xref: /openbmc/linux/drivers/nvme/host/pci.c (revision 2596e07a)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45 
46 #include "nvme.h"
47 
48 #define NVME_Q_DEPTH		1024
49 #define NVME_AQ_DEPTH		256
50 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
52 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_NR_AEN_COMMANDS	1
58 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59 
60 unsigned char admin_timeout = 60;
61 module_param(admin_timeout, byte, 0644);
62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63 
64 unsigned char nvme_io_timeout = 30;
65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67 
68 unsigned char shutdown_timeout = 5;
69 module_param(shutdown_timeout, byte, 0644);
70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71 
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74 
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78 
79 static LIST_HEAD(dev_list);
80 static struct task_struct *nvme_thread;
81 static struct workqueue_struct *nvme_workq;
82 static wait_queue_head_t nvme_kthread_wait;
83 
84 struct nvme_dev;
85 struct nvme_queue;
86 
87 static int nvme_reset(struct nvme_dev *dev);
88 static void nvme_process_cq(struct nvme_queue *nvmeq);
89 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
90 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
91 
92 /*
93  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
94  */
95 struct nvme_dev {
96 	struct list_head node;
97 	struct nvme_queue **queues;
98 	struct blk_mq_tag_set tagset;
99 	struct blk_mq_tag_set admin_tagset;
100 	u32 __iomem *dbs;
101 	struct device *dev;
102 	struct dma_pool *prp_page_pool;
103 	struct dma_pool *prp_small_pool;
104 	unsigned queue_count;
105 	unsigned online_queues;
106 	unsigned max_qid;
107 	int q_depth;
108 	u32 db_stride;
109 	struct msix_entry *entry;
110 	void __iomem *bar;
111 	struct work_struct reset_work;
112 	struct work_struct scan_work;
113 	struct work_struct remove_work;
114 	struct mutex shutdown_lock;
115 	bool subsystem;
116 	void __iomem *cmb;
117 	dma_addr_t cmb_dma_addr;
118 	u64 cmb_size;
119 	u32 cmbsz;
120 	unsigned long flags;
121 
122 #define NVME_CTRL_RESETTING    0
123 
124 	struct nvme_ctrl ctrl;
125 	struct completion ioq_wait;
126 };
127 
128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129 {
130 	return container_of(ctrl, struct nvme_dev, ctrl);
131 }
132 
133 /*
134  * An NVM Express queue.  Each device has at least two (one for admin
135  * commands and one for I/O commands).
136  */
137 struct nvme_queue {
138 	struct device *q_dmadev;
139 	struct nvme_dev *dev;
140 	char irqname[24];	/* nvme4294967295-65535\0 */
141 	spinlock_t q_lock;
142 	struct nvme_command *sq_cmds;
143 	struct nvme_command __iomem *sq_cmds_io;
144 	volatile struct nvme_completion *cqes;
145 	struct blk_mq_tags **tags;
146 	dma_addr_t sq_dma_addr;
147 	dma_addr_t cq_dma_addr;
148 	u32 __iomem *q_db;
149 	u16 q_depth;
150 	s16 cq_vector;
151 	u16 sq_head;
152 	u16 sq_tail;
153 	u16 cq_head;
154 	u16 qid;
155 	u8 cq_phase;
156 	u8 cqe_seen;
157 };
158 
159 /*
160  * The nvme_iod describes the data in an I/O, including the list of PRP
161  * entries.  You can't see it in this data structure because C doesn't let
162  * me express that.  Use nvme_init_iod to ensure there's enough space
163  * allocated to store the PRP list.
164  */
165 struct nvme_iod {
166 	struct nvme_queue *nvmeq;
167 	int aborted;
168 	int npages;		/* In the PRP list. 0 means small pool in use */
169 	int nents;		/* Used in scatterlist */
170 	int length;		/* Of data, in bytes */
171 	dma_addr_t first_dma;
172 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
173 	struct scatterlist *sg;
174 	struct scatterlist inline_sg[0];
175 };
176 
177 /*
178  * Check we didin't inadvertently grow the command struct
179  */
180 static inline void _nvme_check_size(void)
181 {
182 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194 }
195 
196 /*
197  * Max size of iod being embedded in the request payload
198  */
199 #define NVME_INT_PAGES		2
200 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
201 
202 /*
203  * Will slightly overestimate the number of pages needed.  This is OK
204  * as it only leads to a small amount of wasted memory for the lifetime of
205  * the I/O.
206  */
207 static int nvme_npages(unsigned size, struct nvme_dev *dev)
208 {
209 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210 				      dev->ctrl.page_size);
211 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212 }
213 
214 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215 		unsigned int size, unsigned int nseg)
216 {
217 	return sizeof(__le64 *) * nvme_npages(size, dev) +
218 			sizeof(struct scatterlist) * nseg;
219 }
220 
221 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222 {
223 	return sizeof(struct nvme_iod) +
224 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
225 }
226 
227 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228 				unsigned int hctx_idx)
229 {
230 	struct nvme_dev *dev = data;
231 	struct nvme_queue *nvmeq = dev->queues[0];
232 
233 	WARN_ON(hctx_idx != 0);
234 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235 	WARN_ON(nvmeq->tags);
236 
237 	hctx->driver_data = nvmeq;
238 	nvmeq->tags = &dev->admin_tagset.tags[0];
239 	return 0;
240 }
241 
242 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243 {
244 	struct nvme_queue *nvmeq = hctx->driver_data;
245 
246 	nvmeq->tags = NULL;
247 }
248 
249 static int nvme_admin_init_request(void *data, struct request *req,
250 				unsigned int hctx_idx, unsigned int rq_idx,
251 				unsigned int numa_node)
252 {
253 	struct nvme_dev *dev = data;
254 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
255 	struct nvme_queue *nvmeq = dev->queues[0];
256 
257 	BUG_ON(!nvmeq);
258 	iod->nvmeq = nvmeq;
259 	return 0;
260 }
261 
262 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263 			  unsigned int hctx_idx)
264 {
265 	struct nvme_dev *dev = data;
266 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267 
268 	if (!nvmeq->tags)
269 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
270 
271 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
272 	hctx->driver_data = nvmeq;
273 	return 0;
274 }
275 
276 static int nvme_init_request(void *data, struct request *req,
277 				unsigned int hctx_idx, unsigned int rq_idx,
278 				unsigned int numa_node)
279 {
280 	struct nvme_dev *dev = data;
281 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
282 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283 
284 	BUG_ON(!nvmeq);
285 	iod->nvmeq = nvmeq;
286 	return 0;
287 }
288 
289 static void nvme_complete_async_event(struct nvme_dev *dev,
290 		struct nvme_completion *cqe)
291 {
292 	u16 status = le16_to_cpu(cqe->status) >> 1;
293 	u32 result = le32_to_cpu(cqe->result);
294 
295 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
296 		++dev->ctrl.event_limit;
297 	if (status != NVME_SC_SUCCESS)
298 		return;
299 
300 	switch (result & 0xff07) {
301 	case NVME_AER_NOTICE_NS_CHANGED:
302 		dev_info(dev->dev, "rescanning\n");
303 		queue_work(nvme_workq, &dev->scan_work);
304 	default:
305 		dev_warn(dev->dev, "async event result %08x\n", result);
306 	}
307 }
308 
309 /**
310  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
311  * @nvmeq: The queue to use
312  * @cmd: The command to send
313  *
314  * Safe to use from interrupt context
315  */
316 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
317 						struct nvme_command *cmd)
318 {
319 	u16 tail = nvmeq->sq_tail;
320 
321 	if (nvmeq->sq_cmds_io)
322 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
323 	else
324 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
325 
326 	if (++tail == nvmeq->q_depth)
327 		tail = 0;
328 	writel(tail, nvmeq->q_db);
329 	nvmeq->sq_tail = tail;
330 }
331 
332 static __le64 **iod_list(struct request *req)
333 {
334 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
335 	return (__le64 **)(iod->sg + req->nr_phys_segments);
336 }
337 
338 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
339 {
340 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
341 	int nseg = rq->nr_phys_segments;
342 	unsigned size;
343 
344 	if (rq->cmd_flags & REQ_DISCARD)
345 		size = sizeof(struct nvme_dsm_range);
346 	else
347 		size = blk_rq_bytes(rq);
348 
349 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
350 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
351 		if (!iod->sg)
352 			return BLK_MQ_RQ_QUEUE_BUSY;
353 	} else {
354 		iod->sg = iod->inline_sg;
355 	}
356 
357 	iod->aborted = 0;
358 	iod->npages = -1;
359 	iod->nents = 0;
360 	iod->length = size;
361 	return 0;
362 }
363 
364 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
365 {
366 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
367 	const int last_prp = dev->ctrl.page_size / 8 - 1;
368 	int i;
369 	__le64 **list = iod_list(req);
370 	dma_addr_t prp_dma = iod->first_dma;
371 
372 	if (iod->npages == 0)
373 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
374 	for (i = 0; i < iod->npages; i++) {
375 		__le64 *prp_list = list[i];
376 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
377 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
378 		prp_dma = next_prp_dma;
379 	}
380 
381 	if (iod->sg != iod->inline_sg)
382 		kfree(iod->sg);
383 }
384 
385 #ifdef CONFIG_BLK_DEV_INTEGRITY
386 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
387 {
388 	if (be32_to_cpu(pi->ref_tag) == v)
389 		pi->ref_tag = cpu_to_be32(p);
390 }
391 
392 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
393 {
394 	if (be32_to_cpu(pi->ref_tag) == p)
395 		pi->ref_tag = cpu_to_be32(v);
396 }
397 
398 /**
399  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
400  *
401  * The virtual start sector is the one that was originally submitted by the
402  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
403  * start sector may be different. Remap protection information to match the
404  * physical LBA on writes, and back to the original seed on reads.
405  *
406  * Type 0 and 3 do not have a ref tag, so no remapping required.
407  */
408 static void nvme_dif_remap(struct request *req,
409 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
410 {
411 	struct nvme_ns *ns = req->rq_disk->private_data;
412 	struct bio_integrity_payload *bip;
413 	struct t10_pi_tuple *pi;
414 	void *p, *pmap;
415 	u32 i, nlb, ts, phys, virt;
416 
417 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
418 		return;
419 
420 	bip = bio_integrity(req->bio);
421 	if (!bip)
422 		return;
423 
424 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
425 
426 	p = pmap;
427 	virt = bip_get_seed(bip);
428 	phys = nvme_block_nr(ns, blk_rq_pos(req));
429 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
430 	ts = ns->disk->queue->integrity.tuple_size;
431 
432 	for (i = 0; i < nlb; i++, virt++, phys++) {
433 		pi = (struct t10_pi_tuple *)p;
434 		dif_swap(phys, virt, pi);
435 		p += ts;
436 	}
437 	kunmap_atomic(pmap);
438 }
439 #else /* CONFIG_BLK_DEV_INTEGRITY */
440 static void nvme_dif_remap(struct request *req,
441 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
442 {
443 }
444 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
445 {
446 }
447 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
448 {
449 }
450 #endif
451 
452 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
453 		int total_len)
454 {
455 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
456 	struct dma_pool *pool;
457 	int length = total_len;
458 	struct scatterlist *sg = iod->sg;
459 	int dma_len = sg_dma_len(sg);
460 	u64 dma_addr = sg_dma_address(sg);
461 	u32 page_size = dev->ctrl.page_size;
462 	int offset = dma_addr & (page_size - 1);
463 	__le64 *prp_list;
464 	__le64 **list = iod_list(req);
465 	dma_addr_t prp_dma;
466 	int nprps, i;
467 
468 	length -= (page_size - offset);
469 	if (length <= 0)
470 		return true;
471 
472 	dma_len -= (page_size - offset);
473 	if (dma_len) {
474 		dma_addr += (page_size - offset);
475 	} else {
476 		sg = sg_next(sg);
477 		dma_addr = sg_dma_address(sg);
478 		dma_len = sg_dma_len(sg);
479 	}
480 
481 	if (length <= page_size) {
482 		iod->first_dma = dma_addr;
483 		return true;
484 	}
485 
486 	nprps = DIV_ROUND_UP(length, page_size);
487 	if (nprps <= (256 / 8)) {
488 		pool = dev->prp_small_pool;
489 		iod->npages = 0;
490 	} else {
491 		pool = dev->prp_page_pool;
492 		iod->npages = 1;
493 	}
494 
495 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
496 	if (!prp_list) {
497 		iod->first_dma = dma_addr;
498 		iod->npages = -1;
499 		return false;
500 	}
501 	list[0] = prp_list;
502 	iod->first_dma = prp_dma;
503 	i = 0;
504 	for (;;) {
505 		if (i == page_size >> 3) {
506 			__le64 *old_prp_list = prp_list;
507 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
508 			if (!prp_list)
509 				return false;
510 			list[iod->npages++] = prp_list;
511 			prp_list[0] = old_prp_list[i - 1];
512 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
513 			i = 1;
514 		}
515 		prp_list[i++] = cpu_to_le64(dma_addr);
516 		dma_len -= page_size;
517 		dma_addr += page_size;
518 		length -= page_size;
519 		if (length <= 0)
520 			break;
521 		if (dma_len > 0)
522 			continue;
523 		BUG_ON(dma_len < 0);
524 		sg = sg_next(sg);
525 		dma_addr = sg_dma_address(sg);
526 		dma_len = sg_dma_len(sg);
527 	}
528 
529 	return true;
530 }
531 
532 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
533 		struct nvme_command *cmnd)
534 {
535 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
536 	struct request_queue *q = req->q;
537 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
538 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
539 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
540 
541 	sg_init_table(iod->sg, req->nr_phys_segments);
542 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
543 	if (!iod->nents)
544 		goto out;
545 
546 	ret = BLK_MQ_RQ_QUEUE_BUSY;
547 	if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
548 		goto out;
549 
550 	if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
551 		goto out_unmap;
552 
553 	ret = BLK_MQ_RQ_QUEUE_ERROR;
554 	if (blk_integrity_rq(req)) {
555 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
556 			goto out_unmap;
557 
558 		sg_init_table(&iod->meta_sg, 1);
559 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
560 			goto out_unmap;
561 
562 		if (rq_data_dir(req))
563 			nvme_dif_remap(req, nvme_dif_prep);
564 
565 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
566 			goto out_unmap;
567 	}
568 
569 	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
570 	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
571 	if (blk_integrity_rq(req))
572 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
573 	return BLK_MQ_RQ_QUEUE_OK;
574 
575 out_unmap:
576 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
577 out:
578 	return ret;
579 }
580 
581 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
582 {
583 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
585 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
586 
587 	if (iod->nents) {
588 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
589 		if (blk_integrity_rq(req)) {
590 			if (!rq_data_dir(req))
591 				nvme_dif_remap(req, nvme_dif_complete);
592 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
593 		}
594 	}
595 
596 	nvme_free_iod(dev, req);
597 }
598 
599 /*
600  * We reuse the small pool to allocate the 16-byte range here as it is not
601  * worth having a special pool for these or additional cases to handle freeing
602  * the iod.
603  */
604 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
605 		struct request *req, struct nvme_command *cmnd)
606 {
607 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
608 	struct nvme_dsm_range *range;
609 
610 	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
611 						&iod->first_dma);
612 	if (!range)
613 		return BLK_MQ_RQ_QUEUE_BUSY;
614 	iod_list(req)[0] = (__le64 *)range;
615 	iod->npages = 0;
616 
617 	range->cattr = cpu_to_le32(0);
618 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
619 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
620 
621 	memset(cmnd, 0, sizeof(*cmnd));
622 	cmnd->dsm.opcode = nvme_cmd_dsm;
623 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
624 	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
625 	cmnd->dsm.nr = 0;
626 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
627 	return BLK_MQ_RQ_QUEUE_OK;
628 }
629 
630 /*
631  * NOTE: ns is NULL when called on the admin queue.
632  */
633 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
634 			 const struct blk_mq_queue_data *bd)
635 {
636 	struct nvme_ns *ns = hctx->queue->queuedata;
637 	struct nvme_queue *nvmeq = hctx->driver_data;
638 	struct nvme_dev *dev = nvmeq->dev;
639 	struct request *req = bd->rq;
640 	struct nvme_command cmnd;
641 	int ret = BLK_MQ_RQ_QUEUE_OK;
642 
643 	/*
644 	 * If formated with metadata, require the block layer provide a buffer
645 	 * unless this namespace is formated such that the metadata can be
646 	 * stripped/generated by the controller with PRACT=1.
647 	 */
648 	if (ns && ns->ms && !blk_integrity_rq(req)) {
649 		if (!(ns->pi_type && ns->ms == 8) &&
650 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
651 			blk_mq_end_request(req, -EFAULT);
652 			return BLK_MQ_RQ_QUEUE_OK;
653 		}
654 	}
655 
656 	ret = nvme_init_iod(req, dev);
657 	if (ret)
658 		return ret;
659 
660 	if (req->cmd_flags & REQ_DISCARD) {
661 		ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
662 	} else {
663 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
664 			memcpy(&cmnd, req->cmd, sizeof(cmnd));
665 		else if (req->cmd_flags & REQ_FLUSH)
666 			nvme_setup_flush(ns, &cmnd);
667 		else
668 			nvme_setup_rw(ns, req, &cmnd);
669 
670 		if (req->nr_phys_segments)
671 			ret = nvme_map_data(dev, req, &cmnd);
672 	}
673 
674 	if (ret)
675 		goto out;
676 
677 	cmnd.common.command_id = req->tag;
678 	blk_mq_start_request(req);
679 
680 	spin_lock_irq(&nvmeq->q_lock);
681 	if (unlikely(nvmeq->cq_vector < 0)) {
682 		ret = BLK_MQ_RQ_QUEUE_BUSY;
683 		spin_unlock_irq(&nvmeq->q_lock);
684 		goto out;
685 	}
686 	__nvme_submit_cmd(nvmeq, &cmnd);
687 	nvme_process_cq(nvmeq);
688 	spin_unlock_irq(&nvmeq->q_lock);
689 	return BLK_MQ_RQ_QUEUE_OK;
690 out:
691 	nvme_free_iod(dev, req);
692 	return ret;
693 }
694 
695 static void nvme_complete_rq(struct request *req)
696 {
697 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
698 	struct nvme_dev *dev = iod->nvmeq->dev;
699 	int error = 0;
700 
701 	nvme_unmap_data(dev, req);
702 
703 	if (unlikely(req->errors)) {
704 		if (nvme_req_needs_retry(req, req->errors)) {
705 			nvme_requeue_req(req);
706 			return;
707 		}
708 
709 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
710 			error = req->errors;
711 		else
712 			error = nvme_error_status(req->errors);
713 	}
714 
715 	if (unlikely(iod->aborted)) {
716 		dev_warn(dev->dev,
717 			"completing aborted command with status: %04x\n",
718 			req->errors);
719 	}
720 
721 	blk_mq_end_request(req, error);
722 }
723 
724 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
725 {
726 	u16 head, phase;
727 
728 	head = nvmeq->cq_head;
729 	phase = nvmeq->cq_phase;
730 
731 	for (;;) {
732 		struct nvme_completion cqe = nvmeq->cqes[head];
733 		u16 status = le16_to_cpu(cqe.status);
734 		struct request *req;
735 
736 		if ((status & 1) != phase)
737 			break;
738 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
739 		if (++head == nvmeq->q_depth) {
740 			head = 0;
741 			phase = !phase;
742 		}
743 
744 		if (tag && *tag == cqe.command_id)
745 			*tag = -1;
746 
747 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
748 			dev_warn(nvmeq->q_dmadev,
749 				"invalid id %d completed on queue %d\n",
750 				cqe.command_id, le16_to_cpu(cqe.sq_id));
751 			continue;
752 		}
753 
754 		/*
755 		 * AEN requests are special as they don't time out and can
756 		 * survive any kind of queue freeze and often don't respond to
757 		 * aborts.  We don't even bother to allocate a struct request
758 		 * for them but rather special case them here.
759 		 */
760 		if (unlikely(nvmeq->qid == 0 &&
761 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
762 			nvme_complete_async_event(nvmeq->dev, &cqe);
763 			continue;
764 		}
765 
766 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
767 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
768 			u32 result = le32_to_cpu(cqe.result);
769 			req->special = (void *)(uintptr_t)result;
770 		}
771 		blk_mq_complete_request(req, status >> 1);
772 
773 	}
774 
775 	/* If the controller ignores the cq head doorbell and continuously
776 	 * writes to the queue, it is theoretically possible to wrap around
777 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
778 	 * requires that 0.1% of your interrupts are handled, so this isn't
779 	 * a big problem.
780 	 */
781 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
782 		return;
783 
784 	if (likely(nvmeq->cq_vector >= 0))
785 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
786 	nvmeq->cq_head = head;
787 	nvmeq->cq_phase = phase;
788 
789 	nvmeq->cqe_seen = 1;
790 }
791 
792 static void nvme_process_cq(struct nvme_queue *nvmeq)
793 {
794 	__nvme_process_cq(nvmeq, NULL);
795 }
796 
797 static irqreturn_t nvme_irq(int irq, void *data)
798 {
799 	irqreturn_t result;
800 	struct nvme_queue *nvmeq = data;
801 	spin_lock(&nvmeq->q_lock);
802 	nvme_process_cq(nvmeq);
803 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
804 	nvmeq->cqe_seen = 0;
805 	spin_unlock(&nvmeq->q_lock);
806 	return result;
807 }
808 
809 static irqreturn_t nvme_irq_check(int irq, void *data)
810 {
811 	struct nvme_queue *nvmeq = data;
812 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
813 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
814 		return IRQ_NONE;
815 	return IRQ_WAKE_THREAD;
816 }
817 
818 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
819 {
820 	struct nvme_queue *nvmeq = hctx->driver_data;
821 
822 	if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
823 	    nvmeq->cq_phase) {
824 		spin_lock_irq(&nvmeq->q_lock);
825 		__nvme_process_cq(nvmeq, &tag);
826 		spin_unlock_irq(&nvmeq->q_lock);
827 
828 		if (tag == -1)
829 			return 1;
830 	}
831 
832 	return 0;
833 }
834 
835 static void nvme_submit_async_event(struct nvme_dev *dev)
836 {
837 	struct nvme_command c;
838 
839 	memset(&c, 0, sizeof(c));
840 	c.common.opcode = nvme_admin_async_event;
841 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
842 
843 	__nvme_submit_cmd(dev->queues[0], &c);
844 }
845 
846 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
847 {
848 	struct nvme_command c;
849 
850 	memset(&c, 0, sizeof(c));
851 	c.delete_queue.opcode = opcode;
852 	c.delete_queue.qid = cpu_to_le16(id);
853 
854 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
855 }
856 
857 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
858 						struct nvme_queue *nvmeq)
859 {
860 	struct nvme_command c;
861 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
862 
863 	/*
864 	 * Note: we (ab)use the fact the the prp fields survive if no data
865 	 * is attached to the request.
866 	 */
867 	memset(&c, 0, sizeof(c));
868 	c.create_cq.opcode = nvme_admin_create_cq;
869 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
870 	c.create_cq.cqid = cpu_to_le16(qid);
871 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
872 	c.create_cq.cq_flags = cpu_to_le16(flags);
873 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
874 
875 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
876 }
877 
878 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
879 						struct nvme_queue *nvmeq)
880 {
881 	struct nvme_command c;
882 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
883 
884 	/*
885 	 * Note: we (ab)use the fact the the prp fields survive if no data
886 	 * is attached to the request.
887 	 */
888 	memset(&c, 0, sizeof(c));
889 	c.create_sq.opcode = nvme_admin_create_sq;
890 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
891 	c.create_sq.sqid = cpu_to_le16(qid);
892 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
893 	c.create_sq.sq_flags = cpu_to_le16(flags);
894 	c.create_sq.cqid = cpu_to_le16(qid);
895 
896 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
897 }
898 
899 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
900 {
901 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
902 }
903 
904 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
905 {
906 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
907 }
908 
909 static void abort_endio(struct request *req, int error)
910 {
911 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912 	struct nvme_queue *nvmeq = iod->nvmeq;
913 	u32 result = (u32)(uintptr_t)req->special;
914 	u16 status = req->errors;
915 
916 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
917 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
918 
919 	blk_mq_free_request(req);
920 }
921 
922 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
923 {
924 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
925 	struct nvme_queue *nvmeq = iod->nvmeq;
926 	struct nvme_dev *dev = nvmeq->dev;
927 	struct request *abort_req;
928 	struct nvme_command cmd;
929 
930 	/*
931 	 * Shutdown immediately if controller times out while starting. The
932 	 * reset work will see the pci device disabled when it gets the forced
933 	 * cancellation error. All outstanding requests are completed on
934 	 * shutdown, so we return BLK_EH_HANDLED.
935 	 */
936 	if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
937 		dev_warn(dev->dev,
938 			 "I/O %d QID %d timeout, disable controller\n",
939 			 req->tag, nvmeq->qid);
940 		nvme_dev_disable(dev, false);
941 		req->errors = NVME_SC_CANCELLED;
942 		return BLK_EH_HANDLED;
943 	}
944 
945 	/*
946  	 * Shutdown the controller immediately and schedule a reset if the
947  	 * command was already aborted once before and still hasn't been
948  	 * returned to the driver, or if this is the admin queue.
949 	 */
950 	if (!nvmeq->qid || iod->aborted) {
951 		dev_warn(dev->dev,
952 			 "I/O %d QID %d timeout, reset controller\n",
953 			 req->tag, nvmeq->qid);
954 		nvme_dev_disable(dev, false);
955 		queue_work(nvme_workq, &dev->reset_work);
956 
957 		/*
958 		 * Mark the request as handled, since the inline shutdown
959 		 * forces all outstanding requests to complete.
960 		 */
961 		req->errors = NVME_SC_CANCELLED;
962 		return BLK_EH_HANDLED;
963 	}
964 
965 	iod->aborted = 1;
966 
967 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
968 		atomic_inc(&dev->ctrl.abort_limit);
969 		return BLK_EH_RESET_TIMER;
970 	}
971 
972 	memset(&cmd, 0, sizeof(cmd));
973 	cmd.abort.opcode = nvme_admin_abort_cmd;
974 	cmd.abort.cid = req->tag;
975 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
976 
977 	dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
978 				 req->tag, nvmeq->qid);
979 
980 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
981 			BLK_MQ_REQ_NOWAIT);
982 	if (IS_ERR(abort_req)) {
983 		atomic_inc(&dev->ctrl.abort_limit);
984 		return BLK_EH_RESET_TIMER;
985 	}
986 
987 	abort_req->timeout = ADMIN_TIMEOUT;
988 	abort_req->end_io_data = NULL;
989 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
990 
991 	/*
992 	 * The aborted req will be completed on receiving the abort req.
993 	 * We enable the timer again. If hit twice, it'll cause a device reset,
994 	 * as the device then is in a faulty state.
995 	 */
996 	return BLK_EH_RESET_TIMER;
997 }
998 
999 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1000 {
1001 	struct nvme_queue *nvmeq = data;
1002 	int status;
1003 
1004 	if (!blk_mq_request_started(req))
1005 		return;
1006 
1007 	dev_dbg_ratelimited(nvmeq->q_dmadev,
1008 		 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1009 
1010 	status = NVME_SC_ABORT_REQ;
1011 	if (blk_queue_dying(req->q))
1012 		status |= NVME_SC_DNR;
1013 	blk_mq_complete_request(req, status);
1014 }
1015 
1016 static void nvme_free_queue(struct nvme_queue *nvmeq)
1017 {
1018 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1019 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1020 	if (nvmeq->sq_cmds)
1021 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1022 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1023 	kfree(nvmeq);
1024 }
1025 
1026 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1027 {
1028 	int i;
1029 
1030 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1031 		struct nvme_queue *nvmeq = dev->queues[i];
1032 		dev->queue_count--;
1033 		dev->queues[i] = NULL;
1034 		nvme_free_queue(nvmeq);
1035 	}
1036 }
1037 
1038 /**
1039  * nvme_suspend_queue - put queue into suspended state
1040  * @nvmeq - queue to suspend
1041  */
1042 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1043 {
1044 	int vector;
1045 
1046 	spin_lock_irq(&nvmeq->q_lock);
1047 	if (nvmeq->cq_vector == -1) {
1048 		spin_unlock_irq(&nvmeq->q_lock);
1049 		return 1;
1050 	}
1051 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1052 	nvmeq->dev->online_queues--;
1053 	nvmeq->cq_vector = -1;
1054 	spin_unlock_irq(&nvmeq->q_lock);
1055 
1056 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1057 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1058 
1059 	irq_set_affinity_hint(vector, NULL);
1060 	free_irq(vector, nvmeq);
1061 
1062 	return 0;
1063 }
1064 
1065 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1066 {
1067 	spin_lock_irq(&nvmeq->q_lock);
1068 	if (nvmeq->tags && *nvmeq->tags)
1069 		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1070 	spin_unlock_irq(&nvmeq->q_lock);
1071 }
1072 
1073 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1074 {
1075 	struct nvme_queue *nvmeq = dev->queues[0];
1076 
1077 	if (!nvmeq)
1078 		return;
1079 	if (nvme_suspend_queue(nvmeq))
1080 		return;
1081 
1082 	if (shutdown)
1083 		nvme_shutdown_ctrl(&dev->ctrl);
1084 	else
1085 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1086 						dev->bar + NVME_REG_CAP));
1087 
1088 	spin_lock_irq(&nvmeq->q_lock);
1089 	nvme_process_cq(nvmeq);
1090 	spin_unlock_irq(&nvmeq->q_lock);
1091 }
1092 
1093 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1094 				int entry_size)
1095 {
1096 	int q_depth = dev->q_depth;
1097 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1098 					  dev->ctrl.page_size);
1099 
1100 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1101 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1102 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1103 		q_depth = div_u64(mem_per_q, entry_size);
1104 
1105 		/*
1106 		 * Ensure the reduced q_depth is above some threshold where it
1107 		 * would be better to map queues in system memory with the
1108 		 * original depth
1109 		 */
1110 		if (q_depth < 64)
1111 			return -ENOMEM;
1112 	}
1113 
1114 	return q_depth;
1115 }
1116 
1117 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1118 				int qid, int depth)
1119 {
1120 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1121 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1122 						      dev->ctrl.page_size);
1123 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1124 		nvmeq->sq_cmds_io = dev->cmb + offset;
1125 	} else {
1126 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1127 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1128 		if (!nvmeq->sq_cmds)
1129 			return -ENOMEM;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1136 							int depth)
1137 {
1138 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1139 	if (!nvmeq)
1140 		return NULL;
1141 
1142 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1143 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1144 	if (!nvmeq->cqes)
1145 		goto free_nvmeq;
1146 
1147 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1148 		goto free_cqdma;
1149 
1150 	nvmeq->q_dmadev = dev->dev;
1151 	nvmeq->dev = dev;
1152 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1153 			dev->ctrl.instance, qid);
1154 	spin_lock_init(&nvmeq->q_lock);
1155 	nvmeq->cq_head = 0;
1156 	nvmeq->cq_phase = 1;
1157 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1158 	nvmeq->q_depth = depth;
1159 	nvmeq->qid = qid;
1160 	nvmeq->cq_vector = -1;
1161 	dev->queues[qid] = nvmeq;
1162 
1163 	/* make sure queue descriptor is set before queue count, for kthread */
1164 	mb();
1165 	dev->queue_count++;
1166 
1167 	return nvmeq;
1168 
1169  free_cqdma:
1170 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1171 							nvmeq->cq_dma_addr);
1172  free_nvmeq:
1173 	kfree(nvmeq);
1174 	return NULL;
1175 }
1176 
1177 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1178 							const char *name)
1179 {
1180 	if (use_threaded_interrupts)
1181 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1182 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1183 					name, nvmeq);
1184 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1185 				IRQF_SHARED, name, nvmeq);
1186 }
1187 
1188 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1189 {
1190 	struct nvme_dev *dev = nvmeq->dev;
1191 
1192 	spin_lock_irq(&nvmeq->q_lock);
1193 	nvmeq->sq_tail = 0;
1194 	nvmeq->cq_head = 0;
1195 	nvmeq->cq_phase = 1;
1196 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1197 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1198 	dev->online_queues++;
1199 	spin_unlock_irq(&nvmeq->q_lock);
1200 }
1201 
1202 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1203 {
1204 	struct nvme_dev *dev = nvmeq->dev;
1205 	int result;
1206 
1207 	nvmeq->cq_vector = qid - 1;
1208 	result = adapter_alloc_cq(dev, qid, nvmeq);
1209 	if (result < 0)
1210 		return result;
1211 
1212 	result = adapter_alloc_sq(dev, qid, nvmeq);
1213 	if (result < 0)
1214 		goto release_cq;
1215 
1216 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1217 	if (result < 0)
1218 		goto release_sq;
1219 
1220 	nvme_init_queue(nvmeq, qid);
1221 	return result;
1222 
1223  release_sq:
1224 	adapter_delete_sq(dev, qid);
1225  release_cq:
1226 	adapter_delete_cq(dev, qid);
1227 	return result;
1228 }
1229 
1230 static struct blk_mq_ops nvme_mq_admin_ops = {
1231 	.queue_rq	= nvme_queue_rq,
1232 	.complete	= nvme_complete_rq,
1233 	.map_queue	= blk_mq_map_queue,
1234 	.init_hctx	= nvme_admin_init_hctx,
1235 	.exit_hctx      = nvme_admin_exit_hctx,
1236 	.init_request	= nvme_admin_init_request,
1237 	.timeout	= nvme_timeout,
1238 };
1239 
1240 static struct blk_mq_ops nvme_mq_ops = {
1241 	.queue_rq	= nvme_queue_rq,
1242 	.complete	= nvme_complete_rq,
1243 	.map_queue	= blk_mq_map_queue,
1244 	.init_hctx	= nvme_init_hctx,
1245 	.init_request	= nvme_init_request,
1246 	.timeout	= nvme_timeout,
1247 	.poll		= nvme_poll,
1248 };
1249 
1250 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1251 {
1252 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1253 		blk_cleanup_queue(dev->ctrl.admin_q);
1254 		blk_mq_free_tag_set(&dev->admin_tagset);
1255 	}
1256 }
1257 
1258 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1259 {
1260 	if (!dev->ctrl.admin_q) {
1261 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1262 		dev->admin_tagset.nr_hw_queues = 1;
1263 
1264 		/*
1265 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1266 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1267 		 */
1268 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1269 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1270 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1271 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1272 		dev->admin_tagset.driver_data = dev;
1273 
1274 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1275 			return -ENOMEM;
1276 
1277 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1278 		if (IS_ERR(dev->ctrl.admin_q)) {
1279 			blk_mq_free_tag_set(&dev->admin_tagset);
1280 			return -ENOMEM;
1281 		}
1282 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1283 			nvme_dev_remove_admin(dev);
1284 			dev->ctrl.admin_q = NULL;
1285 			return -ENODEV;
1286 		}
1287 	} else
1288 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1289 
1290 	return 0;
1291 }
1292 
1293 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1294 {
1295 	int result;
1296 	u32 aqa;
1297 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1298 	struct nvme_queue *nvmeq;
1299 
1300 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1301 						NVME_CAP_NSSRC(cap) : 0;
1302 
1303 	if (dev->subsystem &&
1304 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1305 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1306 
1307 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1308 	if (result < 0)
1309 		return result;
1310 
1311 	nvmeq = dev->queues[0];
1312 	if (!nvmeq) {
1313 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1314 		if (!nvmeq)
1315 			return -ENOMEM;
1316 	}
1317 
1318 	aqa = nvmeq->q_depth - 1;
1319 	aqa |= aqa << 16;
1320 
1321 	writel(aqa, dev->bar + NVME_REG_AQA);
1322 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1323 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1324 
1325 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1326 	if (result)
1327 		goto free_nvmeq;
1328 
1329 	nvmeq->cq_vector = 0;
1330 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1331 	if (result) {
1332 		nvmeq->cq_vector = -1;
1333 		goto free_nvmeq;
1334 	}
1335 
1336 	return result;
1337 
1338  free_nvmeq:
1339 	nvme_free_queues(dev, 0);
1340 	return result;
1341 }
1342 
1343 static int nvme_kthread(void *data)
1344 {
1345 	struct nvme_dev *dev, *next;
1346 
1347 	while (!kthread_should_stop()) {
1348 		set_current_state(TASK_INTERRUPTIBLE);
1349 		spin_lock(&dev_list_lock);
1350 		list_for_each_entry_safe(dev, next, &dev_list, node) {
1351 			int i;
1352 			u32 csts = readl(dev->bar + NVME_REG_CSTS);
1353 
1354 			/*
1355 			 * Skip controllers currently under reset.
1356 			 */
1357 			if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1358 				continue;
1359 
1360 			if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1361 							csts & NVME_CSTS_CFS) {
1362 				if (queue_work(nvme_workq, &dev->reset_work)) {
1363 					dev_warn(dev->dev,
1364 						"Failed status: %x, reset controller\n",
1365 						readl(dev->bar + NVME_REG_CSTS));
1366 				}
1367 				continue;
1368 			}
1369 			for (i = 0; i < dev->queue_count; i++) {
1370 				struct nvme_queue *nvmeq = dev->queues[i];
1371 				if (!nvmeq)
1372 					continue;
1373 				spin_lock_irq(&nvmeq->q_lock);
1374 				nvme_process_cq(nvmeq);
1375 
1376 				while (i == 0 && dev->ctrl.event_limit > 0)
1377 					nvme_submit_async_event(dev);
1378 				spin_unlock_irq(&nvmeq->q_lock);
1379 			}
1380 		}
1381 		spin_unlock(&dev_list_lock);
1382 		schedule_timeout(round_jiffies_relative(HZ));
1383 	}
1384 	return 0;
1385 }
1386 
1387 static int nvme_create_io_queues(struct nvme_dev *dev)
1388 {
1389 	unsigned i;
1390 	int ret = 0;
1391 
1392 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1393 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1394 			ret = -ENOMEM;
1395 			break;
1396 		}
1397 	}
1398 
1399 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1400 		ret = nvme_create_queue(dev->queues[i], i);
1401 		if (ret) {
1402 			nvme_free_queues(dev, i);
1403 			break;
1404 		}
1405 	}
1406 
1407 	/*
1408 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1409 	 * than the desired aount of queues, and even a controller without
1410 	 * I/O queues an still be used to issue admin commands.  This might
1411 	 * be useful to upgrade a buggy firmware for example.
1412 	 */
1413 	return ret >= 0 ? 0 : ret;
1414 }
1415 
1416 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1417 {
1418 	u64 szu, size, offset;
1419 	u32 cmbloc;
1420 	resource_size_t bar_size;
1421 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1422 	void __iomem *cmb;
1423 	dma_addr_t dma_addr;
1424 
1425 	if (!use_cmb_sqes)
1426 		return NULL;
1427 
1428 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1429 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1430 		return NULL;
1431 
1432 	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1433 
1434 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1435 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1436 	offset = szu * NVME_CMB_OFST(cmbloc);
1437 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1438 
1439 	if (offset > bar_size)
1440 		return NULL;
1441 
1442 	/*
1443 	 * Controllers may support a CMB size larger than their BAR,
1444 	 * for example, due to being behind a bridge. Reduce the CMB to
1445 	 * the reported size of the BAR
1446 	 */
1447 	if (size > bar_size - offset)
1448 		size = bar_size - offset;
1449 
1450 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1451 	cmb = ioremap_wc(dma_addr, size);
1452 	if (!cmb)
1453 		return NULL;
1454 
1455 	dev->cmb_dma_addr = dma_addr;
1456 	dev->cmb_size = size;
1457 	return cmb;
1458 }
1459 
1460 static inline void nvme_release_cmb(struct nvme_dev *dev)
1461 {
1462 	if (dev->cmb) {
1463 		iounmap(dev->cmb);
1464 		dev->cmb = NULL;
1465 	}
1466 }
1467 
1468 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1469 {
1470 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1471 }
1472 
1473 static int nvme_setup_io_queues(struct nvme_dev *dev)
1474 {
1475 	struct nvme_queue *adminq = dev->queues[0];
1476 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1477 	int result, i, vecs, nr_io_queues, size;
1478 
1479 	nr_io_queues = num_possible_cpus();
1480 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1481 	if (result < 0)
1482 		return result;
1483 
1484 	/*
1485 	 * Degraded controllers might return an error when setting the queue
1486 	 * count.  We still want to be able to bring them online and offer
1487 	 * access to the admin queue, as that might be only way to fix them up.
1488 	 */
1489 	if (result > 0) {
1490 		dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1491 		nr_io_queues = 0;
1492 		result = 0;
1493 	}
1494 
1495 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1496 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1497 				sizeof(struct nvme_command));
1498 		if (result > 0)
1499 			dev->q_depth = result;
1500 		else
1501 			nvme_release_cmb(dev);
1502 	}
1503 
1504 	size = db_bar_size(dev, nr_io_queues);
1505 	if (size > 8192) {
1506 		iounmap(dev->bar);
1507 		do {
1508 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1509 			if (dev->bar)
1510 				break;
1511 			if (!--nr_io_queues)
1512 				return -ENOMEM;
1513 			size = db_bar_size(dev, nr_io_queues);
1514 		} while (1);
1515 		dev->dbs = dev->bar + 4096;
1516 		adminq->q_db = dev->dbs;
1517 	}
1518 
1519 	/* Deregister the admin queue's interrupt */
1520 	free_irq(dev->entry[0].vector, adminq);
1521 
1522 	/*
1523 	 * If we enable msix early due to not intx, disable it again before
1524 	 * setting up the full range we need.
1525 	 */
1526 	if (!pdev->irq)
1527 		pci_disable_msix(pdev);
1528 
1529 	for (i = 0; i < nr_io_queues; i++)
1530 		dev->entry[i].entry = i;
1531 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1532 	if (vecs < 0) {
1533 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1534 		if (vecs < 0) {
1535 			vecs = 1;
1536 		} else {
1537 			for (i = 0; i < vecs; i++)
1538 				dev->entry[i].vector = i + pdev->irq;
1539 		}
1540 	}
1541 
1542 	/*
1543 	 * Should investigate if there's a performance win from allocating
1544 	 * more queues than interrupt vectors; it might allow the submission
1545 	 * path to scale better, even if the receive path is limited by the
1546 	 * number of interrupts.
1547 	 */
1548 	nr_io_queues = vecs;
1549 	dev->max_qid = nr_io_queues;
1550 
1551 	result = queue_request_irq(dev, adminq, adminq->irqname);
1552 	if (result) {
1553 		adminq->cq_vector = -1;
1554 		goto free_queues;
1555 	}
1556 
1557 	/* Free previously allocated queues that are no longer usable */
1558 	nvme_free_queues(dev, nr_io_queues + 1);
1559 	return nvme_create_io_queues(dev);
1560 
1561  free_queues:
1562 	nvme_free_queues(dev, 1);
1563 	return result;
1564 }
1565 
1566 static void nvme_set_irq_hints(struct nvme_dev *dev)
1567 {
1568 	struct nvme_queue *nvmeq;
1569 	int i;
1570 
1571 	for (i = 0; i < dev->online_queues; i++) {
1572 		nvmeq = dev->queues[i];
1573 
1574 		if (!nvmeq->tags || !(*nvmeq->tags))
1575 			continue;
1576 
1577 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1578 					blk_mq_tags_cpumask(*nvmeq->tags));
1579 	}
1580 }
1581 
1582 static void nvme_dev_scan(struct work_struct *work)
1583 {
1584 	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1585 
1586 	if (!dev->tagset.tags)
1587 		return;
1588 	nvme_scan_namespaces(&dev->ctrl);
1589 	nvme_set_irq_hints(dev);
1590 }
1591 
1592 static void nvme_del_queue_end(struct request *req, int error)
1593 {
1594 	struct nvme_queue *nvmeq = req->end_io_data;
1595 
1596 	blk_mq_free_request(req);
1597 	complete(&nvmeq->dev->ioq_wait);
1598 }
1599 
1600 static void nvme_del_cq_end(struct request *req, int error)
1601 {
1602 	struct nvme_queue *nvmeq = req->end_io_data;
1603 
1604 	if (!error) {
1605 		unsigned long flags;
1606 
1607 		spin_lock_irqsave(&nvmeq->q_lock, flags);
1608 		nvme_process_cq(nvmeq);
1609 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1610 	}
1611 
1612 	nvme_del_queue_end(req, error);
1613 }
1614 
1615 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1616 {
1617 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1618 	struct request *req;
1619 	struct nvme_command cmd;
1620 
1621 	memset(&cmd, 0, sizeof(cmd));
1622 	cmd.delete_queue.opcode = opcode;
1623 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1624 
1625 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1626 	if (IS_ERR(req))
1627 		return PTR_ERR(req);
1628 
1629 	req->timeout = ADMIN_TIMEOUT;
1630 	req->end_io_data = nvmeq;
1631 
1632 	blk_execute_rq_nowait(q, NULL, req, false,
1633 			opcode == nvme_admin_delete_cq ?
1634 				nvme_del_cq_end : nvme_del_queue_end);
1635 	return 0;
1636 }
1637 
1638 static void nvme_disable_io_queues(struct nvme_dev *dev)
1639 {
1640 	int pass;
1641 	unsigned long timeout;
1642 	u8 opcode = nvme_admin_delete_sq;
1643 
1644 	for (pass = 0; pass < 2; pass++) {
1645 		int sent = 0, i = dev->queue_count - 1;
1646 
1647 		reinit_completion(&dev->ioq_wait);
1648  retry:
1649 		timeout = ADMIN_TIMEOUT;
1650 		for (; i > 0; i--) {
1651 			struct nvme_queue *nvmeq = dev->queues[i];
1652 
1653 			if (!pass)
1654 				nvme_suspend_queue(nvmeq);
1655 			if (nvme_delete_queue(nvmeq, opcode))
1656 				break;
1657 			++sent;
1658 		}
1659 		while (sent--) {
1660 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1661 			if (timeout == 0)
1662 				return;
1663 			if (i)
1664 				goto retry;
1665 		}
1666 		opcode = nvme_admin_delete_cq;
1667 	}
1668 }
1669 
1670 /*
1671  * Return: error value if an error occurred setting up the queues or calling
1672  * Identify Device.  0 if these succeeded, even if adding some of the
1673  * namespaces failed.  At the moment, these failures are silent.  TBD which
1674  * failures should be reported.
1675  */
1676 static int nvme_dev_add(struct nvme_dev *dev)
1677 {
1678 	if (!dev->ctrl.tagset) {
1679 		dev->tagset.ops = &nvme_mq_ops;
1680 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1681 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1682 		dev->tagset.numa_node = dev_to_node(dev->dev);
1683 		dev->tagset.queue_depth =
1684 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1685 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1686 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1687 		dev->tagset.driver_data = dev;
1688 
1689 		if (blk_mq_alloc_tag_set(&dev->tagset))
1690 			return 0;
1691 		dev->ctrl.tagset = &dev->tagset;
1692 	}
1693 	queue_work(nvme_workq, &dev->scan_work);
1694 	return 0;
1695 }
1696 
1697 static int nvme_dev_map(struct nvme_dev *dev)
1698 {
1699 	u64 cap;
1700 	int bars, result = -ENOMEM;
1701 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1702 
1703 	if (pci_enable_device_mem(pdev))
1704 		return result;
1705 
1706 	dev->entry[0].vector = pdev->irq;
1707 	pci_set_master(pdev);
1708 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1709 	if (!bars)
1710 		goto disable_pci;
1711 
1712 	if (pci_request_selected_regions(pdev, bars, "nvme"))
1713 		goto disable_pci;
1714 
1715 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1716 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1717 		goto disable;
1718 
1719 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1720 	if (!dev->bar)
1721 		goto disable;
1722 
1723 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1724 		result = -ENODEV;
1725 		goto unmap;
1726 	}
1727 
1728 	/*
1729 	 * Some devices don't advertse INTx interrupts, pre-enable a single
1730 	 * MSIX vec for setup. We'll adjust this later.
1731 	 */
1732 	if (!pdev->irq) {
1733 		result = pci_enable_msix(pdev, dev->entry, 1);
1734 		if (result < 0)
1735 			goto unmap;
1736 	}
1737 
1738 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1739 
1740 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1741 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1742 	dev->dbs = dev->bar + 4096;
1743 
1744 	/*
1745 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1746 	 * some MacBook7,1 to avoid controller resets and data loss.
1747 	 */
1748 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1749 		dev->q_depth = 2;
1750 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1751 			"queue depth=%u to work around controller resets\n",
1752 			dev->q_depth);
1753 	}
1754 
1755 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1756 		dev->cmb = nvme_map_cmb(dev);
1757 
1758 	pci_enable_pcie_error_reporting(pdev);
1759 	pci_save_state(pdev);
1760 	return 0;
1761 
1762  unmap:
1763 	iounmap(dev->bar);
1764 	dev->bar = NULL;
1765  disable:
1766 	pci_release_regions(pdev);
1767  disable_pci:
1768 	pci_disable_device(pdev);
1769 	return result;
1770 }
1771 
1772 static void nvme_dev_unmap(struct nvme_dev *dev)
1773 {
1774 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1775 
1776 	if (pdev->msi_enabled)
1777 		pci_disable_msi(pdev);
1778 	else if (pdev->msix_enabled)
1779 		pci_disable_msix(pdev);
1780 
1781 	if (dev->bar) {
1782 		iounmap(dev->bar);
1783 		dev->bar = NULL;
1784 		pci_release_regions(pdev);
1785 	}
1786 
1787 	if (pci_is_enabled(pdev)) {
1788 		pci_disable_pcie_error_reporting(pdev);
1789 		pci_disable_device(pdev);
1790 	}
1791 }
1792 
1793 static int nvme_dev_list_add(struct nvme_dev *dev)
1794 {
1795 	bool start_thread = false;
1796 
1797 	spin_lock(&dev_list_lock);
1798 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1799 		start_thread = true;
1800 		nvme_thread = NULL;
1801 	}
1802 	list_add(&dev->node, &dev_list);
1803 	spin_unlock(&dev_list_lock);
1804 
1805 	if (start_thread) {
1806 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1807 		wake_up_all(&nvme_kthread_wait);
1808 	} else
1809 		wait_event_killable(nvme_kthread_wait, nvme_thread);
1810 
1811 	if (IS_ERR_OR_NULL(nvme_thread))
1812 		return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1813 
1814 	return 0;
1815 }
1816 
1817 /*
1818 * Remove the node from the device list and check
1819 * for whether or not we need to stop the nvme_thread.
1820 */
1821 static void nvme_dev_list_remove(struct nvme_dev *dev)
1822 {
1823 	struct task_struct *tmp = NULL;
1824 
1825 	spin_lock(&dev_list_lock);
1826 	list_del_init(&dev->node);
1827 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1828 		tmp = nvme_thread;
1829 		nvme_thread = NULL;
1830 	}
1831 	spin_unlock(&dev_list_lock);
1832 
1833 	if (tmp)
1834 		kthread_stop(tmp);
1835 }
1836 
1837 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1838 {
1839 	int i;
1840 	u32 csts = -1;
1841 
1842 	nvme_dev_list_remove(dev);
1843 
1844 	mutex_lock(&dev->shutdown_lock);
1845 	if (dev->bar) {
1846 		nvme_stop_queues(&dev->ctrl);
1847 		csts = readl(dev->bar + NVME_REG_CSTS);
1848 	}
1849 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1850 		for (i = dev->queue_count - 1; i >= 0; i--) {
1851 			struct nvme_queue *nvmeq = dev->queues[i];
1852 			nvme_suspend_queue(nvmeq);
1853 		}
1854 	} else {
1855 		nvme_disable_io_queues(dev);
1856 		nvme_disable_admin_queue(dev, shutdown);
1857 	}
1858 	nvme_dev_unmap(dev);
1859 
1860 	for (i = dev->queue_count - 1; i >= 0; i--)
1861 		nvme_clear_queue(dev->queues[i]);
1862 	mutex_unlock(&dev->shutdown_lock);
1863 }
1864 
1865 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1866 {
1867 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1868 						PAGE_SIZE, PAGE_SIZE, 0);
1869 	if (!dev->prp_page_pool)
1870 		return -ENOMEM;
1871 
1872 	/* Optimisation for I/Os between 4k and 128k */
1873 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1874 						256, 256, 0);
1875 	if (!dev->prp_small_pool) {
1876 		dma_pool_destroy(dev->prp_page_pool);
1877 		return -ENOMEM;
1878 	}
1879 	return 0;
1880 }
1881 
1882 static void nvme_release_prp_pools(struct nvme_dev *dev)
1883 {
1884 	dma_pool_destroy(dev->prp_page_pool);
1885 	dma_pool_destroy(dev->prp_small_pool);
1886 }
1887 
1888 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1889 {
1890 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1891 
1892 	put_device(dev->dev);
1893 	if (dev->tagset.tags)
1894 		blk_mq_free_tag_set(&dev->tagset);
1895 	if (dev->ctrl.admin_q)
1896 		blk_put_queue(dev->ctrl.admin_q);
1897 	kfree(dev->queues);
1898 	kfree(dev->entry);
1899 	kfree(dev);
1900 }
1901 
1902 static void nvme_reset_work(struct work_struct *work)
1903 {
1904 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1905 	int result;
1906 
1907 	if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1908 		goto out;
1909 
1910 	/*
1911 	 * If we're called to reset a live controller first shut it down before
1912 	 * moving on.
1913 	 */
1914 	if (dev->bar)
1915 		nvme_dev_disable(dev, false);
1916 
1917 	set_bit(NVME_CTRL_RESETTING, &dev->flags);
1918 
1919 	result = nvme_dev_map(dev);
1920 	if (result)
1921 		goto out;
1922 
1923 	result = nvme_configure_admin_queue(dev);
1924 	if (result)
1925 		goto unmap;
1926 
1927 	nvme_init_queue(dev->queues[0], 0);
1928 	result = nvme_alloc_admin_tags(dev);
1929 	if (result)
1930 		goto disable;
1931 
1932 	result = nvme_init_identify(&dev->ctrl);
1933 	if (result)
1934 		goto free_tags;
1935 
1936 	result = nvme_setup_io_queues(dev);
1937 	if (result)
1938 		goto free_tags;
1939 
1940 	dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1941 
1942 	result = nvme_dev_list_add(dev);
1943 	if (result)
1944 		goto remove;
1945 
1946 	/*
1947 	 * Keep the controller around but remove all namespaces if we don't have
1948 	 * any working I/O queue.
1949 	 */
1950 	if (dev->online_queues < 2) {
1951 		dev_warn(dev->dev, "IO queues not created\n");
1952 		nvme_remove_namespaces(&dev->ctrl);
1953 	} else {
1954 		nvme_start_queues(&dev->ctrl);
1955 		nvme_dev_add(dev);
1956 	}
1957 
1958 	clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1959 	return;
1960 
1961  remove:
1962 	nvme_dev_list_remove(dev);
1963  free_tags:
1964 	nvme_dev_remove_admin(dev);
1965 	blk_put_queue(dev->ctrl.admin_q);
1966 	dev->ctrl.admin_q = NULL;
1967 	dev->queues[0]->tags = NULL;
1968  disable:
1969 	nvme_disable_admin_queue(dev, false);
1970  unmap:
1971 	nvme_dev_unmap(dev);
1972  out:
1973 	nvme_remove_dead_ctrl(dev);
1974 }
1975 
1976 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1977 {
1978 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1979 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1980 
1981 	if (pci_get_drvdata(pdev))
1982 		pci_stop_and_remove_bus_device_locked(pdev);
1983 	nvme_put_ctrl(&dev->ctrl);
1984 }
1985 
1986 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
1987 {
1988 	dev_warn(dev->dev, "Removing after probe failure\n");
1989 	kref_get(&dev->ctrl.kref);
1990 	if (!schedule_work(&dev->remove_work))
1991 		nvme_put_ctrl(&dev->ctrl);
1992 }
1993 
1994 static int nvme_reset(struct nvme_dev *dev)
1995 {
1996 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1997 		return -ENODEV;
1998 
1999 	if (!queue_work(nvme_workq, &dev->reset_work))
2000 		return -EBUSY;
2001 
2002 	flush_work(&dev->reset_work);
2003 	return 0;
2004 }
2005 
2006 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2007 {
2008 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2009 	return 0;
2010 }
2011 
2012 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2013 {
2014 	writel(val, to_nvme_dev(ctrl)->bar + off);
2015 	return 0;
2016 }
2017 
2018 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2019 {
2020 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2021 	return 0;
2022 }
2023 
2024 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2025 {
2026 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2027 
2028 	return !dev->bar || dev->online_queues < 2;
2029 }
2030 
2031 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2032 {
2033 	return nvme_reset(to_nvme_dev(ctrl));
2034 }
2035 
2036 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2037 	.reg_read32		= nvme_pci_reg_read32,
2038 	.reg_write32		= nvme_pci_reg_write32,
2039 	.reg_read64		= nvme_pci_reg_read64,
2040 	.io_incapable		= nvme_pci_io_incapable,
2041 	.reset_ctrl		= nvme_pci_reset_ctrl,
2042 	.free_ctrl		= nvme_pci_free_ctrl,
2043 };
2044 
2045 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2046 {
2047 	int node, result = -ENOMEM;
2048 	struct nvme_dev *dev;
2049 
2050 	node = dev_to_node(&pdev->dev);
2051 	if (node == NUMA_NO_NODE)
2052 		set_dev_node(&pdev->dev, 0);
2053 
2054 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2055 	if (!dev)
2056 		return -ENOMEM;
2057 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2058 							GFP_KERNEL, node);
2059 	if (!dev->entry)
2060 		goto free;
2061 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2062 							GFP_KERNEL, node);
2063 	if (!dev->queues)
2064 		goto free;
2065 
2066 	dev->dev = get_device(&pdev->dev);
2067 	pci_set_drvdata(pdev, dev);
2068 
2069 	INIT_LIST_HEAD(&dev->node);
2070 	INIT_WORK(&dev->scan_work, nvme_dev_scan);
2071 	INIT_WORK(&dev->reset_work, nvme_reset_work);
2072 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2073 	mutex_init(&dev->shutdown_lock);
2074 	init_completion(&dev->ioq_wait);
2075 
2076 	result = nvme_setup_prp_pools(dev);
2077 	if (result)
2078 		goto put_pci;
2079 
2080 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2081 			id->driver_data);
2082 	if (result)
2083 		goto release_pools;
2084 
2085 	queue_work(nvme_workq, &dev->reset_work);
2086 	return 0;
2087 
2088  release_pools:
2089 	nvme_release_prp_pools(dev);
2090  put_pci:
2091 	put_device(dev->dev);
2092  free:
2093 	kfree(dev->queues);
2094 	kfree(dev->entry);
2095 	kfree(dev);
2096 	return result;
2097 }
2098 
2099 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2100 {
2101 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2102 
2103 	if (prepare)
2104 		nvme_dev_disable(dev, false);
2105 	else
2106 		queue_work(nvme_workq, &dev->reset_work);
2107 }
2108 
2109 static void nvme_shutdown(struct pci_dev *pdev)
2110 {
2111 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2112 	nvme_dev_disable(dev, true);
2113 }
2114 
2115 static void nvme_remove(struct pci_dev *pdev)
2116 {
2117 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2118 
2119 	pci_set_drvdata(pdev, NULL);
2120 	flush_work(&dev->scan_work);
2121 	nvme_remove_namespaces(&dev->ctrl);
2122 	nvme_uninit_ctrl(&dev->ctrl);
2123 	nvme_dev_disable(dev, true);
2124 	flush_work(&dev->reset_work);
2125 	nvme_dev_remove_admin(dev);
2126 	nvme_free_queues(dev, 0);
2127 	nvme_release_cmb(dev);
2128 	nvme_release_prp_pools(dev);
2129 	nvme_put_ctrl(&dev->ctrl);
2130 }
2131 
2132 #ifdef CONFIG_PM_SLEEP
2133 static int nvme_suspend(struct device *dev)
2134 {
2135 	struct pci_dev *pdev = to_pci_dev(dev);
2136 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2137 
2138 	nvme_dev_disable(ndev, true);
2139 	return 0;
2140 }
2141 
2142 static int nvme_resume(struct device *dev)
2143 {
2144 	struct pci_dev *pdev = to_pci_dev(dev);
2145 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2146 
2147 	queue_work(nvme_workq, &ndev->reset_work);
2148 	return 0;
2149 }
2150 #endif
2151 
2152 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2153 
2154 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2155 						pci_channel_state_t state)
2156 {
2157 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2158 
2159 	/*
2160 	 * A frozen channel requires a reset. When detected, this method will
2161 	 * shutdown the controller to quiesce. The controller will be restarted
2162 	 * after the slot reset through driver's slot_reset callback.
2163 	 */
2164 	dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2165 	switch (state) {
2166 	case pci_channel_io_normal:
2167 		return PCI_ERS_RESULT_CAN_RECOVER;
2168 	case pci_channel_io_frozen:
2169 		nvme_dev_disable(dev, false);
2170 		return PCI_ERS_RESULT_NEED_RESET;
2171 	case pci_channel_io_perm_failure:
2172 		return PCI_ERS_RESULT_DISCONNECT;
2173 	}
2174 	return PCI_ERS_RESULT_NEED_RESET;
2175 }
2176 
2177 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2178 {
2179 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2180 
2181 	dev_info(&pdev->dev, "restart after slot reset\n");
2182 	pci_restore_state(pdev);
2183 	queue_work(nvme_workq, &dev->reset_work);
2184 	return PCI_ERS_RESULT_RECOVERED;
2185 }
2186 
2187 static void nvme_error_resume(struct pci_dev *pdev)
2188 {
2189 	pci_cleanup_aer_uncorrect_error_status(pdev);
2190 }
2191 
2192 static const struct pci_error_handlers nvme_err_handler = {
2193 	.error_detected	= nvme_error_detected,
2194 	.slot_reset	= nvme_slot_reset,
2195 	.resume		= nvme_error_resume,
2196 	.reset_notify	= nvme_reset_notify,
2197 };
2198 
2199 /* Move to pci_ids.h later */
2200 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
2201 
2202 static const struct pci_device_id nvme_id_table[] = {
2203 	{ PCI_VDEVICE(INTEL, 0x0953),
2204 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
2205 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2206 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2207 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2208 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2209 	{ 0, }
2210 };
2211 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2212 
2213 static struct pci_driver nvme_driver = {
2214 	.name		= "nvme",
2215 	.id_table	= nvme_id_table,
2216 	.probe		= nvme_probe,
2217 	.remove		= nvme_remove,
2218 	.shutdown	= nvme_shutdown,
2219 	.driver		= {
2220 		.pm	= &nvme_dev_pm_ops,
2221 	},
2222 	.err_handler	= &nvme_err_handler,
2223 };
2224 
2225 static int __init nvme_init(void)
2226 {
2227 	int result;
2228 
2229 	init_waitqueue_head(&nvme_kthread_wait);
2230 
2231 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2232 	if (!nvme_workq)
2233 		return -ENOMEM;
2234 
2235 	result = nvme_core_init();
2236 	if (result < 0)
2237 		goto kill_workq;
2238 
2239 	result = pci_register_driver(&nvme_driver);
2240 	if (result)
2241 		goto core_exit;
2242 	return 0;
2243 
2244  core_exit:
2245 	nvme_core_exit();
2246  kill_workq:
2247 	destroy_workqueue(nvme_workq);
2248 	return result;
2249 }
2250 
2251 static void __exit nvme_exit(void)
2252 {
2253 	pci_unregister_driver(&nvme_driver);
2254 	nvme_core_exit();
2255 	destroy_workqueue(nvme_workq);
2256 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2257 	_nvme_check_size();
2258 }
2259 
2260 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2261 MODULE_LICENSE("GPL");
2262 MODULE_VERSION("1.0");
2263 module_init(nvme_init);
2264 module_exit(nvme_exit);
2265