iod_mempool)
2666 		return -ENOMEM;
2667 	return 0;
2668 }
2669 
2670 static void nvme_free_tagset(struct nvme_dev *dev)
2671 {
2672 	if (dev->tagset.tags)
2673 		nvme_remove_io_tag_set(&dev->ctrl);
2674 	dev->ctrl.tagset = NULL;
2675 }
2676 
2677 /* pairs with nvme_pci_alloc_dev */
2678 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2679 {
2680 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2681 
2682 	nvme_free_tagset(dev);
2683 	put_device(dev->dev);
2684 	kfree(dev->queues);
2685 	kfree(dev);
2686 }
2687 
2688 static void nvme_reset_work(struct work_struct *work)
2689 {
2690 	struct nvme_dev *dev =
2691 		container_of(work, struct nvme_dev, ctrl.reset_work);
2692 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2693 	int result;
2694 
2695 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2696 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2697 			 dev->ctrl.state);
2698 		return;
2699 	}
2700 
2701 	/*
2702 	 * If we're called to reset a live controller first shut it down before
2703 	 * moving on.
2704 	 */
2705 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2706 		nvme_dev_disable(dev, false);
2707 	nvme_sync_queues(&dev->ctrl);
2708 
2709 	mutex_lock(&dev->shutdown_lock);
2710 	result = nvme_pci_enable(dev);
2711 	if (result)
2712 		goto out_unlock;
2713 	nvme_unquiesce_admin_queue(&dev->ctrl);
2714 	mutex_unlock(&dev->shutdown_lock);
2715 
2716 	/*
2717 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2718 	 * initializing procedure here.
2719 	 */
2720 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2721 		dev_warn(dev->ctrl.device,
2722 			"failed to mark controller CONNECTING\n");
2723 		result = -EBUSY;
2724 		goto out;
2725 	}
2726 
2727 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2728 	if (result)
2729 		goto out;
2730 
2731 	nvme_dbbuf_dma_alloc(dev);
2732 
2733 	result = nvme_setup_host_mem(dev);
2734 	if (result < 0)
2735 		goto out;
2736 
2737 	result = nvme_setup_io_queues(dev);
2738 	if (result)
2739 		goto out;
2740 
2741 	/*
2742 	 * Freeze and update the number of I/O queues as thos might have
2743 	 * changed.  If there are no I/O queues left after this reset, keep the
2744 	 * controller around but remove all namespaces.
2745 	 */
2746 	if (dev->online_queues > 1) {
2747 		nvme_unquiesce_io_queues(&dev->ctrl);
2748 		nvme_wait_freeze(&dev->ctrl);
2749 		nvme_pci_update_nr_queues(dev);
2750 		nvme_dbbuf_set(dev);
2751 		nvme_unfreeze(&dev->ctrl);
2752 	} else {
2753 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2754 		nvme_mark_namespaces_dead(&dev->ctrl);
2755 		nvme_unquiesce_io_queues(&dev->ctrl);
2756 		nvme_remove_namespaces(&dev->ctrl);
2757 		nvme_free_tagset(dev);
2758 	}
2759 
2760 	/*
2761 	 * If only admin queue live, keep it to do further investigation or
2762 	 * recovery.
2763 	 */
2764 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2765 		dev_warn(dev->ctrl.device,
2766 			"failed to mark controller live state\n");
2767 		result = -ENODEV;
2768 		goto out;
2769 	}
2770 
2771 	nvme_start_ctrl(&dev->ctrl);
2772 	return;
2773 
2774  out_unlock:
2775 	mutex_unlock(&dev->shutdown_lock);
2776  out:
2777 	/*
2778 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2779 	 * may be holding this pci_dev's device lock.
2780 	 */
2781 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2782 		 result);
2783 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2784 	nvme_dev_disable(dev, true);
2785 	nvme_mark_namespaces_dead(&dev->ctrl);
2786 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2787 }
2788 
2789 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2790 {
2791 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2792 	return 0;
2793 }
2794 
2795 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2796 {
2797 	writel(val, to_nvme_dev(ctrl)->bar + off);
2798 	return 0;
2799 }
2800 
2801 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2802 {
2803 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2804 	return 0;
2805 }
2806 
2807 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2808 {
2809 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2810 
2811 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2812 }
2813 
2814 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2815 {
2816 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2817 	struct nvme_subsystem *subsys = ctrl->subsys;
2818 
2819 	dev_err(ctrl->device,
2820 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2821 		pdev->vendor, pdev->device,
2822 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2823 		subsys->model, nvme_strlen(subsys->firmware_rev,
2824 					   sizeof(subsys->firmware_rev)),
2825 		subsys->firmware_rev);
2826 }
2827 
2828 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2829 {
2830 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2831 
2832 	return dma_pci_p2pdma_supported(dev->dev);
2833 }
2834 
2835 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2836 	.name			= "pcie",
2837 	.module			= THIS_MODULE,
2838 	.flags			= NVME_F_METADATA_SUPPORTED,
2839 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2840 	.reg_read32		= nvme_pci_reg_read32,
2841 	.reg_write32		= nvme_pci_reg_write32,
2842 	.reg_read64		= nvme_pci_reg_read64,
2843 	.free_ctrl		= nvme_pci_free_ctrl,
2844 	.submit_async_event	= nvme_pci_submit_async_event,
2845 	.get_address		= nvme_pci_get_address,
2846 	.print_device_info	= nvme_pci_print_device_info,
2847 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2848 };
2849 
2850 static int nvme_dev_map(struct nvme_dev *dev)
2851 {
2852 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2853 
2854 	if (pci_request_mem_regions(pdev, "nvme"))
2855 		return -ENODEV;
2856 
2857 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2858 		goto release;
2859 
2860 	return 0;
2861   release:
2862 	pci_release_mem_regions(pdev);
2863 	return -ENODEV;
2864 }
2865 
2866 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2867 {
2868 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2869 		/*
2870 		 * Several Samsung devices seem to drop off the PCIe bus
2871 		 * randomly when APST is on and uses the deepest sleep state.
2872 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2873 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2874 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2875 		 * laptops.
2876 		 */
2877 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2878 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2879 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2880 			return NVME_QUIRK_NO_DEEPEST_PS;
2881 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2882 		/*
2883 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2884 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2885 		 * within few minutes after bootup on a Coffee Lake board -
2886 		 * ASUS PRIME Z370-A
2887 		 */
2888 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2889 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2890 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2891 			return NVME_QUIRK_NO_APST;
2892 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2893 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2894 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2895 		/*
2896 		 * Forcing to use host managed nvme power settings for
2897 		 * lowest idle power with quick resume latency on
2898 		 * Samsung and Toshiba SSDs based on suspend behavior
2899 		 * on Coffee Lake board for LENOVO C640
2900 		 */
2901 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2902 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2903 			return NVME_QUIRK_SIMPLE_SUSPEND;
2904 	}
2905 
2906 	return 0;
2907 }
2908 
2909 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2910 		const struct pci_device_id *id)
2911 {
2912 	unsigned long quirks = id->driver_data;
2913 	int node = dev_to_node(&pdev->dev);
2914 	struct nvme_dev *dev;
2915 	int ret = -ENOMEM;
2916 
2917 	if (node == NUMA_NO_NODE)
2918 		set_dev_node(&pdev->dev, first_memory_node);
2919 
2920 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2921 	if (!dev)
2922 		return ERR_PTR(-ENOMEM);
2923 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2924 	mutex_init(&dev->shutdown_lock);
2925 
2926 	dev->nr_write_queues = write_queues;
2927 	dev->nr_poll_queues = poll_queues;
2928 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2929 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2930 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2931 	if (!dev->queues)
2932 		goto out_free_dev;
2933 
2934 	dev->dev = get_device(&pdev->dev);
2935 
2936 	quirks |= check_vendor_combination_bug(pdev);
2937 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2938 		/*
2939 		 * Some systems use a bios work around to ask for D3 on
2940 		 * platforms that support kernel managed suspend.
2941 		 */
2942 		dev_info(&pdev->dev,
2943 			 "platform quirk: setting simple suspend\n");
2944 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2945 	}
2946 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2947 			     quirks);
2948 	if (ret)
2949 		goto out_put_device;
2950 
2951 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2952 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2953 	else
2954 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2955 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2956 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2957 
2958 	/*
2959 	 * Limit the max command size to prevent iod->sg allocations going
2960 	 * over a single page.
2961 	 */
2962 	dev->ctrl.max_hw_sectors = min_t(u32,
2963 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(&pdev->dev) >> 9);
2964 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2965 
2966 	/*
2967 	 * There is no support for SGLs for metadata (yet), so we are limited to
2968 	 * a single integrity segment for the separate metadata pointer.
2969 	 */
2970 	dev->ctrl.max_integrity_segments = 1;
2971 	return dev;
2972 
2973 out_put_device:
2974 	put_device(dev->dev);
2975 	kfree(dev->queues);
2976 out_free_dev:
2977 	kfree(dev);
2978 	return ERR_PTR(ret);
2979 }
2980 
2981 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2982 {
2983 	struct nvme_dev *dev;
2984 	int result = -ENOMEM;
2985 
2986 	dev = nvme_pci_alloc_dev(pdev, id);
2987 	if (IS_ERR(dev))
2988 		return PTR_ERR(dev);
2989 
2990 	result = nvme_dev_map(dev);
2991 	if (result)
2992 		goto out_uninit_ctrl;
2993 
2994 	result = nvme_setup_prp_pools(dev);
2995 	if (result)
2996 		goto out_dev_unmap;
2997 
2998 	result = nvme_pci_alloc_iod_mempool(dev);
2999 	if (result)
3000 		goto out_release_prp_pools;
3001 
3002 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3003 
3004 	result = nvme_pci_enable(dev);
3005 	if (result)
3006 		goto out_release_iod_mempool;
3007 
3008 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3009 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3010 	if (result)
3011 		goto out_disable;
3012 
3013 	/*
3014 	 * Mark the controller as connecting before sending admin commands to
3015 	 * allow the timeout handler to do the right thing.
3016 	 */
3017 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3018 		dev_warn(dev->ctrl.device,
3019 			"failed to mark controller CONNECTING\n");
3020 		result = -EBUSY;
3021 		goto out_disable;
3022 	}
3023 
3024 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3025 	if (result)
3026 		goto out_disable;
3027 
3028 	nvme_dbbuf_dma_alloc(dev);
3029 
3030 	result = nvme_setup_host_mem(dev);
3031 	if (result < 0)
3032 		goto out_disable;
3033 
3034 	result = nvme_setup_io_queues(dev);
3035 	if (result)
3036 		goto out_disable;
3037 
3038 	if (dev->online_queues > 1) {
3039 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3040 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3041 		nvme_dbbuf_set(dev);
3042 	}
3043 
3044 	if (!dev->ctrl.tagset)
3045 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3046 
3047 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3048 		dev_warn(dev->ctrl.device,
3049 			"failed to mark controller live state\n");
3050 		result = -ENODEV;
3051 		goto out_disable;
3052 	}
3053 
3054 	pci_set_drvdata(pdev, dev);
3055 
3056 	nvme_start_ctrl(&dev->ctrl);
3057 	nvme_put_ctrl(&dev->ctrl);
3058 	flush_work(&dev->ctrl.scan_work);
3059 	return 0;
3060 
3061 out_disable:
3062 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3063 	nvme_dev_disable(dev, true);
3064 	nvme_free_host_mem(dev);
3065 	nvme_dev_remove_admin(dev);
3066 	nvme_dbbuf_dma_free(dev);
3067 	nvme_free_queues(dev, 0);
3068 out_release_iod_mempool:
3069 	mempool_destroy(dev->iod_mempool);
3070 out_release_prp_pools:
3071 	nvme_release_prp_pools(dev);
3072 out_dev_unmap:
3073 	nvme_dev_unmap(dev);
3074 out_uninit_ctrl:
3075 	nvme_uninit_ctrl(&dev->ctrl);
3076 	nvme_put_ctrl(&dev->ctrl);
3077 	return result;
3078 }
3079 
3080 static void nvme_reset_prepare(struct pci_dev *pdev)
3081 {
3082 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3083 
3084 	/*
3085 	 * We don't need to check the return value from waiting for the reset
3086 	 * state as pci_dev device lock is held, making it impossible to race
3087 	 * with ->remove().
3088 	 */
3089 	nvme_disable_prepare_reset(dev, false);
3090 	nvme_sync_queues(&dev->ctrl);
3091 }
3092 
3093 static void nvme_reset_done(struct pci_dev *pdev)
3094 {
3095 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3096 
3097 	if (!nvme_try_sched_reset(&dev->ctrl))
3098 		flush_work(&dev->ctrl.reset_work);
3099 }
3100 
3101 static void nvme_shutdown(struct pci_dev *pdev)
3102 {
3103 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3104 
3105 	nvme_disable_prepare_reset(dev, true);
3106 }
3107 
3108 /*
3109  * The driver's remove may be called on a device in a partially initialized
3110  * state. This function must not have any dependencies on the device state in
3111  * order to proceed.
3112  */
3113 static void nvme_remove(struct pci_dev *pdev)
3114 {
3115 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3116 
3117 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3118 	pci_set_drvdata(pdev, NULL);
3119 
3120 	if (!pci_device_is_present(pdev)) {
3121 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3122 		nvme_dev_disable(dev, true);
3123 	}
3124 
3125 	flush_work(&dev->ctrl.reset_work);
3126 	nvme_stop_ctrl(&dev->ctrl);
3127 	nvme_remove_namespaces(&dev->ctrl);
3128 	nvme_dev_disable(dev, true);
3129 	nvme_free_host_mem(dev);
3130 	nvme_dev_remove_admin(dev);
3131 	nvme_dbbuf_dma_free(dev);
3132 	nvme_free_queues(dev, 0);
3133 	mempool_destroy(dev->iod_mempool);
3134 	nvme_release_prp_pools(dev);
3135 	nvme_dev_unmap(dev);
3136 	nvme_uninit_ctrl(&dev->ctrl);
3137 }
3138 
3139 #ifdef CONFIG_PM_SLEEP
3140 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3141 {
3142 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3143 }
3144 
3145 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3146 {
3147 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3148 }
3149 
3150 static int nvme_resume(struct device *dev)
3151 {
3152 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3153 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3154 
3155 	if (ndev->last_ps == U32_MAX ||
3156 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3157 		goto reset;
3158 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3159 		goto reset;
3160 
3161 	return 0;
3162 reset:
3163 	return nvme_try_sched_reset(ctrl);
3164 }
3165 
3166 static int nvme_suspend(struct device *dev)
3167 {
3168 	struct pci_dev *pdev = to_pci_dev(dev);
3169 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3170 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3171 	int ret = -EBUSY;
3172 
3173 	ndev->last_ps = U32_MAX;
3174 
3175 	/*
3176 	 * The platform does not remove power for a kernel managed suspend so
3177 	 * use host managed nvme power settings for lowest idle power if
3178 	 * possible. This should have quicker resume latency than a full device
3179 	 * shutdown.  But if the firmware is involved after the suspend or the
3180 	 * device does not support any non-default power states, shut down the
3181 	 * device fully.
3182 	 *
3183 	 * If ASPM is not enabled for the device, shut down the device and allow
3184 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3185 	 * down, so as to allow the platform to achieve its minimum low-power
3186 	 * state (which may not be possible if the link is up).
3187 	 */
3188 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3189 	    !pcie_aspm_enabled(pdev) ||
3190 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3191 		return nvme_disable_prepare_reset(ndev, true);
3192 
3193 	nvme_start_freeze(ctrl);
3194 	nvme_wait_freeze(ctrl);
3195 	nvme_sync_queues(ctrl);
3196 
3197 	if (ctrl->state != NVME_CTRL_LIVE)
3198 		goto unfreeze;
3199 
3200 	/*
3201 	 * Host memory access may not be successful in a system suspend state,
3202 	 * but the specification allows the controller to access memory in a
3203 	 * non-operational power state.
3204 	 */
3205 	if (ndev->hmb) {
3206 		ret = nvme_set_host_mem(ndev, 0);
3207 		if (ret < 0)
3208 			goto unfreeze;
3209 	}
3210 
3211 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3212 	if (ret < 0)
3213 		goto unfreeze;
3214 
3215 	/*
3216 	 * A saved state prevents pci pm from generically controlling the
3217 	 * device's power. If we're using protocol specific settings, we don't
3218 	 * want pci interfering.
3219 	 */
3220 	pci_save_state(pdev);
3221 
3222 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3223 	if (ret < 0)
3224 		goto unfreeze;
3225 
3226 	if (ret) {
3227 		/* discard the saved state */
3228 		pci_load_saved_state(pdev, NULL);
3229 
3230 		/*
3231 		 * Clearing npss forces a controller reset on resume. The
3232 		 * correct value will be rediscovered then.
3233 		 */
3234 		ret = nvme_disable_prepare_reset(ndev, true);
3235 		ctrl->npss = 0;
3236 	}
3237 unfreeze:
3238 	nvme_unfreeze(ctrl);
3239 	return ret;
3240 }
3241 
3242 static int nvme_simple_suspend(struct device *dev)
3243 {
3244 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3245 
3246 	return nvme_disable_prepare_reset(ndev, true);
3247 }
3248 
3249 static int nvme_simple_resume(struct device *dev)
3250 {
3251 	struct pci_dev *pdev = to_pci_dev(dev);
3252 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3253 
3254 	return nvme_try_sched_reset(&ndev->ctrl);
3255 }
3256 
3257 static const struct dev_pm_ops nvme_dev_pm_ops = {
3258 	.suspend	= nvme_suspend,
3259 	.resume		= nvme_resume,
3260 	.freeze		= nvme_simple_suspend,
3261 	.thaw		= nvme_simple_resume,
3262 	.poweroff	= nvme_simple_suspend,
3263 	.restore	= nvme_simple_resume,
3264 };
3265 #endif /* CONFIG_PM_SLEEP */
3266 
3267 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3268 						pci_channel_state_t state)
3269 {
3270 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3271 
3272 	/*
3273 	 * A frozen channel requires a reset. When detected, this method will
3274 	 * shutdown the controller to quiesce. The controller will be restarted
3275 	 * after the slot reset through driver's slot_reset callback.
3276 	 */
3277 	switch (state) {
3278 	case pci_channel_io_normal:
3279 		return PCI_ERS_RESULT_CAN_RECOVER;
3280 	case pci_channel_io_frozen:
3281 		dev_warn(dev->ctrl.device,
3282 			"frozen state error detected, reset controller\n");
3283 		nvme_dev_disable(dev, false);
3284 		return PCI_ERS_RESULT_NEED_RESET;
3285 	case pci_channel_io_perm_failure:
3286 		dev_warn(dev->ctrl.device,
3287 			"failure state error detected, request disconnect\n");
3288 		return PCI_ERS_RESULT_DISCONNECT;
3289 	}
3290 	return PCI_ERS_RESULT_NEED_RESET;
3291 }
3292 
3293 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3294 {
3295 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3296 
3297 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3298 	pci_restore_state(pdev);
3299 	nvme_reset_ctrl(&dev->ctrl);
3300 	return PCI_ERS_RESULT_RECOVERED;
3301 }
3302 
3303 static void nvme_error_resume(struct pci_dev *pdev)
3304 {
3305 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3306 
3307 	flush_work(&dev->ctrl.reset_work);
3308 }
3309 
3310 static const struct pci_error_handlers nvme_err_handler = {
3311 	.error_detected	= nvme_error_detected,
3312 	.slot_reset	= nvme_slot_reset,
3313 	.resume		= nvme_error_resume,
3314 	.reset_prepare	= nvme_reset_prepare,
3315 	.reset_done	= nvme_reset_done,
3316 };
3317 
3318 static const struct pci_device_id nvme_id_table[] = {
3319 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3320 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3321 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3322 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3323 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3324 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3325 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3326 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3327 				NVME_QUIRK_DEALLOCATE_ZEROES |
3328 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3329 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3330 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3331 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3332 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3333 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3334 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3335 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3336 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3337 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3338 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3339 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3340 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3341 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3342 				NVME_QUIRK_BOGUS_NID, },
3343 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3344 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3345 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3346 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3347 				NVME_QUIRK_BOGUS_NID, },
3348 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3349 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3350 				NVME_QUIRK_NO_NS_DESC_LIST, },
3351 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3352 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3353 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3354 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3355 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3356 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3357 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3358 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3359 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3360 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3361 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3362 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3363 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3364 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3365 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3366 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3367 				NVME_QUIRK_BOGUS_NID, },
3368 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3369 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3370 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3371 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3372 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3373 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3374 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3375 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3376 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3377 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3378 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3379 				NVME_QUIRK_BOGUS_NID, },
3380 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3381 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3382 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3383 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3384 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3385 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3386 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3387 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3388 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3389 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3390 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3391 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3392 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3393 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3394 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3395 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3396 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3397 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3398 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3399 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3400 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3401 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3402 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3403 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3404 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3405 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3406 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3407 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3408 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3409 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3410 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3411 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3412 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3413 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3414 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3415 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3416 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3417 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3418 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3419 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3420 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3421 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3422 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3423 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3424 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3425 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3426 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3427 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3428 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3429 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3430 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3431 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3432 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3433 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3434 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3435 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3436 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3437 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3438 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3439 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3440 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3441 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3442 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3443 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3444 		.driver_data = NVME_QUIRK_BOGUS_NID |
3445 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3446 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3447 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3448 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3449 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3450 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3451 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3452 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3453 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3454 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3455 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3456 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3457 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3458 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3459 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3460 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3461 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3462 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3463 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3464 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3465 				NVME_QUIRK_128_BYTES_SQES |
3466 				NVME_QUIRK_SHARED_TAGS |
3467 				NVME_QUIRK_SKIP_CID_GEN |
3468 				NVME_QUIRK_IDENTIFY_CNS },
3469 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3470 	{ 0, }
3471 };
3472 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3473 
3474 static struct pci_driver nvme_driver = {
3475 	.name		= "nvme",
3476 	.id_table	= nvme_id_table,
3477 	.probe		= nvme_probe,
3478 	.remove		= nvme_remove,
3479 	.shutdown	= nvme_shutdown,
3480 	.driver		= {
3481 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3482 #ifdef CONFIG_PM_SLEEP
3483 		.pm		= &nvme_dev_pm_ops,
3484 #endif
3485 	},
3486 	.sriov_configure = pci_sriov_configure_simple,
3487 	.err_handler	= &nvme_err_handler,
3488 };
3489 
3490 static int __init nvme_init(void)
3491 {
3492 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3493 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3494 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3495 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3496 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3497 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3498 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3499 
3500 	return pci_register_driver(&nvme_driver);
3501 }
3502 
3503 static void __exit nvme_exit(void)
3504 {
3505 	pci_unregister_driver(&nvme_driver);
3506 	flush_workqueue(nvme_wq);
3507 }
3508 
3509 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3510 MODULE_LICENSE("GPL");
3511 MODULE_VERSION("1.0");
3512 module_init(nvme_init);
3513 module_exit(nvme_exit);
3514