xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 2fa49589)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/async.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/t10-pi.h>
30 #include <linux/types.h>
31 #include <linux/io-64-nonatomic-lo-hi.h>
32 #include <linux/sed-opal.h>
33 #include <linux/pci-p2pdma.h>
34 
35 #include "trace.h"
36 #include "nvme.h"
37 
38 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
40 
41 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
42 
43 /*
44  * These can be higher, but we need to ensure that any command doesn't
45  * require an sg allocation that needs more than a page of data.
46  */
47 #define NVME_MAX_KB_SZ	4096
48 #define NVME_MAX_SEGS	127
49 
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52 
53 static bool use_cmb_sqes = true;
54 module_param(use_cmb_sqes, bool, 0444);
55 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
56 
57 static unsigned int max_host_mem_size_mb = 128;
58 module_param(max_host_mem_size_mb, uint, 0444);
59 MODULE_PARM_DESC(max_host_mem_size_mb,
60 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
61 
62 static unsigned int sgl_threshold = SZ_32K;
63 module_param(sgl_threshold, uint, 0644);
64 MODULE_PARM_DESC(sgl_threshold,
65 		"Use SGLs when average request segment size is larger or equal to "
66 		"this size. Use 0 to disable SGLs.");
67 
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_int,
72 };
73 
74 static int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
77 
78 static int queue_count_set(const char *val, const struct kernel_param *kp);
79 static const struct kernel_param_ops queue_count_ops = {
80 	.set = queue_count_set,
81 	.get = param_get_int,
82 };
83 
84 static int write_queues;
85 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644);
86 MODULE_PARM_DESC(write_queues,
87 	"Number of queues to use for writes. If not set, reads and writes "
88 	"will share a queue set.");
89 
90 static int poll_queues = 0;
91 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644);
92 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
93 
94 struct nvme_dev;
95 struct nvme_queue;
96 
97 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
98 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
99 
100 /*
101  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
102  */
103 struct nvme_dev {
104 	struct nvme_queue *queues;
105 	struct blk_mq_tag_set tagset;
106 	struct blk_mq_tag_set admin_tagset;
107 	u32 __iomem *dbs;
108 	struct device *dev;
109 	struct dma_pool *prp_page_pool;
110 	struct dma_pool *prp_small_pool;
111 	unsigned online_queues;
112 	unsigned max_qid;
113 	unsigned io_queues[HCTX_MAX_TYPES];
114 	unsigned int num_vecs;
115 	int q_depth;
116 	u32 db_stride;
117 	void __iomem *bar;
118 	unsigned long bar_mapped_size;
119 	struct work_struct remove_work;
120 	struct mutex shutdown_lock;
121 	bool subsystem;
122 	u64 cmb_size;
123 	bool cmb_use_sqes;
124 	u32 cmbsz;
125 	u32 cmbloc;
126 	struct nvme_ctrl ctrl;
127 
128 	mempool_t *iod_mempool;
129 
130 	/* shadow doorbell buffer support: */
131 	u32 *dbbuf_dbs;
132 	dma_addr_t dbbuf_dbs_dma_addr;
133 	u32 *dbbuf_eis;
134 	dma_addr_t dbbuf_eis_dma_addr;
135 
136 	/* host memory buffer support: */
137 	u64 host_mem_size;
138 	u32 nr_host_mem_descs;
139 	dma_addr_t host_mem_descs_dma;
140 	struct nvme_host_mem_buf_desc *host_mem_descs;
141 	void **host_mem_desc_bufs;
142 };
143 
144 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
145 {
146 	int n = 0, ret;
147 
148 	ret = kstrtoint(val, 10, &n);
149 	if (ret != 0 || n < 2)
150 		return -EINVAL;
151 
152 	return param_set_int(val, kp);
153 }
154 
155 static int queue_count_set(const char *val, const struct kernel_param *kp)
156 {
157 	int n = 0, ret;
158 
159 	ret = kstrtoint(val, 10, &n);
160 	if (n > num_possible_cpus())
161 		n = num_possible_cpus();
162 
163 	return param_set_int(val, kp);
164 }
165 
166 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
167 {
168 	return qid * 2 * stride;
169 }
170 
171 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
172 {
173 	return (qid * 2 + 1) * stride;
174 }
175 
176 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
177 {
178 	return container_of(ctrl, struct nvme_dev, ctrl);
179 }
180 
181 /*
182  * An NVM Express queue.  Each device has at least two (one for admin
183  * commands and one for I/O commands).
184  */
185 struct nvme_queue {
186 	struct device *q_dmadev;
187 	struct nvme_dev *dev;
188 	spinlock_t sq_lock;
189 	struct nvme_command *sq_cmds;
190 	 /* only used for poll queues: */
191 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
192 	volatile struct nvme_completion *cqes;
193 	struct blk_mq_tags **tags;
194 	dma_addr_t sq_dma_addr;
195 	dma_addr_t cq_dma_addr;
196 	u32 __iomem *q_db;
197 	u16 q_depth;
198 	s16 cq_vector;
199 	u16 sq_tail;
200 	u16 last_sq_tail;
201 	u16 cq_head;
202 	u16 last_cq_head;
203 	u16 qid;
204 	u8 cq_phase;
205 	unsigned long flags;
206 #define NVMEQ_ENABLED		0
207 #define NVMEQ_SQ_CMB		1
208 #define NVMEQ_DELETE_ERROR	2
209 	u32 *dbbuf_sq_db;
210 	u32 *dbbuf_cq_db;
211 	u32 *dbbuf_sq_ei;
212 	u32 *dbbuf_cq_ei;
213 	struct completion delete_done;
214 };
215 
216 /*
217  * The nvme_iod describes the data in an I/O, including the list of PRP
218  * entries.  You can't see it in this data structure because C doesn't let
219  * me express that.  Use nvme_init_iod to ensure there's enough space
220  * allocated to store the PRP list.
221  */
222 struct nvme_iod {
223 	struct nvme_request req;
224 	struct nvme_queue *nvmeq;
225 	bool use_sgl;
226 	int aborted;
227 	int npages;		/* In the PRP list. 0 means small pool in use */
228 	int nents;		/* Used in scatterlist */
229 	int length;		/* Of data, in bytes */
230 	dma_addr_t first_dma;
231 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
232 	struct scatterlist *sg;
233 	struct scatterlist inline_sg[0];
234 };
235 
236 /*
237  * Check we didin't inadvertently grow the command struct
238  */
239 static inline void _nvme_check_size(void)
240 {
241 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
242 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
243 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
244 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
245 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
246 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
247 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
248 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
249 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
250 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
251 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
252 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
253 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
254 }
255 
256 static unsigned int max_io_queues(void)
257 {
258 	return num_possible_cpus() + write_queues + poll_queues;
259 }
260 
261 static unsigned int max_queue_count(void)
262 {
263 	/* IO queues + admin queue */
264 	return 1 + max_io_queues();
265 }
266 
267 static inline unsigned int nvme_dbbuf_size(u32 stride)
268 {
269 	return (max_queue_count() * 8 * stride);
270 }
271 
272 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
273 {
274 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
275 
276 	if (dev->dbbuf_dbs)
277 		return 0;
278 
279 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
280 					    &dev->dbbuf_dbs_dma_addr,
281 					    GFP_KERNEL);
282 	if (!dev->dbbuf_dbs)
283 		return -ENOMEM;
284 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
285 					    &dev->dbbuf_eis_dma_addr,
286 					    GFP_KERNEL);
287 	if (!dev->dbbuf_eis) {
288 		dma_free_coherent(dev->dev, mem_size,
289 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
290 		dev->dbbuf_dbs = NULL;
291 		return -ENOMEM;
292 	}
293 
294 	return 0;
295 }
296 
297 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
298 {
299 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
300 
301 	if (dev->dbbuf_dbs) {
302 		dma_free_coherent(dev->dev, mem_size,
303 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
304 		dev->dbbuf_dbs = NULL;
305 	}
306 	if (dev->dbbuf_eis) {
307 		dma_free_coherent(dev->dev, mem_size,
308 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
309 		dev->dbbuf_eis = NULL;
310 	}
311 }
312 
313 static void nvme_dbbuf_init(struct nvme_dev *dev,
314 			    struct nvme_queue *nvmeq, int qid)
315 {
316 	if (!dev->dbbuf_dbs || !qid)
317 		return;
318 
319 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
320 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
321 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
322 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
323 }
324 
325 static void nvme_dbbuf_set(struct nvme_dev *dev)
326 {
327 	struct nvme_command c;
328 
329 	if (!dev->dbbuf_dbs)
330 		return;
331 
332 	memset(&c, 0, sizeof(c));
333 	c.dbbuf.opcode = nvme_admin_dbbuf;
334 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
335 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
336 
337 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
338 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
339 		/* Free memory and continue on */
340 		nvme_dbbuf_dma_free(dev);
341 	}
342 }
343 
344 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
345 {
346 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
347 }
348 
349 /* Update dbbuf and return true if an MMIO is required */
350 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
351 					      volatile u32 *dbbuf_ei)
352 {
353 	if (dbbuf_db) {
354 		u16 old_value;
355 
356 		/*
357 		 * Ensure that the queue is written before updating
358 		 * the doorbell in memory
359 		 */
360 		wmb();
361 
362 		old_value = *dbbuf_db;
363 		*dbbuf_db = value;
364 
365 		/*
366 		 * Ensure that the doorbell is updated before reading the event
367 		 * index from memory.  The controller needs to provide similar
368 		 * ordering to ensure the envent index is updated before reading
369 		 * the doorbell.
370 		 */
371 		mb();
372 
373 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
374 			return false;
375 	}
376 
377 	return true;
378 }
379 
380 /*
381  * Max size of iod being embedded in the request payload
382  */
383 #define NVME_INT_PAGES		2
384 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
385 
386 /*
387  * Will slightly overestimate the number of pages needed.  This is OK
388  * as it only leads to a small amount of wasted memory for the lifetime of
389  * the I/O.
390  */
391 static int nvme_npages(unsigned size, struct nvme_dev *dev)
392 {
393 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
394 				      dev->ctrl.page_size);
395 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
396 }
397 
398 /*
399  * Calculates the number of pages needed for the SGL segments. For example a 4k
400  * page can accommodate 256 SGL descriptors.
401  */
402 static int nvme_pci_npages_sgl(unsigned int num_seg)
403 {
404 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
405 }
406 
407 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
408 		unsigned int size, unsigned int nseg, bool use_sgl)
409 {
410 	size_t alloc_size;
411 
412 	if (use_sgl)
413 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
414 	else
415 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
416 
417 	return alloc_size + sizeof(struct scatterlist) * nseg;
418 }
419 
420 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
421 {
422 	unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
423 				    NVME_INT_BYTES(dev), NVME_INT_PAGES,
424 				    use_sgl);
425 
426 	return sizeof(struct nvme_iod) + alloc_size;
427 }
428 
429 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
430 				unsigned int hctx_idx)
431 {
432 	struct nvme_dev *dev = data;
433 	struct nvme_queue *nvmeq = &dev->queues[0];
434 
435 	WARN_ON(hctx_idx != 0);
436 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
437 	WARN_ON(nvmeq->tags);
438 
439 	hctx->driver_data = nvmeq;
440 	nvmeq->tags = &dev->admin_tagset.tags[0];
441 	return 0;
442 }
443 
444 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
445 {
446 	struct nvme_queue *nvmeq = hctx->driver_data;
447 
448 	nvmeq->tags = NULL;
449 }
450 
451 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
452 			  unsigned int hctx_idx)
453 {
454 	struct nvme_dev *dev = data;
455 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
456 
457 	if (!nvmeq->tags)
458 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
459 
460 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
461 	hctx->driver_data = nvmeq;
462 	return 0;
463 }
464 
465 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
466 		unsigned int hctx_idx, unsigned int numa_node)
467 {
468 	struct nvme_dev *dev = set->driver_data;
469 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
470 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
471 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
472 
473 	BUG_ON(!nvmeq);
474 	iod->nvmeq = nvmeq;
475 
476 	nvme_req(req)->ctrl = &dev->ctrl;
477 	return 0;
478 }
479 
480 static int queue_irq_offset(struct nvme_dev *dev)
481 {
482 	/* if we have more than 1 vec, admin queue offsets us by 1 */
483 	if (dev->num_vecs > 1)
484 		return 1;
485 
486 	return 0;
487 }
488 
489 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
490 {
491 	struct nvme_dev *dev = set->driver_data;
492 	int i, qoff, offset;
493 
494 	offset = queue_irq_offset(dev);
495 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
496 		struct blk_mq_queue_map *map = &set->map[i];
497 
498 		map->nr_queues = dev->io_queues[i];
499 		if (!map->nr_queues) {
500 			BUG_ON(i == HCTX_TYPE_DEFAULT);
501 			continue;
502 		}
503 
504 		/*
505 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
506 		 * affinity), so use the regular blk-mq cpu mapping
507 		 */
508 		map->queue_offset = qoff;
509 		if (i != HCTX_TYPE_POLL)
510 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
511 		else
512 			blk_mq_map_queues(map);
513 		qoff += map->nr_queues;
514 		offset += map->nr_queues;
515 	}
516 
517 	return 0;
518 }
519 
520 /*
521  * Write sq tail if we are asked to, or if the next command would wrap.
522  */
523 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
524 {
525 	if (!write_sq) {
526 		u16 next_tail = nvmeq->sq_tail + 1;
527 
528 		if (next_tail == nvmeq->q_depth)
529 			next_tail = 0;
530 		if (next_tail != nvmeq->last_sq_tail)
531 			return;
532 	}
533 
534 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
535 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
536 		writel(nvmeq->sq_tail, nvmeq->q_db);
537 	nvmeq->last_sq_tail = nvmeq->sq_tail;
538 }
539 
540 /**
541  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
542  * @nvmeq: The queue to use
543  * @cmd: The command to send
544  * @write_sq: whether to write to the SQ doorbell
545  */
546 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
547 			    bool write_sq)
548 {
549 	spin_lock(&nvmeq->sq_lock);
550 	memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
551 	if (++nvmeq->sq_tail == nvmeq->q_depth)
552 		nvmeq->sq_tail = 0;
553 	nvme_write_sq_db(nvmeq, write_sq);
554 	spin_unlock(&nvmeq->sq_lock);
555 }
556 
557 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
558 {
559 	struct nvme_queue *nvmeq = hctx->driver_data;
560 
561 	spin_lock(&nvmeq->sq_lock);
562 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
563 		nvme_write_sq_db(nvmeq, true);
564 	spin_unlock(&nvmeq->sq_lock);
565 }
566 
567 static void **nvme_pci_iod_list(struct request *req)
568 {
569 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
570 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
571 }
572 
573 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
574 {
575 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
576 	int nseg = blk_rq_nr_phys_segments(req);
577 	unsigned int avg_seg_size;
578 
579 	if (nseg == 0)
580 		return false;
581 
582 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
583 
584 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
585 		return false;
586 	if (!iod->nvmeq->qid)
587 		return false;
588 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
589 		return false;
590 	return true;
591 }
592 
593 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
594 {
595 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
596 	int nseg = blk_rq_nr_phys_segments(rq);
597 	unsigned int size = blk_rq_payload_bytes(rq);
598 
599 	iod->use_sgl = nvme_pci_use_sgls(dev, rq);
600 
601 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
602 		iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
603 		if (!iod->sg)
604 			return BLK_STS_RESOURCE;
605 	} else {
606 		iod->sg = iod->inline_sg;
607 	}
608 
609 	iod->aborted = 0;
610 	iod->npages = -1;
611 	iod->nents = 0;
612 	iod->length = size;
613 
614 	return BLK_STS_OK;
615 }
616 
617 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
618 {
619 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
620 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
621 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
622 
623 	int i;
624 
625 	if (iod->npages == 0)
626 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
627 			dma_addr);
628 
629 	for (i = 0; i < iod->npages; i++) {
630 		void *addr = nvme_pci_iod_list(req)[i];
631 
632 		if (iod->use_sgl) {
633 			struct nvme_sgl_desc *sg_list = addr;
634 
635 			next_dma_addr =
636 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
637 		} else {
638 			__le64 *prp_list = addr;
639 
640 			next_dma_addr = le64_to_cpu(prp_list[last_prp]);
641 		}
642 
643 		dma_pool_free(dev->prp_page_pool, addr, dma_addr);
644 		dma_addr = next_dma_addr;
645 	}
646 
647 	if (iod->sg != iod->inline_sg)
648 		mempool_free(iod->sg, dev->iod_mempool);
649 }
650 
651 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
652 {
653 	int i;
654 	struct scatterlist *sg;
655 
656 	for_each_sg(sgl, sg, nents, i) {
657 		dma_addr_t phys = sg_phys(sg);
658 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
659 			"dma_address:%pad dma_length:%d\n",
660 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
661 			sg_dma_len(sg));
662 	}
663 }
664 
665 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
666 		struct request *req, struct nvme_rw_command *cmnd)
667 {
668 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
669 	struct dma_pool *pool;
670 	int length = blk_rq_payload_bytes(req);
671 	struct scatterlist *sg = iod->sg;
672 	int dma_len = sg_dma_len(sg);
673 	u64 dma_addr = sg_dma_address(sg);
674 	u32 page_size = dev->ctrl.page_size;
675 	int offset = dma_addr & (page_size - 1);
676 	__le64 *prp_list;
677 	void **list = nvme_pci_iod_list(req);
678 	dma_addr_t prp_dma;
679 	int nprps, i;
680 
681 	length -= (page_size - offset);
682 	if (length <= 0) {
683 		iod->first_dma = 0;
684 		goto done;
685 	}
686 
687 	dma_len -= (page_size - offset);
688 	if (dma_len) {
689 		dma_addr += (page_size - offset);
690 	} else {
691 		sg = sg_next(sg);
692 		dma_addr = sg_dma_address(sg);
693 		dma_len = sg_dma_len(sg);
694 	}
695 
696 	if (length <= page_size) {
697 		iod->first_dma = dma_addr;
698 		goto done;
699 	}
700 
701 	nprps = DIV_ROUND_UP(length, page_size);
702 	if (nprps <= (256 / 8)) {
703 		pool = dev->prp_small_pool;
704 		iod->npages = 0;
705 	} else {
706 		pool = dev->prp_page_pool;
707 		iod->npages = 1;
708 	}
709 
710 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
711 	if (!prp_list) {
712 		iod->first_dma = dma_addr;
713 		iod->npages = -1;
714 		return BLK_STS_RESOURCE;
715 	}
716 	list[0] = prp_list;
717 	iod->first_dma = prp_dma;
718 	i = 0;
719 	for (;;) {
720 		if (i == page_size >> 3) {
721 			__le64 *old_prp_list = prp_list;
722 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
723 			if (!prp_list)
724 				return BLK_STS_RESOURCE;
725 			list[iod->npages++] = prp_list;
726 			prp_list[0] = old_prp_list[i - 1];
727 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
728 			i = 1;
729 		}
730 		prp_list[i++] = cpu_to_le64(dma_addr);
731 		dma_len -= page_size;
732 		dma_addr += page_size;
733 		length -= page_size;
734 		if (length <= 0)
735 			break;
736 		if (dma_len > 0)
737 			continue;
738 		if (unlikely(dma_len < 0))
739 			goto bad_sgl;
740 		sg = sg_next(sg);
741 		dma_addr = sg_dma_address(sg);
742 		dma_len = sg_dma_len(sg);
743 	}
744 
745 done:
746 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
747 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
748 
749 	return BLK_STS_OK;
750 
751  bad_sgl:
752 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
753 			"Invalid SGL for payload:%d nents:%d\n",
754 			blk_rq_payload_bytes(req), iod->nents);
755 	return BLK_STS_IOERR;
756 }
757 
758 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
759 		struct scatterlist *sg)
760 {
761 	sge->addr = cpu_to_le64(sg_dma_address(sg));
762 	sge->length = cpu_to_le32(sg_dma_len(sg));
763 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
764 }
765 
766 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
767 		dma_addr_t dma_addr, int entries)
768 {
769 	sge->addr = cpu_to_le64(dma_addr);
770 	if (entries < SGES_PER_PAGE) {
771 		sge->length = cpu_to_le32(entries * sizeof(*sge));
772 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
773 	} else {
774 		sge->length = cpu_to_le32(PAGE_SIZE);
775 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
776 	}
777 }
778 
779 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
780 		struct request *req, struct nvme_rw_command *cmd, int entries)
781 {
782 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
783 	struct dma_pool *pool;
784 	struct nvme_sgl_desc *sg_list;
785 	struct scatterlist *sg = iod->sg;
786 	dma_addr_t sgl_dma;
787 	int i = 0;
788 
789 	/* setting the transfer type as SGL */
790 	cmd->flags = NVME_CMD_SGL_METABUF;
791 
792 	if (entries == 1) {
793 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
794 		return BLK_STS_OK;
795 	}
796 
797 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
798 		pool = dev->prp_small_pool;
799 		iod->npages = 0;
800 	} else {
801 		pool = dev->prp_page_pool;
802 		iod->npages = 1;
803 	}
804 
805 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
806 	if (!sg_list) {
807 		iod->npages = -1;
808 		return BLK_STS_RESOURCE;
809 	}
810 
811 	nvme_pci_iod_list(req)[0] = sg_list;
812 	iod->first_dma = sgl_dma;
813 
814 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
815 
816 	do {
817 		if (i == SGES_PER_PAGE) {
818 			struct nvme_sgl_desc *old_sg_desc = sg_list;
819 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
820 
821 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
822 			if (!sg_list)
823 				return BLK_STS_RESOURCE;
824 
825 			i = 0;
826 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
827 			sg_list[i++] = *link;
828 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
829 		}
830 
831 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
832 		sg = sg_next(sg);
833 	} while (--entries > 0);
834 
835 	return BLK_STS_OK;
836 }
837 
838 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
839 		struct nvme_command *cmnd)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 	struct request_queue *q = req->q;
843 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
844 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
845 	blk_status_t ret = BLK_STS_IOERR;
846 	int nr_mapped;
847 
848 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
849 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
850 	if (!iod->nents)
851 		goto out;
852 
853 	ret = BLK_STS_RESOURCE;
854 
855 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
856 		nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
857 					  dma_dir);
858 	else
859 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
860 					     dma_dir,  DMA_ATTR_NO_WARN);
861 	if (!nr_mapped)
862 		goto out;
863 
864 	if (iod->use_sgl)
865 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
866 	else
867 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
868 
869 	if (ret != BLK_STS_OK)
870 		goto out_unmap;
871 
872 	ret = BLK_STS_IOERR;
873 	if (blk_integrity_rq(req)) {
874 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
875 			goto out_unmap;
876 
877 		sg_init_table(&iod->meta_sg, 1);
878 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
879 			goto out_unmap;
880 
881 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
882 			goto out_unmap;
883 
884 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
885 	}
886 
887 	return BLK_STS_OK;
888 
889 out_unmap:
890 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
891 out:
892 	return ret;
893 }
894 
895 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
896 {
897 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
898 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
899 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
900 
901 	if (iod->nents) {
902 		/* P2PDMA requests do not need to be unmapped */
903 		if (!is_pci_p2pdma_page(sg_page(iod->sg)))
904 			dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
905 
906 		if (blk_integrity_rq(req))
907 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
908 	}
909 
910 	nvme_cleanup_cmd(req);
911 	nvme_free_iod(dev, req);
912 }
913 
914 /*
915  * NOTE: ns is NULL when called on the admin queue.
916  */
917 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
918 			 const struct blk_mq_queue_data *bd)
919 {
920 	struct nvme_ns *ns = hctx->queue->queuedata;
921 	struct nvme_queue *nvmeq = hctx->driver_data;
922 	struct nvme_dev *dev = nvmeq->dev;
923 	struct request *req = bd->rq;
924 	struct nvme_command cmnd;
925 	blk_status_t ret;
926 
927 	/*
928 	 * We should not need to do this, but we're still using this to
929 	 * ensure we can drain requests on a dying queue.
930 	 */
931 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
932 		return BLK_STS_IOERR;
933 
934 	ret = nvme_setup_cmd(ns, req, &cmnd);
935 	if (ret)
936 		return ret;
937 
938 	ret = nvme_init_iod(req, dev);
939 	if (ret)
940 		goto out_free_cmd;
941 
942 	if (blk_rq_nr_phys_segments(req)) {
943 		ret = nvme_map_data(dev, req, &cmnd);
944 		if (ret)
945 			goto out_cleanup_iod;
946 	}
947 
948 	blk_mq_start_request(req);
949 	nvme_submit_cmd(nvmeq, &cmnd, bd->last);
950 	return BLK_STS_OK;
951 out_cleanup_iod:
952 	nvme_free_iod(dev, req);
953 out_free_cmd:
954 	nvme_cleanup_cmd(req);
955 	return ret;
956 }
957 
958 static void nvme_pci_complete_rq(struct request *req)
959 {
960 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
961 
962 	nvme_unmap_data(iod->nvmeq->dev, req);
963 	nvme_complete_rq(req);
964 }
965 
966 /* We read the CQE phase first to check if the rest of the entry is valid */
967 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
968 {
969 	return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
970 			nvmeq->cq_phase;
971 }
972 
973 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
974 {
975 	u16 head = nvmeq->cq_head;
976 
977 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
978 					      nvmeq->dbbuf_cq_ei))
979 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
980 }
981 
982 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
983 {
984 	volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
985 	struct request *req;
986 
987 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
988 		dev_warn(nvmeq->dev->ctrl.device,
989 			"invalid id %d completed on queue %d\n",
990 			cqe->command_id, le16_to_cpu(cqe->sq_id));
991 		return;
992 	}
993 
994 	/*
995 	 * AEN requests are special as they don't time out and can
996 	 * survive any kind of queue freeze and often don't respond to
997 	 * aborts.  We don't even bother to allocate a struct request
998 	 * for them but rather special case them here.
999 	 */
1000 	if (unlikely(nvmeq->qid == 0 &&
1001 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
1002 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1003 				cqe->status, &cqe->result);
1004 		return;
1005 	}
1006 
1007 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
1008 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1009 	nvme_end_request(req, cqe->status, cqe->result);
1010 }
1011 
1012 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
1013 {
1014 	while (start != end) {
1015 		nvme_handle_cqe(nvmeq, start);
1016 		if (++start == nvmeq->q_depth)
1017 			start = 0;
1018 	}
1019 }
1020 
1021 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1022 {
1023 	if (nvmeq->cq_head == nvmeq->q_depth - 1) {
1024 		nvmeq->cq_head = 0;
1025 		nvmeq->cq_phase = !nvmeq->cq_phase;
1026 	} else {
1027 		nvmeq->cq_head++;
1028 	}
1029 }
1030 
1031 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
1032 				  u16 *end, unsigned int tag)
1033 {
1034 	int found = 0;
1035 
1036 	*start = nvmeq->cq_head;
1037 	while (nvme_cqe_pending(nvmeq)) {
1038 		if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1039 			found++;
1040 		nvme_update_cq_head(nvmeq);
1041 	}
1042 	*end = nvmeq->cq_head;
1043 
1044 	if (*start != *end)
1045 		nvme_ring_cq_doorbell(nvmeq);
1046 	return found;
1047 }
1048 
1049 static irqreturn_t nvme_irq(int irq, void *data)
1050 {
1051 	struct nvme_queue *nvmeq = data;
1052 	irqreturn_t ret = IRQ_NONE;
1053 	u16 start, end;
1054 
1055 	/*
1056 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1057 	 * the irq handler, even if that was on another CPU.
1058 	 */
1059 	rmb();
1060 	if (nvmeq->cq_head != nvmeq->last_cq_head)
1061 		ret = IRQ_HANDLED;
1062 	nvme_process_cq(nvmeq, &start, &end, -1);
1063 	nvmeq->last_cq_head = nvmeq->cq_head;
1064 	wmb();
1065 
1066 	if (start != end) {
1067 		nvme_complete_cqes(nvmeq, start, end);
1068 		return IRQ_HANDLED;
1069 	}
1070 
1071 	return ret;
1072 }
1073 
1074 static irqreturn_t nvme_irq_check(int irq, void *data)
1075 {
1076 	struct nvme_queue *nvmeq = data;
1077 	if (nvme_cqe_pending(nvmeq))
1078 		return IRQ_WAKE_THREAD;
1079 	return IRQ_NONE;
1080 }
1081 
1082 /*
1083  * Poll for completions any queue, including those not dedicated to polling.
1084  * Can be called from any context.
1085  */
1086 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1087 {
1088 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1089 	u16 start, end;
1090 	int found;
1091 
1092 	/*
1093 	 * For a poll queue we need to protect against the polling thread
1094 	 * using the CQ lock.  For normal interrupt driven threads we have
1095 	 * to disable the interrupt to avoid racing with it.
1096 	 */
1097 	if (nvmeq->cq_vector == -1) {
1098 		spin_lock(&nvmeq->cq_poll_lock);
1099 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1100 		spin_unlock(&nvmeq->cq_poll_lock);
1101 	} else {
1102 		disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1103 		found = nvme_process_cq(nvmeq, &start, &end, tag);
1104 		enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1105 	}
1106 
1107 	nvme_complete_cqes(nvmeq, start, end);
1108 	return found;
1109 }
1110 
1111 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1112 {
1113 	struct nvme_queue *nvmeq = hctx->driver_data;
1114 	u16 start, end;
1115 	bool found;
1116 
1117 	if (!nvme_cqe_pending(nvmeq))
1118 		return 0;
1119 
1120 	spin_lock(&nvmeq->cq_poll_lock);
1121 	found = nvme_process_cq(nvmeq, &start, &end, -1);
1122 	spin_unlock(&nvmeq->cq_poll_lock);
1123 
1124 	nvme_complete_cqes(nvmeq, start, end);
1125 	return found;
1126 }
1127 
1128 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1129 {
1130 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1131 	struct nvme_queue *nvmeq = &dev->queues[0];
1132 	struct nvme_command c;
1133 
1134 	memset(&c, 0, sizeof(c));
1135 	c.common.opcode = nvme_admin_async_event;
1136 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1137 	nvme_submit_cmd(nvmeq, &c, true);
1138 }
1139 
1140 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1141 {
1142 	struct nvme_command c;
1143 
1144 	memset(&c, 0, sizeof(c));
1145 	c.delete_queue.opcode = opcode;
1146 	c.delete_queue.qid = cpu_to_le16(id);
1147 
1148 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1149 }
1150 
1151 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1152 		struct nvme_queue *nvmeq, s16 vector)
1153 {
1154 	struct nvme_command c;
1155 	int flags = NVME_QUEUE_PHYS_CONTIG;
1156 
1157 	if (vector != -1)
1158 		flags |= NVME_CQ_IRQ_ENABLED;
1159 
1160 	/*
1161 	 * Note: we (ab)use the fact that the prp fields survive if no data
1162 	 * is attached to the request.
1163 	 */
1164 	memset(&c, 0, sizeof(c));
1165 	c.create_cq.opcode = nvme_admin_create_cq;
1166 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1167 	c.create_cq.cqid = cpu_to_le16(qid);
1168 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1169 	c.create_cq.cq_flags = cpu_to_le16(flags);
1170 	if (vector != -1)
1171 		c.create_cq.irq_vector = cpu_to_le16(vector);
1172 	else
1173 		c.create_cq.irq_vector = 0;
1174 
1175 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1176 }
1177 
1178 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179 						struct nvme_queue *nvmeq)
1180 {
1181 	struct nvme_ctrl *ctrl = &dev->ctrl;
1182 	struct nvme_command c;
1183 	int flags = NVME_QUEUE_PHYS_CONTIG;
1184 
1185 	/*
1186 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187 	 * set. Since URGENT priority is zeroes, it makes all queues
1188 	 * URGENT.
1189 	 */
1190 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191 		flags |= NVME_SQ_PRIO_MEDIUM;
1192 
1193 	/*
1194 	 * Note: we (ab)use the fact that the prp fields survive if no data
1195 	 * is attached to the request.
1196 	 */
1197 	memset(&c, 0, sizeof(c));
1198 	c.create_sq.opcode = nvme_admin_create_sq;
1199 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200 	c.create_sq.sqid = cpu_to_le16(qid);
1201 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202 	c.create_sq.sq_flags = cpu_to_le16(flags);
1203 	c.create_sq.cqid = cpu_to_le16(qid);
1204 
1205 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207 
1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209 {
1210 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211 }
1212 
1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214 {
1215 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216 }
1217 
1218 static void abort_endio(struct request *req, blk_status_t error)
1219 {
1220 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1221 	struct nvme_queue *nvmeq = iod->nvmeq;
1222 
1223 	dev_warn(nvmeq->dev->ctrl.device,
1224 		 "Abort status: 0x%x", nvme_req(req)->status);
1225 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1226 	blk_mq_free_request(req);
1227 }
1228 
1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231 
1232 	/* If true, indicates loss of adapter communication, possibly by a
1233 	 * NVMe Subsystem reset.
1234 	 */
1235 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1236 
1237 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1238 	switch (dev->ctrl.state) {
1239 	case NVME_CTRL_RESETTING:
1240 	case NVME_CTRL_CONNECTING:
1241 		return false;
1242 	default:
1243 		break;
1244 	}
1245 
1246 	/* We shouldn't reset unless the controller is on fatal error state
1247 	 * _or_ if we lost the communication with it.
1248 	 */
1249 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1256 {
1257 	/* Read a config register to help see what died. */
1258 	u16 pci_status;
1259 	int result;
1260 
1261 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1262 				      &pci_status);
1263 	if (result == PCIBIOS_SUCCESSFUL)
1264 		dev_warn(dev->ctrl.device,
1265 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1266 			 csts, pci_status);
1267 	else
1268 		dev_warn(dev->ctrl.device,
1269 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1270 			 csts, result);
1271 }
1272 
1273 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1274 {
1275 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1276 	struct nvme_queue *nvmeq = iod->nvmeq;
1277 	struct nvme_dev *dev = nvmeq->dev;
1278 	struct request *abort_req;
1279 	struct nvme_command cmd;
1280 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1281 
1282 	/* If PCI error recovery process is happening, we cannot reset or
1283 	 * the recovery mechanism will surely fail.
1284 	 */
1285 	mb();
1286 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1287 		return BLK_EH_RESET_TIMER;
1288 
1289 	/*
1290 	 * Reset immediately if the controller is failed
1291 	 */
1292 	if (nvme_should_reset(dev, csts)) {
1293 		nvme_warn_reset(dev, csts);
1294 		nvme_dev_disable(dev, false);
1295 		nvme_reset_ctrl(&dev->ctrl);
1296 		return BLK_EH_DONE;
1297 	}
1298 
1299 	/*
1300 	 * Did we miss an interrupt?
1301 	 */
1302 	if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1303 		dev_warn(dev->ctrl.device,
1304 			 "I/O %d QID %d timeout, completion polled\n",
1305 			 req->tag, nvmeq->qid);
1306 		return BLK_EH_DONE;
1307 	}
1308 
1309 	/*
1310 	 * Shutdown immediately if controller times out while starting. The
1311 	 * reset work will see the pci device disabled when it gets the forced
1312 	 * cancellation error. All outstanding requests are completed on
1313 	 * shutdown, so we return BLK_EH_DONE.
1314 	 */
1315 	switch (dev->ctrl.state) {
1316 	case NVME_CTRL_CONNECTING:
1317 	case NVME_CTRL_RESETTING:
1318 		dev_warn_ratelimited(dev->ctrl.device,
1319 			 "I/O %d QID %d timeout, disable controller\n",
1320 			 req->tag, nvmeq->qid);
1321 		nvme_dev_disable(dev, false);
1322 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1323 		return BLK_EH_DONE;
1324 	default:
1325 		break;
1326 	}
1327 
1328 	/*
1329  	 * Shutdown the controller immediately and schedule a reset if the
1330  	 * command was already aborted once before and still hasn't been
1331  	 * returned to the driver, or if this is the admin queue.
1332 	 */
1333 	if (!nvmeq->qid || iod->aborted) {
1334 		dev_warn(dev->ctrl.device,
1335 			 "I/O %d QID %d timeout, reset controller\n",
1336 			 req->tag, nvmeq->qid);
1337 		nvme_dev_disable(dev, false);
1338 		nvme_reset_ctrl(&dev->ctrl);
1339 
1340 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1341 		return BLK_EH_DONE;
1342 	}
1343 
1344 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1345 		atomic_inc(&dev->ctrl.abort_limit);
1346 		return BLK_EH_RESET_TIMER;
1347 	}
1348 	iod->aborted = 1;
1349 
1350 	memset(&cmd, 0, sizeof(cmd));
1351 	cmd.abort.opcode = nvme_admin_abort_cmd;
1352 	cmd.abort.cid = req->tag;
1353 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1354 
1355 	dev_warn(nvmeq->dev->ctrl.device,
1356 		"I/O %d QID %d timeout, aborting\n",
1357 		 req->tag, nvmeq->qid);
1358 
1359 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1360 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1361 	if (IS_ERR(abort_req)) {
1362 		atomic_inc(&dev->ctrl.abort_limit);
1363 		return BLK_EH_RESET_TIMER;
1364 	}
1365 
1366 	abort_req->timeout = ADMIN_TIMEOUT;
1367 	abort_req->end_io_data = NULL;
1368 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1369 
1370 	/*
1371 	 * The aborted req will be completed on receiving the abort req.
1372 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1373 	 * as the device then is in a faulty state.
1374 	 */
1375 	return BLK_EH_RESET_TIMER;
1376 }
1377 
1378 static void nvme_free_queue(struct nvme_queue *nvmeq)
1379 {
1380 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1381 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1382 	if (!nvmeq->sq_cmds)
1383 		return;
1384 
1385 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1386 		pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev),
1387 				nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1388 	} else {
1389 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1390 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1391 	}
1392 }
1393 
1394 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1395 {
1396 	int i;
1397 
1398 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1399 		dev->ctrl.queue_count--;
1400 		nvme_free_queue(&dev->queues[i]);
1401 	}
1402 }
1403 
1404 /**
1405  * nvme_suspend_queue - put queue into suspended state
1406  * @nvmeq: queue to suspend
1407  */
1408 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1409 {
1410 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1411 		return 1;
1412 
1413 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1414 	mb();
1415 
1416 	nvmeq->dev->online_queues--;
1417 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1418 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1419 	if (nvmeq->cq_vector == -1)
1420 		return 0;
1421 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1422 	nvmeq->cq_vector = -1;
1423 	return 0;
1424 }
1425 
1426 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1427 {
1428 	int i;
1429 
1430 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1431 		nvme_suspend_queue(&dev->queues[i]);
1432 }
1433 
1434 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1435 {
1436 	struct nvme_queue *nvmeq = &dev->queues[0];
1437 
1438 	if (shutdown)
1439 		nvme_shutdown_ctrl(&dev->ctrl);
1440 	else
1441 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1442 
1443 	nvme_poll_irqdisable(nvmeq, -1);
1444 }
1445 
1446 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1447 				int entry_size)
1448 {
1449 	int q_depth = dev->q_depth;
1450 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1451 					  dev->ctrl.page_size);
1452 
1453 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1454 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1455 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1456 		q_depth = div_u64(mem_per_q, entry_size);
1457 
1458 		/*
1459 		 * Ensure the reduced q_depth is above some threshold where it
1460 		 * would be better to map queues in system memory with the
1461 		 * original depth
1462 		 */
1463 		if (q_depth < 64)
1464 			return -ENOMEM;
1465 	}
1466 
1467 	return q_depth;
1468 }
1469 
1470 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1471 				int qid, int depth)
1472 {
1473 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1474 
1475 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1476 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1477 		nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1478 						nvmeq->sq_cmds);
1479 		if (nvmeq->sq_dma_addr) {
1480 			set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1481 			return 0;
1482 		}
1483 	}
1484 
1485 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1486 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1487 	if (!nvmeq->sq_cmds)
1488 		return -ENOMEM;
1489 	return 0;
1490 }
1491 
1492 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1493 {
1494 	struct nvme_queue *nvmeq = &dev->queues[qid];
1495 
1496 	if (dev->ctrl.queue_count > qid)
1497 		return 0;
1498 
1499 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1500 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1501 	if (!nvmeq->cqes)
1502 		goto free_nvmeq;
1503 
1504 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1505 		goto free_cqdma;
1506 
1507 	nvmeq->q_dmadev = dev->dev;
1508 	nvmeq->dev = dev;
1509 	spin_lock_init(&nvmeq->sq_lock);
1510 	spin_lock_init(&nvmeq->cq_poll_lock);
1511 	nvmeq->cq_head = 0;
1512 	nvmeq->cq_phase = 1;
1513 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1514 	nvmeq->q_depth = depth;
1515 	nvmeq->qid = qid;
1516 	nvmeq->cq_vector = -1;
1517 	dev->ctrl.queue_count++;
1518 
1519 	return 0;
1520 
1521  free_cqdma:
1522 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1523 							nvmeq->cq_dma_addr);
1524  free_nvmeq:
1525 	return -ENOMEM;
1526 }
1527 
1528 static int queue_request_irq(struct nvme_queue *nvmeq)
1529 {
1530 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1531 	int nr = nvmeq->dev->ctrl.instance;
1532 
1533 	if (use_threaded_interrupts) {
1534 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1535 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1536 	} else {
1537 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1538 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1539 	}
1540 }
1541 
1542 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1543 {
1544 	struct nvme_dev *dev = nvmeq->dev;
1545 
1546 	nvmeq->sq_tail = 0;
1547 	nvmeq->last_sq_tail = 0;
1548 	nvmeq->cq_head = 0;
1549 	nvmeq->cq_phase = 1;
1550 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1551 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1552 	nvme_dbbuf_init(dev, nvmeq, qid);
1553 	dev->online_queues++;
1554 	wmb(); /* ensure the first interrupt sees the initialization */
1555 }
1556 
1557 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1558 {
1559 	struct nvme_dev *dev = nvmeq->dev;
1560 	int result;
1561 	s16 vector;
1562 
1563 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1564 
1565 	/*
1566 	 * A queue's vector matches the queue identifier unless the controller
1567 	 * has only one vector available.
1568 	 */
1569 	if (!polled)
1570 		vector = dev->num_vecs == 1 ? 0 : qid;
1571 	else
1572 		vector = -1;
1573 
1574 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1575 	if (result)
1576 		return result;
1577 
1578 	result = adapter_alloc_sq(dev, qid, nvmeq);
1579 	if (result < 0)
1580 		return result;
1581 	else if (result)
1582 		goto release_cq;
1583 
1584 	nvmeq->cq_vector = vector;
1585 	nvme_init_queue(nvmeq, qid);
1586 
1587 	if (vector != -1) {
1588 		result = queue_request_irq(nvmeq);
1589 		if (result < 0)
1590 			goto release_sq;
1591 	}
1592 
1593 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1594 	return result;
1595 
1596 release_sq:
1597 	nvmeq->cq_vector = -1;
1598 	dev->online_queues--;
1599 	adapter_delete_sq(dev, qid);
1600 release_cq:
1601 	adapter_delete_cq(dev, qid);
1602 	return result;
1603 }
1604 
1605 static const struct blk_mq_ops nvme_mq_admin_ops = {
1606 	.queue_rq	= nvme_queue_rq,
1607 	.complete	= nvme_pci_complete_rq,
1608 	.init_hctx	= nvme_admin_init_hctx,
1609 	.exit_hctx      = nvme_admin_exit_hctx,
1610 	.init_request	= nvme_init_request,
1611 	.timeout	= nvme_timeout,
1612 };
1613 
1614 static const struct blk_mq_ops nvme_mq_ops = {
1615 	.queue_rq	= nvme_queue_rq,
1616 	.complete	= nvme_pci_complete_rq,
1617 	.commit_rqs	= nvme_commit_rqs,
1618 	.init_hctx	= nvme_init_hctx,
1619 	.init_request	= nvme_init_request,
1620 	.map_queues	= nvme_pci_map_queues,
1621 	.timeout	= nvme_timeout,
1622 	.poll		= nvme_poll,
1623 };
1624 
1625 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1626 {
1627 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1628 		/*
1629 		 * If the controller was reset during removal, it's possible
1630 		 * user requests may be waiting on a stopped queue. Start the
1631 		 * queue to flush these to completion.
1632 		 */
1633 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1634 		blk_cleanup_queue(dev->ctrl.admin_q);
1635 		blk_mq_free_tag_set(&dev->admin_tagset);
1636 	}
1637 }
1638 
1639 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1640 {
1641 	if (!dev->ctrl.admin_q) {
1642 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1643 		dev->admin_tagset.nr_hw_queues = 1;
1644 
1645 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1646 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1647 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1648 		dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1649 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1650 		dev->admin_tagset.driver_data = dev;
1651 
1652 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1653 			return -ENOMEM;
1654 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1655 
1656 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1657 		if (IS_ERR(dev->ctrl.admin_q)) {
1658 			blk_mq_free_tag_set(&dev->admin_tagset);
1659 			return -ENOMEM;
1660 		}
1661 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1662 			nvme_dev_remove_admin(dev);
1663 			dev->ctrl.admin_q = NULL;
1664 			return -ENODEV;
1665 		}
1666 	} else
1667 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1668 
1669 	return 0;
1670 }
1671 
1672 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1673 {
1674 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1675 }
1676 
1677 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1678 {
1679 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1680 
1681 	if (size <= dev->bar_mapped_size)
1682 		return 0;
1683 	if (size > pci_resource_len(pdev, 0))
1684 		return -ENOMEM;
1685 	if (dev->bar)
1686 		iounmap(dev->bar);
1687 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1688 	if (!dev->bar) {
1689 		dev->bar_mapped_size = 0;
1690 		return -ENOMEM;
1691 	}
1692 	dev->bar_mapped_size = size;
1693 	dev->dbs = dev->bar + NVME_REG_DBS;
1694 
1695 	return 0;
1696 }
1697 
1698 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1699 {
1700 	int result;
1701 	u32 aqa;
1702 	struct nvme_queue *nvmeq;
1703 
1704 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1705 	if (result < 0)
1706 		return result;
1707 
1708 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1709 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1710 
1711 	if (dev->subsystem &&
1712 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1713 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1714 
1715 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1716 	if (result < 0)
1717 		return result;
1718 
1719 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1720 	if (result)
1721 		return result;
1722 
1723 	nvmeq = &dev->queues[0];
1724 	aqa = nvmeq->q_depth - 1;
1725 	aqa |= aqa << 16;
1726 
1727 	writel(aqa, dev->bar + NVME_REG_AQA);
1728 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1729 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1730 
1731 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1732 	if (result)
1733 		return result;
1734 
1735 	nvmeq->cq_vector = 0;
1736 	nvme_init_queue(nvmeq, 0);
1737 	result = queue_request_irq(nvmeq);
1738 	if (result) {
1739 		nvmeq->cq_vector = -1;
1740 		return result;
1741 	}
1742 
1743 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1744 	return result;
1745 }
1746 
1747 static int nvme_create_io_queues(struct nvme_dev *dev)
1748 {
1749 	unsigned i, max, rw_queues;
1750 	int ret = 0;
1751 
1752 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1753 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1754 			ret = -ENOMEM;
1755 			break;
1756 		}
1757 	}
1758 
1759 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1760 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1761 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1762 				dev->io_queues[HCTX_TYPE_READ];
1763 	} else {
1764 		rw_queues = max;
1765 	}
1766 
1767 	for (i = dev->online_queues; i <= max; i++) {
1768 		bool polled = i > rw_queues;
1769 
1770 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1771 		if (ret)
1772 			break;
1773 	}
1774 
1775 	/*
1776 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1777 	 * than the desired amount of queues, and even a controller without
1778 	 * I/O queues can still be used to issue admin commands.  This might
1779 	 * be useful to upgrade a buggy firmware for example.
1780 	 */
1781 	return ret >= 0 ? 0 : ret;
1782 }
1783 
1784 static ssize_t nvme_cmb_show(struct device *dev,
1785 			     struct device_attribute *attr,
1786 			     char *buf)
1787 {
1788 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1789 
1790 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1791 		       ndev->cmbloc, ndev->cmbsz);
1792 }
1793 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1794 
1795 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1796 {
1797 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1798 
1799 	return 1ULL << (12 + 4 * szu);
1800 }
1801 
1802 static u32 nvme_cmb_size(struct nvme_dev *dev)
1803 {
1804 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1805 }
1806 
1807 static void nvme_map_cmb(struct nvme_dev *dev)
1808 {
1809 	u64 size, offset;
1810 	resource_size_t bar_size;
1811 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1812 	int bar;
1813 
1814 	if (dev->cmb_size)
1815 		return;
1816 
1817 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1818 	if (!dev->cmbsz)
1819 		return;
1820 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1821 
1822 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1823 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1824 	bar = NVME_CMB_BIR(dev->cmbloc);
1825 	bar_size = pci_resource_len(pdev, bar);
1826 
1827 	if (offset > bar_size)
1828 		return;
1829 
1830 	/*
1831 	 * Controllers may support a CMB size larger than their BAR,
1832 	 * for example, due to being behind a bridge. Reduce the CMB to
1833 	 * the reported size of the BAR
1834 	 */
1835 	if (size > bar_size - offset)
1836 		size = bar_size - offset;
1837 
1838 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1839 		dev_warn(dev->ctrl.device,
1840 			 "failed to register the CMB\n");
1841 		return;
1842 	}
1843 
1844 	dev->cmb_size = size;
1845 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1846 
1847 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1848 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1849 		pci_p2pmem_publish(pdev, true);
1850 
1851 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1852 				    &dev_attr_cmb.attr, NULL))
1853 		dev_warn(dev->ctrl.device,
1854 			 "failed to add sysfs attribute for CMB\n");
1855 }
1856 
1857 static inline void nvme_release_cmb(struct nvme_dev *dev)
1858 {
1859 	if (dev->cmb_size) {
1860 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1861 					     &dev_attr_cmb.attr, NULL);
1862 		dev->cmb_size = 0;
1863 	}
1864 }
1865 
1866 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1867 {
1868 	u64 dma_addr = dev->host_mem_descs_dma;
1869 	struct nvme_command c;
1870 	int ret;
1871 
1872 	memset(&c, 0, sizeof(c));
1873 	c.features.opcode	= nvme_admin_set_features;
1874 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1875 	c.features.dword11	= cpu_to_le32(bits);
1876 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1877 					      ilog2(dev->ctrl.page_size));
1878 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1879 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1880 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1881 
1882 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1883 	if (ret) {
1884 		dev_warn(dev->ctrl.device,
1885 			 "failed to set host mem (err %d, flags %#x).\n",
1886 			 ret, bits);
1887 	}
1888 	return ret;
1889 }
1890 
1891 static void nvme_free_host_mem(struct nvme_dev *dev)
1892 {
1893 	int i;
1894 
1895 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1896 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1897 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1898 
1899 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1900 			       le64_to_cpu(desc->addr),
1901 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1902 	}
1903 
1904 	kfree(dev->host_mem_desc_bufs);
1905 	dev->host_mem_desc_bufs = NULL;
1906 	dma_free_coherent(dev->dev,
1907 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1908 			dev->host_mem_descs, dev->host_mem_descs_dma);
1909 	dev->host_mem_descs = NULL;
1910 	dev->nr_host_mem_descs = 0;
1911 }
1912 
1913 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1914 		u32 chunk_size)
1915 {
1916 	struct nvme_host_mem_buf_desc *descs;
1917 	u32 max_entries, len;
1918 	dma_addr_t descs_dma;
1919 	int i = 0;
1920 	void **bufs;
1921 	u64 size, tmp;
1922 
1923 	tmp = (preferred + chunk_size - 1);
1924 	do_div(tmp, chunk_size);
1925 	max_entries = tmp;
1926 
1927 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1928 		max_entries = dev->ctrl.hmmaxd;
1929 
1930 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1931 				   &descs_dma, GFP_KERNEL);
1932 	if (!descs)
1933 		goto out;
1934 
1935 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1936 	if (!bufs)
1937 		goto out_free_descs;
1938 
1939 	for (size = 0; size < preferred && i < max_entries; size += len) {
1940 		dma_addr_t dma_addr;
1941 
1942 		len = min_t(u64, chunk_size, preferred - size);
1943 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1944 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1945 		if (!bufs[i])
1946 			break;
1947 
1948 		descs[i].addr = cpu_to_le64(dma_addr);
1949 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1950 		i++;
1951 	}
1952 
1953 	if (!size)
1954 		goto out_free_bufs;
1955 
1956 	dev->nr_host_mem_descs = i;
1957 	dev->host_mem_size = size;
1958 	dev->host_mem_descs = descs;
1959 	dev->host_mem_descs_dma = descs_dma;
1960 	dev->host_mem_desc_bufs = bufs;
1961 	return 0;
1962 
1963 out_free_bufs:
1964 	while (--i >= 0) {
1965 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1966 
1967 		dma_free_attrs(dev->dev, size, bufs[i],
1968 			       le64_to_cpu(descs[i].addr),
1969 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1970 	}
1971 
1972 	kfree(bufs);
1973 out_free_descs:
1974 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1975 			descs_dma);
1976 out:
1977 	dev->host_mem_descs = NULL;
1978 	return -ENOMEM;
1979 }
1980 
1981 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1982 {
1983 	u32 chunk_size;
1984 
1985 	/* start big and work our way down */
1986 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1987 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1988 	     chunk_size /= 2) {
1989 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1990 			if (!min || dev->host_mem_size >= min)
1991 				return 0;
1992 			nvme_free_host_mem(dev);
1993 		}
1994 	}
1995 
1996 	return -ENOMEM;
1997 }
1998 
1999 static int nvme_setup_host_mem(struct nvme_dev *dev)
2000 {
2001 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2002 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2003 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2004 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2005 	int ret;
2006 
2007 	preferred = min(preferred, max);
2008 	if (min > max) {
2009 		dev_warn(dev->ctrl.device,
2010 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2011 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2012 		nvme_free_host_mem(dev);
2013 		return 0;
2014 	}
2015 
2016 	/*
2017 	 * If we already have a buffer allocated check if we can reuse it.
2018 	 */
2019 	if (dev->host_mem_descs) {
2020 		if (dev->host_mem_size >= min)
2021 			enable_bits |= NVME_HOST_MEM_RETURN;
2022 		else
2023 			nvme_free_host_mem(dev);
2024 	}
2025 
2026 	if (!dev->host_mem_descs) {
2027 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2028 			dev_warn(dev->ctrl.device,
2029 				"failed to allocate host memory buffer.\n");
2030 			return 0; /* controller must work without HMB */
2031 		}
2032 
2033 		dev_info(dev->ctrl.device,
2034 			"allocated %lld MiB host memory buffer.\n",
2035 			dev->host_mem_size >> ilog2(SZ_1M));
2036 	}
2037 
2038 	ret = nvme_set_host_mem(dev, enable_bits);
2039 	if (ret)
2040 		nvme_free_host_mem(dev);
2041 	return ret;
2042 }
2043 
2044 /* irq_queues covers admin queue */
2045 static void nvme_calc_io_queues(struct nvme_dev *dev, unsigned int irq_queues)
2046 {
2047 	unsigned int this_w_queues = write_queues;
2048 
2049 	WARN_ON(!irq_queues);
2050 
2051 	/*
2052 	 * Setup read/write queue split, assign admin queue one independent
2053 	 * irq vector if irq_queues is > 1.
2054 	 */
2055 	if (irq_queues <= 2) {
2056 		dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2057 		dev->io_queues[HCTX_TYPE_READ] = 0;
2058 		return;
2059 	}
2060 
2061 	/*
2062 	 * If 'write_queues' is set, ensure it leaves room for at least
2063 	 * one read queue and one admin queue
2064 	 */
2065 	if (this_w_queues >= irq_queues)
2066 		this_w_queues = irq_queues - 2;
2067 
2068 	/*
2069 	 * If 'write_queues' is set to zero, reads and writes will share
2070 	 * a queue set.
2071 	 */
2072 	if (!this_w_queues) {
2073 		dev->io_queues[HCTX_TYPE_DEFAULT] = irq_queues - 1;
2074 		dev->io_queues[HCTX_TYPE_READ] = 0;
2075 	} else {
2076 		dev->io_queues[HCTX_TYPE_DEFAULT] = this_w_queues;
2077 		dev->io_queues[HCTX_TYPE_READ] = irq_queues - this_w_queues - 1;
2078 	}
2079 }
2080 
2081 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2082 {
2083 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2084 	int irq_sets[2];
2085 	struct irq_affinity affd = {
2086 		.pre_vectors = 1,
2087 		.nr_sets = ARRAY_SIZE(irq_sets),
2088 		.sets = irq_sets,
2089 	};
2090 	int result = 0;
2091 	unsigned int irq_queues, this_p_queues;
2092 
2093 	/*
2094 	 * Poll queues don't need interrupts, but we need at least one IO
2095 	 * queue left over for non-polled IO.
2096 	 */
2097 	this_p_queues = poll_queues;
2098 	if (this_p_queues >= nr_io_queues) {
2099 		this_p_queues = nr_io_queues - 1;
2100 		irq_queues = 1;
2101 	} else {
2102 		irq_queues = nr_io_queues - this_p_queues + 1;
2103 	}
2104 	dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2105 
2106 	/*
2107 	 * For irq sets, we have to ask for minvec == maxvec. This passes
2108 	 * any reduction back to us, so we can adjust our queue counts and
2109 	 * IRQ vector needs.
2110 	 */
2111 	do {
2112 		nvme_calc_io_queues(dev, irq_queues);
2113 		irq_sets[0] = dev->io_queues[HCTX_TYPE_DEFAULT];
2114 		irq_sets[1] = dev->io_queues[HCTX_TYPE_READ];
2115 		if (!irq_sets[1])
2116 			affd.nr_sets = 1;
2117 
2118 		/*
2119 		 * If we got a failure and we're down to asking for just
2120 		 * 1 + 1 queues, just ask for a single vector. We'll share
2121 		 * that between the single IO queue and the admin queue.
2122 		 * Otherwise, we assign one independent vector to admin queue.
2123 		 */
2124 		if (irq_queues > 1)
2125 			irq_queues = irq_sets[0] + irq_sets[1] + 1;
2126 
2127 		result = pci_alloc_irq_vectors_affinity(pdev, irq_queues,
2128 				irq_queues,
2129 				PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2130 
2131 		/*
2132 		 * Need to reduce our vec counts. If we get ENOSPC, the
2133 		 * platform should support mulitple vecs, we just need
2134 		 * to decrease our ask. If we get EINVAL, the platform
2135 		 * likely does not. Back down to ask for just one vector.
2136 		 */
2137 		if (result == -ENOSPC) {
2138 			irq_queues--;
2139 			if (!irq_queues)
2140 				return result;
2141 			continue;
2142 		} else if (result == -EINVAL) {
2143 			irq_queues = 1;
2144 			continue;
2145 		} else if (result <= 0)
2146 			return -EIO;
2147 		break;
2148 	} while (1);
2149 
2150 	return result;
2151 }
2152 
2153 static void nvme_disable_io_queues(struct nvme_dev *dev)
2154 {
2155 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2156 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2157 }
2158 
2159 static int nvme_setup_io_queues(struct nvme_dev *dev)
2160 {
2161 	struct nvme_queue *adminq = &dev->queues[0];
2162 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2163 	int result, nr_io_queues;
2164 	unsigned long size;
2165 
2166 	nr_io_queues = max_io_queues();
2167 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2168 	if (result < 0)
2169 		return result;
2170 
2171 	if (nr_io_queues == 0)
2172 		return 0;
2173 
2174 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2175 
2176 	if (dev->cmb_use_sqes) {
2177 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2178 				sizeof(struct nvme_command));
2179 		if (result > 0)
2180 			dev->q_depth = result;
2181 		else
2182 			dev->cmb_use_sqes = false;
2183 	}
2184 
2185 	do {
2186 		size = db_bar_size(dev, nr_io_queues);
2187 		result = nvme_remap_bar(dev, size);
2188 		if (!result)
2189 			break;
2190 		if (!--nr_io_queues)
2191 			return -ENOMEM;
2192 	} while (1);
2193 	adminq->q_db = dev->dbs;
2194 
2195  retry:
2196 	/* Deregister the admin queue's interrupt */
2197 	pci_free_irq(pdev, 0, adminq);
2198 
2199 	/*
2200 	 * If we enable msix early due to not intx, disable it again before
2201 	 * setting up the full range we need.
2202 	 */
2203 	pci_free_irq_vectors(pdev);
2204 
2205 	result = nvme_setup_irqs(dev, nr_io_queues);
2206 	if (result <= 0)
2207 		return -EIO;
2208 
2209 	dev->num_vecs = result;
2210 	result = max(result - 1, 1);
2211 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2212 
2213 	/*
2214 	 * Should investigate if there's a performance win from allocating
2215 	 * more queues than interrupt vectors; it might allow the submission
2216 	 * path to scale better, even if the receive path is limited by the
2217 	 * number of interrupts.
2218 	 */
2219 	result = queue_request_irq(adminq);
2220 	if (result) {
2221 		adminq->cq_vector = -1;
2222 		return result;
2223 	}
2224 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2225 
2226 	result = nvme_create_io_queues(dev);
2227 	if (result || dev->online_queues < 2)
2228 		return result;
2229 
2230 	if (dev->online_queues - 1 < dev->max_qid) {
2231 		nr_io_queues = dev->online_queues - 1;
2232 		nvme_disable_io_queues(dev);
2233 		nvme_suspend_io_queues(dev);
2234 		goto retry;
2235 	}
2236 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2237 					dev->io_queues[HCTX_TYPE_DEFAULT],
2238 					dev->io_queues[HCTX_TYPE_READ],
2239 					dev->io_queues[HCTX_TYPE_POLL]);
2240 	return 0;
2241 }
2242 
2243 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2244 {
2245 	struct nvme_queue *nvmeq = req->end_io_data;
2246 
2247 	blk_mq_free_request(req);
2248 	complete(&nvmeq->delete_done);
2249 }
2250 
2251 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2252 {
2253 	struct nvme_queue *nvmeq = req->end_io_data;
2254 
2255 	if (error)
2256 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2257 
2258 	nvme_del_queue_end(req, error);
2259 }
2260 
2261 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2262 {
2263 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2264 	struct request *req;
2265 	struct nvme_command cmd;
2266 
2267 	memset(&cmd, 0, sizeof(cmd));
2268 	cmd.delete_queue.opcode = opcode;
2269 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2270 
2271 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2272 	if (IS_ERR(req))
2273 		return PTR_ERR(req);
2274 
2275 	req->timeout = ADMIN_TIMEOUT;
2276 	req->end_io_data = nvmeq;
2277 
2278 	init_completion(&nvmeq->delete_done);
2279 	blk_execute_rq_nowait(q, NULL, req, false,
2280 			opcode == nvme_admin_delete_cq ?
2281 				nvme_del_cq_end : nvme_del_queue_end);
2282 	return 0;
2283 }
2284 
2285 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2286 {
2287 	int nr_queues = dev->online_queues - 1, sent = 0;
2288 	unsigned long timeout;
2289 
2290  retry:
2291 	timeout = ADMIN_TIMEOUT;
2292 	while (nr_queues > 0) {
2293 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2294 			break;
2295 		nr_queues--;
2296 		sent++;
2297 	}
2298 	while (sent) {
2299 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2300 
2301 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2302 				timeout);
2303 		if (timeout == 0)
2304 			return false;
2305 
2306 		/* handle any remaining CQEs */
2307 		if (opcode == nvme_admin_delete_cq &&
2308 		    !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2309 			nvme_poll_irqdisable(nvmeq, -1);
2310 
2311 		sent--;
2312 		if (nr_queues)
2313 			goto retry;
2314 	}
2315 	return true;
2316 }
2317 
2318 /*
2319  * return error value only when tagset allocation failed
2320  */
2321 static int nvme_dev_add(struct nvme_dev *dev)
2322 {
2323 	int ret;
2324 
2325 	if (!dev->ctrl.tagset) {
2326 		dev->tagset.ops = &nvme_mq_ops;
2327 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2328 		dev->tagset.nr_maps = 2; /* default + read */
2329 		if (dev->io_queues[HCTX_TYPE_POLL])
2330 			dev->tagset.nr_maps++;
2331 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2332 		dev->tagset.numa_node = dev_to_node(dev->dev);
2333 		dev->tagset.queue_depth =
2334 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2335 		dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2336 		if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2337 			dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2338 					nvme_pci_cmd_size(dev, true));
2339 		}
2340 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2341 		dev->tagset.driver_data = dev;
2342 
2343 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2344 		if (ret) {
2345 			dev_warn(dev->ctrl.device,
2346 				"IO queues tagset allocation failed %d\n", ret);
2347 			return ret;
2348 		}
2349 		dev->ctrl.tagset = &dev->tagset;
2350 
2351 		nvme_dbbuf_set(dev);
2352 	} else {
2353 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2354 
2355 		/* Free previously allocated queues that are no longer usable */
2356 		nvme_free_queues(dev, dev->online_queues);
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 static int nvme_pci_enable(struct nvme_dev *dev)
2363 {
2364 	int result = -ENOMEM;
2365 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2366 
2367 	if (pci_enable_device_mem(pdev))
2368 		return result;
2369 
2370 	pci_set_master(pdev);
2371 
2372 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2373 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2374 		goto disable;
2375 
2376 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2377 		result = -ENODEV;
2378 		goto disable;
2379 	}
2380 
2381 	/*
2382 	 * Some devices and/or platforms don't advertise or work with INTx
2383 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2384 	 * adjust this later.
2385 	 */
2386 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2387 	if (result < 0)
2388 		return result;
2389 
2390 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2391 
2392 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2393 				io_queue_depth);
2394 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2395 	dev->dbs = dev->bar + 4096;
2396 
2397 	/*
2398 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2399 	 * some MacBook7,1 to avoid controller resets and data loss.
2400 	 */
2401 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2402 		dev->q_depth = 2;
2403 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2404 			"set queue depth=%u to work around controller resets\n",
2405 			dev->q_depth);
2406 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2407 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2408 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2409 		dev->q_depth = 64;
2410 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2411                         "set queue depth=%u\n", dev->q_depth);
2412 	}
2413 
2414 	nvme_map_cmb(dev);
2415 
2416 	pci_enable_pcie_error_reporting(pdev);
2417 	pci_save_state(pdev);
2418 	return 0;
2419 
2420  disable:
2421 	pci_disable_device(pdev);
2422 	return result;
2423 }
2424 
2425 static void nvme_dev_unmap(struct nvme_dev *dev)
2426 {
2427 	if (dev->bar)
2428 		iounmap(dev->bar);
2429 	pci_release_mem_regions(to_pci_dev(dev->dev));
2430 }
2431 
2432 static void nvme_pci_disable(struct nvme_dev *dev)
2433 {
2434 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2435 
2436 	pci_free_irq_vectors(pdev);
2437 
2438 	if (pci_is_enabled(pdev)) {
2439 		pci_disable_pcie_error_reporting(pdev);
2440 		pci_disable_device(pdev);
2441 	}
2442 }
2443 
2444 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2445 {
2446 	bool dead = true;
2447 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2448 
2449 	mutex_lock(&dev->shutdown_lock);
2450 	if (pci_is_enabled(pdev)) {
2451 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2452 
2453 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2454 		    dev->ctrl.state == NVME_CTRL_RESETTING)
2455 			nvme_start_freeze(&dev->ctrl);
2456 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2457 			pdev->error_state  != pci_channel_io_normal);
2458 	}
2459 
2460 	/*
2461 	 * Give the controller a chance to complete all entered requests if
2462 	 * doing a safe shutdown.
2463 	 */
2464 	if (!dead) {
2465 		if (shutdown)
2466 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2467 	}
2468 
2469 	nvme_stop_queues(&dev->ctrl);
2470 
2471 	if (!dead && dev->ctrl.queue_count > 0) {
2472 		nvme_disable_io_queues(dev);
2473 		nvme_disable_admin_queue(dev, shutdown);
2474 	}
2475 	nvme_suspend_io_queues(dev);
2476 	nvme_suspend_queue(&dev->queues[0]);
2477 	nvme_pci_disable(dev);
2478 
2479 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2480 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2481 
2482 	/*
2483 	 * The driver will not be starting up queues again if shutting down so
2484 	 * must flush all entered requests to their failed completion to avoid
2485 	 * deadlocking blk-mq hot-cpu notifier.
2486 	 */
2487 	if (shutdown)
2488 		nvme_start_queues(&dev->ctrl);
2489 	mutex_unlock(&dev->shutdown_lock);
2490 }
2491 
2492 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2493 {
2494 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2495 						PAGE_SIZE, PAGE_SIZE, 0);
2496 	if (!dev->prp_page_pool)
2497 		return -ENOMEM;
2498 
2499 	/* Optimisation for I/Os between 4k and 128k */
2500 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2501 						256, 256, 0);
2502 	if (!dev->prp_small_pool) {
2503 		dma_pool_destroy(dev->prp_page_pool);
2504 		return -ENOMEM;
2505 	}
2506 	return 0;
2507 }
2508 
2509 static void nvme_release_prp_pools(struct nvme_dev *dev)
2510 {
2511 	dma_pool_destroy(dev->prp_page_pool);
2512 	dma_pool_destroy(dev->prp_small_pool);
2513 }
2514 
2515 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2516 {
2517 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2518 
2519 	nvme_dbbuf_dma_free(dev);
2520 	put_device(dev->dev);
2521 	if (dev->tagset.tags)
2522 		blk_mq_free_tag_set(&dev->tagset);
2523 	if (dev->ctrl.admin_q)
2524 		blk_put_queue(dev->ctrl.admin_q);
2525 	kfree(dev->queues);
2526 	free_opal_dev(dev->ctrl.opal_dev);
2527 	mempool_destroy(dev->iod_mempool);
2528 	kfree(dev);
2529 }
2530 
2531 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2532 {
2533 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2534 
2535 	nvme_get_ctrl(&dev->ctrl);
2536 	nvme_dev_disable(dev, false);
2537 	nvme_kill_queues(&dev->ctrl);
2538 	if (!queue_work(nvme_wq, &dev->remove_work))
2539 		nvme_put_ctrl(&dev->ctrl);
2540 }
2541 
2542 static void nvme_reset_work(struct work_struct *work)
2543 {
2544 	struct nvme_dev *dev =
2545 		container_of(work, struct nvme_dev, ctrl.reset_work);
2546 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2547 	int result = -ENODEV;
2548 	enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2549 
2550 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2551 		goto out;
2552 
2553 	/*
2554 	 * If we're called to reset a live controller first shut it down before
2555 	 * moving on.
2556 	 */
2557 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2558 		nvme_dev_disable(dev, false);
2559 
2560 	/*
2561 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2562 	 * initializing procedure here.
2563 	 */
2564 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2565 		dev_warn(dev->ctrl.device,
2566 			"failed to mark controller CONNECTING\n");
2567 		goto out;
2568 	}
2569 
2570 	result = nvme_pci_enable(dev);
2571 	if (result)
2572 		goto out;
2573 
2574 	result = nvme_pci_configure_admin_queue(dev);
2575 	if (result)
2576 		goto out;
2577 
2578 	result = nvme_alloc_admin_tags(dev);
2579 	if (result)
2580 		goto out;
2581 
2582 	/*
2583 	 * Limit the max command size to prevent iod->sg allocations going
2584 	 * over a single page.
2585 	 */
2586 	dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
2587 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2588 
2589 	result = nvme_init_identify(&dev->ctrl);
2590 	if (result)
2591 		goto out;
2592 
2593 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2594 		if (!dev->ctrl.opal_dev)
2595 			dev->ctrl.opal_dev =
2596 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2597 		else if (was_suspend)
2598 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2599 	} else {
2600 		free_opal_dev(dev->ctrl.opal_dev);
2601 		dev->ctrl.opal_dev = NULL;
2602 	}
2603 
2604 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2605 		result = nvme_dbbuf_dma_alloc(dev);
2606 		if (result)
2607 			dev_warn(dev->dev,
2608 				 "unable to allocate dma for dbbuf\n");
2609 	}
2610 
2611 	if (dev->ctrl.hmpre) {
2612 		result = nvme_setup_host_mem(dev);
2613 		if (result < 0)
2614 			goto out;
2615 	}
2616 
2617 	result = nvme_setup_io_queues(dev);
2618 	if (result)
2619 		goto out;
2620 
2621 	/*
2622 	 * Keep the controller around but remove all namespaces if we don't have
2623 	 * any working I/O queue.
2624 	 */
2625 	if (dev->online_queues < 2) {
2626 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2627 		nvme_kill_queues(&dev->ctrl);
2628 		nvme_remove_namespaces(&dev->ctrl);
2629 		new_state = NVME_CTRL_ADMIN_ONLY;
2630 	} else {
2631 		nvme_start_queues(&dev->ctrl);
2632 		nvme_wait_freeze(&dev->ctrl);
2633 		/* hit this only when allocate tagset fails */
2634 		if (nvme_dev_add(dev))
2635 			new_state = NVME_CTRL_ADMIN_ONLY;
2636 		nvme_unfreeze(&dev->ctrl);
2637 	}
2638 
2639 	/*
2640 	 * If only admin queue live, keep it to do further investigation or
2641 	 * recovery.
2642 	 */
2643 	if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2644 		dev_warn(dev->ctrl.device,
2645 			"failed to mark controller state %d\n", new_state);
2646 		goto out;
2647 	}
2648 
2649 	nvme_start_ctrl(&dev->ctrl);
2650 	return;
2651 
2652  out:
2653 	nvme_remove_dead_ctrl(dev, result);
2654 }
2655 
2656 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2657 {
2658 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2659 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2660 
2661 	if (pci_get_drvdata(pdev))
2662 		device_release_driver(&pdev->dev);
2663 	nvme_put_ctrl(&dev->ctrl);
2664 }
2665 
2666 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2667 {
2668 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2669 	return 0;
2670 }
2671 
2672 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2673 {
2674 	writel(val, to_nvme_dev(ctrl)->bar + off);
2675 	return 0;
2676 }
2677 
2678 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2679 {
2680 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2681 	return 0;
2682 }
2683 
2684 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2685 {
2686 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2687 
2688 	return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2689 }
2690 
2691 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2692 	.name			= "pcie",
2693 	.module			= THIS_MODULE,
2694 	.flags			= NVME_F_METADATA_SUPPORTED |
2695 				  NVME_F_PCI_P2PDMA,
2696 	.reg_read32		= nvme_pci_reg_read32,
2697 	.reg_write32		= nvme_pci_reg_write32,
2698 	.reg_read64		= nvme_pci_reg_read64,
2699 	.free_ctrl		= nvme_pci_free_ctrl,
2700 	.submit_async_event	= nvme_pci_submit_async_event,
2701 	.get_address		= nvme_pci_get_address,
2702 };
2703 
2704 static int nvme_dev_map(struct nvme_dev *dev)
2705 {
2706 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2707 
2708 	if (pci_request_mem_regions(pdev, "nvme"))
2709 		return -ENODEV;
2710 
2711 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2712 		goto release;
2713 
2714 	return 0;
2715   release:
2716 	pci_release_mem_regions(pdev);
2717 	return -ENODEV;
2718 }
2719 
2720 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2721 {
2722 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2723 		/*
2724 		 * Several Samsung devices seem to drop off the PCIe bus
2725 		 * randomly when APST is on and uses the deepest sleep state.
2726 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2727 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2728 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2729 		 * laptops.
2730 		 */
2731 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2732 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2733 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2734 			return NVME_QUIRK_NO_DEEPEST_PS;
2735 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2736 		/*
2737 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2738 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2739 		 * within few minutes after bootup on a Coffee Lake board -
2740 		 * ASUS PRIME Z370-A
2741 		 */
2742 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2743 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2744 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2745 			return NVME_QUIRK_NO_APST;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 static void nvme_async_probe(void *data, async_cookie_t cookie)
2752 {
2753 	struct nvme_dev *dev = data;
2754 
2755 	nvme_reset_ctrl_sync(&dev->ctrl);
2756 	flush_work(&dev->ctrl.scan_work);
2757 	nvme_put_ctrl(&dev->ctrl);
2758 }
2759 
2760 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2761 {
2762 	int node, result = -ENOMEM;
2763 	struct nvme_dev *dev;
2764 	unsigned long quirks = id->driver_data;
2765 	size_t alloc_size;
2766 
2767 	node = dev_to_node(&pdev->dev);
2768 	if (node == NUMA_NO_NODE)
2769 		set_dev_node(&pdev->dev, first_memory_node);
2770 
2771 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2772 	if (!dev)
2773 		return -ENOMEM;
2774 
2775 	dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2776 					GFP_KERNEL, node);
2777 	if (!dev->queues)
2778 		goto free;
2779 
2780 	dev->dev = get_device(&pdev->dev);
2781 	pci_set_drvdata(pdev, dev);
2782 
2783 	result = nvme_dev_map(dev);
2784 	if (result)
2785 		goto put_pci;
2786 
2787 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2788 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2789 	mutex_init(&dev->shutdown_lock);
2790 
2791 	result = nvme_setup_prp_pools(dev);
2792 	if (result)
2793 		goto unmap;
2794 
2795 	quirks |= check_vendor_combination_bug(pdev);
2796 
2797 	/*
2798 	 * Double check that our mempool alloc size will cover the biggest
2799 	 * command we support.
2800 	 */
2801 	alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2802 						NVME_MAX_SEGS, true);
2803 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2804 
2805 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2806 						mempool_kfree,
2807 						(void *) alloc_size,
2808 						GFP_KERNEL, node);
2809 	if (!dev->iod_mempool) {
2810 		result = -ENOMEM;
2811 		goto release_pools;
2812 	}
2813 
2814 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2815 			quirks);
2816 	if (result)
2817 		goto release_mempool;
2818 
2819 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2820 
2821 	nvme_get_ctrl(&dev->ctrl);
2822 	async_schedule(nvme_async_probe, dev);
2823 
2824 	return 0;
2825 
2826  release_mempool:
2827 	mempool_destroy(dev->iod_mempool);
2828  release_pools:
2829 	nvme_release_prp_pools(dev);
2830  unmap:
2831 	nvme_dev_unmap(dev);
2832  put_pci:
2833 	put_device(dev->dev);
2834  free:
2835 	kfree(dev->queues);
2836 	kfree(dev);
2837 	return result;
2838 }
2839 
2840 static void nvme_reset_prepare(struct pci_dev *pdev)
2841 {
2842 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2843 	nvme_dev_disable(dev, false);
2844 }
2845 
2846 static void nvme_reset_done(struct pci_dev *pdev)
2847 {
2848 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2849 	nvme_reset_ctrl_sync(&dev->ctrl);
2850 }
2851 
2852 static void nvme_shutdown(struct pci_dev *pdev)
2853 {
2854 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2855 	nvme_dev_disable(dev, true);
2856 }
2857 
2858 /*
2859  * The driver's remove may be called on a device in a partially initialized
2860  * state. This function must not have any dependencies on the device state in
2861  * order to proceed.
2862  */
2863 static void nvme_remove(struct pci_dev *pdev)
2864 {
2865 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2866 
2867 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2868 	pci_set_drvdata(pdev, NULL);
2869 
2870 	if (!pci_device_is_present(pdev)) {
2871 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2872 		nvme_dev_disable(dev, true);
2873 		nvme_dev_remove_admin(dev);
2874 	}
2875 
2876 	flush_work(&dev->ctrl.reset_work);
2877 	nvme_stop_ctrl(&dev->ctrl);
2878 	nvme_remove_namespaces(&dev->ctrl);
2879 	nvme_dev_disable(dev, true);
2880 	nvme_release_cmb(dev);
2881 	nvme_free_host_mem(dev);
2882 	nvme_dev_remove_admin(dev);
2883 	nvme_free_queues(dev, 0);
2884 	nvme_uninit_ctrl(&dev->ctrl);
2885 	nvme_release_prp_pools(dev);
2886 	nvme_dev_unmap(dev);
2887 	nvme_put_ctrl(&dev->ctrl);
2888 }
2889 
2890 #ifdef CONFIG_PM_SLEEP
2891 static int nvme_suspend(struct device *dev)
2892 {
2893 	struct pci_dev *pdev = to_pci_dev(dev);
2894 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2895 
2896 	nvme_dev_disable(ndev, true);
2897 	return 0;
2898 }
2899 
2900 static int nvme_resume(struct device *dev)
2901 {
2902 	struct pci_dev *pdev = to_pci_dev(dev);
2903 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2904 
2905 	nvme_reset_ctrl(&ndev->ctrl);
2906 	return 0;
2907 }
2908 #endif
2909 
2910 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2911 
2912 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2913 						pci_channel_state_t state)
2914 {
2915 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2916 
2917 	/*
2918 	 * A frozen channel requires a reset. When detected, this method will
2919 	 * shutdown the controller to quiesce. The controller will be restarted
2920 	 * after the slot reset through driver's slot_reset callback.
2921 	 */
2922 	switch (state) {
2923 	case pci_channel_io_normal:
2924 		return PCI_ERS_RESULT_CAN_RECOVER;
2925 	case pci_channel_io_frozen:
2926 		dev_warn(dev->ctrl.device,
2927 			"frozen state error detected, reset controller\n");
2928 		nvme_dev_disable(dev, false);
2929 		return PCI_ERS_RESULT_NEED_RESET;
2930 	case pci_channel_io_perm_failure:
2931 		dev_warn(dev->ctrl.device,
2932 			"failure state error detected, request disconnect\n");
2933 		return PCI_ERS_RESULT_DISCONNECT;
2934 	}
2935 	return PCI_ERS_RESULT_NEED_RESET;
2936 }
2937 
2938 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2939 {
2940 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2941 
2942 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2943 	pci_restore_state(pdev);
2944 	nvme_reset_ctrl(&dev->ctrl);
2945 	return PCI_ERS_RESULT_RECOVERED;
2946 }
2947 
2948 static void nvme_error_resume(struct pci_dev *pdev)
2949 {
2950 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2951 
2952 	flush_work(&dev->ctrl.reset_work);
2953 }
2954 
2955 static const struct pci_error_handlers nvme_err_handler = {
2956 	.error_detected	= nvme_error_detected,
2957 	.slot_reset	= nvme_slot_reset,
2958 	.resume		= nvme_error_resume,
2959 	.reset_prepare	= nvme_reset_prepare,
2960 	.reset_done	= nvme_reset_done,
2961 };
2962 
2963 static const struct pci_device_id nvme_id_table[] = {
2964 	{ PCI_VDEVICE(INTEL, 0x0953),
2965 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2966 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2967 	{ PCI_VDEVICE(INTEL, 0x0a53),
2968 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2969 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2970 	{ PCI_VDEVICE(INTEL, 0x0a54),
2971 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2972 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2973 	{ PCI_VDEVICE(INTEL, 0x0a55),
2974 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2975 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2976 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2977 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2978 				NVME_QUIRK_MEDIUM_PRIO_SQ },
2979 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
2980 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2981 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2982 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2983 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
2984 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2985 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2986 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2987 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
2988 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2989 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2990 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2991 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2992 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2993 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2994 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2995 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
2996 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2997 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
2998 		.driver_data = NVME_QUIRK_LIGHTNVM, },
2999 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3000 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3001 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3002 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3003 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3004 	{ 0, }
3005 };
3006 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3007 
3008 static struct pci_driver nvme_driver = {
3009 	.name		= "nvme",
3010 	.id_table	= nvme_id_table,
3011 	.probe		= nvme_probe,
3012 	.remove		= nvme_remove,
3013 	.shutdown	= nvme_shutdown,
3014 	.driver		= {
3015 		.pm	= &nvme_dev_pm_ops,
3016 	},
3017 	.sriov_configure = pci_sriov_configure_simple,
3018 	.err_handler	= &nvme_err_handler,
3019 };
3020 
3021 static int __init nvme_init(void)
3022 {
3023 	return pci_register_driver(&nvme_driver);
3024 }
3025 
3026 static void __exit nvme_exit(void)
3027 {
3028 	pci_unregister_driver(&nvme_driver);
3029 	flush_workqueue(nvme_wq);
3030 	_nvme_check_size();
3031 }
3032 
3033 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3034 MODULE_LICENSE("GPL");
3035 MODULE_VERSION("1.0");
3036 module_init(nvme_init);
3037 module_exit(nvme_exit);
3038