1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/cpu.h> 20 #include <linux/delay.h> 21 #include <linux/errno.h> 22 #include <linux/fs.h> 23 #include <linux/genhd.h> 24 #include <linux/hdreg.h> 25 #include <linux/idr.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/kdev_t.h> 30 #include <linux/kthread.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/types.h> 43 #include <linux/io-64-nonatomic-lo-hi.h> 44 #include <asm/unaligned.h> 45 46 #include "nvme.h" 47 48 #define NVME_Q_DEPTH 1024 49 #define NVME_AQ_DEPTH 256 50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 52 53 /* 54 * We handle AEN commands ourselves and don't even let the 55 * block layer know about them. 56 */ 57 #define NVME_NR_AEN_COMMANDS 1 58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS) 59 60 unsigned char admin_timeout = 60; 61 module_param(admin_timeout, byte, 0644); 62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 63 64 unsigned char nvme_io_timeout = 30; 65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 67 68 unsigned char shutdown_timeout = 5; 69 module_param(shutdown_timeout, byte, 0644); 70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 71 72 static int use_threaded_interrupts; 73 module_param(use_threaded_interrupts, int, 0); 74 75 static bool use_cmb_sqes = true; 76 module_param(use_cmb_sqes, bool, 0644); 77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 78 79 static LIST_HEAD(dev_list); 80 static struct task_struct *nvme_thread; 81 static struct workqueue_struct *nvme_workq; 82 static wait_queue_head_t nvme_kthread_wait; 83 84 struct nvme_dev; 85 struct nvme_queue; 86 87 static int nvme_reset(struct nvme_dev *dev); 88 static void nvme_process_cq(struct nvme_queue *nvmeq); 89 static void nvme_remove_dead_ctrl(struct nvme_dev *dev); 90 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 91 92 /* 93 * Represents an NVM Express device. Each nvme_dev is a PCI function. 94 */ 95 struct nvme_dev { 96 struct list_head node; 97 struct nvme_queue **queues; 98 struct blk_mq_tag_set tagset; 99 struct blk_mq_tag_set admin_tagset; 100 u32 __iomem *dbs; 101 struct device *dev; 102 struct dma_pool *prp_page_pool; 103 struct dma_pool *prp_small_pool; 104 unsigned queue_count; 105 unsigned online_queues; 106 unsigned max_qid; 107 int q_depth; 108 u32 db_stride; 109 struct msix_entry *entry; 110 void __iomem *bar; 111 struct work_struct reset_work; 112 struct work_struct scan_work; 113 struct work_struct remove_work; 114 struct mutex shutdown_lock; 115 bool subsystem; 116 void __iomem *cmb; 117 dma_addr_t cmb_dma_addr; 118 u64 cmb_size; 119 u32 cmbsz; 120 unsigned long flags; 121 122 #define NVME_CTRL_RESETTING 0 123 124 struct nvme_ctrl ctrl; 125 struct completion ioq_wait; 126 }; 127 128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 129 { 130 return container_of(ctrl, struct nvme_dev, ctrl); 131 } 132 133 /* 134 * An NVM Express queue. Each device has at least two (one for admin 135 * commands and one for I/O commands). 136 */ 137 struct nvme_queue { 138 struct device *q_dmadev; 139 struct nvme_dev *dev; 140 char irqname[24]; /* nvme4294967295-65535\0 */ 141 spinlock_t q_lock; 142 struct nvme_command *sq_cmds; 143 struct nvme_command __iomem *sq_cmds_io; 144 volatile struct nvme_completion *cqes; 145 struct blk_mq_tags **tags; 146 dma_addr_t sq_dma_addr; 147 dma_addr_t cq_dma_addr; 148 u32 __iomem *q_db; 149 u16 q_depth; 150 s16 cq_vector; 151 u16 sq_head; 152 u16 sq_tail; 153 u16 cq_head; 154 u16 qid; 155 u8 cq_phase; 156 u8 cqe_seen; 157 }; 158 159 /* 160 * The nvme_iod describes the data in an I/O, including the list of PRP 161 * entries. You can't see it in this data structure because C doesn't let 162 * me express that. Use nvme_init_iod to ensure there's enough space 163 * allocated to store the PRP list. 164 */ 165 struct nvme_iod { 166 struct nvme_queue *nvmeq; 167 int aborted; 168 int npages; /* In the PRP list. 0 means small pool in use */ 169 int nents; /* Used in scatterlist */ 170 int length; /* Of data, in bytes */ 171 dma_addr_t first_dma; 172 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 173 struct scatterlist *sg; 174 struct scatterlist inline_sg[0]; 175 }; 176 177 /* 178 * Check we didin't inadvertently grow the command struct 179 */ 180 static inline void _nvme_check_size(void) 181 { 182 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 183 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 184 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 185 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 186 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 187 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 188 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 189 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 190 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 191 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 192 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 193 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 194 } 195 196 /* 197 * Max size of iod being embedded in the request payload 198 */ 199 #define NVME_INT_PAGES 2 200 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 201 202 /* 203 * Will slightly overestimate the number of pages needed. This is OK 204 * as it only leads to a small amount of wasted memory for the lifetime of 205 * the I/O. 206 */ 207 static int nvme_npages(unsigned size, struct nvme_dev *dev) 208 { 209 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 210 dev->ctrl.page_size); 211 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 212 } 213 214 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 215 unsigned int size, unsigned int nseg) 216 { 217 return sizeof(__le64 *) * nvme_npages(size, dev) + 218 sizeof(struct scatterlist) * nseg; 219 } 220 221 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 222 { 223 return sizeof(struct nvme_iod) + 224 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 225 } 226 227 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 228 unsigned int hctx_idx) 229 { 230 struct nvme_dev *dev = data; 231 struct nvme_queue *nvmeq = dev->queues[0]; 232 233 WARN_ON(hctx_idx != 0); 234 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 235 WARN_ON(nvmeq->tags); 236 237 hctx->driver_data = nvmeq; 238 nvmeq->tags = &dev->admin_tagset.tags[0]; 239 return 0; 240 } 241 242 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 243 { 244 struct nvme_queue *nvmeq = hctx->driver_data; 245 246 nvmeq->tags = NULL; 247 } 248 249 static int nvme_admin_init_request(void *data, struct request *req, 250 unsigned int hctx_idx, unsigned int rq_idx, 251 unsigned int numa_node) 252 { 253 struct nvme_dev *dev = data; 254 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 255 struct nvme_queue *nvmeq = dev->queues[0]; 256 257 BUG_ON(!nvmeq); 258 iod->nvmeq = nvmeq; 259 return 0; 260 } 261 262 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 263 unsigned int hctx_idx) 264 { 265 struct nvme_dev *dev = data; 266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 267 268 if (!nvmeq->tags) 269 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 270 271 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 272 hctx->driver_data = nvmeq; 273 return 0; 274 } 275 276 static int nvme_init_request(void *data, struct request *req, 277 unsigned int hctx_idx, unsigned int rq_idx, 278 unsigned int numa_node) 279 { 280 struct nvme_dev *dev = data; 281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 283 284 BUG_ON(!nvmeq); 285 iod->nvmeq = nvmeq; 286 return 0; 287 } 288 289 static void nvme_complete_async_event(struct nvme_dev *dev, 290 struct nvme_completion *cqe) 291 { 292 u16 status = le16_to_cpu(cqe->status) >> 1; 293 u32 result = le32_to_cpu(cqe->result); 294 295 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) 296 ++dev->ctrl.event_limit; 297 if (status != NVME_SC_SUCCESS) 298 return; 299 300 switch (result & 0xff07) { 301 case NVME_AER_NOTICE_NS_CHANGED: 302 dev_info(dev->dev, "rescanning\n"); 303 queue_work(nvme_workq, &dev->scan_work); 304 default: 305 dev_warn(dev->dev, "async event result %08x\n", result); 306 } 307 } 308 309 /** 310 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 311 * @nvmeq: The queue to use 312 * @cmd: The command to send 313 * 314 * Safe to use from interrupt context 315 */ 316 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 317 struct nvme_command *cmd) 318 { 319 u16 tail = nvmeq->sq_tail; 320 321 if (nvmeq->sq_cmds_io) 322 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 323 else 324 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 325 326 if (++tail == nvmeq->q_depth) 327 tail = 0; 328 writel(tail, nvmeq->q_db); 329 nvmeq->sq_tail = tail; 330 } 331 332 static __le64 **iod_list(struct request *req) 333 { 334 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 335 return (__le64 **)(iod->sg + req->nr_phys_segments); 336 } 337 338 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev) 339 { 340 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 341 int nseg = rq->nr_phys_segments; 342 unsigned size; 343 344 if (rq->cmd_flags & REQ_DISCARD) 345 size = sizeof(struct nvme_dsm_range); 346 else 347 size = blk_rq_bytes(rq); 348 349 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 350 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 351 if (!iod->sg) 352 return BLK_MQ_RQ_QUEUE_BUSY; 353 } else { 354 iod->sg = iod->inline_sg; 355 } 356 357 iod->aborted = 0; 358 iod->npages = -1; 359 iod->nents = 0; 360 iod->length = size; 361 return 0; 362 } 363 364 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 365 { 366 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 367 const int last_prp = dev->ctrl.page_size / 8 - 1; 368 int i; 369 __le64 **list = iod_list(req); 370 dma_addr_t prp_dma = iod->first_dma; 371 372 if (iod->npages == 0) 373 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 374 for (i = 0; i < iod->npages; i++) { 375 __le64 *prp_list = list[i]; 376 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 377 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 378 prp_dma = next_prp_dma; 379 } 380 381 if (iod->sg != iod->inline_sg) 382 kfree(iod->sg); 383 } 384 385 #ifdef CONFIG_BLK_DEV_INTEGRITY 386 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 387 { 388 if (be32_to_cpu(pi->ref_tag) == v) 389 pi->ref_tag = cpu_to_be32(p); 390 } 391 392 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 393 { 394 if (be32_to_cpu(pi->ref_tag) == p) 395 pi->ref_tag = cpu_to_be32(v); 396 } 397 398 /** 399 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 400 * 401 * The virtual start sector is the one that was originally submitted by the 402 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 403 * start sector may be different. Remap protection information to match the 404 * physical LBA on writes, and back to the original seed on reads. 405 * 406 * Type 0 and 3 do not have a ref tag, so no remapping required. 407 */ 408 static void nvme_dif_remap(struct request *req, 409 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 410 { 411 struct nvme_ns *ns = req->rq_disk->private_data; 412 struct bio_integrity_payload *bip; 413 struct t10_pi_tuple *pi; 414 void *p, *pmap; 415 u32 i, nlb, ts, phys, virt; 416 417 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 418 return; 419 420 bip = bio_integrity(req->bio); 421 if (!bip) 422 return; 423 424 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 425 426 p = pmap; 427 virt = bip_get_seed(bip); 428 phys = nvme_block_nr(ns, blk_rq_pos(req)); 429 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 430 ts = ns->disk->queue->integrity.tuple_size; 431 432 for (i = 0; i < nlb; i++, virt++, phys++) { 433 pi = (struct t10_pi_tuple *)p; 434 dif_swap(phys, virt, pi); 435 p += ts; 436 } 437 kunmap_atomic(pmap); 438 } 439 #else /* CONFIG_BLK_DEV_INTEGRITY */ 440 static void nvme_dif_remap(struct request *req, 441 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 442 { 443 } 444 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 445 { 446 } 447 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 448 { 449 } 450 #endif 451 452 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, 453 int total_len) 454 { 455 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 456 struct dma_pool *pool; 457 int length = total_len; 458 struct scatterlist *sg = iod->sg; 459 int dma_len = sg_dma_len(sg); 460 u64 dma_addr = sg_dma_address(sg); 461 u32 page_size = dev->ctrl.page_size; 462 int offset = dma_addr & (page_size - 1); 463 __le64 *prp_list; 464 __le64 **list = iod_list(req); 465 dma_addr_t prp_dma; 466 int nprps, i; 467 468 length -= (page_size - offset); 469 if (length <= 0) 470 return true; 471 472 dma_len -= (page_size - offset); 473 if (dma_len) { 474 dma_addr += (page_size - offset); 475 } else { 476 sg = sg_next(sg); 477 dma_addr = sg_dma_address(sg); 478 dma_len = sg_dma_len(sg); 479 } 480 481 if (length <= page_size) { 482 iod->first_dma = dma_addr; 483 return true; 484 } 485 486 nprps = DIV_ROUND_UP(length, page_size); 487 if (nprps <= (256 / 8)) { 488 pool = dev->prp_small_pool; 489 iod->npages = 0; 490 } else { 491 pool = dev->prp_page_pool; 492 iod->npages = 1; 493 } 494 495 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 496 if (!prp_list) { 497 iod->first_dma = dma_addr; 498 iod->npages = -1; 499 return false; 500 } 501 list[0] = prp_list; 502 iod->first_dma = prp_dma; 503 i = 0; 504 for (;;) { 505 if (i == page_size >> 3) { 506 __le64 *old_prp_list = prp_list; 507 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 508 if (!prp_list) 509 return false; 510 list[iod->npages++] = prp_list; 511 prp_list[0] = old_prp_list[i - 1]; 512 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 513 i = 1; 514 } 515 prp_list[i++] = cpu_to_le64(dma_addr); 516 dma_len -= page_size; 517 dma_addr += page_size; 518 length -= page_size; 519 if (length <= 0) 520 break; 521 if (dma_len > 0) 522 continue; 523 BUG_ON(dma_len < 0); 524 sg = sg_next(sg); 525 dma_addr = sg_dma_address(sg); 526 dma_len = sg_dma_len(sg); 527 } 528 529 return true; 530 } 531 532 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 533 struct nvme_command *cmnd) 534 { 535 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 536 struct request_queue *q = req->q; 537 enum dma_data_direction dma_dir = rq_data_dir(req) ? 538 DMA_TO_DEVICE : DMA_FROM_DEVICE; 539 int ret = BLK_MQ_RQ_QUEUE_ERROR; 540 541 sg_init_table(iod->sg, req->nr_phys_segments); 542 iod->nents = blk_rq_map_sg(q, req, iod->sg); 543 if (!iod->nents) 544 goto out; 545 546 ret = BLK_MQ_RQ_QUEUE_BUSY; 547 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir)) 548 goto out; 549 550 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req))) 551 goto out_unmap; 552 553 ret = BLK_MQ_RQ_QUEUE_ERROR; 554 if (blk_integrity_rq(req)) { 555 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 556 goto out_unmap; 557 558 sg_init_table(&iod->meta_sg, 1); 559 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 560 goto out_unmap; 561 562 if (rq_data_dir(req)) 563 nvme_dif_remap(req, nvme_dif_prep); 564 565 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 566 goto out_unmap; 567 } 568 569 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 570 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma); 571 if (blk_integrity_rq(req)) 572 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 573 return BLK_MQ_RQ_QUEUE_OK; 574 575 out_unmap: 576 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 577 out: 578 return ret; 579 } 580 581 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 582 { 583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 584 enum dma_data_direction dma_dir = rq_data_dir(req) ? 585 DMA_TO_DEVICE : DMA_FROM_DEVICE; 586 587 if (iod->nents) { 588 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 589 if (blk_integrity_rq(req)) { 590 if (!rq_data_dir(req)) 591 nvme_dif_remap(req, nvme_dif_complete); 592 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 593 } 594 } 595 596 nvme_free_iod(dev, req); 597 } 598 599 /* 600 * We reuse the small pool to allocate the 16-byte range here as it is not 601 * worth having a special pool for these or additional cases to handle freeing 602 * the iod. 603 */ 604 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns, 605 struct request *req, struct nvme_command *cmnd) 606 { 607 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 608 struct nvme_dsm_range *range; 609 610 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC, 611 &iod->first_dma); 612 if (!range) 613 return BLK_MQ_RQ_QUEUE_BUSY; 614 iod_list(req)[0] = (__le64 *)range; 615 iod->npages = 0; 616 617 range->cattr = cpu_to_le32(0); 618 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift); 619 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 620 621 memset(cmnd, 0, sizeof(*cmnd)); 622 cmnd->dsm.opcode = nvme_cmd_dsm; 623 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 624 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma); 625 cmnd->dsm.nr = 0; 626 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 627 return BLK_MQ_RQ_QUEUE_OK; 628 } 629 630 /* 631 * NOTE: ns is NULL when called on the admin queue. 632 */ 633 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 634 const struct blk_mq_queue_data *bd) 635 { 636 struct nvme_ns *ns = hctx->queue->queuedata; 637 struct nvme_queue *nvmeq = hctx->driver_data; 638 struct nvme_dev *dev = nvmeq->dev; 639 struct request *req = bd->rq; 640 struct nvme_command cmnd; 641 int ret = BLK_MQ_RQ_QUEUE_OK; 642 643 /* 644 * If formated with metadata, require the block layer provide a buffer 645 * unless this namespace is formated such that the metadata can be 646 * stripped/generated by the controller with PRACT=1. 647 */ 648 if (ns && ns->ms && !blk_integrity_rq(req)) { 649 if (!(ns->pi_type && ns->ms == 8) && 650 req->cmd_type != REQ_TYPE_DRV_PRIV) { 651 blk_mq_end_request(req, -EFAULT); 652 return BLK_MQ_RQ_QUEUE_OK; 653 } 654 } 655 656 ret = nvme_init_iod(req, dev); 657 if (ret) 658 return ret; 659 660 if (req->cmd_flags & REQ_DISCARD) { 661 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd); 662 } else { 663 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 664 memcpy(&cmnd, req->cmd, sizeof(cmnd)); 665 else if (req->cmd_flags & REQ_FLUSH) 666 nvme_setup_flush(ns, &cmnd); 667 else 668 nvme_setup_rw(ns, req, &cmnd); 669 670 if (req->nr_phys_segments) 671 ret = nvme_map_data(dev, req, &cmnd); 672 } 673 674 if (ret) 675 goto out; 676 677 cmnd.common.command_id = req->tag; 678 blk_mq_start_request(req); 679 680 spin_lock_irq(&nvmeq->q_lock); 681 if (unlikely(nvmeq->cq_vector < 0)) { 682 ret = BLK_MQ_RQ_QUEUE_BUSY; 683 spin_unlock_irq(&nvmeq->q_lock); 684 goto out; 685 } 686 __nvme_submit_cmd(nvmeq, &cmnd); 687 nvme_process_cq(nvmeq); 688 spin_unlock_irq(&nvmeq->q_lock); 689 return BLK_MQ_RQ_QUEUE_OK; 690 out: 691 nvme_free_iod(dev, req); 692 return ret; 693 } 694 695 static void nvme_complete_rq(struct request *req) 696 { 697 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 698 struct nvme_dev *dev = iod->nvmeq->dev; 699 int error = 0; 700 701 nvme_unmap_data(dev, req); 702 703 if (unlikely(req->errors)) { 704 if (nvme_req_needs_retry(req, req->errors)) { 705 nvme_requeue_req(req); 706 return; 707 } 708 709 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 710 error = req->errors; 711 else 712 error = nvme_error_status(req->errors); 713 } 714 715 if (unlikely(iod->aborted)) { 716 dev_warn(dev->dev, 717 "completing aborted command with status: %04x\n", 718 req->errors); 719 } 720 721 blk_mq_end_request(req, error); 722 } 723 724 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 725 { 726 u16 head, phase; 727 728 head = nvmeq->cq_head; 729 phase = nvmeq->cq_phase; 730 731 for (;;) { 732 struct nvme_completion cqe = nvmeq->cqes[head]; 733 u16 status = le16_to_cpu(cqe.status); 734 struct request *req; 735 736 if ((status & 1) != phase) 737 break; 738 nvmeq->sq_head = le16_to_cpu(cqe.sq_head); 739 if (++head == nvmeq->q_depth) { 740 head = 0; 741 phase = !phase; 742 } 743 744 if (tag && *tag == cqe.command_id) 745 *tag = -1; 746 747 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 748 dev_warn(nvmeq->q_dmadev, 749 "invalid id %d completed on queue %d\n", 750 cqe.command_id, le16_to_cpu(cqe.sq_id)); 751 continue; 752 } 753 754 /* 755 * AEN requests are special as they don't time out and can 756 * survive any kind of queue freeze and often don't respond to 757 * aborts. We don't even bother to allocate a struct request 758 * for them but rather special case them here. 759 */ 760 if (unlikely(nvmeq->qid == 0 && 761 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 762 nvme_complete_async_event(nvmeq->dev, &cqe); 763 continue; 764 } 765 766 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 767 if (req->cmd_type == REQ_TYPE_DRV_PRIV) { 768 u32 result = le32_to_cpu(cqe.result); 769 req->special = (void *)(uintptr_t)result; 770 } 771 blk_mq_complete_request(req, status >> 1); 772 773 } 774 775 /* If the controller ignores the cq head doorbell and continuously 776 * writes to the queue, it is theoretically possible to wrap around 777 * the queue twice and mistakenly return IRQ_NONE. Linux only 778 * requires that 0.1% of your interrupts are handled, so this isn't 779 * a big problem. 780 */ 781 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 782 return; 783 784 if (likely(nvmeq->cq_vector >= 0)) 785 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 786 nvmeq->cq_head = head; 787 nvmeq->cq_phase = phase; 788 789 nvmeq->cqe_seen = 1; 790 } 791 792 static void nvme_process_cq(struct nvme_queue *nvmeq) 793 { 794 __nvme_process_cq(nvmeq, NULL); 795 } 796 797 static irqreturn_t nvme_irq(int irq, void *data) 798 { 799 irqreturn_t result; 800 struct nvme_queue *nvmeq = data; 801 spin_lock(&nvmeq->q_lock); 802 nvme_process_cq(nvmeq); 803 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 804 nvmeq->cqe_seen = 0; 805 spin_unlock(&nvmeq->q_lock); 806 return result; 807 } 808 809 static irqreturn_t nvme_irq_check(int irq, void *data) 810 { 811 struct nvme_queue *nvmeq = data; 812 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; 813 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) 814 return IRQ_NONE; 815 return IRQ_WAKE_THREAD; 816 } 817 818 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 819 { 820 struct nvme_queue *nvmeq = hctx->driver_data; 821 822 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == 823 nvmeq->cq_phase) { 824 spin_lock_irq(&nvmeq->q_lock); 825 __nvme_process_cq(nvmeq, &tag); 826 spin_unlock_irq(&nvmeq->q_lock); 827 828 if (tag == -1) 829 return 1; 830 } 831 832 return 0; 833 } 834 835 static void nvme_submit_async_event(struct nvme_dev *dev) 836 { 837 struct nvme_command c; 838 839 memset(&c, 0, sizeof(c)); 840 c.common.opcode = nvme_admin_async_event; 841 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit; 842 843 __nvme_submit_cmd(dev->queues[0], &c); 844 } 845 846 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 847 { 848 struct nvme_command c; 849 850 memset(&c, 0, sizeof(c)); 851 c.delete_queue.opcode = opcode; 852 c.delete_queue.qid = cpu_to_le16(id); 853 854 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 855 } 856 857 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 858 struct nvme_queue *nvmeq) 859 { 860 struct nvme_command c; 861 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 862 863 /* 864 * Note: we (ab)use the fact the the prp fields survive if no data 865 * is attached to the request. 866 */ 867 memset(&c, 0, sizeof(c)); 868 c.create_cq.opcode = nvme_admin_create_cq; 869 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 870 c.create_cq.cqid = cpu_to_le16(qid); 871 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 872 c.create_cq.cq_flags = cpu_to_le16(flags); 873 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 874 875 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 876 } 877 878 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 879 struct nvme_queue *nvmeq) 880 { 881 struct nvme_command c; 882 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 883 884 /* 885 * Note: we (ab)use the fact the the prp fields survive if no data 886 * is attached to the request. 887 */ 888 memset(&c, 0, sizeof(c)); 889 c.create_sq.opcode = nvme_admin_create_sq; 890 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 891 c.create_sq.sqid = cpu_to_le16(qid); 892 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 893 c.create_sq.sq_flags = cpu_to_le16(flags); 894 c.create_sq.cqid = cpu_to_le16(qid); 895 896 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 897 } 898 899 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 900 { 901 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 902 } 903 904 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 905 { 906 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 907 } 908 909 static void abort_endio(struct request *req, int error) 910 { 911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 912 struct nvme_queue *nvmeq = iod->nvmeq; 913 u32 result = (u32)(uintptr_t)req->special; 914 u16 status = req->errors; 915 916 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result); 917 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 918 919 blk_mq_free_request(req); 920 } 921 922 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 923 { 924 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 925 struct nvme_queue *nvmeq = iod->nvmeq; 926 struct nvme_dev *dev = nvmeq->dev; 927 struct request *abort_req; 928 struct nvme_command cmd; 929 930 /* 931 * Shutdown immediately if controller times out while starting. The 932 * reset work will see the pci device disabled when it gets the forced 933 * cancellation error. All outstanding requests are completed on 934 * shutdown, so we return BLK_EH_HANDLED. 935 */ 936 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) { 937 dev_warn(dev->dev, 938 "I/O %d QID %d timeout, disable controller\n", 939 req->tag, nvmeq->qid); 940 nvme_dev_disable(dev, false); 941 req->errors = NVME_SC_CANCELLED; 942 return BLK_EH_HANDLED; 943 } 944 945 /* 946 * Shutdown the controller immediately and schedule a reset if the 947 * command was already aborted once before and still hasn't been 948 * returned to the driver, or if this is the admin queue. 949 */ 950 if (!nvmeq->qid || iod->aborted) { 951 dev_warn(dev->dev, 952 "I/O %d QID %d timeout, reset controller\n", 953 req->tag, nvmeq->qid); 954 nvme_dev_disable(dev, false); 955 queue_work(nvme_workq, &dev->reset_work); 956 957 /* 958 * Mark the request as handled, since the inline shutdown 959 * forces all outstanding requests to complete. 960 */ 961 req->errors = NVME_SC_CANCELLED; 962 return BLK_EH_HANDLED; 963 } 964 965 iod->aborted = 1; 966 967 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 968 atomic_inc(&dev->ctrl.abort_limit); 969 return BLK_EH_RESET_TIMER; 970 } 971 972 memset(&cmd, 0, sizeof(cmd)); 973 cmd.abort.opcode = nvme_admin_abort_cmd; 974 cmd.abort.cid = req->tag; 975 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 976 977 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n", 978 req->tag, nvmeq->qid); 979 980 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 981 BLK_MQ_REQ_NOWAIT); 982 if (IS_ERR(abort_req)) { 983 atomic_inc(&dev->ctrl.abort_limit); 984 return BLK_EH_RESET_TIMER; 985 } 986 987 abort_req->timeout = ADMIN_TIMEOUT; 988 abort_req->end_io_data = NULL; 989 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 990 991 /* 992 * The aborted req will be completed on receiving the abort req. 993 * We enable the timer again. If hit twice, it'll cause a device reset, 994 * as the device then is in a faulty state. 995 */ 996 return BLK_EH_RESET_TIMER; 997 } 998 999 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved) 1000 { 1001 struct nvme_queue *nvmeq = data; 1002 int status; 1003 1004 if (!blk_mq_request_started(req)) 1005 return; 1006 1007 dev_dbg_ratelimited(nvmeq->q_dmadev, 1008 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid); 1009 1010 status = NVME_SC_ABORT_REQ; 1011 if (blk_queue_dying(req->q)) 1012 status |= NVME_SC_DNR; 1013 blk_mq_complete_request(req, status); 1014 } 1015 1016 static void nvme_free_queue(struct nvme_queue *nvmeq) 1017 { 1018 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1019 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1020 if (nvmeq->sq_cmds) 1021 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1022 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1023 kfree(nvmeq); 1024 } 1025 1026 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1027 { 1028 int i; 1029 1030 for (i = dev->queue_count - 1; i >= lowest; i--) { 1031 struct nvme_queue *nvmeq = dev->queues[i]; 1032 dev->queue_count--; 1033 dev->queues[i] = NULL; 1034 nvme_free_queue(nvmeq); 1035 } 1036 } 1037 1038 /** 1039 * nvme_suspend_queue - put queue into suspended state 1040 * @nvmeq - queue to suspend 1041 */ 1042 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1043 { 1044 int vector; 1045 1046 spin_lock_irq(&nvmeq->q_lock); 1047 if (nvmeq->cq_vector == -1) { 1048 spin_unlock_irq(&nvmeq->q_lock); 1049 return 1; 1050 } 1051 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; 1052 nvmeq->dev->online_queues--; 1053 nvmeq->cq_vector = -1; 1054 spin_unlock_irq(&nvmeq->q_lock); 1055 1056 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1057 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 1058 1059 irq_set_affinity_hint(vector, NULL); 1060 free_irq(vector, nvmeq); 1061 1062 return 0; 1063 } 1064 1065 static void nvme_clear_queue(struct nvme_queue *nvmeq) 1066 { 1067 spin_lock_irq(&nvmeq->q_lock); 1068 if (nvmeq->tags && *nvmeq->tags) 1069 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq); 1070 spin_unlock_irq(&nvmeq->q_lock); 1071 } 1072 1073 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1074 { 1075 struct nvme_queue *nvmeq = dev->queues[0]; 1076 1077 if (!nvmeq) 1078 return; 1079 if (nvme_suspend_queue(nvmeq)) 1080 return; 1081 1082 if (shutdown) 1083 nvme_shutdown_ctrl(&dev->ctrl); 1084 else 1085 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 1086 dev->bar + NVME_REG_CAP)); 1087 1088 spin_lock_irq(&nvmeq->q_lock); 1089 nvme_process_cq(nvmeq); 1090 spin_unlock_irq(&nvmeq->q_lock); 1091 } 1092 1093 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1094 int entry_size) 1095 { 1096 int q_depth = dev->q_depth; 1097 unsigned q_size_aligned = roundup(q_depth * entry_size, 1098 dev->ctrl.page_size); 1099 1100 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1101 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1102 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1103 q_depth = div_u64(mem_per_q, entry_size); 1104 1105 /* 1106 * Ensure the reduced q_depth is above some threshold where it 1107 * would be better to map queues in system memory with the 1108 * original depth 1109 */ 1110 if (q_depth < 64) 1111 return -ENOMEM; 1112 } 1113 1114 return q_depth; 1115 } 1116 1117 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1118 int qid, int depth) 1119 { 1120 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1121 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1122 dev->ctrl.page_size); 1123 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1124 nvmeq->sq_cmds_io = dev->cmb + offset; 1125 } else { 1126 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1127 &nvmeq->sq_dma_addr, GFP_KERNEL); 1128 if (!nvmeq->sq_cmds) 1129 return -ENOMEM; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1136 int depth) 1137 { 1138 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1139 if (!nvmeq) 1140 return NULL; 1141 1142 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1143 &nvmeq->cq_dma_addr, GFP_KERNEL); 1144 if (!nvmeq->cqes) 1145 goto free_nvmeq; 1146 1147 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1148 goto free_cqdma; 1149 1150 nvmeq->q_dmadev = dev->dev; 1151 nvmeq->dev = dev; 1152 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1153 dev->ctrl.instance, qid); 1154 spin_lock_init(&nvmeq->q_lock); 1155 nvmeq->cq_head = 0; 1156 nvmeq->cq_phase = 1; 1157 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1158 nvmeq->q_depth = depth; 1159 nvmeq->qid = qid; 1160 nvmeq->cq_vector = -1; 1161 dev->queues[qid] = nvmeq; 1162 1163 /* make sure queue descriptor is set before queue count, for kthread */ 1164 mb(); 1165 dev->queue_count++; 1166 1167 return nvmeq; 1168 1169 free_cqdma: 1170 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1171 nvmeq->cq_dma_addr); 1172 free_nvmeq: 1173 kfree(nvmeq); 1174 return NULL; 1175 } 1176 1177 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1178 const char *name) 1179 { 1180 if (use_threaded_interrupts) 1181 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, 1182 nvme_irq_check, nvme_irq, IRQF_SHARED, 1183 name, nvmeq); 1184 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, 1185 IRQF_SHARED, name, nvmeq); 1186 } 1187 1188 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1189 { 1190 struct nvme_dev *dev = nvmeq->dev; 1191 1192 spin_lock_irq(&nvmeq->q_lock); 1193 nvmeq->sq_tail = 0; 1194 nvmeq->cq_head = 0; 1195 nvmeq->cq_phase = 1; 1196 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1197 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1198 dev->online_queues++; 1199 spin_unlock_irq(&nvmeq->q_lock); 1200 } 1201 1202 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1203 { 1204 struct nvme_dev *dev = nvmeq->dev; 1205 int result; 1206 1207 nvmeq->cq_vector = qid - 1; 1208 result = adapter_alloc_cq(dev, qid, nvmeq); 1209 if (result < 0) 1210 return result; 1211 1212 result = adapter_alloc_sq(dev, qid, nvmeq); 1213 if (result < 0) 1214 goto release_cq; 1215 1216 result = queue_request_irq(dev, nvmeq, nvmeq->irqname); 1217 if (result < 0) 1218 goto release_sq; 1219 1220 nvme_init_queue(nvmeq, qid); 1221 return result; 1222 1223 release_sq: 1224 adapter_delete_sq(dev, qid); 1225 release_cq: 1226 adapter_delete_cq(dev, qid); 1227 return result; 1228 } 1229 1230 static struct blk_mq_ops nvme_mq_admin_ops = { 1231 .queue_rq = nvme_queue_rq, 1232 .complete = nvme_complete_rq, 1233 .map_queue = blk_mq_map_queue, 1234 .init_hctx = nvme_admin_init_hctx, 1235 .exit_hctx = nvme_admin_exit_hctx, 1236 .init_request = nvme_admin_init_request, 1237 .timeout = nvme_timeout, 1238 }; 1239 1240 static struct blk_mq_ops nvme_mq_ops = { 1241 .queue_rq = nvme_queue_rq, 1242 .complete = nvme_complete_rq, 1243 .map_queue = blk_mq_map_queue, 1244 .init_hctx = nvme_init_hctx, 1245 .init_request = nvme_init_request, 1246 .timeout = nvme_timeout, 1247 .poll = nvme_poll, 1248 }; 1249 1250 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1251 { 1252 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1253 blk_cleanup_queue(dev->ctrl.admin_q); 1254 blk_mq_free_tag_set(&dev->admin_tagset); 1255 } 1256 } 1257 1258 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1259 { 1260 if (!dev->ctrl.admin_q) { 1261 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1262 dev->admin_tagset.nr_hw_queues = 1; 1263 1264 /* 1265 * Subtract one to leave an empty queue entry for 'Full Queue' 1266 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1267 */ 1268 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1269 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1270 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1271 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1272 dev->admin_tagset.driver_data = dev; 1273 1274 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1275 return -ENOMEM; 1276 1277 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1278 if (IS_ERR(dev->ctrl.admin_q)) { 1279 blk_mq_free_tag_set(&dev->admin_tagset); 1280 return -ENOMEM; 1281 } 1282 if (!blk_get_queue(dev->ctrl.admin_q)) { 1283 nvme_dev_remove_admin(dev); 1284 dev->ctrl.admin_q = NULL; 1285 return -ENODEV; 1286 } 1287 } else 1288 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1289 1290 return 0; 1291 } 1292 1293 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1294 { 1295 int result; 1296 u32 aqa; 1297 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1298 struct nvme_queue *nvmeq; 1299 1300 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ? 1301 NVME_CAP_NSSRC(cap) : 0; 1302 1303 if (dev->subsystem && 1304 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1305 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1306 1307 result = nvme_disable_ctrl(&dev->ctrl, cap); 1308 if (result < 0) 1309 return result; 1310 1311 nvmeq = dev->queues[0]; 1312 if (!nvmeq) { 1313 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1314 if (!nvmeq) 1315 return -ENOMEM; 1316 } 1317 1318 aqa = nvmeq->q_depth - 1; 1319 aqa |= aqa << 16; 1320 1321 writel(aqa, dev->bar + NVME_REG_AQA); 1322 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1323 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1324 1325 result = nvme_enable_ctrl(&dev->ctrl, cap); 1326 if (result) 1327 goto free_nvmeq; 1328 1329 nvmeq->cq_vector = 0; 1330 result = queue_request_irq(dev, nvmeq, nvmeq->irqname); 1331 if (result) { 1332 nvmeq->cq_vector = -1; 1333 goto free_nvmeq; 1334 } 1335 1336 return result; 1337 1338 free_nvmeq: 1339 nvme_free_queues(dev, 0); 1340 return result; 1341 } 1342 1343 static int nvme_kthread(void *data) 1344 { 1345 struct nvme_dev *dev, *next; 1346 1347 while (!kthread_should_stop()) { 1348 set_current_state(TASK_INTERRUPTIBLE); 1349 spin_lock(&dev_list_lock); 1350 list_for_each_entry_safe(dev, next, &dev_list, node) { 1351 int i; 1352 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1353 1354 /* 1355 * Skip controllers currently under reset. 1356 */ 1357 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work)) 1358 continue; 1359 1360 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) || 1361 csts & NVME_CSTS_CFS) { 1362 if (queue_work(nvme_workq, &dev->reset_work)) { 1363 dev_warn(dev->dev, 1364 "Failed status: %x, reset controller\n", 1365 readl(dev->bar + NVME_REG_CSTS)); 1366 } 1367 continue; 1368 } 1369 for (i = 0; i < dev->queue_count; i++) { 1370 struct nvme_queue *nvmeq = dev->queues[i]; 1371 if (!nvmeq) 1372 continue; 1373 spin_lock_irq(&nvmeq->q_lock); 1374 nvme_process_cq(nvmeq); 1375 1376 while (i == 0 && dev->ctrl.event_limit > 0) 1377 nvme_submit_async_event(dev); 1378 spin_unlock_irq(&nvmeq->q_lock); 1379 } 1380 } 1381 spin_unlock(&dev_list_lock); 1382 schedule_timeout(round_jiffies_relative(HZ)); 1383 } 1384 return 0; 1385 } 1386 1387 static int nvme_create_io_queues(struct nvme_dev *dev) 1388 { 1389 unsigned i; 1390 int ret = 0; 1391 1392 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1393 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1394 ret = -ENOMEM; 1395 break; 1396 } 1397 } 1398 1399 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) { 1400 ret = nvme_create_queue(dev->queues[i], i); 1401 if (ret) { 1402 nvme_free_queues(dev, i); 1403 break; 1404 } 1405 } 1406 1407 /* 1408 * Ignore failing Create SQ/CQ commands, we can continue with less 1409 * than the desired aount of queues, and even a controller without 1410 * I/O queues an still be used to issue admin commands. This might 1411 * be useful to upgrade a buggy firmware for example. 1412 */ 1413 return ret >= 0 ? 0 : ret; 1414 } 1415 1416 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1417 { 1418 u64 szu, size, offset; 1419 u32 cmbloc; 1420 resource_size_t bar_size; 1421 struct pci_dev *pdev = to_pci_dev(dev->dev); 1422 void __iomem *cmb; 1423 dma_addr_t dma_addr; 1424 1425 if (!use_cmb_sqes) 1426 return NULL; 1427 1428 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1429 if (!(NVME_CMB_SZ(dev->cmbsz))) 1430 return NULL; 1431 1432 cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1433 1434 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1435 size = szu * NVME_CMB_SZ(dev->cmbsz); 1436 offset = szu * NVME_CMB_OFST(cmbloc); 1437 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); 1438 1439 if (offset > bar_size) 1440 return NULL; 1441 1442 /* 1443 * Controllers may support a CMB size larger than their BAR, 1444 * for example, due to being behind a bridge. Reduce the CMB to 1445 * the reported size of the BAR 1446 */ 1447 if (size > bar_size - offset) 1448 size = bar_size - offset; 1449 1450 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; 1451 cmb = ioremap_wc(dma_addr, size); 1452 if (!cmb) 1453 return NULL; 1454 1455 dev->cmb_dma_addr = dma_addr; 1456 dev->cmb_size = size; 1457 return cmb; 1458 } 1459 1460 static inline void nvme_release_cmb(struct nvme_dev *dev) 1461 { 1462 if (dev->cmb) { 1463 iounmap(dev->cmb); 1464 dev->cmb = NULL; 1465 } 1466 } 1467 1468 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1469 { 1470 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1471 } 1472 1473 static int nvme_setup_io_queues(struct nvme_dev *dev) 1474 { 1475 struct nvme_queue *adminq = dev->queues[0]; 1476 struct pci_dev *pdev = to_pci_dev(dev->dev); 1477 int result, i, vecs, nr_io_queues, size; 1478 1479 nr_io_queues = num_possible_cpus(); 1480 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1481 if (result < 0) 1482 return result; 1483 1484 /* 1485 * Degraded controllers might return an error when setting the queue 1486 * count. We still want to be able to bring them online and offer 1487 * access to the admin queue, as that might be only way to fix them up. 1488 */ 1489 if (result > 0) { 1490 dev_err(dev->dev, "Could not set queue count (%d)\n", result); 1491 nr_io_queues = 0; 1492 result = 0; 1493 } 1494 1495 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1496 result = nvme_cmb_qdepth(dev, nr_io_queues, 1497 sizeof(struct nvme_command)); 1498 if (result > 0) 1499 dev->q_depth = result; 1500 else 1501 nvme_release_cmb(dev); 1502 } 1503 1504 size = db_bar_size(dev, nr_io_queues); 1505 if (size > 8192) { 1506 iounmap(dev->bar); 1507 do { 1508 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1509 if (dev->bar) 1510 break; 1511 if (!--nr_io_queues) 1512 return -ENOMEM; 1513 size = db_bar_size(dev, nr_io_queues); 1514 } while (1); 1515 dev->dbs = dev->bar + 4096; 1516 adminq->q_db = dev->dbs; 1517 } 1518 1519 /* Deregister the admin queue's interrupt */ 1520 free_irq(dev->entry[0].vector, adminq); 1521 1522 /* 1523 * If we enable msix early due to not intx, disable it again before 1524 * setting up the full range we need. 1525 */ 1526 if (!pdev->irq) 1527 pci_disable_msix(pdev); 1528 1529 for (i = 0; i < nr_io_queues; i++) 1530 dev->entry[i].entry = i; 1531 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); 1532 if (vecs < 0) { 1533 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); 1534 if (vecs < 0) { 1535 vecs = 1; 1536 } else { 1537 for (i = 0; i < vecs; i++) 1538 dev->entry[i].vector = i + pdev->irq; 1539 } 1540 } 1541 1542 /* 1543 * Should investigate if there's a performance win from allocating 1544 * more queues than interrupt vectors; it might allow the submission 1545 * path to scale better, even if the receive path is limited by the 1546 * number of interrupts. 1547 */ 1548 nr_io_queues = vecs; 1549 dev->max_qid = nr_io_queues; 1550 1551 result = queue_request_irq(dev, adminq, adminq->irqname); 1552 if (result) { 1553 adminq->cq_vector = -1; 1554 goto free_queues; 1555 } 1556 1557 /* Free previously allocated queues that are no longer usable */ 1558 nvme_free_queues(dev, nr_io_queues + 1); 1559 return nvme_create_io_queues(dev); 1560 1561 free_queues: 1562 nvme_free_queues(dev, 1); 1563 return result; 1564 } 1565 1566 static void nvme_set_irq_hints(struct nvme_dev *dev) 1567 { 1568 struct nvme_queue *nvmeq; 1569 int i; 1570 1571 for (i = 0; i < dev->online_queues; i++) { 1572 nvmeq = dev->queues[i]; 1573 1574 if (!nvmeq->tags || !(*nvmeq->tags)) 1575 continue; 1576 1577 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, 1578 blk_mq_tags_cpumask(*nvmeq->tags)); 1579 } 1580 } 1581 1582 static void nvme_dev_scan(struct work_struct *work) 1583 { 1584 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work); 1585 1586 if (!dev->tagset.tags) 1587 return; 1588 nvme_scan_namespaces(&dev->ctrl); 1589 nvme_set_irq_hints(dev); 1590 } 1591 1592 static void nvme_del_queue_end(struct request *req, int error) 1593 { 1594 struct nvme_queue *nvmeq = req->end_io_data; 1595 1596 blk_mq_free_request(req); 1597 complete(&nvmeq->dev->ioq_wait); 1598 } 1599 1600 static void nvme_del_cq_end(struct request *req, int error) 1601 { 1602 struct nvme_queue *nvmeq = req->end_io_data; 1603 1604 if (!error) { 1605 unsigned long flags; 1606 1607 spin_lock_irqsave(&nvmeq->q_lock, flags); 1608 nvme_process_cq(nvmeq); 1609 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1610 } 1611 1612 nvme_del_queue_end(req, error); 1613 } 1614 1615 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1616 { 1617 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1618 struct request *req; 1619 struct nvme_command cmd; 1620 1621 memset(&cmd, 0, sizeof(cmd)); 1622 cmd.delete_queue.opcode = opcode; 1623 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1624 1625 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 1626 if (IS_ERR(req)) 1627 return PTR_ERR(req); 1628 1629 req->timeout = ADMIN_TIMEOUT; 1630 req->end_io_data = nvmeq; 1631 1632 blk_execute_rq_nowait(q, NULL, req, false, 1633 opcode == nvme_admin_delete_cq ? 1634 nvme_del_cq_end : nvme_del_queue_end); 1635 return 0; 1636 } 1637 1638 static void nvme_disable_io_queues(struct nvme_dev *dev) 1639 { 1640 int pass; 1641 unsigned long timeout; 1642 u8 opcode = nvme_admin_delete_sq; 1643 1644 for (pass = 0; pass < 2; pass++) { 1645 int sent = 0, i = dev->queue_count - 1; 1646 1647 reinit_completion(&dev->ioq_wait); 1648 retry: 1649 timeout = ADMIN_TIMEOUT; 1650 for (; i > 0; i--) { 1651 struct nvme_queue *nvmeq = dev->queues[i]; 1652 1653 if (!pass) 1654 nvme_suspend_queue(nvmeq); 1655 if (nvme_delete_queue(nvmeq, opcode)) 1656 break; 1657 ++sent; 1658 } 1659 while (sent--) { 1660 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1661 if (timeout == 0) 1662 return; 1663 if (i) 1664 goto retry; 1665 } 1666 opcode = nvme_admin_delete_cq; 1667 } 1668 } 1669 1670 /* 1671 * Return: error value if an error occurred setting up the queues or calling 1672 * Identify Device. 0 if these succeeded, even if adding some of the 1673 * namespaces failed. At the moment, these failures are silent. TBD which 1674 * failures should be reported. 1675 */ 1676 static int nvme_dev_add(struct nvme_dev *dev) 1677 { 1678 if (!dev->ctrl.tagset) { 1679 dev->tagset.ops = &nvme_mq_ops; 1680 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1681 dev->tagset.timeout = NVME_IO_TIMEOUT; 1682 dev->tagset.numa_node = dev_to_node(dev->dev); 1683 dev->tagset.queue_depth = 1684 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1685 dev->tagset.cmd_size = nvme_cmd_size(dev); 1686 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1687 dev->tagset.driver_data = dev; 1688 1689 if (blk_mq_alloc_tag_set(&dev->tagset)) 1690 return 0; 1691 dev->ctrl.tagset = &dev->tagset; 1692 } 1693 queue_work(nvme_workq, &dev->scan_work); 1694 return 0; 1695 } 1696 1697 static int nvme_dev_map(struct nvme_dev *dev) 1698 { 1699 u64 cap; 1700 int bars, result = -ENOMEM; 1701 struct pci_dev *pdev = to_pci_dev(dev->dev); 1702 1703 if (pci_enable_device_mem(pdev)) 1704 return result; 1705 1706 dev->entry[0].vector = pdev->irq; 1707 pci_set_master(pdev); 1708 bars = pci_select_bars(pdev, IORESOURCE_MEM); 1709 if (!bars) 1710 goto disable_pci; 1711 1712 if (pci_request_selected_regions(pdev, bars, "nvme")) 1713 goto disable_pci; 1714 1715 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1716 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1717 goto disable; 1718 1719 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1720 if (!dev->bar) 1721 goto disable; 1722 1723 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1724 result = -ENODEV; 1725 goto unmap; 1726 } 1727 1728 /* 1729 * Some devices don't advertse INTx interrupts, pre-enable a single 1730 * MSIX vec for setup. We'll adjust this later. 1731 */ 1732 if (!pdev->irq) { 1733 result = pci_enable_msix(pdev, dev->entry, 1); 1734 if (result < 0) 1735 goto unmap; 1736 } 1737 1738 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1739 1740 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1741 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1742 dev->dbs = dev->bar + 4096; 1743 1744 /* 1745 * Temporary fix for the Apple controller found in the MacBook8,1 and 1746 * some MacBook7,1 to avoid controller resets and data loss. 1747 */ 1748 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1749 dev->q_depth = 2; 1750 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1751 "queue depth=%u to work around controller resets\n", 1752 dev->q_depth); 1753 } 1754 1755 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2)) 1756 dev->cmb = nvme_map_cmb(dev); 1757 1758 pci_enable_pcie_error_reporting(pdev); 1759 pci_save_state(pdev); 1760 return 0; 1761 1762 unmap: 1763 iounmap(dev->bar); 1764 dev->bar = NULL; 1765 disable: 1766 pci_release_regions(pdev); 1767 disable_pci: 1768 pci_disable_device(pdev); 1769 return result; 1770 } 1771 1772 static void nvme_dev_unmap(struct nvme_dev *dev) 1773 { 1774 struct pci_dev *pdev = to_pci_dev(dev->dev); 1775 1776 if (pdev->msi_enabled) 1777 pci_disable_msi(pdev); 1778 else if (pdev->msix_enabled) 1779 pci_disable_msix(pdev); 1780 1781 if (dev->bar) { 1782 iounmap(dev->bar); 1783 dev->bar = NULL; 1784 pci_release_regions(pdev); 1785 } 1786 1787 if (pci_is_enabled(pdev)) { 1788 pci_disable_pcie_error_reporting(pdev); 1789 pci_disable_device(pdev); 1790 } 1791 } 1792 1793 static int nvme_dev_list_add(struct nvme_dev *dev) 1794 { 1795 bool start_thread = false; 1796 1797 spin_lock(&dev_list_lock); 1798 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) { 1799 start_thread = true; 1800 nvme_thread = NULL; 1801 } 1802 list_add(&dev->node, &dev_list); 1803 spin_unlock(&dev_list_lock); 1804 1805 if (start_thread) { 1806 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); 1807 wake_up_all(&nvme_kthread_wait); 1808 } else 1809 wait_event_killable(nvme_kthread_wait, nvme_thread); 1810 1811 if (IS_ERR_OR_NULL(nvme_thread)) 1812 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR; 1813 1814 return 0; 1815 } 1816 1817 /* 1818 * Remove the node from the device list and check 1819 * for whether or not we need to stop the nvme_thread. 1820 */ 1821 static void nvme_dev_list_remove(struct nvme_dev *dev) 1822 { 1823 struct task_struct *tmp = NULL; 1824 1825 spin_lock(&dev_list_lock); 1826 list_del_init(&dev->node); 1827 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) { 1828 tmp = nvme_thread; 1829 nvme_thread = NULL; 1830 } 1831 spin_unlock(&dev_list_lock); 1832 1833 if (tmp) 1834 kthread_stop(tmp); 1835 } 1836 1837 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1838 { 1839 int i; 1840 u32 csts = -1; 1841 1842 nvme_dev_list_remove(dev); 1843 1844 mutex_lock(&dev->shutdown_lock); 1845 if (dev->bar) { 1846 nvme_stop_queues(&dev->ctrl); 1847 csts = readl(dev->bar + NVME_REG_CSTS); 1848 } 1849 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1850 for (i = dev->queue_count - 1; i >= 0; i--) { 1851 struct nvme_queue *nvmeq = dev->queues[i]; 1852 nvme_suspend_queue(nvmeq); 1853 } 1854 } else { 1855 nvme_disable_io_queues(dev); 1856 nvme_disable_admin_queue(dev, shutdown); 1857 } 1858 nvme_dev_unmap(dev); 1859 1860 for (i = dev->queue_count - 1; i >= 0; i--) 1861 nvme_clear_queue(dev->queues[i]); 1862 mutex_unlock(&dev->shutdown_lock); 1863 } 1864 1865 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1866 { 1867 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1868 PAGE_SIZE, PAGE_SIZE, 0); 1869 if (!dev->prp_page_pool) 1870 return -ENOMEM; 1871 1872 /* Optimisation for I/Os between 4k and 128k */ 1873 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1874 256, 256, 0); 1875 if (!dev->prp_small_pool) { 1876 dma_pool_destroy(dev->prp_page_pool); 1877 return -ENOMEM; 1878 } 1879 return 0; 1880 } 1881 1882 static void nvme_release_prp_pools(struct nvme_dev *dev) 1883 { 1884 dma_pool_destroy(dev->prp_page_pool); 1885 dma_pool_destroy(dev->prp_small_pool); 1886 } 1887 1888 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1889 { 1890 struct nvme_dev *dev = to_nvme_dev(ctrl); 1891 1892 put_device(dev->dev); 1893 if (dev->tagset.tags) 1894 blk_mq_free_tag_set(&dev->tagset); 1895 if (dev->ctrl.admin_q) 1896 blk_put_queue(dev->ctrl.admin_q); 1897 kfree(dev->queues); 1898 kfree(dev->entry); 1899 kfree(dev); 1900 } 1901 1902 static void nvme_reset_work(struct work_struct *work) 1903 { 1904 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1905 int result; 1906 1907 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags))) 1908 goto out; 1909 1910 /* 1911 * If we're called to reset a live controller first shut it down before 1912 * moving on. 1913 */ 1914 if (dev->bar) 1915 nvme_dev_disable(dev, false); 1916 1917 set_bit(NVME_CTRL_RESETTING, &dev->flags); 1918 1919 result = nvme_dev_map(dev); 1920 if (result) 1921 goto out; 1922 1923 result = nvme_configure_admin_queue(dev); 1924 if (result) 1925 goto unmap; 1926 1927 nvme_init_queue(dev->queues[0], 0); 1928 result = nvme_alloc_admin_tags(dev); 1929 if (result) 1930 goto disable; 1931 1932 result = nvme_init_identify(&dev->ctrl); 1933 if (result) 1934 goto free_tags; 1935 1936 result = nvme_setup_io_queues(dev); 1937 if (result) 1938 goto free_tags; 1939 1940 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS; 1941 1942 result = nvme_dev_list_add(dev); 1943 if (result) 1944 goto remove; 1945 1946 /* 1947 * Keep the controller around but remove all namespaces if we don't have 1948 * any working I/O queue. 1949 */ 1950 if (dev->online_queues < 2) { 1951 dev_warn(dev->dev, "IO queues not created\n"); 1952 nvme_remove_namespaces(&dev->ctrl); 1953 } else { 1954 nvme_start_queues(&dev->ctrl); 1955 nvme_dev_add(dev); 1956 } 1957 1958 clear_bit(NVME_CTRL_RESETTING, &dev->flags); 1959 return; 1960 1961 remove: 1962 nvme_dev_list_remove(dev); 1963 free_tags: 1964 nvme_dev_remove_admin(dev); 1965 blk_put_queue(dev->ctrl.admin_q); 1966 dev->ctrl.admin_q = NULL; 1967 dev->queues[0]->tags = NULL; 1968 disable: 1969 nvme_disable_admin_queue(dev, false); 1970 unmap: 1971 nvme_dev_unmap(dev); 1972 out: 1973 nvme_remove_dead_ctrl(dev); 1974 } 1975 1976 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1977 { 1978 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1979 struct pci_dev *pdev = to_pci_dev(dev->dev); 1980 1981 if (pci_get_drvdata(pdev)) 1982 pci_stop_and_remove_bus_device_locked(pdev); 1983 nvme_put_ctrl(&dev->ctrl); 1984 } 1985 1986 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 1987 { 1988 dev_warn(dev->dev, "Removing after probe failure\n"); 1989 kref_get(&dev->ctrl.kref); 1990 if (!schedule_work(&dev->remove_work)) 1991 nvme_put_ctrl(&dev->ctrl); 1992 } 1993 1994 static int nvme_reset(struct nvme_dev *dev) 1995 { 1996 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1997 return -ENODEV; 1998 1999 if (!queue_work(nvme_workq, &dev->reset_work)) 2000 return -EBUSY; 2001 2002 flush_work(&dev->reset_work); 2003 return 0; 2004 } 2005 2006 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2007 { 2008 *val = readl(to_nvme_dev(ctrl)->bar + off); 2009 return 0; 2010 } 2011 2012 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2013 { 2014 writel(val, to_nvme_dev(ctrl)->bar + off); 2015 return 0; 2016 } 2017 2018 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2019 { 2020 *val = readq(to_nvme_dev(ctrl)->bar + off); 2021 return 0; 2022 } 2023 2024 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl) 2025 { 2026 struct nvme_dev *dev = to_nvme_dev(ctrl); 2027 2028 return !dev->bar || dev->online_queues < 2; 2029 } 2030 2031 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 2032 { 2033 return nvme_reset(to_nvme_dev(ctrl)); 2034 } 2035 2036 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2037 .reg_read32 = nvme_pci_reg_read32, 2038 .reg_write32 = nvme_pci_reg_write32, 2039 .reg_read64 = nvme_pci_reg_read64, 2040 .io_incapable = nvme_pci_io_incapable, 2041 .reset_ctrl = nvme_pci_reset_ctrl, 2042 .free_ctrl = nvme_pci_free_ctrl, 2043 }; 2044 2045 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2046 { 2047 int node, result = -ENOMEM; 2048 struct nvme_dev *dev; 2049 2050 node = dev_to_node(&pdev->dev); 2051 if (node == NUMA_NO_NODE) 2052 set_dev_node(&pdev->dev, 0); 2053 2054 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2055 if (!dev) 2056 return -ENOMEM; 2057 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), 2058 GFP_KERNEL, node); 2059 if (!dev->entry) 2060 goto free; 2061 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 2062 GFP_KERNEL, node); 2063 if (!dev->queues) 2064 goto free; 2065 2066 dev->dev = get_device(&pdev->dev); 2067 pci_set_drvdata(pdev, dev); 2068 2069 INIT_LIST_HEAD(&dev->node); 2070 INIT_WORK(&dev->scan_work, nvme_dev_scan); 2071 INIT_WORK(&dev->reset_work, nvme_reset_work); 2072 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2073 mutex_init(&dev->shutdown_lock); 2074 init_completion(&dev->ioq_wait); 2075 2076 result = nvme_setup_prp_pools(dev); 2077 if (result) 2078 goto put_pci; 2079 2080 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2081 id->driver_data); 2082 if (result) 2083 goto release_pools; 2084 2085 queue_work(nvme_workq, &dev->reset_work); 2086 return 0; 2087 2088 release_pools: 2089 nvme_release_prp_pools(dev); 2090 put_pci: 2091 put_device(dev->dev); 2092 free: 2093 kfree(dev->queues); 2094 kfree(dev->entry); 2095 kfree(dev); 2096 return result; 2097 } 2098 2099 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 2100 { 2101 struct nvme_dev *dev = pci_get_drvdata(pdev); 2102 2103 if (prepare) 2104 nvme_dev_disable(dev, false); 2105 else 2106 queue_work(nvme_workq, &dev->reset_work); 2107 } 2108 2109 static void nvme_shutdown(struct pci_dev *pdev) 2110 { 2111 struct nvme_dev *dev = pci_get_drvdata(pdev); 2112 nvme_dev_disable(dev, true); 2113 } 2114 2115 static void nvme_remove(struct pci_dev *pdev) 2116 { 2117 struct nvme_dev *dev = pci_get_drvdata(pdev); 2118 2119 pci_set_drvdata(pdev, NULL); 2120 flush_work(&dev->scan_work); 2121 nvme_remove_namespaces(&dev->ctrl); 2122 nvme_uninit_ctrl(&dev->ctrl); 2123 nvme_dev_disable(dev, true); 2124 flush_work(&dev->reset_work); 2125 nvme_dev_remove_admin(dev); 2126 nvme_free_queues(dev, 0); 2127 nvme_release_cmb(dev); 2128 nvme_release_prp_pools(dev); 2129 nvme_put_ctrl(&dev->ctrl); 2130 } 2131 2132 #ifdef CONFIG_PM_SLEEP 2133 static int nvme_suspend(struct device *dev) 2134 { 2135 struct pci_dev *pdev = to_pci_dev(dev); 2136 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2137 2138 nvme_dev_disable(ndev, true); 2139 return 0; 2140 } 2141 2142 static int nvme_resume(struct device *dev) 2143 { 2144 struct pci_dev *pdev = to_pci_dev(dev); 2145 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2146 2147 queue_work(nvme_workq, &ndev->reset_work); 2148 return 0; 2149 } 2150 #endif 2151 2152 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2153 2154 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2155 pci_channel_state_t state) 2156 { 2157 struct nvme_dev *dev = pci_get_drvdata(pdev); 2158 2159 /* 2160 * A frozen channel requires a reset. When detected, this method will 2161 * shutdown the controller to quiesce. The controller will be restarted 2162 * after the slot reset through driver's slot_reset callback. 2163 */ 2164 dev_warn(&pdev->dev, "error detected: state:%d\n", state); 2165 switch (state) { 2166 case pci_channel_io_normal: 2167 return PCI_ERS_RESULT_CAN_RECOVER; 2168 case pci_channel_io_frozen: 2169 nvme_dev_disable(dev, false); 2170 return PCI_ERS_RESULT_NEED_RESET; 2171 case pci_channel_io_perm_failure: 2172 return PCI_ERS_RESULT_DISCONNECT; 2173 } 2174 return PCI_ERS_RESULT_NEED_RESET; 2175 } 2176 2177 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2178 { 2179 struct nvme_dev *dev = pci_get_drvdata(pdev); 2180 2181 dev_info(&pdev->dev, "restart after slot reset\n"); 2182 pci_restore_state(pdev); 2183 queue_work(nvme_workq, &dev->reset_work); 2184 return PCI_ERS_RESULT_RECOVERED; 2185 } 2186 2187 static void nvme_error_resume(struct pci_dev *pdev) 2188 { 2189 pci_cleanup_aer_uncorrect_error_status(pdev); 2190 } 2191 2192 static const struct pci_error_handlers nvme_err_handler = { 2193 .error_detected = nvme_error_detected, 2194 .slot_reset = nvme_slot_reset, 2195 .resume = nvme_error_resume, 2196 .reset_notify = nvme_reset_notify, 2197 }; 2198 2199 /* Move to pci_ids.h later */ 2200 #define PCI_CLASS_STORAGE_EXPRESS 0x010802 2201 2202 static const struct pci_device_id nvme_id_table[] = { 2203 { PCI_VDEVICE(INTEL, 0x0953), 2204 .driver_data = NVME_QUIRK_STRIPE_SIZE, }, 2205 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2206 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2207 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2208 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2209 { 0, } 2210 }; 2211 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2212 2213 static struct pci_driver nvme_driver = { 2214 .name = "nvme", 2215 .id_table = nvme_id_table, 2216 .probe = nvme_probe, 2217 .remove = nvme_remove, 2218 .shutdown = nvme_shutdown, 2219 .driver = { 2220 .pm = &nvme_dev_pm_ops, 2221 }, 2222 .err_handler = &nvme_err_handler, 2223 }; 2224 2225 static int __init nvme_init(void) 2226 { 2227 int result; 2228 2229 init_waitqueue_head(&nvme_kthread_wait); 2230 2231 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2232 if (!nvme_workq) 2233 return -ENOMEM; 2234 2235 result = nvme_core_init(); 2236 if (result < 0) 2237 goto kill_workq; 2238 2239 result = pci_register_driver(&nvme_driver); 2240 if (result) 2241 goto core_exit; 2242 return 0; 2243 2244 core_exit: 2245 nvme_core_exit(); 2246 kill_workq: 2247 destroy_workqueue(nvme_workq); 2248 return result; 2249 } 2250 2251 static void __exit nvme_exit(void) 2252 { 2253 pci_unregister_driver(&nvme_driver); 2254 nvme_core_exit(); 2255 destroy_workqueue(nvme_workq); 2256 BUG_ON(nvme_thread && !IS_ERR(nvme_thread)); 2257 _nvme_check_size(); 2258 } 2259 2260 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2261 MODULE_LICENSE("GPL"); 2262 MODULE_VERSION("1.0"); 2263 module_init(nvme_init); 2264 module_exit(nvme_exit); 2265